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Abstract
Objective: To assess the performance of serum neurofilament light chain (sNfL) in clinical 
phenotypes of amyotrophic lateral sclerosis (ALS).
Methods: In 2949 ALS patients at 16 ALS centers in Germany and Austria, clinical char-
acteristics and sNfL were assessed. Phenotypes were differentiated for two anatomical 
determinants: (1) upper and/or lower motor involvement (typical, typMN; upper/lower 
motor neuron predominant, UMNp/LMNp; primary lateral sclerosis, PLS) and (2) region 
of onset and propagation of motor neuron dysfunction (bulbar, limb, flail-arm, flail-leg, 
thoracic onset). Phenotypes were correlated to sNfL, progression, and survival.
Results: Mean sNfL was -  compared to typMN (75.7 pg/mL, n = 1791) -  significantly 
lower in LMNp (45.1 pg/mL, n = 413), UMNp (58.7 pg/mL n = 206), and PLS (37.6 pg/mL, 
n = 84). Also, sNfL significantly differed in the bulbar (92.7 pg/mL, n = 669), limb (64.1 pg/
mL, n = 1305), flail-arm (46.4 pg/mL, n = 283), flail-leg (53.6 pg/mL, n = 141), and thoracic 
(74.5 pg/mL, n = 96) phenotypes. Binary logistic regression analysis showed highest con-
tribution to sNfL elevation for faster progression (odds ratio [OR] 3.24) and for the bulbar 
onset phenotype (OR 1.94). In contrast, PLS (OR 0.20), LMNp (OR 0.45), and thoracic onset 
(OR 0.43) showed reduced contributions to sNfL. Longitudinal sNfL (median 12 months, 
n = 2862) showed minor monthly changes (<0.2%) across all phenotypes. Correlation of 
sNfL with survival was confirmed (p < 0.001).
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INTRODUC TION

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal de-
generative disorder of motor neurons [1, 2]. Clinical symptoms and 
individual prognosis are highly variable and related to distinct phe-
notypes [3–8]. In recent years, neurofilament light chain (NfL) has 
emerged as a prognostic biomarker in patient management and clini-
cal research [9–15]. Specifically, NfL concentrations in cerebrospinal 
fluid (CSF) and serum (sNfL) are robust indicators of axonal damage 
in ALS. NfL levels significantly correlate with disease progression as 
measured by the ALS Functional Rating Scale-Revised (ALSFRS-R) 
and, most importantly, with survival [16, 17]. Furthermore, NfL has 
been introduced as an endpoint in clinical trials as an early indicator 
of treatment response [18–20].

Despite the established role of NfL as a prognostic marker, an 
area of uncertainty concerns the impact of distinct clinical pheno-
types on NfL. Reportedly, dominant involvement of upper or lower 
motor neurons may modify NfL levels [21]. In this context, NfL lev-
els in the phenotypes of typical (mixed) motor neuron degeneration 
in contrast to predominant motor neuron involvement (e.g., upper/
lower motor neuron predominant variants of ALS) are of interest. 
Also, the site of onset and propagation pattern might be associated 
with different extents of neuroaxonal damage and sNfL elevation. 
As such, NfL in phenotypes with typical limb or bulbar onset may 
differ from phenotypic variants with distinct regional onset (e.g., 
thoracic onset) or protracted propagation of motor neuron dys-
function (e.g., flail-arm and flail-leg phenotypes) [22–24].

This issue is of relevance for the design of clinical trials when 
using sNfL as stratification criterion for randomization. Inclusion 
of NfL in multivariate trial models is thought to control for the rate 
of disease progression, allowing an earlier detection of biomarker 
response [20, 25–27]. However, such a strategy may be chal-
lenged by the hypothesis that phenotypes are in fact covariates of 
sNfL, as this would require to also control for clinical phenotypes. 
Another research question refers to the performance of NfL in the 
temporal course of ALS. A few longitudinal studies offer inconsis-
tent results of either stable or moderately increasing NfL concen-
trations during disease progression [28, 29]. Clarification of these 
questions is obligatory for the refinement of NfL as a prognostic 
marker in clinical practice and trials, including its implementation 
as a biomarker for treatment response, drug safety, and phenocon-
version [20, 25, 30].

To evaluate the contribution of sNfL to existing models of disease 
progression, a multicenter prospective study was performed. The 
aims of the present study were to (i) extend the sNfL data repository 
in terms of number of participants and follow-up measurements, (ii) 
to assess ALS phenotypes in the studied cohort, (iii) to correlate the 
phenotypes with sNfL, progression, and survival, and (iv) to analyze 
the effect size to which phenotypes contribute to sNfL levels.

METHODS

Study design

This observational study was conducted as a prospective, multicenter, 
longitudinal cohort study. The investigation was reported accord-
ing to the STROBE (Strengthening the Reporting of Observational 
Studies in Epidemiology) criteria [31].

Participants and definition of cohorts

Participants met the diagnostic criteria of ALS with reference to 
the Gold Coast criteria [32]. Phenotypic classification as described 
below was made by experienced neurologists at the participating 
study centers. A definition of studied cohorts and subgroups is pro-
vided in Figure 1.

Setting

Recruitment

Following informed consent, patients were recruited at 16 multidis-
ciplinary ALS centers in Germany and Austria between April 2019 
and September 2023.

Data collection

Blood samples for sNfL analysis were obtained in time intervals of 5 
to 7 months. Classification of the phenotype and rating of ALSFRS-R 
was performed by a qualified evaluator. Additional ALSFRS-R-SE 

Conclusions: This study underscored the correlation of ALS phenotypes – differentiated 
for motor neuron involvement and region of onset/propagation – with sNfL, progression, 
and survival. These phenotypes demonstrated a significant effect on sNfL and should 
be recognized as independent confounders of sNfL analyses in ALS trials and clinical 
practice.
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data were assessed by self-rating using a mobile application (“ALS-
App”) [33, 34]. At the end of study, an update of phenotypes and 
survival was performed.

Biosample collection

Blood samples were collected, centrifuged, aliquoted, and shipped 
to the ALS center in Berlin (Germany) where the core facility for NfL 
analysis was located.

sNfL analysis

Measurement of sNfL concentration was done using single molecule 
array (SIMOA) technology (HD-X Analyzer; Quanterix Inc., Billerica, 
MA, USA) using the commercially available NfL advantage kit.

Protocol approvals and registrations

The study protocol was ethically approved under numbers 
EA2/168/20 and EA1/219/15. A signed informed consent form was 
obtained from all study participants.

Variables

Demographic and clinical characteristics

The following demographic and clinical characteristics were col-
lected: age at disease onset, sex, disease duration (number of months 
between disease onset and beginning of observation period), and 

survival (number of months between disease onset and death) 
(Tables 1 and 2).

ALS phenotypes

Phenotypes were classified according to their two anatomical deter-
minants as previously described. [35–42]. As such, two domains of 
phenotypes were distinguished:

(A) Motor neuron involvement phenotypes reflecting the vari-
able dysfunction of upper and lower motor neurons [35].

	 (i)	Typical motor neuron involvement (typMN): balanced (mixed) 
upper motor neuron (UMN) and lower motor neuron (LMN) 
dysfunction.

	(ii)	 Lower motor neuron predominant phenotype (LMNp): predom-
inant LMN dysfunction whereas discrete UMN dysfunction is 
also present.

	(iii)	 Upper motor neuron predominant phenotype (UMNp): predom-
inant UMN dysfunction whereas discrete LMN dysfunction is 
also present.

	(iv)	Primary lateral sclerosis (PLS): pure upper motor neuron (UMN) 
dysfunction without lower motor neuron (LMN) involvement.

(B) Onset and propagation phenotypes reflecting the region of 
onset and the propagation of motor neuron dysfunction throughout 
the body regions [35].

	 (i)	Bulbar onset: onset in the bulbar region, followed by typical 
propagation to the cervical, thoracic, and lumbar regions.

	(ii)	 Limb onset: onset of motor neuron dysfunction in a limb region, 
followed by typical propagation to the bulbar, cervical, thoracic, 
and lumbosacral regions.

F I G U R E  1 Studied amyotrophic lateral 
sclerosis cohort and patient stratification. 
For phenotyping, two anatomic 
determinants were distinguished: the 
variable dysfunction of upper and 
lower motor neurons (motor neuron 
phenotypes) and onset and propagation 
of motor neuron dysfunction throughout 
the body regions (onset and propagation 
phenotypes).
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	(iii)	 Flail-arm onset: onset in the upper limbs, followed by protracted 
propagation to the bulbar, thoracic, and lumbar regions.

	(iv)	 Flail-leg onset: onset of motor neuron dysfunction in the lower 
limbs, followed by protracted propagation to the thoracic, cer-
vical, and bulbar region.

	(v)	Thoracic onset: onset in the thoracic region (with respiratory 
symptoms and/or trunk instability), followed by propagation to 
the bulbar, cervical, and lumbosacral regions.

ALS Functional Rating Scale-Revised (ALSFRS-R)

The ALSFRS-R is a 12-item disease-specific instrument that meas-
ures functional impairment in ALS (Supplement – Methods) [43].

ALS progression rate (ALS-PR)

ALS-PR was measured by the monthly change in the ALSFRS-R sum 
score and calculated using the following equation: 48-ALSFRS-R di-
vided by disease duration (months) [44].

Neurofilament light chain in serum (sNfL)

The measurement of sNfL concentration was in picograms per mil-
liliter (pg/mL). To investigate longitudinal performance of sNfL, 
the difference in sNfL concentration was calculated, and divided 
by the number of months from the baseline to the follow-up 
measurement.

Statistical methods

Statistical analyses were performed using SPSS (SPSS Statistics 
for Windows, Version 27.0; IBM Corp., Armonk, NY, USA). 
GraphPad Prism (Version 9.0.0 for Windows; GraphPad Software, 
San Diego, CA, USA) was used for graphical representation of 
data. Continuous variables were assessed for normality using the 
Shapiro–Wilk test and described accordingly as mean ± standard 
deviation (SD) or median and interquartile range (IQR) (25th–75th 
percentile). Categorical variables are provided as absolute num-
bers (n) and percentages (%). Statistical significance is defined as 
p < 0.05.

TA B L E  1 Motor neuron involvement phenotypes – clinical characteristics and neurofilament light chain.

Parameter Total Typical LMNp UMNp PLS

Patients 2949 1791 (72%) 413 (17%) 206 (8%) 84 (3%) P-value

Demographics

Age (years) 64 64 66 62 62 0.065

(57–72) (57–71) (58–73) (56–72) (56–71)

Male/female 1451 (58%) 986 (55%) 307 (74%) 114 (55.3%) 44 (52%) <0.001

1043 (42%) 805 (45%) 106 (26%) 92 (44.7%) 40 (48%)

Clinical characteristics

Duration (months) 18 16 27 27 57 <0.001

(10–39) (10–31) (13–59) (12–72) (26–93)

ALSFRS-R 36 37 35 34 37 <0.001

(29–41) (30–42) (27–41) (26–40) (31–42)

ALS-PR 0.53 0.58 0.42 0.44 0.21 <0.001

(0.28–1) (0.33–1) (0.22–0.77) (0.24–0.94) (0.12–0.39)

Survival

Deceased 573 (23%) 460 (26%) 82 (20%) 28 (14%) 3 (4%) <0.001

Survival (months) 36 33 44 48 86 <0.001

(23–61) (22–52) (26–83) (28–90) (43–122)

Neurofilament light chain (NfL)

sNfL (pg/mL) 67.89 75.68 45.05 58.73 37.66 <0.001

(39–114) (48–123) (26–81) (32–116) (20–63)

sNfL Z-score 3.09 3.19 2.75 3.04 2.62 <0.001

(2.58–3.43) (2.79–3.43) (1.96–3.16) (2.36–3.43) (1.78–3.04)

Note: Categorical variables are given as number and percentage. Continuous variables are given as median (25th–75th percentile). NfL Z-score, age-
adjusted sNfL Z-scores in reference to open-access database of healthy controls.
Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; ALS-PR, ALS progression rate; LMNp, 
lower motor neuron predominant phenotype; PLS, primary lateral sclerosis; sNfL, serum neurofilament light chain; UMNp, upper motor neuron 
predominant phenotype.
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An age-adjusted sNfL Z-score was calculated using a reference 
database of a healthy control population as described previously 
[17, 45]. Differences in age, disease duration, ALSFRS-R, ALS-PR, 
sNfL concentration, and sNfL Z-scores between phenotypes were 
analyzed using the Kruskal–Wallis test. To analyze differences 
between two categorical variables the Chi-square test was used. 
Binary logistic regression was performed to determine the concur-
rent effect of age, phenotype, and ALS-PR on sNfL concentrations. 
sNfL served as an independent variable for the logistic regression 
analysis. For grouping of sNfL, the cohort was first split into three 
equally sized groups with low, intermediate, and high sNfL con-
centrations (cut-off values of sNfL at 49.3 and 93.5 pg/mL). The 
group of high sNfL was then compared with the groups of interme-
diate and low sNfL combined. Age, ALS-PR, and phenotype were 
introduced as covariates in the logistic regression analysis. For 
phenotype analysis the typMN and limb onset phenotypes served 
as reference. Log-rank tests were performed to calculate survival 
differences between sNfL subgroups and different phenotypes. 
A multivariate Cox proportional hazard regression analysis was 
performed to assess the contribution of age, ALS-PR, sNfL, and 
phenotype to survival.

RESULTS

Clinical characteristics and distribution of phenotypes

A total of 2949 ALS patients were included in the study (Figure 1). 
Demographic and clinical characteristics are given in Tables 1 and 
2. With respect to UMN and LMN involvement, most patients 
(n = 1791, 72%) showed the typMN phenotype, followed by LMNp 
(n = 413, 17%), UMNp (n = 206, 8%), and PLS (n = 84, 3%). Some 1974 
subjects (77%) showed the limb or bulbar onset phenotypes whereas 
the remaining patients presented with flail-leg (n = 141, 6%), flail-arm 
(n = 283, 11%), or thoracic onset phenotypes (n = 96, 4%).

sNfL in phenotypes

Motor neuron involvement phenotypes were significantly corre-
lated with sNfL (p < 0.001) (Table 1, Figure 2). sNfL was found to be 
highest in the typMN phenotype, followed by UMNp, LMNp, and 
PLS. Also, sNfL concentration differed significantly between distinct 
onset/propagation phenotypes with the highest sNfL levels in the 

TA B L E  2 Onset and propagation phenotypes – clinical characteristics and neurofilament light chain.

Parameter All onsets 2949
Limb onset 
1305 (52%)

Bulbar onset 
669 (27%)

Flail-arm onset 
283 (11%)

Flail-leg onset 
141 (6%)

Thoracic onset 
96 (4%)

Demographics

Age (years) 64 62 66 63 62 69 <0.001

(57–72) (54–70) (60–74) (57–71) (56–70) (62–74)

Male/female 1451 (58%) 789 (61%) 284 (42%) 221 (78%) 82 (58%) 75 (78%) <0.001

1043 (42%) 516 (39%) 385 (58%) 62 (22%) 59 (42%) 21 (22%)

Clinical characteristics

Duration 
(months)

18 20 14 19 29 15 <0.001

(10–39) (11–45) (9–25) (10–49) (17–53) (9–30)

ALSFRS-R 36 36 37 37 38 32 <0.001

(29–41) (29–41) (30–42) (29–43) (31–42) (25–38)

ALS-PR 0.53 0.5 0.63 0.43 0.34 0.9 <0.001

(0.28–1.0) (0.27–0.95) (0.36–1.1) (0.23–0.83) (0.18–0.51) (0.56–1.62)

Survival

Deceased 573 (23%) 270 (21%) 197 (29%) 52 (18%) 26 (18%) 28 (29%) <0.001

Survival 
(months)

36 39 30 38 48 30 <0.001

(23–61) (24–66) (20–46) (25–69) (35–77) (19–43)

Neurofilament light chain (NfL)

sNfL (pg/mL) 67.89 64.09 92.74 46.4 53.6 74.75 <0.001

(39–114) (37–108) (58–152) (29–78) (31–84) (48–103)

sNfL Z-score 3.09 3.09 3.24 2.75 2.95 3.02 <0.001

(2.58–3.43) (2.58–3.43) (2.93–3.54) (2.1–3.24) (2.51–3.24) (2.75–3.24)

Note: Categorical variables are given as number and percentage. Continuous variables are given as median (25th–75th percentile). NfL Z-score, age-
adjusted sNfL Z-scores in reference to open-access database of healthy controls.
Abbreviations: ALS, amyotrophic lateral sclerosis; ALSFRS-R, ALS Functional Rating Scale-Revised; ALS-PR, ALS progression rate; LMNp, 
lower motor neuron predominant phenotype; PLS, primary lateral sclerosis; sNfL, serum neurofilament light chain; UMNp, upper motor neuron 
predominant phenotype.
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bulbar onset and thoracic phenotypes, followed by limb onset, flail-
arm and flail-leg onset phenotypes (Table 2, Figure 2, Figure S1).

ALS progression rate in phenotypes

ALS-PR differed significantly between motor neuron phenotypes 
(p < 0.001). Faster progression (ALS-PR 0.58) was observed in the 
typMN phenotype, followed by the UMNp (0.44), LMNp (0.42), 
and PLS (0.21) phenotypes (Table 1, Figure 3). Also, onset/propa-
gation phenotypes showed significant differences in ALS-PR with 
faster progression in thoracic onset ALS (ALS-PR 0.9) followed 
by bulbar onset (ALS-PR 0.63). Conversely, flail-leg and flail-arm 
phenotypes demonstrated slower progressing ALS (ALS-PR 0.34 
and 0.43, respectively; Table 2, Figure 3, Figure S2, Supplement 
– Results).

Survival in phenotypes

Survival of patients with distinct ALS phenotypes of motor neuron 
involvement differed significantly (p < 0.0001) (Table  1, Figure  4). 
Thus, significant differences were found in the survival distribu-
tions between typMN versus. PLS, UMNp, and LMNp. Also, the 
onset/propagation phenotypes revealed survival differences such 
as between limb versus bulbar onset, limb versus thoracic onset, 

and bulbar versus flail-leg and flail-arm onset phenotypes (Table 2, 
Figure 4, Supplement – Results).

Contribution of phenotypes to sNfL elevation

ALS-PR showed the highest contribution to sNfL elevation (OR 3.252, 
p < 0.001) (Figure 5). Moreover, distinct phenotypes were found to be 
additional covariates of sNfL increase. When using the typMN pheno-
type as reference, PLS (OR 0.208, p < 0.001) and the LMNp phenotype 
(OR 0.456, p < 0.001) revealed a lower contribution to sNfL elevation 
(Figure 5 and Table S1). Also, in the onset and propagation phenotypes, 
a different impact of distinct phenotypes on sNfL elevation was found. 
When referencing the limb onset phenotype, the bulbar onset phe-
notype showed a higher contribution to sNfL elevation (OR 1.942, 
p < 0.001). Conversely, the flail-arm (OR 0.495, p < 0.001) and thoracic 
onset (OR 0.436, p < 0.003) phenotypes revealed a reduced contribu-
tion to sNfL elevation (Figure 5 and Table S1).

Temporal course of sNfL in total cohort and 
distinct phenotypes

In the total cohort, 2862 follow-up sNfL measurements were avail-
able (Table 3). When comparing the last available sNfL value with 
the baseline measurement (median duration 12 months), sNfL 

F I G U R E  2 Serum neurofilament light chain in correlation to phenotypes. For phenotyping, two anatomical determinants of motor neuron 
dysfunction were distinguished: (1) motor neuron involvement phenotypes with variable involvement of upper and lower motor neuron 
dysfunction and (2) onset and propagation phenotypes with distinct onset and propagation of motor neuron dysfunction throughout the 
body regions. LMNp, lower motor neuron predominant phenotype; PLS, primary lateral sclerosis; sNfL, serum neurofilament light chain; 
UMNp, upper motor neuron predominant phenotype. The bar indicates the median, hinges extend from the 25th to the 75th percentile. 
Significance levels are indicated as: **p ≤ 0.05, ***p ≤ 0.01, ****p ≤ 0.001; non-significant differences are not shown.
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demonstrated stability in the temporal course (median increase 
0.09 pg/mL per month; relative change 0.17%). Stratification of pa-
tients by phenotypes showed the highest sNfL change (0.69 pg/mL 
per month) to be in the bulbar onset phenotype (relative monthly 
change 0.7%). In all other phenotypes, the sNfL change was even 
lower (Table 3 and Figure S3).

DISCUSSION

The heterogeneity of ALS adds complexity to the interpretation of 
neurofilament as a prognostic biomarker. The clinical spectrum of 
ALS is mainly caused by phenotypes that result from the variable 
involvement of upper and lower motor neurons, as well as the region 

F I G U R E  3 Amyotrophic lateral sclerosis progression rate in correlation to phenotypes. For phenotyping, two anatomical determinants of 
motor neuron dysfunction were distinguished: (1) motor neuron phenotypes with variable involvement of upper and lower motor neurons 
and (2) onset and propagation phenotypes with distinct onset and propagation of motor neuron dysfunction throughout the body regions. 
ALS, amyotrophic lateral sclerosis; ALS-PR, ALS progression rate; LMNp, lower motor neuron predominant phenotype; MN, motor neuron, 
UMNp, upper motor neuron predominant phenotype; PLS, primary lateral sclerosis; typical, upper and lower motor neuron involvement. The 
bar indicates the median, hinges extend from the 25th to the 75th percentile. Significance levels are indicated as: **p ≤ 0.05, ****p ≤ 0.0001.

F I G U R E  4 Correlation of phenotypes with survival probability. For phenotyping, two anatomical determinants of motor neuron 
dysfunction were distinguished: (a) motor neuron phenotypes with variable involvement of upper and lower motor neurons and (b) onset and 
propagation phenotypes with distinct onset and propagation of motor neuron dysfunction throughout the body regions. LMNp, lower motor 
neuron predominant phenotype; PLS, primary lateral sclerosis; UMNp, upper motor neuron predominant phenotype.
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of onset and propagation pattern throughout the body regions [35, 
36, 46]. Although the correlation between NfL and ALS progression 
has been demonstrated in previous studies, the effect of pheno-
types on sNfL was uncertain [23]. As such, there was an open issue 
as to whether the considerable clinical heterogeneity expressed in 
different phenotypes is fully controlled by NfL [25]. To date, only a 
few studies have investigated the relationship between NfL and ALS 
phenotypes [47–49]. To our knowledge, the present work provides 
the most comprehensive analysis of the effect of clinical phenotypes 
on NfL. In line with previous reports, a strong correlation of sNfL 
with survival was found (Supplement – Results, Figure S4) [17].

This study revealed that sNfL concentrations, progression, and 
survival are correlated with distinct phenotypes. In this, our find-
ings support and extend existing knowledge from smaller studies 
[22, 23, 48, 49]. Patients with typical involvement of upper and 
lower motor neurons showed the fastest progression, shortest 
survival, and highest sNfL concentrations. In contrast, the LMNp 
phenotype was associated with lower sNfL, slower progression, and 
longer survival compared with the typMN phenotype. The results 
were even more obvious in PLS patients that exhibited the lowest 
sNfL concentrations and most favorable prognosis in terms of ALS 
progression and survival.

When analyzing phenotypes of onset and propagation, the 
highest sNfL concentrations were found in bulbar and thoracic 
onset phenotypes (median: 92.7 and 74.7 pg/mL, respectively). 
Correspondingly, these phenotypes were associated with faster 

progression and shorter survival. Conversely, the flail-arm pheno-
type was associated with lower progression, reduced sNfL levels, 
and longer survival. Of note, the thoracic phenotype showed the 
fastest progression across all phenotypes but not the highest sNfL 
elevation. This observation contributes to the notion that NfL alone 
is not sufficient to predict ALS progression and must be viewed in 
the context of the phenotype. The contradiction between high pro-
gression and relatively low NfL is even greater when applying age 
correction by means of the NfL Z-score. The age-adaptation of sNfL 
(by means of the Z-score) came into effect as patients with the tho-
racic onset phenotype exhibited higher mean age (Table 2) [17, 45].

An sNfL elevation was found in both the UMNp and LMNp phe-
notypes. This finding supports the assumption that both upper and 
lower motor neuron degeneration may contribute to NfL elevation. 
However, the results from binomial logistic regression analysis sug-
gest that distinct phenotypes may have different impacts on sNfL 
elevation. Thus, the PLS phenotype (i.e., pure motor neuron degen-
eration in the brain) showed the lowest effect on sNfL. Also, pa-
tients with the LMNp phenotype (i.e., predominant degeneration 
in the spinal cord) had lower sNfL levels compared with the typMN 
phenotype (i.e., degeneration in brain and spinal cord combined). 
Moreover, in the flail-arm and thoracic phenotypes (i.e., focal onset 
of motor neuron degeneration in the cervical or thoracic spinal 
cord) a lower contribution to sNfL elevation was found. As such, 
it is conceivable that sNfL elevation reflects both the dynamics 
of neuroaxonal lesions (ALS progression rate) and the topography 

F I G U R E  5 Contribution of phenotypes to elevation of neurofilament light chain (NfL). Results of binomial logistic regression analysis 
to determine the concurrent effect of phenotypes, age, and amyotrophic lateral sclerosis progression rate on serum neurofilament light 
chain (sNfL) concentrations. For motor neuron involvement phenotypes, the typical phenotype served as reference category whereas for 
onset/propagation phenotypes, the limb onset phenotype served as reference. Odds ratios determine the likelihood of reaching high sNfL 
concentrations (>93.5 pg/mL, highest third in the cohort). ALS-PR, amyotrophic lateral sclerosis progression rate; CI, confidence interval; 
LMNp, lower motor neuron predominant phenotype; OR, odds ratio; PLS, primary lateral sclerosis; UMNp, upper motor neuron predominant 
phenotype.
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of motor neuron loss (ALS phenotypes). The results from patients 
with thoracic onset added another layer of complexity. Although 
the thoracic phenotype was associated with a lower contribution 
to sNfL elevation, it was associated with faster progression and 
shorter survival. This can be explained by the topography of motor 
neuron dysfunction in a critical spinal cord region that is related to 
hypoventilation and short survival. It is conceivable that the sNfL 
level alone is not only the predictor for the prognosis, but also the 
source region of sNfL elevation.

Concerning the interrelation of sNfL, phenotypes, and ALS pro-
gression, three aspects need to be distinguished: (i) multivariate 
analysis showed that distinct phenotypes show a significantly differ-
ent contribution to sNfL elevation; (ii) notwithstanding the impact 
of phenotypes on sNfL, the strong correlation between sNfL and 
progression persisted within each of the phenotype cohorts; and (iii) 
irrespective of the clinical phenotype, the ALS-PR was the strongest 
determinant of sNfL concentration (OR 3.25, p < 0.001).

The advances of this study are two-fold. First, it further proves 
the significant correlation between NfL concentration and sur-
vival in a very large cohort. The reproduction of prior reports 
also applied to the characterization of phenotypes (with an ex-
panded prognostic dataset). The second advancement of this 
study concerned the demonstration that ALS phenotypes indeed 
have an independent contribution to sNfL. As such, different sNfL 

contributions of the motor neuron involvement and onset/propa-
gation phenotypes were found – also in phenotypes that are typ-
ically associated with each other such as the flail-leg (OR 0.45) 
and LMNp (OR 0.88) phenotypes. This observation supports the 
approach of a separate analysis of the two anatomical determi-
nants of ALS phenotypes (motor neuron involvement vs. onset/
propagation). However, there are several limitations that warrant 
cautiousness in the conclusions. In this study, multivariate analy-
ses were only referenced to two phenotypes, namely the typical 
motor neuron involvement and the limb onset phenotype, making 
further reference combinations desirable. Furthermore, a more 
granular and longitudinal assessment of the phenotypes may be 
required. This necessity can arise when the initial phenotype (e.g., 
typical motor neuron involvement) might be blurred and replaced 
by another clinical presentation (e.g., LMNp) in a more progressed 
disease phase. Despite these limitations, the actual finding of a 
differential contribution of phenotypes to sNfL revealed that the 
biomarker is not solely driven by the different progression rates. 
Obviously, sNfL alone cannot resolve all the complexity resulting 
from clinical heterogeneity. Therefore, distinct phenotypes should 
still, if indeed not increasingly, be considered in prediction models 
and clinical trial design [50, 51].

The longitudinal stability of sNfL levels was demonstrated in a 
total of 2862 follow-up measurements confirming previous reports 

TA B L E  3 Longitudinal change of serum neurofilament light chain in amyotrophic lateral sclerosis phenotypes.

Parameter
sNfL, number of 
measurements

sNfL, monthly change from 
baseline (pg/mL)

Time interval from baseline 
(months)

sNfL, monthly change 
from baseline (%)

2862 0.09 [0.04. 0.15] 12.21 ± 8.24 0.17

Duration from baseline (months)

1–3 155 0.21 [−1, 1.38] 2.65 ± 0.63 0.31

4–6 762 0.12 [−0.09, 0.40] 5.08 ± 0.8 0.19

7–9 421 0.29 [−0.03, 0.65] 7.9 ± 0.8 0.46

10–12 436 0.26 [0.08, 0.42] 11.06 ± 0.8 0.51

13–18 524 0.08 [−0.04, 0.24] 15.39 ± 1.74 0.17

19–24 323 0.01 [−0.06, 0.11] 21.29 ± 1.70 0.02

>24 241 0.02 [−0.03, 0.08] 31.42 ± 5.94 0.04

Motor neuron involvement phenotypes

Typical 1870 0.26 [0.13, 0.35] 11.6 ± 8.08 0.42

LMNp 561 −0.01 [−0.1, 0.07] 13.04 ± 8.32 −0.02

UMNp 302 −0.14 [−0.31, 0] 13.34 ± 8.63 −0.32

PLS 129 0.12 [0.01, 0.29] 14.72 ± 8.32 0.43

Onset and propagation phenotypes

Limb onset 1551 −0.01 [−0.07, 0.05] 12.71 ± 8.60 −0.02

Bulbar onset 711 0.69 [0.42, 1.14] 10.95 ± 7.66 0.95

Flail-arm onset 330 0.08 [−0.02, 0.21] 12.53 ± 7.57 0.23

Flail-leg onset 184 −0.09 [−0.36, 0.06] 13.08 ± 8.40 −0.18

Thoracic onset 86 0.15 [−0.3, 0.79] 10.51 ± 7.06 0.23

Note: Change in sNfL serum concentration (pg/mL) and relative change (%) per month from baseline.
Abbreviations: LMNp, lower motor neuron predominant phenotype; PLS, primary lateral sclerosis; sNfL, serum neurofilament light chain; UMNp, 
upper motor neuron predominant phenotype.
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in smaller samples [28, 29]. The total number of measurements that 
span more than 24 months was reasonable (n = 241, Table  3) but 
needs to be expanded in future studies. The call for more long-term 
data is based on a previous observation that sNfL levels decline in 
patients with long disease duration and invasive ventilation [17]. 
Although sNfL levels appear to remain stable over a longer period of 
time, this study also provided evidence for the greater variability of 
sNfL values in a short-term perspective (1–3 months) (Table 3). This 
phenomenon has been reported previously; however, is not well un-
derstood and needs to be further investigated [52].

The strengths of this study were the size of the cohort, the du-
ration of data collection, the multicenter design, and the central in-
frastructure for sNfL analysis. Nevertheless, the study is not without 
limitations. Currently, there is no broader consensus on the classi-
fication or even naming of ALS phenotypes, although this issue has 
been addressed [53]. Therefore, this study referred to accepted phe-
notypic terms such as bulbar and limb onset, PLS, UMNp and LMNp, 
flail-arm, flail-leg, and thoracic onset [4–6, 36–42]. Only progressive 
muscle atrophy (PMA) was included in the LMNp phenotype but was 
not analyzed separately. The reason to pool both phenotypes at this 
point of the investigation was justified by there being too wide a 
scope for interpretation to classify PMA or LMNp. Future research 
will aim to differentiate between PMA and LMNp by the further con-
cretization in the study protocol to assess both phenotypes. Beyond 
the identification of phenotypes, they were grouped according to two 
anatomical determinants of motor neuron dysfunction, as suggested 
previously [35]. As this grouping was not standard of care, a training 
of study sites for the classification of the phenotypes was performed. 
Notwithstanding the training, an inter-rater variability cannot be ex-
cluded. It was reassuring, however, that the frequency distribution of 
the phenotypes in this investigation was in line with previous reports, 
making substantial deviations unlikely [4–6, 53, 54].

In conclusion, this study underscored the correlation of distinct 
ALS phenotypes to progression and survival. Furthermore, clini-
cal phenotypes pose independent variables impacting sNfL levels 
in ALS. These findings come with a two-sided message. The first 
perspective concerns the biomarker that needs to be viewed in the 
context of clinical phenotypes. This context is of importance for 
the correct interpretation of the biomarker in interventional trials 
and clinical practice. The second perspective refers to the principal 
importance of phenotypes. As sNfL is not sufficient to control for 
the clinical heterogeneity, the relevance of clinical phenotypes for 
prognostic prediction was emphasized. In future research more ef-
fort is needed to differentiate and standardize the phenotypes – in 
conjunction with sNfL, the most informative and robust biomarker 
currently available in ALS.
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