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Abstract
In this article, we introduce a new family of lattice polytopes with rational linear preci-
sion. For this purpose, we define a new class of discrete statistical models that we call
multinomial staged tree models. We prove that these models have rational maximum
likelihood estimators (MLE) and give a criterion for these models to be log-linear.
Our main result is then obtained by applying Garcia-Puente and Sottile’s theorem
that establishes a correspondence between polytopes with rational linear precision
and log-linear models with rational MLE. Throughout this article, we also study the
interplay between the primitive collections of the normal fan of a polytope with ratio-
nal linear precision and the shape of the Horn matrix of its corresponding statistical
model. Finally, we investigate lattice polytopes arising from toric multinomial staged
tree models, in terms of the combinatorics of their tree representations.
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1 Introduction

In geometricmodelling, pieces of parametrised curves and surfaces are used as building
blocks to describe geometric shapes in 2D and 3D. Some of the most widely used
parametric units for this purpose are Bézier curves, triangular Bézier surfaces, and
tensor product surfaces. These pieces of curves and surfaces are constructed using
a set of polynomial blending functions defined on the convex hull of a set of points
A , together with a set of control points. Taking as inspiration the theory of toric
varieties and the form of the blending functions for the previous examples, Krasauskas
introduced the more general notion of a toric patch whose domain is a lattice polytope
P ⊆ R

d [15]. The blending functions, {βw,m : P → R}m∈A , of a toric patch are
constructed from the set of lattice pointsA :=P ∩Z

d and a vector of positive weights
w associated with each point in A .

A significant difference between an arbitrary toric patch and one of the triangular
or tensor product patches is that its blending functions do not necessarily satisfy the
property of linear precision. A collection of blending functions {βm : P → R}m∈A
has linear precision if for any affine function Λ : R

d → R,

Λ(u) =
∑

m∈A
Λ(m)βm(u), for all u ∈ P.

Thus, linear precision is the ability of the blending functions to replicate affine func-
tions and it is desirable from the practical standpoint [12]. To decide if the collection
of blending functions associated with (P, w) has linear precision it is necessary and
sufficient to check that the identity p = ∑

m∈A βw,m(p)m holds for all p ∈ P [12,
Proposition 11], in this case we say the pair (P, w) has strict linear precision. If there
exist rational blending functions {β̂w,m : P → R}m∈A that are nonnegative on P ,
form a partition of unity, parametrise the same variety XA ,w as the blending functions
{βw,m : P → R}m∈A , and also have linear precision, we say the pair (P, w) has
rational linear precision.

It is an open problem, motivated by geometric modelling, to characterise all pairs
(P, w) that have rational linear precision in dimension d ≥ 3 [5, 15]. The classification
of all such pairs in dimension d = 2 is given in [4].

Garcia-Puente and Sottile studied the property of rational linear precision for toric
patches by associating a scaled projective toric variety XA ,w to the pair (P, w) [12].
The variety XA ,w is the image of the map [wχ ]A : (C∗)d → P

n−1 defined by
t �→ [w1tm1 : w2tm2 : . . . : wstmn ] where A = {m1, . . . , mn}. One of their main
results states that a pair (P, w) has rational linear precision if and only if the variety
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XA ,w, seen as a discrete statistical model, has rational maximum likelihood estimator
(MLE). This result establishes a communication channel between geometricmodelling
and algebraic statistics. Thus, it is natural to use ideas fromAlgebraic Statistics to study
the property of rational linear precision.

Models with rational MLE are algebraic varieties that admit a parametrisation
known as Horn uniformisation [11, 14]. This parametrisation depends on a Horn
matrix H and a coefficient for each column of H . In their recent study of moment
maps of toric varieties [5], Clarke and Cox go one step further in strengthening the
relationship between pairs (P, w) with rational linear precision and models XA ,w

with rational MLE by using Horn matrices to characterise all pairs (P, w) that have
strict linear precision. They propose the use of Horn matrices to study polytopes
with rational linear precision and state several questions and conjectures about the
relationship between the Horn matrix of XA ,w and the primitive collections of the
normal fan of P .

In this article, we study the property of rational linear precision of pairs (P, w)

from the point of view of Algebraic Statistics. Our main contribution is Theorem 4.1,
which introduces a new family of polytopes (with associated weights) that has ratio-
nal linear precision. We construct this family from a subclass of discrete statistical
models introduced in Sect. 4 that we call multinomial staged trees. Looking at specific
members of this family in 3D, we settle some of the questions raised in [5] related to
Horn matrices and primitive collections.

This paper is structured as follows: In Sects. 2.1–2.4 we provide background mate-
rial on rational linear precision, discrete statisticalmodelswith rationalMLE, andHorn
matrices. In Sect. 2.5, we state Questions 2.1 and 2.2 which guided our investigations
related to Horn matrices and primitive collections. These questions are followed by a
quick outline referring to the places in this article where they are addressed. In Sect. 3,
we characterise the shape of the Horn matrix for pairs (P, w) in 2D. We also present
a family of pairs (P, w) in 3D that has rational linear precision and explain several
aspects of this family that relate to Questions 2.1 and 2.2. In Sect. 4.1, we define
multinomial staged tree models, we prove they have rational MLE in Sect. 4.6 and
we characterise the subclass of these models that are toric varieties in Sect. 4.5. These
results lead to our main theorem, Theorem 4.1. Finally, in Sect. 5, we show that the
examples from Sect. 3 are all multinomial staged trees and prove our conjectures about
the relationship between the combinatorics of the trees and primitive collections.

2 Preliminaries

Weassume the reader is familiarwith introductorymaterial on computational algebraic
geometry and toric geometry at the level of [7] and [8].

2.1 Notation and Conventions

We consider pairs (P, w) where P is a d-dimensional lattice polytope in R
d , Z

d

is the fixed lattice, A = P ∩ Z
d = {m1, . . . , mn} and w is a vector of positive
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weights indexed by A . Fix n1, . . . , nr to be the inward facing primitive nor-
mal vectors of P corresponding to the facets F1, . . . , Fr of P and let a1, . . . , ar

be the corresponding integer translates in the facet presentation of P given by
P = {p ∈ R

d : 〈p, ni 〉 ≥ −ai ,∀i ∈ {1, . . . , r}}. The lattice distance to the face
Fi evaluated at p ∈ R

d is

hi (p) = 〈p, ni 〉 + ai , i = 1, . . . , r ,

we record each of these values in the vector h(p) = (h1(p), . . . , hr (p)) The value
hi (m j ) is the lattice distance from the j-th lattice point to the i-th facet. The matrix
with i j entry equal to hi (m j ) is the lattice distance matrix ofA .Wewill often consider
products of linear forms or variables whose exponents are given by vectors. For vectors
v = (v1, . . . , vN ), w = (w1, . . . , wN ) we use vw to denote the product

∏N
i=1 v

wi
i and

use the convention that 00 = 1. Common choices for v,w in the upcoming sections
are the vectors t = (t1, . . . , td), h(p) and h(m), m ∈ A . If P is a polytope and a ≥ 1
is an integer, a P denotes its dilation.

2.2 Rational Linear Precision

In this section, we follow closely the exposition in [5]. Amore elementary introduction
to this topic is available in [6, Chapter 3].

Definition 2.1 Let P ⊆ R
d be a full-dimensional polytope and let w = (w1, . . . , wn)

be a vector of positive weights.

1. For 1 ≤ j ≤ n and p ∈ P , β j (p):=h(p)h(m j ) = ∏r
i=1 hi (p)hi (m j ).

2. The functions βw, j :=w jβ j/βw are the toric blending functions of (P, w), where
βw(p):= ∑n

j=1 w jβ j (p).

3. Given control points {Q j }1≤ j≤n ∈ R
�, the toric patch F : P → R

� is defined by

p �→ 1

βw(p)

n∑

j=1

w jβ j (p)Q j . (1)

In part (3) of the previous definition, it is natural to choose the set of control points to
be A .

Definition 2.2 Let (P, w) be as in Definition 2.1.

1. The tautological patch Kw : P → P is the toric patch (1) where {Q j =m j }1≤ j≤n .
2. The pair (P, w) has strict linear precision if Kw is the identity on P , that is

p = 1

βw(p)

n∑

j=1

w jβ j (p)m j , for all p ∈ P.

3. The pair (P, w) has rational linear precision if there are rational functions
β̂1, . . . , β̂n on C

d satisfying:
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(a)
∑n

j=1 β̂ j = 1 as rational functions on C
d .

(b) The map β̂ : C
d ��� XA ,w ⊂ P

n−1, t → (β̂1(t), . . . , β̂n(t)) is a rational
parametrisation of XA ,w.

(c) For every p ∈ P ⊂ C
d , β̂ j (p) is defined and is a nonnegative real number.

(d)
∑n

j=1 β̂ j (p)m j = p for all p ∈ P .

Remark 2.1 We are interested in the property of linear precision. By [12, Proposition
2.6], the blending functions {βw, j : 1 ≤ j ≤ n} have linear precision if and only if the
pair (P, w) has strict linear precision. Rational linear precision requires the existence
of rational functions {β̂ j : P → R : 1 ≤ j ≤ n} that have strict linear precision, and
that are related to the blending functions of (P, w) via 3(b) in Definition 2.2.

Remark 2.2 An alternative way to specify a pair (P, w) is by using a homoge-
neous polynomial FA ,w whose dehomogenisation fA ,w = ∑n

j=1 w j tmi encodes
the weights in the coefficients and the lattice points in A as exponents. We use this
notation in Sect. 3 to describe toric patches in 2D and 3D.

Remark 2.3 If (P, w) has rational linear precision then (a P, w̃), a ≥ 1, also has this
property where w̃ is the vector of coefficients of ( fA ,w)a . See [4, Lemma 2.2].

Example 2.1 Consider the trapezoid P = conv((0, 0), (3, 0), (1, 2), (0, 2)), with
ordered set of lattice points A and vector of weights w, given as follows:

A = {(0, 2), (1, 2), (0, 1), (1, 1), (2, 1), (0, 0), (1, 0), (2, 0), (3, 0)}
w = (1, 1, 2, 4, 2, 1, 3, 3, 1).

The polynomial fA ,w(s, t) = (1+s)(1+s + t)2 encodes (P, w). The lattice distance
functions for the facets of P are:

h1(s, t) = s, h2(s, t) = t, h3(s, t) = 3 − t − s, h4(s, t) = 2 − t .

The toric blending functions for (P, w) are

βw,(i, j)(s, t) =
(
2

j

)(
3 − j

i

)
si t j (3 − s − t)3−i− j (2 − t)2− j

6 − 4t + t2
, where (i, j) ∈ A .

The pair (P, w) does not have strict linear precision, but it has rational linear precision.
By Proposition 3.1 the parametrisation of the patch which has linear precision is given
by:

β̂w,(i, j)(s, t) =
(
2

j

)(
3 − j

i

)
si t j (3 − s − t)3−i− j (2 − t)2− j

4(3 − t)3− j
, where (i, j) ∈ A .

Example 2.2 Let Δd = {x ∈ R
d : x1 + · · · + xd ≤ 1, xi ≥ 0} be the stan-

dard simplex in R
d and kΔd be its dilation by the integer k ≥ 1. To a point
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m = (a1, . . . , ad) ∈ A = kΔd ∩ Z
d we associate the weight

wm =
(

k

m

)
=

(
k

k − |m|, a1, . . . , ad

)
, where |m| = a1 + · · · + ad .

The pair (kΔd , w) has strict linear precision, see [12, Example 4.7]. By [5, Example
4.6], the product of two pairs, (P, w) and (Q, w̃), with strict linear precision also
has strict linear precision. Hence, the Bézier simploids [10], which are polytopes of
the form k1Δd1 × · · · × krΔdr for positive integers k1, . . . , kr , n1, . . . nr , have strict
linear precision. Conjecture 4.8 in [5] states that these are the only polytopes with
strict linear precision.

2.3 Discrete Statistical Models with Rational MLE

A probability distribution of a discrete random variable X with outcome space
{1, . . . , n} is a vector (p1, . . . , pn) ∈ R

n where pi = P(X = i), i ∈ {1, . . . , n},
pi ≥ 0 and

∑n
i=1 pi = 1. The open probability simplex

Δ◦
n−1 = {(p1, . . . , pn) ∈ R

n | pi > 0, p1 + · · · + pn = 1}

consists of all strictly positive probability distributions for a discrete random variable
with n outcomes. A discrete statistical model M is a subset of Δ◦

n−1.
Given a set D = {X1, . . . , X N } of independent and identically distributed obser-

vations of X , we let u = (u1, . . . , un) be the vector where ui is the number of times
the outcome i appears inD. The likelihood function L(p, u) : M → R≥0 defined by
(p1, . . . , pn) �→ ∏

pui
i records the probability of observing the set D. The maximum

likelihood estimator (MLE) of the modelM is the function Φ : R
n → M that sends

each vector (u1, . . . , un) to the maximiser of L(p, u), i.e.

Φ(u):=argmax L(p, u).

For arbitraryM, the problemof estimating argmax L(p, u) is a difficult one.However,
for special families, such as discrete exponential families, there are theorems that
guarantee the existence and uniqueness of argmax L(p, u)when u has nonzero entries.
We are interested in the case where Φ is a rational function of u.

Definition 2.3 LetM be a discrete statisticalmodelwithMLEΦ : R
n → M, u �→ p̂.

ThemodelM has rational MLE if the coordinate functions ofΦ are rational functions
in u.

Example 2.3 Consider themodelMof two independent binary randomvariables X , Y ,
with outcome set {0, 1} and pi j = P(X = i, Y = j). This model is the set of all
points (p00, p01, p10, p11) in Δ◦

3 that satisfy the equation p00 p11 − p10 p01 = 0. The
model has rational MLE Φ : R

4 → M where

(u00, u01, u10, u11) �→
(

u0+u+0

u2++
,

u0+u+1

u2++
,

u1+u+0

u2++
,

u1+u+1

u2++

)

123



Foundations of Computational Mathematics (2023) 23:2151–2202 2157

and ui+ = ui0 + ui1, u+ j = u0 j + u1 j , u++ = ∑
i, j∈{0,1} ui j .

Definition 2.4 A Horn matrix is an integer matrix whose column sums are equal to
zero. Given a Horn matrix H , with columns h1, . . . , hn , and a vector λ ∈ R

n , the Horn
parameterisation ϕ(H ,λ) : R

n → R
n is the rational map given by

u �→ (λ1(Hu)h1, λ2(Hu)h2 , . . . , λn(Hu)hn ).

Example 2.4 The MLE Φ in Example 2.3 is given by a Horn parametrisation ϕ(H ,λ),
where

u =

⎛

⎜⎜⎝

u00
u01
u10
u11

⎞

⎟⎟⎠ , H =

⎛

⎜⎜⎜⎜⎝

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

−2 −2 −2 −2

⎞

⎟⎟⎟⎟⎠
, Hu =

⎛

⎜⎜⎜⎜⎝

u0+
u1+
u+0
u+1

−2u++

⎞

⎟⎟⎟⎟⎠
, and λ = (4, 4, 4, 4).

Definition 2.5 We say that (H , λ) is a Horn pair if: (1) the sum of the coordinates of
ϕ(H ,λ) as rational functions in u is equal to 1 and (2) the map ϕ(H ,λ) is defined for all
positive vectors and it sends these to positive vectors in R

r .

Theorem 2.1 [11, Theorem 1] A discrete statistical model M has rational MLE Φ

if and only if there exists a Horn pair (H , λ) such that M is the image of the Horn
parametrisation ϕ(H ,λ) restricted to the open orthant R

n
>0 and Φ = ϕ(H ,λ) on R

n
>0.

It is possible that twoHorn parametrisationsϕ(H ,λ) andϕ
(H̃ ,λ̃)

are equal even if H �= H̃

and λ �= λ̃. A Horn matrix H is minimal if it has no zero rows and no two rows are
linearly dependent. By [5, Proposition 6.11] there exists a unique, up to permutation of
the rows, minimal Horn matrix that defines ϕ(H ,λ). Any other pair (H , λ) that defines
the same Horn parametrisation may be transformed into one where H is a minimal
Horn matrix; this is done by adding collinear rows, deleting zero rows, and adjusting
the vector λ accordingly, see [11, Lemma 3]. We end this section by noting that [11,
Proposition 23] states that if (H , λ) is a minimal Horn pair, then every row of H has
either all entries greater than or equal zero or all entries less than or equal to zero. We
call the submatrix of H that consists of all rows with nonnegative entries, the positive
part of H , and its complement the negative part of H .

2.4 The Links between Algebraic Statistics and Geometric Modelling

The links referred to in the title of this section are Theorems 2.3 and 2.4. Given
a pair (P, w), the scaled projective toric variety XA ,w is the image of the map
[wχ ]A : (C∗)d → P

n−1 defined by t �→ [w1tm1 : w2tm2 : . . . : wntmn ]. To
consider the maximum likelihood estimation problem in the realm of complex alge-
braic geometry we consider the variety W = V (x1 . . . xn(x1 +· · ·+ xn)) ⊂ P

n−1 and
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the map

XA ,w \ W → (C∗)n, [x1 : . . . : xn] �→ 1

x1 + · · · + xn
(x1, . . . , xn).

The image of this map is closed and denoted by YA ,w. We call YA ,w a scaled very
affine toric variety. The set MA ,w = YA ,w ∩ R

n
>0 is a subset of the open simplex

Δ◦
n−1 and as such it is a statistical model. This class of models, of the form MA ,w,

are known as log-linear models.

Remark 2.4 The variety YA ,w admits two parameterisations, one by monomials and
one by toric blending functions [5, Proposition 5.2]. These are

wχA : C
d ��� YA ,w, t �→

(
w1tm1

∑s
j=1 w j tm j

, . . . ,
wntmn

∑s
j=1 w j tm j

)
,

wβA : C
d ��� YA ,w, t �→

(
w1β1(t)
βw(t)

, . . . ,
wnβn(t)
βw(t)

)
. (2)

We now consider the maximum likelihood estimation problem for log-linear mod-
els. Given a vector of counts u, we let u:=u/|u| ∈ Δ◦

n−1 be the empirical distribution,
where |u| = ∑

u j . We define the tautological map τA following the convention in
[5],

τA : Δ◦
n−1 → P◦, (u1, . . . , un) �→

n∑

j=1

u j m j . (3)

The maximum likelihood estimate of u for the model MA ,w exists and it is unique
whenever all entries of u are positive.

Theorem 2.2 [18, Corollary 7.3.9] The maximum likelihood estimate in MA ,w for
the empirical distribution u ∈ Δ◦

n−1 is the unique point p̂ ∈ MA ,w that satisfies
τA ( p̂) = τA (u).

In the Algebraic Statistics literature, models with rational MLE are also known as
models withmaximum likelihood degree equal to 1. Even though the previous theorem
guarantees the existence and uniqueness of theMLE, it is not true that every log-linear
model has rational MLE. We refer the reader to [1] for several examples of log-
linear models that do not have rational MLE, or equivalently for examples of models
with maximum likelihood degree greater than 1. We end this section by recalling
two theorems that connect models with rational MLE and pairs with rational linear
precision.

Theorem 2.3 [12, Proposition 5.1] The pair (P, w) has rational linear precision if
and only if the model MA ,w has rational MLE.

Theorem 2.4 [5] Set aP := ∑r
i=1 ai and n P := ∑r

i=1 ni . The following are equivalent:
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1. The pair (P, w) has strict linear precision.
2. n P = 0 and βw(p) = ∑n

j=1 w jβ j (p) = ∑n
j=1 w j

∏r
i=1 hi (p)hi (m j ) is a nonzero

constant c.
3. MA ,w has rational MLE with minimal Horn pair (H , λ) given by

H =

⎛

⎜⎜⎜⎜⎜⎝

h1(m1) h1(m2) . . . h1(mn)

h2(m1) h2(m2) . . . h2(mn)
...

...
...

hr (m1) hr (m2) . . . hr (mn)

−aP −aP . . . −aP

⎞

⎟⎟⎟⎟⎟⎠
, λ j = w j

c
(−aP )aP

2.5 Primitive Collections and Horn Pairs

The notion of primitive collections was first introduced by Batyrev in [3] for a smooth
and projective toric variety XΣP of the polytope P . It provides an elegant description
of the nef cone for XΣP . This result has been generalised to the simplicial case and
the definition of primitive collections for the non-simplicial case has been introduced
in [9].

Definition 2.6 Let ΣP be a normal fan. For σ ∈ ΣP , σ(1) denotes the 1-faces of σ .
A subset C ⊆ Σ P (1) of 1-faces of ΣP is called a primitive collection if

1. C � σ(1) for all σ ∈ ΣP .
2. For every proper subset C ′

� C , there exists σ ∈ ΣP such that C ′ ⊆ σ(1).

In particular, if ΣP is simplicial, C is a primitive collection if C does not generate a
cone of ΣP but every proper subset does.

For strict linear precision, Theorem 2.4 gives the minimal Horn pair based only on
the lattice distance functions of the facets of the polytope. The authors in [5] raise the
question whether it is possible to obtain a similar description of minimal Horn pairs
of polytopes with rational linear precision.

Question 2.1 Is the positive part of the minimal Horn matrix of a pair (P, w) with
rational linear precision always equal to the lattice distance matrix of A ?

For pairs (P, w) in 2D with rational linear precision, and the family of prismatoids in
Sect. 3.2, the answer to Question 2.1 is affirmative, see Theorem 3.1, Proposition 3.2,
and Appendix A.

In [5], there are two examples, one of a trapezoid [5, Section 8.1] and one of a
decomposable graphical model [5, Section 8.3], where the positive part of the Horn
matrix is the lattice distance matrix of A and the negative rows are obtained via
the primitive collections of the normal fan of P . These examples motivate the next
definition and Question 2.2:

Definition 2.7 To a pair (P, w) we associate the matrix MA ,ΣP which consists of the
lattice distance matrix of A , with i j-th entry hi (m j ), together with negative rows
given by summing the rows of the lattice distance functions −hi , for which the facet
normals ni belong to the same primitive collection of ΣP .
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Question 2.2 For a pair (P, w)with rational linear precision is there aHorn pair (H , λ)

for which H = MA ,ΣP ?

For pairs (P, w) in 2D with rational linear precision, the answer to Question 2.2 is
affirmative, see Theorem 3.1. For the family of prismatoids in Sect. 3.2, Question 2.2
is affirmative only for certain subclasses, see Theorem 3.3. For an arbitrary pair (P, w)

with rational linear precision, the matrix MA ,ΣP is not necessarily a Horn matrix, see
Sect. 3.3.1. Even in the case that MA ,ΣP is a Horn matrix, it does not necessarily give
rise to a Horn pair for (P, w), see Sect. 3.3.2. In Sect. 3, we see a number of special
cases forwhich the answer toQuestion 2.2 is affirmative. In Sect. 5, we give a condition
on (P, w)which guarantees the existence of aHorn pair (H , λ)with H = MA ,ΣP .We
also provide an explanation for the negative rows of the Horn matrix in the language
of multinomial staged tree models—introduced in Sect. 4.

3 Examples of Horn Pairs in 2D and 3D

In this section, we present families of 2D and 3D pairs (P, w)with rational linear pre-
cision and explore the connection between the geometry of the polytope and the shape
of its corresponding Horn pair. Throughout this section, we use (s, t), respectively,
(s, t, v) to denote t in the 2D, respectively, 3D case.

3.1 Toric Surface Patches and Horn Pairs in 2D

By [4], the only 2D toric patches with rational linear precision are the Bézier triangles,
tensor product patches and trapezoidal patches, seen in Fig. 1. This family of polygons,
that we denote by F , consists of all the Newton polytopes of the polynomials

fa,b,d(t):=(1 + s)a((1 + s)d + t)b for a, b, d ≥ 0.

Fig. 1 Left: Bézier triangles. Middle: Tensor product patches. Right: Trapezoids. The normal fan of each
polygon is displayed in the bottom row; two rays with the same colour are in the same primitive collection
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For general a, b, d, the Newton polytope associated with fa,b,d , which we will
denote by Ta,b,d , will be a trapezoidal patch, in the special cases T0,b,1 = bΔ2 and
Ta,b,0 = aΔ1 × bΔ1, we will have the more familiar Bézier triangles and tensor
product patches. The lattice points in Ta,b,d ∩ Z

2 are A = {(i, j) : 0 ≤ j ≤ b,

0 ≤ i ≤ a + d(b − j)}. By Theorems 2.1 and 2.3 we know that the statistical model
associated with a pair in F admits a Horn pair.

Proposition 3.1 A Horn pair (H , λ) of a polygon in the family F is given by:

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(m) . . . h1(mn)

h2(m1) . . . h2(m) . . . h2(mn)

h3(m1) . . . h3(m) . . . h3(mn)

h4(m1) . . . h4(m) . . . h4(mn)

−(h1 + h3)(m1) . . . −(h1 + h3)(m) . . . −(h1 + h3)(mn)

−(h2 + h4)(m1) . . . −(h2 + h4)(m) . . . −(h2 + h4)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

λm = (−1)a+d(b− j)+b
(

(h2 + h4)(m)

j

)(
(h1 + h3)(m)

i

)

where m:=(i, j) ∈ A is a general lattice point, m1, . . . , mn is an ordered list of
elements in A , t:=(s, t), and h1, . . . , h4 are

h1(t) = s, h2(t) = t, h3(t) = a + db − s − dt, h4(t) = b − t .

Proof We use [5, Proposition 8.4]. The terms of the polynomial fa,b,d(t) specify
weights and lattice points in Ta,b,d ∩ Z

2, i.e.

fa,b,d(t) =
∑

m∈A
wmtm, wm =

(
b

j

)(
a + db − d j

i

)
.

The monomial parametrisation (2) of YA ,w is

wχA (t) = 1

fa,b,d(t)
(Sm1 , . . . , Smn ),

where Sm = wmtm . Composing the monomial parametrisation with the tautological
map (3) gives the following birational map:

(τA ◦ wχA )(t) =
(

s((a + db)(1 + s)d + at)

((1 + s)d + t)(1 + s)
,

tb

((1 + s)d + t)

)

=
(

s((a + db)(1 + s)d + at)

f1,1,d(t)
,

tb

f0,1,d(t)

)
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with the following inverse:

ϕ(t) =
(

s

a + db − s − dt
,

(a + db − dt)d t

(a + db − s − dt)d(b − t)

)

=
(

h1(t)
h3(t)

,
((h1 + h3)(t))d h2(t)

(h3(t))d h4(t)

)
.

The component of the monomial parametrisation corresponding to a lattice point m,
composed with ϕ(t) is given by

(
(wχA ◦ ϕ)(t)

)
m = Sm(ϕ(t))

fa,b,d (ϕ(t))

=
(

b

j

)(
a + db − d j

i

)
si t j (a + db − s − dt)a+db−i−d j (b − t)b− j

(a + db − dt)a+db−d j bb

= wm(−1)a+d(b− j)+bh(t)h(m) (4)

where h(q) = (h1(q), h2(q), h3(q), h4(q),−h5(q),−h6(q)) (q ∈ {t, m}),
h5 = h1 + h3 and h6 = h2 + h4 = b. It follows from [5, Proposition 8.4] that
the Horn parametrisation is (wχA ◦ ϕ)(p) where

p =
∑

m∈A

um

u+
(m), u+ =

∑

m∈A
um .

Therefore, the columns of the Horn matrix are the exponents of

wm(−1)a+d(b− j)+bh(p)h(m), m ∈ A ,

namely h(m). It follows that

λm = (−1)a+d(b− j)+bwm

= (−1)a+d(b− j)+b
(

(h2 + h4)(m)

j

)(
(h1 + h3)(m)

i

)
.

��
Remark 3.1 The blending functions {β̂m : m ∈ A } for each pair (P, w) in F that
satisfy Definition 2.2 (3) are given in equation (4) in the previous proof. For the case
a = d = 1 and b = 2, these are written in Example 2.1.

Remark 3.2 For general a, b, d, Proposition 3.1 gives theminimal Horn pair for Ta,b,d ;
this is not the case for T0,b,1 and Ta,b,0. For the last two cases, the minimal Horn pair
is obtained after row reduction operations or from Theorem 2.4.

UsingProposition 3.1 andTheorem2.4weobtain an affirmative answer toQuestion 2.1
for pairs (P, w) in 2D. A closer look at the primitive collections in Fig. 1 also reveals
an affirmative answer to Question 2.2. This is contained in the next theorem.
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Fig. 2 The general representative of a prismatoid in P is the convex hull of two trapezoids, conv(Ta,b,d ×
{0}, Ta′,b′,d × {1}), dilated by l. For the labelling of facets, we refer to Notation 3.2

Theorem 3.1 Every pair (P, w) in 2D with rational linear precision has a Horn pair
(H , λ) with H = MA ,ΣP .

Proof The normal fans of the polygons in F are depicted in Fig. 1, in each subcase
the shape of the normal fan and its primitive collections are independent of the values
of a, b, d. The minimal Horn pair (H , λ) for the 2D simplex, T0,b,1 = bΔ2, given
in Theorem 2.4 satisfies H = MA ,ΣP . This follows because bΔ2 has one primitive
collection, {n1, n2, n3} and hence MA ,ΣP has a single negative row. For the tensor
product patch Ta,b,0 = aΔ1 × bΔ1 and the general trapezoid Ta,b,d , the primitive
collections are {n1, n3} and {n2, n4}. In these cases, the Horn pair (H , λ) in Proposi-
tion 3.1 satisfies H = MA ,ΣP . ��

3.2 A Family of Prismatoids with Rational Linear Precision

Unlike the 2D case, there is no classification for 3D lattice polytopes with rational
linear precision. In this section, we consider the family of prismatoids

P:={(P, w) : P is the Newton polytope of fA ,w(t) = ( fa,b,d(t) + v fa′,b′,d(t))l ,

w is the vector of coefficients of fA ,w(t),

a, a′, b, b′, d, l ∈ Z≥0 with a′ ≤ a, b′ ≤ b}.

Ageneral element ofP is depicted in Fig. 2, prismatoids for different specialisations
of a, a′, b, b′, d are displayed in Table 1. Note that some 3D Bézier simploids are also
obtained by specialisation. Even though Remark 2.3 says it suffices to show that P
has rational linear precision for l = 1, we do not use this extra assumption.
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Table 1 Representative members of P

(A) Prismatoids with trapezoidal base a > 0, b > 0, d > 0, l > 0

Trapezoidal
frusta
a′ > 0, b′ > 0

Triangle top
(simplex if d = 1)
a′ = 0, b′ > 0

Trapezoidal
wedges
a′ > 0, b′ = 0

Trapezoidal
Pyramids
a′ = 0, b′ = 0

(B) Prismatoids with tensor product base a > 0, b > 0, d = 0, l > 0

Tensor
product
frusta
a′ > 0, b′ > 0

Tensor
product
wedges
a′ = 0, b′ > 0

Tensor
product
pyramids
a′ = 0, b′ = 0

Tensor
product
wedges
a′ > 0, b′ = 0

(C) Prismatoids with triangular base a = 0, b > 0, d > 0, l > 0

Triangular frusta
(simplices if d = 1)
a′ = 0, b′ > 0

Pyramid (simplex-based if
d = 1)
a′ = 0, b′ = 0

(D) 3D Bézier simploids l > 0

3D Tensor Product
a′ = a > 0
b′ = b > 0
d = 0
laΔ1 × lbΔ1 × lΔ1

Triangular Prism
a′ = a = 0
b′ = b > 0
d = 1
lbΔ2 × lΔ1

3D simplex
a′ = a = 0
b′ = 0, b = 1
d = 1
lΔ3

The coordinates of the vertices of each polytope in this table are obtained by specialising the parameters
a, a′, b, b′, d in the coordinates the vertices of the prismatoid in Fig. 2
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Proposition 3.2 The pairs inP have rational linear precision with a Horn pair (H , λ):

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(m) . . . h1(mn)

h2(m1) . . . h2(m) . . . h2(mn)

h3(m1) . . . h3(m) . . . h3(mn)

h4(m1) . . . h4(m) . . . h4(mn)

h5(m1) . . . h5(m) . . . h5(mn)

h6(m1) . . . h6(m) . . . h6(mn)

−(h1 + h4)(m1) . . . −(h1 + h4)(m) . . . −(h1 + h4)(mn)

−(h2 + h5)(m1) . . . −(h2 + h5)(m) . . . −(h2 + h5)(mn)

−(h3 + h6)(m1) . . . −(h3 + h6)(m) . . . −(h3 + h6)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

λm = (−1)(
∑6

γ=1 hγ )(m)

(
(h3+h6)(m)

k

)(
(h2+h5)(m)

j

)(
(h1+h4)(m)

i

)
,

where m:=(i, j, k) ∈ A is a general lattice point, m1, . . . , mn is an ordered list of
elements in A , t:=(s, t, v), and h1, . . . , h6 are

h1(t) = s, h4(t) = (a + db)l − s − dt − ((a + db) − (a′ + db′))v,

h2(t) = t h5(t) = bl − t − (b − b′)v,

h3(t) = v, h6(t) = l − v.

Proof The polynomial fA ,w(t) in the definition of P , can be expressed as a sum

fA ,w(t) =
(h3+h6)(m)∑

k=0

(h2+h5)(m)∑

j=0

(h1+h4)(m)∑

i=0

Sm

where

Sm(t) =
(

(h3 + h6)(m)

k

)(
(h2 + h5)(m)

j

)(
(h1 + h4)(m)

i

)
tm .

We let

(wχA (t))m = Sm(t)
fA ,w(t)

,

then, the vector of all (wχA (t))m gives the monomial parametrisation (2) of YA ,w

with weights

wm =
(

(h3 + h6)(m)

k

)(
(h2 + h5)(m)

j

)(
(h1 + h4)(m)

i

)
.

Composing the monomial parametrisation with the tautological map (3) gives the
following birational map:

(τA ◦ wχA )(t)
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= 1

fA ,w(t)

⎛

⎝
(h3+h6)(m)∑

k=0

(h2+h5)(m)∑

j=0

(h1+h4)(m)∑

i=0

Sm

⎞

⎠ (t)

=
(

ls
(
((a + db)(1 + s)d + at) fa,b′,d(t) + v(a′ + db′)(1 + s)d + a′t) fa′,b′,d(t)

)

f1,1,d(t)
(

fa,b,d(t)b + v fa′,b′,d(t))
) ,

lt
(
b′v fa′,b′,d(t) + b fa,b,d(t)

)

f0,1,d(t)
(

fa,b,d(t) + v fa′,b′,d(t))
) ,

lv fa′,b′,d(t)(
fa,b,d(t) + v fa′,b′,d(t))

)
)

with the following inverse:

ϕ(t) =
(

h1(t)
h4(t)

,
h2(t)((h1 + h4)(t))d

(h4(t))d h5(t)
,

h3(t)((h1 + h4)(t))(a+db)−(a′+db′)((h2 + h5)(t))b−b′

(h4(t))(a+db)−(a′+db′)(h5(t))b−b′
(h6(t))

)
.

Composing ϕ(t) with the monomial parametrisation gives

Sm(ϕ(t))
fA ,w(ϕ(t))

= wm(−1)(
∑6

γ=1 hγ )(m)h(t)h(m)

where h(q) = (h1(q), · · · , h6(q),−h7(q),−h8(q),−h9(q)), (q ∈ {t, m}), the func-
tions h1, . . . , h6 are as in the statement of the theorem and h7 = h1+h4, h8 = h2+h5,
and h9 = h3 + h6.

According to [5, Proposition 8.4], the polytope has rational linear precision with
weights wm as defined above and the Horn parametrisation of YA ,w is given by:

Sm(ϕ(p))

fA ,w(ϕ(p))
= wm(−1)(

∑6
γ=1 hγ )(m)h(p)h(m)

where

p =
∑

m∈A

um

u+
(m), u+ =

∑

(m)∈A
um .

Since the Horn parametrisation is, by definition, a product of linear forms whose
exponents match their coefficients, we know that the columns of H are the vectors

h(m). It follows that λm = (−1)(
∑6

γ=1 hγ )(m)
wm . ��

3.3 Minimal Horn Pairs for Prismatoids inP

We now study Questions 2.1 and 2.2 for elements in P . Proposition 3.2 gives a Horn
pair (H , λ) for each (P, w) ∈ P in Table 1, however H need not be the minimal
Horn matrix in each case. By [11, Lemma 9], we can find the minimal Horn matrix
associated with (P, w) using row reduction operations on H .
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Notation 3.2 We will denote the facets of a general element in P as follows:

F1 = left facet, F2 = front facet, F3 = bottom facet,

F4 = right facet, F5 = back facet, F6 = upper facet.

This labelling is used in Fig.2. The normal vectors of each facet are:

n1 = (1, 0, 0), n2 = (0, 1, 0), n3 = (0, 0, 1),

n4 = (−1, −d,−((a + db) − (a′ + db′))), n5 = (0,−1, −(b − b′)), n6 = (0, 0, −1).

3.3.1 The Non-simple Prismatoids

The trapezoidal pyramids, tensor product pyramids and prismatoids with triangle on
top, depicted in Table 1 (A) and (B), are all examples of non-simple polytopes in P .
Their primitive collections are:

Prismatoids with triangle on top {n1, n3, n4}, {n1, n2, n4}, {n2, n5}, {n3, n6}
Trapezoidal pyramids {n1, n3, n4}, {n2, n3, n5}

Tensor product pyramids {n1, n3, n4}, {n2, n3, n5}.

There is no n6 for the two pyramids since the facet F6 has collapsed to a point.
For a pair (P, w) in the subfamily of non-simple prismatoids in P , the matrix

MA ,ΣP cannot be a Horn matrix since the primitive collections are not a partition
of the 1-dimensional rays of the normal fan and therefore the columns cannot add to
zero.

Example 3.1 It follows from Proposition 3.2 that the minimal Horn matrix associated
with the tensor product pyramid in Table 1 (B) is:

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(mn)

h2(m1) . . . h2(mn)

h3(m1) . . . h3(mn)

h4(m1) . . . h4(mn)

h5(m1) . . . h5(mn)

−(h1 + h2 + h4 + h5 − h6)(m1) . . . −(h1 + h2 + h4 + h5 − h6)(mn)

−(h3 + h6)(m1) . . . −(h3 + h6)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where m1, . . . mn ∈ A , t:=(s, t, v) and h1, . . . , h6 are defined to be

h1(t) = s, h2(t) = t, h3(t) = v,

h4(t) = al − s − av h5(t) = bl − t − bv, h6(t) = l − v.

We were able to add h6 to the negative rows −(h1 + h4) and −(h2 + h5) since all
three rows are colinear in this case. As a result, the positive part of the minimal Horn
matrix coincides with the lattice distance matrix of A .
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3.3.2 The Simple Prismatoids with Fewer Facets

The trapezoidal wedges (A), tensor product wedges (B), triangular frusta (C) and
triangular-based pyramids (C) from Table 1 are simple prismatoids with less than 6
facets. The primitive collections in each case are:

Trapezoidal wedges {n1, n4}, {n2, n3, n5}
Tensor product wedges a′ = 0 {n1, n3, n4}, {n2, n5}
Tensor product wedges b′ = 0 {n1, n4}, {n2, n3, n5}

Triangular-based pyramid {n1, n2, n3, n4}
Triangular frusta {n1, n2, n4}, {n3, n6}

None of the polytopes above, except the triangular frusta, have an upper facet F6
and hence their normal fans and primitive collections do not include n6. Also, the
triangular-based pyramid and triangular frusta have no back facet F5 and hence their
normal fans and primitive collections do not include n5. In each case, the primitive
collections give a partition of the rays in the normal fan, hence the matrix MA ,ΣP

associated with (P, w) is a Horn matrix for these cases. The question is whether this
Horn matrix belongs to a Horn pair for (P, w).

Example 3.2 Proposition 3.2 gives a Horn pair for the trapezoidal wedge in Table 1
(A), which can be reduced to a Horn pair (H , λ), with:

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(mn)

h2(m1) . . . h2(mn)

h3(m1) . . . h3(mn)

h4(m1) . . . h4(mn)

h5(m1) . . . h5(mn)

−(h1 + h4)(m1) . . . −(h1 + h4)(mn)

−(h2 + h5 − h6)(m1) . . . −(h2 + h5 − h6)(mn)

−(h3 + h6)(m1) . . . −(h3 + h6)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where m1, . . . mn ∈ A , t:=(s, t, v) and h1, . . . , h9 are defined to be

h1(t) = s, h4(t) = (a + db)l − s − dt − (a − a′ + db)v,

h2(t) = t h5(t) = bl − bv − t,

h3(t) = v h6(t) = l − v.
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Let us compare H with the matrix MA ,ΣP

MA ,ΣP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(mn)

h2(m1) . . . h2(mn)

h3(m1) . . . h3(mn)

h4(m1) . . . h4(mn)

h5(m1) . . . h5(mn)

−(h1 + h4)(m1) . . . −(h1 + h4)(mn)

−(h2 + h3 + h5)(m1) . . . −(h2 + h3 + h5)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

where m1, . . . mn and h1, . . . , h5 are as in H . For b = 1, we see that h2+h5−h6 = 0,
h3 + h6 = l, and h2 + h3 + h5 = l, thus H = MA ,ΣP . For b > 1, H and MA ,ΣP

are minimal Horn matrices, hence, by uniqueness, MA ,ΣP cannot give rise to a Horn
pair for (P, w).

For all other examples of simple prismatoids with fewer facets, we noticed a similar
phenomenon. Firstly, if ni is not in the normal fan, then the positive row hi is collinear
with a negative row. In particular, for all these examples the positive part of theminimal
Horn matrix coincides with the lattice distance matrix ofA . Below we summarise for
which parameters the matrix MA ,ΣP gives rise to a Horn pair for (P, w), this is not
true in general for these families of ‘simple prismatoids with fewer facets’.

Trapezoidal wedges b = 1

Tensor product wedges a′ = 0 a = 1

Tensor product wedges b′ = 0 b = 1

Triangular-based pyramid b = d = 1

Triangular frusta d = 1

These seemingly arbitrary constraints have a nice geometric interpretation. The con-
straint b = 1 forces the triangular facet F1 in the trapezoidalwedges and tensor product
wedges (b′ = 0) to be a simplex. The constraint a = 1 forces the triangular facet F2
in the tensor product wedges (a′ = 0) to be a simplex. The constraint b = d = 1 on
the triangular-based pyramid, means it is a 3D simplex and the constraint d = 1 on
the triangular frusta forces the two triangular facets F3 and F6 to be simplices. All the
prismatoids considered in this section, except the ones just described, are examples of
polytopes with simplicial normal fans for which the answer toQuestion 2.2 is negative.

3.3.3 The Trapezoidal and Tensor Product Frusta

The primitive collections for the trapezoidal frusta and the tensor product frusta are:

{n1, n4} {n2, n5} {n3, n6}.

It follows easily that the Horn matrix given by Proposition 3.2 is MA ,ΣP . This matrix
is also theminimal Hornmatrix for all trapezoidal frusta and for general tensor product
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frusta. However, there are cases of tensor product frusta, where two or more rows of
this matrix are collinear and hence the minimal Horn matrix is not exactly MA ,ΣP .
For an overview of all minimal Horn matrices for the family P of prismatoids, see
Table 3 in Appendix A.

Example 3.3 A Horn matrix associated with the tensor product frusta in Table 1 (B) is

MA ,ΣP =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(mn)

h2(m1) . . . h2(mn)

h3(m1) . . . h3(mn)

h4(m1) . . . h4(mn)

h5(m1) . . . h5(mn)

h6(m1) . . . h6(mn)

−(h1 + h4)(m1) . . . −(h1 + h4)(mn)

−(h2 + h5)(m1) . . . −(h2 + h5)(mn)

−(h3 + h6)(m1) . . . −(h3 + h6)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where m1, . . . mn ∈ A , t:=(s, t, v) and h1, . . . , h6 are defined to be

h1(t) = s, h4(t) = al − s − (a − a′)v
h2(t) = t, h5(t) = bl − t − (b − b′)v,

h3(t) = v, h6(t) = l − v.

If we consider the subfamily of tensor product frusta such that a = λb, a′ = λb′ for
λ ≥ 1 or λ = 1

μ
with μ ≥ 1, then the minimal Horn matrix is

H =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1(m1) . . . h1(mn)

h2(m1) . . . h2(mn)

h3(m1) . . . h3(mn)

h4(m1) . . . h4(mn)

h5(m1) . . . h5(mn)

h6(m1) . . . h6(mn)

−(h1 + h2 + h4 + h5)(m1) . . . −(h1 + h2 + h4 + h5)(mn)

−(h3 + h6)(m1) . . . −(h3 + h6)(mn)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where m1, . . . mn ∈ A and h1, . . . , h6, are as above.

Theorem 3.3 For all pairs in P , the positive part of the minimal Horn matrix is the
lattice distance matrix of A . For the subfamilies of P in Table 2, the matrix MA ,ΣP

gives rise to a Horn pair for (P, w).

Proof Let (P, w) ∈ P , if MA ,ΣP is aHornmatrix, then after row reduction operations,
we get a minimal Horn matrix. Comparing this matrix with the minimal Horn matrix
associated with (P, w) in Table 3 (Appendix A) and by uniqueness of minimal Horn
matrices, one can verify both statements on the theorem. ��
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Table 2 Subfamilies of prismatoids for which there exists a Horn pair (H , λ) with H = MA ,ΣP

Name of subfamily Constraints on a′ ≤ a, b′ ≤ b, d

Trapezoidal wedges a′ > 0, b′ = 0, b = 1, d > 0

Tensor product wedges (a′ = 0) a′ = 0, a = 1, b′ > 0, d = 0

Tensor product wedges (b′ = 0) a′ > 0, b′ = 0, b = 1, d = 0

3D simplex a′ = a = b′ = 0, b = 1, d = 1

Triangular frusta a′ = a = 0, b > 0, d = 1

Tensor product frusta a′ > 0, b′ > 0, d = 0

Trapezoidal frusta a′ > 0, b′ > 0, d > 0

4 Multinomial Staged TreeModels

In this section, we define multinomial staged tree models, we prove that every such
model has rational MLE and we give criteria to determine when such models are
toric varieties for binary multinomial staged trees, see Theorem 4.4 and Theorem 4.3,
respectively. To each toric binarymultinomial staged tree, one can associate a polytope,
by Theorem 2.3 such a polytope has rational linear precision. These results imply our
main theorem:

Theorem 4.1 Polytopes of toric binary multinomial staged trees have rational linear
precision.

Our motivation to introduce this model class arose from the observation that the Horn
pairs of all 2D and 3D polytopes in Sect. 3 could be interpreted as a statistical model
defined by an event tree with a specific choice of parametrisation. Multinomial staged
tree models improve the understanding of polytopes with rational linear precision in
2D and 3D. They also offer a generalisation for polytopeswith rational linear precision
in higher dimensions.

4.1 Definition of Multinomial Staged Trees

We start by introducing the multinomial model as an event tree. This model is the
building block of multinomial staged tree models. Throughout this section m denotes
a positive integer and [m]:={1, 2, . . . , m}, this differs from Sect. 3 where m was used
for lattice point.

Example 4.1 The multinomial model encodes the experiment of rolling a q-sided die
n independent times and recording the side that came up each time. The outcome
space for this model is the set Ω of all tuples K = (k1, · · · , kq) ∈ N

q whose entries
sum to n. We can depict this model by a rooted tree T = (V , E) with vertices
V = {r} ∪ {r(K ) : K ∈ Ω} and edges E = {r → r(K ) : K ∈ Ω}. To keep
track of the probability of each outcome we can further label T with monomials on
the set of symbols {s1, . . . , sq}. Each symbol si represents the probability that the
die shows side i when rolled once. The monomial representing the probability of
outcome K is the term with vector of exponents K in the multinomial expansion of
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Fig. 3 General sketch of a multinomial staged tree. The vertex v is labelled by the floret of degree 3 on Sl ,
denoted by fl,3. The green vertices are the leaves and a root-to-leaf path is shown in orange

(s1 + . . . + sq)n , namely
( n

K

) ∏n
i=1 ski

i , where
( n

K

):=( n
k1,··· ,km

)
. The labelled tree bTΔ2

in Fig. 4, represents the multinomial model with n = b and q = 3.

In general terms a multinomial staged tree, is a labelled and directed event tree
such that at each vertex, the subsequent event is given by a multinomial model as in
Example 4.1. To introduce this concept formally, we start with a rooted and directed
tree T = (V , E) with vertex set V and edge set E such that edges are directed away
from the root. The directed edge from v to w is denoted v → w, the set of children of
a vertex v ∈ V is ch(v):={u ∈ V : v → u ∈ E} and the set of outgoing edges from v

is E(v):={v → u : u ∈ ch(v)}. If ch(v) = ∅ then we say that v is a leaf and we let Ṽ
denote the set of non-leaf vertices of T .
Given a rooted and directed tree T , we now explain how to label its edges using
monomials terms. Figure3 shows a general sketch of a multinomial staged tree.

Definition 4.1 Fix a set of symbols S = {si : i ∈ I } indexed by a set I . Let I1, . . . , Im

be a partition of I and S1, . . . , Sm the induced partition in the set S.

(1) The sets S1, . . . , Sm are called stages.
(2) For a ∈ Z≥1 and � ∈ [m], a floret of degree a on S� is the set of terms in the

multinomial expansion of the expression (
∑

i∈I� si )
a , we denote this set by f�,a .

(3) A function L : E → ⋃
�∈[m],a∈Z≥1

f�,a is a labelling of T if for every v ∈ Ṽ ,
L(E(v)) = f�,a for some � ∈ [m], a ∈ Z≥1, and the restrictionLv : E(v) → f�,a
is a bijection.
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(4) A multinomial staged tree is a pair (T ,L), where T is a rooted directed tree and
L is a labelling of T as in condition (3).

In a multinomial staged tree (T ,L), each v ∈ Ṽ is associated with the floret f�,a
that satisfies im(Lv) = f�,a . In this case, we index the children of v by v(K ) where
K = (ki1 , . . . , ki|I�|) ∈ N

|I�| is a tuple of nonnegative integers that add to a and
i1, . . . , i|I�| is a fixed ordering of the elements in I�. It follows that when im(Lv) =
f�,a , then E(v) = {v → v(K ) : K ∈ N

|I�|, |K | = a}, where |K |:=∑|I�|
q=1 kiq . We

further assume that the indexing of the children v is compatible with the labelling

L, namely for all multinomial staged trees, Lv(v → v(K )) = ( a
K

)∏|I�|
q=1 s

kiq
iq

, where
( a

K

) = ( a
ki1 ,...,ki|I�|

)
. It is important to note that this local description of the tree at the

vertex v is the multinomial model described in Example 4.1 up to a change of notation.
To clarify the notation just introduced we revisit Example 4.1 with a concrete choice
of parameters.

Example 4.2 Consider the multinomial model for q = 2 and n = 3, the outcome space
are all possible outcomes of flipping a coin 3 times. Here S = S1 = {s1, s2} and the
root vertex v will have 4 children, all of which are leaves. The 4 edges of the tree will
be labelled by the elements in the floret f1,3 = {s31 , 3s21s2, 3s1s22 , 3s32 }. The sets of
children and outgoing edges of v are then ch(v) = {v(3, 0), v(2, 1), v(1, 2), v(0, 3)}
and E(v) = {v → v(3, 0), v → v(2, 1), v → v(1, 2), v → v(0, 3)}.
Remark 4.1 Wewill always consider amultinomial staged tree (T ,L) as an embedded
tree in the plane. This means the tree has a fixed ordering of its edges and vertices.
The level of a vertex v in T is the number edges in a path from the root to v. All the
trees we consider satisfy the property that two florets associated with two vertices in
different levels must be on different stages. This implies that each root-to-leaf path
contains at most onemonomial term from each floret. Several figures in Sect. 5 contain
multinomial staged trees, in these pictures, for simplicity, we omit the coefficients of
the monomial edge labels.

Definition 4.2 Let (T ,L) be a multinomial staged tree with index set I = ��∈[m] I�.
Fix J to be the set of root-to-leaf paths in T , with |J | = n. For j ∈ J , define p j to be
the product of all edge labels in the path j . Let c j be the coefficient of p j and a j the
exponent vector of the symbols (si )i∈I in p j . With this notation, p j = c j

∏
i∈I s

ai j
i ,

where ai j are the entries of a j . Define the parameter space

ΘT :={(θi )i∈I ∈ (0, 1)|I | :
∑

i∈I�

θi = 1 for all � ∈ [m]}

The multinomial staged tree model M(T ,L) is the image of the parameterisation

φT : ΘT −→ Δ◦
n−1, (θi )i∈I �→ (c j

∏

i∈I

θ
ai j
i ) j∈J .
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Remark 4.2 The sum-to-one conditions on the parameter space ΘT imply that the
image of φT is contained inΔ◦

n−1. The multinomial coefficients on the labels of T are
necessary for this condition to hold. The modelM(T ,L) is an algebraic variety inside
Δ◦

n−1 with an explicit parameterisation given by φT . For θ ∈ ΘT , evalθ is the evalu-

ation map si �→ θi . The j-th coordinate of φT is evalθ (p j ), where p j = c j
∏

i∈I s
ai j
i

(Definition 4.2). For this reason we also use p j to denote the j-th coordinate in the
probability simplex Δ◦

n−1.

Remark 4.3 If all of the florets in a multinomial staged tree have degree one, then it is
called a staged tree. Multinomial staged tree models are a generalisation of discrete
Bayesian networks [16] and of staged tree models introduced in [17].

Example 4.3 Consider the following experiment with two independent coins: Toss the
first coin b times and record the number of tails, say this number is j . Then, toss the
second coin a + d(b − j) times, record the number of tails, say it is i . An outcome of
this experiment is a pair (i, j) where i is the number of tails in the second sequence
of coin tosses and j is the number of tails in the first. This sequence of events may be
represented by a multinomial staged tree (T = (V , E),L) where

V = {r} ∪ {r( j) : 0 ≤ j ≤ b} ∪ {r(i, j) : 0 ≤ j ≤ b, 0 ≤ i ≤ a + d(b − j)} and
E = {r → r( j) : 0 ≤ j ≤ b} ∪ {r( j) → r(i, j) : 0 ≤ j ≤ b, 0 ≤ i ≤ a + d(b − j)}.

This tree has two stages S1 = {s0, s1}, S2 = {s2, s3} that are a formal representation of
the parameters of theBernoulli distributions of the two independent coins. The set E(r)

is labelled by the floret f1,b and the set E(r( j)) is labelled by the floret f2,a+d(b− j).

Following the conventions set up earlier we see that L(r → r( j)) = (b
j

)
s j
0 sb− j

1

and L(r( j) → r(i, j)) = (a+d(b− j)
i

)
sa+d(b− j)−i
2 si

3. The multinomial staged tree
model Ma,b,d ⊂ Δn associated with (T ,L), is the statistical model consisting of
all probability distributions that follow the experiment just described. Let pi j denote
the probability of the outcome (i, j). The modelMa,b,d is parameterised by the map
φ : Δ◦

1 × Δ◦
1 → Ma,b,d ,

(θ0, θ1) × (θ2, θ3) �→ (
pi j

)
0≤ j≤b

0≤i≤a+d(b− j)
where pi j = (b

j

)(a+d(b− j)
i

)
θ

j
0 θ

b− j
1 θ i

2θ
a+d(b− j)−i
3 .

This model depends on two independent parameters, thus it has dimension two. The
modelMa,b,d is a binary multinomial staged tree model, its tree representation Ta,b,d

is displayed in Fig. 4.

Definition 4.3 Let (T ,L) be a multinomial staged tree. Fix the polynomial rings
R[Pj : j ∈ J ], R[si : i ∈ I ] and R[si : i ∈ I ]/q where q = 〈1− ∑

i∈I� si : � ∈ [m]〉.
We define

Ψ toric
T : R[Pj : j ∈ J ] → R[si : i ∈ I ] by Pj �→ c j

∏

i∈I

s
ai j
i , and

ΨT : R[Pj : j ∈ J ] → R[si : i ∈ I ]/q by ΨT = π ◦ Ψ toric
T
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where π : R[si : i ∈ I ] → R[si : i ∈ I ]/q is the canonical projection to the quotient
ring. The ideal ker(Ψ toric

T ) is the toric ideal associated with (T ,L) and ker(ΨT ) is
the model ideal associated with M(T ,L). Whenever ker(ΨT ) = ker(Ψ toric

T ), we call
M(T ,L) a toric model.

Remark 4.4 The ideal ker(ΨT ) defines the model M(T ,L) implicitly, i.e. M(T ,L) =
V (ker(ΨT ))∩Δ◦

n . Because of the containment ker(Ψ toric
T ) ⊂ ker(ΨT ), V (ker(Ψ toric

T ))

is a toric variety that contains M(T ,L). The polynomial 1 − ∑
j∈J Pj is always an

element in ker(ΨT ), hence using this polynomial as a homogenising element, we shall
always consider ker(ΨT ) as a homogeneous ideal in R[Pj : j ∈ J ].

4.2 The Ideal of Model Invariants forM(T ,L)

As is common in algebraic geometry, finding the explicit equations of the prime ideal
ker(ΨT ) is hard. Luckily, the statistical insight of the problem allows us to find a
nonprime ideal, usually referred to as the ideal of model invariants, that defines the
model inside the probability simplex. We now define this ideal and postpone the proof
that it has the aforementioned property to Sect. 4.4.

Definition 4.4 Let (T ,L) be a multinomial staged tree. For a vertex v ∈ V , define
[v]:={ j ∈ J : the path j goes through the vertex v} and set P[v]:= ∑

j∈[v] Pj .

Istages:=〈bP[w]

⎛

⎝
∑

|K |=a,kiq ≥1

kiq P[v(K )]

⎞

⎠ − a P[v]

⎛

⎜⎝
∑

|K ′|=b,k′
iq

≥1

k′
iq

P[w(K ′)]

⎞

⎟⎠ :

v ∼ w, im(Lv) = f�,a, im(Lw) = f�,b, � ∈ [m], 1 ≤ q ≤ |I�|〉, and

Ivertices:=〈C(K 3,K 4) P[v(K 1)] P[v(K 2)] − C(K 1,K 2) P[v(K 3)] p[v(K 4)] : v ∈ Ṽ ,

im(Lv) = f�,a, K 1, K 2, K 3, K 4 ∈ N
|I�|, |K 1| = |K 2| = |K 3| = |K 4| = a,

K 1 + K 2 = K 3 + K 4, C(K i ,K j ) =
(

a

K i

)(
a

K j

)
, i = 1, 3, j = 2, 4〉.

The ideal of model invariants of (T ,L) is IM(T ,L):=Istages+Ivertices+〈1−∑
j∈J Pj 〉.

The previous definition indicates, that there are equations that must hold for every
pair of vertices with the same associated stage, and equations that must hold for every
vertex. The motivation for this definition of the ideal of model invariants arises from
the technical Lemma 7.1 in Appendix B.

Remark 4.5 The generators of Ivertices for eachfixed vertex v are similar to theVeronese
relations of the embedding νa : P

|I�|−1 → P
M by monomials of total degree a. The

only difference is in the coefficients, defined in Lemma 7.1 part (2), that are needed
for cancellation.

Remark 4.6 By definition, IM(T ,L) always contains the sum-to-one condition 1 −∑
j∈J Pj , thus in a similar way as for ker(ΨT ) in Remark 4.4, we always consider

IM(T ,L) as a homogeneous ideal generated by Istages and Ivertices.
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4.3 Algebraic Lemmas for Multinomial Staged trees

To understand the defining equations of ker(ΨT ) and the case when this ideal is toric,
it is important to establish several lemmas that describe algebraic relations that hold in
R[Pj : j ∈ J ], R[si : i ∈ I ], R[Pj : j ∈ J ]/ ker(ΨT ) and R[Pj : j ∈ J ]/IM(T ,L).
The reader may decide to skip this section and only get back to it when the lemmas
are used in the proofs of Theorems 4.2 and 4.3.

Definition 4.5 Let (T ,L) be a multinomial staged tree with T = (V , E). For v ∈ V ,
let Λv denote the set of all v-to-leaf paths in T . A path λ ∈ Λv is a sequence of
edges v → v1 → · · · → vα where vα is a leaf of T . For each v ∈ V we define the
interpolating polynomial of v, t(v) ∈ R[si : i ∈ I ], by

t(v):=
∑

λ∈Λv

∏

e∈λ

L(e).

If v is a leaf, t(v):=1. We denote by t(v), the image of t(v) under the canonical
projection to R[si : i ∈ I ]/q. Note that for all v ∈ V , t(v) = 1.

Lemma 4.1 Let (T ,L) be a multinomial staged tree where T = (V , E) and let v ∈ Ṽ
be such that im(Lv) = f�,a.

(1) The polynomial t(v) satisfies

t(v) =
∑

|K |=a

(
a

K

) ∏

i∈I�

ski
i · t(v(K ));

(2) The image of P[v] under Ψ toric
T is

(∏
e∈λr ,v

L(e)
)

· t(v), where λr ,v is the set of

edges in the root-to-v path in T . Moreover ΨT (P[v]) = ∏
e∈λr ,v

L(e).

Proof (1) Any path in Λv goes through a child v(K ) of v. The sum of all the edge
products corresponding to the paths that go through child v(K ) is equal to the sumof all
the edge products corresponding to the paths starting at v(K ) (t(v(K ))) multiplied by
the label of the edge from v to v(K ) (

( a
K

) ∏
i∈I� ski

i ). Taking the sum of this expression
over all children of v gives the desired result.
(2) Let j be a root-to-leaf path that goes through v. Then, j is the concatenation of a
path from the root to v, denoted by λr ,v and a path from v to the leaf denoted by λv, j .
Then,

Ψ toric
T (P[v]) =

∑

j∈[v]

∏

e∈λr ,v

L(e)
∏

e∈λv, j

L(e) =
⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠

⎛

⎝
∑

j∈[v]

∏

e∈λv, j

L(e)

⎞

⎠

=
⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠ t(v).

The second statement follows by noting that t(v) = 1. ��
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Lemma 4.2 Let (T ,L) be a multinomial staged tree, there is a containment of ideals
IM(T ,L) ⊂ ker(ΨT ) in R[Pj : j ∈ J ].

Proof To show that IM(T ,L) ⊂ ker(ΨT ), it suffices to show that the generators of
Istages and Ivertices are zero after applying ΨT . We present the proof for the generators
of Istages, the proof for Ivertices is similar and also uses Lemma 4.1. A generator of
IM(T ,L) is of the form

bP[w]

⎛

⎝
∑

|K |=a,kiq ≥1

kiq P[v(K )]

⎞

⎠ − a P[v]

⎛

⎜⎝
∑

|K ′|=b,k′
iq

≥1

k′
iq

P[w(K ′)]

⎞

⎟⎠ ,

where v,w ∈ Ṽ , im(Lv) = f�,a , im(Lw) = f�,b for some � ∈ [m] and a fixed q,
1 ≤ q ≤ |I�|.
Claim : ΨT (

∑
|K |=a
kiq ≥1

kiq P[v(K )]) = asiq

∏
e∈λr ,v

L(e).

Using Lemma 4.1, we compute ΨT (P[v(K )]).

ΨT (
∑

|K |=a
kiq ≥1

kiq P[v(K )])=
∑

|K |=a
kiq ≥1

kiq ΨT (P[v(K )])=
∑

|K |=a
kiq ≥1

kiq

⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠
(

a

K

) |I�|∏

α=1

s
kiα
i

=
⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠

⎛

⎜⎜⎜⎝
∑

|K |=a
kiq ≥1

kiq

(
a

K

) |I�|∏

α=1

s
kiα
i

⎞

⎟⎟⎟⎠

=
⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠

⎛

⎜⎜⎜⎝
∑

|K |=a
kiq ≥1

kiq

a(a − 1)!
ki1 ! · · · ki|I�| !

siq s
kq−1
iq

|I�|∏

α=1
α �=q

s
kiα
i

⎞

⎟⎟⎟⎠

=
⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠

⎛

⎝
∑

|K |=a−1

asiq

(
a − 1

K

) |I�|∏

α=1

s
kiα
i

⎞

⎠

=
⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠ asiq (

|I�|∑

α=1

siα )
a−1 =

⎛

⎝
∏

e∈λr ,v

L(e)

⎞

⎠ asiq .

The last equality follows from the fact that
∑|I�|

α=1 siα = 1 inR[si : i ∈ I ]/q. The claim
applied to w ∈ Ṽ , implies ΨT (

∑
|K |=b
kiq ≥1

kiq P[w(K )]) =
(∏

e∈λr ,w
L(e)

)
bsiq . Thus, by
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Lemma 4.1,

ΨT

(
bP[w]

( ∑

|K |=a,kiq ≥1

kiq P[v(K )]
)

− a P[v]
( ∑

|K ′|=b,k′
iq

≥1

k′
iq

P[w(K ′)]
))

=

b
∏

e∈λr ,w

L(e) · asiq

∏

e∈λr ,v

L(e) − a
∏

e∈λr ,v

L(e) · bsiq

∏

e∈λr ,w

L(e) = 0.

��

4.4 Defining Equations of Binary Multinomial Staged Trees

In this section and the next, we prove Theorems 4.2 and 4.3 for binary multinomial
staged trees; despite being unable to provide a proof, we believe these statements also
hold for non-binary multinomial staged trees. First we show that the ring homomor-
phismΨT admits an inverse when localised at a suitable element. From this, it follows
as a corollary that the ideal of model invariants definesM(T ,L) inside the probability
simplex.

Theorem 4.2 Let (T ,L)be a binary multinomial staged tree and defineP:=∏
v∈V P[v].

Then, the localised map

(ΨT )P : (
R[Pj : j ∈ J ]/IM(T ,L)

)
P → (R[si : i ∈ I ]/q)ΨT (P) ,

is an isomorphism of R-algebras. Therefore (IM(T ,L))P = (ker(ΨT ))P and thus
(IM(T ,L) : P∞) = ker(ΨT ).

Proof We define a ring homomorphism

ϕ : (R[si : i ∈ I ]/q)ΨT (P) → (
R[Pj : j ∈ J ]/IM(T ,L)

)
P

and show that it is a two sided inverse for (ΨT )P. For � ∈ [m] and 1 ≤ q ≤ |I�|, let v
be a vertex with im(Lv) = f�,a and define

ϕ(siq ) =
∑

|K |=a,kiq ≥1 kiq P[v(K )]
a P[v]

.

Note that ϕ is well defined: If w is another vertex with im(Lw) = f�,b, then

ϕ(siq ) =
∑

|K |=a,kiq ≥1 kiq P[v(K )]
a P[v]

=
∑

|K ′|=b,k′
iq

≥1 kiq P[w(K )]
bP[w]
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becausebP[w]
(∑

|K |=a,kiq ≥1 kiq P[v(K )]
)
−a P[v]

(∑
|K ′|=b,k′

iq
≥1 k′

iq
P[w(K ′)]

)
∈ IM(T ,L).

First, we check that (ΨT )P ◦ ϕ = Id,

(ΨT )P(ϕ(siq )) = (ΨT )P

(∑
|K |=a,kiq ≥1 kiq P[v(K )]

a P[v]

)

=
∑

|K |=a,kiq ≥1

kiq

a
(ΨT )P

(
P[v(K )]

P[v]

)

=
∑

|K |=a,kiq ≥1

kiq

a

ΨT (P[v(K )])
ΨT (P[v])

=
∑

|K |=a,kiq ≥1

kiq

a

(
a

K

) |I�|∏

α=1

s
kiα
iα

= siq .

The second to last equality follows by using the expression for ΨT (P[v]) presented
in Lemma 4.1 part (2), the same result is used to compute ΨT (P[v(K )]), finally their

quotientΨT (P[v(K )])/ΨT (P[v]) is exactly
( a

K

)∏|I�|
α=1 s

kiα
iα

. The last equality is obtained
by using the same argument as in Lemma 7.1 part (3).
Next, we verify ϕ ◦ (ΨT )P = Id, which amounts to proving that (ϕ ◦ΨT ,P)(Pj ) = Pj

for each j ∈ J . From this point on we further assume that |I�| = 2 for all � ∈ [m].
Fix j ∈ J and let v1 → v2 → · · · → vα be the root-to-leaf path j . By Definition 4.3

(ΨT )P(Pj ) = c j

∏

i∈I

s
ai j
i = Lv1(v1 → v2) · · ·Lvα−1(vα−1 → vα), (5)

where for each γ ∈ [α − 1], im(Lvγ ) = f�γ ,aγ for some �γ ∈ [m] and aγ ∈ Z≥1. By
Remark 4.1, none of the florets f�γ ,aγ share the same set of symbols. Moreover, for
each γ ∈ [α − 1],

Lvγ (vγ → vγ+1) =
(

aγ

kγ

)
s

kγ

γ,i1
s

a−kγ

γ,i2
where S�γ = {sγ,i1 , sγ,i2}, 0 ≤ kγ ≤ aγ . (6)

With this notation, we also deduce that vγ+1 = vγ (kγ , a − kγ ). Now we apply ϕ to
(5), use that ϕ is a ring homomorphism and use equation (6) to obtain

ϕ((ΨT )P(Pj )) = ϕ(Lv1(v1 → v2)) · · · ϕ(Lvα−1(vα−1 → vα))

=
α−1∏

γ=1

(
aγ

kγ

)
ϕ(sγ,i1)

kγ ϕ(sγ,i2)
a−kγ . (7)

Using the definition of ϕ, for each γ ∈ [α − 1],

ϕ(sγ,i1) =
∑aγ

k=1 k P[vγ (k,aγ −k)]
aγ P[vγ ]

and ϕ(sγ,i2) =
∑aγ

k=1 k P[vγ (aγ −k,k)]
aγ P[vγ ]

.
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By Lemma 7.4, with a = aγ , l1 = ∑aγ

k=1 k P[vγ (k,aγ −k)], l2 = ∑aγ

k=1 k P[vγ (aγ −k,k)]
and k0 = kγ , we conclude that

(
aγ

kγ

)
ϕ(sγ,i1)

kγ ϕ(sγ,i1)
a−kγ = P[vγ (kγ ,a−kγ )]

P[vγ ]
.

Thus, continuing from (7) we have

ϕ((ΨT )P(Pj )) =
α−1∏

γ=1

P[vγ (kγ ,a−kγ ])]
P[vγ ]

= P[v1(k1,a1−k1)]
P[v1]

P[v2(k2,a2−k2)]
P[v2]

· · · P[vα−1(kα−1,aα−1−kα)]
P[vα−1]

= P[vα]
P[v1]

.

To obtain the previous cancellation we used the fact that for each γ ∈ [α − 1],
vγ+1 = vγ (kγ , a − kγ ), hence P[vγ (kγ ,a−kγ )] = P[vγ+1]. Note that P[v1] = 1 by
definition of IM(T ,L) and P[vα] = Pj because vα is the last vertex in the path j . Thus,
ϕ((ΨT )P(Pj )) = Pj . The second statement of the theorem follows from the fact that
IM(T ,L) ⊂ ker(ΨT ) and that the localisation (ΨT )P is an isomorphism. ��
Corollary 4.1 The ideal of model invariants defines the binary multinomial staged tree
model inside the probability simplex, i.e. M(T ,L) = V (IM(T ,L)) ∩ Δ◦

n−1.

Proof The variety V (IM(T ,L) : P∞) exactly describes the points in V (IM(T ,L))

that are not in V (P). The latter variety contains the boundary of the simplex, hence
restricting to positive points that add to one, yields M(T ,L) = V (IM(T ,L)) ∩ Δ◦

n−1.��

4.5 Toric Binary Multinomial Staged TreeModels

It is not true in general the ideal ker(ΨT ) of a multinomial staged tree is toric. For the
case of staged trees, a characterisation ofwhen ker(ΨT ) is equal to a subideal generated
by binomials is available in [11]. The goal of this section is to establish a similar
criterion, based on interpolating polynomials from Definition 4.5, for multinomial
staged trees. This criterion will allow us to study the polyhedral geometry of these
models in Sect. 5.

Definition 4.6 Let (T ,L) be a multinomial staged tree and let v,w be two vertices in
the same stage with im(Lv) = f�,a and im(Lw) = f�,b for some � ∈ [m].
(1) The vertex v is balanced if for all K 1, K 2, K 3, K 4 ∈ N

|I�| with |K 1| = |K 2| =
|K 3| = |K 4| = a and K 1+K 2 = K 3+K 4, the next identity holds inR[si : i ∈ I ]

t(v(K 1))t(v(K 2)) = t(v(K 3))t(v(K 4)).

(2) The pair of vertices v,w is balanced if for all tuples K , K ′, Q, Q′ ∈ N
|I�| with

|K | = |K ′| = a and |Q| = |Q′| = b with K + Q′ = K ′ + Q the following

123



Foundations of Computational Mathematics (2023) 23:2151–2202 2181

identity holds in R[si : i ∈ I ]

t(v(K )) · t(w(Q′)) = t(v(K ′)) · t(w(Q)).

The multinomial staged tree (T ,L) is balanced if every vertex is balanced and every
pair of vertices in the same stage is balanced.

Remark 4.7 Condition (1) in Definition 4.6 is an empty condition for florets of degree
one. For staged trees, condition (2) specialises to the definition of balanced stated in
[2].

Remark 4.8 If all root-to-leaf paths in (T ,L) have length 1, then (T ,L) is vacuously
balanced. If (T ,L) has all root-to-leaf paths of length 2, such as Ta,b,d in Fig. 5, it
suffices to check that the root is balanced. For the other vertices, the conditions in
Definition 4.6 reduce to the trivial equality 1 · 1 = 1 · 1.
Theorem 4.3 Let (T ,L) be a binary multinomial staged tree. The model M(T ,L) is
toric if and only if (T ,L) is balanced.

Proof We prove that ker(ΨT ) = ker(Ψ toric
T ) if and only if (T ,L) is balanced. Define

the ideal J to be generated by all polynomials of the form

C(K ′,Q) P[v(K )] P[w(Q′)] − C(K ,Q′) P[v(K ′)] P[w(Q)],
C(K 3,K 4) P[v(K 1)] P[v(K 2)] − C(K 1,K 2) P[v(K 3)] P[v(K 4)]

where v,w ∈ V are in the same stage and K , K ′, Q, Q′ obey the condition (2) and
K 1, K 2, K 3, K 4 obey the condition (1) in Definition 4.6.
Claim 1: J ⊂ ker(Ψ toric

T ) if and only if (T ,L) is balanced.
By Lemma 4.1,

Ψ toric
T (P[v(K )] P[w(Q′)]) =

⎛

⎝
∏

e∈λr ,v(K )

L(e)

⎞

⎠ t(v(K ))

⎛

⎝
∏

e∈λr ,w(Q′)

L(e)

⎞

⎠ t(w(Q′)) and

(8)

Ψ toric
T (P[v(K ′)] P[w(Q)]) =

⎛

⎝
∏

e∈λr ,v(K ′)

L(e)

⎞

⎠ t(v(K ′))

⎛

⎝
∏

e∈λr ,w(Q)

L(e)

⎞

⎠ t(w(Q)).

(9)

Note that the right-hand side of the two equations above share the common factor∏
e∈λv,w

L(e) where λv,w is the set of edges in the path from v to w. Thus, we extract
this factor from the two previous equations and multiply times the labels of the edges
v → v(K ), w → w(Q) and v → v(K ′), w → w(Q′), respectively, to further
simplify the two expressions into

Ψ toric
T (P[v(K )] P[w(Q′)])=

∏

e∈λv,w

L(e)

⎛

⎝
(

a

K

)(
b

Q′

) ∏

i∈I�

s
ki +q ′

i
i

⎞

⎠ t(v(K ))t(w(Q′)) and

(10)
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Ψ toric
T (P[v(K ′)] P[w(Q)]) =

∏

e∈λv,w

L(e)

⎛

⎝
(

a

K ′

)(
b

Q

) ∏

i∈I�

s
k′

i +qi

i

⎞

⎠ t(v(K ′))t(w(Q))

(11)

Finally, since K + Q′ = K ′ + Q and (T ,L) is balanced, we obtain

Ψ toric
T (C(K ′,Q) P[v(K )] P[w(Q′)] − C(K ,Q′) P[v(K ′)] P[w(Q)])

= C(K ,Q′)C(K ′,Q)

∏

e∈λv,w

L(e)
∏

i∈I�

s
ki +q ′

i
i

(
t(v(K ))t(w(Q)) − t(v(K ′))t(w(Q))

)

= 0

A similar calculation shows that

Ψ toric
T (C(K 3,K 4) P[v(K 1)] P[v(K 2)] − C(K 1,K 2) P[v(K 3)] P[v(K 4)]) = 0

if T is balanced. Conversely, note that if J ⊂ ker(Ψ toric
T ), tracing these equations

backwards implies that T must be balanced.
Claim 2: IM(T ,L) ⊂ J . The ideal IM(T ,L)) is the sum of Istages and Ivertices. By
definition, the generators of Ivertices are also generators of J . Hence, it suffices to show
that the generators of Istages are polynomial combinations of the generators of J . From
this point on we further assume that (T ,L) is binary. Suppose v,w are in the same
stage, where im(Lv) = f�,a , im(Lw) = f�,b and |Il | = 2. There are two equations
that hold for this stage, one for each element in I�. We will show that the equation

bP[w]

⎛

⎝
a∑

k1=1

k1P[v(k1,a−k1)]

⎞

⎠ − a P[v]

⎛

⎝
b∑

k2=1

k2P[w(k2,b−k2)]

⎞

⎠ , (12)

which is the equation for the first element in I�, is a combination the generators of J ,
defined at the beginning. The one for the second element in I� follows an analogous
argument. We use the following two identities:

bP[w] =
b∑

k2=1

k2P[w(k2,b−k2)] +
b∑

k2=1

k2Pw[(b−k2,k2)] and

a P[v] =
a∑

k1=1

k1P[v(k1,a−k1)] +
a∑

k1=1

k1P[v(a−k1,k1)].

Working from equation (12), using the identities, we have

⎛

⎝
b∑

k2=1

k2P[w(k2,b−k2)] +
b∑

k2=1

k2P[w(b−k2,k2)]

⎞

⎠

⎛

⎝
a∑

k1=1

k1P[v(k1,a−k1)]

⎞

⎠
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−
⎛

⎝
a∑

k1=1

k1P[v(k1,a−k1)] +
a∑

k1=1

k1P[v(a−k1,k1)]

⎞

⎠

⎛

⎝
b∑

k2=1

k2P[w(k2,b−k2)]

⎞

⎠

=
⎛

⎝
b∑

k2=1

k2P[w(b−k2,k2)]

⎞

⎠

⎛

⎝
a∑

k1=1

k1P[v(k1,a−k1)]

⎞

⎠

−
⎛

⎝
a∑

k1=1

k1P[v(a−k1,k1)]

⎞

⎠

⎛

⎝
b∑

k2=1

k2P[w(k2,b−k2)]

⎞

⎠

=
⎛

⎝
b∑

k2=1

a∑

k1=1

k2k1P[w(b−k2,k2)] P[v(k1,a−k1)]

⎞

⎠

−
⎛

⎝
b∑

k2=1

a∑

k1=1

k1k2P[w(k2,b−k2)] P[v(a−k1,k1)]

⎞

⎠ (13)

=
b∑

k2=1

a∑

k1=1

(
k2k1P[w(b−k2,k2)] P[v(k1,a−k1)]

− (b− (k2 − 1))(a− (k1 − 1))P[w(b−(k2−1),k2−1)] P[v(k1−1,a−(k1−1))]
)
. (14)

After rearranging the terms in (13) we get a single double summation. Finally, the
(k1, k2) summand in (14) is a multiple of the generator of J , where Q′ = (b −
k2, k2), K = (k1, a − k1), K ′ = (k1 − 1, a − (k1 − 1)), Q = (b − (k2 − 1), k2 − 1).
The generator of J corresponding to this choice of K , K ′, Q, Q′ is

(
b

k2−1

)(
a

k1−a

)
P[w(b−k2,k2)] P[v(k1,a−k1)]

−
(

b

k

)(
a

k1

)
P[w(b−(k2−1),k2−1)] P[v(k1,a−(k1−1))]. (15)

Note that (b − k2, k2)+ (k1, a − k1) = (b − (k2 −1), k2 −1)+ (k1 −1, a − (k1 −1)),
thus K + Q′ = K ′ + Q. Multiplying equation (15) times (b−(k2−1))!(a−(k1−1)!k1!k2!)

a!b!
gives the (k1, k2) summand in (14). This implies that (14) is a sum of multiples of the
generators in J , hence Istages ⊂ J .

Finally, combining Claim 1 and 2 we conclude that IM(T ,L) ⊂ J ⊂ ker(Ψ toric
T ) ⊂

ker(ΨT ) if and only if T is balanced. We now saturate this chain of ideals as in
Theorem 4.2 to obtain (IM(T ,L) : P∞) = (ker(ΨT )toric : P∞) = (ker(ΨT ) : P∞).
But (ker(ΨT )toric : P∞) = ker(ΨT )toric and (ker(ΨT ) : P∞) = ker(ΨT ) because
they are prime ideals. Hence, ker(Ψ toric

T ) and ker(ΨT ) are equal. ��
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4.6 Multinomial Staged TreeModels have Rational MLE

In this last section on multinomial staged trees, we prove that they have rational MLE.
This fact together with Theorem 4.3 establishes Theorem 4.1 and thus provides a new
class of polytopes that have rational linear precision.

Theorem 4.4 The multinomial staged tree model M(T ,L) has rational MLE Φ. The
j-th coordinate of Φ is

Φ j (u1, . . . , un) = c j

∏

i∈I

θ̂i
ai j

, where for i ∈ I�, θ̂i =
∑

j∈J u j ai j∑
i∈I� (

∑
j∈J u j ai j )

.

Proof Let u = (u1, . . . , un) be a vector of counts. The likelihood function forMT ,L
is

L(p|u) =
∏

j∈J

p
u j
j =

∏

j∈J

(
∏

i∈I

c jθ
ai j
i

)u j

=
∏

j∈J

(
∏

i∈I

c
u j
j θ

ai j u j
i

)
=

(
∏

i∈I

cu1
1 θ

ai1u1
i

)
· · ·

(
∏

i∈I

cun
n θ

ainun
i

)

=
⎛

⎝
∏

j∈J

c
u j
j

⎞

⎠
(

∏

i∈I

θ

∑
j∈J u j ai j

i

)
, let C =

∏

j∈J

c
u j
j

= C

⎛

⎝
∏

i∈I1

θ

∑
j∈J u j ai j

i

⎞

⎠ · · ·
⎛

⎝
∏

i∈Ik

θ

∑
j∈J u j ai j

i

⎞

⎠ = C L1 · · · Lk,

where L1, . . . , Lm denote the factors before the last equality in the previous line. The
function L(p|u) is maximised when each factor is maximised. This is because the
parameters are partitioned by I1, . . . , Im and hence each factor is independent. Thus,
we find the maximisers of each factor. The function L�, � ∈ [m], is the likelihood
function of the saturated model Δ|I�|−1 with parameters (θi )i∈I� and vector of counts(∑

j∈J u j ai j

)

i∈I�
. Therefore θ̂i =

∑
j∈J u j ai j∑

i∈I�

∑
j∈J u j ai j

, i ∈ I�. ��

Corollary 4.2 Let H(T ,L) be the (|I | + m) × (|J |) matrix with entries

hi j = ai j , i ∈ I , h� j = −
∑

i∈I�

ai j , � ∈ [m], and λ j :=(−1)
∑

i∈I ai j c j .

Then, (H(T ,L), λ) is a Horn pair for M(T ,L).

Proof It suffices to check that the j-th coordinate of ϕ(H ,λ) is equal to Φ j in Theo-
rem 4.4. Let u = (u1, . . . , un), then
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(H(T ,L)u)T =
⎛

⎝
∑

j∈J

a1 j u j , . . . ,
∑

j∈J

a|I | j u j , −
∑

j∈J

(
∑

i∈I1

ai j )u j , . . . , −
∑

j∈J

(
∑

i∈Im

ai j )u j

⎞

⎠ .

The j-th coordinate of ϕ(H(T ,L),λ) is

λ j (H(T ,L)u)h j =
(−1)

∑
i∈I ai j c j

(∑
j∈J a1 j u j

)a1 j · · ·
(∑

j∈J a|I | j u j

)a|I | j

(
−∑

j∈J (
∑

i∈I1 ai j )u j

)∑
i∈I1

ai j · · ·
(
− ∑

j∈J (
∑

i∈Im
ai j )

)∑
i∈Ik

ai j

= c j ·
(∑

j∈J a1 j u j

)a1 j · · ·
(∑

j∈J a|I | j u j

)a|I | j

(∑
j∈J (

∑
i∈I1 ai j )u j

)∑
i∈I1

ai j · · ·
(∑

j∈J (
∑

i∈Im
ai j )

)∑
i∈Ik

ai j

= c j ·
( ∑

j∈J a1 j u j∑
j∈J (

∑
i∈I1 ai j )u j

)a1 j

· · ·
( ∑

j∈J a|I | j u j∑
j∈J (

∑
i∈Im

ai j )u j

)a|I | j

= c j
∏

i∈I

θ̂
ai j
i = Φ j .

��

5 Polytopes Arising from Toric Multinomial Staged Trees

The aim of this section is to bring together the examples of 2D and 3D polytopes with
rational linear precision (Sect. 3) andmultinomial staged trees (Sect. 4). To this end, we
investigate certain properties of the lattice polytopes arising from toric multinomial
staged trees. This leads to a better understanding of the negative part of the Horn
matrix than that provided by the primitive collections. Recall that J denotes the set of
root-to-leaf paths in T . For j ∈ J , p j is defined to be the product of all edge labels in
the path j . We denote the stages of (T ,L) by S1, . . . , Sm . Throughout this section m
is a positive integer as in Sect. 4 and m j (m with a subindex) denotes a lattice point as
in Sect. 3.

Definition 5.1 The lattice polytope PT of a balanced multinomial staged tree (T ,L)

is the convex hull of exponent vectors a j of p j for every root-to-leaf path j in T .

Note that PT ⊂ R
d is not a full-dimensional polytope for d = |S1| + · · · + |Sm |. This

can be observed, e.g. in Fig. 4 (left) for PTbΔ2
∼= bΔ2 (unimodularly equivalent). We

call (T ,L) a multinomial staged tree representation of a full-dimensional polytope
P ∼= PT .

5.1 Two-Dimensional Multinomial Staged TreeModels

The polytopes in 2D from Sect. 3.1 admit a multinomial staged tree representation.
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Fig. 4 The multinomial staged trees TbΔ2 and Ta,b,d represent the multinomial model with three outcomes
and b trials and the model in Example 4.3, respectively

Proposition 5.1 All statistical models associated with pairs (P, w) in 2D with rational
linear precision are toric multinomial staged tree models. The multinomial staged tree
representations for each family in 2D are described in Fig.4.

Proof For the model bΔ2 = T0,b,1, it suffices to note that the polytope bΔn with
weights given by multinomial coefficients has a Horn pair given by Theorem 2.4
which is equal to that one described in [11, Example 20] for multinomial models with
b trials and n + 1 outcomes. The statistical model for Ta,b,d is the binary multinomial
staged tree Ma,b,d in Example 4.3, denoted by Ta,b,d in Fig. 4. The Horn matrix in
Proposition 3.1, associated with the model for Ta,b,d , is equal to the Horn matrix of
the model Ma,b,d . Firstly, in both cases the columns are indexed by pairs (i, j) such
that 0 ≤ j ≤ b, 0 ≤ i ≤ a + d(b − j) so these matrices have the same number of
columns. Using Corollary 4.2, we see that the column corresponding to the outcome
(i, j) inMa,b,d is (i, j, a + d(b − j)− i, b − j,−(a + d(b − j)),−b), which equals
the column associated with the lattice point (i, j) in Proposition 3.1. Uniqueness of
the minimal Horn matrix, implies that the model associated with Ta,b,d isMa,b,d .
It remains to show that TbΔ2 and Ta,b,d are balanced. By Remark 4.8, TbΔ2 is balanced
because all root-to-leaf paths have length 1. For Ta,b,d , it suffices to prove that the
root r is balanced. Following the notation in Definition 4.6, let K 1 = ( j1, b − j1),
K 2 = ( j2, b − j2), K 3 = ( j3, b − j3), and K4 = ( j4, b − j4) be such that K 1 + K 2 =
K 3 + K 4. Then,

t(r(K 1))t(r(K 2)) = (s2 + s3)
a+d(b− j1)(s2 + s3)

a+d(b− j2) = (s2 + s3)
2a+2db−d( j1+ j2)

= (s2 + s3)
2a+2db−d( j3+ j4) = (s2 + s3)

a+d(b− j3)(s2 + s3)
a+d(b− j4)

= t(r(K 3))t(r(K 4))

��
Note that we obtain PT0,b,1

∼= bΔ2, i.e. we have two different tree representations
of bΔ2: TbΔ2 and T0,b,1. For the investigation of the shape of a Horn matrix, we
will be interested in those trees T where the positive part of the Horn matrix H(T ,L)

from Corollary 4.2 is the lattice distance matrix of PT (Definition 5.3)(1). For simple
polytopes PT , these trees with an additional property provide us an explanation for
the negative part of H(T ,L) in terms of primitive collections in Theorem 5.1.
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5.2 Three-Dimensional Binary Multinomial Staged TreeModels

Before we examine the multinomial staged tree representations more generally, we
present the multinomial staged trees for the family P in Sect. 3.

Proposition 5.2 All statistical models associated with pairs in P are toric binary
multinomial staged trees.

Proof We first show that the Horn matrix of the statistical model associated with a
general element in P is equal to the Horn matrix of a binary multinomial staged
tree. The general element in P is a frustum with parameters a, a′, b, b′, d, l > 0. Let
S = {{s0, s1}, {s2, s3}, {s4, s5}} be a set of symbols. We define the labelled tree (T ,L)

by specifying its set of leaves, its set of root-to-leaf paths, and the labelling for the
edges in each path. The set of leaves in T is

J = {(i, j, k) : 0 ≤ k ≤ l, 0 ≤ j ≤ bl − (b − b′)k,

0 ≤ i ≤ (a + db)l − ((a + db) − (a′ + db′)k − d j)}.

The labelled root-to-leaf path that ends at leaf (i, j, k) is r → v → w → (i, j, k),
where

L(r → v) = (l
k

)
sk
0sl−k

1 ,

L(v → w) = (b−(b−b′)k
j

)
s j
2 sbl−(b−b′)k− j

3 , and

L(w → (i, j, k)) = (
(a+db)l−((a+db)−(a+db′))k−d j

i

)

si
4s(a+db)l−((a+db)−(a+db′))k−d j−i

5 .

Thus, p(i, j,k) is the product of the labels in this path. A picture of this tree when l = 1
is contained in Fig. 5 as T(A)1 . Using Corollary 4.2, applied to (T ,L) just defined, we
see that the column corresponding to (i, j, k) in the Horn matrix forM(T ,L) is equal
to the column of the matrix in Proposition 3.2 evaluated at (i, j, k).
It remains to prove that (T ,L) is balanced. Let us first prove that the root r of (T ,L)

is balanced. The exponents of the outgoing edges of r can be written as pairs of natural
numbers that sum to the degree � of the floret. Thus, they are pairs of the form (k, �−k).

Let us consider four such pairs, denoted by Q1:=(k1, � − k1), Q2:=(k2, � − k2),
Q3:=(k3, � − k3), Q4:=(k4, � − k4). Suppose that Q1 + Q2 = Q3 + Q4. Then, we
have k1 + k2 = k3 + k4.

We further need to check the following equality:

t
(
r(Q1)

)
t
(
r(Q2)

) = t
(
r(Q3)

)
t
(
r(Q4)

)
.

We have:

t
(
r(Q1)

) =
b�−(b−b′)k1∑

j=0

[(b�−(b−b′)k1
j

)
s j
2 sb�−(b−b′)k1− j

3 t
(
v( j, b� − (b − b′)k1 − j)

)]
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Fig. 5 Multinomial staged trees in 3D for pairs in Table 1(A)
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=
b�−(b−b′)k1∑

j=0

[(b�−(b−b′)k1
j

)
s j
2 sb�−(b−b′)k1− j

3

(s4 + s5)
(a+db)�−((a+db)−(a′+db′))k1−d j

]

= (s4 + s5)
(a+db)�−((a+db)−(a′+db′))k1

·
b�−(b−b′)k1∑

j=0

[(b�−(b−b′)k1
j

)( s2
(s4 + s5)d

) j

sb�−(b−b′)k1− j
3

]

= (s4 + s5)
(a+db)�−((a+db)−(a′+db′))k1

(
s2

(s4 + s5)d
+ s3

)b�−(b−b′)k1
.

We obtain similar formulae for t
(
r(Q2)

)
, t

(
r(Q3)

)
and t

(
r(Q4)

)
. It follows that

t
(
r(Q1)

)
t
(
r(Q2)

) = (s4 + s5)
2(a+db)�−((a+db)−(a′+db′))(k1+k2)

·
(

s2
(s4 + s5)d

+ s3

)2b�−(b−b′)(k1+k2)

= (s4 + s5)
2(a+db)�−((a+db)−(a′+db′))(k3+k4)

·
(

s2
(s4 + s5)d

+ s3

)2b�−(b−b′)(k3+k4)

= t
(
r(Q3)

)
t
(
r(Q4)

)
.

A similar argument can be used to prove that the children of the root are balanced
vertices. Next, let us denote by v such a vertex, whose parent is r . By Remark 4.8,
any child of v is trivially balanced. Finally, we prove that all pairs of vertices in the
same stage are balanced. There are three stages S1 = {s0, s1}, S2 = {s2, s3} and
S3 = {s4, s5}. Denote by v and v′ two children of the root r . The exponents of the
outgoing edges of v can be written as pairs of natural numbers that sum to the degree
b� − (b − b′)k1 of the floret. Thus, they are pairs of the form ( j, b� − (b − b′)k1 −
j). Let us consider two such pairs, denoted by Q1:=( j1, b� − (b − b′)k1 − j1),
Q2:=( j2, b� − (b − b′)k1 − j2). Similarly, we consider two children of v′ and we
denote by Q3:=( j3, b� − (b − b′)k2 − j3), Q4:=( j4, b� − (b − b′)k2 − j4). Suppose
that Q1 + Q4 = Q2 + Q3. It follows that j1 + j4 = j2 + j3. We want to prove that

t
(
v(Q1)

)
t
(
v(Q4)

) = t
(
v(Q2)

)
t
(
v(Q3)

)
.

We obtain the following equality:

t
(
v(Q1)

) = t
(
v( j1, b� − (b − b′)k1 − j1)

)

= (s4 + s5)
(a+db)�−((a+db)−(a′+db′))k1−d j1 ,
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and its analogues for t
(
v(Q2)

)
, t

(
v(Q3)

)
and t

(
v(Q4)

)
. Then,

t
(
v(Q1)

)
t
(
v(Q4)

) = (s4 + s5)
2(a+db)�−((a+db)−(a′+db′))(k1+k2)−d( j1+ j4)

= (s4 + s5)
2(a+db)�−((a+db)−(a′+db′))(k1+k2)−d( j2+ j3)

= t
(
v(Q2)

)
t
(
v(Q3)

)
.

Therefore the pairs of vertices we considered are balanced. ��
To obtain the multinomial staged tree representations for the models of the polytopes
in Table 1, we use the tree in the proof of Proposition 5.2 and specialise the values
of the parameters a, a′, b, b′, d, l accordingly. The trees for the family of prismatoids
with trapezoidal base in Table 1 (A), with l = 1, are depicted in Fig. 5. The trapezoidal
frusta is represented by T(A)1 , the upper branch is the model for Ta,b,d and the lower
branch is the model for Ta′,b′,d . The other trees, T(A)2 , T(A)3 and T(A)4 , have the same
upper branch as T(A)1 . For the prismatoid with simplex on top, the substitution a′ = 0
has the effect of chopping a floret from T(A)1 , this gives T(A)2 . For the trapezoidal
wedge, b′ = 0, the edges in T(A)1 that contain b′ contract to a single vertex, yielding
T(A)3 . For the trapezoidal pyramid, a′ = b′ = 0, we chop off the lower part of the tree
after the edge labelled by s1. The trees for the remaining part of Table 1 (B), (C), and
(D) are obtained similarly.

5.3 Properties of the Polytope PT

In this section, we study certain properties of PT that can be formulated in terms of the
combinatorics of its tree T .We start by looking at root-to-leaf paths in T that represent
vertices of PT , this allows us to work with the normal fan ΣPT . For simplicity we
assume that (T ,L) has a root-to-leaf path of length m where S1, . . . , Sm are the stages
of T .

Definition 5.2 A root-to-leaf path j is vertex representing if the exponent vector a j of
p j is a vertex of PT .

Lemma 5.1 Let PT ⊂ R
d be a polytope where (T ,L) is a multinomial staged tree

from Proposition 5.1 or Proposition 5.2. Then, the vertex representing paths in PT
are those for which p j is divisible by at most one symbol from each stage.

Proof The upper and lower branches of the tree T(A)1 are the same up to a choice
of parameters, thus we prove it only for the upper branch. Consider a root-to-leaf
path j in T(A)1 such that aj = (1, 0, j, b − j, k, a + d(b − j) − k) for 0 < j < b
and 0 < k < a + d(b − j). Let j1 and j2 be two root-to-leaf paths such that aj1 =
(1, 0, j, b − j, a + d(b − j), 0) and aj2 = (1, 0, j, b − j, 0, a + d(b − j)). Then,

we obtain the equality aj = k
a+d(b− j))aj1 + a+d(b− j)−k

a+d(b− j)) aj2 and hence aj cannot be a
vertex of PT(A)1

. It remains to show that aj = (1, 0, j, b − j, a + d(b − j), 0)) is not a
vertex. Let now j′1 and j′2 be two root-to-leaf paths such that pj′1 and pj′2 are divisible by
one symbol from each stage and aj′1 = (1, 0, b, 0, a, 0), aj′2 = (1, 0, 0, b, a + db, 0).
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Hence, aj = j
b aj′1+

b− j
b aj′2 and aj is not a vertex of PT(A)1

. The proofs for the remaining
trees follow similarly. ��
Next, we investigate the relation between primitive collections, Horn matrices, and
stages of multinomial staged trees. The following definition was motivated by the
observations on the trees from Sects. 5.1, 5.2 and by an attempt to answer Question
2.2.

Definition 5.3 Let (T ,L) be a balanced multinomial staged tree representation of
P ∼= PT . We say that the polytope PT has property (�) if,

1. The positive part of theHornmatrix H(T ,L) fromCorollary 4.2 is the lattice distance
matrix of PT .

2. The vertices of PT satisfy the conclusion of Lemma 5.1.

Note that isomorphic polytopes have the same lattice distance matrices.

Lemma 5.2 Let PT ⊂ R
d be a polytope with property (�). Then, PT is simple if and

only if all root-to-leaf paths have the same length m and |S1| + · · · + |Sm | − m =
dim(PT ).

Proof Recall that we assumed that there exists a root-to-leaf path of lengthm. All root-
to-leaf paths have the same length m if and only if all vertex representing root-to-leaf
paths have the same length m. Recall also that the vertices of PT are in one-to-one
correspondence with the maximal cones of the normal fanΣPT . First suppose that PT
is simple and there exists a vertex representing root-to-leaf path j ′ of length m′ < m.
Since the positive part of H(T ,L) is the lattice distance matrix of PT , the symbols
which do not divide p j ′ represent the facets of PT which are lattice distance 0 to a j ′ .
Since PT satisfies the conclusion of Lemma 5.1, the maximal cone associated with
the vertex a j ′ in ΣPT has more 1-face (ray) generators than the one associated with
a j where j has length m. Thus, ΣPT is not simplicial, contradiction. Moreover we
obtain that the maximal cone associated with a vertex a j is generated by the normal
vectors associated with

⋃m
l=1 Sl\sil for some sil ∈ Sl and where

∏m
l=1 sil divides p j .

This implies that dim(PT ) = |S1| + · · · + |Sm | − m. Now suppose that all vertex
representing root-to-leaf paths have the same length m. Then, the number of symbols
which do not divide p j is |S1| + · · · + |Sm | − m where j is a vertex representing
root-to-leaf path. If this number is equal to dim(PT ), then PT is simple. ��
Remark that the equality |S1| + · · · + |Sm | − m = dim(PT ) holds for all models from
Propositions 5.1 and 5.2.

Example 5.1 The multinomial staged tree T(A)4 in Fig. 5 for the trapezoidal pyramid,
does not satisfy Definition 5.3 (1). However when b = 1, we can find such a balanced
multinomial staged tree representation for this polytope, it is shown in Fig. 6 (left).
This tree T and T(A)4 represent the same model because their minimal Horn matrices
are equal. When a = b = d = 1, the tree and its polytope are in Fig. 6 (centre) and
(right). There are five vertex representing root-to-leaf paths namely 1, 3, 4, 5, and 6
and thus a1, a3, a4, a5 and a6 are the vertices of the trapezoidal pyramid. In particular
a2 = 1

2a1 + 1
2a3. Hence, PT has property (�). Moreover, PT is not simple by Lemma

5.2, since not all root-to-leaf paths have the length 2.
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Fig. 6 Multinomial staged tree representation of the non-simple trapezoidal pyramid, b = 1

Furthermore, the minimal Horn matrix for this example with b = 1 (below left)
coincides with H(T ,L). As mentioned also in Sect. 3.3.1, the primitive collections
{n1, n3, n4}, {n2, n3, n5} do not offer an explanation for the negative part of the min-
imal Horn matrix, however the stages {s0, s1, s2},{s3, s4} do.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 m3 m4 m5 m6

s0=h5 1 1 1 0 0 0
s1=h2 0 0 0 1 1 0
s2=h3 0 0 0 0 0 1
s3=h4 2 1 0 1 0 0
s4=h1 0 1 2 0 1 0

−(s0+s1+s2) −1 −1 −1 −1 −1 −1
−(s3+s4) −2 −2 −2 −1 −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

s1=h3 0 0 0 0 0 0 0 0 0 1
s2=h2 0 0 0 0 2 2 1 1 1 0
s3=h5 2 2 2 2 0 0 1 1 1 0
s4=h4 3 2 1 0 1 0 2 1 0 0
s5=h1 0 1 2 3 0 1 0 1 2 0

−(s0+s1) −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
s0−(s2+s3) −1 −1 −1 −1 −1 −1 −1 −1 −1 0

(s4+s5) −3 −3 −3 −3 −1 −1 −3 −2 −2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

On the other hand, we observe that there exists no multinomial staged tree represen-
tation for b = 2, a = d = 1 fitting Definition 5.3 by looking at the lattice distance
matrix seen in the positive part of its minimal Horn matrix (above right). This matrix
can also be obtained by applying Corollary 4.2 to T(A)4 and performing the row oper-
ations explained in [11, Lemma 3] eliminating the row s0 = h6. This demonstrates
how multinomial staged trees provide a wider understanding for the negative part of
the Horn matrix.
For simple polytopes PT with property (�) we show that the stages coincide with the
primitive collections of ΣPT .

Theorem 5.1 Let PT ⊂ R
d be a simple polytope with property (�). Then, the primitive

collections of the simplicial normal fan ΣPT are represented by the stages S1, . . . , Sm.

Proof By Definition 5.3(1), the symbols of the stages represent the facets of PT .
Let now j be a vertex representing root-to-leaf path. Recall by the proof of Lemma
5.2, the maximal cone associated with a j is generated by the normal vectors (1-faces)
associated with

⋃m
l=1 Sl\sil for some sil ∈ Sl andwhere

∏m
l=1 sil divides p j . Since any

intersection of two cones in ΣPT is also a cone in ΣPT , we obtain that
⋃m

l=1 Sl\S′
l for

all S′
l ⊆ Sl with |S′

l | ≥ 1 is a cone of ΣPT . By Definition 2.6, since ΣPT is simplicial,
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Fig. 7 Multinomial staged tree representation of the simple trapezoidal wedge with b = 1 considered in
Example 5.3

a primitive collection is a set of 1-faces which does not generate a cone itself but
any proper subset does. This concludes that the partition S1, . . . .Sm are the primitive
collections of ΣPT . ��
The following corollary gives an affirmative answer to Question 2.2.

Corollary 5.1 Let PT ⊂ R
d be a simple polytope with property (�). Then, we have

H(T ,L) = MA ,ΣPT
, i.e. the negative rows are given by the primitive collections of

ΣPT .

Proof It follows from Corollary 4.2 and Theorem 5.1. ��
Example 5.2 The multinomial staged trees TbΔ2 and Ta,b,d satisfy Definition 5.3(1)
for the simplex and trapezoid (a, b, d > 0), respectively. That means the facets of the
polytopes are in one-to-one correspondence with the symbols in the stages. Moreover
PTbΔ2

and PTa,b,d are simple polytopes. Hence, by Theorem 5.1 we obtain that the
primitive collections are given by the partition of the stages. For the simplex PTbΔ2

∼=
aΔ2 we have only one primitive collection {s0, s1, s2}. Similarly, for PTa,b,d

∼= Ta,b,d

we have the partition of the stages as {s0, s1} and {s2, s3}, which correspond exactly
to the primitive collections obtained in Theorem 3.1.

Example 5.3 Let us consider the balanced multinomial staged tree representation, sat-
isfying Definition 5.3, of the trapezoidal wedge from Table 1 (A) with b = 1 seen
in Fig. 7. This tree representation encodes the same model as the tree T(A)3 in Fig. 5,
because they have the same minimal Horn matrix. In particular we observe by Lemma
5.2 that PT is simple. By Theorem 5.1, the primitive collections are represented by the
partition of the stages: {n2, n3, n5} = {s0, s1, s2} and {n1, n4} = {s3, s4}. By Corol-
lary 5.1 the negative part of the minimal Horn matrix a = b = d = a′ = 1 (top), is
explained by primitive collections. In Sect. 3.3.2, we saw that even for simple poly-
topes, the negative part of the Horn matrix is not always explained by the primitive
collections. From the perspective of staged trees, for a′ = a = d = 1, b = 2, this
polytope can be represented by T(A)3 . After minimising the Hornmatrix H(T(A)3 ,L(A)3 ),
constructed by Corollary 4.2, we obtain the matrix (bottom) whose positive part is the
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lattice distance matrix of PT(A)3
(see Table 3). However a simple computation shows

that there exists no tree (T ,L) such that the positive part of H(T ,L) is the lattice
distance matrix of PT(A)3

, i.e. satisfying Definition 5.3 (1).

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 m3 m4 m5 m6 m7

h5=s0 1 1 0 0 0 0 1
h2=s1 0 0 1 1 0 0 0
h3=s2 0 0 0 0 1 1 0
h4=s3 2 0 1 0 1 0 1
h1=s4 0 2 0 1 0 1 1

−(s0+s1+s2) −1 −1 −1 −1 −1 −1 −1
−(s3+s4) −2 −2 −1 −1 −1 −1 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

h3=s1 0 0 0 0 0 0 0 0 0 1 1
h5=s2 2 2 2 2 1 1 1 0 0 0 0
h2=s3 0 0 0 0 1 1 1 2 2 0 0
h4=s4 3 2 1 0 2 1 0 1 0 1 0
h1=s5 0 1 2 3 0 1 2 0 1 0 1
−s0−s1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1

s0−s2−s3 −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0
−s4−s5 −3 −3 −3 −3 −2 −2 −2 −1 −1 −1 −1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Appendix A

Table 3 Minimal Horn matrices for pairs in P . The right column in the table contains the columns of the
Horn matrix in terms of the lattice distance functions of each polytope

Name of subfamily Columns of minimal Horn matrix

(A) Prismatoids with trapezoidal base
a > 0, b > 0, d > 0, l > 0

Trapezoidal frusta (h1, h2, h3, h4, h5, h6, −(h1 + h4), −(h2 + h5), −(h3 + h6))

Triangle top (h1, h2, h3, h4, h5, h6, −(h1 + h4), −(h2 + h5), −(h3 + h6))

Trapezoidal wedges with
b �= 1

(h1, h2, h3, h4, h5, −(h1 +h4), −(h2 +h5 −h6), −(h3 +h6))

Trapezoidal wedges with
b = 1

(h1, h2, h3, h4, h5, −(h1 + h4), −(h2 + h3 + h5))

Trapezoidal pyramids with
b �= 1

(h1, h2, h3, h4, h5, −(h1 +h4), −(h2 +h5 −h6), −(h3 +h6))

Trapezoidal pyramids with
b = 1

(h1, h2, h3, h4, h5, −(h1 + h4), −(h2 + h3 + h5))

(B) Prismatoids with tensor product
base a > 0, b > 0, d = 0, l > 0

General tensor product frusta (h1, h2, h3, h4, h5, h6, −(h1 + h4), −(h2 + h5), −(h3 + h6))

Tensor product frusta with
a′ = a

(h1, h2, h3, h4, h5, h6, −(h2 + h5), −(h1 + h3 + h4 + h6))

Tensor product frusta with
b′ = b

(h1, h2, h3, h4, h5, h6, −(h1 + h4), −(h2 + h3 + h5 + h6))

3D Tensor Product (h1, h2, h3, h4, h5, h6, −(h1 + h2 + h3 + h4 + h5 + h6))

Tensor product frusta with
(a′, a) = λ(b′, b) or
μ(a′, a) = (b′, b)

(λ, μ ≥ 1)

(h1, h2, h3, h4, h5, h6, −(h1 + h2 + h4 + h5), −(h3 + h6))

Tensor product wedges
(a′ = 0) with a �= 1

(h1, h2, h3, h4, h5, −(h1 +h4 −h6), −(h2 +h5), −(h3 +h6))

Tensor product wedges
(a′ = 0) with a = 1

(h1, h2, h3, h4, h5, −(h2 + h5), −(h1 + h3 + h4))

Tensor product wedges
(b′ = 0) with b �= 1

(h1, h2, h3, h4, h5, −(h1 +h4), −(h2 +h5 −h6), −(h3 +h6))

Tensor product wedges
(b′ = 0) with b = 1

(h1, h2, h3, h4, h5, −(h1 + h4), −(h2 + h3 + h5))

Tensor product pyramids (h1, h2, h3, h4, h5, −(h1 + h2 + h4 + h5 − h6), −(h3 + h6))
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Table 3 continued

Name of subfamily Columns of minimal Horn matrix

(C) Prismatoids with triangular base
a = 0, b > 0, d > 0, l > 0

Triangular frusta (b′ �= b)
with d �= 1

(h1, h2, h3, h4, h6, −(h1 +h4 −h5), −(h2 +h5), −(h3 +h6))

Triangular prism (b′ = b)
with d �= 1

(h1, h2, h3, h4, h6, −(h1 + h4 − h5), −(h2 + h3 + h5 + h6))

Triangular frusta (b′ �= b)
with d = 1

(h1, h2, h3, h4, h6, −(h1 + h2 + h4), −(h3 + h6))

Triangular prism (b′ = b)
with d = 1

(h1, h2, h3, h4, h6, −(h1 + h2 + h3 + h4 + h6))

Triangular-based pyramid
with b �= 1 and d �= 1

(h1, h2, h3, h4,−(h1 + h4 + −h5), −(h2 + h5 − h6), −(h3 +
h6))

Triangular-based pyramid
with b = 1 and d �= 1

(h1, h2, h3, h4,−(h1 + h4 + −h5), −(h2 + h3 + h5))

Triangular-based pyramid
with b �= 1 and d = 1

(h1, h2, h3, h4,−(h1 + h2 + h4 − h6), −(h3 + h6))

3D simplex (h1, h2, h3, h4,−(h1 + h2 + h3 + h4))

Appendix B

The next lemma gives several equations that hold between a point inΘT and its image
under φT . We use Lemma 7.1 parts (2) and (4), to define the ideal of model invariants
for a multinomial staged tree model.

Lemma 7.1 Let M(T ,L) be a multinomial staged tree model where T = (V , E). Fix
v ∈ Ṽ and suppose im(Lv) = f�,a for � ∈ [m], a ∈ Z≥1. Set i1, . . . , i|I�| to be a fixed
ordering of the elements in I�. Let (p1, . . . , pn) ∈ M(T ,L) and θ = (θi )i∈I ∈ ΘT be
such that φT (θ) = (p1, . . . , pn).

(1) For each K ∈ N
|I�| with |K | = a,

p[v(K )]
p[v]

=
(

a

ki1 , . . . , ki|I�|

) |I�|∏

q=1

θ
kiq
iq

.

(2) Let K 1, K 2, K 3, K 4 ∈ N
|I�| with |K 1| = |K 2| = |K 3| = |K 4| = a, be such that

K 1 + K 2 = K 3 + K 4. Define C(K 1,K 2):=
( a

K 1

)( a
K 2

)
and similarly for C(K 3,K 4).

Then,

C(K 3,K 4) p[v(K 1)] p[v(K 2)] − C(K 1,K 2) p[v(K 3)] p[v(K 4)] = 0.

(3) For each iq ∈ I�, 1 ≤ q ≤ |I�|

θiq =
∑

|K |=a,kiq ≥1 kiq p[v(K )]
ap[v]

.
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(4) Let w ∈ V and im(Lw) = f�,b. For all iq ∈ I�:

bp[w]

⎛

⎝
∑

|K |=a,kiq ≥1

kiq p[v(K )]

⎞

⎠ − ap[v]

⎛

⎜⎝
∑

|K ′|=b,k′
iq

≥1

k′
iq

p[w(K ′)]

⎞

⎟⎠ = 0.

Proof (1) Since M(T ,L) is a probability tree, the transition probability from v to
v(K ) is the probability of arriving at v(K ) divided by the probability of arriving
at v, namely p[v(K )]/p[v]. By definition of M(T ,L), and since Lv(v → v(K )) =
( a

ki1 ,...,ki|I�|

) ∏|I�|
α=1 s

kiα
iα

, this probability is exactly
( a

ki1 ,...,ki|I�|

)∏|I�|
α=1 θ

kiα
iα

.

(2) This equality follows by direct substitution for the values from (1) and by noting
that the coefficients C(K 1,K 2), C(K 3,K 4) are needed to achieve cancellation.
(3) We start from the right-hand side, use (1), the fact that

∑
i∈I� θi = 1, and simpli-

fication with multinomial coefficients to arrive at θiq, :

∑
|K |=a,kiq ≥1 kiq p[v(K )]

ap[v]
=

∑

|K |=a
kiq ≥1

kiq

a

p[v(K )]
p[v]

=
∑

|K |=a
kiq ≥1

kiq

a

(
a

ki1 , . . . , ki|I�|

) |I�|∏

α=1

θ
kiα
iα

=
∑

|K |=a
kiq ≥1

kiq a

kiq a

(
a − 1

ki1 , . . . , kiq − 1, . . . , ki|Il |

)
θiq θ

kiq −1
iq

|I�|∏

α=1
α �=q

θ
kiα
iα

= θiq

∑

|K |=a−1

(
a − 1

ki1 , . . . , kiq , . . . , ki|Il |

) |I�|∏

α=1

θ
kiα
iα

= θiq (

|I�|∑

α=1

θiα )
a−1 = θiq .

(4) Applying part (3) to iq for v and w separately yields

θiq =
∑

|K |=a,kiq ≥1 kiq p[v(K )]
ap[v]

=
∑

|K ′|=b,k′
iq

≥1 k′
iq

p[w(K ′)]
bp[w]

.

After cross-multiplication, we get the desired equation in (4). ��

Binary Multinomial Staged Trees

From this point on, we assume in (T ,L) is a binary multinomial staged tree, and
modify our notation according to this assumption.

Lemma 7.2 Let (T ,L) be a binary multinomial staged tree where T = (V , E) and
let v ∈ Ṽ be such that im(Lv) = f�,a.
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Fix k0 ∈ {0, . . . , a}. The following equalities hold in R[Pj : j ∈ J ]/IM(T ,L):

(
a

k0 + k

)
P[v(k0,a−k0)]l

k0+k
1 la−(k0+k)

2 =
(

a

k0

)
P[v(k0+k,a−(k0+k))]lk0

1 la−k0
2 , (16)

for 1 ≤ k ≤ a − k0.

(
a

k0 − k

)
P[v(k0,a−k0)]l

k0−k
1 la−(k0−k)

2 =
(

a

k0

)
P[v(k0−k,a−(k0−k))]lk0

1 la−k0
2 , (17)

for 1 ≤ k ≤ k0. where l1:= ∑a
k=1 k P[v(k,a−k)] and l2:= ∑a

k=1 k P[v(a−k,k)].

For the proof of Lemma 7.2, we use Lemma 7.3.

Lemma 7.3 Under the hypotheses from Lemma 7.2, the following equality holds in
R[Pj : j ∈ J ]/IM(T ,L):

(a − k0)P[v(k0,a−k0)]l1 = (k0 + 1)P[v(k0+1,a−(k0+1))]l2. (18)

Proof By the part of Definition 4.4 involving Ivertices, we see that the equality

(
a

k0+1

)(
a

k−1

)
P[v(k0,a−k0)] P[v(k,a−k)] =

(
a

k0

)(
a

k

)
P[v(k0+1,a−(k0+1))] P[v(k−1,a−(k−1))]

holds R[Pj : j ∈ J ]/IM(T ,L). Note that

(
a

k0 + 1

)(
a

k − 1

)
= a!a!

(k0 + 1)!(a − k0)!k!(a − (k − 1))! (a − k0)k , and

(
a

k0

)(
a

k

)
= a!a!

(k0 + 1)!(a − k0)!k!(a − (k − 1))! (k0 + 1)(a − (k − 1)).

Thus, we may cancel the constant a!a! / (k0 + 1)!(a − k0)!k!(a − (k − 1))! from the
equality we started with in this proof, to obtain the simplified expression

P[v(k0,a−k0)] P[v(k,a−k)] = (k0 + 1)(a − (k − 1))

(a − k0)k
P[v(k0+1,a−(k0+1))] P[v(k−1,a−(k−1))].

Using this identity and the definition of l1 in Lemma 7.2, it follows that

(a − k0)P[v(k0,a−k0)]l1 = (a − k0)P[v(k0,a−k0)]
a∑

k=1

k P[v(k,a−k)]

=
a∑

k=1

(a − k0)k P[v(k0,a−k0)] P[v(k,a−k)]

=
a∑

k=1

(k0+1)(a−(k−1))P[v(k0+1,a−(k0+1))] P[v(k−1,a−(k−1))]
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= (k0 + 1)P[v(k0+1,a−(k0+1))]l2.

��
We are now ready to prove Lemma 7.2.

Proof Let us first prove equality (16). We will do this by mathematical induction on
k. First, we show that (16) holds for k = 1:

(
a

k0 + 1

)
P[v(k0,a−k0)]l

k0+1
1 la−(k0+1)

2
(18)=

(
a

k0 + 1

)
k0 + 1

a − k0
P[v(k0+1,a−(k0+1))]lk0

1 la−k0
2

=
(

a

k0

)
P[v(k0+1,a−(k0+1))]lk0

1 la−k0
2 .

Let us now suppose that (16) holds for k, and prove it for k + 1.

(
a

k0 + k + 1

)
P[v(k0,a−k0)]l

k0+k+1
1 la−(k0+k+1)

2

= a!(a − (k0 + k))

(k0 + k + 1)(k0 + k)!(a − (k0 + k))! P[v(k0,a−k0)]l
k0+k+1
1 la−(k0+k+1)

2

=
(

a

k0 + k

)
a − (k0 + k)

k0 + k + 1
P[v(k0,a−k0)]l1lk0+k

1 la−(k0+k+1)
2 l−1

2

Using (16) for k, we further simplify to

hyp.(16)=
(

a

k0

)
P[v(k0+k,a−(k0+k))]lk0

1 la−k0
2

a − (k0 + k)

k0 + k + 1
l1l−1

2

(18)=
(

a

k0

)
a − (k0 + k)

k0 + k + 1

k0 + k + 1

a − (k0 + k)
P[v(k0+k+1,a−(k0+k+1))]lk0

1 l2la−k0
2 l−1

2

=
(

a

k0

)
P[v(k0+k+1,a−(k0+k+1))]lk0

1 la−k0
2 .

Let us now prove equality (17). By (18), we have

(a − k0 − 1)P[v(k0−1,a−(k0−1))]l1 = k0P[v(k0,a−k0)]l2.

We will again use mathematical induction on k. First, we show that (17) holds for
k = 1:

(
a

k0 − 1

)
P[v(k0,a−k0)]l

k0−1
1 la−(k0−1)

2

=
(

a

k0 − 1

)
a − (k0 − 1)

k0
P[v(k0−1,a−(k0−1))]l1l−1

2 lk0−1
1 la−(k0−1)

2

=
(

a

k0

)
P[v(k0−1,a−(k0−1))]lk0

1 la−k0
2 .
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Let us now suppose that (17) holds for k, and prove it for k + 1.

(
a

k0 − (k + 1)

)
P[v(k0,a−k0)]l

k0−(k+1)
1 la−(k0−(k+1))

2

=
(

a

k0 − k

)
k0 − k

a − (k0 − (k + 1))
P[v(k0,a−k0)]l

k0−k
1 l−1

1 la−(k0−k)
2 l2

hyp.(17)=
(

a

k0

)
P[v(k0−k,a−(k0−k))]lk0

1 la−k0
2

k0 − k

a − (k0 − (k + 1))
l−1
1 l2

(18)=
(

a

k0

)
k0 − k

a − (k0 − (k + 1))

a − (k0 − (k + 1))

k0 − k
l1P[v(k0−k−1,a−(k0−k−1))]lk0

1 la−k0
2 l−1

1

=
(

a

k0

)
P[v(k0−(k+1),a−(k0−(k+1)))]lk0

1 la−k0
2 .

��
Lemma 7.4 Under the same hypotheses as in Lemma 7.2, the following equalities hold
in R[Pj : j ∈ J ]/IM(T ,L):

(
a

k0

)(
l1

a P[v]
)k0( l2

a P[v]
)a−k0

= P[v(k0,a−k0)]
P[v]

. (19)

Proof First, note that a P[v] = (l1 + l2). Indeed

l1 + l2 = (P[v(1,a−1)] + 2P[v(2,a−2)] + · · · + (a − 1)P[v(a−1,1)] + a P[v(a,0)])
+ (a P[v(0,a)] + (a − 1)P[v(1,a−1)] + · · · + 2P[v(a−2,2)] + P[v(a−1,1)])

= a(P[v(a,0)] + P[v(1,a−1)] + P[v(2,a−2)]
+ · · · + P[v(1,a−1)] + P[v(0,a)]) = a P[v].

Therefore, we have P[v(k0,a−k0)](a P[v])a = P[v(k0,a−k0)](l1 + l2)a . Now, by Lemma
7.2, we obtain:

P[v(k0,a−k0)](l1 + l2)
a = P[v(k0,a−k0)]

a∑

k=0

(
a

k

)
lk
1la−k

2

=
a∑

k=0

(
a

k

)
P[v(k0,a−k0)]lk

1la−k
2

=
k0∑

k=1

(
a

k0 − k

)
P[v(k0,a−k0)]l

k0−k
1 la−(k0−k)

2

+
(

a

k0

)
P[v(k0,a−k0)]l

k0
1 la−k0

2

+
a−k0∑

k=1

(
a

k0 + k

)
P[v(k0,a−k0)]l

k0+k
1 la−(k0+k)

2
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=
(

a

k0

)
lk0
1 la−k0

2

(
k0∑

k=1

P[v(k0−k,a−(k0−k))] + P[v(k0,a−k0)]

+
a−k0∑

k=1

P[v(k0+k,a−(k0+k))]

)

=
(

a

k0

)
lk0
1 la−k0

2 P[v].

��
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