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Background: Despite advances in neuro-oncology, treatments of glioma and

tools for predicting the outcome of patients remain limited. The objective of this

research is to construct a prognostic model for glioma using the Homologous

Recombination Deficiency (HRD) score and validate its predictive capability

for glioma.

Methods: We consolidated glioma datasets from TCGA, various cancer types for

pan-cancer HRD analysis, and two additional glioma RNAseq datasets from GEO

and CGGA databases. HRD scores, mutation data, and other genomic indices

were calculated. Using machine learning algorithms, we identified signature

genes and constructed an HRD-related prognostic risk model. The model’s

performance was validated across multiple cohorts. We also assessed immune

infi ltration and conducted molecular docking to identify potential

therapeutic agents.

Results: Our analysis established a correlation between higher HRD scores and

genomic instability in gliomas. The model, based on machine learning

algorithms, identified seven key genes, significantly predicting patient

prognosis. Moreover, the HRD score prognostic model surpassed other

models in terms of prediction efficacy across different cancers. Differential

immune cell infiltration patterns were observed between HRD risk groups, with

potential implications for immunotherapy. Molecular docking highlighted several

compounds, notably Panobinostat, as promising for high-risk patients.
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Conclusions: The prognostic model based on the HRD score threshold and

associated genes in glioma offers new insights into the genomic and

immunological landscapes, potentially guiding therapeutic strategies. The

differential immune profiles associated with HRD-risk groups could inform

immunotherapeutic interventions, with our findings paving the way for

personalized medicine in glioma treatment.
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1 Introduction

Glioma represents a prevalent malignant neoplasm within the

central nervous system (CNS). It represents around 30% of all

cerebral tumors and up to 80% of malignant tumors (1). Among the

various subtypes of gliomas, glioblastoma (GBM) stands out as the

most virulent, characterized by its rapid progression and resistance

to treatment, it accounted for the majority of gliomas (59.2%) (1).

The 10-year survival rate for low-grade gliomas is 47%, but the

median overall survival period for individuals with GBM is a mere

14-16 months, with a 5-year survival rate that does not exceed 6%

(2, 3). Although significant advancements have been achieved in the

realm of neuro-oncology, the treatment options available for

gliomas, mostly consisting of surgical removal followed by

adjunctive radiotherapy and chemotherapy, provide limited relief

to patients, particularly those with high-grade gliomas (4). This

situation underscores the exigency for innovative therapeutic

interventions. The evolution of molecular biology has led to the

identification of an array of molecular markers that could predict

the survival rate of glioma patients, including genetic mutation

status and DNA methylation. Consequently, the World Health

Organization (WHO) implemented an updated classification

system for CNS malignancies incorporating molecular diagnosis

(5). However, the significant heterogeneity of gliomas leads to

unavoidable tumor recurrence and medication resistance,

highlighting the pressing necessity to identify novel biomarkers

(6). These novel biomarkers could elucidate the pathological

mechanisms of gliomas and aid in developing effective

therapeutic strategies.

Homologous recombination (HR) is a process that conservatively

repairs lethal DNA double-strand breaks (DSBs) with high precision

(7). The BRCA1/2 genes are of significant importance in the

homologous recombination repair pathway. When these genes have

harmful mutations, they severely hinder the ability to repair DSBs,

ultimately initiating HRD (8). In addition to BRCA1/2 mutations,

HRD can be attributed to additional factors, including mutations in

BARD1, PALB2, RAD51C, RAD51D, etc., as well as BRCA1

promoter methylation (9–11). This results in genomic instability,

which gives rise to genomic scars, hence increasing one’s vulnerability
02
to cancer (12), and facilitating the survival of detrimental tumors (13,

14). When exposed to PARP protein inhibition (PARPi), tumor cells

exhibiting HRD, such as those with BRCA1/BRCA2 mutations in

ovarian and breast malignancies, increase genomic fragility induced

by disruption of single-strand break repair pathway (15, 16). Recent

studies have shown that the development of resistance to

temozolomide (TMZ) can be attributed to the amplification of

homologous recombination in glioma cells, while its inhibition re-

sensitizes the resistant cells, this indicates that HRD cells are

especially sensitive to TMZ (17). HRD scores, which are derived

from ‘genomic scars’, are designed to quantify HRD. It has been

utilized in multiple types of cancers, such as breast, prostate, and

ovarian cancer, showing its potential to progressively serve as a robust

diagnostic marker in precision oncology (18–20). Nevertheless, as a

result of the significant heterogeneity across various types of tumors,

using varied thresholds for classification in different cancers might be

more appropriate.

The field of machine learning (ML) has experienced significant

advancements in recent years, offering an efficient and practical

approach to analyzing vast and intricate datasets. Various machine-

learning algorithms have been applied in glioma-associated clinical

management, diagnosis, and classification aspects (21). For

instance, identifying biomarkers for diagnosis and prognosis (22,

23), constructing recurrence prediction models for gliomas (24),

developing models predicting the response to immunotherapy for

gliomas (25), etc.

This study focused on investigating the significance of the HRD

score in glioma, defining the HRD threshold, and identifying genes

that are associated with HRD. Then, a multi-machine learning

model based on HRD signature genes was constructed, it has the

ability to accurately predict the prognosis of individuals with

glioma. The prognostic ability of this model has been consistently

demonstrated to be superior and stable across multiple datasets, as

well as in comparison to currently published models. This model

could also contribute to distinguishing immunological and genomic

features and predicting the response to immunotherapy in glioma

patients. Furthermore, utilizing the developed model, we identified

prospective therapeutic agents for glioma and made predictions on

their binding sites and affinity.
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2 Materials and methods

2.1 Data download

To develop a glioma prediction model utilizing the origin of

homologous recombination deficiency for precise clinical medicine

in Gliomas, this study acquired the gliomas dataset in The Cancer

Genome Atlas (TCGA-GBMLGG) from UCSC Xena (https://

xena.ucsc.edu) (26). Patients’ gene expression sequencing data

(n=1131) were downloaded, and the Count and FPKM values

were standardized to TPM values. At the same time, the clinical

data of patients were also downloaded, while the patients without

clinical information were excluded. In the meantime, we acquired

the TCGA database RNA-seq dataset and corresponding survival

data for hepatocellular carcinoma (TCGA-LIHC), ovarian cancer

(TCGA-OV), and osteosarcoma (GDC TARGET-OS) and bladder

cancer immunotherapy dataset IMvigor210, these datasets were

used for pan-cancer analysis of HRD. Then, HRD scores data that

were collated from the pan-cancer atlas study (27) conducted by

Thorsson et al. were downloaded. At the same time, the Mutation

data of the patients was downloaded through the GDC, and the

‘Masked Somatic Mutation’ was chosen and visualized through the

maftools R package to estimate each patient’s tumor mutation

burden (TMB) (28). Fraction Genome Altered (FGA: measuring

area of the chromosome copy number changes the percentage of the

region), Mutation Count (mutations), and microsatellite instability

(MSI) sensor score were acquired from the cBioPortal (http://

www.cbioportal.org). In the end, a total of 641 samples that met

the specified criteria were kept. GEO database (29) (https://

www.ncbi.nlm.nih.gov/geo) was accessed to download two

gliomas RNAseq data sets: GSE108474 (30) (Homo sapiens,

GPL570, a total of 550 patients with tumor samples), GSE72951

(31) (Homo sapiens, GPL14951, a total of 112 patient tumor

samples), and each dataset contained solid tumor samples of

patients diagnosed with glioma. From CGGA (Chinese Glioma

Genome Atlas) database (32) (http://www.cgga.org.cn/), the gene

expression data and clinical information (such as survival time and

status) of glioma patients were downloaded, with the data samples

being sourced from Homo sapiens. All patients with pathological

diagnoses of glioma were selected, and samples from patients

without clinical stage information and survival information were

excluded. Finally, two glioma patient datasets CGGA_693 (33) and

CGGA_325 (34) with 970 tumor samples were retained for this

study (Supplementary Table S1).
2.2 HRD score and neoantigen
score calculation

The HRD score was determined by calculating the sum of three

unweights components: loss of heterogeneity (LOH), telomeric

allele imbalance (TAI), and large-scale state transition (LST)

scores (35–37). The neoantigen load, defined as the number of

peptides anticipated to attach to major histocompatibility complex

(MHC) proteins, was calculated utilizing HLA types obtained from

RNA sequencing data. The neoantigen burden is quantified through
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the enumeration of single nucleotide variants (SNVs) and insertion-

deletion (Indel) mutations. Data pertaining to Homologous

Recombination Deficiency (HRD) scores, the neoantigen load

(encompassing both SNVs and Indels), as well as the mutation

rate (represented by the count of single nucleotide mutations) were

aggregated from the comprehensive pan-cancer Atlas investigation

(27). by Thorsson et al. (Supplementary Table S2). The glioma

patients within the top and bottom 20% brackets based on HRD

scores were compared in terms of their FGA, Mutation Count, and

MSI sensor scores. Subsequently, we identified the optimal

threshold for the HRD score in relation to patient prognosis,

which allowed us to categorize TCGA-GBMLGG patients into

subgroups with high and low HRD scores.
2.3 Identify the signature genes associated
with HRD score

The Limma R package was employed to analyze the difference

between patients with high and low HRD scores, and log2fold change

> 1 and P.adj < 0.05 were selected as cutoff values (38). The obtained

log2foldchange greater than 1 was considered as the highly expressed

genes in HRD, and the log2foldchange less than -1 was considered as

the low-expressed genes in HRD. The volcano plot and differential

ranking map served to illustrate the distribution of these genes, while

the difference heat map was utilized to display the variations between

the groups. Additionally, Spearman correlation analysis was

employed to investigate the associations among the genes.
2.4 Multi-machine learning to achieve one-
stop feature gene screening and
prognostic model construction

To establish a robust prognostic model for Gliomas-HRD (1),

we initially integrated 10 well-established algorithms, including

Random Forest (RSF), Least Absolute Shrinkage and Selection

Operator (LASSO), Gradient Boosting Machine, Survival Support

Vector Machine (survival-SVM), Supervised Principal Component

(SuperPC), Ridge Regression (Ridge), Cox Partial Least Squares

Regression (plsRcox), CoxBoost, Stepwise Cox, and Elastic Network

(Enet). Numerous studies have demonstrated the utility of

machine-learning algorithms in developing robust prognostic

models across various cancers (39–41). Notably, RSF, LASSO,

CoxBoost , and Stepwise Cox possess capabi l i t ies for

dimensionality reduction and variable selection. We leveraged

these features to integrate them with other algorithms, resulting

in a comprehensive suite of 76 machine-learning algorithm

combinations (2). Subsequently, the TCGA-GBMLGG dataset was

designated as the training cohort, and a set of 76 algorithms was

utilized to identify crucial genes and develop a prognostic model

using the previously identified feature genes (3). Finally, in the four

test cohorts (CGGA-693, CGGA-325, GSE108474, GSE72951), we

applied the features obtained from the training cohort to compute

the Glioma-HRD risk score for each individual cohort. After

evaluating the average C-index of the four test cohorts, we
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ultimately chose the most optimal consensus prognostic model for

Gliomas-HRD. Following this selection, we proceeded to calculate

its associated risk score, referred to as the HRD Score. The patients

were categorized into high-risk and low-risk groups with HRD

based on the median score value. The independent predictive value

of this risk score was assessed using survival analysis and

multivariate Cox analysis.
2.5 The performance of the HRD Score
was compared with other signatures

In order to assess the prediction efficacy of the HRD Score, we

conducted a comparison between the HRD Score and previously

documented prognostic models for glioma biomarkers, including

Tong_et.al, Cai_et.al, Tan_et.al, Zhang_et.al, Li_et.al. (42–46). In

terms of glioma prediction performance, the predictive power of

other biomarkers was compared with that of the HRD Score in four

test cohorts (CGGA-693, CGGA-325, GSE108474, GSE72951). The

codes and algorithms for the above five molecular markers were

derived from their original studies.
2.6 Prognostic power of HRD score in
pan-cancer

HRD plays a crucial role in cancer development. To investigate

the consistent prognostic strength of the HRD Score across different

types of tumors, we conducted a meta-analysis using three different

datasets: liver hepatocellular carcinoma (TCGA-LIHC), ovarian

cancer (TCGA-OV), and osteosarcoma (TARGET-OS). These

analyses, based on the patient’s overall survival, were performed

using the survival R package (https://CRAN.R-project.org/

package=survival). To validate the prognostic significance of the

HRD Score, Kaplan-Meier (K-M) curve analysis was utilized for

survival assessment.
2.7 Gene set enrichment analysis
enrichment analysis

We utilized the clusterProfiler R package to conduct GSEA. By

adopting this method, we successfully derived normalized

enrichment scores for individual gene sets, uncovering the

signaling pathways enriched within groups exhibiting both high

and low expression levels. (47). GSEA stands as a computational

technique designed to assess whether a predefined set of genes

exhibits a statistically significant difference between two distinct

biological states. It is widely employed to infer alterations in the

activity of pathways and biological processes across samples within

expression datasets. For the purpose of GSEA analysis, we acquired

the gene set “c2.cp.kegg.symbols.gmt” from the MSigDB database.

This analysis was instrumental in evaluating the influence of the

high-risk and low-risk groups on tumor-related pathways within

the Kyoto Encyclopedia of Genes and Genomes (KEGG). FDR<0.25

was considered in the results.
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2.8 Mutated gene oncogenic pathways,
TMB, and MSI analysis

To investigate the single-nucleotide polymorphisms (SNPs)

among different risk score categories in TCGA-GBMLGG patients,

we engaged the maftools package. This facilitated the analysis of

genes frequently mutated in patients belonging to both high- and

low-risk groups. To evaluate the interactions between drugs and gene

mutations, the drugInteractions function was used for analysis. The

goal was to identify genetic mutations associated with susceptibility

or resistance to specific drugs. In addition, biological oncogenic

pathway analysis was performed on the mutation data to

understand which biological oncogenic pathways are affected by

gene mutations. We used the OncogenicPathways and

PlotOncogenicPathways functions to achieve this goal. Meanwhile,

we calculated glioma patient TMB data through maftools R package.

Glioma patients with MSI - Sensor data is from the cBioportal

database (https://www.cbioportal.org).
2.9 Immune infiltration and differential
analysis of immunomodulators

CIBERSORT (accessible at https://cibersort.stanford.edu/),

utilizes the principle of linear support vector regression to

deconvolute the expression matrix of human immune cells into

specific subtypes (48). In our investigation, we applied the

CIBERSORT algorithm to evaluate the status of immune cell

infiltration within the combined datasets of different glioma

samples. Following this evaluation, the Wilcoxon test was utilized

to examine the disparities in the infiltration of each immune cell

type across various disease subgroups. P ≤ 0.05 was considered

statistically significant. Furthermore, we conducted an assessment

of the variance in expression of immune checkpoint (ICP) and

immunogenic cell death (ICD) modulators between the high and

low-risk groups, focusing specifically on ICP modulators such as

PD-L1 and TIM-3, as well as ICD modulators including CALR and

HMGB1. Subsequently, the ‘ESTIMATE’ R package was employed

to conduct an analysis, comparing the tumor immune score,

stromal score, and tumor purity across different groups.
2.10 Development and validation of
potential therapeutic agents

The tumor immune dysfunction and exclusion (TIDE) is a

methodology designed to simulate the mechanisms of tumor

immune evasion, employed for the evaluation of potential

responses to immune checkpoint blockade (ICB) therapy (49).

TIDE predictions were conducted on the website http://

tide.dfci.harvard.edu/, analyzing the differential percentage of

immune therapy response predictions between groups. The

IMvigor 210 immune therapy dataset was utilized to validate the

reliability of the TIDE results. Following that, we used resources

from the Cancer Treatment Response Portal (CTRP, available at

https://portals.broadinstitute.org/ctrp/, encompassing 835 cancer
frontiersin.org
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cell lines (CCLs) and 481 compounds) and the Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM, which includes

1448 compounds tested in 482 cancer cell lines). These databases

were utilized to identify potential therapeutic drugs specifically

tailored for glioma patients categorized within the high-risk HRD

group. Following the methodology outlined by Yang et al. (50) we

undertook a multi-step process to identify potential drugs for

glioma patients in the high-risk HRD group. (1) Initially, we

acquired drug sensitivity data for cancer cell lines (CCLs) from

the CTRP and PRISM repurposing datasets, as well as expression

data for CCLs from the Encyclopedia of Cancer Cell Lines (CCLE)

database. (2) It’s crucial to highlight that the CTRP and PRISM

datasets furnish area under the curve (AUC) values, where lower

AUC values signify increased sensitivity to the specific compound.

(3) Utilizing the Wilcoxon rank-sum test, a differential analysis of

drug responses between the high and low-risk groups based on their

respective HRD Scores was conducted. A threshold of log2FC > 0.03

was established to pinpoint compounds that exhibited low AUC

values, specifically within the high-risk HRD group. (4) Further

refining our search, we employed Spearman’s correlation to screen

for compounds demonstrating a negative correlation between AUC

value and HRD Score, setting a threshold of R < -0.1. (5) The final

step involved identifying potential drugs for patients in the high-

risk HRD group. This was achieved by finding the intersection of

compounds identified in steps (3) and (4).

The Connectivity Map (CMap; available at https://clue.io/) serves

as a gene expression database developed to capture the variations in

gene expression following the treatment of human cells with various

compounds, including small molecules. It establishes a

comprehensive repository linking compounds, changes in gene

expression, and disease, serving as a crucial resource for biological

applications in drug discovery and disease mechanism elucidation

(51, 52). Using differential expression profiles, we applied CMap to

identify potential glioma compounds, further validating our initial

findings from the CTRP and PRISM databases.
2.11 Molecular docking

A comprehensive analysis of CTRP and PRISM combined with

CMap was used to identify potential drugs with significant

association with gliomas. We download the molecular structure of

the drug from the PubChem database (https://pubchem.ncbi.nlm.

nih.gov/). The molecular structures of target proteins of potential

drugs were obtained from the Protein Data Bank (PDB) (http://

www.rcsb.org/). Based on the CB - Dock2 (https://cadd.labshare.cn/

cb-dock2/php/index.php) for the connection of potential drugs and

targets with receptor visualization. PubChem is the largest global

database for chemical information, allowing users to search for

chemicals using names, formulas, structures, and other identifiers.

The platform provides comprehensive information encompassing

chemical properties, biological activities, safety and toxicity data,

patent details, and references from scientific literature. PDB is

currently the most important 2.5-dimensional (three-dimensional

data expressed in a two-dimensional form) structure database of

biological macromolecules (proteins, nucleic acids and sugars). This
Frontiers in Immunology 05
database archives three-dimensional structures of biological

macromolecules—including proteins, polysaccharides, nucleic

acids, and viruses—elucidated through experimental techniques

such as X-ray single-crystal diffraction, nuclear magnetic

resonance, and electron diffraction. CB-Dock2 is an improved

version of the CB-Dock server for blind docking of protein

ligands, which integrates cavity detection, docking, and homology

template fitting into one. With the three-dimensional (3D)

structure of proteins and ligands, we could predict their binding

sites and affinities, enabling computer-assisted drug discovery.
2.12 Statistical analysis

In this study, we employed R software (version 4.3.1) to perform

all statistical analyses. To compare two groups, the Wilcoxon rank-

sum test was employed, whereas differences among more than two

groups were assessed using the Kruskal-Wallis test. For correlation

analyses, the Spearman correlation analysis was utilized. P < 0.05

was considered as the threshold of statistical significance.
3 Results

3.1 HRD score reflects the genomic
instability of patients and can be used as a
prognostic marker for glioma patients

The HRD algorithm calculates the HRD score based on three

foundational components: LOH, TAI and LST. To investigate the

association between HRD score and other markers of genomic

instability, including somatic mutation count, proportion of genomic

alterations, and MSI, glioma patients were ranked in ascending order

by HRD score, with those in the lowest 20% and the highest 20%

selected. The proportion of genomic alterations (Wilcoxon signed-rank

test, P=8.83e-16; Figure 1A), microsatellite instability (Wilcoxon

signed-rank test, P=7.71e-07; Figure 1B) and somatic mutation

counts (P=4.08e-08 by Wilcoxon signed-rank test, Figure 1C) were

significantly higher in the group with the highest 20% of HRD scores.

Furthermore, in the entire glioma cohort, we used the HRD score and

prognostic information to find the best cutoff value to classify patients

into the HRD high-expression group (HRD score > 4) and the HRD

low-expression group (HRD score < 4) (Figure 1D). Survival analysis

indicated that HRD score was a good prognostic indicator of Overall

Survival (log-rank test, P=0.026, Figure 1E), Disease Specific Survival

(log-rank test, P=0.026, Figure 1E). P=0.026, Figure 1F) and

Progression-Free Interval (log-rank test, P=0.018, Figure 1G) both

showed significant prognostic differences, with a significantly worse

prognosis in the HRD high expression group.
3.2 Multi-machine learning models based
on HRD signature genes

The identification of key HRD-related genes facilitates the

development of glioma-predictive biomarkers to further identify
frontiersin.org
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HRD-derived gliomas. In order to identify key genes, we, for HRD

to analyze differences between high and low expression groups,

select P.adj < 0.05, | LogFC | > 1 differentially expressed genes as

HRD-relevant features of the candidate. A total of 35 candidate

genes, of which the down-regulated genes have 34, and the up-

regulated gene has 1 (NKX6.3) (Figure 2A). The distribution of

LogFC values for these 35 candidate genes is shown in Figure 2B.

Compared with the up-regulated gene NKX6.3, the heatmap

illustrating the differential expression of the remaining 34 genes

displayed a clear difference in Z-scores between groups with high

and low HRD expression (Figure 2C). Subsequently, we performed

a correlation analysis of these 35 candidate genes, and the results

indicated that most of the genes had significant correlations

(Figure 2D). We then focused on the construction of the best

prognostic model, as shown in Figure 2E, the StepCox[both] and

Lasso combination with the highest mean C-index (0.764) among

the 76 machine learning algorithms was selected as the final model.
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3.3 Prognostic model establishment based
on StepCox[both]+Lasso machine
learning combination

According to the C-index comparison of the above 76 machine

learning combination models, we selected the combination of the

optimal model StepCox[both] and the Lasso algorithm to construct

the HRD-related prognostic prediction model for glioma patients.

The 35 key genes were further screened by the StepCox[both]

algorithms, and the screening results were used to construct the

Lasso prognostic model. We used Lasso analysis to reduce the

dimension (Figure 3A), and multivariate Cox regression analysis to

finally select and obtain 7 key genes with the best model (Figure 3B).

The median expression of these 7 key genes was used as the cut-off

value to divide the subgroups, and we performed prognostic analysis

on them respectively. The respective K-M survival curves are shown

in Supplementary Figures S2A–G, among which NKX6.3, PITX2,
FIGURE 1

Significance of HRD score. (A) Violin plot of genomic alteration scores (Wilcoxon signed-rank test) for the top 20% of the HRD-score group and the
bottom 20% of the HRD-score group; (B) violin plot of MSI in the top 20% group and the bottom 20% group of HRD score (Wilcoxon signed-rank
test); (C) Violin plot of somatic mutations in the top 20% group of HRD score and the bottom 20% group of HRD score. (Wilcoxon signed-rank test);
(D) Based on the prognosis of patients in the TCGA-GBMLGG cohort, the optimal cut-off value of HRD high and low score groups was divided; (E)
K-M estimates of overall survival in patients with tumors grouped by HRD score in the TCGA-GBMLGG cohort; (F) K-M estimates of DSS according
to HRD score in the TCGA-GBMLGG cohort for patients with tumors grouped by HRD score; (G) K-M estimates of PFI for patients with tumors
grouped by HRD score and by HRD score in the TCGA-GBMLGG cohort. (HRD, Homologous recombination deficiency; K-M, Kaplan-Meier; TCGA,
The Cancer Genome Atlas; GBM, Glioblastoma; LGG, Low-grade glioma; DSS, Disease-specific Survival; PFI, Progression-free Interval).
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and CD70 genes showed significant prognostic differences. Based on

the penalty coefficients of important signature genes calculated by

multivariate Cox analysis (Supplementary Table S3), the gene

expression levels were multiplied by their respective coefficients
Frontiers in Immunology 07
and subsequently summed up to derive a risk score, which was

calculated for every individual sample. On the basis of the patient’s

risk score and gene expression values, we generated a risk-factor heat

map (Figure 3C). The K-M curve showed that patients in the high-
FIGURE 2

Selection of key genes and prognostic models. (A) Volcano map of differentially expressed genes between high and low HRD expression groups in
the TCGA-GBMLGG dataset; (B) LogFC value distribution of differentially expressed genes in the high and low HRD expression groups in the TCGA-
GBMLGG dataset; (C) Expression heatmap of 35 key genes between HRD high and low expression groups in TCGA-GBMLGG dataset; (D)
Correlation heat map of 35 key genes between HRD high and low expression groups in TCGA-GBMLGG dataset; (E) C-index heatmap of 76
machine learning model combinations based on 35 key genes in validation sets CGGA-693, CGGA-325, GSE108474, and GSE72951. (HRD,
Homologous recombination deficiency; TCGA, The Cancer Genome Atlas; GBM, Glioblastoma; LGG, Low-grade glioma; CGGA, Chinese Glioma
Genome Atlas).
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risk group had a significantly worse prognosis, and there was a

significant difference in survival between the high and low-risk

groups (log-rank p <0.0001) (Figure 3D), which was validated in

three additional datasets (Supplementary Figures S1A–C).

Subsequently, we evaluated the independent prognostic power of

the HRD risk score combined with other clinical information.

Multivariate Cox regression analysis indicated that, similar to

patient age, the HRD risk score could be used as an independent

predictor of the prognosis of glioma patients. Additionally, we

observed significant differences in age and gender characteristics

when comparing the high-risk and low-risk groups categorized

based on their risk scores. Specifically, the high-risk group tended

to comprise elderly male patients (Figure 4A).
Frontiers in Immunology 08
3.4 Comparison of HRD score with other
prognostic models and evaluation of
generalization ability

To validate the prognostic power of the HRD Score model, the

predictive performance of the HRD Score was compared with

that of currently published prognostic prediction models for

gliomas. The results showed that the predictive performance of

the HRD Score was high and stable in the validation sets CGGA-

693, CGGA-325, GSE108474, and GSE72951 (Figure 4B).

The average C-index of the model was significantly better than

that of the other models (Figure 4C). The phenomenon of HRD

has a significant effect on tumor progression not only in glioma
FIGURE 3

Development and validation of a risk model for HRD. (A) Lasso regression analysis showed that the number of variables corresponding to the best
lambda value was 7. (B) Risk score distribution and survival status of glioma patients based on the Lasso model; (C) Heat map of characteristic gene
expression based on the Lasso model; (D) The KM curve of high and low-risk patients in the training set TCGA-GBMLGG showed that the prognosis
of patients in the high-risk group was significantly worse; (E) Forest plot of independent prognostic value of HRD risk score evaluated by multivariate
Cox regression analysis. (K-M, Kaplan-Meier; TCGA, The Cancer Genome Atlas; GBM, Glioblastoma; LGG, Low-grade glioma).
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but also in other tumor types. To explore whether the prognostic

value of HRD Score can be generalized, we further evaluated the

prognostic performance of HRD Score in TCGA-LIHC

(hepatocellular carcinoma), TCGA-OV (Ovarian cancer), and

TARGET-OS (osteosarcoma) datasets. The results of the KM

survival curve showed that the HRD Score had a significant

prognostic difference not only in glioma patients but also in HCC

(P=0.002), OS (P=0.01), and EOC (P<0.001) patients.
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3.5 Pathway enrichment and genomic
features comparison between HRD
high-risk and low-risk groups

To investigate the difference in signal pathway enrichment

between the high and low-risk groups of HRD, GSEA was

performed. The results indicated that the top five gene pathways

significantly enriched in the high-risk group of HRD were cardiac
frontiersin.or
FIGURE 4

Characteristics of the HRD risk score. (A) Age and sex differences between HRD high and low-risk groups; (B) Radar plot of C-index distribution of
HRD-Score prognostic prediction model and other published prognostic prediction models; (C) HRD Score and C-index heat map of other
published prognostic prediction models; (D) The KM curve of the hepatocellular carcinoma dataset TCGA-LIHC showed that the prognosis of
patients in the high-risk group was significantly worse (P=0.002). (E) The KM curve of Target-OS high and low-risk patients showed that the
prognosis of the high-risk group was significantly worse (P=0.01). (F) The KM curve of the high - and low-risk patients in the ovarian cancer dataset
TCGA-OV showed that the prognosis of the high-risk group was significantly worse (P<0.001). (G) HRD high-risk group pathway enrichment; (H)
HRD low-risk group pathway enrichment. (HRD, Homologous recombination deficiency; KM, Kaplan-Meier).
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muscle contraction, drug metabolism, other enzymes, long-term

potentiation, proximal tubule bicarbonate induction, and retinol

metabolism (Figure 4G). The top five gene pathways significantly

enriched in the low-risk group of HRD were the chemokine signaling
Frontiers in Immunology 10
pathway, cytokine cytokine receptor interaction, graft versus host

disease, hematopoietic cell lineage, and toll-like receptor signaling

pathway (Figure 4H). We then further evaluated the impact of HRD

risk score on the changes in the level of genetic variants, including
FIGURE 5

Genomic differences between high - and low-risk rroups for HRD. (A) Mutational profiles of common tumorigenic driver genes among patients in
the high-risk group. The mutation information of each gene in each sample is shown in the waterfall plot, and various colors indicate different
mutation types. The bar above the legend shows the mutation load; (B) Mutational profiles of common tumorigenic drivers among patients in the
low-risk group. The mutation information of each gene in each sample is displayed in the waterfall plot, and various colors indicate different
mutation types. The bar above the legend shows the mutation load; (C) The enrichment bar chart of the mutant gene patent drug pathway based on
the mutation data of glioma patients. The color depth and the length of the bar chart represent the number of mutant genes enriched in this
pathway. For pathways with more than 5 mutant genes enriched, only the top five mutant genes are shown; (D) Oncogenic pathway enrichment bar
chart based on mutation data of glioma patients, the left side shows the proportion of pathways affected by mutant genes in a specific pathway, and
the right side shows the proportion of affected patient samples; (E) Violin plot of the difference in tumor mutation burden between high and low-risk
groups; (F) Violin plot of the difference in MSI between high and low-risk groups. (MSI, Microsatellite instability).
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SNPS and copy number variations (CNVs), in glioma patients. The

results of single nucleotide mutation analysis of common driver genes

during tumorigenesis showed that the genes with high mutation

levels were similar or close between patients with high scores of the
Frontiers in Immunology 11
HRD-related model and patients with low scores. However, the

proportion of gene mutations remained predominantly higher in

the high-risk group, particularly noticeable within the top five most

frequently mutated genes (Figures 5A, B). Based on the glioma
FIGURE 6

Characteristics of the immune microenvironment between high-risk and low-risk groups of HRD. (A) Heat map of infiltration levels of 28 immune
cells between HRD high and low-risk groups. (B) Box plot of the differences in infiltration levels of 28 immune cells between HRD high and low-risk
groups; (C) Box plot of differences in ICD modulator expression levels between HRD high and low-risk groups; (D) Box plot of the differences in
expression levels of ICP modulators between HRD high and low-risk groups; (E) Violin plot of ESTIMATE score differences; (F) Violin plot of the
differences in immune scores; (G) Violin plot of matrix score difference; (H) Violin plot of the difference in tumor purity. * represents p < 0.05, **
represents p < 0.01, and **** represents p < 0.001.
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patient’s mutation data, we identified gene mutations associated with

specific drug sensitivity or resistance, showing that glioma patient

mutant genes are closely linked to multiple proprietary drug

pathways (Figure 5C). In addition, we identified oncogenic

pathway enrichment of mutated genes in glioma patients, with the

highest enrichment in the RTK-RAS signaling pathway, an important

cell signaling pathway. It holds a crucial function in various biological
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processes, including cell growth, differentiation, survival, and

proliferation (Figure 5D). A differential analysis of the differential

TMB (Figure 5E) and the MSI sensor score (Figure 5F) that

characterized genomic instability among the patients in the high

and low-risk groups showed that the corresponding metrics were

notably elevated in the high-risk group, indicating a more

pronounced genomic instability in the high-risk group.
FIGURE 7

Immunotherapy and drug-sensitivity analysis. (A) Bar graph of percentage difference in immune response between high and low-risk groups of HRD
predicted by TIDE; (B) Violin plot of the difference in efficacy based on the IMvigor210 bladder cancer Immunotherapy cohort; (C) Lollipop plot of
correlation coefficients and p-values between seven small molecule compounds and HRD scores based on CTRP drug-susceptibility data; (D)
Boxplot of the estimated AUC values of seven small molecule compounds between high and low-risk groups based on CTRP drug susceptibility
data; (E) Lollipop plot of correlation coefficients and p-values between six small molecule compounds and HRD scores derived from PRISM drug-
susceptibility data; (F) Boxplots of the estimated AUC values between the high and low-risk groups for the seven small molecule compounds based
on PRISM drug susceptibility data. (HRD, Homologous recombination deficiency; TIDE, Tumor immune dysfunction and exclusion; CTRP, Cancer
treatment response portal; AUC, Area Under the Curve; PRISM, Profiling relative inhibition simultaneously in mixtures).
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Furthermore, significant statistical differences were found in both

mutation count (Supplementary Figure S2H) and genomic alteration

score (Supplementary Figure S2I) between the two groups. The high-

risk group exhibited higher values in terms of mutation count and

genomic alteration score, underscoring the genomic instability

characteristic of the high-risk HRD group.
3.6 Analysis of differences in immune
infiltration and immunomodulators
between high and low-risk groups of HRD

Immune cells are important in the development and

progression of glioma. We evaluated the status of 28 immune cell

distributions by ssGSEA and compared the abundance of different

immune cell distributions by Wilcoxon to evaluate the difference in

immune cell infiltration between the high and low-risk groups of

HRD, which was more pronounced in the low-risk group

(Figure 6A). Figure 6B shows the distribution differences of

different immune cells between the high and low risk groups of

HRD. In general, the low-risk group of HRD had a higher level of

immune infiltration. Previous research has demonstrated that ICPs

and ICD modulators significantly influence host anti-tumor

immunity, impacting the effectiveness of mRNA vaccines in turn.

And there is an important link between homologous recombination

deficiency and immune regulation. Therefore, we evaluated the

differential expression of ICP and ICD modulators in the HRD high

and low-risk groups. Most ICD modulators were statistically

significant upregulated in the low-risk group (Figure 6C), and

among ICP modulators, the low-risk group remained statistically

significant upregulated (Figure 6D). This suggests that patients in

the low-risk group could potentially respond better to

immunotherapy, while those in the high-risk group may tend to

have immune-tolerant subtypes. ESTIMATE analysis was

performed to explore the relationship between the tumor immune

score, stroma score and tumor purity in two groups. The

ESTIMATE score was significantly higher in the low-risk group

of HRD (Figure 6D), with both the immune score (Figure 6E) and

the stroma score (Figure 6F) being higher in the low-risk group, and

the tumor purity (Figure 6G) being higher in the high-risk group.

This observation aligns with the findings from the previous ssGSEA

analysis. In general, the HRD low-risk group exhibited higher levels
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of immune cell infiltration, and this subgroup of patients was more

suitable for immunotherapy.
3.7 Immunotherapy analysis and
identification of potential small
molecule compounds

To assess the difference in response to immunotherapy between

the high and low-risk groups of HRD, we used the TIDE approach

to predict the response to immunotherapy in subgroups that

favored the low-risk group (Figure 7A). To confirm the reliability

of our results, we performed differential analyses among patients

with different immune responses in the IMvigor210 bladder cancer

immunotherapy data set. Among them, CR/PR represents complete

or partial response, and SD/PD represents stable or progressive

disease. The risk score was significantly lower in the CR/PR group,

this suggests that patients in the low-risk group may have a greater

likelihood of responding positively to immunotherapy (Figure 7B).

To find potential therapeutic agents that are effective in glioma

patients, we used CTRP and PRISM combined with CMap

comprehensive analysis to search for potential small-molecule

drugs. We utilized data from CTRP and PRISM to identify drugs

that could potentially be more effective for patients classified in the

high-risk group, this resulted in seven CTRP-derived drugs

(apicidin, ABT−737, BMS−754807, panobinostat, ouabain, RITA,

and oligomycin A) and six prismatic drugs Derivatives (bephenium

−hydroxynaphthoate, tropisetron, demecarium, aspirin, RGFP966,

and dihydroartemisinin). The estimated AUC values for these drugs

displayed a statistically significant negative correlation with the

HRD score and were notably lower in the high-risk group

(Figures 7C–F). Next, based on the differential expression profiles

between two groups of glioma patients, the CMap tool was further

applied to identify candidate compounds in the high-risk group of

gliomas. By cross-referencing the findings from CTRP and PRISM,

we identified six potential candidate compounds: apicidin, a histone

deacetylase inhibitor; ABT−737, a Bcl-2 family inhibitor; BMS

−754807, a tyrosine kinase inhibitor The inhibitor ouabain and

the histone deacetylase (HDAC) inhibitors panobinostat and RITA

(Reactivating p53 and Inducing Tumor Apoptosis). The

corresponding targets of action and their mechanisms of action

(MOA) are shown in Table 1. Panobinostat, achieving a CMap
TABLE 1 Selected 6 therapeutic drugs, targets, and mechanisms of action in the Cmap database.

Score ID Name Description Target MOA

84.92 BRD-K02130563 panobinostat HDAC inhibitor HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, HDAC8, HDAC9 HDAC inhibitor

66.09 BRD-K13049116 BMS-754807 IGF-1 inhibitor IGF1R, AKT1 IGF-1 inhibitor

58.51 BRD-A68930007 ouabain ATPase inhibitor
ATP1A1, ATP1A2, ATP1A3, ATP1A4, ATP1B1, ATP1B2, ATP1B3,
ATP1B4, FXYD2

ATPase inhibitor

52.27 BRD-K56301217 ABT-737 BCL inhibitor BCL2, BCL2L1, BCL2L2 BCL inhibitor

66.32 BRD-K64606589 apicidin HDAC inhibitor
HDAC1, HDAC10, HDAC11, HDAC2, HDAC3, HDAC4, HDAC5,
HDAC6, HDAC7, HDAC8, HDAC9

HDAC inhibitor

78.87 BRD-K00317371 RITA MDM inhibitor MDM2, TXNRD1, TXNRD2 MDM inhibitor
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score of 84.92, exhibited pronounced sensitivity to glioma patients,

highlighting its potential as a therapeutic option for those in the

high-risk glioma group.
3.8 Molecular docking

We will get the above analysis of these six against each other

with receptors based on CB - Dock2 (https://cadd.labshare.cn/cb-

dock2/php/index.php) for the connection of potential drugs and

receptor molecules with the target analysis and visualization. These

include: ABT−737 interacting with BCL2 ligand receptor

(Figure 8A), apicidin interacting with the HDAC1 ligand receptor

(Figure 8B), BMS−754807 interacting with IGF1R ligand receptor

(Figure 8C), panobinostat interacts with HDAC1 ligand receptor

(Figure 8D), RITA interacts with MDM2 ligand-receptor
Frontiers in Immunology 14
Interaction pair (Figure 8E), ouabain and ATP1A1 ligand-

receptor interaction pair (Figure 8F).
4 Discussion

The HRD score, deriving from the aggregation of LOH, TAI, and

LST, has previously been recognized as a significant indicator in

several types of cancer (35–37), notably, ovarian cancer patients with

HRD have shown enhanced responses to platinum-based

chemotherapy and PARPi (53). Additionally, the HRD score has

demonstrated its potential in predicting the response of patients with

triple-negative breast cancer to chemotherapy, and HRD-related

signatures also hold potential for prognostic prediction and drug

sensitivity assessment in gastric cancer patients (54, 55). In the

context of glioma, the significance of HRD has not been extensively
FIGURE 8

Schematic diagram of the molecular docking of six candidate drugs and their receptor interaction pairs. (A) Abt-737 interacts with BCL2 ligands; (B)
Apicidin interacts with HDAC1 ligands; (C) BMS-754807 interacts with IGF1R ligands; (D) Phenobinostat interacts with HDAC1 ligands; (E) ITA
interacts with MDM2 ligand-receptor; And (F) Ouabain interacts with ATP1A1 ligand-receptor. The left side represents the schematic diagram of the
positions of the compound and the receptor protein skeleton, and the right side represents the molecular docking details of the ligand-receptor
interaction pair.
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explored. Through a comprehensive data-driven analysis, we

discerned that patients with glioma can be categorized into high

and low-risk cohorts according to their HRD scores. Our research

enabled the identification of potential HRD-associated signature

genes and facilitated the development of a prognostic model to

anticipate patient outcomes. We also investigated the immune

infiltration, immunomodulators, and immune responses in glioma,

offering an additional dimension to comprehend the implications of

HRD in glioma. Furthermore, guided by our risk model, we identified

drugs that might exhibit heightened efficacy against glioma and

undertook molecular docking analyses, paving the way for

innovative therapeutic strategies for glioma.

In this study, a significant association between elevated HRD

scores and genomic instability was found. Such genomic instability

is known to play a critical role in the progression of various cancers,

contributing to tumor heterogeneity, resistance to therapy, and

poor prognosis (56–59). The consistency of these markers with the

HRD score further underscores the utility of the HRD score as a

comprehensive metric for genomic instability. The prognostic

significance of the HRD score in predicting patient outcomes was

another noteworthy finding. By discerning an optimal cutoff value,

the study effectively stratified glioma patients into HRD high and

low-expression groups. The survival analysis, including OS, DSS,

and PFI, suggested that patients with a higher HRD score faced a

significantly worse prognosis. This is in line with previous studies in

other malignancies where genomic instability was linked to

aggressive tumor behavior and diminished survival rates (59, 60).

Based on the previous findings, we constructed an HRD-related

prognostic model with the utilization of StepCox[both] and Lasso.

The initial identification of 35 genes was narrowed down to a more

streamlined set of 7 genes, including NKX6.3, PITX2, ZAR1, CD70,

HOXA3, HOXB13, and HOXC9, which signifies the power of

combining two algorithmic approaches. Among these 7 HRD-

related genes, NKX6.3 was reported to be commonly observed

with diminished or absent expression in gastric cancer, acts as a

tumor-suppressor, inhibiting cell proliferation and promoting

apoptosis. Studies indicate that the inhibition of PITX2

diminished the viability of liver cancer cells and decreased the

capabilities of cell proliferation, migration, and invasion while

enhancing cell-apoptosis (61). Moreover, PITX2 has been

identified as a poor prognostic biomarker in breast cancer,

colorectal cancer, and head and neck squamous cell carcinoma

(62–64). Our study found for the first time that these two genes, as

HRD-related genes, also play an important role in the prognosis and

treatment of glioma. CD70 contributes to the recruitment and

maintenance of the immunosuppressive microenvironment in

GBM, concurrently facilitating pathways that promote tumor

growth, it emerges as a promising immunotherapeutic target for

recurrent GBM (65). This also hints at the possibility and rationality

of our immune-related analysis based on the constructed risk

model. When it comes to three homeobox genes, recent

investigations have elucidated that some of them may act as

prognostic biomarker associated with a poor outcome in glioma

patients, and they could regulate cell proliferation, migration,

autophagy and tumor progression of glioma (66–68). These

studies provide evidence supporting the prognostic utility of our
Frontiers in Immunology 15
risk model. and our analysis also identifies promising areas for the

advancement of future targeted therapeutics.

The paramount significance of our risk model rests in its

superior predictive performance against pre-existing prognostic

models for glioma in several datasets (42–46). With consistent

results across diverse validation sets, its robustness stands stable.

Current study further bridges the transitional gap, highlighting the

risk model’s relevance not just in glioma but also in hepatocellular

carcinoma, osteosarcoma, and epithelial ovarian cancer. This

suggests a broader oncological relevance, potential ly

revolutionizing the management of various malignancies by

providing a universally applicable prognostic tool.

Based on the constructed risk model, pathway enrichment and

comparison of genomic signatures in groups rated as high risk and

low risk were performed. It is noteworthy that the low-risk group’s

enrichment in pathways like chemokine signaling and Toll-like

receptor signaling suggests an immune response component,

potentially indicating an immune-active tumor microenvironment

(69–71). Such insights could offer therapeutic opportunities

leveraging immunotherapy strategies. The evaluation of genetic

variants underscores a profound level of genomic instability in

the high-risk group. The elevated TMB, MSI sensor score, and

overall genomic alteration scores in the high-risk patients align with

the aggressive phenotype of their tumors. Genomic instability often

equates with increased therapeutic vulnerabilities. However, it also

poses challenges as tumors might rapidly adapt and develop

resistance to treatments (57). The similarity in mutated driver

genes across risk groups, yet with a higher percentage of gene

mutations in the high-risk group, emphasizes this instability and

suggests potential treatment targets for personalized therapies.

In the current study, we established that patients categorized as

low-risk exhibited elevated levels of immune cell infiltration,

suggesting that those classified as low-risk had a ‘hot’ and

suppressed tumor immune microenvironment (TIME). The tumor

microenvironment has emerged as a focal point of modern oncology,

both as a prognostic marker and a therapeutic target. The findings of

differential immune infiltration reinforce the evolving understanding

of glioma’s complex relationship with host immunity. A ‘hot’ tumor,

characterized by robust immune cell infiltration, has often been

linked with better therapeutic outcomes, especially in the era of

immunotherapy. Our findings, indicating pronounced immune cell

presence in the low-risk group, not only provide a prognostic marker

but also suggest potential therapeutic avenues, this is consistent with

previous literature reports that pre-existing antitumor immunity is

beneficial to tumor patient’s survival (72, 73). Conversely, high-risk

group patients with “cold” TIME might be considered appropriate

candidates for the administration of immunostimulatory agents like

tumor vaccines, with the aim of enhancing the infiltration of tumor-

targeting immune cells. As the patients in the high-risk group have

higher HRD scores, PARP inhibitors could also be considered in

combination therapy (74). The result of the upregulation of

immunogenic cell death modulators in the low-risk group further

fuels the hypothesis of these tumors being more amenable to

immunotherapeutic strategies.

The observed variation in the effectiveness of immunotherapy

across individuals classified as high and low risk highlights the
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importance of genetic factors in influencing the success of therapeutic

interventions. The TIDE approach suggests a favorable response to

immunotherapy in the low-risk group, corroborated further by the

IMvigor210 bladder cancer dataset where the low-risk score was

predominant among responders. This finding positions the HRD

low-risk group as a potential beneficiary of immunotherapeutic

interventions. Yet, the exploration of targeted small molecule

compounds for the high-risk group was also performed. Leveraging

a combination of CTRP, PRISM, and CMap comprehensive analyses,

a suite of potential therapeutic agents was identified, each with

distinct mechanisms of action. Notably, drugs like apicidin, a

histone deacetylase inhibitor, and BMS−754807, a tyrosine kinase

inhibitor, emerged as potential candidates, with panobinostat,

another histone deacetylase inhibitor, being spotlighted due to its

high sensitivity score. This compound functions as an epigenetic

modulator by effectively the activity of histone deacetylase, hence

leading to an increase in the acetylation of DNA-histone complexes.

According to Van Veggel et al., this intervention obstructs many

signals associated with tumor growth and progress, ultimately

triggering cell apoptosis in specific cells (75). In addition, it has

been shown in previous studies that increased histone acetylation

renders cancer cells more susceptible to the impact of alkylating

agents, such as TMZ (76).

The subsequent molecular docking analysis, utilizing CB-

Dock2, provides a deeper understanding of the molecular

interactions underpinning the efficacy of these compounds. For

instance, ABT−737’s interaction with the BCL2 ligand-receptor

reaffirms its established role as an apoptosis modulator in cancer

therapy (77, 78). Given that BCL2 overexpression has been

implicated in various cancer types as a driver of resistance, the

drug’s efficacy in high-risk glioma patients underscores the

importance of apoptosis modulation in this subgroup (79, 80).

Similarly, BMS−754807’s interaction with the IGF1R ligand-

receptor resonates with literature indicating the IGF signaling

pathway ’s involvement in tumorigenesis and resistance

mechanisms. IGF1R inhibitors have recently gained traction in

clinical trials for diverse malignancies, and their potential role in

glioma, especially high-risk subsets, opens avenues for targeted

therapeutic strategies (81–83). These findings offer mechanistic

insights that could guide the optimization and application of

these compounds in clinical settings.

There still exist several limitations within the scope of this

study. Further preclinical investigations in glioma are needed to

clarify the biological significance of genes in the risk model. The

outcomes, including the predictive significance of the risk model

and the identified possible small molecule drugs, are significantly

dependent on the datasets employed. The potential impact of

variations in data quality, processing methods, and inherent

biases within datasets on the generalizability of the findings

should be considered. Moreover, the small molecule compounds

that have been found and their potential efficacy are derived from

computer evaluations. Clinical trials play a crucial role in

establishing the safety, effectiveness, and therapeutic capacity of

interventions in individuals receiving medical treatment. In our

following steps, efforts will be made to address these limitations

through experimental investigation.
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In this study, we delineated the significant prognostic

capabilities of the HRD score in stratifying glioma patients into

distinct risk categories. By diving deeper into the genetic intricacies

of these risk-based groups, a set of signature genes was identified,

enabling the construction of a robust prognostic model tailored for

glioma. This innovative approach offers a leap forward in

individualized patient management, paving the way for more

precise therapeutic interventions. Furthermore, our findings shed

light on the pronounced differences in immune infiltration

and regulation between the risk groups, offering valuable insights

into potential immunotherapeutic strategies. The drug screening

and molecular docking analyses also unveiled promising

therapeutic agents, suggesting novel avenues for glioma

treatment. Overall, our research has furnished both theoretical

foundations and practical avenues for understanding and

combating glioma more effectively.
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