
Vol:.(1234567890)

Health Care Management Science (2023) 26:412–429
https://doi.org/10.1007/s10729-023-09647-2

1 3

Covid‑19 triage in the emergency department 2.0: how analytics 
and AI transform a human‑made algorithm for the prediction 
of clinical pathways

Christina C. Bartenschlager1,2,3 · Milena Grieger1 · Johanna Erber4 · Tobias Neidel3 · Stefan Borgmann5 · 
Jörg J. Vehreschild6,7,8 · Markus Steinbrecher9 · Siegbert Rieg10 · Melanie Stecher7,8 · Christine Dhillon11 · 
Maria M. Ruethrich12 · Carolin E. M. Jakob7,8 · Martin Hower13 · Axel R. Heller3 · Maria Vehreschild14 · 
Christoph Wyen15,16 · Helmut Messmann9 · Christiane Piepel17 · Jens O. Brunner1,18,19   · Frank Hanses20 · 
Christoph Römmele9,11 · on behalf of the LEOSS study group

Received: 8 October 2021 / Accepted: 1 June 2023 / Published online: 10 July 2023 
© The Author(s) 2023

Abstract
The Covid-19 pandemic has pushed many hospitals to their capacity limits. Therefore, a triage of patients has been discussed con-
troversially primarily through an ethical perspective. The term triage contains many aspects such as urgency of treatment, severity of 
the disease and pre-existing conditions, access to critical care, or the classification of patients regarding subsequent clinical pathways 
starting from the emergency department. The determination of the pathways is important not only for patient care, but also for capac-
ity planning in hospitals. We examine the performance of a human-made triage algorithm for clinical pathways which is considered 
a guideline for emergency departments in Germany based on a large multicenter dataset with over 4,000 European Covid-19 patients 
from the LEOSS registry. We find an accuracy of 28 percent and approximately 15 percent sensitivity for the ward class. The results 
serve as a benchmark for our extensions including an additional category of palliative care as a new label, analytics, AI, XAI, and 
interactive techniques. We find significant potential of analytics and AI in Covid-19 triage regarding accuracy, sensitivity, and other per-
formance metrics whilst our interactive human-AI algorithm shows superior performance with approximately 73 percent accuracy and 
up to 76 percent sensitivity. The results are independent of the data preparation process regarding the imputation of missing values or 
grouping of comorbidities. In addition, we find that the consideration of an additional label palliative care does not improve the results.
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•	 We are the first to evaluate an existing triage algorithm 
for clinical pathways applied in German hospitals based 
on a unique German multicenter dataset.

•	 We propose analytics and AI-based extensions which 
improve performance metrics compared to those of the 
existing algorithm.

•	 We explicitly include the explainable AI discussion in 
literature and integrate explainable and easy-to-apply 
new approaches, as well.

•	 We study the influence of varying AI and non-AI data 
preparation strategies.

1  Introduction

The Covid-19 pandemic has pushed many hospitals to their 
capacity limits. Therefore, triage of patients has been dis-
cussed controversially primarily through an ethical perspec-
tive (see, e.g., [28] or [30]. Even though the term triage 
seems to have taken on a weighty meaning with the pan-
demic, it is still not new and triage algorithms have been 
used for a long time like in the emergency department or 
for mass casualty incidents. Triage within mass casualty 
incidents is about saving as many patients as possible with 
limited resources outside the hospital [21, 37, 38]. For 
emergency departments, the task is on classifying arriv-
ing patients due to urgency of treatment whereby scarce 
resources play a subordinate role [17].

In Germany, physicians have not been forced to decide in 
view of scarce resources during the Covid-19 pandemic so 
far. But in general, Covid-19 triage with limited personnel 
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and ventilation resources in hospitals integrates both 
approaches, i.e., emergency department and mass casualty 
incidents triage, and contains many aspects, such as urgency 
of treatment (e.g., [46], testing (e.g., [10]), severity of the 
disease (e.g., [11], access to critical care (e.g., [44] or the 
classification of patients regarding clinical pathways [39]. 
The classification of patients regarding clinical pathways 
determines ward, Intensive Care Unit (ICU), and outpatients 
starting from the emergency department. Although this clas-
sification is highly important for patient care and capacity 
planning in hospitals, it is hardly discussed in literature (see, 
e.g., reviews by [31, 47] or [1]. Regarding Covid-19 diag-
nosis (e.g., [48]), prognosis (e.g., [2] or [8] or [7], scores 
(e.g., [24] or [34], severity (e.g., [29] or mortality (e.g., [40], 
plenty of research has been proposed with a strong focus 
on Artificial Intelligence (AI) approaches. Symptoms, vital 
signs, medical imaging techniques, risk factors, blood counts 
or a combination of the categories are among the most inte-
grated input parameters for the predictions (e.g., [5, 14, 35, 
46, 47, 49]. The focus here is often on data-driven training 
and evaluation of standard models, without considering the 
actual application and transparency. In addition, it is notice-
able that a broad data basis and the validation are usually 
lacking [47].

In this work, we evaluate the performance of triage algo-
rithms for the classification of patients regarding clinical 
pathways based on a multicenter dataset with more than 
4,000 Covid-19 patients of the Lean European Open Survey 
on COVID-19 Patients (LEOSS) registry. Compared with 
previous work, the size of our dataset significantly exceeds 
current literature [1]. The decision tree proposed by Pin et al. 
[39] is suggested by the German Society for Interdiscipli-
nary Emergency and Acute Medicine (DGINA) to be con-
sidered as a guideline and applied in emergency departments 
in Germany, e.g., in the University Hospital of Augsburg. 
The results on the decision tree by Pin et al. [39] serve as a 
benchmark for our data-driven, AI and interactive human-AI 
extensions. Besides a base classifier regarding outpatient, 
ward, and ICU care, we research a hypothetical extension 
with outpatient, ward, ICU, and palliative care (i.e., death), 
to juxtapose data-induced and ethical considerations. As 
data issues arise in such settings, we study the influence of 
varying AI and non-AI data preparation strategies as well. 
We thus aim to close the validation and the application 
gap on a broad data basis for predicting the clinical course 
of incoming patients, which has not been in the focus of 
Covid-19 triage researchers so far. In addition, we take up 
the broad, ethical, and explainable AI (XAI) discussion in 
literature (see, e.g., [3] and present the performance of a 
human-AI interaction on the classification problem. We find 
significant potential of Covid-19 triage in the emergency 
department regarding accuracy, sensitivity, and other perfor-
mance metrics. Comparing AI methods with the human-AI 

interaction, the human-AI approach shows similar perfor-
mance in general and is significantly better at classifying 
ICU patients. An additional label palliative care does not 
improve the outcome, which is an important finding for the 
ethical discussion on Covid-19 triage.

Our work is structured as follows. In Section 2, we dis-
cuss the definitions and the literature which lay the basis for 
our methodology. Section 3 describes the data preparation 
process, the base triage algorithm, its data-driven extension, 
our AI systems, and performance metrics. Section 4 pro-
vides the results for both, a basic pathway classifier involv-
ing three labels (outpatient, ward, ICU) and an extended 
version with four labels (outpatient, ward, ICU, palliative 
care). The results are critically discussed in Section 5. Sec-
tion 6 presents concluding remarks.

2 � Related definitions and literature

The healthcare sector faces substantial challenges such as 
staff shortages and increasing treatments, for which advances 
in digitalization are generally known as a possible solution. 
The Covid-19 pandemic has aggravated the problem of staff 
shortages. Artificial Intelligence and Machine Learning are 
an important base for digitalization in healthcare. Often and 
in this work as well the terms are used synonymously, but in 
fact Machine Learning is defined as a part of Artificial Intel-
ligence [19]. While Artificial Intelligence focuses on autono-
mous algorithmic decisions in general, Machine Learning 
denotes a machine autonomously learning from data. There 
exist supervised and unsupervised Machine Learning meth-
ods. Unsupervised methods aim at clustering of unlabeled 
data and supervised Machine Learning methods focus on 
classification and regression problems for labeled data.

Machine Learning methods such as decision tree, Multi-
layer Perceptron (MLP), Extreme Gradient Boosting (XGB) 
or Random Forest (RF) are attributed to the category of pre-
dictive analytics. Predictive analytics summarize different 
approaches for event prediction. Descriptive analytics sum-
marize different statistical approaches for the descriptive and 
retrospective analysis of data. Prescriptive analytics aim at 
prospective decision support based on statistical and math-
ematical programming techniques [32].

We use analytics as a general term for mathematical 
and statistical methods with the aim to learn from data and 
focus on a classification problem in a Covid-19 setting. The 
(meta-) pathway of incoming Covid-19 patients starting 
from the emergency department is to be determined. Patients 
are assigned to the ward unit, the intensive care unit (ICU), 
the palliative care unit (PCU) or are discharged, i.e., outpa-
tient, from the hospital. Our four different (meta-) pathways 
are defined as follows: (1) ED → Discharge, (2) ED → Ward, 
(3) ED → ICU, and (4) ED → PCU. By the determination of 
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the pathway, an incoming Covid-19 patient is triaged with 
respect to the subsequent place of treatment. In times of 
digitalization in healthcare, the question is not only how 
analytics influence the decision-making process, but also 
the question remains as to who is making the actual triage 
decision of patients. The triage can be done autonomously 
by a physician experienced in Covid-19 care, i.e., human 
approach, autonomously by a supervised Machine Learn-
ing algorithm trained with relevant data, i.e., AI approach, 
or any interactive version of the options, i.e., interactive 
human-AI approach (see detailed definition on human-AI 
interaction below).

As the concept of triage itself raises ethical concerns 
because patients are grouped with potential consequences 
for their well-being, so does AI-based decision support. 
Various requirements for an ethical AI have been elabo-
rated in literature (see, e.g., [36, 45] or [6]. The require-
ments include, among others, the autonomy of physicians 
and patients or a certain transparency of the methods. The 
definition of this transparency of AI methods is controversial 
in the literature stream on Explainable Artificial Intelligence 
(XAI). Arrieta et al. [3] define transparency, i.e., interpret-
ability, as an intrinsic characteristic of a model. For example, 
decision trees are referred to transparent methods, because 
the structure and decision-making process immediately 
become visually clear to the user. According to Arrieta et al. 
[3], explainability is an extrinsic characteristic of a model. 
Multilayer Perceptron or Random Forest, for instance, are 
non-transparent models with a certain potential for explain-
ability, because simplification techniques or feature impor-
tance analyses might contribute to explainability for the user. 
Understandability is to be distinguished from transparency 
and explainability according to Arrieta et al. [3]. An algo-
rithm is defined to be understandable, if and only if the algo-
rithmic decision is understandable. The major goal of XAI is 
trustworthiness in the AI-based models, which is a basic pre-
requisite, among technological concerns, for the actual use 
of the techniques in healthcare institutions. Fuhrman et al. 
[18] apply a similar distinction of explainability and trans-
parency, i.e., interpretability, in their review on AI-assisted 
medical imaging in Covid-19 settings, while Tjoa and Guan 
[41] use the terms explainability and transparency synon-
ymously. Tjoa and Guan [41] do not distinguish between 
intrinsic and extrinsic characteristics but concentrate on the 
efforts to make the algorithmic decision transparent to the 
user. In this work, we differentiate between explainability 
and transparency, i.e., interpretability, as Arrieta et al. [3] 
or Fuhrman et al. [18] do. The term XAI is used as a general 
term defining the research stream of ensuring trustworthy 
AI-based decisions.

Human-AI interaction might contribute to XAI in health-
care [22]. Van Berkel et al. [42] generally “define human-AI 
interaction as the completion of a user’s task with the help of 

AI support […]” and describe the wide variety of different 
human-AI interactions with respect to the initiator of the 
interaction, the timepoints of the interaction in the decision-
making process, and the user’s reaction. For example, an 
AI-based clinical decision support system might suggest a 
certain classification of a patient. The interaction might be 
the system’s output which is the basis for the classification 
of the patient by a physician or consecutive decision-making 
depending on the predicted outcome or any other interactive 
decision-making process.

Not only transparency and interaction influence the 
actual application of decision support in hospitals, but also 
implementation issues and usability. As there are different 
advances in many countries regarding digitalization in hos-
pitals, e.g., the Hospital Future Act in Germany,1 the broad 
implementation of digital decision support tools will be 
made possible in the near future. Reviews on the usability 
of mobile apps and mobile health apps can be found in Har-
rison et al. [20] and Azad-Khaneghah et al. [4]. Usability 
is mainly determined by “Effectiveness”, “Efficiency” and 
“Satisfaction” [23] of the application and is strongly associ-
ated with the performance, transparency, and implementa-
tion of the algorithm, consequently.

We assess the influence of the decision maker, the ana-
lytics-based definition, and the transparency of the deci-
sion-making process on the accuracy of Covid-19 triage in 
the emergency department. To evaluate the influence, four 
different approaches are examined: the base triage algo-
rithm (TA) proposed by Pin et al. [39], an analytics-based 
extended version of the base algorithm (TAE), AI-based 
algorithms, and an integrated triage algorithm (ITA). The 
four approaches vary in the decision maker, the definition, 
and the transparency of the decision-making process (see 
Table 1). For the AI-based algorithms, we apply Multilayer 
Perceptron (MLP), Extreme Gradient Boosting (XGB), and 
Random Forest (RF). We take a data driven retrospective 
perspective which lays the basis for a prospective evaluation, 
and the ethical discussion about AI-based decision support 
for Covid-19 triage in the emergency department. In addi-
tion, we aim at a contribution to the discussion on the ethics 
of triage by evaluating the flexible inclusion of a palliative 
care label in some algorithms.

3 � Methods

3.1 � Data processing

Our study is based on a LEOSS data export with 4,310 
Covid-19 patients and 190 columns (i.e., features) from 

1  See https://​khzg.​de/

https://khzg.de/


415Covid‑19 triage in the emergency department 2.0: how analytics and AI transform a human‑made…

1 3

January 2021. Thus, our study captures the first and second 
pandemic wave in Europe (March 18, 2020, with January 7, 
2021). The Lean European Open Survey on SARS-CoV‑2 
infected Patients project is a prospective European multi-
center cohort study that enables retrospective analyses on 
a broad basis [26]. We consider LEOSS baseline data due 
to our interest in parameters collected at an early stage of 
infection. In the LEOSS protocol, diagnosis is confirmed via 
PCR or rapid tests as an acceptable alternative. To ensure 
anonymity in all steps of the analysis process, an individual 
LEOSS Scientific Use File was created, which is based on 
the LEOSS Public Use File principles described in Jakob 
et al. [25]. The study was conducted in accordance with the 
Declaration of Helsinki Ethical Principles and Good Clinical 
Practices and was reported to the local Ethics Committee.

The raw data contains demographical features, blood 
counts, vital signs, Covid-19 related symptoms, comor-
bidities, medical imaging outcomes and the clinical (meta-) 
pathway of the patients. First, the raw data was cleaned up 
regarding incorrect entries. Data preparation for the remain-
ing data set is based on feature importance (e.g., vital signs 
and laboratory parameters) or commonly known methodolo-
gies (percentage of blank rows). Since statistical guidelines 
recommend using data with more than 40 percent missing 
entries solely as hypothesis generation, these columns are 
removed beforehand (e.g., [16, 27]. Furthermore, vital signs 
and laboratory parameters have a high impact on the course 
of Covid-19 disease, which is why at least two values of 
them must be filled in. In general, missing values are a com-
mon problem in healthcare. In order not to ignore any highly 
relevant features, the removed features were discussed with 
experts. In addition, the remaining missing values need to 
be filled since not all machine learning algorithms and over-
sampling techniques (see below) are able to handle miss-
ing values. The methods used for filling in empty values 
include a simple imputer and two iterative machine learn-
ing imputers (Random Forest and Multi-Layer-Perceptron 
algorithms). Following the creation of the three different 
datasets by filling in the empty values, the comorbidities are 
summarized. This is a common procedure in the Covid-19 
literature to reduce complexity while retaining important 
information. There are two different variants for the sum-
mary of comorbidities, namely the sum of the comorbidities 
and the Charlson Comorbidity Index [13].

The different data preparations were divided into feature 
and label matrices. Our label definition leads to two differ-
ent formats, as we distinguish between three (3) and four (4) 
(meta-) pathways in the following: The base case with ED → 
Discharge (i.e., outpatient), ED → Ward (i.e., ward), and ED 
→ ICU (i.e., ICU), may be extended by a palliative care label 
(ED → PCU) which has been incorporated in the base case 
labels before. All patients who were in the ICU (or Interme-
diate Care, IMC) during their hospital stay were assigned 
to the ED → ICU pathway (i.e., ICU), all other inpatients 
to the ED → Ward (i.e., ward), pathway, and the rest to the 
ED → Discharge (i.e., outpatient) pathway. In the four-label 
classification, all deceased patients were assigned to the ED 
→ PCU (i.e., palliative care) pathway. Please find a detailed 
description of our data preparation and label definition in 
Supplementary Fig. 1.

Depending on the imputer, the summary of comorbidities, 
and the label definition, we define twelve different input data 
sets with 3,543 patients and 58 features each: six for each 
of the two different classifications with three or four labels, 
whereby three different imputers (Simple Imputer, RF, MLP) 
and two different summaries of comorbidities (Sum, CCI) 
are applied. Table 2 provides an overview of the twelve dif-
ferent input data sets. Table 3 lists the 58 different features 
per input data set.

To avoid overfitting throughout our study, we used ten-
fold cross validation. Each input data set is randomly split 
into ten different folds, while every subset is subsequently 
defined as test data set with a training and testing ratio of 
90% and 10%. Performance is then measured based on the 
metrics for the different test data sets.

3.2 � Base triage algorithm and data‑based 
extension

Figure 1 illustrates the base triage algorithm (TA) for clinical 
pathways of Covid-19 subjects [39] which is considered as 
a guideline for emergency departments in Germany as sug-
gested by DGINA. TA is constructed as an easy-to-under-
stand and simply applicable decision tree. After examining 
classical Covid-19 symptoms (such as dry cough and vital 
signs), the overall clinical presentation are evaluated. Step 
three involves blood counts and medical imaging. Finally, 
the results of all steps of the algorithm are reviewed in their 

Table 1   Comparison of the 
different approaches for Covid-
19 triage in the emergency 
department

Determinant TA TAE AI ITA

1 Decision maker Human Human Machine Interactive
2 Analytics-based definition of the decision-

making process
No Yes Yes Yes

3 Transparency of the decision-making process Yes Yes No Partly
4 Flexible inclusion of a palliative care label No Yes Yes No
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entirety and the patient is classified as outpatient (i.e., dis-
charge), ward, or ICU. Other than for ED → Ward and ED 
→ ICU, a physician can also classify the pathway ED → Dis-
charge based on steps one to three. Note, TA only involves 
three classification labels with outpatient (i.e., discharge), 
ward, or ICU.

Our extended version of the base algorithm (TAE) flexi-
bly considers either three labels or an optional fourth classi-
fication label (i.e., palliative care), while TAE always builds 
upon alternative analytics-based first and final steps (see 
Fig. 2). The new first step in TAE avoids the discharge of 
patients (i.e., ED → Discharge) in the first step of the algo-
rithm. Due to a significant number of asymptomatic patients 
in the data, the finding of a symptom-free status may not be 
sufficient to classify the patient as an outpatient. Therefore, 
in contrast to TA, patients arriving in the emergency depart-
ment always have their vital signs and clinic checked after 
symptoms were reviewed. The new final step, namely the 
calculation of the TAE score, is based on findings of abnor-
malities and risk factors for severe Covid-19 progression 
in literature (e.g., [15, 33, 43]). Compared to the TA, the 
TAE score includes the severity of an anomaly. For exam-
ple, a distinction is made among the laboratory values as 
to whether a patient's temperature is only elevated or high. 
Together, these form a TAE score to classify patients with 
high accuracy (see Table 4). Both implemented changes 
compared to the TA are highlighted with yellow boxes in 
Fig. 2.

3.3 � AI and human‑AI systems

We focus a classification modeling problem and thus apply 
a Multi-Layer Perceptron (MLP), a Random Forest (RF) and 
an Extreme Gradient Boosting (XGB) classifier to the data. 

Table 2   Description of the 12 different input data sets (RF: Random 
Forest, MLP: Multiple Layer Perceptron, CCI: Charlson Comorbidity 
Index)

ID Data set Number of 
labels

Imputer Comorbidities

1 3RC 3 RF CCI
2 3RS 3 RF Sum
3 3MC 3 MLP CCI
4 3MS 3 MLP Sum
5 3SC 3 Simple imputer CCI
6 3SS 3 Simple imputer Sum
7 4RC 4 RF CCI
8 4RS 4 RF Sum
9 4MC 4 MLP CCI
10 4MS 4 MLP Sum
11 4SC 4 Simple imputer CCI
12 4SS 4 Simple imputer Sum

Table 3   Description of the 58 features in the input data sets (CT: 
Computer tomography, CCI: Charlson Comorbidity Index)

No Feature

1 Age
2 Gender
3 At least one neuronal disease (binary)
4 At least one cardiovascular disease (binary)
5 Prior heart failure
6 Stage heart failure
7 BMI: Body Mass Index
8 Asymptomatic symptoms
9 Runny nose
10 Sore throat
11 Dry cough
12 Productive cough
13 Wheezing
14 Dyspnoe
15 Palpitations
16 Diarrhea
17 Nausea / emesis
18 Muscle aches
19 Muscle weakness
20 Fever
21 Delirium
22 Excessive tiredness
23 Headache
24 Meningism
25 Smell disorder
26 Taste disorder
27 Other neurological findings
28 Red eye
29 Systolic blood pressure
30 Diastolic blood pressure
31 Pulse
32 Respiratory rate
33 sO2: Oxygen saturation
34 Temperature
35 CT: Air trapping
36 CT: Areas of consolidation
37 CT: Bronchiolitis
38 CT: Crazy paving pattern
39 CT: Ground glass opacities
40 CT: Interlobular septal thickening
41 CT: Nodulary lesions
42 CT: Pleural effusion
43 Other relevant CT results
44 AST: Aspartate transaminase
45 ALT: Alanine transaminase
46 GGT: Gamma-glutamyl transferase
47 Bilirubine
48 Creatinine
49 Urea
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The MLP is characterized by a multi-layer neural network 
structure consisting of an input layer, several hidden layers, 
and an output layer. The RF consolidates the predictions of 
different decision trees based on a majority decision. The 
XGB algorithm is also constructed from decision trees by an 
ensemble or boosting idea. Note that these AI approaches, 
while generating an autonomous classifier, are of a black-box 
style and do not, other than a (simple) decision tree, meet the 
transparency requirements by Arrieta et al. [3].

In addition to the existing decision tree by Pin et al. ([39], 
TA) and the machine learning methods (MLP, RF, XGB), we 
investigate the potential of integrating both approaches in a 
two-step process: integrated triage algorithm (ITA). An AI-
based autonomous pre-triage is made before the physician 
starts the actual triage of patients by means of a data-guided 
decision tree based on the ITA scores given in Table 5. The 
literature-based TAE scores (see Table 4) are incorporated 
into the recalculated ITA scores (see Table 5). In contrast 
to the TAE scores, scores for the different clinical pathways 
are formed in the ITA score. The calculation of the scores is 
based on feature importance, detailed data analytics, and dis-
cussions with experts. In the ITA algorithm, first, sequential 
MLP and XGB algorithms filter ICU patients and outpatients 
(i.e., discharge) based on the accurate prediction. Second, 
based on a white-box decision tree and the ITA scores, the 
remaining patients are classified as ICU, ward, or outpatient. 
By combining both approaches, we aim at the evaluation of 
a human-AI interactive algorithm, with autonomous black-
box and white-box components. The autonomous pre-triage 
component (i.e., the black box model) saves working time of 
medical staff that has become scarce during the pandemic, 
while the second component (i.e., the white-box model) con-
tributes to transparency. The two-step process, in addition, 
is of a human-AI interactive type because the pre-triage’s 
output is the basis for the classification of the patient by 
a physician. Fig. 3 presents our human-AI ITA algorithm.

3.4 � Performance measurement

We measure and compare the algorithms’ ability to cor-
rectly predict the patient (meta-) pathway in terms of out-
patient (i.e., discharge), ward, ICU, and palliative care, by 
accuracy, sensitivity (i.e., recall), specificity, F1-score, pre-
cision, and the area under the receiver operating character-
istic (ROC AUC).

While accuracy provides information on the correctly 
classified patients, precision focuses the true positive 
results divided by the positively classified. F1-score and 
ROC AUC incorporate either precision and sensitivity or 
specificity and sensitivity. The reported metrics are based 
on a ten-fold cross validation, hyperparameter tuning and 
the Synthetic Minority Oversampling Technique (SMOTE) 
to meet the problem of imbalanced data. SMOTE fills in the 
underrepresented classes in the data set by a resampling 
mode. Particularly in the case of multiclass classification, 
SMOTE achieves good results with respect to imbalanced 
data [9]. Hyperparameter tuning is a preprocessing optimi-
zation technique to the actual optimization of, for example, 
weights in a multi-layer neural network and defines hyper-
parameters such as the learning rate. Please note there exist 
different forms of AUC depending on the characteristics 
of the data set. Since our data set is balanced by SMOTE, 
we consider ROC AUC. However, in the case of imbal-
anced data it may be more appropriate to use a form of 
partial AUC as suggested by Carrington et al. [12]. A sim-
ple dummy classifier (DC) randomly classifying subjects 
as outpatient, ward, ICU, and palliative care patients with 
equal probability serves as a benchmark for the different 
classifiers.

4 � Results

In total, 3,543 Covid-19 patients are included in our study.  
Table 6 provides an overview on data availability, important 
demographic, and clinical characteristics of the patients. 
Most patients in the data set are over the age of 56 years 
old, male, and suffer from one cardiovascular disease at 
least. Fever is the most frequent classical Covid-19 symp-
tom, followed by dry cough and dyspnea. Gamma-gluta-
myl transferase (GGT) and Lactat-dehydrogenase (LDH) 
are frequently increased in the patients. The distribution 
of labels is characterized by the fact that most patients in 
the data set remain in ward (see Table 7). Few patients are 
discharged from the hospital upon presentation in an emer-
gency department.

Table 3   (continued)

No Feature

50 LDH: Lactate dehydrogenase
51 D-dimer
52 Leukocytes
53 Lymphocytes
54 Neutrophils
55 Platelets
56 Hemoglobin
57 CRP: C-reactive protein
58 CCI / Sum
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Fig. 1   Base triage algorithm (TA) according to Pin et al. [39]
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Fig. 2   Extended triage algorithm (TAE). Yellow boxes highlight the differences compared to TA (see Fig. 1). TAE Scores for laboratory values, 
vital signs, demographic values, and comorbidities are shown in Table 4
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4.1 � Outpatient, ward, and ICU classifier: three 
labels

In this section, we compare the base triage algorithm (TA), 
it’s extension (TAE), the dummy classifier (DC), the three 
machine learning techniques (MLP, RF, and XGB) and the 
integrated triage algorithm (ITA) for the base classifier task 
with three labels, outpatient, ward, and ICU. The overall 
accuracy ranges between 27% for TA, approx. 51% for 
TAE, approx. 73% for ITA, and up to 78% for the machine 
learning techniques (see Fig. 4). By comparison, the DC 
achieves only 4% total accuracy and a 50% ROC AUC. The 

machine learning algorithms obtained a significantly higher 
ROC AUC (between 76 and 88%, see Fig. 4). Differences 
are more in the labels than in the AI methods. The TA dem-
onstrates high sensitivity for the outpatient class (up to 84%) 
but shows poor performance in classifying ward patients 
(approx. 15%). The TAE demonstrates a better performance 
regarding ward patients (up to 54%), while sensitivity in 
terms of the ward class is highest for the machine learning 
techniques (up to 94%). Regarding the ICU class, sensitivi-
ties vary from 43% (TAE) to 72% (ITA, see Fig. 5). While 
precision of TA varies significantly for the three labels (4% 
vs. 82%), the performance of MLP, RF and XGB is rather 

Table 4   TAE Scores for 
lab, vital, demographics, 
comorbidities

Lab Vital Demographics Comorbidities

Lymphocytes Temperature Age Sum
500—1499 /µL  + 1 37.3—37.9 °C  + 1 46—55  + 1 ≥1  + 1
100—499 /µL  + 3 38.0—39.9 °C  + 2 56—65  + 2 ≥2  + 2
 < 100 /µL  + 4  > 39.9 °C  + 3 66—75  + 3 CCI
Leukocytes sO2  > 76  + 4 ≥0.12  + 1
12,000—19,999 /µL  + 1 80—95%  + 1 Gender ≥0.26  + 2
 >  = 20,000 /µL  + 2 70—79%  + 2 Male  + 1
1,000—3999 /µL  + 2 60—69%  + 3
 < 1,000 /µL  + 3  < 60%  + 4
Platelets Respiratory rate
50,000—119,999 /µL  + 1 22 – 29 / Min  + 1
10,000—49,999 /µL  + 2  > 29 / Min  + 2
 < 10,000 /µL  + 3 Hypertension  + 1
LDH, D-Dimer
 > ULN  + 1
 > 2xULN—10xULN  + 2
 > 10xULN  + 3

Table 5   ITA Scores for ICU, 
ward, outpatient (TAE Scores 
are shown in Table 4)

ICU Ward Outpatient

Avg pred. prob. ML ICU Avg pred. prob. ML ward Avg pred. prob. ML outpatient
0.2 – 0.59  + 1 0.4 – 0.59  + 1 0.2 – 0.59  + 1
0.6 – 0.89  + 2 0.6 – 0.89  + 2 0.6 – 0.89  + 2
0.9 – 1  + 3 0.9 – 1  + 3 0.9 – 1  + 3
Lab Lab Lab
0 – 3  + 1 0 – 1; > 11  + 1  > 5  + 1
4 – 11  + 2 2 – 7  + 2 2 – 4  + 2
 > 11  + 3 8 – 11  + 3 0 – 1  + 3
Vital Vital Vital
1 – 2  + 1 0 – 1; > 9  + 1  > 3  + 1
3 – 8  + 2 2 – 7  + 2 1.5 1 – 3  + 2
 > 8  + 3 8  + 3  < 1.51  + 3
Comorbidities Comorbidities Comorbidities
CCI≤0.26; Sum = 1  + 1 CCI = 0.52; Sum = 2  + 1 CCI = 0.26; Sum = 2  + 1
CCI = 0.52; Sum = 2  + 2 CCI = 0.26; Sum = 1  + 2 CCI = 0.12; Sum = 1  + 2
CCI = 0.85  + 3 CCI = 0.85; CCI = 0.12  + 3 CCI ≥ 0.52  + 3
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balanced here. Observing the specificity, it is noticeable that 
especially the ITA evokes rather balanced values between 63 
and 98% compared to the ML algorithms (33% vs. 100%). 
The AI and human-AI methods consistently obtain higher 
F1-scores than the TA and TAE techniques. A detailed sum-
mary of the performance metrics provides Supplementary 
Table 1. A radar chart for a visual comparison of perfor-
mance metrics for the three labels is provided in Fig. 4. The 

radar chart underlines the results of a poor performance of 
TA compared with the AI-based algorithms in all metrics. 
In addition, the significant improvement of the sensitivity 
for the ICU label and the ITA is illustrated.

In the synopsis of the results, AI and human-AI methods 
in most metrics outperform TA and TAE. Comparing the 
three machine learning classifiers (i.e., MLP, RF and XGB), 
XGB, a MLP imputer and the Charlson-Comorbidity Index 

Fig. 3   Integrated triage algorithm (ITA). ITA Scores for ICU, ward, and outpatient are shown in Table 5
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Table 6   Demographic and 
clinical values at admission of 
COVID-19 patients

Number of patients Median category Number of filled cells

Total Pct Total Pct

Age 56—65 years 3,527 99.55%
   < 1 years 10 0.28%

  1—3 years 11 0.31%
  4—8 years 6 0.17%
  9—14 years 7 0.20%
  15—17 years 0 0.00%
  18—25 years 72 2.04%
  15–25 years 20 0.57%
  26—35 years 229 6.49%
  36—45 years 311 8.82%
  46—55 years 535 15.17%
  56—65 years 676 19.17%
  66—75 years 605 17.15%
  76—85 years 768 21.77%

   > 85 years 277 7.85%
Gender Male 3,543 100.00%

  Male 2,094 59.10%
  Female 1,449 40.90%

At least one neuronal disease 742 23.77% No 3,122 88.12%
At least one cardiovascular disease 1,968 56.85% Yes 3,462 97.71%
Dry cough 1,171 35.54% No 3,295 93.00%
Dyspnoe 968 30.43% No 3,181 89.78%
Fever 1,405 42.64% No 3,295 93.00%
Respiratory rate 16—21 2,173 61.33%
   < 16 477 21.95%

  16—21 1,011 46.53%
  22—29 491 22.60%

   > 29 194 8.93%
sO2 90—95% 2,861 80.75%
   < 60% 26 0.91%

  60—69% 14 0.49%
  70—79% 67 2.34%
  80—89% 372 13.00%
  90—95% 1,130 39.50%
  96—100% 1,252 43.76%

Temperature 37.3—37.9 °C 2,932 82.75%
   < 35.1 °C 12 0.41%

  35.1—37.2 °C 1,212 41.34%
  37.3—37.9 °C 630 21.49%
  38—38.9 °C 731 24.93%
  39—39.9 °C 298 10.16%

   > 39.9 °C 49 1.67%
CT: Areas of consolidation 369 16.01% No 2,305 65.06%
CT: Ground glass opacities 578 25.08% No 2,305 65.06%
GGT​  > ULN 3,308 93.37%

  Normal (LLN—ULN) 1,542 46.61%
   > ULN 522 15.78%
   > 2 × ULN 255 7.71%
   > 5 × ULN 83 2.51%



423Covid‑19 triage in the emergency department 2.0: how analytics and AI transform a human‑made…

1 3

for grouping comorbidities should be preferred. However, 
data processing has a minor influence on the performance 
metrics, overall. The confusion matrix and ROC AUC for the 
preferred XGB algorithm with three labels, a MLP imputer, 
and the Charlson-Comorbidity Index (i.e., 3MC data set) are 
presented in Supplementary Fig. 2.

4.2 � Outpatient, ward, ICU, and palliative care 
classifier: four labels

In case of four labels (i.e., outpatient, ward, ICU, palliative 
care), we compare the TAE, the DC, and the three machine 
learning techniques (MLP, RF and XGB). The overall accu-
racy decreases for TAE, MLP, RF, and XGB (see Fig. 4). 
Nonetheless, the basic statement remains that a significant 
improvement is achieved here by machine learning tech-
niques. The ROC AUCs of the machine learning algorithms 
(i.e., MLP, RF, XGB) consistently show much better per-
formance than the DC and vary between 70 and 90% (see 
Fig. 4). The introduction of the new class palliative care 
leads to a crucial decrease of sensitivity for the ICU class 
(varying between 7 and 31%), while sensitivities for the 
outpatient (i.e., discharge) and ward classes remain almost 
unchanged. Specificity for the ward class deteriorates for 

almost all algorithms, but remains constant for the outpatient 
(i.e., discharge) class and increases for the ICU class. In 
addition, ROC AUC providing an integrated view on sensi-
tivity and specificity remains at a high level. The new class 
palliative care obtains a sensitivity score from 34 to 53%. 
Regarding precision, F1-scores and an algorithm preferred, 
the interpretations of Section 4.1 remain unchanged.

A detailed summary of the performance metrics is pro-
vided in Supplementary Table 2. A radar chart for a visual 
comparison of the different performance metrics discussed 
before is provided in Fig. 4. The confusion matrix and ROC 
AUC for the preferred XGB algorithm with four labels, an 
iterative Random Forest imputer, and the Charlson-Comor-
bidity Index (i.e., 4RC data processing) are presented in Sup-
plementary Fig. 3.

5 � Discussion

Taking the different metrics into consideration, the perfor-
mance of the base triage algorithm (TA) which is suggested 
as a guideline in Germany is significantly improved by an 
analytics-based adaptation: the extended triage algorithm 
(TAE). The AI-based algorithms and the integrated human-
AI algorithm (ITA) perform similar, but significantly supe-
rior compared to the base triage algorithm (TA) and the 
extended triage algorithm (TAE). A major advantage of the 
integrated human-AI algorithm (ITA) is the high sensitivity 
with respect to the ICU category. The sensitivity for the ICU 
class is particularly important because especially ICU capac-
ities have become scarce during the Covid-19 pandemic and 

Table 6   (continued) Number of patients Median category Number of filled cells

Total Pct Total Pct

   > 10 × ULN 32 0.97%
   < LLN 874 26.42%
LDH  > ULN 2,619 73.92%

  Normal (LLN—ULN) 950 36.27%
   > ULN 1,347 51.43%

   > 2 × ULN 292 11.15%
   > 5 × ULN 16 0.61%
   < LLN 14 0.53%
Lymphocytes 800 – 1,499 /µL 2,339 66.02%
   < 100 /µL 41 1.75%

  100—299 / µL 126 5.39%
  300—499 / µL 206 8.81%
  500—799 / µL 533 22.79%
  800—1,499 / µL 951 40.66%
  1,500—2,999 / µL 431 18.43%

   >  = 3,000 /µL 51 2.18%

Table 7   Label distribution

No. of labels Outpatient Ward ICU Palliative care Total

Three 124 2,454 965 - 3,543
Four 117 2,209 625 592 3,543
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Fig. 4   Comparison of the algorithms based on the accuracy (upper), 
ROC AUC (middle) and radar charts (lower) for data sets with 3 
labels (left hand side) and four labels (right hand side). The respec-
tive boxplot represents the distribution of accuracy for the different 

data preparations. Both radar charts compare sensitivities, precision, 
and accuracies of the different algorithms. On the left-hand side, the 
XGB is used for all machine learning models, because of the similar 
performance
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the correct classification of critical care patients directly 
influences their well-being.

We find the human-AI interactive algorithm and the 
AI-based algorithms for superior performance. As the 
algorithms directly influence patients and medical staff 
in the emergency department not only a data-driven, but 
also ethical, usability, and implementation perspective are 
considered. Ethical considerations are mainly driven by the 
autonomy of the decision maker and the transparency of the 
algorithm, a basic characteristic in the XAI definition (see, 
e.g., [36, 45] or [6]). Human-AI interaction also contributes 
to XAI in healthcare [22]. The AI-based algorithms are non-
transparent black-box models whereas the base triage algo-
rithm and the extended triage algorithm (both being deci-
sion trees) are classified as transparent white-box models. 
The human-AI interactive model integrates both ideas and 
is partially transparent. Other than for the AI-based models, 
the physician, i.e., human approach, is the decision maker 
for the base and the extended triage algorithm. In case of 
human-AI algorithm, the decision is made interactively by 
the machine and the human being in a two-step approach.

Regarding usability and implementation, the deci-
sion trees, i.e., base, and extended triage algorithms, are 

preferable because decision support can already be pro-
vided through an easy-to-understand figure. For the AI-
based and human-AI algorithms, elaborate implementa-
tion, and an interface to the hospital information system 
are essential. As there are different advances in many 
countries regarding digitalization in hospitals, e.g., the 
Hospital Future Act in Germany, the broad implementa-
tion of digital decision support tools will be made possible 
in near future.

The integrated human-AI algorithm performs similarly 
to the AI-based methods, but elucidates a higher sensitiv-
ity regarding the ICU category, it is partially transparent, 
and integrates the machine and the human being as decision 
makers. As implementation issues will be solved soon, the 
human-AI interactive algorithm is preferable. This result 
is not influenced by the distinct data preparation proceed-
ing. The consideration of the pathway palliative care, which 
is controversial in Covid-19 triage (see, e.g., [28], is to be 
avoided from our data-driven perspective, and not only 
from ethical considerations. This conclusion is of particular 
importance in times of high ICU capacity utilization.

Our study builds upon an existing triage algorithm, a 
data set with more than 4,000 Covid-19 patients, and AI 

Fig. 5   Comparison of the 
algorithms based on the recall 
of ICU. The respective boxplot 
represents the distribution of 
recalls for the different data 
preparations with 3 labels
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techniques. Due to the nature of the LEOSS registry, inpa-
tients are significantly overrepresented, so the algorithm 
should not be applied to ambulatory care settings outside an 
emergency department. Limitations include the data qual-
ity due to missing values. By filling the data using the most 
frequent value, i.e., the simple imputer, a rather inaccurate 
approximation is assumed. Imputation using machine learn-
ing methods (RF, MLP) is more accurate in terms of the 
optimal solution, but the stopping criterion is not reached in 
certain cases. This can be attributed to the number of miss-
ing values. In addition, the LEOSS data builds upon prede-
fined ranges regarding the categorization of demographic 
data and other parameters such as the blood counts. Thus, 
the scores, e.g., the CCI, are applied via an approximation, 
because the LEOSS ranges do not exactly match those of 
the respective scores.

In addition, the LEOSS dataset represents a European 
sample of infected individuals with a strong focus on Ger-
man health care institutions. Varying prevalence rates, possi-
ble mutations or hygiene conditions in other countries could 
influence the result. Consequently, the results are assumed 
to be a representation of emergency departments in other 
European and developed countries in a comparable state of 
the pandemic, but further data is necessary to validate the 
algorithms for varying courses of the pandemic and emer-
gency departments in non-developed countries. The algo-
rithms concentrate on a specific emergency department set-
ting, i.e., the classification of Covid-19 patients, but there is 
a certain ability to apply the algorithms to other emergency 
department settings, such as the classification of patients 
with viral infections in general, e.g., flu. The base triage 
algorithm was suggested during the first pandemic wave as 
a guideline in Germany, and we use the LEOSS data output 
at a rather early stage of the pandemic. Consequently, there 
might exist interdependencies, i.e., the outcomes in part of 
the LEOSS data could be influenced by the triaged outcomes 
using the base triage algorithm. On the other hand, based on 
LEOSS, we use the realized highest care unit of treatment, 
e.g., ICU, of each patient as ground truth label which is not 
necessarily defined based on the base triage algorithm.

6 � Conclusion

In this work, we evaluate the performance of Covid-19 tri-
age algorithms in the emergency department and discuss 
the potential of integrating analytics, AI, XAI and human-
AI interaction in detail. The results are based on a dataset 
with more than 4,000 PCR confirmed SARS-CoV-2 infected 
patients. Compared with existing papers, the size of our 
dataset significantly exceeds current literature.

We find that data-driven manipulation of the exist-
ing human-made base triage algorithm can improve the 

classification, but AI adaptations promise a superior per-
formance. Comparing the AI methods with an integrated 
human-AI method, the algorithms are comparable in many 
performance metrics. But based on ethical AI considera-
tions in terms of transparency, we suggest the use of the 
integrated human-AI algorithm. The data preparation pro-
cess plays a subordinate role for the performance of the 
algorithms. The hypothetical consideration of the (meta-) 
pathway palliative care might be excluded from our data 
perspective for times when enough ICU beds are available. 
This finding is important for the ethical dimension on the 
broad triage discussion.

Our data-driven retrospective perspective lays the basis 
for a prospective evaluation of the human-AI algorithm and 
behavioral analyses in future research. Aspects such as infor-
mation asymmetry in between humans and machines can be 
studied on using experiments in the emergency department.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10729-​023-​09647-2.
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