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Abstract

The behavioural differences between autonomous vehicles (AVs) and human-driven
vehicles (HDVs) can significantly impact traffic efficiency, safety, and emissions.
Simulation-based impact assessments using microscopic traffic models often modify car-
following (CF) and lane-changing (LC) configurations to differentiate AVs from HDVs.
Typically, researchers adjust CF model parameters to replicate AV driving behaviour, but
these assumptions can lead to varying conclusions on AV impacts. The scope of each study
(e.g., freeways, highways, urban links, intersections) also influences the outcomes. This
research conducts an impact assessment utilizing optimized AV driving behavior rather
than assumptions on a city network level (Munich) using a simulation-based platform.
The particle swarm optimization (PSO) algorithm is used to calibrate the base model and
run simulation experiments under various penetration rates (PRs) and demand scenarios.
Results show significant safety improvements throughout the network under higher PRs,
while lower PRs might lead to deteriorating safety. At 100% AV PR, the total number
of conflicts decreased by around 25% compared to a fully HDV environment. Consider-
ing AVs’ sensing capabilities, additional safety improvements are found in almost any AV
PR. However, AVs might not improve traffic efficiency; in some cases, they may slightly
increase average network travel time, though this change is minimal.

1 INTRODUCTION

Fully automated vehicles, also called autonomous or self-
driving vehicles, will gradually enter the market. There are
optimistic and pessimistic views about the mass deployment
of autonomous vehicles (AVs). From an optimistic perspec-
tive, predictions are toward significant impacts of AVs on traffic
safety improvement [1, 2], congestion reduction [3], fuel savings
[4–6], vehicle emissions reduction [5], and driving restrictions
[7, 8]. On the other hand, the pessimistic view challenges the
penetration of AVs on the market due to their potential tech-
nical failures [9, 10], social acceptance [11], costs [12], induced
traffic demand [13], years of testing, and regulatory approvals.
Since new technological innovations have rapidly entered the
market, it is expected that AVs might experience the same trend.
We will eventually witness a situation where AVs interact with
human-driven vehicles (HDVs), cyclists, and pedestrians [14].
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From a transportation perspective, AVs might have dif-
ferent driving behaviour than HDVs. These differences are
due to AVs’ sensing and communication capabilities. AVs can
detect the precise picture of the surrounding environment using
advanced sensing technologies (e.g. radar and lidar) and react
accordingly with the help of a trained decision processing unit
(DPU). Meanwhile, AVs are capable of exchanging driving sta-
tus (i.e. speed, acceleration, position, and more) with other
connected vehicles and infrastructure (thanks to V2V and V2I),
which are labelled as connected autonomous vehicles (CAVs)
[15, 16].

AVs and CAVs are expected to bring significant changes
in mobility, safety, and emissions. Many researchers have con-
ducted simulation-based studies to quantify these potential
changes in transportation systems. Microscopic traffic models
(MTMs) are widely used to predict the impact of AVs and CAVs
on safety and efficiency. The general findings of most studies

IET Intell. Transp. Syst. 2024;18:1677–1696. wileyonlinelibrary.com/iet-its 1677

https://orcid.org/0000-0002-5577-2468
https://orcid.org/0000-0003-0203-9542
mailto:hashmat.sadid@tum.de
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/iet-its


1678 SADID and ANTONIOU

reveal that higher penetration rates (PRs) of AVs and/or CAVs
could have more considerable impacts on efficiency and safety
[17–23]. More optimistic views are for CAVs in comparison to
AVs [22, 24–26]. However, the magnitude of changes differs
among various studies. It is also reported that higher demands
for CAVs could lead to substantial changes in the network [25,
27]. In contrast, some studies reported different findings on
the impacts of AVs and CAVs. For instance, [26] reported that
compared to HDVs and with the constant demand, any PRs of
AVs do not improve the traffic flow efficiency; however, CAVs
enhance the condition. They also reported that in lower traffic
demands, HDVs always outperform CAVs.

To design an experimental setup for evaluating the impacts
of AVs deployment scenarios, replicating the AVs’ driving
behaviour is crucial. In MTMs, the driving behaviour of vehicles
is modelled both in terms of their longitudinal (car-following)
and lateral (lane-changing) configurations. Several studies have
attempted to approximate the accurate characteristics of these
behaviours (especially CF behaviour) for AVs and CAVs in
MTMs [17, 22, 28–30]. Although there are many state-of-the-
art modelling methods for the CF behaviour of AVs and CAVs,
they require defining a certain set of parameters. The values of
these parameters are often based on assumptions or estimated
using limited trajectory data from field experiments involving
AVs and CAVs. The use of various CF models with researchers’
assumptions for model parameters leads to different findings
regarding the impacts of AV deployment scenarios. To address
this challenge, two possible solutions could be employed: first,
utilization of mass real-world AV data to calibrate a specific CF
model; second, use the optimal driving behaviour of AVs and
extract the optimized parameters of a CF model. By adopting
either of these approaches, researchers can ensure a more accu-
rate replication of AV driving behaviour in MTMs, leading to
more reliable evaluations of AV deployment scenarios.

The first approach, which involves the utilization of mass
real-world AV data to calibrate a CF model, faces significant
challenges due to the lack of extensive field data for AVs. The
available data are often limited to specific locations and driv-
ing behaviours, making them non-generalizable. Therefore, the
second approach, involving the optimization of AV driving
behaviour and extraction of optimized CF model parameters,
could be more feasible and effective in MTMs for mimicking
the driving behaviour of AVs.

It is expected that the DPU of the AVs contains pre-trained
complex deep learning algorithms that regulate the AV to react
in any traffic situation while keeping safe and efficient driving
manoeuvres [31]. In MTMs, we can regulate AVs to generate
optimal trajectories from origin to destination, considering all
driving constraints. A CF model that generates such an opti-
mal driving manoeuvre for AVs is referred to as optimized
CF behaviour. In our previous work in [31], we developed a
framework that finds a set of optimized driving parameters of
AVs under various PRs, demand scale, and optimization func-
tions. The extracted optimized CF behaviour could be used in
a simulation-based impact assessment study to give more real-
istic results on the potential impacts of AVs rather than weak
assumptions. Hence, the main aim of this research is to investi-

gate the impacts of AVs on mobility and safety using the optimal
driving behaviour of AVs. Furthermore, most AV impact assess-
ment studies focus on intersections [17, 32], urban links [18, 19,
33], and freeways [22, 27, 34–36], whereas limited studies are
conducted at the network level; therefore, our research focuses
on impact assessment in a traffic network.

The main contributions of this research are: (i) to assess
the potential impacts of AVs deployment scenarios in a traf-
fic network, and (ii) to study the influencing factors on the
potential impacts of AVs using generalized estimating equation
(GEE) and zero-truncated Poisson (ZTP) regression models.
This paper investigates how the behavioural difference of AVs
with optimized driving behaviour could bring changes on the
efficiency and safety of a network, where other factors, such as
infrastructure, speed limit, intersection controllers, and more,
play a vital role in the performance of traffic flow and safety.

The remainder of this paper is structured as follows. In the
following section, we review the recent literature on micro-
scopic simulation tools utilized for AVs impact assessment.
In Section 3, we introduce the methodology of this research,
including a calibration scheme, the modelling method for repli-
cating AVs’ longitudinal driving behaviour, the evaluation areas,
and the design of an experimental setup. The experimental setup
aims to run different AVs deployment scenarios in a city-scale
network with calibrated and validated features. The findings
of this research and the results of regression analysis (run on
achieved results) are presented in Section 4, which is followed
by a discussion in Section 5. Finally, a conclusion in Section 6
explains the overall contribution of this article alongside further
research directions.

2 LITERATURE REVIEW

A wide range of simulation-based studies focus on identifying
the potential impacts of AVs on the transportation system. In
a simulation-based study, three aspects are essential for setting
up an experiment and conducting impact assessment, namely (i)
the calibration of the base model, and the selection of an appro-
priate CF model, including the adopted parameters to replicate
the driving behaviour of AVs, (ii) defining the assessment areas
and key performance indicators (KPIs) to quantify the impacts,
and (iii) the choice of a powerful traffic simulation tool. In the
following subsections, we present each aspect in detail.

2.1 Modelling and calibration of the car
following behaviour

CF models play a crucial role in MTMs and simulation tools.
These models describe how individual vehicles behave while
following each other on roads, considering factors like speed,
distance, acceleration, and reaction to changes in the envi-
ronment. Replication of vehicular CF behaviour has been a
continuous research focus in the field of traffic modelling and
simulation. CF models are generally categorized into mathe-
matical and data-driven models. Mathematical models rely on
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fundamental principles of physics and mathematics to describe
how vehicles interact with each other on the road under dif-
ferent traffic situations. On the other hand, data-driven models
are developed directly from observed data on vehicle trajecto-
ries and behaviour collected from real-world traffic conditions.
These models use statistical techniques and machine learning
algorithms to analyse patterns in the data and develop math-
ematical representations of typical CF behaviour. Although
data-driven models outperform many mathematical models in
replicating the CF behaviour of vehicles, they are not widely
used in impact assessment studies.

Mathematical models are initially developed to replicate the
driving behaviour of HDVs and have been widely used in sim-
ulation tools. These models comprise methods focusing on a
driver’s physical actions, such as desired speed, acceleration,
deceleration, i.e. Gazis–Herman–Rothery (GHR) model [37],
Gipps model [38], intelligent driver model (IDM) [39], opti-
mal velocity model (OVM) [40]; however, some also consider
the psychological inputs of the drivers, such as the Wiedemann
model [41]. These models are comprised of modifiable param-
eters that mimic the driving behaviour and are often calibrated
with mass field driving data of vehicles. The behavioural cali-
bration of a CF model involves the fine-tuning of its modifiable
parameters to minimize the discrepancies between real-world
driving configurations and the simulated environment. Several
methods have been implemented to calibrate a CF model in
the literature. These methods include genetic algorithm (GA)
[42–47], particle swarm optimization (PSO) [48, 49], machine
learning-based methods [50], and combination of various opti-
mization techniques [51, 52]. For instance, [42] employed the
GA to calibrate the parameters of IDM, Gipps, Wiedemann,
GHR, and FVD (full velocity difference) [53] models. [49] used
the PSO algorithm to extract the calibrated parameters of a psy-
chophysical CF model in a microsimulation. Meanwhile, [50]
implemented an artificial neural network (ANN)-based model
to calibrate the parameters of the Wiedemann model. On the
other hand, [51] proposed the combination of the PSO and
machine learning-based approach to calibrate the default CF
model of the Transmodeler simulation tool. Given that this
research conducts impact assessment of AVs deployment sce-
narios in mixed traffic, we need to calibrate the base model
(fully HDVs environment) to accurately approximate the driv-
ing behaviour of HDVs in real-world traffic conditions. Hence,
in this research, we employ PSO for behavioural calibration.

Furthermore, for AVs, there are no established mathematical
models, and researchers often employ conventional mathemat-
ical models to mimic the CF behaviour of AVs. According to
[54], IDM, MIXIC, Wiedemann 99, and Krauss models are fre-
quently used CF models for mimicking the driving behaviour
of AVs in literature. The selection of a specific CF model for
replicating the driving behaviour of AVs in simulation-based
impact assessment studies depends first on whether the model
can replicate the potential driving behaviour of AVs and second
on whether it is well-integrated in a widely used simulation tool.
For instance, Wiedemann 99 is the default CF model of VIS-
SIM; therefore, many studies utilized Wiedemann 99 to mimic
the CF behaviour of AVs and conduct impact assessment using

VISSIM. An overview of the simulation tools and their CF
models is presented in Section 2.3.

Given the current impracticality of large-scale AV testing and
the limitations of available AV-related data, which are restricted
to specific locations and driving behaviours, accurately cali-
brating a CF model to replicate AV driving behaviour is not
feasible. Consequently, impact assessment studies often rely on
the assumed driving behaviours of AVs. Some studies assume
AVs will drive more cautiously with larger headway gaps, while
others assume a more aggressive driving style. These differing
assumptions lead to conflicting findings, particularly regard-
ing the number of conflicts and overall safety. In contrast,
this research employs the optimal driving behaviour of AVs to
conduct network-wide impact assessment [54].

2.2 Assessment areas and KPIs

In simulation-based impact assessment, the selection of assess-
ment areas and their relevant KPIs is important for constructing
an effective experimental setup. These choices ensure that the
simulation can comprehensively evaluate the potential impacts
of AVs across various dimensions. A review of previous studies
reveals that the majority of researchers conduct impact assess-
ments of AVs and CAVs for safety and traffic efficiency, where
some also evaluate the environmental effects (e.g. energy con-
sumption and emissions) [54]. For each assessment area, various
KPIs are chosen depending on the scope of the study. For effi-
ciency assessment, most researchers employed KPIs such as
traffic flow (e.g. traffic flow, density), average travel time, string
stability, average velocity, and more [22, 29, 30, 34]. For instance,
[18] studied the impact of CACC-equipped vehicles on traffic
efficiency in urban roads with congested sections. This study
selects traffic capacity, waiting time, queue length, and total
travel time as the main KPIs. The findings of this study indicate
that in comparison to conventional vehicles, CACC-equipped
vehicles with a PR of 100% can increase the traffic capacity by
more than 2.6 times. The study claims that by increasing the
PR of CACC-equipped vehicles, the waiting time on congested
roads decreases.

Similarly, for safety evaluation, researchers use the surrogate
safety measure (SSM) model to quantify the potential conflicting
situations and to assess the impact of AVs PRs on traffic safety.
Most studies used time-to-collision (TTC), post-encroachment
time (PET), and number of conflicts (using certain TTC and
PET thresholds) as KPIs for safety assessment in the literature
[17, 22, 28, 55]. A recent study by [28] explored the impacts
of CAVs on the safety of a motorway section. In this study,
the number of conflicts is used as a KPI. The results revealed
that higher PRs of CAVs reduce traffic conflicts. Similarly, [17]
investigated the effects of CAVs on the safety of signalized and
unsignalized intersections. The findings of this study showed
that CAVs can significantly reduce the number of conflicts at
both intersections. In addition, it is claimed that a 100% PR of
CAVs could eliminate any crossing conflicts between vehicles.

Finally, for emission assessment, the amount of CO2 and
NOx emissions per kilometres g/kg are used as KPIs [24, 25].
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One important note is that most studies assume the same energy
consumption and emissions factors used for existing HDVs and
for AVs. [25] conducted a simulation-based study to investigate
the impact of (C)AVs on throughput and emissions in a ring
road. CO2 and emissions per kilometre are selected as KPIs
for environmental impacts. The findings of this study high-
lighted that in free-flow traffic, where vehicles are not bound
to speed limits, human-driven vehicles exhibit the highest emis-
sions. Conversely, any PRs of CAVs could lead to low emissions.
The study also claimed that AVs drive at low speeds and thus
force the engine to work less efficiently. Hence, in comparison
to CAVs, AVs increase emissions.

2.3 Microscopic traffic simulators

Microscopic traffic simulators are highly detailed and complex
tools that capture the driving behaviour of a single vehicle,
including following behaviour, lane change behaviour, and its
interaction with other road users. Given the availability of
numerous traffic simulators in the market, each with its features
and functionalities, it is vital to have a comprehensive under-
standing of these characteristics. Generally, microscopic traffic
simulators are divided into commercial and open-source tools.
Commercial traffic simulators are generally user-friendly and
less complex products that offer a wide range of user support.
Open-source simulators, in comparison, are typically free to use,
open, and collaborative, while they have limited user support
and are complex for new users. Among many traffic simula-
tors (i.e. VISSIM, AIMSUN, PARAMICS, CORSIM, SUMO),
PTV VISSIM, and AIMSUN are the commonly used commer-
cial tools for modelling and simulation of AVs, where SUMO is
the open-sources simulator for this purpose.

PTV VISSIM is a multi-modal traffic simulator developed
by PTV Group in Karlsruhe, Germany [56]. This widely used
tool includes simulating individual vehicles, public transport,
bikes, and pedestrians based on the driving behaviour mod-
els, control devices, and road network characteristics. VISSIM
employs the Wiedemann psychological model [41] to mimic
the CF behaviour of vehicles. Modifying the model’s parame-
ters allows us to replicate AVs’ driving behaviour and conduct
impact assessment. The parameters of this model have already
been extracted within the CoEXist project to capture the driving
behaviour of AVs; however, the calibration of these parame-
ters is based on a few AVs trajectories [57]. VISSIM also gives
the option to override the default CF model and control the
driving behaviour of AVs externally through the COM inter-
face. The COM interface allows user-developed applications to
access network topology, signal control, path flows, and vehi-
cle behaviour. This enables VISSIM to model intricate control
logic and advanced transportation systems and components. In
addition, the output module of VISSIM enables users to gather
a wide range of simulation outputs, including link, node, and
network-level traffic data.

AIMSUN (advanced interactive microscopic simulator for
urban and non-urban networks), developed by AIMSUN Inc.,

is a powerful simulation tool allowing both microscopic and
mesoscopic simulation capabilities [58]. It offers various tools
for traffic demand modelling, network calibration, and perfor-
mance analysis. AIMSUN Next is well-known for modelling
traffic dynamic assignments, incident management, and other
ITS applications. AIMSUN Next has the flexibility to model the
detailed driving behaviour of vehicles in its microscopic model,
which makes it a good candidate for replicating the driving
behaviour of AVs. AIMSUN Next supports modelling various
modes, including private vehicles, public transport, pedestrian,
and bicycles. The default CF model of AIMSUN Next is based
on the Gipps’ safety distance model [38]. In addition, AIMSUN
Next can be further extended with Python scripts, allowing it
to automate the simulation with different scenarios, including
CF parameter adjustments. The external agent interface (EAI)
makes it possible to override the controlling logic of vehicles in
the simulation environment both for HDVs and AVs.

SUMO (simulation of urban mobility) developed by Ger-
man Aerospace (DLR), is an open-source and highly portable
microscopic traffic simulation tool [59]. It allows the design
and simulation of large-scale networks with detailed vehicular
behaviour, including CF, LC, and interactions with traffic con-
trollers and other vehicles. SUMO is widely used in academia
for its flexibility, extensibility, and availability of various traf-
fic demand scenario generation tools. In SUMO, each vehicle
is modelled explicitly with its own route and runs individ-
ually through the network. Several modules, each with its
unique function like NETEDIT, TraCi (traffic control inter-
face), SUMO-GUI, routing algorithms, visualization, network
import and emission calculation, and more, make SUMO a pow-
erful simulation tool. Regarding CF models, SUMO contains
most of the widely used mathematical CF models, including
Krauss [60], IDM [39], Gipps [38], and Wiedemann [41] mod-
els. SUMO also provides the possibility to model ACC (adaptive
cruise control) [61] and CACC (cooperative ACC) [62] equipped
vehicles. For the simulation of AVs, researchers either modify
the parameters of the available CF model or override any CF
logic externally using SUMO’s API. Additionally, a mesoscopic
simulation mode has been added to SUMO. This mode allows
running simulations with less detailed precision, i.e. potentially
sacrificing some modelling accuracy, but significantly speed-
ing up the process and reducing computational requirements.
This feature enables e.g. the option to initially run numerous
scenarios to find a rough optimal solution for a specific prob-
lem before utilizing the microscopic version for the final series
of runs.

Table 1 provides a summary of different characteristics of the
traffic simulators. All three tools simulate traffic in a continuous
manner and can replicate AVs driving behaviour by modify-
ing the parameters of the CF models. VISSIM and AIMSUN
are user-friendly tools with strong visualization capabilities, but
they are commercial, and therefore, their widespread usage in
academia is limited. In contrast, SUMO is relatively complex;
however, it has high flexibility in generating different scenarios.
In addition, since it is open-source, it is a suitable option for
various applications, particularly in AVs impact assessment.
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TABLE 1 The comparison of widely used traffic simulation tools for AVs modelling.

Criteria/Tool VISSIM AIMSUN SUMO

License Commercial Commercial Open-source

Developer PTV group Aimsun Inc. SUMO Community & DLR Institute

Simulation level Microscopic Micro/mesoscopic Micro/mesoscopic

Visualization 2D and 3D 2D and 3D 2D

Customization Highly customizable Customizable Extensible through plugins and scripting

Supported languages C++, Java, Python C++, Java, Python Python, any programming language for
XML config

GUI support High Moderate Moderate

Complexity Simple Moderate Complex

CF models Wiedemann (74 and 99) Gipps Krauss (default), IDM, Gipps, Wiedemann
(74 and 99), ACC, and CACC

Modelling of AVs Customizable to simulate AV behaviour Supports AV behaviour modelling Customizable to simulate AV behaviour

Meanwhile, the findings of the literature review show that all
three tools are widely used in AV impact assessment studies. The
scope of each study in these simulation tools differs from inter-
sections, links to part of a network, as well as freeways. Recent
researches, such as [26, 29, 32, 35, 55], utilized PTV VISSIM
to evaluate the potential impacts of AV deployment scenarios
on traffic efficiency and safety. For instance, [29] investigated
the impacts of ACC and CACC-equipped vehicles on traffic
efficiency and energy consumption in an ideal expressway. In
their research, the MIXIC (microscopic model for simulation of
intelligent cruise control) model was used to mimic the driving
behaviour of ACC and CACC vehicles in VISSIM. In addi-
tion, [35] studied the impacts of AV deployment scenarios on
the capacity of a freeway in VISSIM. They utilized the Krauss
model to mimic the driving behaviour of AVs by overriding the
default Wiedemann model using the COM interface. Similarly,
[55] studied the impact of CAV PRs on safety in a Motorway in
VISSIM using the default Wiedemann 99 model. Other studies,
including [22, 26, 28, 30] used AIMSUN for AVs impact assess-
ment. [28] and [30] used the default Gipps model in AIMSUN
to evaluate the safety and efficiency impacts of AVs, respectively.
Meanwhile, [22] and [26] used IDM and CACC models in AIM-
SUN, respectively, by overriding the default CF model to assess
the impacts of AV PRs. Finally, many studies also used SUMO
for AVs impact assessment [17, 21, 23, 33, 34, 63]. For exam-
ple, [17] used Krauss, IDM, and CACC models in SUMO to
investigate the effects of CAVs on the safety of signalized and
un-signalized intersections. [34] studied the impacts of commer-
cially available ACC vehicles on traffic stability and throughput
in SUMO. This study used IDM to capture the CF behaviour of
theoretical ACC and commercially available ACC vehicles.

In Table 2, the summary of reviewed simulation-based stud-
ies is presented, which explains specific information on the CF
model, assessment criteria, KPIs, network type, and simulation
tools. The table is sorted based on the publication date of the
citations, which are displayed in reverse chronological order
(newest to oldest).

3 METHODOLOGICAL FRAMEWORK

3.1 Approach

In this research, we develop a framework to systematically
model and simulate the CF behaviour of AVs under different
PRs and conduct a network-wide impact assessment under var-
ious demand scenarios. The framework is comprised of three
components, namely, a scenario generation module, a simulation
environment, and an output module. In the scenario genera-
tion module, the corresponding optimized CF parameters are
passed into the simulation environment for a certain PR of AVs.
There, AVs behave according to these optimized parameters’
settings. Since it is expected that AVs might have different driv-
ing behaviour than HDVs, the magnitude of these differences
might also vary depending on the PR. For instance, AVs might
behave similar to HDVs in lower PRs, whereas in higher PRs,
their behaviour may be significantly different. Therefore, our
framework models AVs with different CF parameter settings
depending on the PRs of AVs. The optimized CF parameters’
settings under various PRs are extracted using the proposed
optimization framework in [31]. Meanwhile, the simulation
environment runs multiple simulation replications under the
set conditions and outputs the predefined assessment criteria.
The output data are further analysed to investigate the potential
impacts of AVs. A schematic diagram of the main methodology
of this research is depicted in Figure 1. Additionally, for ease of
reference, a list of symbols used in the following subsections is
provided in Table 3.

3.2 Modelling CF behaviour of
human-driven vehicles

In this research, we choose IDM to replicate the CF behaviour
of HDVs since it has been widely used in the literature to accu-
rately replicate drivers’ driving behaviour. IDM, first developed
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TABLE 2 Summary of reviewed simulation-based studies on AVs including their CF model, assessment criteria, KPIs, network type, and traffic simulator.

Reference Year CF model Assessment criteria KPIs Network Simulator

[28] 2023 Gipps Traffic safety Number of conflicts Freeway AIMSUN

[29] 2023 MIXIC Traffic efficiency and energy
consumption

Average travel time, capacity,
average electric energy
consumption

Expressway VISSIM

[17] 2022 Krauss, IDM,
and CACC

Traffic safety Number of conflicts Intersection SUMO

[30] 2022 Gipps Capacity analysis Network capacity City AIMSUN

[22] 2021 IDM Traffic safety and efficiency Time-to-collision (TTC), number
of conflicts, travel time

Freeway AIMSUN

[34] 2021 IDM Throughput and stability Traffic flow, density Freeway SUMO

[18] 2021 CACC Traffic efficiency Traffic flow, density, critical speed Urban road Numerical
simulator

[21] 2021 Krauss Traffic efficiency Traffic flow, travel time City SUMO

[35] 2020 Krauss Capacity analysis String stability, lane capacity Freeway VISSIM

[23] 2020 IDM Traffic efficiency Travel time Freeway SUMO

[63] 2020 Krauss Capacity analysis Speed, flow, density Urban road SUMO

[55] 2019 Wiedemann 99 Safety analysis Number of conflicts Motorway VISSIM

[26] 2018 CACC Throughput Harmonic average speed Ring road AIMSUN

[64] 2018 Wiedemann 99 Traffic safety Number of conflicts Roundabout VISSIM

[32] 2018 Wiedemann 99 Safety analysis Number of conflicts Signalized intersection
and roundabout

VISSIM

[33] 2018 Krauss Capacity analysis Flow, density Grid network SUMO

[65] 2016 Wiedemann 99 Traffic efficiency Average density, travel time, and
speed

Autobahn VISSIM

FIGURE 1 The methodological framework in this study.
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TABLE 3 The list of symbols used in this research.

Category Symbol Description

IDM an (t ) Acceleration of vehicle n

amax Maximum acceleration/deceleration of
the vehicle

Vn , V
(n)

0 Speed, and desired speed of the following
vehicle

Sn The gap distance between two vehicles

S∗n Desired spacing between two vehicles

𝛿 Model parameter

ΔVn Speed difference between following and
leading vehicles

S
(n)
0 Minimum spacing at a standstill situation

Tn Desired (safe) time headway

b(n) Desired (comfortable) deceleration

Krauss vsafe Safe velocity of the following vehicle

vl Speed of the leading vehicle

vf Speed of the following vehicle

tr Reaction time of the driver

b Maximum comfort deceleration

g(t ) Gap between the leading and the
following vehicles

xl Position of the leading vehicle

xf Position of the following vehicle

L Average length of a vehicle

vdes Desired speed of the following vehicle

GEE K Number of clusters

ni Observations in cluster i

Yi j Response for j th observation in cluster i

Xi j Covariate vector for j th observation in
cluster i

𝜇i j Mean for j th observation in cluster i

𝛽 Regression coefficients

Ri (𝛼) Working correlation matrix for cluster i

𝛼 Correlation parameter

𝜙 Scale parameter

ZTP y Observed count in a time interval

𝜆 Mean parameter of the Poisson
distribution

E (y) Expected count

Var(y) Variance

g(𝜆) Link function in the ZTP regression
model

�̂� Estimated mean parameter

X Design matrix

𝛽 Vector of regression coefficients

𝜖 Random error with a standard logistic
distribution

by [39], is one of the simplest and accident-free models, which
utilizes both the desired speed and space headway to gener-
ate a realistic acceleration profile. The basic form of the IDM
acceleration function is expressed as:

an(t ) = a
(n)
max

⎡⎢⎢⎣1 −

(
Vn(t )

V0
(n)(t )

)𝛿

−
(

Sn
∗(t )

Sn

)2⎤⎥⎥⎦ (1)

where amax represents the maximum acceleration or decelera-
tion of the vehicle n, Vn is the speed of the following vehicle,
V0

(n) is the desired speed of the following vehicle, Sn is the
gap distance between two vehicles, Sn

∗ is the desired spacing
between two vehicles, and 𝛿 denotes the model parameter. The
desired space headway between two vehicles Sn

∗ is a function of
the following vehicle speed Vn and the speed difference between
the leading and following vehicles ΔVn, which can be estimated
as follows:

Sn
∗(t ) = S0

(n) +Vn(t )Tn(t ) +
Vn(t )ΔVn(t )

2
√

a
(n)
maxb(n)

(2)

where S0
(n) is the minimum spacing at a standstill situation,

Tn is the desired (safe) time headway, and b(n) is the desired
(comfortable) deceleration.

The IDM model parameters are calibrated (behavioural cali-
bration) based on the real-field travel time data. Since we utilize
a dynamic traffic assignment-based simulation model in SUMO,
the route choice is already calibrated in another study employ-
ing the same demand and network characteristics [66]. Thus,
we only conduct behavioural calibration to match the simu-
lated travel times with the real-field travel times of links in
the network, keeping the traffic assignments unchanged. The
data include the peak-hour travel time information along sev-
eral major roads in Munich city center network. This research
uses the PSO algorithm to calibrate the IDM parameters. PSO
is a metaheuristic, stochastic, and population-based optimiza-
tion algorithm inspired by the behaviour of bird flocking or fish
schooling. It is used to find the global optimal solution by iter-
atively updating a population of candidate solutions (particles)
in a search space [67]. The algorithm iteratively searches for
the design space to improve a candidate solution with regard
to an objective function. Unlike gradient-based optimization
methods, PSO does not require the objective function to be
differentiable, divisible, and continuous. The choice of PSO
in this research is associated with its convergence speed and
computational efficiency [68, 69].

In PSO, each particle represents a candidate solution and
moves through the search space by adjusting its position based
on its own experience and the collective knowledge of the entire
population. The particles’ movements are influenced by two
key factors: their own best-known status (pbest) and the best-
known position of the whole population (known as gbest) [70].
By incorporating these references, particles are directed toward
regions of the search space that exhibit promising solutions,
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FIGURE 2 Illustration of PSO calibration method.

allowing for effective exploration and exploitation during opti-
mization. This paper uses the root mean square normalized
(RMSN) as an objective function to minimize the dispersion
between the simulated and true travel times, where the input
variables are the CF model parameters. PSO tries to change the
parameters of the CF model within their boundary conditions
(i.e. realistic driving behaviour, acceleration and deceleration
capability, comfort driving etc.), aiming to find the minimum
RMSN. The overall process of the PSO algorithm integrated
with SUMO traffic simulator is illustrated in Figure 2.

3.3 Modelling CF behaviour of AVs

In this research, we utilize the Krauss CF model to replicate
the longitudinal driving behaviour of AVs. This model is widely
used in modelling the CF behaviour of AVs in MTMs, and is the
default CF model in SUMO. The Krauss CF model developed
by Stephan Krauss in 1997 is a space-continuous model [60].

TABLE 4 Krauss model’s optimized AV parameters [31].

PRs

[%]

Mingap

[m]

Accel

[m∕s2]

Decel

[m∕s2]

Sigma

[-]

Tau

[s]

20 1.6 2.6 3.6 0.4 0.8

40 1.5 2.7 3.7 0.4 0.8

60 1.1 3.4 3.2 0.1 1.0

80 1.2 3.0 3.4 0.4 1.0

100 1.3 2.5 3.6 0.5 1.0

(Sigma = driving imperfection factor, Tau = desired time headway).

Krauss model estimates the safe speed of the vehicle without
deriving it from the acceleration profile of the vehicle. In Krauss
model, the safe velocity of the following vehicle is calculated as
follows:

vsafe(t ) = vl (t ) +
g(t ) − vl ⋅ tr
vl (t )+vf (t )

2b
+ tr

(3)

where vl, vf are the speed of leading and following vehicles at
time t respectively (see Figure 3), tr is the reaction time of the
driver, b is the maximum comfort deceleration of the vehicle,
and g(t ) is the gap between the following and leading vehi-
cles, which is computed as: g (t ) = xl (t ) − xf (t ) − L, (xl, xf are
the position of the leading and following vehicles, and L is the
average length of a vehicle).

Meanwhile, to estimate the desired speed, which is a decisive
variable for determining the speed of the vehicle in the next
time step, the model takes the minimum of safe velocity, the
road speed limit, and the vehicle’s maximum capable speed to
generate the desired speed of the vehicles, expressed as:

vdes(t ) = min[vmax, v(t ) + a ⋅ Δt , vsafe(t )] (4)

Finally, the velocity and location of the vehicle at the next time
step are computed as follows:

v(t + Δt ) = max[0, vdes(t ) − 𝜂],

x f (t + Δt ) = xf(t ) + v(t + Δt ) ⋅ Δt
(5)

where 𝜂 is the random perturbation (to capture the driving
imperfection) and Δt is the simulation time step. The optimized
parameter of the Krauss CF model was already extracted in [31]
as depicted in Table 4.

FIGURE 3 Description of the Krauss CF model parameters.
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3.4 Evaluation areas

In this research, we select traffic efficiency and safety as evalua-
tion areas to estimate the impacts of AVs deployment scenarios
on transport network performance. Traffic data, including edge-
related, intersection-level, and network-wide information, are
collected for the evaluation of efficiency. For safety assessment,
we utilize the surrogate safety measure (SSM).

3.4.1 Traffic efficiency assessment

Traffic data is collected from the simulation environment in
5-min intervals for each link, intersection, and overall net-
work. Depending on the assessment criteria, we utilize various
KPIs, such as travel time, flow, occupancy, speed, density, time
loss, and queue length, for traffic efficiency analysis. To make
sure the outputs of simulation runs under different AV scenar-
ios are significantly different, we employ a one-way ANOVA
(analysis of variance) statistical approach. Meanwhile, to inves-
tigate whether each pair of scenarios is different from the
other, we apply Tukey’s HSD (honestly significant difference)
test.

First, we investigate the traffic flow elements (average vol-
ume, speed, occupancy, density, average travel time) through
specific segments (edges) of the network under various sce-
narios. The data gathered from the loop detectors installed on
edges are further used to study the specific impacts of differ-
ent AVs scenarios on links. Second, to analyse the effects of
AV PRs on the traffic situation of signalized intersections, aver-
age passing speed, and average time loss are utilized as KPIs.
We collect this information using area detectors around each
signalized intersection. Finally, for analysis of the network per-
formance, the average network travel time is calculated under
different AV PRs using every vehicle’s travel time. For a single
vehicle, the travel time is estimated using the difference between
the departure and arrival times. Hence, the mean of aggregated
travel times of all vehicles in the network corresponds to the
average network travel time.

Furthermore, to investigate the relationship between the
potential impacts, PRs, and other relevant factors (e.g. flow,
speed etc.), we implement the generalized estimating equa-
tion (GEE) regression method. GEE is a statistical method
that is used for analysing data with correlated or clustered
observations. GEE is an extension of generalized linear mod-
els (GLMs), which is used in longitudinal studies (repeated
observations) and clustered data (data collected from different
clusters or groups) [71]. In our case, edge travel time is collected
in 5-min intervals during the simulation period. Thus, each edge
segment is considered as a cluster, and the repeated observation
is the travel time.

Suppose the datasets (travel time) of repeated observa-
tions involving K clusters of edges. Each cluster i (where
i = 1, 2, … ,K ) is associated with ni observations denoted as
response vector Yi j (travel time) of the j th response ( j =
1, 2, … , ni ). Furthermore, let Xi j represent a p × 1 vector
of explanatory variables (covariates) corresponding to each

observation. We can define the response vector for the ith
cluster as Yi = (Yi1,Yi2, … ,Yi (ni ) ) and its mean vector as 𝜇i =
(𝜇i1, 𝜇i2, … , 𝜇i (ni ) ), where 𝜇i j denotes the mean value for the
j th response. The means 𝜇i j are related to the p dimensional
regression vector Xi j by the p × ni mean-link function g as
follows:

g(𝜇i j ) = X ⊤
i j ⋅ 𝛽 (6)

where 𝛽 is the unknown p × 1 vector of regression coefficient
with the true value 𝛽0. In addition, let the conditional variance
of Yi j given Xi j be:

Var(Yi j ∣ Xi j ) = v(𝜇i j )𝜙 (7)

where v is a known variance function of 𝜇i j , and 𝜙 is the scale
parameter. Both v and 𝜙 are associated with the distribution
of the responses. For instance, in case Yi j follows a Gaussian
distribution, 𝜇i j is specified as 1, and if it shows Poisson dis-
tribution, then 𝜇i j = 𝜇i j . Also, let the Ri (𝛼) be the working
correlation matrix (ni × ni ) or the pattern of measures within
a cluster which is described by the vector parameter 𝛼, then the
variance-covariance matrix for Yi is expressed as:

Vi = 𝜙A

1

2
i

Ri (𝛼)A
1

2
i

(8)

where A

1

2
i is a (ni × ni ) diagonal matrix with entries v(𝜇i j ) as the

j th diagonal element. The GEE for estimation of the (p × 1) 𝛽
is obtained by solving the following equation:

K∑
i=1

𝜕𝜇i
⊤

𝜕𝛽
V −1

i (Yi − 𝜇i (𝛽)) = 0 (9)

where
𝜕𝜇i

⊤

𝜕𝛽
is a (p × ni ) matrix of the partial derivative of the

mean in regard to the regression parameter of the ith cluster,
which is obtained as follows:

𝜕𝜇i
⊤

𝜕𝛽
=

⎡⎢⎢⎢⎢⎣

xi11

g′ (𝜇i1 )
⋯

xini1

g′ (𝜇ini )

⋮ ⋮

xi1p

g′ (𝜇i1 )
⋯

xinip

g′ (𝜇ini )

⎤⎥⎥⎥⎥⎦
(10)

[71] propose utilizing consistent moment estimates for both
parameters, 𝜙 and 𝛼. This results in an iterative process that
alternates between estimating 𝛽 for fixed values of �̂� and �̂�, and
estimating 𝜙 and 𝛼 for fixed values of 𝛽. This approach results
in a consistent estimate for 𝛽. According to [71], this also holds
if the working correlation structure Ri (𝛼) is misspecified.

Meanwhile, there are many different structures for work-
ing correlation matrix, including independent, exchangeable,
k-dependent, autoregressive, Toeplitz, and unstructured; in
this paper, we select independent and exchangeable for GEE
analysis.
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FIGURE 4 Illustration of TTC under (a) follow–lead, and (b) approaching conflicts scenarios.

∙ Independent R: within a cluster, the observations are
independent.

Corr(Yi j ,Yik ) =
{

1 j = k

0 j ≠ k
, e.g.

⎛⎜⎜⎝
1 0 0
0 1 0
0 0 1

⎞⎟⎟⎠ (11)

∙ Exchangeable R: within a cluster, the observations hold a
constant correlation.

Corr(Yi j ,Yik ) =
{

1 j = k

𝛼 j ≠ k
, e.g.

⎛⎜⎜⎝
1 𝛼 𝛼

𝛼 1 𝛼

𝛼 𝛼 1

⎞⎟⎟⎠ (12)

3.4.2 Safety assessment

For safety evaluation, the SSM is used to approximate the
number of conflicts in the network. For this purpose, each vehi-

cle is equipped with an SSM device, which logs the conflicts
of the vehicle with other vehicles. In this research, time-to-
collision (TTC) is used for the traffic conflict analysis. TTC is
the time required to collide between two vehicles in follow–lead
as well as approaching situations. Depending on the scenarios
(as depicted in Figure 4), TTC calculation is expressed as:

TTC =

⎧⎪⎪⎨⎪⎪⎩

xl−xf−Lf

vf−vl
, if vl > vf

d2

v2
, if

d1

v1
<

d2

v2
<

d1+L1+w1

v1

d1

v1
, if

d2

v2
<

d1

v1
<

d2+L2+w2

v2

(13)

A conflict is considered when the TTC value is less than
the specified threshold. A TTC value of 1.5 s or less is con-
sidered as unsafe condition; hence, in this research, we set the
TTC threshold to 1.5 s. The sum of all conflicts noticed during
the simulation period indicates the total number of conflicts in
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the network. Similarly, we apply the one-way ANOVA statistical
approach to check whether the total number of conflicts among
scenarios are significantly different. In addition, to investigate
whether each pair of scenarios is different from each other, we
implement Tukey’s HSD test [72].

Meanwhile, since AVs sensing technologies could potentially
detect and respond to a conflicting situation much faster than
HDVs, the unsafe TTC threshold might be lower for AV-AV
and AV-HDV interactions. Hence, we conduct a sensitivity anal-
ysis to check how different PRs of AVs affect the total number
of conflicts under various TTC thresholds.

Furthermore, to model the relationship between traffic char-
acteristics, PRs, and the total number of conflicts in the network,
we utilize a zero truncated Poisson (ZTP) regression model.
The ZTP is a statistical approach used for analysing count
data, excluding zero values from the dataset [73, 74]. Since this
research employ the total number of conflict in the network
for analysis, the zero number of conflicts in the network is
not practical. The probability mass function (PMF) of the ZTP
distribution is expressed as follows:

P (y; 𝜆) = 𝜆y

y!(e−𝜆 − 1)
, y = 1, 2, 3, … (14)

where y is the observed count in a time interval, and 𝜆 is the
mean parameter of the Poisson distribution. In addition, the
expected counts and the variance for given 𝜆 can be expressed
as follows:

E (y) = 𝜆e𝜆

e𝜆 − 1
, Var(y) = 𝜆e𝜆

e𝜆 − 1

(
1 − 𝜆

e𝜆 − 1

)
(15)

Finally, the ZTP regression model (link function) is as
follows:

g(𝜆) = log(�̂�) = X𝛽 + 𝜖 (16)

where X is the design matrix, 𝛽 is the vector of regression
coefficients, and 𝜖 is the random error that has the standard
logistic distribution. In this model, we take different PRs of AVs,
the standard deviation of the average network speed, and the
average throughput in the network.

3.5 Experimental setup

In this research, we develop a SUMO-based simulation platform
to systematically simulate and analyse mixed traffic, consider-
ing varying deployment scenarios of AVs, since the current
resources of CAVs modelling are limited in microscopic sim-
ulators. The architecture of the simulation platform consists
of three components: (i) scenario generation, (ii) simulation
environment, and (iii) output module. For each scenario, the
scenario generation tool utilizes inputs such as demand scale,
PR, and OD matrix. This tool assigns trips in the traffic net-
work based on the provided information and runs the SUMO

FIGURE 5 Transport network of Munich city center.

TABLE 5 IDM model’s parameters range and calibrated values.

Parameters Unit Range of values Calibrated value

Mingap [m] 0.5–2.0 1.2

Accel [m∕s2] 1.5–2.5 2.3

Decel [m∕s2] 2.5–3.5 2.6

Tau [s] 0.5–1.5 1.0

microscopic resolution model. The CF behaviours of AVs and
HDVs serve as inputs to guide vehicles movement and inter-
actions within the SUMO environment. For LC configurations,
we maintain the default settings of SUMO for both AVs and
HDVs. Considering the stochasticity in microscopic simula-
tions, we aggregate the outputs (i.e. evaluation indicators) over
multiple simulation runs. The study area covers the traffic net-
work of Munich city center as shown in Figure 5, which includes
urban road types with morning peak-hour traffic demand. The
OD pairs are allocated using a trip-based stochastic user route
choice assignment.

Meanwhile, as discussed in Section 3.2, we use IDM to cal-
ibrate the base model. The definition of the range of each
parameter is necessary for the search space of the PSO. Hence,
the range of each parameter of the IDM is assumed to replicate
realistic driving behaviour and include the vehicle’s capabilities
in terms of acceleration and deceleration, as well as the com-
fort driving characteristics. The result of the calibration process,
considering 12 simulation runs for each PSO iteration and a
15-min warm-up time is depicted in Table 5.

Additionally, in this research, we conduct impact assessment
under different scenarios varying by demand fluctuations and
PRs. We examine the simulation platform with two demand
cases, namely, 30% below peak hour traffic and peak hour traffic
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demand. For each demand scale, we investigate scenarios with 0
to 100% PRs with 20% increments. Considering the overall sce-
nario space for each demand scale, a total of 5 scenarios for AVs
are generated. Meanwhile, to account for the inherent stochas-
tic nature of microscopic simulations, we execute each scenario
a total of 12 times. The resulting KPIs values are derived from
the mean of all 12 simulation runs. Additionally, a 15-min warm-
up period is implemented, during which no data are collected.
In total, 12 scenarios (including 0% PR of AV) are executed,
leading to a cumulative 144 simulation runs (12 runs for each of
the 12 scenarios).

4 RESULTS

The results section of this paper is structured into three seg-
ments. The first part describes the influences of AVs on traffic
efficiency. It discusses the specific mobility effects of different
AV PRs on links, intersections and overall network. The sec-
ond part reveals the findings of safety assessments conducted
across diverse scenarios within the Munich city network. Lastly,
we present the outcomes of statistical analysis of the travel time-
and conflicts-based regression models.

4.1 Traffic efficiency

To explore the effects of different AV deployment scenarios on
traffic efficiency, we employ a range of KPIs depending on the
assessment area. For assessing the impacts on the overall net-
work, we consider KPIs such as average network travel time,
average waiting time, number of stops per vehicle throughout
the trip, and mean time loss per vehicle. The average waiting
time per vehicle is defined as the duration when the speed of a
vehicle is less than 0.1 m/s, while the mean time loss per vehicle
represents the time during which a vehicle operates below the
ideal speed. Additionally, to investigate impacts on intersections,
we use average time loss per vehicle and average intersection
passing speed as indicators.

Analysing the mean network travel time in each AV scenario
and comparing it with a fully HDV environment reveals a slight
increase in average network time up to 40% AV PRs. Beyond
this point, there is a reduction in travel time, as illustrated in
Figure 6a. The results of the ANOVA test indicate that the F-
value (5.741) for all AV scenarios under base demand exceeds
the critical F-value (3.856) at a 95% confidence interval. This
holds true for 30% below demand, where the F-value (5.506)
for all AV scenarios, including 0% PR, surpasses the F-critical
value (3.856). While the one-way ANOVA test reports different
means among AV PRs for both demand scales, the Tukey HSD
test demonstrates statistically significant changes between a fully
HDV environment (0% PR) and (20%, 40%, and 60% PRs),
as well as among (20%, 40% PRs) and a fully AV environment
(100% PR) under the 30% below demand scale. With the base
demand, only (20% and 40% PRs) exhibit significant differences
from 0% PR and 100% PR.

As illustrated in Figure 6a, when the AV PRs range from
20% to 40%, the average network travel time experiences an
approximately 10% increase compared to a fully HDV environ-
ment under both demand scales. This rise is primarily attributed
to the behavioural changes of AVs in the network, leading
to additional delays throughout the system. However, as the
AV PR increases beyond 40% up to 100%, there is a sub-
sequent reduction in average travel time, approaching levels
comparable to a fully HDV scenario. This trend is consistent
across other KPIs, as depicted in Figure 6b–d. This sug-
gests that AVs do not substantially alter the overall network
performance, as various influencing factors such as infrastruc-
ture, speed limits, and intersection control impose limitations
on the effects of behavioural changes among vehicles in the
network.

Similarly, the results of AVs impacts on the state of inter-
sections reveal that the change in average time loss per vehicle
per intersection with different AV PRs is not significantly dif-
ferent when compared to a fully HDVs scenario, as depicted
in Figure 7. This outcome is attributed to the unchanged con-
trolling algorithms of the traffic signals within the study area.
In addition, the average passing speed per intersection remains
almost the same for all AV scenarios. Hence, the behavioural dif-
ference in AVs driving configuration may not lead to substantial
changes in both the mean time loss per vehicle and the average
passing speed per intersection.

4.2 Traffic safety

We use the total number of conflicts as the KPI to analyse the
potential safety implications of AV PRs in the study area. A
conflict is identified when the TTC value between two vehi-
cles is less than or equal to a specific threshold set at 1.5 s
in this study. Additionally, we vary the TTC threshold values
for conflicts involving AV-AV and HDV interactions to explore
the influence of AVs’ sensing capabilities on the overall num-
ber of conflicts. This approach provides insight into how safety
is affected by different AV PRs and the varying thresholds for
conflict detection.

The summary statistics for traffic conflicts at different PRs
of AVs are presented in Table 6, encompassing mean, mini-
mum, and maximum values, as well as standard deviation. Initial
findings indicate that, under both demand scales, increasing the
PR of AVs up to 40% results in a concurrent increase in the
total number of conflicts. This increase is directly linked to the
distinct driving behaviour of AVs. Although in small PRs, the
driving behaviour of AVs is influenced by HDVs, the change
in parameters of the CF model results in a higher number of
conflicts. This could also be expected in real-world scenarios
where a limited PR of AVs might impact the driving behaviour
of HDVs, prompting frequent adjustments in CF behaviour.
Similarly, by increasing the PRs of AVs from 40% onward,
there is a notable reduction in total number of conflicts. In a
fully AV scenario, the total number of conflicts is around 25%
lower than in a fully HDV environment. This indicates that
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FIGURE 6 The impacts of AV PRs on (a) average network travel time, (b) average waiting time per vehicle, (c) mean number of stops per vehicle, and (d)
average time loss per vehicle (the error bars show the variability of data around the mean).

FIGURE 7 Illustration of the potential impacts of AV PRs on (a) average time loss per vehicle per intersection, and (b) average intersection passing speed (the
error bars show the variability of data around the mean).
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TABLE 6 Summary statistics of traffic conflicts (TTC = 1.5 s) under
different PRs and demand scales.

Demand PRs Mean Minimum Maximum Std deviation

100 % 0% 16,455 15,575 16,517 302.38

20% 22,154 21,970 23,836 623.51

40% 27,661 26,422 28,689 664.93

60% 26,586 26,298 28,294 683.35

80% 17,985 17,410 18,660 384.31

100% 12,413 11,653 13,157 495.63

30% below 0% 8,894 8,576 9,331 250.06

20% 13,721 13,205 15,528 619.78

40% 17,596 16,271 18,190 521.31

60% 17,031 16,530 17,854 365.55

80% 10,927 9,832 11,663 485.29

100% 6,592 6,252 7,202 286.47

AVs’ CF behaviour could significantly change safety; however,
in higher PRs.

Moreover, the results of the one-way ANOVA test indicate
a significant variation in the total number of conflicts across all
AV deployment scenarios in both demand scales. The F-value
(9.974) for all AV scenarios under base demand exceeds the crit-
ical F-value (3.911) at a 95% confidence interval. Similarly, for
the 30% below demand scale, the F-value (4.493) for all AV sce-
narios, including 0% PR, surpasses the F-critical value (3.911).
Furthermore, the Tukey HSD test reveals a significant variation
between all pairs of AV PRs except for 40% and 60% PRs under
both demand scales.

Meanwhile, the sensing capabilities enable AVs to react faster
than HDVs in conflict situations. Therefore, it is arguable
that the TTC threshold for HDVs’ conflicts could be set to
1.5 s, where the HDV is the following (ego) agent either in an
HDV–HDV or HDV–AV situations. However, for AV–AV and
AV–HDV conflicts, we can set the TTC threshold to 1.25, 1.0,
and 0.75 s. In comparison to the initial scenario, where TTC
is set to 1.5 s for all conflict types (Figure 8a), the total num-
ber of conflicts is significantly lower for other TTC thresholds,
as depicted in Figure 8b–d. When setting the TTC threshold
to 1.25 s for AV-related conflicts, the total number of con-
flicts in 100% PR reduces around 61% in comparison to 0%

FIGURE 8 The comparison of the total number of conflicts under various TTC thresholds.
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TABLE 7 The contribution of vehicle types on conflicts generation under various TTC thresholds and scenarios.

(a) TTC threshold = 1.5 s (b) TTC threshold = 1.25 s

Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum

100% 0% 0 0 16,455 0 16,455 100% 0% 0 0 16,455 0 16,455

40% 7,214 7,109 6,218 7,120 27,661 40% 1,721 2,305 6,218 7,120 17,364

80% 10,328 3,220 1,259 3178 17,985 80% 4,562 1,589 1,259 3,178 10,588

100% 12,413 0 0 0 12,413 100% 6,914 0 0 0 6,914

30%
below

0% 0 0 8,894 0 8,894 30%
below

0% 0 0 8,894 0 8,894

40% 4,683 4,429 4,003 4,481 17,596 40% 950 1,312 4,003 4,481 10,746

80% 6,169 2,022 846 1,890 10,927 80% 2,480 966 846 1,890 6,182

100% 6,592 0 0 0 6,592 100% 3,264 0 0 0 3,264

(c) TTC threshold = 1.0 s (d) TTC threshold = 0.75 s

Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum Demand PRs AV-AV AV-HDV HDV-HDV HDV-AV Sum

100% 0% 0 0 16,455 0 16,455 100% 0% 0 0 16,455 0 16,455

40% 1,508 1,986 6,218 7,120 16,832 40% 707 993 6,218 7,120 15,038

80% 3,787 1,376 1,259 3,178 9,600 80% 1,515 569 1,259 3,178 6,521

100% 5,704 0 0 0 5,704 100% 2,648 0 0 0 2,648

30%
below

0% 0 0 8,894 0 8,894 30%
below

0% 0 0 8,894 0 8,894

40% 782 1,109 4,003 4481 10,375 40% 408 577 4,003 4,481 9,469

80% 1,980 812 846 1,890 5,528 80% 816 424 846 1,890 3,976

100% 2,651 0 0 0 2,651 100% 1,126 0 0 0 1,126

PR under both demand scenarios, where for TTC threshold 1.0
and 0.75 s, these figures show approximately 67% and 85%,
respectively.

In addition, to gain a deeper understanding of the contri-
bution of vehicle types in generating conflicts in the network,
we distinguish AV and HDV-related conflicts under each TTC
threshold, AV PR, and demand scale scenarios. As shown in
Table 7, when setting the TTC threshold to 1.5 s, AV-related
conflicts (AV-AV and AV-HDV) are higher than HDV-related
conflicts under 40% PRs for both demand scenarios. The selec-
tion of a 40% PR allows us to assess the contribution of AV
conflicts in a scenario where the presence of HDVs in the net-
work is predominant. However, for lower TTC thresholds, the
contribution of HDV-related conflicts is higher under 40% PR
for both demand scale scenarios.

4.3 Regression analysis

To better investigate the potential benefits of AV PRs on traffic
efficiency and safety, we implement GEE and ZTP regression
models, respectively, to relate the impacts with the influencing
factors. For the GEE model, we use edge travel time per kilo-
metre as a dependent variable and AV PRs, flow, length of edge,
flows, and speed limit as independent variables. Whereas for the
ZTP regression model, the total number of conflicts is set to
the dependent variable, AV PRs, flow, and standard deviation of
speed as independent variables.

4.3.1 Travel time regression analysis

The results of the regression model with two correlation struc-
tures (independent and exchangeable) are shown in Table 8.
For comparison of model goodness of fit under different cor-
relation structures, we also use the AIC (Akaike Information
Criterion) parameter (the lower value of AIC indicates a better
model fit). As depicted in Table 8, the value of AIC is smaller
for the independent working correlation structure, making it a
better fit compared to the exchangeable correlation structure.
In addition, there are differences in the coefficient and standard
errors of the variables in both working correlation structures.
For instance, the variable AV60 (60% PR of AV) is significant
(p-value = 0.001) under the independent correlation structure,
whereas it is not statistically significant (p-value = 0.132) under
the exchangeable correlation structure. Meanwhile, the value of
the estimated correlation matrix in the exchangeable structure is
0.754.

The investigation of the coefficient estimates of AV PRs
reveals that under the independent structure, AV20, AV40, and
AV80 are significant in changing edge travel time per kilome-
tre, whereas under the exchangeable correlation structure, only
AV20 and AV40 are statistically significant. The positive sign
of the coefficients indicates that any AV PR increases the edge
travel time per kilometre compared to a fully HDV environ-
ment; however, the magnitude of this increase is different in
each AV PR. In a mixed environment, where AVs interact with
HDVs, there might be frequent driving behaviour adjustments
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TABLE 8 Regression-based edge travel time per kilometre analysis.

Independent Exchangeable

Variable Coeff. Std. Err. z value Pr(> |z|) Coeff. Std. Err. z value Pr(> |z|)

Intercept 18.004** 3.753 4.797 <0.001 12.263** 3.845 3.189 0.001

AV20 0.931** 0.250 3.717 <0.001 0.531** 0.224 3.265 0.001

AV40 1.178** 0.277 4.262 <0.001 0.633** 0.292 2.166 0.030

AV60 0.913** 0.268 3.410 0.001 0.367 0.244 1.507 0.132

AV80 0.455 0.257 1.772 0.076 0.036 0.218 0.167 0.867

AV100 0.086 0.237 0.362 0.717 −0.289 0.180 −1.609 0.108

Edge length 0.068** 0.001 58.005 <0.001 0.071** 0.002 41.448 <0.001

Flow 0.014** 0.003 5.078 <0.001 0.030** 0.006 4.872 <0.001

Speed limit −0.948** 0.274 −3.464 0.001 −0.765** 0.254 −3.016 0.003

AIC 500645.98 505287.27

**Significance at 0.05 level.

toward safe manoeuvres, and this may lead to increased edge
travel time per kilometre. In lower PRs, there is less driving
behaviour oscillation compared to a fair share of both AVs and
HDVs (e.g. 50%). Similarly, in higher PRs, the driving behaviour
is influenced by AVs, and therefore, the driving actions are
less disturbed for both AVs and HDVs compared with a 50%
PR. As depicted in Table 8, under the independent correlation
structure, the coefficient estimates of AV PR initially increase
from 0.931 (AV20) to 1.178 (AV40) and then reduces gradually
to 0.086 (AV100). Meanwhile, compared to the base scenario
(0% PR), the travel time value per kilometre is higher in a
fully AV environment (100% PR); however, the coefficient esti-
mate is not significant, and thus, the safe driving behaviour
of AVs could potentially improve safety without deteriorating
traffic efficiency.

Furthermore, traffic flow significantly affects edge travel time
per kilometre under both correlation structures. The higher flow
results in increased travel time per kilometre. Similarly, the coef-
ficient estimate of the speed limit is negative, which indicates
that the travel time per kilometre at an urban road with higher
speed limit is less compared to the same urban road with lower
speed limit.

4.3.2 Conflicts regression analysis

The findings of the conflicts-based regression model are pre-
sented in Table 9. Based on the estimated coefficients, AV PRs
(except AV80) are found to be significant in affecting the total
number of conflicts in the network. The signs of AV20, AV40,
and AV60 are positive, whereas AV80 and AV100 have nega-
tive signs. The differences in the driving behaviour of AVs and
HDVs result in increased conflicting situations. The higher the
interactions among AVs and HDVs, the higher is the total num-
ber of conflicts. In scenarios with both low and high AV PRs,
the total number of conflicts tends to be lower compared to
situations with an equal mix of AVs and HDVs (e.g. 50% AV
PR). In lower PRs, the number of conflicts tends to be like

TABLE 9 Regression-based conflicts analysis.

Variable Coeff. Std. Err. z value Pr(> |z|)

Intercept 2.484** 0.058 42.740 <0.001

AV20 0.044** 0.010 4.237 <0.001

AV40 0.124** 0.010 11.924 <0.001

AV60 0.074** 0.011 6.676 <0.001

AV80 −0.001 0.011 −0.077 0.939

AV100 −0.695** 0.022 −31.590 <0.001

Log (flow) 0.305** 0.005 60.739 <0.001

Speed Std 0.142** 0.003 43.078 <0.001

**Significance at 0.05 level.

the fully HDV scenario since the driving behaviour of AVs is
influenced by HDVs. Similarly, in higher PRs, the number of
conflicts is associated to AVs and tends toward a fully AV sce-
nario. By increasing the PR up to 50%, the total number of
conflicts increases, where with higher PRs (>50%), the change
in the total number of conflicts in comparison to a fully HDV
scenario reduces. When the PR reaches 80%, the change in the
total number of conflicts compared to the based scenario is
insignificant. However, in a 100% PR, the total number of con-
flicts reduces significantly. Therefore the coefficient estimates
increase from 0.044 (AV20) to 0.124 (AV40), and then reduces
to −0.008 (AV80) and finally to −0.695 (AV100).

Additionally, the standard deviation of speed is a signifi-
cant variable in changing the total number of conflicts in the
network. Higher fluctuation in this variable results in higher
conflicts. Meanwhile, the increased traffic flow (throughput) in
the network implies higher conflicts in the network.

5 DISCUSSION

The findings of the literature review revealed that most
simulation-based AV studies conduct the impact assessment on
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traffic efficiency [18, 21, 22, 30, 34, 35, 66], safety [17, 22, 28, 32,
55], and some also focus on environmental effects [24, 25, 75].
Regarding the mobility impacts, researchers reported that higher
PRs of AVs and CAVs reduce travel time and increase capac-
ity and throughput [17, 18, 21, 22, 33]. However, other studies
claimed that in a mixed driving environment where AVs inter-
act with HDVs, the capacity degrades [19, 34], and travel time
increases [66]. In addition, it is reported that in higher speed
limits, the impact of AVs on Freeway capacity is significant. In
contrast, in lower speed limits, the change is not considerable
[35]. Meanwhile, most studies reported that CAVs outperform
AVs in many aspects due to their communication capabilities.
For instance, [22] reported that at least 20% PR of CAVs is
required to significantly reduce travel time, whereas, for AVs,
at least 40% PR is required. On the other hand, the results of
our research show that a mixed environment of AVs and HDVs
increases the network travel time, vehicle time loss, and average
flow. Second, regarding safety impacts, most studies suggested
that by increasing the PR of AVs, the total number of conflicts
in the network reduces significantly [17, 22, 32, 55]. Some also
highlighted the negative impacts of AVs on roundabout safety
[64]. However, our research revealed that a comparable mix of
AVs and HDVs might result in an increased number of con-
flicts. Since different driving behaviours of AVs and CAVs may
lead to the frequent adjustment of driving actions, the num-
ber of conflicts increases. However, with higher PRs of AVs
(e.g. more than 80%), the total number of conflicts significantly
reduces in comparison to a fully HDV environment. With 100%
AV PR, the total number of conflicts decreases by around 25%.
The inconsistent conclusion on the impacts of AV PRs could be
associated with two main influencing factors: the assumption on
the potential CF parameters of AVs driving behaviour and the
scope of the study.

The driving behaviour of AVs might significantly differ from
HDVs. In MTMs, the driving behaviour of AVs is distinguished
from HDVs by modifying the parameters of the CF model.
However, the magnitude of these changes depends on the
researchers’ own assumptions (due to the lack of large real-
world data for AVs). Most studies, for instance, assume that AVs
might drive closer to the leading vehicles and could react rela-
tively faster. However, AVs may have more cautious behaviour
and strictly follow the traffic rules, especially the speed limits,
compared to HDVs. Therefore, in this research, we utilize AVs’
optimized and safe driving behaviour instead of assuming the
CF model parameters.

Another important aspect is the scope of the study. Most
studies conduct the impact assessment on freeways and high-
ways, where the fluctuation of traffic flow elements is not
huge. Thus, AV driving behaviour brings a significant change
in efficiency and safety. In contrast, in an urban network, many
other influencing factors such as the type of roads, number
of lanes, type and number of intersections, curvatures, control
devices, speed limits, and more could have direct impacts on
the driving performance and impress the potential effects of
driving behaviour itself. In other words, these influential factors
could diminish the effects of AV driving behaviour on traffic
efficiency. Therefore, in this research, the findings differ for effi-
ciency evaluation. A similar result is also reported by [66], where

the investigation is conducted at the network level. On the other
hand, regarding safety, driving behaviour significantly affects the
number of conflicts. Since a conflict occurs between two vehi-
cles (following and leading) in a short period and is unrelated to
the entire vehicle’s trip, the driving behaviour is responsible for
any possible conflict.

6 CONCLUSION

It is expected that AVs have a different driving behaviour than
HDVs. This behavioural difference might bring a significant
change in mobility, safety, and emissions. Identification of the
potential driving behaviour of AVs is a crucial aspect of impact
assessment studies. Since AVs might have safe and efficient
driving behaviour, a simulation-based impact assessment with
optimal driving behaviour of AVs might report more realistic
results on the potential impacts of AVs. Hence, in this research,
we conduct a comprehensive simulation-based impact assess-
ment under varying scenarios to evaluate the effects of AVs
on efficiency and safety in an urban network. An experimen-
tal setup is conducted to run the simulations in the Munich city
network. We utilize Krauss and IDM models to mimic the CF
behaviour of AVs and HDVs, respectively. The parameter of
the HDV CF model is calibrated using PSO algorithm, whereas
for the Krauss model, the optimized parameters are used from
another study.

The evaluation of impacts on traffic efficiency reveals that
any PR of AVs might increase the network travel time under
various demand scenarios. This increase is mainly due to the
behavioural changes of vehicles in mixed environments. With
20–40% PRs, the results show around 10% increase in travel
time, where this figure reduces gradually for PRs ranging from
40% to 100%. In a fully AV scenario, the network travel time is
almost the same as in the base scenario (0% PR). The same find-
ings are found for other KPIs, including the average number of
stops per vehicle, average time loss per vehicle, and average time
loss per vehicle per intersection. Hence, behavioural differences
in AV driving configurations could not bring huge changes on
traffic efficiency in urban networks. On the other hand, the anal-
ysis of traffic safety depicts that by increasing the PRs of AVs to
40%, the total number of conflicts (with TTC <1.5 s) increases
significantly; however, with higher PRs, the number of conflicts
reduces significantly. In addition, it is found that the total num-
ber of conflicts is around 25% less in a fully AV environment
in comparison to the base scenario. Meanwhile, if we consider
the sensing capabilities of AVs for their fast reaction in case of
a conflict situation, the total number of conflicts in the network
reduces significantly by increasing the PRs of AVs. Depending
on the TTC value for AV-related conflicts (AV to AV or AV to
HDV), the total number of conflicts reduces around 60 to 80%
in higher PRs (>80%).

The investigation of the potential impacts of AVs showed
that AVs might bring safety improvement not only by elimi-
nating the drivers’ errors but also by their behavioural changes;
however, their impacts on efficiency in a city network scale,
where additional infrastructure-related factors (e.g. speed limit,
type of roads, number of lanes, type of intersections, traffic
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control devices, and more) play a vital role is not huge. This
research also has limitations that could raise new lines of work
for further studies. First, for any PR of AVs, we fixed the driv-
ing behaviour of HDVs; however, the mass deployment of AVs
might also change the behaviour of HDVs and their interaction
with AVs. Thus, a research using a driving simulator experiment
of the field test is required to evaluate the potential change in
human drivers’ behaviour when interacting with AVs and uti-
lize these changes when conducting impact assessment. This
will lead to more accurate and reliable findings on AVs impact
assessment. Second, in an urban network, among other influ-
ential factors, speed limit could have a major contribution in
diminishing the real impacts caused by behavioural changes in
driving. Hence, a sensitivity analysis of different speed limit
policies could be valuable research work to investigate the rela-
tionship between speed limits and the potential impacts of AVs
on efficiency and safety. Third, in simulation-based studies, the
effects of AVs are influenced by factors such as the selection of
CF models and the scope of the study. Therefore, it is impor-
tant to perform a sensitivity analysis using varying modelling
techniques to find the interactions among a CF model and the
potential impacts and to analyse the relationship between the
scope of a study and the impacts of AVs deployment scenar-
ios. Fourth, in this research, we utilized the optimized driving
behaviour of AVs (extracted in a city network) to conduct
an impact assessment. However, it is interesting to study the
impacts of AVs on a freeway or highway by utilizing the AVs’
optimal driving behaviour. The aim would be to evaluate the
effects of optimal driving behaviour of AVs under high speed
and traffic flow. Finally, there is a potential to integrate a data-
driven model into a microscopic traffic simulator to replicate the
driving behaviour of AVs under varying traffic conditions and
conduct impact assessment. This will generate plausible findings
on the potential impacts of AVs in mixed traffic.
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