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Abstract
In this paper the repair kit problem is studied, where technicians have to visit several
customers to repair broken appliances (such as copiers or heating systems) and they
can only take a limited set of parts with them (called the repair kit). In this problem, it
has to be decided which spare parts to include in the repair kit. We consider a version
of this problem in which partial advance demand information is available. That means
we divide the set of parts into two subsets, where the condition of parts in one subset
is monitored by sensors. In case an appliance fails and a repair job is requested by
a customer the service provider is able to access this sensor data before a technician
visits the customer. For this setting, we derive an expression for the job fill rate, which
is used as a constraint in the optimization model, where holding and replenishment
costs are minimized. We use a greedy heuristic to determine near-optimal repair kits.
In a numerical study, we find that integrating advance demand information yields
substantial cost savings. In order to find out for which parts having advance demand
information is most valuable, we examine the effect of parts’ demand probabilities
and their prices. We find that monitoring parts that are expensive and likely to fail
leads to the largest cost savings. In particular, the price of the monitored parts and the
achievable cost savings are strongly correlated.
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1 Introduction

In some industries it is quite common that companies do not only sell their appliances
but also offer after-sales service to support their customers in case of problems with
the bought appliance (Cohen et al. 1997). For small and light appliances the customers
usually bring or send the malfunctioning appliance to a retailer or to a specific repair
shop, where the repair can be performed. However, field service is provided in case
the appliance is too large or heavy to be moved easily, as for example copy machines,
heating systems, production equipment, and medical systems or white goods like
washingmachines or refrigerators. Thismeans customers can call a service hotline and
request a visit by a service engineer, who should repair the malfunctioning appliance.

In order to offer this service, technicians travel in commercial vans to customer
sites where they perform an on-site diagnosis and repair the failed appliance if the
necessary spare parts are available in the technician’s van. Otherwise, the repair cannot
be completed and a technician has to revisit the customer. This is called a broken job
and leads to an unsatisfied customer and extra costs for the service provider because a
second visit to the customer is necessary. A service technician usually visits three to
six customers in one tour (i.e., before the repair van is restocked).

The problem of determining which spare parts to include in the van (or repair kit)
and howmany units of each part, is called the repair kit problem.We consider a version
of this problem where service is measured by the job fill rate, defined as the fraction of
jobs that can be completed in the next tour after customer notification. The objective
of our repair kit problem is to minimize the expected holding costs for spare parts and
handling costs for replenishment orders while satisfying a service level target.

The repair kit problem is studied in the literature under different assumptions.
However, most versions assume that the demand for spare parts is not known until the
technician visits the customer. In case certain parts within the appliance are equipped
with sensors that monitor the condition of these parts, that is no longer true. Whenever
an appliance breaks down this sensor data can be accessed by the service provider via
remote diagnostics.

In this paper, we extend the standard multi-job repair kit problem by integrating
advance demand information (or short ADI) that can be obtained from part-specific
sensors. We formulate a model that considers perfectly reliable ADI for some parts
and no ADI at all for other parts and show how to compute the job fill rate under these
conditions. We compare scenarios in which we include or exclude advance demand
information and determine for which spare parts having advance demand information
is especially valuable. In particular, we are looking at the impact of a part’s demand
probability and its price on the costs savings that can be achieved.

The remainder of the paper is organized as follows. In the next section, we discuss
the relevant literature and in Sect. 3 a detailed problem and model description is
presented. In Sect. 4 we derive a formula for the job-fill rate and provide a heuristic
to determine the repair kit. The results of a detailed numerical study are presented in
Sect. 5 before we highlight our key findings and give directions for future research in
Sect. 6.
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2 Literature

There are two streams of literature that are relevant to our research. We first summa-
rize the studies related to the repair kit problem. Then we discuss the contributions
on advance demand information for inventory planning. In particular, we confine our-
selves to perfect demand information.

Smith et al. (1980), Graves (1982), and Hausman (1982) are the first authors to
study the repair kit problem, where a tour consists of only a single job, part demands
are independent and at most one unit of a part might be needed for the repair. This
problem is extended to dependent demands and multiple units of a part in one job
(Mamer and Smith 1982; March and Scudder 1984), spare machines (Mamer and
Smith 1985) and budget constraints (Mamer and Shogan 1987). Brumelle and Granot
(1993) present a unifying approach for different formulations of the single job repair
kit problem.

The multiple job repair kit problem, where a tour can consist of several customers
to visit before the repair kit is restocked, is first studied by Heeremans and Gelders
(1995). They present a formulation of this more generic form of the repair kit problem
and propose a heuristic to determine a solution for this multiple job problem. The
authors use the probability that none of the jobs on a tour is broken as a service
criterion. Teunter (2006) presents a more general model formulation for the multiple
job problem where he assumes that all required parts that are available in the repair
kit are left with the customers, regardless of whether the job can be completed (i.e.,
regardless of whether all required parts are available in the quantities needed.) A cost
model as well as a service model with a job fill rate constraint are formulated and
a greedy heuristic is developed to solve the problem. Bijvank et al. (2010) discuss
the same problem but show how the job fill rate can be computed when spare parts
are only taken from the repair kit when all parts necessary to perform the repair are
available in the right quantity.

In two recent contributions on the multiple job repair kit problem Saccani et al.
(2016) and Prak et al. (2017) introduce replenishment costs to the cost model. Saccani
et al. (2016) assume fixed replenishment costs per delivery to the service technician
and determine optimal frequencies for these deliveries. Prak et al. (2017) consider
non-zero replenishment lead times and part-specific material handling costs. They
minimize the sum of these material handling costs and holding costs by determining
(s,S)-policies for all parts. All the papers on the repair kit problem discussed so far
assume that the service technician is completely unaware of any customer’s need for
spare parts before the first repair attempt.

Hariharan and Zipkin (1995) consider inventory management in a scenario where
customers place advance orders for goods they wish to receive at some distinct point
in the future called due date. As opposed to the supply lead time which is defined as
the time required to fill a retailer’s replenishment order, Hariharan and Zipkin (1995)
introduce the demand lead time as the interval between the time an advance customer
order is placed with the retailer and the corresponding due date. For a single product
continuous review inventory model, where advance orders are arriving according to a
Poisson process, they show that the retailer’s inventory can be managed using a base
stock policy (or an (s, S)-policy if there are fixed order costs) with replenishments
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being triggered by the advance orders. The authors find that demand lead time and
supply lead time have opposing effects on the system performance. Thus increasing
the demand lead time results in a reduced need for safety stock.

Amore general model for advance demand information is introduced for a periodic
review inventory system by Gallego and Özer (2001). They allow that in period t
customers can place orders to be delivered either immediately or in one of N future
periods t+1 to t+N . For such a situation they show that state-dependent policies with
amodified inventory position are optimal. Similar toHariharan and Zipkin (1995) their
study indicates that longer demand lead times lead to improved system performance.

A serial system is investigated by Gallego and Özer (2003) and a divergent system
by Özer (2003). While Özer (2003) considers a periodic review inventory system
Marklund (2006) studies a divergent systemunder continuous review.Other extensions
include limited production capacities (Özer and Wei 2004), flexible deliveries (Wang
and Toktay 2008) and different demand classes (Koçaǧa and Şen 2007).

The repair kit problem can be considered as a multi-product problem with each set
of spare parts required by a customer defining a product. Multi-product problems that
integrate ADI have been studied by Lu et al. (2003), Bernstein and DeCroix (2015)
and Angelus and Özer (2016). Lu et al. (2003) consider an assembly system under
continuous review where advance orders for assembled products are triggering the
replenishment of component inventories that are managed using basestock policies. A
similar system but with periodic review is studied by Angelus and Özer (2016), who
also combine advance demand information with order expediting. In Bernstein and
DeCroix (2015) advance demand information is available in aggregated form, either
as the total volume of demand across several products or as the demand mix between
these products.

Based on our literature review we can conclude, that most research on the repair
kit problem disregards advance demand information. Since it is shown (see Hariharan
and Zipkin 1995) that advance demand information reduces safety stocks, resulting in
lower inventory costs, we also conjecture a positive impact on the safety stocks in case
of the repair kit problem. However, since cost savings are usually larger for longer
demand lead times, it is unclear how strong the influence is in our setting, where lead
times are short. Therefore, we quantify in this contribution the added value of advance
demand information for the planning of a repair kit.

Since Angelus and Özer (2016) only consider one final product to be assembled,
we have a more complicated situation because repair jobs can be different for different
customers. Similar to the repair kit problem, Lu et al. (2003) also consider several final
end products. However, they assume that ADI is available for all components. If ADI
is revealed by sensor technology, it is usually not beneficially from an economic point
of view to equip all components with sensors. Therefore, the question arises which
parts should be monitored. In this contribution, we will also focus on this question
and investigate which factors are relevant in this context.

The only attempt to date that uses ADI for the repair kit problem stems from an
initial project (Rippe and Kiesmüller 2022) in which we considered unreliable and
non-part-specific ADI when planning the repair kit. In this initial project we focussed
on how to cope with the information obtained from a given imprecise and unreliable
sensor system that is only able to communicate very few error codes. This contribution,
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however, focusses on how to design the sensor system. Thatmeanswe examine theway
in which installing reliable part-specific sensors for different parts impacts the costs
incurred by the service technician. For this scenario where some parts are monitored
by individual sensors we are also able to derive a closed form expression for the job
fill rate.

3 Problem andmodel description

The model formulated here is an extension of the multiple-job repair kit problem with
a job fill rate service constraint that has been previously studied by Teunter (2006),
Bijvank et al. (2010), Saccani et al. (2016), and Prak et al. (2017). We first describe the
basic problem following the assumptions made in the aforementioned contributions
before we discuss the modification with advance demand information. We use the
notation summarized in Table 1.

A service technician can hold a number of N different parts in his or her repair
kit. For each of these parts, the service technician can place a replenishment order
before the start of a repair tour. These orders are delivered instantaneously. Next,
the service technician goes on a repair tour and replaces malfunctioning parts in the
customers’ appliances with spares from the repair kit. After the end of the tour holding
and replenishment costs are charged.

The immediate replenishment of spare parts before the start of a repair tour corre-
sponds to an overnight delivery from a central warehouse with ample supply. These
overnight deliveries are in linewith our experiencewith home appliancemanufacturers
who tend to restock their fleet of service technicians using an express parcel service.
Similar problemswith zero lead time have been studied by Teunter (2006) and Bijvank
et al. (2010) for example. In order to determine the order quantities for the different
spare parts, we apply part-specific (si , Si )-policies, as suggested by Prak et al. (2017).
For single-item problems with fixed order costs (s,S)-policies are optimal. They are
also easy to handle and therefore attractive for practitioners.

The demand for spare parts observed by the service technician depends on the
number of customers visited in one tour. We model the number of customers served
in a repair tour as a random variable denoted by J , where the maximum number of
customers that can be visited in any tour is denoted by M . Thus, J can take any value
in {1, . . . , M}. We consider the distribution of the number of customers in one tour to
be independent and identically distributed (i.i.d.) across all tours.

Each customer visited by the service technician has a malfunctioning appliance
due to a failure of one or multiple components. The repair is completed when all
broken components are replaced with spare parts that were brought by the service
technician in the repair kit. When a repair job cannot be completed, we assume the
service technician still leaves all available parts required by the customer on-site for
a second visit. This assumption is in line with Teunter (2006) and Prak et al. (2017).
We denote the aggregated demand for part i in the l1-th to the l2-th customer visit in
the same tour (given that the tour contains at least l2 customer visits) by Di (l1, l2).
Following this notation, the demand for part i during the l-th customer visit in a tour is
described by the random variable Di (l, l) (again given there are at least l customers).

123
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Table 1 Notations

Notation Description

Di (l1, l2) Aggregated demand of the l1-th to the l2-th
customer for part i (given there are at least j2
customers)

Di Total demand for part i in one tour

dmax
i Maximum number of units of part i required by

one customer

fi Material handling costs incurred per order of
part i

Fi (si , Si ) Average material handling costs per tour for part
i given the policy parameters si and Si

hi Holding costs incurred per unit of part i

Hi (si , Si ) Average holding costs per tour for part i given
the policy parameters si and Si

C(s, S) Expected total costs per tour given
s = (s1, . . . , sN ) and S = (S1, . . . , SN )

I−i Net inventory level of part i before order
placement

I+i Net inventory level of part i after order arrival
before the start of a tour

M Maximum number of customers served in one
tour

N Number of different spare parts

N1 Number of different NPs

Qi Order for part i placed before the start of a tour

J Number of repair jobs in a tour

Jc Number of completed repair jobs in a tour

Jl Binary variable indicating if the number of jobs
in the tour is at least l and the l-th job can be
completed

pl Probability that the l-th job can be completed.

pAPl Probability that sufficient units of all APs are
available for the l-th job

pN P
l Probability that sufficient units of all NPs are

available for the l-th job

πi (k) Probability that the net inventory level of part i
is k (before order arrival for APs, after order
arrival for NPs)

si Reorder level of part i

Si Order-up-to level of part i

γ (s, S) Job fill rate (JFR) given s = (s1, . . . , sN ) and
S = (S1, . . . , SN )

γ ∗ Target job fill rate

R(a) Ratio trading off cost increase and job fill rate
increase if a ∈ {si , Si |i = 1, . . . , N } is raised
by one unit
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We assume that the demand for part i is i.i.d. for all customers. Though customers’
demand distributions may be heterogeneous in real life, this simplification is common
in the repair kit literature (see Teunter 2006; Bijvank et al. 2010; Prak et al. 2017).
The distributions of Di (l, l) are taken to be discrete with the support ranging from 0 to
dmax
i . Finally, we define Di as the total demand for part i in one tour. The distribution
of Di can be computed for all i = 1, 2, . . . , N as:

P (Di = d) =
M∑

j=1

P (Di (1, j) = d) · P (J = j) ; d = 0, . . . , dmax
i · M . (1)

Costs are charged after finishing the tour. In accordance with Prak et al. (2017), we
consider two different part-specific types of costs: holding costs hi are incurred for
each unit of part i, i = 1, . . . , N , still in the repair kit after visiting all customers of
the tour and material handling costs fi for each part type i, i = 1, . . . , N , ordered to
replenish the repair kit for the repair tour regardless of the order quantity. The material
handling costs are charged for the order picking process in a central warehouse from
which the service technician is replenished. There are no fixed replenishment costs for
the actual shipment process to get the parts from the warehouse to the repair kit since
it is reasonable to assume that at least one part type needs to be replenished before a
tour. (i.e. there is always a shipment).

Contrary to previous contributions related to the repair kit problem we assume that
perfectly reliable part-specific advance demand information is available for some of
the spare parts carried in the repair kit. Thus, we divide the set of parts into non-
advance demand information parts (NP) and advance demand information parts (AP).
Without loss of generality, we arrange the parts such that the first N1 (N1 ≤ N ) parts
are NPs and that for the remaining parts (N1 + 1 to N ) advance demand information
is available. In this sense, we speak of partial advance demand information.

Focusing first on NPs we need to introduce a tour index t to describe the inventory
development of a particular part i, i = 1, . . . , N1 over consecutive tours. Let I

−
i,t and

I+
i,t define this part’s net inventory level before order placement and right after order
arrival before the start of tour t . With si and Si being the reorder- and the order-up-to-
level for part i the amount ordered Qi,t for this part before the start of tour t is given
by

Qi,t =
{
Si − I−

i,t if I−
i,t ≤ si

0 if I−
i,t > si .

(2)

Let Di,t denote the demand for part i, i = 1, . . . , N1 in tour t . This leads to the
following recursive relation

I+
i,t+1 =

{
Si if I+

i,t − Di,t ≤ si
I+
i,t − Di,t if I+

i,t − Di,t > si .
(3)

Turning to APs we assume that for each AP there is a sensor that is monitoring
the condition of this very part. This sensor communicates a binary signal (either up
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or down), which we assume to be 100% reliable. In case a customer’s appliance
experiences a failure the service provider will be able to connect to the appliance
via remote diagnostics. This means that given the customer’s permission the service
provider can read the appliance’s error log from afar. In this error log the status of each
sensor is listed, giving the service provider valuable insights into what has caused the
appliance’s failure. Therefore, if a particular sensor detects the failure of a part type,
this is essentially advance demand information from the service technician’s point
of view. We make the assumption that this advance demand information is available
to the service technician before he or she is placing the initial replenishment order
prior to the start of the repair tour. Thus the order quantity Qi,t of a particular AP
i, i = N1 + 1, . . . , N before the start of a tour t depends not only on the net inventory
level I−

i,t but also on the demand Di,t for the upcoming repair tour that the technician
is already aware of. With si and Si again being the reorder- and the order-up-to-level
we obtain

Qi,t =
{
Si −

(
I−
i,t − Di,t

)
if I−

i,t − Di,t ≤ si
0 if I−

i,t − Di,t > si .
(4)

For the net inventory level before order placement this gives us the following recursive
equation

I−
i,t+1 =

{
Si if I−

i,t − Di,t ≤ si
I−
i,t − Di,t if I−

i,t − Di,t > si .
(5)

Please note, that in contrast to the NPs the order quantity already includes the demand
of the next tour, which also results in earlier order triggering. Further, for an NP the
parameter Si is a target for the net inventory level before the start of a tour, whereas
for an AP it is a target for the net inventory level after all customers have been visited.

Even though the demand for an AP in the next tour is known beforehand and our
replenishment lead time is zero, that does not necessarily mean that the corresponding
repair job can always be finished successfully. First, it may happen, that additional
NP spare parts are needed which are not available. Second, it may be beneficial to
allow planned backorders to reduce holding costs if the fixed replenishment costs are
high. This would require large ordering batches and reorder levels to be below −1.
However, this will only happen, if the service requirement is not too high.

In order to perform a single repair job, a combination of several NPs and APs
might be required. We assume that the failures of different parts are independent of
each other. Otherwise, we could simply model them as one part, monitoring them if
possible with just one common sensor.

Our objective is to minimize the average sum of holding and material handling
costs subject to a service level constraint. To this end our decision variables are the
reorder levels s = (s1, . . . , sN ) and the order-up-to levels S = (S1, . . . , SN ).

We aim to minimize the expected costs per tour across all parts i, i = 1, . . . , N . Let
us define Hi (si , Si ) and Fi (si , Si ) as the holding and the replenishment cost we can
expect to incur for part i, i = 1, . . . , N per tour when the policy parameters (si , Si )
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are implemented. We obtain

Hi (si , Si ) = hi · E [max
(
I+
i − Di , 0

)]
and Fi (si , Si ) = fi · P(Qi > 0). (6)

Then the expected total costs per tour can be calculated as

C(s, S) =
N∑

i=1

Hi (si , Si ) + Fi (si , Si ) (7)

The service level we are interested in is the job fill rate γ (s, S) (with s =
(s1, . . . , sN ) and S = (S1, . . . , SN )), which is defined as the fraction of jobs that
can be completed immediately with the spare parts carried in the repair kit. The job
fill rate has previously been used by Teunter (2006), Bijvank et al. (2010), and Prak
et al. (2017) for similar multi-job problems. It reflects the average customer satis-
faction across all customers in a tour, which makes it a good performance indicator
from the service provider’s point of view. We assume, that the service technician only
visits customers when he or she knows that all APs are available. Otherwise, in case
of planned backorders, when it is already clear, that a job cannot be completed suc-
cessfully, the customer is not visited in the next tour and the repair is planned for a
later tour. Such a job still counts as a broken job for the job fill rate, because it can
not be completed within the next day. With γ ∗ being the target service level, we can
formulate the optimization problem as follows

min
s,S

C(s, S)

s.t. γ (s, S) ≥ γ ∗

s ∈ Z
N

S ∈ N
N
0 (8)

4 Analysis

In this section, we first derive a closed-form expression for the job fill rate and the
expected holding and material handling costs for a given set of (s,S)-policies for
all parts considered. Then we outline a greedy algorithm to determine near-optimal
parameters si and Si , (i ∈ {1, . . . , N }) for the optimization problem.

4.1 Job fill rate

Let us first define Jc as the number of completed jobs out of the total number of J
jobs in a repair tour. In order to derive the job fill rate we can describe Jc as the sum of
a number of binary variables J1, . . . , JM where Jl = 1, (l ∈ {1, . . . , M}) if at least l
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customers are visited in one tour and the l-th job can be completed. With pl being the
probability that the l-th job can be completed (given J ≥ l) we obtain

γ (s, S) = E [Jc]

E [J ]
=

M∑
l=1

E [Jl ]

E [J ]
=

M∑
l=1

P(J ≥ l) · pl
M∑
l=1

P(J ≥ l)

. (9)

The probability pl , (l ∈ {1, . . . , M}) can be split up into the probabilities pN P
l and

pAP
l that sufficient units of all NPs and all APs are available to complete the l-th job

(given J ≥ l) with

pl = pN P
l · pAP

l . (10)

The probability pN P
l has already been derived by Prak et al. (2017). In a first step,

they determine the steady-state distribution of the net inventory level after order arrival
before the start of a tour for all parts (see Appendix I). We denote these steady-
state probabilities by πi (k) (i = 1, . . . , N1, k = si + 1, . . . , Si ). Then pN P

l can be
determined as follows

pN P
l =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1∏
i=1

[
Si∑
k=0

πi (k) · P (Di (l, l) ≤ k)

]
if l = 1

N1∏
i=1

[
P (Di (l, l) = 0) +

Si∑
m=1

Si−m∑
n=0

Si∑
k=m+n

P (Di (l, l, ) = m) if l ≥ 2

·P (Di (1, l − 1) = n) · πi (k)

]

(11)

This formula reflects that the l-th job can only be completed if sufficient units of all
NPs are available for the l-th customer. This is the case if a part is either not required
at all by the customer or if the stock at the beginning of the tour minus the quantity
requested by the preceding customers still exceeds the demand of customer l.

In order to determine the probability pAP
l weneed to consider the net inventory level

before order placement and the demand during the course of a tour for all differentAPs.
Be aware that in this case, the ordering decision before the start of a tour depends on
the demand of the customers to be served as it is already known due to advance demand
information. Comparing Eqs. (3) and (5) we realize that the recursive equation for an
NP’s net inventory level after order arrival is equivalent to the recursive equation for
an AP’s inventory level before ordering. Thus, the steady-state distribution of an AP’s
inventory level before order placement corresponds to the steady-state distribution of
an NP’s net inventory level after order arrival before the start of the tour. Because of
this propertywe defineπi (k), (i = N1 + 1, . . . , N , k = si + 1, . . . , Si ) as the steady-
state probabilities for the APs’ inventory level before order placement. This means that
for NPs and APs πi (k) defines the steady-state probabilities of the net inventory level
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at different time points, but it is calculated in the exact same way using the formula
derived by Prak et al. (2017).(See Appendix I)

For the derivation of the probability that sufficient units of an AP are available for
the l-th customer, we have to realize that this probability depends on the total number
of customers in the tour J ≥ l. This means that the l-th customer’s chance of being
served does not only depend on the preceding customers 1 to l − 1 but also on the
succeeding customers l + 1 to J , because the replenishment decision before the start
of the tour has been made taking into account all of these customers’ advance demand
information (4). Therefore, the probability that the l-th job can be completed depends
on the tour length J ≥ l in case of advance demand information. We can express this
probability as follows.

pAPl =
M∑

j=l

P(J = j |J ≥ l) ·
N∏

i=N1+1

P
(
Di (l, l) ≤ max

(
I+i − Di (1, l − 1), 0

)
|J = j

)

=
M∑

j=l

P(J = j)

P(J ≥ l)
·

N∏

i=N1+1

P
(
Di (l, l) ≤ max

(
I+i − Di (1, l − 1), 0

)
|J = j

)
. (12)

The term P
(
Di (l, l) ≤ max

(
I+
i − Di (1, l − 1), 0

) |J = j
)
that describes the prob-

ability that sufficient units of AP i are available for the l-th out of j customers can
now be split into two parts again:

P
(
Di (l, l) ≤ max

(
I+
i � Di (1, l � 1), 0

) |J = j
)

= P(I+
i � Di (1, l) < 0, Di (l, l) = 0|J = j)

+ P(I+
i � Di (1, l) ≥ 0|J = j). (13)

The first summand describes the probability that the inventory level of part i is
negative after visiting customer number l, but not due to the demand of this cus-
tomer which was zero. Note that the net inventory level I+

i depends on the total
number of customers j and their demand. Thus, the two events in the first summand
are not independent. The second summand is the probability that the net inventory
level of part i , after the l-th customer has been visited, is non-negative. To deter-
mine both probabilities, summand one and two, we express the inventory level I+

i
after orders as the inventory level before orders I−

i plus the ordered quantity Qi .
For APs the ordered quantity depends on the inventory level before orders I−

i and
the total demand Di (1, j). The total demand in a tour of j customers may take any
value between 0 and j · dmax

i . By conditioning on the values of I−
i and Di (1, j) we

can determine the exact ordered quantity for all relevant demand-inventory scenar-
ios. That way we reformulate both probabilities P(I+

i − Di (1, l) ≥ 0|J = j) and
P(I+

i − Di (1, l) < 0, Di (l, l) = 0|J = j) using only the steady-state prob-
abilities πi (k), ( k = si + 1, . . . , Si ) and the probabilities P(Di (l1, l2) = m),

(1 ≤ l1 ≤ l2 ≤ M, m = 1, . . . , M · dmax
i ) that describe the customer demand.

We obtain the results given in the following Eqs. (14) and (15). A detailed derivation
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is provided in Appendix II. To cover the cases in which we are either considering the
first or the last customer in a tour let us define Di (l1, l2) := 0 for l1 > l2.

P(I+i − Di (1, l) ≥ 0|J = j)

=
j ·dmax

i∑

m=1

min(si+m,Si )∑

k=s+1

[
P(Di (1, j) = m) · πi (k)

]

+
min( j ·dmax

i ,Si−si−1)∑

m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑

n=0

[
P(Di (1, l) = n) · P(Di (l + 1, j) = m − n) · πi (k)

]

(14)

P(I+i − Di (1, l) < 0, Di (l, l) = 0|J = j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Di (1, 1) = 0) ·
[
1 −

Si∑

k=max(0,si+1)
πi (k)

]
if l = j = 1

P(Di (l, l) = 0)

·
⎡

⎣1 −
⎛

⎝
( j−1)·dmax

i∑
m=1

min(si+m,Si )∑
k=si+1

[
πi (k) · P(Di (1, l − 1) + Di (l + 1, j) = m)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑
m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑
n=0

[
P(Di (l + 1, j) = m − n) else

·P(Di (1, l − 1) = n) · πi (k)
]
)]

(15)

4.2 Cost function

For all parts i ∈ (1, . . . , N ) we derive part-specific holding costs Hi (si , Si ) and
material handling costs Fi (si , Si ). We consider the expected costs per tour. Both costs
are charged at the end of a tour. However, the replenishment costs are determined
based on the replenishment that occurs before the start of a repair tour.

4.2.1 Cost function for NPs

In order to determine the holding cost for an NP i, i = 1, . . . , N1, we need to
determine the distribution of the net inventory level at the end of the repair tour. We
obtain this distribution as the convolution of the steady-state distribution of the net
inventory level after order arrival before the start of the tour and the distribution of the
demand in an arbitrary tour. This gives us the following result

Hi (si , Si ) = hi · E [max
(
I+
i − Di , 0

)]

=
Si∑

k=si+1

k∑

m=1

(k − m) · πi (k) · P (Di = m) (16)
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In deriving the material handling cost incurred for a part i, i = 1, . . . , N1, we need
to quantify the probability that an order is placed before the start of a tour. In case
we consider an NP the ordering decision is entirely based on the net inventory level
I−
i . Unfortunately, at this point we only have the steady-state distribution of the net
inventory level after order placement. However, the inventory level before ordering
prior to the start of a tour t corresponds to the net inventory level after demand is
fulfilled at end of the previous tour t − 1. Because of this, we obtain

Fi (si , Si ) = fi [1 − P (Qi = 0)]

= fi
[
1 − P

(
I−
i > si

)]

= fi
[
1 − P

(
I+
i − Di > si

)]

= fi

⎡

⎣1 −
Si∑

k=si+1

k−(si+1)∑

m=0

πi (k)P (Di = m)

⎤

⎦ (17)

4.2.2 Cost function for APs

For the computation of the holding cost incurred for an AP i, i = N1 + 1, . . . , N
again we need to consider the inventory level at the end of the tour after demand
fulfillment. Yet this is equivalent to the net inventory level at the very beginning of
the next tour before order placement. The steady-state distribution of an AP’s net
inventory level before order placement, however, is known as it corresponds to the
steady-state distribution of an NP’s net inventory level after order arrival. This gives
us

Hi (si , Si ) = hi · E [max
(
I+
i − Di , 0

)]

= hi · E [max
(
I−
i , 0

)]

= hi ·
Si∑

k=si+1

k · πi (k) (18)

For the material handling costs we derive

Fi (si , Si ) = fi [1 − P (Qi = 0)]

= fi
[
1 − P

(
I−
i − Di > si

)]

= fi

⎡

⎣1 −
Si∑

k=si+1

k−(si+1)∑

m=0

πi (k)P (Di = m)

⎤

⎦ (19)

Note that the material handling costs are calculated in the same way for parts with and
without advance demand information. Thus, integrating advance demand information
for a particular part does not have an impact on the material handling costs at least not
if we do not adapt the policy parameters si and Si at the same time.
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4.3 Heuristic solution procedure

Since the number of possible combinations of reorder levels s = (s1, . . . , sN ) and
order-up-to-levels S = (S1, . . . , SN ) is increasing exponentially with the number of
different spare parts to be considered, the computational effort would be too high
to compute an optimal solution for real-life problems. Therefore, we use a greedy
heuristic to determine solutions for optimization problem (8). For repair kit problems
that disregard advanced demand information similar approaches have been suggested
by Teunter (2006), Bijvank et al. (2010), and Prak et al. (2017).

Our greedy algorithm iteratively increases the different parts’ reorder and order-
up-to levels until the target job fill rate is achieved. As in Prak et al. (2017), we build
upon the EOQmodel to obtain an initial solution for the policy parameters. We derive

Qi := Si − si = max

⎛

⎝

⎢⎢⎢⎣
√
2 fi Di

hi

⎤

⎥⎥⎥
, 1

⎞

⎠ , i = 1, 2, . . . , N (20)

where Di is the average demand for part i for one tour and set si = −Qi and Si = 0
for all i ∈ {1, . . . , N }. Starting from this EOQ-based solution we increase either the
reorder or the order-up-to level of a single part in each iteration. In either case, the job
fill rate is non-decreasing. The total costs, however, may decrease upon an increase of
a part’s order-up-to-level. That is due to a decrease in material handling costs. For this
reason, selecting the action with the least cost increase to job fill rate increase ratio
would favor actions with low job fill rate increases over larger job fill rate increases
given the same negative cost increase. To avoid this problem we introduce a new ratio
R. Let�aC(s, S) and�aγ (s, S) denote the cost and job fill rate increase respectively
given a ∈ {si , Si |i = 1, . . . , N } is increased by one unit. Then R is defined by

R(a) = �aC(s, S) · (�aγ (s, S) + ε)−sgn(�aC(s,S)) , (21)

with ε = 10−40. In each iteration, we select the action a with the least R(a) value.
That way we will always choose larger over smaller job fill rate increases given the
same (positive or negative) cost increase.We add the small positive constant ε to avoid
numerical problems in case the job fill rate increase for an action is 0 or close to 0.
Once this greedy procedure reaches a solution that satisfies the service constraint, we
check if we can further reduce costs without falling below the target job fill rate again.
To this end, we try to reduce the reorder levels of all parts in the reverse order in which
they were last increased. We refer to this last step as the reduction step. A detailed
description of the greedy algorithm is provided in Appendix III.

While we use the same initial solution as Prak et al. (2017) for their non-ADI
problem, our algorithm differs from theirs in that we do not increase reorder and order-
up-to levels simultaneously in each step. We tested two versions of our algorithm with
either simultaneous or independent increments of reorder and order-up-to-levels on the
problem instances presented in the following numerical experiment (5.1). Allowing for
independent increments led to slightly better solutions that were up to 2.62% cheaper
than those generated with the simultaneous-increase approach. We also considered
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the impact of different starting solutions. However, we find that the algorithm is rather
insensitive to the starting solution for as long as the initial reorder and order-up-to
levels are low enough not to preclude potentially good solutions. With EOQ-based
initial solutions that does not happen. The reduction step we perform is similar to a
procedure suggested by Bijvank et al. (2010) for a repair kit problemwithout handling
costs and ADI.

5 Numerical study

The aim of our numerical study is twofold. First, we quantify the added value of inte-
grating advance demand information and investigate the causes of the cost savings. In a
second study, we examine for which spare parts having advance demand information is
especially advantageous. In particular, we are looking at the impact of a part’s demand
probability and its price on the benefits of integrating advance demand information for
this part. For both studies, we assume that only one unit of each part can be required
by a single customer (dmax

i = 1, i = 1, . . . , N ). In that sense the demand probability
for a part i refers to the probability P(Di (l, l) = 1) that a single customer l requires
a unit of this part, where this probability is identical for all customers l = 1, . . . , J in
a tour.

5.1 The added value of advance demand information

In this section, we quantify the added value of advance demand information by con-
structing repair kits with the heuristic solution procedure assuming that advance
demand information is either available for some parts or not at all. The difference
in the corresponding costs is then the added value of the advance demand informa-
tion. We measure this added value for examples with 100 different spare parts, which
corresponds to the largest problem sizes considered in the experiments conducted by
Teunter (2006). However, using the heuristic solution procedure we proposed, we can
solve instances with 1000 spare parts in less than 40 minutes (executed in R using a
single core of a 1.6 GHz Intel®CoreTM i5-8520U processor)

We consider 100 instances that differ with respect to the probability that a spare part
is needed for a job and the price of the spare part. The demand probabilities as well
as the prices of the spare parts are randomly selected from uniform distributions on
[0.001; 0.2] and [1e;500e] respectively. The annual holding cost rate is fixed to 20%
of a spare part’s price and the material handling costs related to each replenishment are
fixed to 1e for each part. The number of customers to be visited per tour is assumed to
follow a discrete uniform distribution between one and six. For all numerical results
we have chosen a target job fill rate of 90%, but results are similar for other target
service levels.

We compare the situation where none of the parts has advance demand informa-
tion with several scenarios in which a growing number of the parts can generate
advance information. In all cases, the repair kit is determined with the heuristic solu-
tion approach and the corresponding costs are computed as in 4.2. Let us denote the
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Fig. 1 The relative total cost reduction due to ADI given a target JFR of 90%

reorder and order-up-to-levels obtained when the first x %of the parts provide ADI by
sx and Sx . To determine the benefit of different levels of ADI availability we measure
the relative cost reduction

C
(
s0, S0

)− C (sx , Sx )

C
(
s0, S0

) · 100% (22)

for x ∈ {10, 20, . . . , 90, 100}. The results for our 100 problem instances are depicted
in Fig. 1.

It is not surprising that the total cost reduction is increasing with the number of parts
equipped with technology to deliver advance demand information. With additional
information available we can lower the average amount of stock that is required to
satisfy the service constraint, which leads to reduced holding costs. These holding
cost reductions are opposed by only a small increase in order costs. We find that the
total cost reduction we observe is not just due to the parts equipped with sensors to
provide ADI. In case less than 50% of the parts are equipped with ADI, these APs
only account for 80% to 85% of the cost savings. The other 15% to 20% of the total
cost savings can be attributed to NPs, where the safety stock can be reduced as well
(see Fig. 2).

With advance information obtained for some parts we are able to increase these
parts’ availability while reducing their stock levels at the same time compared to the
baseline scenario in which there is no advance demand information at all. Due to this
increased availability for the APs, we can decrease the availability of some of the
NPs and still reach the predefined target service level. Decreasing an NP’s availability,
however, is achieved by lowering its stocking levelswhich results in decreasing holding
costs. That is why up to 20% of the cost savings can be attributed to the NPs.
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Fig. 2 Share of total cost reduction based on APs

5.2 Identification of suitable parts for advance demand information

In a real-life application fitting sensors to all parts in an appliance is rather unrealistic
as it may not be technically possible. Further, due to the costs for the installation
of sensors, it may also not be feasible from an economic point of view to equip all
parts with this technology. Therefore, we examine in the following, for which parts
having advance demand information is particularly advantageous regarding the total
cost reduction that can be achieved. For this reason, we are looking at the impact that
parts’ demand probabilities and their prices have on the benefit of having advance
demand information for these parts. We would expect the value of advance demand
information to increase with increasing demand frequencies and increasing prices of
the monitored parts.
In order to test the first conjecture concerning the impact of the demand probability, we
conduct a second experiment. For this experiment, we consider 100 problem instances
generated as described in Table 2. Each problem instance consists of 20 parts that differ
in their demand probabilities but not in their prices which are identical for all parts.
Out of the 20 parts, 5 parts are to be monitored by sensors that provide ADI. The
objective is to find out which combinations of APs yield the best results and in how
far these results depend on the APs’ demand probabilities. In this setting, there are in
total

(20
5

) = 15504 possible combinations of APs. Out of this set, we randomly select
500 different combinations for each problem instance. For each AP combination, we
determine the repair kit with the greedy algorithm described in Sect. 4.3. We derive
the corresponding total costs and compare them with the costs of a repair kit that
is constructed with the same algorithm assuming all parts are NPs. For each AP
combination, we determine the potential cost savings as defined in term (22).

To describe the impact of the parts’ demand probabilities on the benefit of ADI
availability we characterize all AP combinations by the mean demand probability of
the respective APs. When we compare the cost savings that can be achieved with
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Table 2 Parameter settings

Conjecture 1
100 instances generated as

follows:

Conjecture 2
100 instances generated as

follows:
number of parts 20 parts
available ADI 5 APs, 15 NPs, 500 randomly selected AP combinations
holding cost rate 0.05/365 (per day)
number of customers
per tour

discrete uniformly distributed between 1 and 6

target job fill rate continuous uniformly distributed between 90% and 99%
material handling cost
per order

0.2

demand probabilities continuous uniformly
distributed between 5% and

25%

15%

price 50 continuous uniformly
distributed between 1 and 100
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Fig. 3 Impact of the APs’ mean demand probability

various AP combinations we find that using sensors for parts with higher demand
probabilities pays off in general. However, there is no monotone relationship between
the APs’ mean demand probability and the costs savings that can be obtained. Out of
the 100 instances, we considered the AP combination with the largest mean demand
probability led to the largest cost savings in only 19 cases. Yet for 90 instances it
is among the 10% most beneficial AP combinations. We find that the correlation
coefficient between the APs’ mean demand probability and the cost savings ranges
from −0.40 to 0.88 with a mean of 0.69 across all instances. For further analysis let
us consider the instance with the correlation coefficient closest to the average value
of 0.69. Figure 3 illustrates the relation between the APs’ mean demand probabilities
and the corresponding cost savings for all AP combinations of this example instance.

We find that the increasing cost savings we observe for increasing mean demand
probabilities of the APs are primarily due to decreased holding costs in the case where
ADI is available. With the APs’ mean demand probability increasing the total amount
of stock necessary to satisfy the target job fill rate can generally be decreased. That is
why we see a trend for lower holding costs with larger APmean demand probabilities.
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Fig. 4 Impact of the APs’ mean price

However, stock levels are managed by the choice of integer reorder and order-up-to
levels for all parts. Because of this integrality, exchanging one part from the set of APs
with one from the set of NPs that has a slightly higher demand probability may not
enable us to decrease the reorder or the order-up-to level of any of the parts. Where
this happens this exchange can even cause additional holding costs. That is because
with unchanged policy parameters an increased demand probability for a part leads
to an increased replenishment frequency for that part. Whenever an AP is replenished
its inventory level at the end of the next tour is equal to its order-up-to level (see (5)).
Thus, the more often we order an AP i the more often we have Si units on hand at the
end of a tour. This leads to increased stock levels and thus increased holding costs for
this AP. This effect is one reason why the cost savings in Fig. 3 are not monotonically
increasing in the AP’s mean demand probabilities. Another reason is that holding cost
reductions are sometimes opposed by increased material handling costs. This occurs
when the stock reduction is achieved by lowered order-up-to levels against the same
reorder levels.

In the second part of this numerical study, we concentrate on the second conjecture
that expensive parts should be equipped with a sensor because this leads to the largest
cost savings. To gain insights we conduct a third experiment that again comprises 100
problem instances. These instances are constructed as described in Table 2. Again we
consider 20 parts for each instance. This time though the demand probabilities for all
parts are identical while they differ in their prices. As for the second experiment, we
examine 500 randomly selected AP combinations with 5 APs and 15 NPs for each
instance. For each combination,we employ our greedy heuristic to determine the repair
kit. Additionally, we construct a repair kit with the same algorithm for an NP-only
scenario. Comparing the costs incurred with the AP combinations and in the NP-only
scenario, we can calculate the cost savings as described in term (22).We contrast these
cost savings achieved with the various AP combinations with the average prices of the
respective APs. As can be seen from the results of the exemplary instance depicted in
Fig. 4 there is no monotone relation between the average price of the APs and the cost
savings that can be achieved. Yet, there is a very strong positive correlation between
the average prices of the APs and the cost savings. For all 100 instances, we tested the
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correlation coefficient was larger than 0.97. The most valuable combination of APs
also led to the highest cost savings in 93 out of the 100 problem instances and for the
other 7 instances it was amongst the 5 best combinations. Based on this result, we
can assume that given all parts are equally likely to fail, it would be most beneficial
to monitor the five most expensive parts as they would form the AP combination with
the highest mean price.

6 Summary and outlook

Technical innovations can help to improve inventory planning if more information
about future demand can be generated. In the context of spare parts management,
this advance demand information can be generated by sensors, which help a service
technician decide about the required spare parts for a repair. In this paper, we have
extended the repair kit problem to a situation where some parts are equipped with
sensors such that perfect advance demand information is obtained. The presented
model can be used to quantify the added value of this technology for the repair kit
planning problem.We have shown, that with perfect ADI for some parts, safety stocks
can be reduced while maintaining the same service level, which can result in large
cost savings. These cost savings are not just due to the parts which are monitored.
That is because the job fill rate service criterion measures the joint availability of parts
such that the increased availability of parts with ADI, may be offset by the decreased
availability of other parts without ADI. Further, we find that monitoring combinations
of parts with high mean demand probabilities and high mean prices in general leads
to the largest cost savings. There is a very strong correlation between the mean price
of the parts that are monitored and the cost savings potential compared to a non-ADI
scenario. The correlation between the monitored parts’ mean demand probabilities
and the cost savings that can be achieved is still strong on average across all problem
instances that we considered. However, we did observe instances for whichmonitoring
the parts most likely to fail led to sub-optimal cost savings. Summing up, our model
can be used to quantify the cost savings obtained by sensor technology and to support
decision making, when parts have to be selected for redesign and configuration with
sensors.
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Appendix I - Derivation of �i(k) according to Prak et al. (2017)

We follow (Prak et al. 2017) in deriving the steady-state probabilities πi (k), k =
si + 1, . . . , Si of the net inventory level of an NP i before the start of the tour but after
order arrival (if an order has been placed at all). Let us define the time between two
consecutive order arrivals as an order cycle. In a first step the probability that the net
inventory level reaches a certain level k = si+1, . . . , Si at some point within one order
cycle has to be determined. We denote this probability by �i (k), k = si + 1, . . . , Si .
Then we can use this probability to derive the probability that the net inventory level
is in a particular state k at an arbitrary point in time within the order cycle. This latter
probability is our steady-state probability πi (k).

The probabilities �i (k), k = si + 1, . . . , Si can be calculated recursively starting
from k = Si with the following formula

�i (k) =
⎧
⎨

⎩

1 if k = Si
Si∑

l=k+1
�i (l) · P(Di=l−k)

1−P(Di=0) if k < si ,
(23)

At the beginning of each cycle, the net inventory level is always Si . Thus, Si is reached
with probability one. The following levels k = Si − 1, . . . , si + 1 are then reached
if the net inventory level drops to this level from one of the previously reached levels
due to the observed customer demand. The denominator 1− P (Di = 0) accounts for
the possibility that no demand for part i might occur for an arbitrary number of tours.
Using �i (k), we can calculate πi (k) as follows

πi (k) = �i (k)
Si∑

l=si+1
�i (l)

. (24)

Appendix II -DerivationofP
(
Di(l, l)≤ max

(
I+i − Di(1, l − 1), 0

) |J = j
)

We can determine the probability P
(
Di (l, l) ≤ max

(
I+
i − Di (1, l − 1), 0

) |J = j
)

that sufficient units of part i are available for the l-th out of j jobs in total as the
sum of P

(
I+
i − Di (1, l) ≥ 0|J = j

)
and P(I+

i − Di (1, l) < 0, Di (l, l) = 0|J =
j). P

(
I+
i − Di (1, l) ≥ 0|J = j

)
is the probability that the net inventory of part i

after visiting the l-th customer is not negative. In this case, the l-th job must be
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complete. Even if there are already backorders for part i before the l-th customer
is visited, this job can be completed if part i is not required by the l-th customer.
P(I+

i − Di (1, l) < 0, Di (l, l) = 0|J = j) describes the probability of this event.
Let us start by determining the first summand P

(
I+
i − Di (1, l) ≥ 0|J = j

)
. We

can express this probability by considering the net inventory level before ordering I−
i ,

the order quantity Qi and the demand Di . Keep in mind that as explained in Sect. 4.1
for an AP i πi (k), k = si + 1, . . . , Si defines the steady-state probabilities of the net
inventory level before order placement. Using this we obtain

P(I+
i − Di (1, l) ≥ 0 | J = j)

= P(I−
i + Qi − Di (1, l) ≥ 0 | J = j)

=
j ·dmax

i∑

m=0

P(I−
i + Qi − Di (1, l) ≥ 0 | Di (1, j) = m) · P(Di (1, j) = m)

=
j ·dmax

i∑

m=0

Si∑

k=si+1

P(k + Qi − Di (1, l) ≥ 0 | Di (1, j) = m, I−
i = k) · P(Di (1, j) = m) · πi (k)

(25)

Since Qi depends on the values of Di (1, j) and I−
i we can split (25) into two parts.

The first part considers all relevant events in which an order was placed and the second
part considers the relevant events in which no order was placed.

P(I+i − Di (1, l) ≥ 0 | J = j)

=
j ·dmax

i∑

m=1

min(si+m,Si )∑

k=si+1

[
P(Di (1, l) ≤ m + Si | Di (1, j) = m) · P(Di (1, j) = m) · πi (k)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑

m=0

Si∑

k=max(si+m+1,0)

[
P(Di (1, l) ≤ k | Di (1, j) = m) · P(Di (1, j) = m) · πi (k)

]

=
j ·dmax

i∑

m=1

min(si+m,Si )∑

k=s+1

[
P(Di (1, j) = m) · πi (k)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑

m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑

n=0

[
P(Di (1, l) = n) · P(Di (l + 1, j) = m − n) · πi (k)

]

(26)

Let us now determine the probability P(I+
i − Di (1, l) < 0, Di (l, l) = 0|J = j)

that the net inventory level is negative after performing the l-th job but not because
of the demand of the l-th customer which was zero. For this purpose, we must first
differentiate between the case in which we have only one job in the entire repair tour
and all cases with more than one job in the tour. If we assume the total number of jobs
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J in the tour is one, then l has to be one as well. We obtain the following result

P(I+
i − Di (1, 1) < 0, Di (1, 1) = 0 | J = 1) =P(Di (1, 1) = 0) · P(I+

i < 0)
(27)

Since we only have one customer on the tour who does not require part i it is safe
to say that this part has not been replenished before the start of the tour, as the order
quantity is based on the demand in the upcoming tour that is known beforehand. That
means that the net inventory levels I−

i and I+
i are identical. Thus we get for J = 1.

P(I+
i − Di (1, 1) < 0, Di (1, 1) = 0 | J = 1)

= P(Di (1, 1) = 0) · P(I−
i < 0)

= P(Di (1, 1) = 0) ·
⎡

⎣1 −
Si∑

k=max(0,si+1)

πi (k)

⎤

⎦ (28)

In case we have more than just one customer we get the following result

P(I+
i − Di (1, l) < 0, Di (l, l) = 0 | J = j)

= P(I+
i − Di (1, l − 1) < 0, Di (l, l) = 0 | J = j).

= P(Di (l, l) = 0) · [1 − P(I+
i − Di (1, l − 1) ≥ 0 | Di (l, l) = 0, J = j)

]
(29)

Note that we defined D(l1, l2) := 0 for l1 > l2. Using this definition the above result
holds even when we are considering the first customer in a tour (l=1). At this point,
we can determine P(I+

i − Di (1, l − 1) ≥ 0 | Di (l, l) = 0, J = j) analogously to
P
(
I+
i − Di (1, l) ≥ 0 | J = j

)
(see (2) and (26)). Thus, we get

P(I+i − Di (1, l) < 0, Di (l, l) = 0|J = j)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P(Di (1, 1) = 0) ·
[
1 −

Si∑

k=max(0,si+1)
πi (k)

]
if l = j = 1

P(Di (l, l) = 0)

·
⎡

⎣1 −
⎛

⎝
( j−1)·dmax

i∑
m=1

min(si+m,Si )∑
k=si+1

[
πi (k) · P(Di (1, l − 1) + Di (l + 1, j) = m)

]

+
min

(
( j−1)·dmax

i ,

Si−si−1

)

∑
m=0

Si∑

k=max(si+m+1,0)

min(k,m)∑
n=0

[
P(Di (l + 1, j) = m − n) else

·P(Di (1, l − 1) = n) · πi (k)
]
)]

(30)
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Appendix III - Greedy Heuristic

Algorithm 1 Greedy heuristic
Input: unit holding cost hi , ∀i ∈ {1, . . . , N } , material handling cost fi , ∀i ∈ {1, . . . , N }, customer dis-
tribution P(J = j), ∀ j ∈ {1, . . . , N } , Demand distribution P(Di (l, l) = d), ∀d ∈ {0, . . . , dmax

i

}
, i ∈

{1, . . . , N } and P(Di = d), ∀d ∈ {0, . . . , dmax
i · M} , i ∈ {1, . . . , N }, target job fill rate γ ∗

Output: reorder and order-up-to levels s and S

Di ←
M ·dmax

i∑
d=0

d
M∑
j=1

P(Di (1, j) = d) · P(J = j), ∀i ∈ {1, . . . , N }

Qi ← max

(⌊√
2 fi Di
hi

⌉
, 1

)
, ∀i ∈ {1, . . . , N }

s ← −Q, S ← 0N

order ← ∅
while γ (s, S) < γ ∗ do

R(si ) ← �si C(s, S) · (�si γ (s, S) + ε
)−sgn(�si C(s,S))

, ∀i ∈ {1, . . . , N }
R(Si ) ← �Si C(s, S) · (�Si γ (s, S) + ε

)−sgn(�Si
C(s,S))

, ∀i ∈ {1, . . . , N }
if min

i
R(si ) < min

i
R(Si ) then

i∗ ← arg min
i∈{1,...,N }

R(si )

si∗ ← si∗ + 1
order ← (

i∗, order
)

else
i∗ ← arg min

i∈{1,...,N }
R(Si )

Si∗ ← Si∗ + 1
end if

end while
for j = 1 to length(order) do

if order[ j] 	=order[k], ∀k ∈ {1, . . . , j − 1} then
i ← order[ j]
stemp ← s
s
temp
i ← si + 1

if γ (stemp, S) > γ ∗ then
s ← stemp

end if
end if

end for
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