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1. Introduction

The growing need for applications with high memory require-
ments, especially in the field of neuromorphic computing, has

highlighted the necessity for more advanced
compute-in-memory (CIM) architectures.[1]

These architectures aim to minimize data
transfer between processing elements and
memory blocks by using non-volatile memo-
ries for CIM, addressing the limitations of
the von Neumann bottleneck.[2,3] As deep
neural networks (DNNs) continue to
require extensive memory capacities, using
novel CIM architectures implemented in
the back-end-of-the-line (BEOL) fabrication
has become essential. This is due to the
high density achieved by BEOL-integrated
monolithic three-dimensional (M3D) archi-
tectures, which enables efficient storage
and processing of data.[4]

In M3D architecture for CIM, multiple
memory tiers are integrated monolithically
on top of the high-performance complemen-
tary metal-oxide-semiconductor (CMOS)
logic, enabling a significant boost in mem-
ory density.[5] The bottom-tier circuits at
the front-end-of-line (FEOL) can be fully or

partially self-aligned through the employment of the M3D integra-
tion technique.[6] This results in denser integrated circuits and
closer integration between different circuits, ultimately leading to
improved efficiency.[7]

Despite its potential, M3D integration faces significant proc-
essing challenges. M3D integration requires the fabrication of
BEOL upper-tier circuits at a relatively low temperature (below
400 °C) to prevent damage to the metal interconnects and exist-
ing bottom-tier circuits caused by elevated temperatures.[6,8] The
thermal activation of dopants in silicon CMOS technologies typ-
ically occurs between 600 and 1000 °C for reliable device perfor-
mance.[9] Recent literature has proposed successful integration
for amorphous oxide semiconductors (AOS), such as indium
tungsten oxide (IWO) and indium gallium zinc oxide (IGZO),
along with ferroelectric (FE) hafnium zirconium oxide (HZO),
using fabrication steps compatible with BEOL processes.[10–12]

Among emerging non-volatile memories, the ferroelectric
thin-film transistor (Fe-TFT) used as a BEOL transistor stands
out due to its excellent compatibility with CMOS technology,
scalability, and high ON/OFF ratio.[10,12,13] Complex systems like
DNN implemented on BEOL Fe-TFTM3D architectures (as illus-
trated in Figure 1a) face challenges due to the extensive opera-
tions involving multiple analog-to-digital converters (ADC),
control circuits, and the inability to dissipate heat leads to
increased operational temperature. This temperature rise,
exceeding 100 °C in M3D CIM systems can affect device charac-
teristics and result in incorrect read-out, reducing inference
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Monolithic three-dimensional (M3D) integration advances integrated circuits by
enhancing density and energy efficiency. Ferroelectric thin-film transistors
(Fe-TFTs) attract attention for neuromorphic computing and back-end-of-the-line
(BEOL) compatibility. However, M3D faces challenges like increased runtime
temperatures due to limited heat dissipation, impacting system reliability. This
work demonstrates the effect of temperature impact on single-gate (SG) Fe-TFT
reliability. SG Fe-TFTs have limitations such as read-disturbance and small
memory windows, constraining their use. To mitigate these, dual-gate (DG)
Fe-TFTs are modeled using technology computer-aided design, comparing their
performance. Compute-in-memory (CIM) architectures with SG and DG Fe-TFTs
are investigated for deep neural networks (DNN) accelerators, revealing heat’s
detrimental effect on reliability and inference accuracy. DG Fe-TFTs exhibit about
4.6x higher throughput than SG Fe-TFTs. Additionally, thermal effects within the
simulated M3D architecture are analyzed, noting reduced DNN accuracy to
81.11% and 67.85% for SG and DG Fe-TFTs, respectively. Furthermore, various
cooling methods and their impact on CIM system temperature are demonstrated,
offering insights for efficient thermal management strategies.
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accuracy. These challenges are primarily driven by the high
power density, resulting in elevated on-chip temperatures com-
pared to traditional monolithic 2D (M2D) architectures[14]

(Figure 1b).
To leverage the benefits of 3D integration for CIM/accelerator

hardware (Figure 1c), the rising trend in power densities brings
significant challenges related to thermal effects. These chal-
lenges include inter-die thermal coupling and an increased
occurrence of hotspots Figure 1e,f, which can have implications
for performance and reliability. This arises from the variations in
power densities within 3D integrated circuits compared to their
monolithic 2D counterparts, with thermal performance not nec-
essarily scaling linearly. Although advanced cooling methods like
liquid cooling exist, their implementation introduces complexi-
ties and additional costs.[15] Liquid cooling devices are efficient
heat exchangers but require more power than air-cooled heat
sinks. Liquid cooling surpasses air cooling in thermal resistance
only when adequately powered. Our work demonstrates the
BEOL-integrated ferroelectric-based CIM architecture for DNN
applications. Since the ferroelectric transistors are the most
promising non-volatile memory, analyzing the implication of
ferroelectric-based CIM for M3D integration is necessary.

Our key contributions are as follows: 1) We demonstrate the
BEOL-integrated Fe-TFT-based CIM architecture for DNN appli-
cations and present an extensive analysis aimed at quantifying
the influence of the integration design in terms of run-time
and design-time variability. 2) We examine how the properties
of the device are affected at high temperatures and its influence
on the accuracy of the DNN system. 3) We propose the most

effective way for optimal performance even under high-temperature
conditions. 4) We demonstrate the impact of various
cooling methods on the temperature elevation within the
CIM system, showcasing their effects and implications.

2. Electrical Characteristics of the Transistor

2.1. Device Calibration of Thin-Film Transistor

Figure 2a shows the simulated dual-gate (DG) TFT structure
in Sentaurus technology computer-aided design (TCAD)
with 50 nm channel length and 5 nm thick IWO channel.
Figure 2b demonstrates the calibration of the experimentally
measured[10] drain current (IDS) as a function of top gate voltage
(VTG) characteristics for two different VDD, 50mV and 1 V. The
calibration captures important features like subthreshold swing
(SS), ON current, and OFF current of TFT. To accurately repre-
sent the density-of-states in the IWO channel, we employed an
exponential band-tail density-of-states model and a Gaussian dis-
tribution of traps.[16] The bulk trap Coulomb scattering (BTCS)
non-local mobility model and non-local tunneling for the drain
and source were incorporated to account for trap-limited conduc-
tion. To ensure the reliability and accuracy of our TCAD simula-
tion, we used density-of-states parameters of IWO from.[17]

Figure 2c shows the parameter list of the IWO channel.
Additionally, we have calibrated IDS–VDS curve for different

values of VTG with experimental data[10] in TCAD as shown in
Figure 2d. Subsequently, we examined the impact of tempera-
ture on the TFT device as shown in Figure 2e. The ON current

(a)

(b)
(d)

(c) (e)

(f)

Figure 1. a) Schematic of monolithic 3D (M3D) integrated compute-in-memory (CIM) architecture having high density embedded non-volatile memory
in BEOL and the peripheral circuits in FEOL, whereas b) conventional 2D CIM architecture has memory and peripheral circuits in FEOL. c) The crossbar of
the synaptic core with other peripheral circuits for d) the deep neural network in the VGG8 network on the CIFAR10 dataset. e) Temperature maps of the
5-tier M3D integrated architecture compared with f ) the 2D integrated architecture.
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increases (Figure 2f ) with rising temperature, contrary to silicon
transistors, due to enhanced mobility resulting from trap-limited
percolation-dominated carrier conduction.[17]

2.2. Ferroelectric Transistor

Figure 3a shows the simulated DG Fe-TFT structure in Sentaurus
TCAD with 50 nm channel length and 5 nm thick IWO chan-
nel.[18,19] The Preisach model captures the FE characteristics.
The change in FE polarization (P) as a function of the applied volt-
age (V) is shown in Figure 3b. The hysteresis loop of the P–V curve
is calibrated against a fabricated metal-ferroelectric-metal (MFM)
capacitor.[20] FE parameters such as remanent polarization
(Pr)= 22.8 μC cm�2, saturation polarization (Ps)= 32.5 μC cm�2,
and coercive field (Ec)= 1.76MV cm�1 are calculated from the
P–V hysteresis loop and listed in Figure 3c.

For the Fe-TFT, the distinct memory state is obtained by apply-
ing a voltage pulse at the top gate (TG) and then sweeping the
voltage to read the state as shown in Figure 3d. The memory state
in Fe-TFT is characterized as different Vth. The low Vth (LVT) is
obtained by applying a voltage pulse of 4 V, 1 μs at TG, whereas
high Vth (HVT) is obtained by applying a voltage pulse of �4 V,
1 μs at TG. To read the memory state TG is swept and IDS–VTG

curve is obtained as shown in Figure 3e. The MW of the Fe-TFT
is calculated as the difference between HVT and LVT. For the TG
read method, an MW of 1.11 V is achieved. The conventional TG
read of Fe-TFT cannot have a high MW at FE thickness
tFE= 10 nm[21] and can be approximated as:

MW ¼ 2 ⋅ γ ⋅ Ec ⋅ tFE (1)

where γ is the ideality factor for the FE that accounts for second-
order effects and is less than 1. Considering the typical values for

FE films are Ec= 1MV cm�1 and tFE= 10 nm, the maximum
MW of the Fe-TFT is 2 V. A thick FE layer can increase the
MW since the MW is directly proportional to tFE. But, FE prop-
erties degrade for thick tFE and also hinder device scaling.
Further, applying both read and write voltages at the same TG
terminal can flip the polarization of the FE layer during the read
operation and cause read disturbance. To overcome these issues,
we have used DG Fe-TFT in which the write voltage is applied at
the TG and read voltage at bottom gate (BG) has been pro-
posed.[3,21] This provides a disturb-free read due to separate read
and write terminals and also amplifies the MW. Figure 3f shows
the IDS as a function of VBG of Fe-TFT. The MW of 6.53 V is
obtained for the BG read. Large MW for the case of BG read
is due to the large coupling between the BG and TG.[22] The
BG method to read Fe-TFT states presents certain difficulties.
In a recent study,[22] it was shown that BG read amplifies tran-
sistor variability. This increased variability can disrupt the func-
tionality of integrated circuits and systems.

3. Fe-TFT-Based M3D CIM Configuration

We have used Fe-TFT to build the CIM architecture and compare
the two types of read schemes. A comprehensive system-level
framework is employed to evaluate the hardware performance
and inference accuracy of the CIM accelerator. This accelerator
incorporates BEOL Fe-TFT integrated within a M3D design,
comprising multiple tiers of memory and logic circuits. This
study demonstrates the temperature rise occurring in each tier
following the inference operation. By analyzing the temperature
variations, we assess how the increased temperature affects the
performance and reliability of the BEOL Fe-TFT. Subsequently,
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Figure 2. a) Schematic of dual-gate thin-film transistor (TFT) with 5 nm thick IWO channel and channel length of 50 nm. b) IDS–VTG TCAD calibration with
the measured data[10] for VDD of 50mV and 1 V. c) List of the density of states parameters within the bandgap of IWO channel. d) IDS–VDS at different VTG
TCAD calibration with measured data.[10] e) The impact of temperature on the IDS–VTG characteristic. The ON current increases with temperature due to
an increase in mobility. f ) The plot of ON and OFF current of TFT with different temperatures.
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we examine the impact of device degradation on the inference
accuracy of CIM accelerator-based DNN.

We have used the simulation flow depicted in Figure 4 to
quantify 1) the inference accuracy of the M3D CIM system,
2) the elevated temperature of each tier stack, and 3) the thermal
effects of various M3D integrated BEOL Fe-TFT design

parameters on CIM inference accuracy. This simulation flow
combines the CIM inference accuracy estimation framework
(DNNþNeuroSim[23]) with a finite volumemethod (FVM)-based
thermal modeling framework.[24]

To evaluate the hardware performance and inference accuracy
on a large-scale model, we have applied the M3D design of CIM
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Figure 3. a) Schematic of Fe-TFT made by stacking of 10 nm ferroelectric layer in the top gate oxide of TFT structure. b) Polarization in the ferroelectric
layer as a function of Voltage hysteresis loop for ferroelectric model parameter calibration with the measurement data[20] using 10 nm ferroelectric layer in
the metal ferroelectric metal capacitor. c) The list of ferroelectric model parameters. d) The waveform of the pulse scheme at each terminal of Fe-TFT used
to read and write the states. To write the memory state, we have appliedþ4 V/�4 V, 1 μs to the TG of Fe-TFT to set them in LVT/HVT. We have used two
types of read methods, TG and BG read. In the case of TG read, a read voltage is applied at the TG terminal keeping the BG terminal at 0 V while for the BG
read, we apply the read voltage at the BG terminal keeping TG at 0 V. e) For the IDS–VTG characteristic, a memory window of 1.11 V is obtained, f ) while for
the case of BG read, a memory window of 6.53 V is obtained from IDS–VBG characteristic.

Tj = f(P, heff )

Figure 4. The assessment of inference accuracy within the thermal-drivenM3D CIM-based framework follows a systematic simulation procedure. Initially,
we input essential data, including the architectural configuration of the network (pipeline[25]), the flattened layout of each tier, device-specific parameters,
the cooling architecture, and the technological node specifications. These inputs enable the computation of temperature distributions at a steady state for
each tier using the thermal framework.[24] Subsequently, we proceed to evaluate the influence of temperature on device performance while considering
variations in device parameters arising from temperature fluctuations. Following this analysis, we proceed to quantify the loss in accuracy within the
neural network due to elevated temperatures.
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accelerators to the VGG8 network using the CIFAR10 dataset.
The subarray size is set to 128� 128 and is constructed using
1-bit/cell Fe-TFT, with the parameters listed in Table 1. Partial
sums within the 128� 128 synaptic arrays are linearly quantized
using a 5-bit ADC. From an architectural perspective, we con-
sider a pipelined (PP) system with 3D interleaved logic andmem-
ory tiers.[25] This architecture offers high speed but consumes
high power, providing a suitable framework for our analysis.

Using the open-source tool 3D CIM thermal v1.0,[24] we con-
duct steady-state thermal analysis for each tier of the architecture.
For steady-state thermal analysis, we employ the flattened layout
of the modeled CIM configuration, including memory arrays
ADCs, Global buffers, accumulators, shift and add, activation
and pooling circuits. A flattened layout implies that the hierarchi-
cal structure of the CIM, which consists of multiple layers or
tiers, is collapsed into a simplified 2D representation for model-
ing and simulation purposes. This representation facilitates the
thermal analysis of the CIM within the framework. Additionally,
we incorporate power excitation maps of each active tier based on
the flattened layout and a description of the die stack-up, encom-
passing bulk material, interconnects, and dielectrics, along with
their respective thermal properties, such as thermal conductivity
and specific heat capacity. To account for different cooling archi-
tectures, each with varying effective heat-transfer coefficients
(heff ) and assumptions regarding tier-to-tier interconnections
(vias, I/Os) for the assumed PP architecture are summarized
in Table 2. Our analysis employs interlayer vias (ILVs) for

tier-to-tier interconnections, assuming a diameter of 0.1 μm.[26]

The tier-to-tier I/O bonding pitch is assumed to be 0.1 μm, with
a bond height of 0.5� the bonding pitch.

All these parameters serve as inputs to the FVM-based ther-
mal framework. The thermal model incorporates three pri-
mary input parameters: 1) Power consumption of individual
functional blocks within the chip. 2) Geometric details of
the M3D stack, including the dimensions of its constituent
elements. 3) Material properties relevant to the stack compo-
nents.[24] This algorithm discretizes the entire layout of the
stack and deduces each non-zero element within the heff
matrix, which exhibits both sparsity and symmetry character-
istics. The relationship between matrix heff, power consump-
tion vector P, and the junction temperature vector Tj is as in
Equation (2):

Tj ¼ P=heff (2)

The output of the FVM-based thermal framework is the maxi-
mum junction temperature (Tj;max) for each tier. The elevated
temperature impacts various Fe-TFT parameters, such as the
RON value and the ON/OFF ratio (Table 1). Consequently, we
calculate the drift in the RON value caused by the increased
temperature and assess its impact on the inference accuracy
of the network.

4. Results and Discussion

Our study considers three M3D partitioning configurations:
1) two-tiers logic-on-memory (L-M), 2) three-tiers (L-M-L), and
3) five-tiers (L-M-L-M-L). These configurations are then
compared with the M2D configuration. To assess the hardware
performance, we employ two methods to read the stored states in
the Fe-TFT: TG and BG read. We analyze various hardware esti-
mation metrics such as throughput (TOPS), energy efficiency
(TOPS/W), compute efficiency (TOPS/mm2), and chip area
(Figure 5). As we move from M2D to higher-tier M3D configu-
rations, we observe a reduction in chip area, resulting in
improved TOPS/mm2. The results demonstrate that Fe-TFT
devices using BG read exhibit higher performance due to their
larger RON values and ON/OFF ratio.

The power consumption per block, the number of blocks, as
well as the number of memory components (memory array and
switch matrix), and peripheral logic elements (shift-add, ADC,
accumulation, activation, pooling, and global buffer) for the
VGG8 network are calculated directly using NeuroSim. To fur-
ther analyze the thermal impact, we have conducted a compre-
hensive thermal analysis that takes into account the actual power
distribution across different locations on the chip floorplan. The
analysis enables us to generate temperature contours, as depicted
in Figure 6. For the M3D two-tier configuration, we present the
block-based power density distribution and the floorplans for
each logic and memory tier as shown in Figure 6a,b, respectively.
In our assumptions, we place the ILVs in the middle and evenly
distribute the synaptic memory arrays across the memory tiers.
In the logic tiers, we group the ADCs and other peripheral cir-
cuits used for one synaptic memory array into a single logic
block. These logic blocks are evenly placed in the same manner

Table 1. Parameter list of Beol Ferroelectric thin film Transistor and
simulation Setup.

Parameters TG read Fe-TFT BG read Fe-TFT

Technology node (Logic) [nm] 7 7

Technology node (Memory) [nm] 22 22

Before Thermal Analysis (Simulation at room temperature)

RON [Ω] 1.96E3 8.19E3

ON/OFF ratio 4.71E1 2.68E4

Inference accuracy 91.44% 91.92%

After Thermal Analysis

Max. Temperature [°C] 84.74 85.24

RON [Ω] 4.76E2 1.55e3

ON/OFF ratio 1.63E1 1.33E3

Resistance drift [%] 25.2 27.1

Inference accuracy [%] 81.11 67.85

Table 2. Interconnect assumptions.

Attribute M3D

ILV diameter [μm] 0.1

Number of vertical vias between two tiers 5.9� 106

ILV total area [mm2] 0.24

bonding pitch [μm] 0.1

Bonding layer thickness [μm] 0.05
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as the memory arrays. The global buffers and other blocks, such
as accumulation, activation, and pooling circuits, are located in
the middle along with the ILVs to facilitate intermediate data
processing. Regarding data transfer, we assume that data is
exchanged among logic blocks and synaptic memory arrays
through H-tree interconnects within the logic and memory tiers,
respectively.

The temperature contours obtained from the FVM-based ther-
mal modeling framework, considering air-cooling with heff of
4.4� 103WK�1 m2,[27,28] are presented for both the logic and
memory tiers in Figure 6c,d, respectively. It is worth noting that
the relative temperatures among all tiers within the M3D config-
urations are similar. This similarity arises from the low thickness
of each tier, resulting in a low interior thermal resistance.
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Figure 5. The evaluation of the performance and hardware estimation metrics for various architectural configurations a) M2D architecture, including
metrics such as chip area, inference accuracy, TOPS, TOP/W, and TOPS/mm2. b) M3D architecture with 2 tiers (memory on logic), considering TG and
BG read BEOL Fe-TFT devices. c) M3D architecture with 3 tiers, specifically configured as L-M-L (Logic-Memory-Logic). d) M3D architecture with 5 tiers,
configured as L-M-L-M-L (Logic-Memory-Logic-Memory-Logic).

Figure 6. The floorplans and block-based power densities for a two-tier architecture, a) the logic tier, and b) the M3Dmemory tier. c) The steady-state tier
junction temperature contours for the two-tier M3D logic tier and d) the memory tier. These steady-state tier junction temperature contours for each tier
are calculated using the thermal framework.[24]
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The average power density in the PP system is relatively high,
consumes significant power, and operates at high temperatures.
Additionally, the power density further increases with a smaller
ILV diameter. Figure 7a illustrates the temperature rise of the
chip as the power density increases. In the case of the M2D con-
figuration, the larger chip area leads to a lower power density.
However, as we move to higher-tier M3D configurations, the
power density increases due to the smaller chip area, resulting
in more concentrated heat dissipation.

4.1. Impact of Temperature on M3D CIM Configuration

The comprehensive thermal framework calculates a maximum
temperature rise of 85 °C for the two-tier M3D CIM configura-
tion. To assess the impact of temperature on the BEOL Fe-
TFT, we examine the drift in the RON value and the ON/OFF
ratio, as detailed in Table 1. During our evaluation, the memory
states are programmed at room temperature, maintaining the
FE parameters constant, and subsequently read out at higher
temperatures. Since the memory states are programmed at
room temperature, i.e., FE parameters remain unchanged.[29]

However, there will be a shift in the threshold voltage of the tran-
sistor due to the substrate effect and its dependence on tempera-
ture influences the basic FET. This shift in the threshold voltage
induces drift in the RON and ON/OFF ratio of the transistor. As
the temperature increases, the current for both LVT and HVT
states shows an increasing trend, primarily due to the character-
istics of the amorphous oxide material channel.[17]

The drift in the RON due to the increased temperature has
more impact on the BG read scheme due to high variation for
the case of BG read Fe-TFT.[22] The variation parameter of the
Fe-TFT for both TG and BG read is introduced in the
NeuroSim as a percentage of variation of desired resistance.[23]

We re-run the framework using the updated Fe-TFT parameters
and observe a loss in the inference accuracy for the same net-
work.[23] Specifically, the inference accuracy reduces to 81.11%
for the TG read and 67.85% for the BG read case, in contrast
to the accuracy achieved at room temperature, which was approx-
imately 91%. This decline in accuracy can be attributed to the
variations caused by temperature changes, leading to incorrect

multiply-accumulate (MAC) outputs in relation to fixed ADC
references used during the inference operation. It is important
to note that although the BG read scheme demonstrates superior
performance compared to the TG read scheme, it also experien-
ces a more significant loss in inference accuracy due to the ele-
vated temperature when incorporated into the M3D integrated
configuration.

4.2. Thermal Resiliency for M3D Chips

The temperature of the metal lines results from a combination of
heating within the BEOL stack and heating within the FEOL. The
degree of heat transfer between FEOL and BEOL is closely tied to
the specific packaging and cooling solution employed for the
chip, making it highly dependent on the intended application.
In our framework, we have explored various cooling methods rang-
ing from air cooling to fan cooling to liquid cooling. The heff for
each cooling type is provided in Table 3.[30] Figure 7b–d illustrate
themaximum temperature rise experienced in each tier of the CIM
system while performing computations under different cooling
methods. We observe that higher values of heff result in lower tem-
perature rise within each tier. In other words, improved cooling
capabilities lead to better thermal management. However, it is
essential to consider that the cooling cost also increases signifi-
cantly as we move from air cooling to liquid cooling. A liquid cool-
ing system functions as a heat exchanger, capable of effectively
dissipating a significant amount of heat. However, it typically
demands a higher power input compared to air-cooled heat sinks.
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Figure 7. a) The Investigation of chip temperature as a function of power density variations among different CIM architecture types, including M2D, and
M3D with varying numbers of tiers. As the power density increases from M2D to higher-tier M3D architectures, there is a corresponding increase in
temperature within the tiers. b) The assessment of the maximum temperature rise for different cooling methodologies applied to the two-tier M3D CIM
setup, as well as extending to c) three-tier M3D and d) five-tier M3D architecture. It is noteworthy that microfluidic cooling effectively mitigates temper-
ature rise within the chip compared to air-based cooling; however, it incurs a linear increase in cooling costs.

Table 3. Parameters for different cooling methods.[30]

Cooling type heff Rth

Air cooled 4.4� 103 2.25

Fan cooled (500 RPM) 8.33� 103 1.2

Fan cooled (1000 RPM) 16.67� 103 0.6

Fan cooled (1500 RPM) 25� 103 0.4

Fan cooled (2000 RPM) 100� 103 0.1

Microfluidic 333.33� 103 0.03
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Achieving a lower thermal resistance results in superior cooling
efficiency, but it necessitates increased power consumption for
the cooling process. Liquid cooling systems can attain a lower ther-
mal resistance when adequately powered, but when supplied with
an equal amount of power, they exhibit higher thermal resistance
compared to air-cooled heat sinks. Therefore, there will be trade-
offs between the cost of cooling and the performance of the CIM-
based DNN system. There are alternative approaches to mitigate
high junction temperatures such as thermal-aware design-time
partitioning[31] and introducing a temperature-sensing and
bias-adaptive solution to minimize the device degradation and
maintain the accuracy of DNN.[32]

5. Conclusion

In conclusion, our extensive thermal analysis has provided
valuable insights into the integration design of a CIM-based
BEOL-Fe-TFT for DNN applications. By examining the influence
of device properties on system accuracy under varying tempera-
ture conditions, we aimed to identify optimal performance strat-
egies, particularly in the context of M3D integrated systems. Our
analysis considered both TG and BG read schemes for Fe-TFT
devices, with the BG read demonstrating higher performance
due to larger RON values and ON/OFF ratio. However, we noted
that the BG read scheme experienced a more significant infer-
ence accuracy loss due to temperature variations when integrated
into the M3D configuration. Furthermore, we highlighted the
impact of various cooling methods on the temperature elevation
within the CIM system, showcasing their effects and implica-
tions on thermal management. The thermal analysis of the
VGG8 network revealed the effectiveness of different cooling
methods in managing temperature rise, but tradeoffs between
cooling cost and performance must be considered.
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