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Abstract
We analyze optimal control problems for two-phase Navier-Stokes equations with 
surface tension. Based on Lp-maximal regularity of the underlying linear problem 
and recent well-posedness results of the problem for sufficiently small data we show 
the differentiability of the solution with respect to initial and distributed controls 
for appropriate spaces resulting from the Lp-maximal regularity setting. We con-
sider first a formulation where the interface is transformed to a hyperplane. Then we 
deduce differentiability results for the solution in the physical coordinates. Finally, 
we state an equivalent Volume-of-Fluid type formulation and use the obtained dif-
ferentiability results to derive rigorosly the corresponding sensitivity equations 
of the Volume-of-Fluid type formulation. For objective functionals involving the 
velocity field or the discontinuous pressure or phase indciator field we derive differ-
entiability results with respect to controls and state formulas for the derivative. The 
results of the paper form an analytical foundation for stating optimality conditions, 
justifying the application of derivative based optimization methods and for studying 
the convergence of discrete sensitivity schemes based on Volume-of-Fluid discre-
tizations for optimal control of two-phase Navier-Stokes equations.
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1  Introduction

We consider the incompressible sharp interface two-phase Navier-Stokes equations. 
To this end, let the hypersurface (interface) Γ(t) divide ℝn+1 into two open domains 
Ω1(t) and Ω2(t) = ℝ

n+1 ⧵Ω1(t) , i = 1, 2 , occupied by two viscous incompressible 
immiscible capillary Newtonian fluids with constant densities 𝜌i > 0 and constant 
viscosities 𝜇i > 0 , i = 1, 2 . We set

and with the indicator functions 1Ωi

Moreover, we denote by �(t, ⋅) the normal field on Γ(t) pointing form Ω1(t) to Ω2(t) , 
by V(t, ⋅) the normal velocity of the interface Γ(t) and by �(t, ⋅) the mean curvature 
of Γ(t) with respect to �(t, ⋅) . Then �(t, x) is negative when Ω1(t) is convex close to 
x ∈ Γ(t) and is for sufficiently smooth Γ(t) given by

(note that this coincides with − div �(t, ⋅) if �(t, ⋅) admits a differentiable extension to 
a neighborhood of Γ(t) ). Finally, if v is defined and admits boundary traces on both 
domains Ωi(t) then

denotes the jump of v accross Γ(t) . The two-phase Navier-Stokes equations with sur-
face tension then read

with the velocity u, the pressure q, the stress tensor S(u, q;𝜇) = −qI + 𝜇(∇u + ∇u⊤) 
and the surface tension coefficient 𝜎 > 0 . Here, c denotes some control.

The conditions on the interface ensure the balance between surface tension and 
the jump of the normal stress on the interface, the continuity of the velocity across 
the interface and the transport of the interface by the fluid velocity.

We note that the first four equations can be written in weak form on the whole 
domain by

Ω(t) ∶= Ω1(t) ∪ Ω2(t)

� = �11Ω1
+ �21Ω2

, � = �11Ω1
+ �21Ω2

.

�(t, ⋅) = − div Γ�(t, ⋅)

[v] = (v|Ω2(t)
− v|Ω1(t)

)|Γ(t)

(1)

𝜌(𝜕tu + u ⋅ ∇u) − 𝜇Δu + ∇q = c in Ω(t),

div u = 0 in Ω(t),

−[S(u, q;𝜇)𝜈] = 𝜎𝜅𝜈 on Γ(t),

[u] = 0 on Γ(t),

V = u⊤𝜈 on Γ(t),

u(0) = u0 on Ω(0),

Γ(0) = Γ0,
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Our aim is to study the differentiability properties of local solutions with respect to 
u0 and c. To this end, we will work in an Lp-maximal regularity setting proposed in 
[22], see also [20, 23].

There exist several papers on the existence and uniqueness of local solutions for 
(1). In [8, 9, 24, 25] Lagrangian coordinates are used to obtain local well-posedness. 
Since this approach makes it difficult to establish smoothing of the unknown inter-
face, [20, 22, 23] use a transformation to a fixed domain and are then able to show 
local well-posedness in an Lp maximum regularity setting for the case c = 0 [20, 22] 
or for the case of gravitation [23]. Moreover, they prove that the interface as well as 
the solution become instantaneously real analytic. Since we are considering a dis-
tributed control c of limited regularity, the instant analyticity is in general lost.

While optimal control problems for the Navier-Stokes equations have been stud-
ied by many researchers, see for example [12, 15, 19, 26], there are only a few con-
tributions in the context of two-phase Navier-Stokes equations, mainly for phase-
field formulations with semidiscretization in time. In [18] optimal boundary control 
of a time-discrete Cahn-Hilliard-Navier-Stokes system with matched densities is 
studied. By using regularization techniques, existence of optimal solutions and opti-
mality conditions are derived. Analogous results for distributed optimal control 
with unmatched densities for the diffuse interface model of [1] have been obtained 
in [17]. Using the same model, [14] derive based on the stable time discretization 
proposed in [13] necessary optimality conditions for the time-discrete and the fully 
discrete optimal control problem. Moreover, the differentiability of the control-to-
state mapping for the semidiscrete problem is shown. Optimal control of a binary 
fluid described by its density distribution, but without surface tension, is studied in 
[4]. Different numerical approaches for the optimal control of two-phase flows are 
discussed in [5].

In this paper we derive differentiability results of the solution of the two-phase 
Navier-Stokes equations (1) with respect to controls. The results can be used to state 
optimality conditions and to justify the application of derivative based optimization 
methods. To the best of our knowledge, this is the first work providing differentiabil-
ity properties of control-to-state mappings for sharp interface models of two-phase 
Navier-Stokes flow. The analysis is involved, since the moving interface renders 
a variational analysis difficult. Therefore it is beneficial, to first consider a trans-
formed problem with fixed interface. However, since most numerical approaches 
are working in physical coordinates, we derive also differentiability results for the 
original problem. Since the normal derivative of the velocity is in general discon-
tinuous at the interface, the sensitivities of the velocity are discontinuous across the 
interface. Moreover, the pressure is in general discontinuous at the interface and 

(2)

∫
ℝn+1

(
𝜕t(𝜌u) + div(𝜌u⊗ u) − c)⊤𝜑 + S(u, q;𝜇) ∶ ∇𝜑

)
dx = ∫Γ(t)

𝜎𝜅𝜈⊤𝜑 dS(x)

∀𝜑 ∈ C1
c
(ℝn+1;ℝn+1),

(3)∫
ℝn+1

div(u)� dx = 0 ∀� ∈ C1
c
(ℝn+1).
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thus differentiability properties with respect to controls in strong spaces hold only 
away from the interface while at the interface differentiability properties can only 
be expected in the weak topology of measures. The same applies to phase indicators 
which are often used in Volume-of-Fluid (VoF)-type approaches. In order to obtain 
a PDE-formulation for the sensitivity equations, we work with a Volume-of-Fluid 
(VoF)-type formulation based on a discontinuous phase indicator and derive care-
fully a corresponding sensitivity equation.

We build on the quite recent existence and uniqueness results obtained for suf-
ficiently small data by [22], see also [20, 23]. We consider first a formulation, where 
the interface is transformed to a hyperplane. By using Lp-maximal regularity of a 
linear system and applying a refined version of a fixed point theorem, we show dif-
ferentiability of the transformed state with respect to controls in the maximum regu-
larity spaces. A similar technique was recently used in [16] to show differentiabil-
ity properties for shape optimization of fluid-structure interaction, but the analysis 
of the fixed point iteration is very different from two-phase flows considered here. 
In fact, the main difficulties in fluid-structure interaction arise from the coupling of 
a hyperbolic equation for the solid with the Navier-Stokes equations for the fluid 
while in two phase flows the moving interface and the surface tension are the main 
challenge. In a second step we deduce differentiability results for the control-to-state 
map in the physical coordinates. Finally, we derive an equivalent Volume-of-Fluid 
(VoF)-type formulation based on a discontinuous phase indicator that is governed 
by a multidimensional transport equation. By using the obtained differentiability 
results, we are able to justify a sensitivity system for the VoF-type formulation, 
which invokes measure-valued solutions of the linearized transport equation. This 
can be used as an analytical foundation to study the convergence of discrete sensi-
tivity schemes for VoF-type methods. Moreover, we obtain the differentiability of 
objective functionals invoking the velocity field or the discontinuous pressure or 
phase indicator field and state formulas for the derivative.

The paper is organized as follows. In Sect. 2, the transformed problem is formu-
lated. In Sect.  3, existence, uniqueness and differentiability of the control-to-state 
mapping is shown. The analysis starts in 3.1 for the transformed problem with flat 
interface. In 3.2 differentiability results for the original problem in physical coordi-
nates are derived. In 3.3 the VoF-type formulation and its sensitivity equation are 
justified. In Sect. 4 we derive some analytical settings for the application of optimi-
zation methods. In 4.1 we consider objective functionals involving the velocity field 
and state differentiability results. Subsequently, we discuss in 4.2 objective function-
als involving the pressure field or the phase indicator, obtain their differentiability 
with respect to controls as well as a formula for the derivative.

2 � Transformation to a flat interface

In this paper, we consider as in Prüss and Simonett [22] the problem in n + 1 dimen-
sions, where Γ0 is the graph of a sufficiently smooth function h0 ∶ ℝ

n → ℝ , i.e.,
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The interface has then the form

where h ∶ [0, t0] ×ℝ
n → ℝ with h(0, ⋅) = h0 and t0 > 0 is some final time. We 

note that the case of bounded fluid domains is considered in [20]. The analysis of 
this paper should also extend to this setting, but the presentation would be more 
technical.

If h(t, ⋅) has second derivatives then normal and curvature of the interface Γ(t) are 
given by

where ∇h and Δh denote the gradient and Laplacian of h with respect to x and

Following [22], we now transform the problem to ℝ̇n+1 = {(x, y) ∈ ℝ
n+1 ∶ y ≠ 0} 

with a flat interface at y = 0 by using the transformation

Analogously, let with ℝn+1
±

= {(x, y) ∈ ℝ
n ×ℝ ∶ ±y > 0}

As in [22], we work with the following function spaces. Let Ω ⊂ ℝ
m be open and 

X be a Banach space. Lp(Ω;X) , Hs
p
(Ω;X) , 1 ≤ p ≤ ∞ , s ∈ ℝ , denote the X-val-

ued Lebesgue and Bessel potential spaces of order s, respectively. We note that 
Hk

p
(Ω;X) = Wk

p
(Ω;X) for k ∈ ℕ0 , 1 < p < ∞ with the Sobolev-Slobodetskiǐ spaces 

Wk
p
 . Moreover, we will use the fractional Sobolev-Slobodetskiǐ spaces Ws

p
(Ω;X) , 

1 ≤ p < ∞ , s ∈ (0,∞) ⧵ ℕ , with norm

Γ0 =
{
(x, y) ∈ ℝ

n ×ℝ ∶ y = h0(x)
}
,

Ω1(0) =
{
(x, y) ∈ ℝ

n ×ℝ ∶ y < h0(x)
}
,

Ω2(0) =
{
(x, y) ∈ ℝ

n ×ℝ ∶ y > h0(x)
}
.

Γ(t) = {(x, h(t, x)) ∶ x ∈ ℝ
n},

(4)

𝜈̂(t, x) = 𝜈(t, x, h(t, x)) =
1

√
1 + �∇h(t, x)�2

�
−∇h(t, x)

1

�
,

𝜅̂(t, x) = 𝜅(t, x, h(t, x)) = divx

�
∇h(t, x)

√
1 + �∇h(t, x)�2

�
= Δh − G𝜅(h),

(5)G𝜅(h) =
�∇h�2Δh

�
1 +

√
1 + �∇h�2

�√
1 + �∇h�2

+
∇h⊤∇2h∇h

�
1 + �∇h�2

�3∕2 .

(6)û(t, x, y) =

(
v(t, x, y)

w(t, x, y)

)
∶= u(t, x, h(t, x) + y),𝜋(t, x, y) ∶= q(t, x, h(t, x) + y).

𝜌̂(t, x, y) = 𝜌(t, x, h(t, x) + y) = 𝜒
ℝn+1

−
(x, y)𝜌1 + 𝜒

ℝ
n+1
+
(x, y)𝜌2,

𝜇̂(t, x, y) = 𝜇(t, x, h(t, x) + y) = 𝜒
ℝn+1

−
(x, y)𝜇1 + 𝜒

ℝ
n+1
+
(x, y)𝜇2.
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We recall that Ws
p
(Ω;X) = Bs

pp
(Ω;X) for s ∈ (0,∞) ⧵ ℕ with the Besov space Bs

pp
 . 

Finally, the homogeneous Sobolev space Ḣ1
p
(Ω) is defined by

Then Ḣ1
p
(Ω) is for connected Ω a Banach space if we factor out the constant func-

tions and equip the resulting space with the corresponding quotient norm.
Finally, for Ω ⊂ ℝ

m open or closed we denote by BUC(Ω;X) and BC(Ω;X) the 
space of bounded uniformly continuous and the space of bounded continuous func-
tions equipped with the supremum norm, respectively. Analogously, BUCk(Ω;X) and 
BCk(Ω;X) , k ∈ ℕ0 , are defined for k-times continuously differentiable functions with 
bounded uniformly continuous or bounded continuous derivatives up to order k. If Ω is 
compact, we may briefly write Ck(Ω;X) , since boundedness und uniform continuity are 
automatically satisfied.

To state the transformed problem, we follow [22] and we use a fixed point formula-
tion consisting of a linearized Stokes problem with nonlinear right hand side. In fact, 
define with J = (0, t0) and p > n + 3 the space �(t0) by

and denote by

(i.e., r = [�] by the definition of �(t0) ) the Stokes problem with free boundary

‖g‖Ws
p
(Ω;X) = ‖g‖W [s]

p (Ω;X) +
�

���=[s]

�

∫Ω ∫Ω

‖��g(x) − ��g(y)‖p
X

�x − y�m+(s−[s])p
dx dy

�1∕p

Ḣ1
p
(Ω) ∶=

��
g ∈ L1,loc(Ω) ∶ ‖∇g‖Lp(Ω) < ∞

�
, ‖ ⋅ ‖Ḣ1

p
(Ω)

�
, ‖g‖Ḣ1

p
(Ω) ∶= ‖∇g‖Lp(Ω;ℝm).

(7)

𝔼1(t0) =
{
û ∈ H1

p

(
J;Lp

(
ℝ

n+1,ℝn+1
))

∩ Lp

(
J;H2

p

(
ℝ̇

n+1,ℝn+1
))

∶ [û] = 0
}
,

𝔼2(t0) = Lp

(
J;Ḣ1

p

(
ℝ̇

n+1
))

,

𝔼3(t0) = W1∕2−1∕(2p)
p

(
J;Lp(ℝ

n)
)
∩ Lp

(
J;W1−1∕p

p
(ℝn)

)
,

𝔼4(t0) = W2−1∕(2p)
p

(
J;Lp(ℝ

n)
)
∩ H1

p

(
J;W2−1∕p

p
(ℝn)

)

∩W1∕2−1∕(2p)
p

(
J;H2

p
(ℝn)

)
∩ Lp

(
J;W3−1∕p

p
(ℝn)

)
,

𝔼(t0) =
{
(û,𝜋, r, h) ∈ 𝔼1(t0) × 𝔼2(t0) × 𝔼3(t0) × 𝔼4(t0) ∶ [𝜋] = r

}
,

(8)L(û,𝜋, r, h) = (f , fd, gv, gw, gh), (û(0), h(0)) = (û0, h0), (û,𝜋, r, h) ∈ �(t0)
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for t > 0 . Here, [û] denotes the jump across the transformed interface y = 0 and 
�w(x) = w(x, 0) denotes the trace of a function w ∶ ℝ̇

n+1 → ℝ at y = 0 satisfying 
[w] = 0 . Then it is shown in [22] that the transformation (6) leads to the following 
problem for û = (v,w),𝜋, h

where the right hand sides are given by F = (Fv,Fw) and

 Note that all terms except G�(h) are polynomials in (v,w,�, [�], h) and derivatives 
of (v,w,�, h) . Moreover, all terms are linear with respect to second derivatives and 
G�(h) is the pointwise superposition of a smooth function with ∇h and ∇2h.

Remark 1  The transformed version of the deformation tensor D(u) = ∇u + ∇u⊤ is 
given by D(û, h) = D(v,w, h) , where

(9)

𝜌̂𝜕tû − 𝜇̂Δû + ∇𝜋 = f in ℝ̇n+1,

div û = fd in ℝ̇n+1,

−[𝜇̂𝜕yv] − [𝜇̂∇xw] = gv on ℝn,

−2[𝜇̂𝜕yw] + [𝜋] − 𝜎Δh = gw on ℝn,

[û] = 0 on ℝn,

𝜕th − 𝛾w = gh on ℝn,

û(0) = û0, h(0) = h0

(10)
L(û,𝜋, [𝜋], h) =

(
ĉ + F(û,𝜋, h),Fd(û, h),Gv(û, [𝜋], h),Gw(û, h),H(û, h)

)
,

(û(0), h(0)) = (û0, h0),

(11)

Fv(v,w,𝜋, h) = 𝜇̂
(
−2(∇h ⋅ ∇x)𝜕yv + |∇h|2𝜕2

y
v − Δh𝜕yv

)
+ 𝜕y𝜋∇h

+ 𝜌̂
(
−(v ⋅ ∇x)v + (∇h⊤v)𝜕yv − w𝜕yv

)
+ 𝜌̂𝜕th𝜕yv,

Fw(v,w, h) = 𝜇̂
(
−2(∇h ⋅ ∇x)𝜕yw + |∇h|2𝜕2

y
w − Δh𝜕yw

)

+ 𝜌̂
(
−(v ⋅ ∇x)w + (∇h⊤v)𝜕yw − w𝜕yw

)
+ 𝜌̂𝜕th𝜕yw,

Fd(v, h) =∇h⊤𝜕yv,

Gv(v,w, [𝜋], h) = −
[
𝜇̂(∇xv + (∇xv)

⊤)
]
∇h + |∇h|2[𝜇̂𝜕yv] +

(
∇h⊤[𝜇̂𝜕yv]

)
∇h

− [𝜇̂𝜕yw]∇h +
(
[𝜋] − 𝜎(Δh − G𝜅(h))

)
∇h,

Gw(v,w, h) = − ∇h⊤[𝜇̂𝜕yv] − ∇h⊤[𝜇̂∇xw] + |∇h|2[𝜇̂𝜕yw] − 𝜎G𝜅(h),

H(v,w, h) = − (𝛾v)⊤∇h.

D(û, h) = ∇û + ∇û⊤ −

(
∇h𝜕yû

⊤

0

)
−

(
∇h𝜕yû

⊤

0

)⊤

.
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Then the compatibility condition (14) can with 𝜈̂(0, x) = 1√
1+�∇h0(x)�2

�
−∇h0(x)

1

�
 

equivalently be written as

3 � Well‑posedness and differentiability with respect to controls

3.1 � Results for the transformed problem

By applying a fixed point theorem to (10), the following result is shown in [22] for 
ĉ = 0.

Theorem 2  Let p > n + 3 and consider the case c = 0 , i.e. ĉ = 0 . Let

and let with J = (0, t0) the space �(t0) be defined by (7).

Then for any t0 > 0 there exists 𝜀̂0 = 𝜀̂0(t0) > 0 such that for all initial values

satisfying, with u0(x, h0(x) + y) = û0(x, y) , the compatibility conditions

as well as the smallness condition

there exists a unique solution of the transformed problem (10) with

Moreover, (û,𝜋, [𝜋], h) ∈ �(t0) depends continuously on (û0, h0) ∈ �û × �h satisfy-
ing (14).

Proof  See [22, Thm. 6.3]. 	� ◻

Our first aim is to study the differentiability properties of the control-to-state map 
(û0, ĉ) ↦ (û,𝜋, [𝜋], h) . Note that we consider also the case ĉ ≠ 0 . The proof is car-
ried out by an appropriate extension of the fixed point argument for (10) based on 
Theorem 7.

(12)
[𝜇̂D(û0, h0)𝜈̂(0) − 𝜇̂(𝜈̂(0)⊤D(û0, h0)𝜈̂(0))𝜈̂(0)] = 0,

div û0 = Fd(û0, h0), [û0] = 0.

(13)𝕌û ∶= W2−2∕p
p

(ℝ̇n+1,ℝn+1), 𝕌h ∶= W3−2∕p
p

(ℝn)

(û0, h0) ∈ �û × �h

(14)[𝜇D(u0)𝜈(0) − 𝜇(𝜈(0)⊤D(u0)𝜈(0))𝜈(0)] = 0, div u0 = 0, [u0] = 0,

‖û0‖�û
+ ‖h0‖�h

≤ 𝜀̂0

(û,𝜋, [𝜋], h) ∈ �(t0).
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To apply the fixed point argument, the following Lp-maximum regularity result of 
[22] for the linearized problem (9) will be essential.

Theorem  3  Let 1 < p < ∞ be fixed, p ≠ 3∕2, 3 and assume that �i,�i are positive 
constants. For arbitrary t0 > 0 let J = (0, t0) and let �1(t0),… ,�4(t0),�û,�h be 
defined by (7), (26). Set

Then for all initial values (û0, h0) ∈ �û × �h and (f , fd, g, gh) ∈ � (t0) satisfying the 
compatibility conditions

there exists a unique solution (û,𝜋, [𝜋], h) ∈ �(t0) of (9) and the solution map

is continuous.

Proof  This follows from [22, Thm. 5.1] and [22, Lem. 6.1, (e)]. 	�  ◻

For homogeneous initial data we obtain immediately

Corollary 4  Let p > 3 and define in addition to �(t0) and � (t0) the spaces

with initial value 0 for all components that admit a trace at t = 0 . Then (9) has a 
unique and continuous solution map

The fixed point argument relies on the following properties of the right hand sides 
(11) of (10).

Lemma 5  Let p > n + 3 and set for (û,𝜋, r, h) ∈ �(t0)

(15)

𝔽1(t0) = Lp(J;Lp(ℝ
n+1,ℝn+1)),

𝔽2(t0) = H1
p
(J;Ḣ−1

p
(ℝn+1)) ∩ Lp(J;H

1
p
(ℝ̇n+1)),

𝔽3(t0) = W1∕2−1∕(2p)
p

(J;Lp(ℝ
n,ℝn+1)) ∩ Lp(J;W

1−1∕p
p

(ℝn,ℝn+1)),

𝔽4(t0) = W1−1∕(2p)
p

(J;Lp(ℝ
n)) ∩ Lp(J;W

2−1∕p
p

(ℝn)),

𝔽 (t0) = 𝔽1(t0) × 𝔽2(t0) × 𝔽3(t0) × 𝔽4(t0).

(16)div û0 = fd(0) on ℝ̇
n+1, [û0] = 0 on ℝ

n if p > 3∕2,

(17)and in addition [−𝜇̂𝜕yv0] − [𝜇̂∇xw0] = gv(0) on ℝ
n if p > 3,

(f , fd, g, gh, û0, h0) ∈ � (t0) × �û × �h ↦ (û,𝜋, [𝜋], h) ∈ �(t0)

0�(t0) ∶= {(û,𝜋, r, h) ∈ �(t0) ∶ û(0) = 0, r(0) = 0, h(0) = 0},

0� (t0) ∶= {(f , fd, g, gh) ∈ � (t0) ∶ fd(0) = 0, g(0) = 0, gh(0) = 0}

(f , fd, g, gh, 0, 0) ∈ 0� (t0) × �û × �h ↦ (û,𝜋, [𝜋], h) ∈ 0�(t0).
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with F = (Fv,Fw) , G = (Gv,Gw) , Fd and H defined in (11). Then the mapping 
N ∶ �(t0) → � (t0) is well defined and real analytic, more precisely,

Moreover,

Proof  See [22, Prop. 6.2] 	�  ◻

Moreover, we will need the following analogue for the spaces of the initial values.

Lemma 6  Let p > n + 3 , �û,�h be as in (13) and set

Then with G = (Gv,Gw) and H defined in (11) the mappings

are real analytic and the first derivatives vanish in (û0, r0, h0) = 0.

Proof  Since p > n + 3 we have W1−2∕p
p (ℝ̇n+1) ↪ BUC(ℝ̇n+1) and thus Ws

p
(ℝ̇n+1) is a 

multiplication algebra, i.e. a Banach algebra under the operation of multiplication, 
for all s ≥ 1 − 2∕p , see e.g. [6, Lem. 4.1, Rem. 6.4]. As a consequence, (19) is a 
continuous bilinear form and thus in C𝜔(𝕌û × 𝕌h,W

2−2∕p
p (ℝ̇n+1)).

Similarly, Ws
p
(ℝn) is a multiplication algebra for all s ≥ 1 − 2∕p . Since the trace 

operator û0 ∈ 𝕌û,c ↦ 𝛾v0 ∈ W
2−3∕p
p (ℝn) is continuous, (20) is a continuous bilinear 

form and thus real analytic.
Finally G(û0, r0, h0) in (21) is a polynomial in W1−2∕p

p (ℝn)-functions and in functions 
of the form ∇h0∕(a + (1 + ∇h⊤

0
∇h0)

k∕2) with a ≥ 0 and k ∈ {1, 2} . The function 

Ψ ∶ v ∈ ℝ
n ↦ v∕(a + (1 + v⊤v)k∕2) is smooth with bounded derivatives and Ψ(0) = 0 . 

Since 2 − 2∕p > n∕p implies h
0
∈ 𝕌h ↦ ∇h

0
∈ W

2−2∕p
p (ℝn) ↪ W1

(2−2∕p)p
(ℝn) ∩ BUC(ℝn) , it 

is well known that

(18)N(û,𝜋, r, h) ∶=
(
F(û,𝜋, h),Fd(û, h),G(û, r, h),H(û, h)

)
,

N ∈ C�
(
�(t0), � (t0)

)
, N(0) = 0, DN(0) = 0.

DN(û,𝜋, r, h) ∈ L
(
0�(t0), 0� (t0)

)
∀ (û,𝜋, r, h) ∈ �(t0).

�û,c ∶= {û0 = (v0,w0) ∈ �û ∶ [û0] = 0}.

(19)(û0, h0) ∈ 𝕌û × 𝕌h ↦ v⊤
0
∇h0 ∈ W2−2∕p

p
(ℝ̇n+1),

(20)(û0, h0) ∈ 𝕌û,c × 𝕌h ↦ H(v0, h0) ∈ W2−3∕p
p

(ℝn),

(21)(û0, r0, h0) ∈ 𝕌û ×W1−2∕p
p

(ℝn) × 𝕌h ↦ G(û0, r0, h0) ∈ W1−2∕p
p

(ℝn)
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is well defined and continuous, see [6, Thm. 1.1]. It is also differentiable. In fact, for 
d ∈ �h

where the integrand is in BUC([0, 1] ×ℝ
n) . Moreover, since v ↦ Ψ�(∇v) − Ψ�(0) 

is smooth with bounded derivatives and vanishes at 0, the integrand is continuous 
from [0, 1] → W

2−2∕p
p (ℝn) again by [6, Thm. 1.1]. Hence the integral is also a Boch-

ner integral and thus by using the multiplication algebra property there is C > 0 with

since d ∈ 𝕌h ↦ Ψ�(∇h0 + ∇d) − Ψ�(0) ∈ W
2−2∕p
p (ℝn;ℝn) is continuous at d = 0 by 

[6, Thm. 1.1]. Now we can iteratively show that (22) is real analytic. In fact, we 
can write d ∈ 𝕌h ↦ Ψ�(∇h0)∇d = (Ψ�(∇h0) − Ψ�(0))∇d + Ψ�(0)∇d ∈ W

2−2∕p
p (ℝn) . 

The second term is a constant mapping in L(𝕌h,W
2−2∕p
p (ℝn)) . Moreover, as before 

h0 ∈ 𝕌h ↦ Ψ�(∇h0) − Ψ�(0) ∈ W
2−2∕p
p (ℝn;ℝn) is well defined and continuous [6, 

Thm. 1.1] and by the same arguments as above also differentiable. Iterating the 
argument shows that (22) is real analytic.

We conlude that (21) is a polynomial in W1−2∕p
p (ℝn)-functions and in real analytic 

functions of the form (22). Since W1−2∕p
p (ℝn) is a multiplication algebra, we con-

clude that (21) is real analytic.
By the product structure of (19)–(21) the first derivatives vanish in 0. 	�  ◻

We will work with the following extension of Banach’s fixed point theorem.

Theorem 7     

a)	 Let U, W, Z be real Banach spaces, let A ∈ L(Z,W) be an isomorphism and set 
M ∶= ‖A−1‖L(W,Z) . Let BZ ⊂ Z be a nonempty closed convex set and BU ⊂ U be 
a nonempty set. Moreover, let K ∶ BZ × BU → W  be Lipschitz continuous with 

 and assume that 

(22)h0 ∈ 𝕌h ↦ Ψ(∇h0) ∈ W2−2∕p
p

(ℝn)

Ψ(∇h0 + ∇d) − Ψ(∇h0) − Ψ�(∇h0)∇d = ∫
1

0

(
Ψ�(∇h0 + �∇d) − Ψ�(∇h0)

)
∇d d�,

‖Ψ(∇h0 + ∇d) − Ψ(∇h0) − Ψ�(∇h0)∇d‖W2−2∕p
p (ℝn)

≤ C �
1

0

‖Ψ�(∇h0 + �∇d) − Ψ�(∇h0)‖W2−2∕p
p (ℝn)

d�‖∇d‖
W

2−2∕p
p (ℝn)

= o(‖d‖
𝕌h
),

‖K(z, u) − K(z̃, ũ)‖W ≤ Lz‖z − z̃‖Z + Lu‖u − ũ‖U ∀ (z, u), (z̃, ũ) ∈ BZ × BU

(23)A−1K(z, u) ∈ BZ ∀ (z, u) ∈ BZ × BU and MLz < 1.
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 Then for all u ∈ BU the equation 

 has a unique solution z = z(u) ∈ BZ and 

b)	 Assume in addition that BU is a relatively open convex subset of u∗ + UL ⊂ U , 
where UL is a closed linear subspace of U ( UL = U is admitted, then BU ⊂ U is 
convex and open), and that K ∶ BZ × BU → W  is Fréchet differentiable. Then 
u ∈ BU ↦ z(u) ∈ Z is Fréchet differentiable, where �zd ∶= Dz(u)d is for any 
d ∈ UL the unique solution of the problem 

 If DK ∶ BZ × BU → L(Z × UL,W) is Lipschitz continuous then also 
Dz ∶ BU → L(UL, Z) is Lipschitz continuous. If K ∶ BZ × BU → W is k-times 
Fréchet differentiable then u ∈ BU ↦ z(u) ∈ Z is k-times Fréchet differentiable 
and if DkK is Lipschitz continuous on BZ × BU then Dkz is Lipschitz continuous 
on BU.

Proof  a): By assumption the mapping T ∶ (z, u) ∈ BZ × BU ↦ A−1K(z, u) ∈ BZ 
is well defined and Lipschitz continuous with Lipschitz constants MLz < 1 with 
respect to z and MLu with respect to u. Hence, for all u ∈ BU there exists a unique 
fixed point z = z(u) with z = T(z, u) by Banach’s fixed point theorem.

For u, ũ ∈ BU we obtain

and thus (24).
b): Now let in addition BU be relatively open in the closed affine subspace 

u∗ + UL . Moreover, let K ∶ BZ × BU → W be Fréchet differentiable and let u ∈ BU 
be arbitrary. Then ‖DzK(z(u), u)‖L(Z,W) ≤ Lz and ‖DuK(z(u), u)‖L(UL,W) ≤ Lu and thus 
for any d ∈ UL the linear problem (25) has by Banach’s fixed point theorem a unique 
solution �zd ∈ Z.

Since BU is relatively open in u∗ + UL , we find 𝛿 > 0 such that u + d ∈ BU for all 
d ∈ UL with ‖d‖U < 𝛿 . Then

Az = K(z, u)

(24)‖z(u) − z(ũ)‖Z ≤ LuM

1 −MLz
‖u − ũ‖U ∀ u, ũ ∈ BU .

(25)A�zd = DzK(z(u), u)�zd + DuK(z(u), u)d.

‖z(u) − z(ũ)‖Z = ‖T(z(u), u) − T(z(ũ), ũ)‖W
≤ MLz‖z(u) − z(ũ)‖Z +MLu‖u − ũ‖U
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Here, the Landau symbol oW indicates, that the term is considered in the space W. 
By using (24) we conclude that for d ∈ UL , ‖d‖U → 0

If DK ∶ BZ × BU → L(Z × UL,W) is Lipschitz continuous then (25) can be written 
as

where K(1)(⋅, ⋅;d) ∶ Z × BU → W has for all d ∈ UL , ‖d‖U ≤ 1 the Lipschitz constant 
Lz with respect to �zd and a uniform Lipschitz constant with respect to u. Apply-
ing the first part of the theorem again yields that Dz ∶ BU → L(UL, Z) is Lipschitz 
continuous.

Repeating the argument for higher derivatives concludes the proof. 	�  ◻

By applying this result to (8)–(10), we obtain the following extension of 
Theorem 2.

Theorem 8  Let p > n + 3 and consider any t0 > 0 . Let �(t0), � (t0) be defined as in 
(7) and (15) and set with J = (0, t0)

Then for any t0 > 0 there exists 𝜀̂0 = 𝜀̂0(t0) > 0 such that for all data

satisfying the compatibility condition (12) (or equivalently (14) with 
u0(x, h0(x) + y) = û0(x, y) ) as well as the smallness condition

there exists a unique solution of the transformed problem (10) with

Moreover, the mapping

is continuous and infinitely many times differentiable with respect to (û0, ĉ).

A(z(u + d) − z(u) − �zd)

= K(z(u + d), u + d) − K(z(u), u) − DzK(z(u), u)�zd − DuK(z(u), u)d

= DzK(z(u), u)(z(u + d) − z(u) − �zd) + oW (‖z(u + d) − z(u)‖Z + ‖d‖U).

‖z(u + d) − z(u) − �zd‖Z ≤ MLu

1 −MLz
oZ(‖d‖U) = oZ(‖d‖U).

A�zd = K(1)(�zd, u;d),

(26)
𝕌û ∶= W2−2∕p

p
(ℝ̇n+1,ℝn+1), 𝕌h ∶= W3−2∕p

p
(ℝn),

𝕌ĉ(t0) ∶= 𝔽1(t0) = Lp(J;Lp(ℝ
n+1,ℝn+1)).

(û0, h0, ĉ) ∈ �û × �h × �ĉ(t0)

(27)‖û0‖�û
+ ‖h0‖�h

+ ‖ĉ‖
�ĉ(t0)

< 𝜀̂0

(û,𝜋, [𝜋], h) ∈ �(t0).

{(û0, h0, ĉ) ∈ �û × �h × �ĉ(t0) ∶ (û0, h0, ĉ) satisfy (12), (27) } ↦ (û,𝜋, [𝜋], h) ∈ �(t0)
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Proof  We extend the arguments in [22] and apply Theorem  7 to the transformed 
formulation (10).

Let z = (û,𝜋, r, h) ∈ �(t0) and write (10)

where N is defined in (18).
Let (û0, h0) satisfy (12) and (27), where 𝜀̂0 will be adjusted later.
Following [22], we first construct z∗ = z∗(û0, h0) ∈ �(t0) that satisfies the 

equation

where (0, f ∗
d
, g∗, g∗

h
) ∈ � (t0) resolves the compatibility conditions (16), (17). Then 

we can write (28) equivalently as

The construction of z∗ can be accomplished as in [22]. Set

The right hand side consists of several terms of G(û0, 0, h0) in (21) and thus Lemma 6 
yields that the above mapping (û0, h0) ∈ 𝕌û × 𝕌h ↦ [𝜋0] = r0(û0, h0) ∈ W

1−2∕p
p (ℝn) 

is real analytic. Moreover, it is easy to check that the compatibility conditions hold

Now let Dn = −Δ be the Laplacian in Lp(ℝn) with domain H2
p
(ℝn) and set

By the real analyticity of r0(û0, h0) and Lemma 6 the mappings

are real analytic. Now maximal Lp-regularity for Dn yields, see e.g. [11, Lem. 8.2]

(28)Lz = N(z) + (ĉ, 0), (û(0), h(0)) = (û0, h0),

(29)Lz∗ =
(
0, f ∗

d
, g∗, g∗

h

)
, (û∗(0), h∗(0)) = (û0, h0),

(30)
Lz̃ = N

(
z̃ + z∗(û0, h0)

)
+ (ĉ, 0) − Lz∗(û0, h0) =∶ K(z̃;û0, h0, ĉ), z̃ ∈ 0�(t0).

r0(û0, h0) = [𝜋0] ∶=
[
𝜇̂𝜈̂(0)⊤D(û0, h0)𝜈̂(0)

]
+ 𝜎(Δh0 − G𝜅(h0)).

(31)
−[𝜇̂𝜕yv0] − [𝜇̂∇xw0] = Gv(û0, [𝜋0], h0) on ℝn,

−2[𝜇̂𝜕yw0] + [𝜋0] − 𝜎Δh0 = Gw(û0, h0) on ℝn.

g∗(t) ∶= e−tDnG(û0, r0(û0, h0), h0), g∗
h
(t) ∶= e−tDnH(û0, h0).

(û0, h0) ∈ 𝕌û × 𝕌h ↦ G(û0, r0(û0, h0), h0) ∈ W1−2∕p
p

(ℝn),

(û0, h0) ∈ 𝕌û × 𝕌h ↦ H(û0, h0) ∈ W2−3∕p
p

(ℝn)

g∗ ∈ H1
p

(
J;W−1−1∕p

p
(ℝn)

)
∩ Lp

(
J;W1−1∕p

p
(ℝn)

)
↪ 𝔽3(t0),

g∗
h
∈ H1

p

(
J;W−1∕p

p
(ℝn)

)
∩ Lp

(
J;W2−1∕p

p
(ℝn)

)
↪ 𝔽4(t0),
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where the imbeddings follow by real interpolation and g∗, g∗
h
 are real analytic in 

(û0, h0) ∈ �û × �h . (31) ensures that (17) holds for g∗ . Next, let

where E± ∈ L(W
2−2∕p
p (ℝn+1

±
),W

2−2∕p
p (ℝn+1))) are extension operators and R± 

are the restrictions to ℝn+1
±

 . Now (û0, h0) ∈ 𝕌û × 𝕌h ↦ v⊤
0
∇h0 ∈ W

2−2∕p
p (ℝ̇n+1) 

is by Lemma  6 real analytic. By Lp-regularity for Dn+1 
c∗
d
∈ H1

p
(J;Lp(ℝ

n+1)) ∩ Lp(J;H
2
p
(ℝ̇n+1)) and thus

is real analytic with respect to (û0, h0) ∈ �û × �h . Hence, also (16) holds for f ∗
d
 and 

we conclude that R∗ ∶= (0, f ∗
d
, g∗, g∗

h
) ∈ � (t0) satisfies the compatibility conditions 

(16), (17) and by construction (û0, h0) ∈ �û × �h ↦ R∗ ∈ � (t0) is real analytic. 
Hence, by Theorem 3 the linear problem (29) has a unique solution z∗ = z∗(û0, h0) 
that is real analytic and by Lemma  6 the first derivative vanishes in 0, i.e., 
Dz∗(0, 0) = 0.

Now consider (30). By construction of z∗ the right hand side of (30) is in 0� (t0) . 
Denote by L0 ∈ L(0�(t0), 0� (t0)) the restriction of L which is an isomorphism by 
Corollary 4. Hence, (30) can be written as

To apply Theorem 7 we set now with suitable 𝜀̂0 > 0 and 𝛿 > 0

where 𝜀̂0, 𝛿 > 0 will be adjusted later.
Let M = ‖L−1

0
‖L(0� (t0),0�(t0)) . We know by Lemma 5 and the properties of z∗ that 

the right hand side

is real analytic with

Hence, the Lipschitz constant Lz of K with respect to z̃ is arbitrary small close to 0 
and the Lipschitz constant of K with respect to (û0, h0, ĉ) is Lu = 2 close enough to 
0 (note that the Lipschitz constant with respect to ĉ is 1). Hence, if we set 𝛿 = 4M𝜀̂0 
then for 𝜀̂0 small enough K has the Lipschitz constants Lz = 1∕(2M) and Lu = 2 on 
BZ(𝛿) × BU(𝜀̂0) . Hence, for all (z̃, û0, h0, ĉ) ∈ BZ(𝛿) × BU(𝜀̂0)

c∗
d
(t) =

{
R+e

−tDn+1E+v
⊤
0
∇h0 in ℝn+1

+
,

R−e
−tDn+1E−v

⊤
0
∇h0 in ℝn+1

−
,

f ∗
d
∶= �yc

∗
d
∈ �2(t0) with f ∗

d
(0) = Fd(v0, h0)

(32)
L0z̃ = N(z̃ + z∗(û0, h0)) + (ĉ, 0) − Lz∗(û0, h0) =∶ K(z̃;û0, h0, ĉ), z̃ ∈ 0�(t0).

BU(𝜀̂0) ∶=
�
(û0, h0, ĉ) ∈ �û × �h × �ĉ(t0) ∶ (û0, h0, ĉ) satisfy (12), (27)

�
,

BZ(𝛿) ∶=
�
z̃ ∈ 0�(t0) ∶ ‖z̃‖

0�(t0)
≤ 𝛿

�
,

(33)(z̃, û0, h0, ĉ) ∈ 0�(t0) × �û × �h × �ĉ(t0) ↦ K(z̃;û0, h0, ĉ) ∈ � (t0)

K(0) = 0, D(z̃,û0,h0)
K(0) = 0.
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Thus, (23) is satisfied and (32) has by Theorem 7 for all (û0, h0, ĉ) ∈ BU(𝜀̂0) a unique 
solution z̃ = z̃(û0, h0, ĉ) ∈ BZ(𝛿) satisfying the Lipschitz stability (24). Since also the 
real analytic operator z∗(û0, h0) ∈ �(t0) is Lipschitz continuous on BU(𝜀̂0) , the solu-
tion z(û0, h0, ĉ) = z̃ + z∗ ∈ �(t0) is unique and Lipschitz continuous on BU(𝜀̂0).

Now let (û∗
0
, h∗

0
, ĉ∗) ∈ BU(𝜀̂0) be arbitrary. Then {(û0, h∗0, ĉ) ∈ BU(𝜀̂0)} is a 

relatively open subset of an affine subspace of �û × �h × �ĉ(t0) . Since (33) 
is real analytic, it follows from Theorem  7, b) that z̃(û0, h∗0, ĉ) ∈ 0�(t0) is infi-
nitely many times differentiable with respect to (û0, ĉ) and the same holds for 
z(û0, h

∗
0
, ĉ) = z̃ + z∗ ∈ �(t0) . 	�  ◻

3.2 � Results for the original problem

We transfer now the results of Theorem 8 for the transformed problem (10) to the 
original problem (1). To this end, we define for h0 ∈ �h the spaces

Since the pressure �(t, ⋅) is only determined up to a constant, we select from now 
on without restriction the unique representative satisfying (note that [�] is uniquely 
determined in (10))

Then with the convention (36) and by the trace theorem, we find a Poincaré constant 
CP > 0 with

The following imbeddings will be useful.

Lemma 9  Let p > n + 3 . Then the following imbeddings hold with J = (0, t0) , t0 > 0.

(34)
‖L−1

0
K(z̃;û0, h0, ĉ)‖0�(t0)

≤ MLz‖z̃‖0�(t0)
+MLu(‖û0‖�û

+ ‖h0‖�h
+ ‖ĉ‖

�ĉ(t0)
) <

1

2
𝛿 + 2M𝜀̂0 = 𝛿.

(35)
𝕌u(h0) ∶= W2−2∕p

p

(
ℝ

n+1 ⧵ Γ(0),ℝn+1
)
, 𝕌c(t0) ∶= Lp

(
J;H1

p

(
ℝ

n+1,ℝn+1
))

.

(36)� ∈ �1(t0), ∫[−1,1]n
�(t, x, 0−) dx = 0 for a.a. t ∈ (0, t0).

(37)‖𝜋(t, ⋅)‖H1
p
(ℝ̇n+1) ≤ CP

�
‖𝜋(t, ⋅)‖Ḣ1

p
(ℝ̇n+1) + ‖[𝜋]‖

W
1−1∕p
p (ℝn)

�
.

(38)𝔼1(t0) ↪ C
(
J̄;BUC1

(
ℝ̇

n+1,ℝn+1
))

∩ C
(
J̄;BUC

(
ℝ

n+1,ℝn+1
))
,

(39)𝔼1(t0) ↪ H1
p

(
J ×ℝ

n+1,ℝn+1
)
∩ C

(
J̄;H1

p

(
ℝ

n+1,ℝn+1
))

,



727

1 3

Differentiability results and sensitivity calculation for…

Proof  For the imbeddings (38), (41) see [22, Lem. 6.1]. Moreover, it is obvious that

and also 𝔼1(t0) ↪ C(J̄;W
2−2∕p
p (ℝ̇n+1,ℝn+1)) holds, see [2, Theorem III.4.10.2]. Since 

the functions û ∈ �1(t0) are continuous by (38) and thus [û] = 0 , this implies the 
imbedding (39). Now (40) follows from interpolation between (38) and (39). 	�  ◻

Theorem 10  Let (û,𝜋, [𝜋], h) ∈ �(t0) , h0 ∈ �h , u0 ∈ �u(h0) , and consider, see (6),

Then there exist constants C(‖h‖
�4(t0)

) > 0 and C(‖h0‖�h
) such that 

Proof  Let (û,𝜋, [𝜋], h) ∈ �(t0) and consider, see (6),

By (41) the mapping Th(t) ∶ (x, y) ↦ (x, y − h(t, x)) is for all t ∈ [0, t0] a C2-diffeo-
morphism with T−1

h(t)
(x, y) = (x, y + h(t, x)) and det (DTh(t)(x, y)) = 1 . By (39) the 

chain rule for Sobolev functions can be applied and yields u ∈ H1
p
(J ×ℝ

n+1,ℝn+1) 
with

Moreover, again by (41) and ∇û ∈ Lp(J;H
1
p
(ℝ̇n+1,ℝn+1,n+1)) we have

(40)𝔼1(t0) ↪ H1
p

(
J ×ℝ

n+1,ℝn+1
)
∩ C

(
J̄;H1

p̃

(
ℝ

n+1,ℝn+1
))

∀ p̃ ∈ [p,∞),

(41)𝔼4(t0) ↪ C1
(
J̄;BC1(ℝn)

)
∩ C

(
J̄;BC2(ℝn)

)
.

𝔼1(t0) ↪ H1
p
(J × ℝ̇

n+1,ℝn+1)

(42)
u(t, x, y) = û(t, x, y − h(t, x)), q(t, x, y) = 𝜋(t, x, y − h(t, x)),

u0(x, y) = û0
(
x, y − h0(x)

)
.

(43)

‖u‖W1
p
(J×ℝn+1,ℝn+1) +

�

�J

‖u(t)‖p
H2

p
(ℝn+1⧵Γ(t),ℝn+1)

dt

�1∕p

≤ C(‖h‖
𝔼4(t0)

)‖û‖
𝔼1(t0)

,

�

�J

‖q(t)‖p
Ḣ1

p
(ℝn+1⧵Γ(t),ℝn+1)

dt

�1∕p

≤ C(‖h‖
𝔼4(t0)

)‖𝜋‖
𝔼2(t0)

,

�

�J

‖[q(t)]‖p
W

1−1∕p
p (Γ(t))

dt

�1∕p

≤ C(‖h‖
𝔼4(t0)

)‖[𝜋]‖
Lp(J;W

1−1∕p
p (ℝn))

,

‖û0‖𝕌û
≤ C(‖h0‖𝕌h

)‖u0‖𝕌u(h0)
.

u(t, x, y) = û(t, x, y − h(t, x)).

𝜕tu(t, x, y) = 𝜕tû
(
t, Th(t)(x, y)

)
− 𝜕yû

(
t, Th(t)(x, y)

)
𝜕th(t, x),

𝜕(x,y)u(t, x, y) = 𝜕(x,y)û
(
t, Th(t)(x, y)

)
DTh(t)(x, y).
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Completely analogous one obtains

Now consider r̂ = [𝜋] and r = [q] then r(t, x, h(t, x)) = r̂(t, x) and

Similarly, one obtains also the estimate for ‖û0‖�û
 , see [22, Proof Thm 1.1]. 	�  ◻

Lemma 11  Consider the transformation (42), where we choose for 
� ∈ �2(t0), [�] ∈ �3(t0) the unique representative � satisfying (36).

Then for all p̃ ∈ [p,∞) the mapping

is continuously differentiable with derivative

Let E± ∈ L(Hl
p
(ℝn+1

±
),Hl

p
(ℝn+1)) be extension operators for l = 1, 2 and set

Then the mappings

are continuously differentiable with derivative

‖u‖H1
p
(J×ℝn+1,ℝn+1) +

�

�J

‖u(t)‖p
H2

p
(ℝn+1⧵Γ(t),ℝn+1)

dt

�1∕p

≤ C
�
‖h‖

𝔼4(t0)

�
‖û‖

𝔼1(t0)
.

�

�J

‖q(t)‖p
Ḣ1

p
(ℝn+1⧵Γ(t),ℝn+1)

dt

�1∕p

≤ C
�
‖h‖

𝔼4(t0)

�
‖𝜋‖

𝔼2(t0)
.

‖r(t, ⋅)‖p
W

1−1∕p
p (Γ(t))

= �
ℝn �ℝn

�r(t, x, h(t, x)) − r(t, x̃, h(t, x̃))�p
�√

�x − x̃�2 + �h(t, x) − h(t, x̃)�2
�n+p−1

⋅

√
1 + �∇h(t, x)�2

√
1 + �∇h(t, x̃)�2 dx dx̃

≤ �
ℝn �ℝn

�r̂(t, x) − r̂(t, x̃)�p

�x − x̃�n+p−1
dx dx̃(1 + �h(t, ⋅)�BC1(ℝn))

2

≤ ‖r̂(t, ⋅)‖p
W

1−1∕p
p (ℝn)

C
�
‖h‖

𝔼4(t0)

�p
.

(44)(û,𝜋, [𝜋], h) ∈ 𝔼(t0) ↦ u ∈ C
(
J̄;Lp̃

(
ℝ

n+1,ℝn+1
))

(𝛿û, 𝛿𝜋, [𝛿𝜋], 𝛿h) ∈ �(t0) ↦ 𝛿u(t, x, y)

= 𝛿û(t, x, y − h(t, x)) − 𝜕yû(t, x, y − h(t, x))𝛿h(t, x).

(45)
û±(t, ⋅) = E±û(t, ⋅), u±(t, x, y) = û±(t, Th(t)(x, y)),

𝜋±(t, ⋅) = E±𝜋(t, ⋅), q±(t, x, y) = 𝜋±(t, Th(t)(x, y)).

(46)(û,𝜋, [𝜋], h) ∈ 𝔼(t0) ↦ u± ∈ Lp

(
J;H1

p

(
ℝ

n+1,ℝn+1
))

,

(47)(û,𝜋, [𝜋], h) ∈ 𝔼(t0) ↦ q± ∈ Lp
(
J;Lp

(
ℝ

n+1
))
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Proof  Define as in the previous proof the C2-diffeomorphisms 
Th(t) ∶ (x, y) ↦ (x, y − h(t, x)) . Then u(t, x, y) = û(t, Th(t)(x, y)) . Let 
(û,𝜋, [𝜋], h), (𝛿û, 𝛿𝜋, [𝛿𝜋], 𝛿h) ∈ �(t0) be arbitrary. We recall the well known fact 
that for any v ∈ C(J̄;Lp̃(ℝ

n+1)) , p ≤ p̃ < ∞ , it holds

which can be shown by an approximation of v through a sequence of continuous 
functions with compact support. Similarly, for v ∈ Lp(J;Lp(ℝ

n+1)) one has

Consider the remainder term

Let p ≤ p̃ < ∞ be arbitrary. We obtain

Here, we have used (47) and the imbeddings (40), (41). This shows that (43) is Fré-
chet differentiable. The continuity of the derivative follows from the fact that for 
(û1,𝜋1, [𝜋1], h1) → (û,𝜋, [𝜋], h) in �(t0) we have

(𝛿û, 𝛿𝜋, [𝛿𝜋], 𝛿h) ∈ �(t0) ↦

(
𝛿u±
𝛿q±

)
(t, x, y)

=

(
𝛿û±
𝛿𝜋±

)
(t, x, y − h(t, x)) − 𝜕y

(
û±
𝜋±

)
(t, x, y − h(t, x))𝛿h(t, x).

(48)

sup
t∈J

���v
�
t, T(h+𝛿h)(t)(⋅)

�
− v

�
t, Th(t)(⋅)

����Lp̃(ℝn+1)
→ 0 as ‖𝛿h‖C(J̄;BC1(ℝn)) → 0,

(49)
∫J

���v
�
t, T(h+𝛿h)(t)(⋅)

�
− v

�
t, Th(t)(⋅)

����
p

Lp(ℝ
n+1)

dt → 0 as ‖𝛿h‖C(J̄;BC1(ℝn)) → 0.

(50)
Ru(t, x, y) ∶=(û + 𝛿û)

(
t, T(h+𝛿h)(t)(x, y)

)
− û

(
t, Th(t)(x, y)

)

− 𝛿û
(
t, Th(t)(x, y)

)
+ 𝜕yû

(
t, Th(t)(x, y)

)
𝛿h(t, x).

‖Ru‖C(J̄;Lp̃(ℝn+1)) ≤ sup
t∈J

������
1

0

(𝜕y𝛿û(t, T(h+𝜏𝛿h)(t)(⋅)) d𝜏 𝛿h(t, ⋅)
�����Lp̃(ℝn+1)

+ sup
t∈J

������
1

0

(𝜕yû(t, T(h+𝜏𝛿h)(t)(⋅)) − 𝜕yû(t, Th(t)(⋅))) d𝜏 𝛿h(t, ⋅)
�����Lp̃(ℝn+1)

≤ ‖𝛿û‖C(J̄;H1
p̃
(ℝn+1)‖𝛿h‖C(J̄;BC(ℝn))

+ sup
t∈J,𝜏∈[0,1]

���𝜕yû(t, T(h+𝜏𝛿h)(t)(⋅)) − 𝜕yû(t, Th(t)(⋅))
���Lp̃(ℝn+1)

‖𝛿h‖C(J̄;BC(ℝn))

= ‖𝛿û‖C(J̄;H1
p̃
(ℝn+1)‖𝛿h‖C(J̄;BC(ℝn)) + o

�
‖𝛿h‖C(J̄;BC(ℝn))

�

= o
�
‖𝛿û‖

𝔼1(t0)
+ ‖𝛿h‖

𝔼4(t0)

�
.
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as well as ‖𝛿h‖C(J̄;BC(ℝn)) ≤ C‖𝛿h‖
𝔼4(t0)

 and

where we have used (47).
The continuous differentiability of (46) follows very similarly by using (48) 

instead of (47) and by applying (36), (37) and Theorem 10.
Finally, consider (45), (44). Then û±, 𝛿û± ∈ Lp(J;H

2
p
(ℝn+1,ℝn+1)) . Define the 

remainder terms Ru±
 as in (49) with û, 𝛿u replaced by û±, 𝛿û± . After differentiation a 

calculation as above yields

sup
t∈J

���𝛿û
�
t, Th1(t)(⋅)

�
− 𝛿û

�
t, Th(t)(⋅)

����Lp̃(ℝn+1)

= sup
t∈J

������
1

0

𝜕y𝛿û
�
t, T(h+𝜏(h1−h))(t)(⋅)

�
d𝜏 (h1 − h)(t, ⋅)

�����Lp̃(ℝn+1)

≤ ‖𝛿û‖C(J̄;H1
p̃
(ℝn+1))‖h1 − h‖C(J̄;BC(ℝn))

≤ C‖𝛿û‖
𝔼1(t0)

‖h1 − h‖
𝔼4(t0)

sup
t∈J

‖𝜕yû1(t, Th1(t)(⋅)) − 𝜕yû(t, Th(t)(⋅))‖Lp̃(ℝn+1)

≤ ‖û1 − û‖C(J̄;H1
p̃
(ℝn+1)) + sup

t∈J

‖𝜕yû1(t, Th1(t)(⋅)) − 𝜕yû(t, Th(t)(⋅))‖Lp̃(ℝn+1) → 0,

‖∇Ru±
‖Lp(J;Lp(ℝn+1))

≤������
1

0

(𝜕y∇𝛿û±
�
t, T(h+𝜏𝛿h)(t)(⋅)

�⊤
DT(h+𝜏𝛿h)(t) d𝜏 𝛿h(t, ⋅)

�����Lp(J;Lp(ℝn+1))

+
������

1

0

𝜕y𝛿û±
�
t, T(h+𝜏𝛿h)(t)(⋅)

�
d𝜏 ∇𝛿h(t, ⋅)⊤

�����Lp(J;Lp(ℝn+1))

+
������

1

0

∇
�
𝜕yû±

�
t, T(h+𝜏𝛿h)(t)(⋅)

�
− 𝜕yû±

�
t, Th(t)(⋅)

��⊤
DTh(t) d𝜏 𝛿h(t, ⋅)

�����Lp(J;Lp(ℝn+1))

+
������

1

0

𝜕y∇û±
�
t, T(h+𝜏𝛿h)(t)(⋅)

�⊤�
DT(h+𝜏𝛿h)(t) − DTh(t)

�
d𝜏 𝛿h(t, ⋅)

�����Lp(J;Lp(ℝn+1))

+
������

1

0

�
𝜕yû±

�
t, T(h+𝜏𝛿h)(t)(⋅)

�
− 𝜕yû±

�
t, Th(t)(⋅)

��
d𝜏 ∇𝛿h(t, ⋅)⊤

�����Lp(J;Lp(ℝn+1))

≤ ‖𝛿û±‖Lp(J;H2
p
(ℝn+1))

�
1 + ‖h‖C(J̄;BC1(ℝn)) + ‖𝛿h‖C(J̄;BC1(ℝn))

�
‖𝛿h‖C(J̄;BC(ℝn))

+ ‖𝛿û±‖Lp(J;H1
p
(ℝn+1))‖𝛿h‖C(J̄;BC1(ℝn))

+ ‖𝜕y∇û±
�
t, T(h+𝜏𝛿h)(t)(⋅)

�
− 𝜕y∇û±

�
t, Th(t)(⋅)

�
‖Lp(J;Lp(ℝn+1))

⋅
�
1 + ‖h‖C(J̄;BC1(ℝn))

�
‖𝛿h‖C(J̄;BC(ℝn)) + ‖û±‖Lp(J;H2

p
(ℝn+1))‖𝛿h‖2C(J̄;BC(ℝn))

+ ‖𝜕yû±
�
t, T(h+𝜏𝛿h)(t)(⋅)

�
− 𝜕yû±

�
t, Th(t)(⋅)

�
‖Lp(J;Lp(ℝn+1))‖𝛿h‖C(J̄;BC1(ℝn))

= o
�
‖𝛿û‖Lp(J;H2

p
(ℝn+1)) + ‖𝛿h‖C(J̄;BC1(ℝn))

�
= o

�
‖𝛿û‖

𝔼1(t0)
+ ‖𝛿h‖

𝔼4(t0)

�
.
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Here we have used (48) and the imbedding (41). The continuity of the derivative fol-
lows with very similar estimates. 	�  ◻

Similarly, we have

Lemma 12  Let 𝕌c(t0) = Lp(J;H
1
p
(ℝn+1)) . Then the mapping

with ĉ(c, h)(t, x, y) = c(t, x, y + h(t, x)) is continuously differentiable with derivative

Proof  The proof is the same as for (46). 	�  ◻

For the original data (u0, h0, c) we obtain the following existence and differenti-
ability result.

Theorem 13  Let p > n + 3 and �u(h0),�c(t0) be defined by (35). Then for any t0 > 0 
there exists 𝜀0 = 𝜀0(t0) > 0 such that for all data

satisfying the compatibility condition (14) as well as the smallness condition

there exists a unique solution of the transformed problem (10) with

Moreover, for any h0 with ‖h0‖�h
< 𝜀0 the mapping

is continuously differentiable.

By the chain rule in Lemma 11, also the original state (u, q) depends continu-
ously differentiable on (u0, c) with the spaces given in (43), (45), (46).

Proof  We adapt the fixed point argument in the proof of Theorem 8. Let

The only difference compared to the situation in Theorem 8 results from the fact that 
ĉ(c, h) depends now on h. Hence, the fixed point equation (32) changes to

Let 𝜀̂0 > 0 be as in Theorem 8. We have

(51)(c, h) ∈ �c(t0) × �4(t0) ↦ ĉ(c, h) ∈ �ĉ(t0)

(�c, �h) ∈ �c(t0) × �4(t0) ↦ �c(t, x, y + h(t, x)) + �yc(t, x, y + h(t, x))�h(t, x).

(h0, c) ∈ �h × �c(t0), u0 ∈ �u(h0)

(52)‖u0‖�u(h0)
+ ‖h0‖�h

+ ‖c‖
�c(t0)

< 𝜀0

(û,𝜋, [𝜋], h) ∈ �(t0).

{(u0, c) ∈ �u(h0) × �c(t0) ∶ (u0, h0, c) satisfy (14), (51) } ↦ (û,𝜋, [𝜋], h) ∈ �(t0)

(53)ĉ(c, h)(t, x, y) = c(t, x, y + h(t, x)).

(54)L0z̃ = K
(
z̃;û0, h0, ĉ

(
c, z̃ + z∗(û0, h0)

))
, z̃ ∈ 0�(t0).
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and the last estimate in (43) shows that for 𝜀0 > 0 small enough (51) implies (27).
Hence, for all (u0, h0, c) satisfying (51) we have (û0, h0, ĉ(c, h)) ∈ BU(𝜀̂0) (note 

that (54) holds independently of h) and thus by (34)

Finally, the Lipschitz constant of K(z̃;û0, h0, ĉ) with respect to ĉ is 1 and the mapping 
(50), (52) is by Lemma  12 continuously differentiable and the Lipschitz constant 
with respect to h is bounded by ‖c‖

�c(t0)
< 𝜀0 . Hence, for 𝜀0 > 0 small enough, (53) 

is a contraction and the existence, uniqueness and continuous differentiability follow 
as in the proof of Theorem 8.

Lemma  11 and the chain rule yield now the continuous differentiability of the 
original state (u, q) with respect to (u0, c) for the spaces given in (43), (45), (46). 	� ◻

3.3 � Volume‑of‑fluid type formulation

Our aim is finally to derive a Volume-of-Fluid (VoF) type formulation with corre-
sponding sensitivity equation that is satisfied by the solution (u, q) of the problem 
(1) and its sensitivities (�u, �q) . This provides an analytical foundation to derive and 
analyze appropriate numerical VoF schemes for sensitivity calculations.

Let � ∶ ℝ
n+1 → [0, 1] be a phase indicator satisfying the transport equation

We note that for u ∈ L1(J;W
1
∞
(ℝn+1;ℝn+1)) with div u = 0 a.e. any distributional 

solution � ∈ L1(J;L1,loc(ℝ
n+1)) is also a distributional solution of

We define now

We will show that the unique solution (u, q) of (1) according to Theorem 13 satisfies 
the VoF-type formulation

(55)‖ĉ(c, h)‖
�û

= ‖c‖
�û

‖‖‖L
−1
0
K(z̃;û0, h0, ĉ)

‖‖‖0�(t0)
< 𝛿.

(56)�t� + u ⋅ ∇� = 0 in J ×ℝ
n+1, �(0) = 1Ω1(0)

on ℝn+1.

(57)�t� + div(u�) = 0 in J ×ℝ
n+1, �(0) = 1Ω1(0)

on ℝ
n+1.

�(�) = ��1 + (1 − �)�2, �(�) = ��1 + (1 − �)�2.

(58)

∫
ℝn+1

(
𝜕t(𝜌(𝛼)u) + div(𝜌(𝛼)u⊗ u)

)
(t, x, y)⊤𝜑(x, y)

+S(u, q;𝜇(𝛼))(t, x, y) ∶ ∇𝜑(x, y)) d(x, y) ∀𝜑 ∈ C1
c

(
ℝ

n+1;ℝn+1
)
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where �� is a suitable smoothed normal computed from ∇� , see (70) below.
In order to deal with the sensitivity equation, it will be beneficial to consider 

measure-valued solutions of the general equation

For u ∈ L1(J;W
1
∞
(ℝn+1;ℝn+1)) we can define uniquely the continuous mapping 

(x, y) ↦ X(t;x, y) , where X(t; x, y) satisfies the characteristic equation

In the following, we denote by Mloc(ℝ
n+1) the space of locally bounded Radon 

measures.

Proposition 14  Let u ∈ L1(J;W
1
∞
(ℝn+1;ℝn+1)) . Then for any ��0 ∈ Mloc(ℝ

n+1) there 
exists a unique distributional solution of (60) in C(J̄;Mloc(ℝ

n+1) − weak∗) , given by

Here, X is the forward flow defined by (61) and ��t = X(t)(��0) is the measure 
satisfying

Proof  For u ∈ L1(J;C
1(ℝn+1;ℝn+1)) , see [21, Thm. 3.1 and 3.3]. Since the charac-

teristics are unique and stable also for u ∈ L1(J;W
1
∞
(ℝn+1;ℝn+1)) , the proofs directly 

extend to this case, see also [3]. 	�  ◻

Proposition 15  If û ∈ �1(t0) , [û] = 0 and u is given by (42) then (55) as well as (56) 
have a unique solution given by

and thus �(t, ⋅) = 1Ω1(t)
.

Moreover, for �0 from Theorem 13 and any h0 with ‖h0‖�h
< 𝜀0 the mapping

(59)
= − lim

𝜀↘0∫
ℝn+1

𝜎
𝜈𝜀(t, x, y)

⊤

|𝜈𝜀(t, x, y)|
(D𝜑 − div(𝜑)I)(x, y)∇𝛼(t, x, y) d(x, y),

∫
ℝn+1

div(u)𝜓 dx = 0 ∀𝜓 ∈ C1
c

(
ℝ

n+1
)
,

(60)� satisfies (56) ,

(61)�t�� + div(u ��) = b in J ×ℝ
n+1, ��(0) = ��0 on ℝn+1.

(62)�tX(t;x, y) = u(t,X(t;x, y)), t ∈ J, X(0;x, y) = (x, y).

(63)��(t) = X(t)(��0) + ∫
t

0

X(t − s)(b(s)).

∫
ℝn+1

�(x, y) d��t(x, y) = ∫
ℝn+1

�(X(t;x, y)) d��0(x, y) ∀� ∈ Cc

(
ℝ

n+1
)
.

(64)�(t,X(t;x, y)) = 1Ω1(0)
(x, y)
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is continuously differentiable. The derivative

is given by the unique measure-valued solution of

Finally, �� satisfies

Proof  If û ∈ �1(t0) , [û] = 0 and u is given by (42) then u ∈ C(J̄;W1
∞
(ℝn+1;ℝn+1)) by 

(38), (41). Now it is well known that (63) provides the unique weak solution of (55) 
in L1,loc(J ×ℝ

n+1) , see [3, Prop. 2.2] and [10, Cor. II.1]. Since div(u) = 0 a.e., it is 
also a distributional solution of (56), which is unique by Proposition 14.

Let now (u0, h0, c), (�u0, 0, �c) ∈ �u(h0) × �h × �c(t0) be such that (u0, h0, c) and 
(u0, h0, c) + (�u0, 0, �c) satisfy the conditions of Theorem 13. Denote by (û,𝜋, [𝜋], h) 
the unique solution of (10) for data (u0, h0, c) and by (ûs,𝜋s, [𝜋s], hs) the one for data 
(u0, h0, c) + s (�u0, 0, �c) . Let (u, q) and (us, qs) be the corresponding states in physi-
cal coordinates according to (6) and let � = 1Ω1(t)

, �s = 1Ωs
1
(t) be the corresponding 

solutions of (56). Finally, let (�u, �h, �q) be the directional derivatives (sensitivities) 
in direction (�u0, 0, �c) which exist by Theorem 13. We show that

where �� solves (64). Let � ∈ Cc(ℝ
n+1) be arbitrary. Then

as s → 0 uniformly in t ∈ J̄ , where we have used the differentiability result of Theo-
rem 13. Moreover, it is obvious that the middle term is continuous with respect to t. 
Hence, (66) is proven and we have only to show that �� solves (64).

To this end, let � ∈ C1
c
(J ×ℝ

n+1) be arbitrary. Since �, �s are distributional solu-
tions of (56), we have

{
(u0, c) ∈ 𝕌u(h0) × 𝕌c(t0) ∶ (u0, h0, c) satisfy (14), (51)

}
↦ 𝛼 ∈ C

(
J̄;Mloc

(
ℝ

n+1
)
− weak∗

)

(𝛿u0, 𝛿c) ∈ 𝕌u(h0) × 𝕌c(t0) ↦ 𝛿𝛼 ∈ C
(
J̄;Mloc

(
ℝ

n+1
)
− weak∗

)

(65)�t�� + div(u ��) = −div(�u �) in J ×ℝ
n+1, ��(0) = 0 on ℝ

n+1.

(66)∫
ℝn+1

�(x, y) d��(t)(x, y) = ∫
ℝn

�(x, h(t, x))�h(t, x) dx.

(67)
𝛼s − 𝛼

s
→ 𝛿𝛼 in C

(
J̄;Mloc

(
ℝ

n+1
)
− weak∗

)
as s → 0,

∫
ℝn+1

�s − �

s
(t, x, y)�(x, y) d(x, y) = ∫

ℝn ∫
hs(t,x)

h(t,x)

1

s
�(x, y) d(x, y)

→ ∫
ℝn

�(x, h(t, x))�h(t, x) dx

0 = ∫J ∫ℝn+1

−
((

�t� + (u ⋅ ∇)�
) �s−�

s
+ �s

(
us−u

s
⋅ ∇

)
�
)
(t, x, y) d(x, y) dt

→ ∫J ∫ℝn+1

−
((
�t� + (u ⋅ ∇)�

)
�� + �(�u ⋅ ∇)�

)
(t, x, y) d(x, y) dt
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as s → 0 . For the limit transition, we have used u ∈ C(J̄;W1
∞
(ℝn+1;ℝn+1) , (66) and 

that by Theorem  13�s = 1Ωs(t) → � = 1Ω1(t)
 in L2,loc(J ×ℝ

n+1) and us−u

s
→ �u in 

C(J̄;Lp(ℝ
n+1)) . Hence, �� is a distributional solution of (64), which is unique by 

Proposition 14. 	 � ◻

The next step is to express the surface tension term by using the phase indicator � 
such that its sensitivities can be expressed by using the measure ��.

We first rewrite the surface tension term in the weak formulation (2).

Lemma 16  Let � ∈ C1
c
(ℝn+1;ℝn+1) . Then with the curvature �(t) of Γ(t) according to 

(4) one has the identity

Proof  The first identity follows directly from (4). The second one follows from inte-
gration by parts and reflects the well known identity from differential geometry, see 
for example [7, Lem. 2.1]

where ∇T𝜑i = ∇𝜑i − 𝜈⊤∇𝜑i𝜈 is the tangential derivative. 	�  ◻

To compute the interface normal from ∇� , we use the following simple fact.

Lemma 17  Let � ∈ C1
c
(ℝn+1;ℝn+1) . Then

Proof  By the definition of distributional derivatives one has

(68)

∫Γ(t)

(𝜎𝜅𝜈)(t, x, y)⊤𝜑(x, y) dS(x, y)

= ∫
ℝn

𝜎 divx

�
∇h(t, x)

√
1 + �∇h(t, x)�2

��
−∇h(t, x)

1

�⊤

𝜑(x, h(t, x)) dx

= ∫
ℝn

𝜎
(∇h(t, x)⊤,−1)
√
1 + �∇h(t, x)�2

(D𝜑(x, h(t, x)) − div (𝜑)(x, h(t, x))I)

�
∇h(t, x)

−1

�
dx.

∫Γ(t)

(𝜅𝜈)(t, x, y)⊤𝜑(x, y) dS(x, y) = −∫Γ(t)

∇T idΓ(t)(x, y) ∶ ∇T𝜑(x, y) dS(x, y),

−∫
ℝn+1

𝜓(x, y)⊤∇𝛼(t, x, y) d(x, y) = ∫Γ(t)

𝜓(x, y)⊤𝜈(t, x, y) dS(x, y)

= ∫
ℝn

𝜓(x, h(t, x))⊤
(
−∇h(t, x)

1

)
dx.
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	�  ◻

Let now � ∈ (0, 1∕2) and

and set

To recover a mollified normal (not necessarily of unit length) we use

Then by Lemma 17

Now assume that

Then we have by the definition of ��

Lemma 18  Let (69) hold. If h ∈ C(J̄;BC2(ℝn)) then there is C > 0 such that

On compact subsets the error is o(�).

− ∫
ℝn+1

𝜓(x, y)⊤∇𝛼(t, x, y) d(x, y) = ∫
ℝn+1

div(𝜓)(x, y)𝛼(t, x, y) d(x, y)

= ∫Ω1(t)

div(𝜓)(x, y) d(x, y) = ∫Γ(t)

𝜓(x, y)⊤𝜈(t, x, y) dS(x, y)

= ∫
ℝn

𝜓(x, h(t, x))⊤
(
−∇h(t, x)

1

)
dx.

�� ∈ C1
c
((−1, 1)), ��|[−1+�,1−�] ≡ 1, ��(−s) = ��(s) ∀ s ∈ ℝ,�

ℝ

��(s) ds = 1

��(x, y) =
1

�n
��(y∕�)

n∏

i=1

��(xi∕�).

(69)𝜈𝜀(t, x, y) ∶= −∫
ℝn+1

𝜙𝜀((x̃, ỹ) − (x, y))∇𝛼(t, x̃, ỹ) d(x̃, ỹ).

𝜈𝜀(t, x, y) = ∫Γ(t)

𝜙𝜀((x̃, ỹ) − (x, y))𝜈(t, x̃, ỹ) dS(x̃, ỹ)

= ∫
ℝn

𝜙𝜀((x̃, h(t, x̃)) − (x, y))

(
−∇h(t, x̃)

1

)
dx̃.

(70)|∇h| ≤ 1 − � on x + [−�, �]n.

(71)𝜈𝜀(t, x, h(t, x)) =
1

𝜀n ∫ℝn

n∏

i=1

𝜓𝛿((x̃i − xi)∕𝜀)

(
−∇h(t, x̃)

1

)
dx̃.

|𝜈𝜀(t, x, h(t, x)) − (−∇h(t, x), 1)⊤| ≤ C𝜀 ∀ (t, x) ∈ J ×ℝ
n.
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Proof  Since ∇h has a uniform Lipschitz constant with respect to x 
the first assertion follows immediately from (70). Moreover, since 
∇h(t, x̃) = ∇h(t, x) + ∇2h(t, x)(x̃ − x) + o(‖x̃ − x‖) , the o(�) is obtained by the sym-
metry of �� . 	�  ◻

The variation of �� is

with the measure-valued solution of (64).

Lemma 19  Let (69) hold. If 𝛿h ∈ C(J̄;BC2(ℝn)) then there is C > 0 such that

On compact subsets the error is o(�).

Proof  Then by (65) and (71)

Setting y = h(t, x) and using (69) we obtain

The remaining proof is identical to the one of Lemma 18. 	�  ◻

We are now in the position to show the following result.

Theorem  20  If (69) holds for the solution (u,  q) of (1) according to Theorem  13 
(which is satisfied for 𝜀0 > 0 small enough) then it satisfies the VoF-type formulation 
(57)–(59).

Let vice versa (u, q, �) be a solution of the VoF-type formulation (57)–(59), where 
�(t) is the indicator function of a domain Ω1(t) = {(x, y) ∈ ℝ

n ×ℝ ∶ y = h(t, x)} . If 
(u, q, h) has the regularity as in Theorem 13, then (u, q, h) coincides with the solu-
tion of (1) according to Theorem 13.

Proof  Let (u,  q) be the solution of (1) according to Theorem  13. Then it solves 
clearly also the weak formulation (2)–(3). Since the solution of (56) is � = 1Ω1

(t) 

(72)
𝛿𝜈𝜀(t, x, y) ∶= −∫

ℝn+1

𝜙𝜀((x̃, ỹ) − (x, y))∇d𝛿𝛼(t)(x̃, ỹ)

= ∫
ℝn+1

∇𝜙𝜀((x̃, ỹ) − (x, y))d𝛿𝛼(t)(x̃, ỹ)

|𝛿𝜈𝜀(t, x, h(t, x)) − (−∇𝛿h(t, x), 0)⊤| ≤ C𝜀 ∀ (t, x) ∈ J ×ℝ
n.

𝛿𝜈𝜀(t, x, y) = ∫
ℝn

∇𝜙𝜀((x̃, h(t, x̃)) − (x, y))𝛿h(t, x̃) dx̃.

𝛿𝜈𝜀(t, x, h(t, x)) =
1

𝜀n ∫ℝn

�
∇x̃

∏n

i=1
𝜓𝛿((x̃i − xi)∕𝜀)
0

�
𝛿h(t, x̃) dx̃

=
1

𝜀n ∫ℝn

n�

i=1

𝜓𝛿((x̃i − xi)∕𝜀)

�
−∇𝛿h(t, x̃)

0

�
dx̃.
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by Proposition 15, the formulations (57)–(59) and (2)–(3) are equivalent if the right 
hand side of (57) coincides with the surface tension force term (67). To show this 
we note that Lemma 17 yields for any 𝜀 > 0

Now the uniform convergence of ��(t, x, h(t, x)) to 
(
−∇h(t, x)

1

)
 for � ↘ 0 by 

Lemma 18 yields the convergence of the above term to (67).
Let vice versa (u, q, �) be a solution of the VoF-type formulation (57)–(59) 

such that (u, q, h) satisfies the regularity assumptions of Theorem 13. Then again 
� = 1Ω1

(t) , where the normal velocity of Γ(t) is u⊤𝜈 . Moreover, [u] = 0 on Γ(t) by 
the regularity of u and clearly the first two PDEs in (1) follow. Finally, the jump 
condition in the third line of (1) follow from (57)–(59) (or (2)–(3)) by choosing test 
functions of the form

with � ∈ C∞
c
(J ×ℝ

n;ℝn+1) , ��(s) = �(s∕�) , � ∈ C1
c
((−1, 1)) , � ≥ 0 , �(0) = 1 , 

�(−s) = �(s) and letting � ↘ 0 . 	�  ◻

Finally, we can justify the following VoF-type formulation for computing the sen-
sitivities (�u, �q) . Due to the limited spatial regularity of �tu , we have to state time 
derivatives on the interface in weak form.

− ∫
ℝn+1

𝜎
𝜈𝜀(t, x, y)

⊤

|𝜈𝜀(t, x, y)|
(D𝜑 − div(𝜑)I)(x, y)∇𝛼(t, x, y) d(x, y)

=∫
ℝn

𝜎
𝜈𝜀(t, x, h(t, x))

⊤

|𝜈𝜀(t, x, h(t, x))|
(D𝜑 − div(𝜑)I)(x, h(t, x))

(
−∇h(t, x)

1

)
dx.

(73)��(t, x, y) = �(t, x)��(y − h(t, x))

(74)

∫J×ℝn+1

(
𝜕t(𝜌(𝛼)𝛿u) + div (𝜌(𝛼)(𝛿u⊗ u + u⊗ 𝛿u)) + 𝛿c

)⊤
𝜑 d(t, x, y)

+ ∫J×ℝn+1

S(𝛿u, 𝛿q;𝜇(𝛼)) ∶ ∇𝜑 d(t, x, y)

+ ∫J ∫ℝn+1

(𝜌2 − 𝜌1)u
⊤
(
𝜕t𝜑 + u ⋅ ∇𝜑

)
d𝛿𝛼(t)(x, y) dt

− ∫J ∫ℝn+1

[
S(u, q;𝜇(𝛼))

]
∶ ∇𝜑 d𝛿𝛼(t)(x, y)dt =

= lim
𝜀↘0

−∫J×ℝn+1

𝜎

(
𝛿𝜈⊤

𝜀

|𝜈𝜀|
−

𝛿𝜈⊤
𝜀
𝜈𝜀𝜈

⊤
𝜀

|𝜈𝜀|3

)

(D𝜑 − div (𝜑)I)∇𝛼 d(t, x, y)

− ∫J×ℝn+1

𝜎
𝜈⊤
𝜀

|𝜈𝜀|
(D𝜑 − div (𝜑)I)∇d𝛿𝛼(t)(x, y) ∀𝜑 ∈ C2

c
(J ×ℝ

n+1;ℝn+1),

(75)∫J×ℝn+1

div(�u)� d(t, x, y) = 0 ∀� ∈ C1
c

(
J ×ℝ

n+1
)
,
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where �� and ��� are given by (70) and (71).
We need the following Lemma

Lemma 21  Let � ∈ C1
c
(ℝn+1;ℝn+1) . Then

Proof  By the definition of distributional derivatives one has with (65)

On the other hand, integration by parts yields

	�  ◻

Theorem 22  Let (u, q) be the solution of (1) according to Theorem 13 and let (69) 
hold (which is satisfied for 𝜀0 > 0 small enough). Moreover, let (�u, �q) be the sen-
sitivities of (u, q) in Theorem 13 corresponding to (�u0, �c) . Then (�u, �q) solve the 
linearized VoF-type system (73)–(76).

Let vice versa (u, q, �) be a solution of the VoF-type formulation (57)–(59), where 
�(t) is the indicator function of a domain Ω1(t) = {(x, y) ∈ ℝ

n ×ℝ ∶ y = h(t, x)} . 
If (u,  q,  h) has the regularity as in Theorem  13 and (�u, �q, ��) is a solution of 

(76)�� satisfies (64) ,

(77)�u(0) = �u0,

− ∫
ℝn+1

𝜓(x, y)⊤∇d𝛿𝛼(t)(x, y)

= ∫
ℝn

𝜕y𝜓(x, h(t, x))⊤
(
−∇h(t, x)

1

)
𝛿h(t, x) + 𝜓(x, h(t, x))⊤

(
−∇𝛿h(t, x)

0

)
dx

= ∫
ℝn

div(𝜓)(x, h(t, x))𝛿h(t, x) dx.

− ∫
ℝn+1

𝜓(x, y)⊤∇d𝛿𝛼(t)(x, y) = ∫
ℝn+1

div(𝜓)(x, y)d𝛿𝛼(t)(x, y)

= ∫
ℝn

div(𝜓)(x, h(t, x))𝛿h(t, x) dx.

∫
ℝn

𝛿h(t, x)𝜕y𝜓(x, h(t, x))⊤
(
−∇h(t, x)

1

)
+ 𝜓(x, h(t, x))⊤

(
−∇𝛿h(t, x)

0

)
dx

= ∫
ℝn

𝛿h(t, x)𝜕y𝜓(x, h(t, x))⊤
(
−∇h(t, x)

1

)

+

(
n∑

i=1

𝜕xi𝜓i(x, h(t, x)) + 𝜕y𝜓(x, h(t, x))⊤
(
∇h(t, x)

0

))
𝛿h(t, x) dx

= ∫
ℝn

div(𝜓)(x, h(t, x))𝛿h(t, x) dx.
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(73)–(76) such that (�u, �q) has the regularity as in Theorem 13, then (�u, �q) coin-
cide with the sensitivities according to Theorem 13.

Proof  Let (u0, h0, c), (�u0, 0, �c) ∈ �u(h0) × �h × �c(t0) be such that (u0, h0, c) and 
(u0, h0, c) + (�u0, 0, �c) satisfy the conditions of Theorem  13. Denote now by 
(û,𝜋, [𝜋], h) the unique solution of (10) for data (u0, h0, c) and by (ûs,𝜋s, [𝜋s], hs) the 
one for data (u0, h0, c) + s (�u0, 0, �c) . Let (u,  q) and (us, qs) be the corresponding 
states in physical coordinates according to (6) and let � = 1Ω1(t)

, �s = 1Ωs
1
(t) be the 

corresponding solutions of (56). Finally, let (�u, �h, �q) be the directional derivatives 
(sensitivities) in direction (�u0, 0, �c) which exist by Theorem 13. By the differentia-
bility result of Theorem 13 we know that with the extensions u±, q± in (44), see (43), 
(45), (46)

We derive now the different terms in (73). Let

We have for arbitrary � ∈ C2
c
(J ×ℝ

n+1;ℝn+1)

By (77), (78) one obtains

For the second summand we have by Theorem 13

(78)
us − u

s
→ 𝛿u in C

(
J̄;Lp

(
ℝ

n+1;ℝn+1
))
,

(79)
us
±
− u±

s
→ �u± in Lp

(
J;H1

p

(
ℝ

n+1;ℝn+1
))

,

(80)
qs
±
− q±

s
→ �q± in Lp

(
J;Lp

(
ℝ

n+1;ℝn+1
))
.

Ωs = {(t, x, y) ∶ �s = �}, Ωc
s
= {(t, x, y) ∶ �s(t) ≠ �}.

∫J×ℝn+1

−1

s

(
(𝜌(𝛼s)us − 𝜌(𝛼)u)⊤𝜕t𝜑 + 𝜌(𝛼s)(us)⊤(us ⋅ ∇𝜑) − 𝜌(𝛼)u⊤(u ⋅ ∇𝜑)

)
d(t, x, y)

=∫Ωs

−1

s

(
𝜌(𝛼)(us − u)⊤𝜕t𝜑 + 𝜌(𝛼)

(
(us)⊤(us ⋅ ∇𝜑) − u⊤(u ⋅ ∇𝜑)

))
d(t, x, y)

+ ∫Ωc
s

−1

s

(
(𝜌(𝛼s)us − 𝜌(𝛼)u)⊤𝜕t𝜑 + 𝜌(𝛼s)(us)⊤(us ⋅ ∇𝜑) − 𝜌(𝛼)u⊤(u ⋅ ∇𝜑)

)
d(t, x, y).

∫Ωs

−1

s

(
𝜌(𝛼)(us − u)⊤𝜕t𝜑 + 𝜌(𝛼)

(
(us)⊤(us ⋅ ∇𝜑) − u⊤(u ⋅ ∇𝜑)

))
d(t, x, y)

→ ∫J×ℝn+1

−
(
𝜌(𝛼)𝛿u⊤𝜕t𝜑 + 𝜌(𝛼)(𝛿u⊤(u ⋅ ∇𝜑) + u⊤(𝛿u ⋅ ∇𝜑))

)
d(t, x, y)

= ∫J×ℝn+1

(
𝜕t(𝜌(𝛼)𝛿u) + div(𝜌(𝛼)(𝛿u⊗ u + u⊗ 𝛿u)))⊤𝜑 d(t, x, y).
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where we have used (65), (38) and (41) in the last step.
For the next term in (73) we note that

Now (78), (79) yield

Moreover, by using (38) and Theorem 8 we have

Here, we have used (65) and (38) in the last step.
Finally, the surface tension term (67) has with the abbreviations

∫Ωc
s

−1

s

(
(𝜌(𝛼s)us − 𝜌(𝛼)u)⊤𝜕t𝜑 + 𝜌(𝛼s)(us)⊤(us ⋅ ∇𝜑) − 𝜌(𝛼)u⊤(u ⋅ ∇𝜑)

)
d(t, x, y)

= ∫J×ℝn

−1

s ∫
max(h(t,x),hs(t,x))

h(t,x)

((
𝜌1u

s − 𝜌2u
)⊤
𝜕t𝜑 + 𝜌1(u

s)⊤(us ⋅ ∇𝜑) − 𝜌2u
⊤(u ⋅ ∇𝜑)

)
d(t, x, y)

+ ∫J×ℝn

−1

s ∫
max(h(t,x),hs(t,x))

hs(t,x)

((
𝜌2u

s − 𝜌1u
)⊤
𝜕t𝜑 + 𝜌2(u

s)⊤(us ⋅ ∇𝜑) − 𝜌1u
⊤(u ⋅ ∇𝜑)

)
d(t, x, y)

→∫J×ℝn

(𝜌2 − 𝜌1)u
⊤
(
𝜕t𝜑 + u ⋅ ∇𝜑

)
(t, x, h(t, x))𝛿h(t, x) d(t, x)

=∫J ∫ℝn+1

(𝜌2 − 𝜌1)u
⊤
(
𝜕t𝜑 + u ⋅ ∇𝜑

)
d𝛿𝛼(t)(x, y) dt,

(81)

∫J×ℝn+1

1

s
(S(us, qs;�(�s)) − S(u, q;�(�))) ∶ ∇� d(t, x, y)

= ∫Ωs

1

s
(S(us − u, qs − q;�(�)) ∶ ∇� d(t, x, y)

+ ∫Ωc
s

1

s
(S(us, qs;�(�s)) − S(u, q;�(�)) ∶ ∇� d(t, x, y).

∫Ωs

1

s
(S(us − u, qs − q;�(�)) ∶ ∇� d(t, x, y) → ∫J×ℝn+1

S(�u, �q;�(�)) ∶ ∇� d(t, x, y).

∫Ωc
s

1

s
(S(us, qs;�(�s)) − S(u, q;�(�))) ∶ ∇� d(t, x, y)

=∫J×ℝn

1

s ∫
max(h(t,x),hs(t,x))

h(t,x)

(
S(us

−
, qs

−
;�1) − S(u+, q+;�2)

)
∶ ∇� d(t, x, y)

+ ∫J×ℝn

1

s ∫
max(h(t,x),hs(t,x))

hs(t,x)

(
S(us

+
, qs

+
;�2) − S(u−, q−;�1)

)
∶ ∇� d(t, x, y)

→ − ∫J×ℝn

[
S(u, q;�(�))

]
(t, x, h(t, x))�h(t, x) ∶ ∇�(t, x, h(t, x)) d(t, x)

= − ∫J ∫ℝn+1

[
S(u, q;�(�))

]
∶ ∇� d��(t)(x, y)dt.
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by Theorem 13 and (41) the directional derivative

Now the first integral on the right hand side of (73) converges to the first intergal 
in (81) by first applying Lemma  17 and then Lemmas  18 and 19 . By using first 
Lemma 21 (note that ��(t, x, y) depends close to Γ(t) only on x by (69), see (70)), and 
then Lemma 18 and the fact that ∇�h is continuous by (41), the second integral on 
the right hand side of (73) converges to the second intergal in (81).

(74), (76) are obvious and (75) follows by Proposition 15.
Let vice versa (u, q, �) be a solution of the VoF-type formulation (57)–(59) and 

(�u, �q, ��) a solution of (73)–(76) with the regularities as in Theorem 13. By Theo-
rem 20 (u, q, h) coincides with the solution of (1) in Theorem 13 and (64) implies 
by Proposition 15 that �� and �h correspond to each other via (65). Hence, (73)–(76) 
ensure that (u,  q) satisfy the linearization of (1) on Ω(t) and that �� provides for 
given �u the correct �h.

It remains to show that (73)–(76) implies the correct linearized jump condition. 
Denote the tested surface tension term from (67) for � ∈ C∞

c
(J ×ℝ

n;ℝn+1) by

The jump condition in strong form is equivalent to

for all � ∈ C∞
c
(J ×ℝ

n;ℝn+1) with S(u, q;𝜇) = −qI + 𝜇(∇u + ∇u⊤) . In the trans-
formed variables the jump condition reads

for all � ∈ C∞
c
(J ×ℝ

n;ℝn+1) , where with the notation of 
Remark 1Ŝ(û,𝜋, h;𝜇̂) = −𝜋I + 𝜇̂D(û, h) . Thus, the sensitivities 𝛿û, 𝛿𝜋, 𝛿h satisfy the 
linearized jump condition

𝜈̃(t, x) =

(
−∇h(t, x)

1

)
, 𝛿𝜈̃(t, x) =

(
−∇𝛿h(t, x)

0

)

(82)

∫J×ℝn

𝜎

(
𝛿𝜈̃⊤

|𝜈̃|
−

𝛿𝜈̃⊤𝜈̃𝜈̃⊤

|𝜈̃|3

)
(t, x)(D𝜑 − div(𝜑)I)(t, x, h(t, x))𝜈̃(t, x) d(t, x)

+ ∫J×ℝn

𝜎
𝜈̃⊤

|𝜈̃|

(
𝜕y(D𝜑 − div(𝜑)I)(t, x, h(t, x))𝛿h(t, x)𝜈̃(t, x)

+ (D𝜑 − div(𝜑)I)(t, x, h(t, x))𝛿𝜈̃(t, x)
)
d(t, x).

K(h;𝜙) ∶= ∫J×ℝn

𝜎 divx

�
∇h(t,x)√

1+�∇h(t,x)�2

��
−∇h(t, x)

1

�⊤

𝜙(t, x) d(t, x).

(83)− ∫J×ℝn

𝜙(t, x)⊤
[
S(u, q;𝜇)(t, x, h(t, x))

](−∇h(t, x)

1

)
d(t, x) = K(h;𝜙)

− ∫J×ℝn

𝜙(t, x)⊤
[
Ŝ(û,𝜋, h;𝜇̂)(t, x, 0)

](−∇h(t, x)

1

)
d(t, x) = K(h;𝜙)



743

1 3

Differentiability results and sensitivity calculation for…

for all � ∈ C∞
c
(J ×ℝ

n;ℝn+1) . We show now, that under the regularity ensured by 
Theorem 13, (83) is implied by the weak formulation (73) by using test functions of 
the form

with � ∈ C∞
c
(J ×ℝ

n;ℝn+1) , ��(s) = �(s∕�) , � ∈ C1
c
((−1, 1)) , � ≥ 0 , �(0) = 1 , 

�(−s) = �(s) for � ↘ 0 . Then

We test the weak form (57) also in time and rewrite it in the transformed variables. 
This results in

For the right hand side we have used that as in the proof of Theorem 20 the right 
hand side of (57) coincides with (67).

For the test function (84) we obtain

Moreover, for any (x̄, ȳ) ∈ Γ(t̄) and (x(t),  y(t)) with (x�(t), y�(t)) = u(x(t), y(t)) , 
(x(t̄), y(t̄)) = (x̄, ȳ) one has y(t) − h(t, x(t)) = 0 and thus

Hence,

and inserting �� in (85) yields

(84)
− ∫J×ℝn

𝜙(t, x)⊤
([

𝜕(û,𝜋,h)Ŝ(û,𝜋, h;𝜇̂) ⋅ (𝛿û, 𝛿𝜋̂, 𝛿h)(t, x, 0)
](−∇h(t, x)

1

)

+
[
Ŝ(û,𝜋, h;𝜇̂)(t, x, 0)

](−∇𝛿h(t, x)
0

))
d(t, x) = 𝜕hK(h;𝜙) ⋅ 𝛿h

(85)��(t, x, y) = �(t, x)��(y − h(t, x))

∇𝜑𝜏(t, x, y) = 𝜓 �
𝜏
(y − h(t, x))

(
−∇h(t, x)

1

)
𝜙(t, x)⊤ + 𝜓𝜏(y − h(t, x))

(
∇𝜙(t, x)

0

)
,

𝜕t𝜑𝜏(t, x, y) = −𝜙(t, x)𝜓 �
𝜏
(y − h(t, x))𝜕th(t, x) + 𝜕t𝜙(t, x)𝜓𝜏(y − h(t, x)).

(86)

∫J×ℝn+1

((
𝜕t(𝜌(𝛼)u) + div(𝜌(𝛼)u⊗ u)

)
(t, x, y)⊤𝜑 + S(u, q;𝜇) ∶ ∇𝜑

)
d(t, x, y) =

∫J×ℝn+1

(
−𝜌̂(x, y)û⊤

(
𝜕t𝜑(t, x, y + h(t, x)) + û ⋅ ∇𝜑(t, x, y + h(t, x))

)

+ Ŝ(û,𝜋, h;𝜇̂)(t, x, y) ∶ ∇𝜑(t, x, y + h(t, x))
)
d(t, x, y) = K(h;𝜑(⋅, ⋅, h(⋅, ⋅))).

𝜕t𝜑𝜏(t, x, y + h(t, x)) + û ⋅ ∇𝜑𝜏(t, x, y + h(t, x))

= −𝜙(t, x)𝜓 �
𝜏
(y)(𝜕th(t, x) + v⊤∇h(t, x) − w) + 𝜓𝜏(y)(𝜕t𝜙(t, x) + v ⋅ ∇𝜙(t, x)).

0 = y�(t) − 𝜕th(t, x(t)) − 𝜕xh(t, x(t))x
�(t)

= w(t, x(t), y(t)) − 𝜕th(t, x(t)) − v(t, x(t), y(t))⊤∇h(t, x(t)).

𝜕t𝜑𝜏(t, x, y + h(t, x)) + û ⋅ ∇𝜑𝜏(t, x, y + h(t, x)) = 𝜓𝜏(y)(𝜕t𝜙(t, x) + v ⋅ ∇𝜙(t, x)),
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We have already observed that the right hand side of (57) coincides with (67) and 
the right hand side of (73) with the derivative (81) of (67). Since K(h;�) corresponds 
to using �� in (67), �hK(h;�) ⋅ �h can be expressed as the sum of the right hand side 
of (73) with � = �� and of the right hand side of (57) with � = −�y���h (note again 
that �� depends on h).

Similarly taking the derivative of the left hand side of (85) corresponds to the 
sum of the left hand side of (73) with � = �� and of the left hand side of (85) with 
� = −�y���h (note that �� depends on h) and is given by (we differentiate equiva-
lently the middle term of (85) in transformed variables)

By the assumed regularity for � ↘ 0 all terms containing the factor ��(y) tend to 
zero and the remaining terms converge to

This is exactly the linearized jump condition (83). 	�  ◻

4 � Analytical settings for the application of optimization methods

The results of this paper justify the application of derivative based optimization 
methods. We discuss now some possible settings. While some are canonical, the 
treatment of optimization problems involving the state across the interface, in par-
ticular the pressure or the position of the interface, requires care, since the pressure 
and phase indicator field are discontinuous across the interface.

Let p > n + 3 and �u(h0),�c(t0) be defined by (35). Let h0 ∈ �h with ‖h0‖�h
 

small enough

∫J×ℝn+1

(
−𝜌̂(x, y)û⊤𝜓𝜏(y)(𝜕t𝜙(t, x) + v ⋅ ∇𝜙(t, x))

+ Ŝ(û,𝜋, h;𝜇̂) ∶

(
𝜙(t, x)𝜓 �

𝜏
(y)

(
−∇h(t, x)

1

)
+ 𝜓𝜏(y)

(
∇𝜙(t, x)

0

)))
d(t, x, y) = K(h;𝜙).

∫J×ℝn+1

(
−𝜌̂(x, y)𝜓𝜏 (y)

(
𝛿û⊤(𝜕t𝜙(t, x) + v ⋅ ∇𝜙(t, x)) + û⊤(𝜕t𝜙(t, x) + 𝛿v ⋅ ∇𝜙(t, x))

)

+ 𝜕(û,𝜋,h)Ŝ(û,𝜋, h;𝜇̂)(x, 0) ⋅ (𝛿û, 𝛿𝜋̂, 𝛿h) ∶

(
𝜙(t, x)𝜓 �

𝜏
(y)

(
−∇h(t, x)

1

)
+ 𝜓𝜏(y)

(
∇𝜙(t, x)

0

))

+ Ŝ(û,𝜋, h;𝜇̂)(x, 0) ∶ 𝜙(t, x)𝜓 �
𝜏
(y)

(
−∇𝛿h(t, x)

0

))
d(t, x, y) = 𝜕hK(h;𝜙) ⋅ 𝛿h.

∫J×ℝn

(
−
[
𝜕(û,𝜋,h)Ŝ(û,𝜋, h;𝜇̂)(x, 0) ⋅ (𝛿û, 𝛿𝜋̂, 𝛿h)

]
∶

(
−∇h(t, x)

1

)

−
[
Ŝ(û,𝜋, h;𝜇̂)(x, 0)

]
∶

(
−∇𝛿h(t, x)

0

))
𝜙(t, x) d(t, x) = 𝜕hK(h;𝜙) ⋅ 𝛿h.
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and consider the control-to-state mapping

given by (10), which is differentiable at least for sufficiently small controls by Theo-
rem 13, and the corresponding original state

solving (1). Denote the solution operator by

Now we are interested in optimization problems of the form

where additional constraints would be possible. We discuss now analytical set-
tings, for which the continuous differentiability of the reduced objective function 
(u0, c) ∈ Uad ↦ J(S(u0, c), u0, c) is ensured.

4.1 � Objective functions involving the velocity field

We consider first the simpler case, where the state-dependence of the objective function 
involves only the velocity, i.e.,

Using the differentiability results of Theorem 13 with the space given in (43), the 
reduced objective functional (86) is continuously differentiable, if the mapping

is continuously differentiable for some p̃ ∈ [p,∞) . This applies for example in the 
case of least squares functionals or many other types of tracking functionals. The 
derivative is easily obtained by the chain rule and by using the sensitivities �u , 
where �u can be obtained by the VoF-type formulation (73) or by using the lineari-
zation of the transformed problem (10) together with Lemma 11 and Lemma 12.

If the objective function (86) evaluates the velocity field u only in an open observa-
tion domain J × Ωo with positive distance from the interface 

⋃
t∈J({t} × Γ(t)) , then it is 

by Theorem 13 sufficient if the mapping

is continuously differentiable for some p̃ ∈ [p,∞).

Uad ∶=
{
(u0, c) ∈ �u(h0) × �c(t0) ∶ (u0, h0, c) satisfy (14), (51)

}

(u0, c) ∈ Uad ⊂ �u(h0) × �c(t0) ↦ (û,𝜋, [𝜋], h) ∈ �(t0)

(u, q)(t, x, y) = (û,𝜋)(1, x, y − h(t, x))

(u, q) = (Su(u0, c),S
q(u0, c)) = S(u0, c).

min
(u0,c)

J(S(u0, c), u0, c) s.t. (u0, c) ∈ Uad,

(87)(u0, c) ∈ Uad ↦ J(S(u0, c), u0, c) = J
u(Su(u0, c), u0, c).

(u, u0, c) ∈ C
(
J̄;Lp̃

(
ℝ

n+1,ℝn+1
))

× 𝕌u(h0) × 𝕌c(t0) ↦ J
u(u, u0, c)

(u, u0, c) ∈
(
C
(
J̄;Lp̃

(
ℝ

n+1,ℝn+1
))

∩ Lp

(
J;H1

p

(
Ωo,ℝ

n+1
)))

× 𝕌u(h0) × 𝕌c(t0)

↦ J
u(u, u0, c)
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4.2 � Objective functions involving the pressure or phase indicator

Since the pressure field is discontinuous across the interface, the differentiability 
results of Theorem  13 apply only for extensions q± of the pressure across the 
interface. We show now that certain types of objective functionals are neverthe-
less differentiable. As before we work with the unique representative of the pres-
sure satisfying (36).

We consider objective functions of the form

Here, � ∶ ℝ × J ×ℝ
n ×ℝ → ℝ is a continuous function, twice differentiable with 

respect to q and y such that there are R > 0,C
�
> 0 with (other settings are possible)

This implies the estimate

with the constant C�
𝓁
= ‖�q𝓁(0, ⋅)‖L∞(ℝn+1) + 2C

𝓁
 as well as

with C��
𝓁
= ‖𝓁(0, ⋅)‖L∞(ℝn+1) + 2C�

𝓁
.

Now, using the transformation (x̂, ŷ) = Th(t)(x, y) = (x, y − h(t, x)) we can rewrite 
(87) as

We will now show the following result.

Theorem 23  Let (88) hold. Then with the convention (36) the objective function (87) 
is continuously differentiable with derivative

(88)
(u0, c) ∈ Uad ↦ J(S(u0, c), u0, c) = J

q(Sq(u0, c), u0, c)

= ∫J ∫ℝn+1

�(Sq(u0, c)(t, x, y), t, x, y) d(x, y) dt.

(89)
supp(𝓁(q, ⋅)) ⊂ {(t, x, y) ∈ J ×ℝ

n ×ℝ ∶ |(x, y)| ≤ R} ∀ q ∈ ℝ,

|𝜕2
(q,y)

𝓁(q, t, x, y)| ≤ C
𝓁

(
1 + |q|p−2

)
∀ (t, x, y) ∈ J ×ℝ

n ×ℝ.

|�q�(q, t, x, y)| ≤ |�q�(0, t, x, y)| +
||||�

q

0

�2
qq
�(s, t, x, y) ds

||||
≤ C�

�
(1 + |q|p−1)

(90)|�(q, x, y)| ≤ |�(0, x, y)| +
||||�

q

0

�q�(s, x, y) ds
||||
≤ C��

�
(1 + |q|p)

(91)

J
q(q, u0, c) = ∫J ∫ℝn+1

�(q(t, x, y), t, x, y) d(x, y) dt

= ∫J ∫ℝn+1

�(𝜋(t, x, y − h(t, x)), t, x, y) d(x, y) dt

= ∫J ∫ℝn+1

�(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂)) d(x̂, ŷ) dt

= ∫J ∫Ṙn+1

�(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂)) d(x̂, ŷ) dt.
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where [�(q(t, x, h(t, x)), t, x, h(t, x))] is the jump across Γ(t) at (x, h(t, x)) and the sen-
sitivities �q , �� can be obtained by the VoF-type formulation (73) or �� , �h can be 
computed by using the linearization of the transformed problem (10) together with 
Lemma 12 and �q by using Lemma 11.

Remark 24  If we consider an objective function J� of the form (87) with the pres-
sure q replaced by the phase indicator � then an analogue of Theorem 23 holds and 
the derivative simplifies to

since �� has its support on the complement of ℝ̇n+1.

Remark 25  A practically relevant example satisfying (88) is a tracking type func-
tional for the pressure q or the phase indicator � of the form

with desired pressure field qd ∈ BC2(J ×ℝ
n+1) and a weighting func-

tion � ∈ C2
c
(ℝn+1) (or similarly with S

� and desired phase indicator 
�d ∈ BC2(J ×ℝ

n+1;[0, 1]) ). Note that discontinuous qd can lead to nonsmoothness if 
the jump set of q and qd coincide on a set of positiv surface measure.

In order to cover discontinuous qd (or �d ) a variant with smoothed observation of 
the form

with a mollifier � ∈ C2
c
(ℝn+1) (the convolution is only in space) can be shown to be 

continuously differentiable similarly as for (87) under assumption (88).

We use the following auxiliary result.

(Jq)�
(
S
q(u0, c), u0, c

)
⋅

(
𝛿u0
𝛿c

)
= ∫J ∫ℝ̇n+1

𝜕q𝓁(q(t, x, y), t, x, y)𝛿q(t, x, y) d(x, y) dt

− ∫J ∫ℝn

[
𝓁(q(t, x, h(t, x)), t, x, h(t, x))

]
𝛿h(t, x) dx dt

= ∫J ∫ℝ̇n+1

𝜕q𝓁(q(t, x, y), t, x, y)𝛿q(t, x, y) d(x, y) dt

− ∫J ∫ℝn

[
𝓁(q(t, x, h(t, x)), t, x, h(t, x))

]
d𝛿𝛼(t)(x, y) dt,

(J�)�(S�(u0, c), u0, c) ⋅

(
�u0
�c

)

= −∫J ∫ℝn

[𝓁(�(t, x, h(t, x)), t, x, h(t, x))]d��(t)(x, y) dt,

J
q
(
S
q(u0, c), u0, c)

)
= ∫J ∫ℝn+1

�(x, y)
(
S
q(u0, c) − qd

)2
(t, x, y) d(x, y) dt,

J
q
(
S
q(u0, c), u0, c)

)
= ∫J ∫ℝn+1

�(x, y)
(
� ∗

(
S
q(u0, c) − qd

))2
(t, x, y) d(x, y) dt
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Lemma 26  Let (88) hold. Then the mapping

is continuously differentiable with derivative

Proof  We have by using (88) and its consequence (89)

To show the differentiability, we note that by Taylor expansion and (89)

Hence, we obtain with the asserted derivative by using (88)

where we have applied Hölder’s inequality in the last step. The continuity of the 
derivative follows with (89) by very similar calculations. 	�  ◻

(𝜋, h) ∈ Lp(J;L∞(ℝ
n+1)) × Lp(J;L∞(ℝ

n))

↦ �J
q
(𝜋, h) ∶= ∫J ∫Ṙn+1

�(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂)) d(x̂, ŷ) dt

(�J
q
)�(𝜋, h) ⋅

(
𝛿𝜋
𝛿h

)

= ∫J ∫Ṙn+1

(
𝜕q𝓁

𝜕y𝓁

)
(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂))⊤

(
𝛿𝜋(t, x̂, ŷ)
𝛿h(t, x̂)

)
d(x̂, ŷ) dt.

�J
q
(𝜋, h) ≤ �J �Ṙn+1

�𝓁(𝜋(t, x, y − h(t, x)), t, x, y)� d(x, y) dt

≤ �J ��(x,y)�≤R
C��
𝓁
(1 + �𝜋(t, x, y − h(t, x))�p) d(x, y) dt

≤ C��
𝓁
(2R)n+1 �J

(1 + ‖𝜋(t, ⋅)‖p
L∞(ℝn+1)

) ≤ C��
𝓁
(2R)n+1(t0 + ‖𝜋‖p

Lp(J;L∞(ℝn+1))
).

|||||
�((𝜋 + 𝛿𝜋)(t, x̂, ŷ), t, x̂, ŷ + (h + 𝛿h)(t, x̂)) − �(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂))

−

(
𝜕q�

𝜕y�

)
(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂))⊤

(
𝛿𝜋(t, x̂, ŷ)
𝛿h(t, x̂)

)|||||
≤C

�
(1 + (|𝜋(t, x̂, ŷ)| + |𝛿𝜋(t, x̂, ŷ)|)p−2)(|𝛿𝜋(t, x̂, ŷ)|2 + |𝛿h(t, x̂)|2).

�����
�J
q
(𝜋 + 𝛿𝜋, h + 𝛿h) − �J

q
(𝜋, h) − (�J

q
)�(𝜋, h) ⋅

�
𝛿𝜋
𝛿h

������

≤ �J � ℝ̇
n+1∩

[−R,R]n+1

C
𝓁

�
1 + (�𝜋(t, x̂, ŷ)� + �𝛿𝜋(t, x̂, ŷ)�)p−2

��
�𝛿𝜋(t, x̂, ŷ)�2 + �𝛿h(t, x̂)�2

�
d(x̂, ŷ) dt

≤ (2R)n+1C
𝓁 �J

�
1 + ‖�𝜋(t, ⋅)� + �𝛿𝜋(t, ⋅)�‖p−2

L∞

�
⋅

�
‖𝛿𝜋(t, ⋅)‖2

L∞
+ ‖𝛿h(t, ⋅)‖2

L∞

�
dt

≤ (2R)n+1C
𝓁

�
t
(p−2)∕p

0
+ ‖�𝜋� + �𝛿𝜋�‖p−2

Lp(J;L∞)

��
‖𝛿𝜋‖2

Lp(J;L∞)
+ ‖𝛿h‖2

Lp(J;L∞)

�

= O
�
‖𝛿𝜋‖2

Lp(J;L∞)
+ ‖𝛿h‖2

Lp(J;L∞)

�
,
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Proof of Theorem 23  From Theorem 8, Theorem 10 and Lemma 12 we know that

is continuously differentiable and with the convention (36) the mapping 
(û,𝜋, [𝜋], h) ∈ 𝔼(t0) ↦ 𝜋 ∈ Lp(J;H

1
p
(ℝ̇n+1)) is linear and continuous by (37). 

Moreover, by p > n + 3 we have clearly Lp(J;H1
p
(ℝ̇n+1)) ↪ Lp(J;L∞(ℝ

n+1)) and 
𝔼4(t0) ↪ Lp(J;L∞(ℝ

n)) . Hence, the mapping

is continuously differentiable and thus (87) is continuously differentiable by 
Lemma  26 and the last representation of (87) in (90). The derivative is given by 
Lemma 26. Using that

integration by parts yields

Here, we have used Lemma 11 and (65) in the last step. 	�  ◻
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(u0, c) ∈ Uad ↦ (û,𝜋, [𝜋], h) ∈ �(t0)

(u0, c) ∈ Uad ↦ (�, h) ∈ Lp(J;L∞(ℝ
n+1)) × Lp(J;L∞(ℝ
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d
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q
)�(𝜋, h) ⋅

(
𝛿𝜋

𝛿h

)
=∫J ∫Ṙn+1

(
𝜕q𝓁

𝜕y𝓁

)
(𝜋(t, x̂, ŷ), t, x̂, ŷ + h(t, x̂))⊤

(
𝛿𝜋(t, x̂, ŷ)

𝛿h(t, x̂)
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d(x̂, ŷ) dt
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