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Abstract
Hybrid key encapsulation is in the process of becoming the de-facto standard for integration of post-quantum cryptography
(PQC). Supporting two cryptographic primitives is a challenging task for constrained embedded systems. Both contemporary
cryptography based on elliptic curves or RSA and PQC based on lattices require costly multiplications. Recent works have
shown how to implement lattice-based cryptography on big-integer coprocessors. We propose a novel hardware design that
natively supports the multiplication of polynomials and big integers, integrate it into a RISC-V core, and extend the RISC-V
ISA accordingly.We provide an implementation of Saber andX25519 to demonstrate that both lattice- and elliptic-curve-based
cryptography benefits from our extension. Our implementation requires only intermediate logic overhead, while significantly
outperforming optimized ARM Cortex M4 implementations, other hardware/software codesigns, and designs that rely on
contemporary accelerators.
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1 Introduction

Public-key cryptography is the foundation for secured com-
munication over the Internet, but the security assumptions of
contemporary cryptographic primitives like RSA and ECC
are invalid once large-scale quantum computers are avail-
able. To protect communication from eavesdropping, NIST
called for proposals of post-quantum cryptography (PQC)
schemes. Approaches to integrate PQC into protocols like
TLS and SSH feature almost exclusively hybrid key encap-
sulation mechanisms [1, 2], where a trusted contemporary
standard (RSA or elliptic curve) and a post-quantum scheme
are combined. This is recognized by institutions like the BSI
[3] and NIST [4].

For constrained systems, the computationally expensive
operations required for hybrid key encapsulation impose a
serious challenge. Besides hashing, ECC/RSA and lattice-
based cryptography require expensive arithmetic. For ECC
andRSA, big-integer arithmetic is needed. Structured lattice-
based schemes are built on polynomial arithmetic. In scenar-
ios where a device has to support only big-integer arithmetic
andwhere cryptographic operationsmust not exceed a certain
time frame, hybrid encapsulation tightens the requirements
in two different ways. For one, the same device must now
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support polynomial arithmetic, but manufacturers might not
want to increase cost by adding a dedicated accelerator. Also,
devices often have use-case-driven time frames that are avail-
able for cryptographic operations and should not be exceeded
to avoid overall performance degradation. Now, two primi-
tives must fit into a time frame that was previously allocated
for one. In this work, we show aCPUhardware extension that
uniformly supports big-integer and polynomial arithmetic
and thus avoids the cost of integrating separate accelerators
and performance degradation.

Hardware extensions can speed up computational bottle-
necks, e.g., hashing and big-integer/polynomial arithmetic
in cryptography. We propose to employ instruction set
extensions, which—in a certain sense—are tightly coupled
accelerators that do not require expensive data transfers
to/from the CPU and can reuse its hardware resources. We
integrate them into aRISC-V core. For evaluation, we choose
Saber [5], since its polynomial multiplication is similar to
that in NTRU [6] in the fact that modular coefficient reduc-
tion is easy. Therefore, supporting NTRU with our design is
straightforward. We choose the widely deployed X25519 [7]
as a contemporary standard.

Related Work
Previous efforts to support PQC and contemporary standards
target contemporary accelerators developed for ECC or RSA
[8–10]. The authors propose Kronecker-based algorithms to
map polynomial to big-integer multiplication, which implies
an overhead.

The authors of [11, 12] propose RISQ-V, a set of RISC-V
instruction set extensions designed for lattice-based cryptog-
raphy.

This is—to the best of our knowledge—the first work on
new hardware architectures targeting both multiplications in
contemporary cryptography and PQC. New architectures are
required to achieve optimal cost and performance of hybrid
key encapsulation on embedded systems.

Contribution
We use [11] as basis for our work by integrating our design
into their PQ instruction set. Our contributions are:

• The development of the XSMUL, the first design that
natively supports fast arithmetic for lattice-based and
elliptic-curve cryptography. Our architecture is param-
eterizable, scalable, and can efficiently support multipli-
cation algorithms beyond schoolbook multiplication like
Karatsuba and Toom–Cook.

• An integration of the XSMUL into the RISC-V ISA. We
provide results for a prototype FPGA implementation of
the PULPino architecture, extended with our design.

• A novel, memory-optimized algorithm for polynomial
multiplication in rings, whichwe refer to as ring-splitting
multiplication.

• Optimized implementations of schoolbook, Karatsuba/
Toom–Cook, and ring-splitting multiplication that are
supported by the XSMUL. We use Saber [5] to bench-
mark our algorithms and review their applicability to
other PQC algorithms.

• Anewcycle count record for Saber [5] and the first imple-
mentation of X25519 [7] on a RISC-V platformwith ISA
extensions. All our implementations run in constant time.

Organization
Section 2 provides the necessary preliminaries for lattice-
based and elliptic-curve cryptography and multiplication
methods. In Sect. 3, we describe the extended schoolbook
multiplier design, the rationale behind it, and optimizations
for DSP slice architectures. The integration into a RISC-
V core and the ISA extensions are presented in Sect. 4. In
Sect. 5, we present a novel algorithm for polynomial mul-
tiplication. Sections6 and 7 show the application to Saber
and X25519. In Sect. 8, the results for our prototype FPGA
implementation are shown and compared with state-of-the-
art works. A final discussion in Sect. 9 concludes this work.

2 Background

2.1 Notation

In both lattice-based and elliptic-curve cryptography, inte-
gers are defined in a ring Zq , i.e., modulo an integer q.
In lattice-based cryptography, polynomials are typically of
degree n and elements of the ring R = Zq/〈φ(X)〉, where
n is an integer and φ(X) is a cyclotomic polynomial φ(X)

(typically φ(X) = Xn + 1).

2.2 Saber

Saber [5] is built upon polynomial arithmetic, where polyno-
mials are defined inZq [X ]/(X256+1). All coefficientmoduli
q are powers of two with a maximum value of 213. To con-
figure security levels, matrices and vectors of polynomials
with size l × l, l respectively, are used.

2.3 X25519

X25519 [7] is a Diffie–Hellmann key exchange that uses
Bernstein’s Curve25519. Two parties multiply a common
base point with a secret scalar to establish a shared secret.
A time-constant Montgomery ladder is used for scalar
multiplication. The key operations are multiplications, addi-
tions, and subtractions in Fp. If p is a (pseudo)-Mersenne
prime, the modular reduction can exploit the fact that
a ≡ ah · k + al (mod (2m − k)), where a = ah · 2m + al .
For X25519, p = 2255−19, and thus a = ah ·2255+al ≡ ah ·
19 + al (mod p).
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2.4 Multiplicationmethods in this work

In addition to the simple schoolbookmethod, polynomial and
integer multiplication can be performed by different algo-
rithms in different time complexities. For a more detailed
overview, we recommend [10].

Kronecker
Kronecker substitution [13]mapsZ[X ] → Z, s.t. the polyno-
mial multiplication result can be recovered from the integer
multiplication result. The main idea is to evaluate polynomi-
als at a large enough value, multiply the resulting integers
and read the coefficients from the integer product.

Number-Theoretic Transform (NTT)
The NTT [14] is a special case of the discrete Fourier trans-
formation (DFT) in finite fields Zq . A polynomial a(X) can
be efficiently converted into its NTT-representation if the nth
root of unityωn and the 2nth root of unity are elements ofZq .
In the NTT-representation, polynomial multiplication corre-
sponds to coefficient-wise multiplication.

Nussbaumer
Nussbaumer made the observation that multiplications in
Z[X ]/(Xn + 1) can be simplified according to the mapping
below [15]:

� : Z[X ]/(Xn + 1) → (Z[Y ]/(Yn/t + 1))[X ]/(Y − Xt )

a =
n−1∑

i=0

ai X
i → �(a) =

t−1∑

i=0

⎛

⎝
n/t−1∑

j=0

ai+ j t Y
j

⎞

⎠ Xi

(1)

The mapping splits the ring, i.e., the original polynomial
is mapped to a sum of polynomials in the smaller ring
Z[Y ]/(Yn/t + 1). Then the polynomial multiplication can
be seen as a 2t cyclic convolution of �(a) and �(b), with
Ai , Bi = 0 for ∀i ≥ t . The coefficients of the polynomial(∑t−1

i=0 Ai Xi
)
are themselves polynomials in Z[Y ]/(Yn/t +

1).

Toom–Cook/Karatsuba
Toom–Cook-k-way multiplication [16] is a divide-and-
conquer approach to schoolbook multiplication. Karatsuba
[17] is a special case of Toom–Cook for k = 2. The under-
lying rationale is to split a large polynomial into a sum of
2k − 1 polynomials of degree n

k , which are then multiplied.
Afterward, the result of the original multiplication is recon-
structed.

3 Extended schoolbookmultiplier design

We introduce a uniform architecture for polynomial and inte-
ger multiplication to target the performance bottlenecks and

integration issues discussed in Sect. 1. Our proposal is using
an Extended Schoolbook Multiplier, hereafter referred to as
XSMUL.

Rationale for using polynomial schoolbook multipliers
In hardware, NTT-unfriendly schemes typically employ
schoolbook multiplication architectures, e.g., Saber [18, 19]
and NTRU [20, 21]. Due to simple coefficient reduction,
this approach can be implemented efficiently. Designs can
be optimized for either high performance or low area by
choosing the number of multiply & accumulate units that
handle polynomial coefficient multiplication accordingly.
State-of-the-art implementations [18–21] are tailored to the
respective scheme, i.e., they are designed for the specific
coefficient width and support only direct polynomial multi-
plication/convolution.

Our approach of supporting different polynomialmultipli-
cation algorithms in combination with integer multiplication
demands amore general design.Wewant to extend themulti-
ply & accumulate units for big-integer multiplication. Many
big-integer multipliers rely on cascading smaller multiply &
accumulate units. In [22], the authors propose an architec-
ture of cascaded DSP slices for elliptic-curve cryptography.
A distinct accumulator block handles carries and merges the
partial schoolbook products. This specific approach makes it
hard to support polynomial multiplication. In the following,
we propose a new approach that supports both polynomial
and integer multiplication.

Design motivation
The hardware primitive we present in the next subsection can
be instantiated for arbitrary polynomial or integer sizes. For
ECC and lattice-based cryptography, the integers needed for
the former will always require less bit than the polynomi-
als for the latter. For example, a schoolbook multiplier that
can handle polynomials as needed for Saber would have to
be built from 256 multiply & accumulate units with 13-bit
each. We want to avoid this hardware overhead by choosing
a smaller number that satisfies the requirement for ECC and
allows integration into a small RISC-V core for embedded
systems.

3.1 The XSMULmodule

Figure 1 shows the basic structure of the proposed Extended
Schoolbook Multiplier (XSMUL). The multiply & accumu-
late units support polynomial and big-integer multiplication.
Integers are represented as polynomials by splitting them into
chunks of w bit, i.e., a = am2mw + · · · + a12w + a0. Mul-
tiplying two chunks of w bits and adding w bits afterward
yields a 2w + 1-bit wide result. The lower half (rk low) of the
result is shifted into the subsequent multiply & accumulate
unit to the right. The upper half (rkcarry) is fed back into the
adder in the next cycle. For two integers of n bit, N = �n/w	
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multiply & accumulate units are required, and it takes N
steps until both input integers are absorbed (neglecting one
pipeline cycle). Afterward, it takes additional N steps to shift
out the last chunk and complete the integer multiplication.
During this phase, only carry operations are performed. An
additional accumulate block with carry logic could reduce
these N cycles to a single cycle. However, it would need a
connection to all N registers, which would also imply a deep
critical logic path. Since we aim at keeping the design as
compact as possible, we do not further explore this. Addi-
tionally, our design allows us to integrate modular reduction
directly into the integer multiplication and map it directly
into common DSP slices.

The pipeline registers between multiplier and adder are
placed to keep the critical path short. The signs of adder
inputs can be configured to integrate arithmetic beyond mul-
tiplication. In the following, arithmetic operations that were
considered for the basic design are listed. The actual imple-
mentation depends on the parameter set (w, N ). Parameters
for w are chosen in accordance with DSP slice architectures
(Sect. 3.2), and N is chosen in accordance with the RISC-V
core (Sect. 4).

• Polynomial multiplication The basic schoolbook mul-
tiplication of polynomials a(X), b(X) with polynomial
degrees da, db < N is straightforward. Polynomial a(X)

is shifted through the leftmost register and every clock
cycle a result coefficient rk is produced in the rightmost
register.
Multiplication of a polynomial a(X) with arbitrary da
and b(X) with db < N is handled intuitively. After
the first N coefficients aN−1XN−1 + · · · + a1X + a0
were shifted through register a, N result coefficients
rN−1XN−1 + · · · + r1X + r0 were shifted out of the
multiplier, and N − 1 intermediate result coefficients

r2N−2X2N−2 +· · ·+ rN XN reside in the XSMUL regis-
ters. Thenext chunkofa(X) canbepiped through register
a to continue operation seamlessly.
Multiplication of polynomials a(X) and b(X) with arbi-
trary degrees da, db ≥ N is divided into multiple
multiplications of one polynomial with arbitrary degree
and one polynomial part with dpart < N .

• ConvolutionArithmetic in lattice-based cryptography is
usually performed in the ring Rn = Zq/〈φn(X)〉 where
φn(X) = (Xn + 1) or φn(X) = (Xn − 1), i.e., the multi-
plication corresponds to a wrapped convolution. Instead
of shifting the resulting coefficient rk out of the architec-
ture, it can be fed back into the leftmost unit for direct
convolution support, similar to designs in [18, 20], and
others.

• Integer multiplication Integer multiplication resembles
the basic schoolbook approach with additional carry cor-
rection. In contrast to polynomial multiplication, the
result only becomes valid once it passes the rightmost
result register. For ease of implementation, the basic inte-
ger multiplication features operation modes to obtain
only the lower and upper half of the result.

• Integer multiplication with integrated Pseudo-
Mersenne prime reduction Elliptic-curve algorithms
require arithmetic in Fp. Some curves use a (pseudo)-
Mersenne prime for p, e.g., for Curve25519, p = 2255 −
19. As described in Sect. 2, reduction modulo p can be
calculated as r ≡ rh · 19 + rl (mod p). The proposed
architecture canmerge one reduction step into the integer
multiplicationwith no cycle and onlyminimumhardware
overhead. In the rightmost multiply & accumulate unit,
rh is continuously multiplied with 19 and added to the
lower half, which is fed back into the adder. If two 256-
bit integers are multiplied, this mode produces a 263-bit

Fig. 1 Basic structure of the
XSMUL module
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result. For complete reduction modulo p, the procedure
above must be repeated until 0 ≤ r < p.

• Vector addition, vector multiplication & add The pro-
posed architecture supports addition in combination with
scalarmultiplication of polynomials, i.e., (b1N−1X

N−1+
· · ·+b11X+b10)+l ·(b2N−1X

N−1+· · ·+b21X+b20).
• Integer addition and subtraction Integer chunks are
added/subtracted in a vector fashion during which over-
/underflowsmayoccur. These are handled bypropagating
the result through the multiply & accumulate units as
done during multiplication. Since adders are usually
wider than multipliers, an additional parameter w2 for
addition/subtraction can be introduced (see next subsec-
tion).

3.2 DSP slice mapping

For our prototype, we target FPGAs due to their combina-
tion of performance and flexibility. DSP slices are essential
building blocks in FPGAs. Mapping the proposed multiply
& accumulate unit to DSP slice architectures leads to an
efficient hardware implementation. For evaluation, we chose
XilinxUltraScale+ (DSP48E2 slices) and 7-series (DSP48E1
slices) FPGAs.

DSP48E2 slices are the primary target for this work. The
completemultiply& accumulate unit can bemapped into one
slice. The coefficient width was fixed to w = 17-bit, which
can be supported with a slice-internal shift. Both registers of
one multiply & accumulate unit are mapped to slice-internal
registers. The DSP slice can be configured for all required
arithmetic operations.

DSP48E1 slices do not provide all functionality for the
multiply & accumulate unit, as the central adder lacks one
input. The addition operation has to be divided into addition
and carry computation, where the carry path is implemented
in LUT logic. The output register is also mapped to LUT
logic outside of the slice.

Addition and subtraction of integers are optimized uni-
formly for the 48-bit adder in DSP48E2 andDSP48E1 slices.
We introduce the additional parameter w2 = 48-bit. For
addition and subtraction, integers are split into w2-bit wide
chunks instead of the smaller w-bit chunks that are used for
multiplication. A separate 1-bit carry path is integrated for
additions and subtractions.

To take full advantage of the DSP mapping, manual opti-
mizations are required. A general SystemVerilog description
of a multiply & accumulate unit implemented on an Ultra-
Scale+ FPGA yields the following utilization: 364 LUTs, 83
FFs, 1 DSP. By manually instantiating the DSP48E2 slice,
the exactmapping can be achieved and the utilization reduces
to 62 LUTs, 0 FFs, and 1 DSP.

While not evaluated in detail, we suspect that similar opti-
mizations are possible for PolarFire FPGAs, which feature
dedicated math-blocks with 18 × 18-bit multiply & accu-
mulate units and Stratix FPGAs, which feature 18 × 19-bit
multipliers.While not essential to this work, we included our
DSP slice mapping as case study to demonstrate the value of
architecture specific optimizations.

4 Integration into RISC-V Core and
instruction set

This section discusses the integration of the XSMUL design
into a RISC-V core and presents the corresponding ISA
extension. Our target is the PULPino platform,1 a single-core
microcontroller system with CV32E40P core, developed for
energy-efficient embedded systems. Its performance is com-
parable to the widely deployed ARM Cortex M4, but ARM
compilers and ISA usually yield slightly better cycle counts.

We select N = 16 for the number of multiply & accu-
mulate units. For polynomial multiplication in lattice-based
schemes, a power of 2 should be selected, and Curve25519
requires 255-bit integer arithmetic, i.e., at least 15 multiply
& accumulate units are required.

Register integration
Similar to [11], the 32 × 32-bit floating point register set
and parts of the 32 × 32-bit general purpose register set are
used. Data inputs and outputs of the XSMUL are directly
mapped to registers (Fig. 2). Since N = 16, eight 32-bit reg-
isters are needed for one input block, e.g., aN−1 . . . a0. In
total, 32 32-bit registers are needed, for the connection to the
XSMUL, the entire floating point register. While computing,
the module shifts input data through registers. The exact reg-
ister coupling depends on the arithmetic mode, as different
coefficient widths are used. It is important that register trans-
fer operations do not become a bottleneck. For this purpose,
the barrel-shift (dashed lines) and shadow load (dotted lines
in Fig. 2) enable the transfer of multiple registers within a
single cycle, e.g., from the general purpose register set to
the floating point register set. Both the floating point and the
general purpose register file must be extended with parallel
access ports.

Pipeline integration
The XSMUL is coupled directly to CPU registers and
requires parallel access; therefore, it is integrated into the
Instruction Decoding (ID) stage (Fig. 3). The control inter-
face in Fig. 2 is connected directly to the decoder. The
RISQ-V [11] Keccak accelerator was also integrated into
the ID stage. From Table 1, it can be seen that most of our
instructions have a high latency of more than 10 CPU cycles.

1 https://github.com/pulp-platform/pulpino.
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Fig. 2 CPU register coupling
(blocks depicted in gray are
CPU register halves) and control
interface of the XSMUL in the
CV32E40P

Fig. 3 Pipeline integration of
the XSMUL into the Instruction
Decoding (ID) stage of the
CV32E40P

The pipeline stalls until one instruction is finished. As most
of these instructions are immediately followed by another
instruction with a high latency, this stalling does not harm
the overall performance too much.

Extension of the RISC-V ISA
This work extends the PQ instruction set of [11] with nine
different arithmetic modes and five configuration opera-
tions for the XSMUL. Only two assembly instructions are
defined to save space for future extensions: The pq.xsmul
and pq.xsmul_config instruction (Table 1). The actual oper-
ation is encoded into the rs1 field of the instruction. The
decoder is modified to translate the value for the control

interface in Fig. 2. As discussed above, the registers are
connected directly to the XSMUL; therefore, no further
operands are necessary. This implies that assembly codemust
be carefully developed and before scheduling a pq.xsmul
instruction, everything must be loaded into dedicated reg-
isters. We deem this approach as sufficient for our extension,
as vector extensions of more advanced processors operate in
a similar manner.

Applicability to other RISC-V cores
The PULPinowith its four-stage pipeline is a ratherminimal-
istic core. This has both advantages and disadvantages for our
extension. The biggest advantage is that it makes the inte-
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Table 1 XSMUL instructions in
the PQ extension [11]

Instruction rs1 Operation Latency [CPU cycles]

pq.xsmul 0x0 Polynomial mul. 19

0x1 Convolution 19

0x2 Lower-half integer mul. 19

0x3 Higher-half integer mul. 16

0x4 F2255−19 integer mul. 35

0x5 Vector add. 3

0x6 Vector mul.& add. 3

0x7 Integer add. 7

0x8 Integer sub. 7

0x9 Ring-reductiona 3

pq.xsmul_cfg 0x0 Clear 1

0x1 Barrel-shift 1

0x2 Shadow-load 1

0x3 Stall −
a The operation (mod (Y − Xt )) (Sect. 2.4)

gration rather simple, as the XSMUL’s operations can start
directly after the instructions are decoded in the ID stage. On
the other hand, this implies that our extension needs direct
connections to the CPU’s registers, which increases the num-
ber of ports needed for the register file. This has a negative
impact on the critical path in the CPU. A more advanced
core with a deeper pipeline could improve this bottleneck by
stretching the register accesses over multiple pipeline stages.
Those cores are often built on top of a 64-bit architecture
and have a dedicated vector processing unit with dedicated
vector registers. The XSMUL is the equivalent of such a
unit for a constraint 32-bit core. Therefore, it could also be
integrated directly into the vector processing unit of more
advanced RISC-V cores. Instead of reusing CPU registers,
the XSMUL could be connected to the vector register file,
which features wider registers and is designed for parallel
access.

5 Memory optimized ring-splitting
multiplication

To multiply the 256-coeff. polynomials in Saber, we need
efficient divide & conquer software implementations. We
bring forward a novel, memory-optimized algorithm. Stan-
dard algorithms for polynomial multiplication do not exploit
the fact that polynomials in lattice-based cryptography are
defined in rings (e.g.,Zq [X ]/(Xn+1)). It is desirable to inte-
grate the polynomial reductionmodulo (Xn+1) directly into
the multiplication to avoid that the result grows to double the
size it needs to be. In [23], the authors achieve this, by com-
bining Karatsuba multiplication with segmented reduction.
We propose ring-splitting multiplication, a new algorithm

Algorithm 1 Ring-Splitting Multiplication
Input: a = a(X), b = b(X), Output: r = r(X) = a(X) · b(X)

(mod (Xn + 1))
Note: Polynomials are treated as zero-indexed arrays, t needs to be
defined as described in Sect. 2

1: function RingSplittingMultiplication(a, b, r )
2: a ← �(a)

3: b ← �(b)
4: for j ← 0 to (t − 1) do
5: ir , ia ← j; ib ← 0
6: R ← ∀0
7: for i ← 0 to (t − 1) do
8: A ← a[(n/t)(ia + 1) − 1 : (n/t)ia]
9: B ← b[(n/t)(ib + 1) − 1 : (n/t)ib]
10: T ← A · B (mod (Yn/t + 1)) � pq.xsmul conv.
11: if (ia + ib) ≥ t then
12: T ← T (mod (Y − Xt )) � pq.xmsul ring-red.
13: end if
14: R ← R + T � pq.xsmul vector-add.
15: ia ← ia + 1
16: ib ← (ib − 1) (mod t)
17: end for
18: r [(n/t)(ir + 1) − 1 : (n/t)ir ] ← R
19: end for
20: r ← �−1(r)
21: end function

dedicated to the introduced hardware accelerator. It is based
on the idea of splitting the ring in Eq. 1, which inherently
includes reduction and therefore reduces memory accesses.
In comparison to [23], our algorithm is easier to vectorize in
a hardware implementation.

In Nussbaumer’s original algorithm, the mapping in Eq. 1
is used as the basis for a transformation, s.t., instead of t2,
t element-wise (nega)-cyclic convolutions are required. This
was used in [24, 25] and adapted to map polynomials to
integers with Kronecker substitution in [8, 10]. It cannot be
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easily adapted for Saber as it requires a division by 2t , for
which no multiplicative inverse in Zq exists. We propose
to perform the t2 (nega)-cyclic convolutions directly. This
does not improve the time complexity of O(n2) in any way.
The underlying assumption is that a simple approach backed
by efficient hardware-accelerated operations outperforms
algorithms with better time complexity but complicated pro-
cedures. The procedure used for ring-splitting multiplication
is listed in Algorithm 1. The structure introduced with �

allows to compute one coefficient polynomial completely,
before writing it back to memory (Line 18).

6 Application to Saber

Saber’s [5] main multiplication problem is a matrix–vector
multiplication A · s, where elements of both are polynomials
in Zq [X ]/(Xn + 1). We start by looking at the problem of
multiplying two polynomials and then use the matrix–vector
structure for optimizations. The previously selected parame-
ter N = 16 enables efficient arithmetic with polynomials of
16 coefficients.

6.1 Polynomial multiplication in Saber

In the following, we use our instruction set extensions to
optimize different polynomial multiplication algorithms.

Schoolbook
Schoolbook multiplication forms the baseline for all multi-
plication algorithms. Multiplication of polynomial a(X) ∈
Zq [X ]/(Xn + 1) and 16 coefficients of polynomial b(X) is
straightforward. The procedure is repeated 16 times to extend
themultiplication to that of two polynomials∈ Zq [X ]/(Xn+
1). The reduction modulo (Xn + 1) is enhanced with vector
subtractions.

(Multilevel) Karatsuba
Karatsuba is applied as described in Sect. 2.4 with k = 2.

The 1-level instance computes the polynomial multiplica-
tions of degree 127 directly with schoolbook multiplication,
while the 2-level instance uses Karatsuba once more to
decrease the degree of polynomial multiplications to 63. The
polynomial additions/subtractions are accelerated with the
vector mode.

Toom–Cook-4-way
Toom–Cook with k = 4 has been adapted for hard-
ware [19, 26] and software [27]. Larger values for k
are seldom found in the literature. The evaluation points
Y ∈ [∞, 2, 1,−1, 1/2,−1/2, 0] are used. Evaluation cor-
responds to a multiplication with matrix E and interpolation
to a multiplication with matrix I . Multiplying a poly-
nomial with a scalar and accumulating it with others is

directly supported by the XSMUL’s multiplication & addi-
tion mode. For evaluation, this is straightforward, whereas
the matrix I contains fractions, as it is derived from the
inverse of an expanded and quadratic matrix E ′. Fractions
are computationally expensive. In [26], the authors pro-
pose a division-free Toom–Cook architecture by rewriting
I = 1

360 · Idiv−free = 1
8 · 1

45 · Idiv−free. All elements of Idiv−free

are integers. The scaling by 1/360 is split into two steps. The
multiplication by 1/8 is equivalent to shifting every coef-
ficient 3-bit to the right; therefore, 3 extra bits for every
coefficient are required. Since we use 16-bit anyway, this
does not matter. The factor 45 has a multiplicative inverse
for the Saber coefficient ring: 45−1 ≡ 4005 (mod 213). An
additional scaling step is required to multiply every coeffi-
cient with 4005 and shift it 3-bit to the right.

Ring-Splitting Multiplication
If we choose t = 16, we can directly use the algorithm
for ring-splitting multiplication as described in Sect. 5. In
this case, the nega-cyclic convolution of two polynomials of
degree less than n = 256 is mapped to t2 = 256 nega-cyclic
convolutions of polynomials of degree less than n/t = 16.
Since we chose N = 16, we can handle convolutions of such
polynomials directly in hardware. The mapping � is imple-
mented, s.t. two 16-bit coefficients can be loaded with one
32-bit word.

Results
Table 2 shows the results for one polynomial multiplication
in Zq [X ]/(Xn + 1). The ring-splitting multiplication out-
performs all other approaches. It requires by far the lowest
amount of stores. Of the 4352 loads and 512 stores, 256
loads and 384 stores are needed for the mapping �. The
1-level Karatsuba instance performs slightly better than sim-
ple schoolbookmultiplication as its straightforward approach
of trading multiplications for additions can be implemented
efficiently. Adding a second layer of Karatsuba or using
Toom–Cook-4-way increases the linear overhead of pre- and
postprocessing, s.t. performance deteriorates. All optimized
approaches outperform the reference implementation by one
order of magnitude. None of our implementations require
branching on secret data and our hardware operations require
a fixed number of clock cycles. Therefore, all our algorithms
run in constant time.

6.2 Matrix–vector multiplication in Saber

Saber’s public matrix A has the quadratic form l × l and
the vector s is of length l. The result A · s is also a vector
of length l. To compute one element of the resulting vec-
tor, l polynomial multiplications and additions are required.
The additions are accelerated with the XSMUL’s vector
mode. Furthermore, we can exploit the matrix–vector struc-
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Table 2 Results for one
polynomial multiplication +
reduction in Saber

Implementation Latency (CPU cycles) Nr. of loads Nr. of stores

Ring-Splitting 11,190 4352 512

Karatsuba-1-Level 12,200 4220 2432

Schoolbook 12,530 4352 2432

Karatsuba-2-Level 14,310 4800 2816

Toom–Cook-4-way 17,216 5664 2144

Referencea ∼105,000 – –

a Reference implementation of Saber from PQClean [28]. Themultiplication algorithm relies on Toom–Cook-
4-way, followed by Karatsuba multiplication. No instruction set extensions are used

ture for optimizations of polynomial multiplication with
Karatsuba/Toom–Cook and ring-splitting.

Optimized ring-splitting
The optimizations for ring-splitting are straightforward. The
mapping � (i.e., the memory reordering) only needs to be
applied once for each input and result polynomial, i.e., l2+2l
times. A naive application of the polynomial multiplication
method in Algorithm 1 to the matrix–vector multiplica-
tion would lead to 3l2 applications of �. The optimization
requires additional memory for two polynomials in their
reordered forms.

Time-memory trade-off in Toom–Cook multiplication
The authors of [27] present a time-memory trade-off for
Toom–Cook multiplication. They establish evaluation and

interpolation as linear transforms TC , TC
−1

and propose to

apply TC only once for each input polynomial and TC
−1

only once for each result polynomial. The memory trade-
off is due to the more expensive storage of polynomials in
their evaluated/interpolated forms. This lazy interpolation
technique poses a significant advantage for Toom–Cook, in
particular for higher dimensions l. However, a detailed per-
formance analysis shows that for the maximum value l = 4,
ring-splitting is still the most efficient multiplication method
on our platform. It also requires less stack memory than
matrix–vector optimized Toom–Cook.

6.3 Polynomial sampling in Saber

Besides polynomial multiplication, polynomial sampling is
the largest performance bottleneck in lattice-based cryptog-
raphy. The accelerators proposed in [11] include instruction
set extensions for pseudo random number generation and
binomial sampling to address this problem. As [11] was used
as basis for this work, it is possible to use their extensions
combined with the proposed XSMUL extension.

The Keccak accelerator from [11] computes a complete
1600-bit round permutation in a single CPU cycle. The cycle
count of sampling a uniform random polynomial in Saber
was improved by a factor of approximately 30.

In a single CPU cycle, the binomial sampling unit from
[11] produces two 16-bit samples from four 16-bit uniform
random samples with modular Hamming weight subtraction.
The cycle count of sampling a Saber polynomial from a bino-
mial distribution was improved by a factor of approximately
40.

7 Application to X25519

We propose an efficient implementation for the scalar mul-
tiplication in X25519 [7]. Arithmetic operations are defined
in the finite field Fp, where p = 2255 − 19, i.e., 255-bit inte-
ger arithmetic is required. The XSMUL architecture with
w = 17-bit, w2 = 48-bit (Sect. 3.2) and N = 16 (Sect. 4)
enables direct 272-bit addition, subtraction, and multiplica-
tion. All integers r ∈ Fp are represented as 8-coefficient
polynomials r(X = 2) = r0 + r1232 + · · · + r72224, so one
coefficient ri is 32-bit wide.

Modular reduction
Pseudo-Mersenne prime reduction is used to reduce modulo
p. Between operations on r , a weak reduction is performed,
s.t. r ′ < 2p. We use the pseudo-Mersenne prime reduction
with p to do this. Often 2p = 2256 − 38 is used, as it allows
to split r = rh · 2256 + rl , but then r ′ = 38 · rh + rl has to be
calculatedmore than twice in a row for r ′ < 2p to hold. If p is
used, two multiply-and-add steps suffice, s.t. r ′ < 2p holds
for multiplication results of two 256-bit integers. For our
platform this lazy reduction approach has proven to be the
most efficient implementation. Complete reduction is only
carried out at the end of the ladder.Onemultiply-and-add step
is directly integrated into the multiplication. The following
arithmetic operations are required in X25519:

• Addition/subtractionOperands for addition/subtraction
are split into 48-bit chunks. Subtractiona−b is calculated
as 2p − b + a to avoid underflows. Reduction to a value
< 2p is performed as described above.

• Multiplication The XSMUL supports integer multipli-
cationwith integrated pseudo-Mersenne prime reduction.
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Table 3 Cycle count for arithmetic operations in F2255−19 for an opti-
mized implementation using instruction set extensions and a portable
C implementation from libsodium [29]

Implementation Inv. Mul. Mul. by word. Add. Sub.

Optimized 19,349 87 64 68 84

Reference [29] 343,334 1691 278 42 42

The operation in hardware yields a 263-bit integer.
Repeating the reduction procedure leads to a result< 2p.

• Multiplication by a 32 bit word The Montgomery Lad-
der includes a multiplication with the constant 121665.

• Inversion Themost expensive arithmetic operation is the
calculationof an inversefield element r−1 ≡ r p−2 (mod p).
The standard procedure of 254 squarings and 11 multi-
plications is used to compute r p−2 [7]. Squaring can be
chained together by barrel-shifting a reduced result r2

(mod p) into the XSMUL input registers and continue
multiplying it with itself to get r4 (mod p) and so on.

Results
Table 3 shows the latencies for the respective arithmetic oper-
ations. The software implementation used for reference [29]
relies on a different integer representation that allows carry-
free additions and subtractions and does not require a direct
reduction after addition/subtraction. Switching between rep-
resentations is difficult, so XSMUL-accelerated multiplica-
tion cannot be combined with the addition and subtraction
from [29]. Multiplications with XSMUL instruction set
extensions are faster by multiple orders of magnitude. All
latencies include fetching operands from memory at the
beginning and writing them back at the end. In between lad-
der steps we do conditional constant-time swaps of complete
field elements instead of just swapping pointers. Equivalent
to our results for Saber our scalar multiplication runs in con-
stant time.

Code size/ cycle count trade-off
A constant-timeMontgomery ladder is used for scalar multi-
plication. If performance is prioritized over code size, loads
and stores can be merged directly into the ladder code. This
increases code size, but avoids unnecessary memory access
between subsequent operations. For our architecture, this is
feasible, since it includes enough registers to buffer values
and can exploit barrel-shifting to enhance register transfer
operations. Our optimized general-purpose implementation
takes approximately 457,440 cycles and has a code size of
4,050 Byte. Approximately 600 Byte in code size can be
traded for a speed-up of 55,000 cycles, if an implementation
is strictly cycle count optimized.

8 Results and evaluation

We instantiate the PULPino with extensions for Saber and
X25519 in a prototype FPGA implementation. The follow-
ing subsections show resource utilization, latency, and code
size results. State-of-the-art software and hardware/software
codesign implementations are chosen for comparison. We
discuss the applicability of our architecture to other primi-
tives and hybrid key encapsulation.

8.1 FPGA resource utilization results

For evaluation of our architecture, we chose a Xilinx Zynq-
70002 and UltraScale+ SoC.3 Table 5 shows the resource
utilization of the PULPino core with and without extensions.
Default synthesis and implementation settings are used. The
PULPino baseline does not include the FPU and the 32
floating-point registers. Our extended PULPino includes the
Keccak, binomial sampling, and XSMUL extension and the
32 floating-point registers, but not the FPU itself.

On an UltraScale+ FPGA, our extensions cost 8,092
LUTs, 1,152 FFs, and 16 DSP slices. The overhead in regis-
ters can bemainly attributed to the 32 floating point registers;
the 16 additional DSP slices are required for the XSMUL.

A direct comparison with the extended PULPino systems
from [11] and [12] is not applicable, since the respective use
cases differ. Instead of the XSMUL, the PULPino in [11]
features a tightly coupled NTT accelerator for Kyber and
NewHope, and modular multiply & accumulate extensions
for Saber. The Keccak and binomial sampling accelerators
are reused for ourwork. The authors of [12] use a loosely cou-
pled NTT module that can support Kyber, NTRU, and Saber
and similar Keccak and binomial sampling architectures.
They show how masking increases the cost of accelerators,
but the provided values are without masking. In general, [11]
and [12] provide more flexibility in choosing a lattice-based
PQC scheme, but do not support contemporary cryptography.

Due to a higher utilization, the routing gets more complex
and the maximum possible frequency deteriorates a bit (33%
and 45%ofLUT logic are used for theUltraScale+ andZynq-
7000 SoC, respectively).

A deeper insight into the cost of individual extensions and
their critical paths is provided in Table 4. It shows the uti-
lization for a stand-alone implementation of the accelerators.
This includes the cost for the connection to CPU resources,
which is merged in the complete design, but not the cost
for the registers themselves. Keccak and XSMUL require a

2 ZedBoard with XC7Z020-CLG484 part: https://reference.digilent
inc.com/programmable-logic/zedboard/start?redirect=1.
3 Ultra96-V2 with UltraScale+ MPSoC ZU3EG A484: https://www.
avnet.com/wps/portal/us/products/new-product-introductions/npi/
aes-ultra96-v2/.
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Table 4 Stand-alone utilization
results for Keccak and binomial
sampling unit from [11] and
XSMUL extension

Arch. Utilization fmax (MHz)
LUTs FFs Slicesa DSPs

Keccak [11] US+ 2,595 0 364 0 180

Z-7000 2,599 0 705 0 85

Bino. Sampl. [11] US+ 130 0 21 0 210

Z-7000 139 0 48 0 123

XSMUL US+ 3523 64 594 16 136

Z-7000 4144 848 1244 16 45

a CLB on UltraScale+ architectures

Table 5 FPGA utilization
results (placed and routed) for
PULPino implementations with
and without ISA extensions

ISA ext. Architecture Utilization fmax (MHz)
PQC ECC LUTs FFs Slicesa DSPs BRAMs

PULPino N N UltraScale+ 15,103 9,909 3,149 6 32 83

Zynq-7000 15,271 9,925 5,418 6 32 39

[11] Y N Zynq-7000 23,947 10,847 – 21 32 –

[12] Y N Artix-7 20,697 11,833 6,852 13 36.5 62.5

This work Y Y UltraScale+ 23,441 11,094 4386 22 32 76

Zynq-7000 24,235 11,863 7658 22 32 34

This work includes the initial PULPino extended with the XSMUL and Keccak and binomial sampling
accelerators proposed in [11]
a CLB on UltraScale+ architectures

significant amount of LUTs for round permutation and data
path control logic, respectively. The XSMUL’s register cost
depends on the FPGA platform (Sect. 3), but does not change
by much.

A logic path length analysis shows that paths inside the
accelerators do not limit the clock frequency. The high differ-
ence of fmax for theXSMULondifferent FPGAarchitectures
is due to the advantageous DSP48E2mapping, where all data
paths inside amultiply&accumulate unit aremapped to short
DSP slice internal paths.

It can be seen that the clock frequency is highly dependent
on the underlying technology. Since our extensions do not
limit the clock frequency, we decide to use cycle counts for
the following evaluation of Saber and X25519.

8.2 Results for Saber

Table 6 shows the latencies of algorithmic steps in key enclo-
sure with CCA secured Saber (NIST Level III). The work
in [12] is also based on [11] (see above) and consumes
fewer hardware resources. Our approach has the advantage
of supporting contemporary schemes like X25519, while the
NTT module in [12] allows implementers to switch directly
between different lattice-based schemes.

RISQ-V [11], the basis of this work, includes a vectorized
modular multiply & accumulate instruction to enhance the
standard Toom–Cook implementation. It allows to execute
two 16-bit computations of a · b + c (mod q) at the same

time. This approach requires significantly fewer hardware
resources but offers only a slight performance improvement
for multiplications.

Compared to a software-only implementation on the
PULPino, our architecture improves the performance by
factor ten. The ARM Cortex M4 assembly optimized imple-
mentation in [30] uses an NTT-approach, outperforming the
Toom–Cook approach from [27]. Our implementation is
faster by a factor of three.

The ESP32 implementation of CPA secured Saber from
[9] uses the accompanying RSA coprocessor for multiplica-
tions. Our extended PULPino implementation is three to four
times faster than their work. We want to note that compar-
isons to fundamentally different platforms are not directly
applicable, but still provide value in allowing the reader to
judge the state-of-the-art.

The authors of [19] propose a loosely coupled Toom–
Cook-4-waymultiplier that supports our argument for tightly
coupled accelerators. While their coprocessor only needs
8,176 cycles for multiplication, the data transfers to/from the
CPU raise the latency to approximately 41,000 cycles. The
advantage of the loosely coupled coprocessor is thatmultipli-
cation and generation of polynomials can be interleaved. The
loosely coupled accelerator can not reuse hardware resources
in the CPU and has a similar hardware overhead to our work.

Table 7 includes a comparison with the standalone hard-
ware implementations for UltraScale+ FPGA architecture in
[31, 32] and the ASIC in [33]. We should note that a direct
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Table 6 Cycle count for Key Encapsulation in CCA secured Saber (compiled with −O3, GCC PULPino RISC-V compiler 7.1.1 20170509)

Type Cycle counts (·1000) Overhead Frequency

Key Gen. Encaps. Decaps. LUTs FFs DSPs

This worka HW/SW 217 279 300 8337 1185 16 76MHz (−8%)

ext. PULPinoa [12] HW/SW 229 308 347 2454 1917 7 56MHz (−6%)

ext. PULPinoa [11] HW/SW 761 1000 1201 9050 1268 12 –

PULPino [28] SW 2110 2737 2797 – – – –

Cortex-M4 [30] SW 658 864 835 – – – –

ESP32 + Co. [9] HW/SW 827 1070 243b – – – –

Z-7 SoC [19] HW/SW 2180 2762 2560 7400 7331 28 125MHz

US+ x1 [31] HW 2.7 3.7 4.7 21,352 14,232 0 370MHz

US+ x2 [31] HW 1.8 2.2 2.8 32,099 21,037 0 345MHz

US+ x4 [31] HW 1.3 1.5 1.9 48,895 27,715 0 310MHz

US+ [32] HW 5.5 6.6 8.0 25,079 10,750 0 250MHz

TSMC 40nm [33] HW 1.1 1.5 1.7 28,169 9504 85 160MHz

a Utilization given as diff. to orig. PULPino
b Only CPA secured variant

Table 7 Code size for Saber CCA in byte (compiled with −O3, GCC
PULPino RISC-V compiler 7.1.1 20170509)

ISA Code size

This work RISC-V 10,364

PULPino + Ext. [12] RISC-V 10,900

PULPino + Ext. [11] RISC-V 11,802

PULPino Ref. [28] RISC-V 17,912

ARM Cortex M4 [34] ARM 9412

comparison with those design is not applicable. All these
designs consume more hardware resources than the com-
plete, extended PULPino core in this work without featuring
a general purpose CPU that could implement a protocol on
top of the cryptographic operations.However, the cycle count
of the standalone hardware implementations is far lower than
those of hardware/software co-designs (Table 8).

Table 7 shows code sizes for the respective implementa-
tions. All three optimized RISC-V implementations require a
similar amount of memory to store their machine code. Com-
pared to the reference implementation, complex operations
are commenced with a few instructions, therefore less code
is required. The ARM Cortex M4 implementation requires
slightly less memory, due to the advantageous code size of
the ARM ISA [42].

Our hardware extension does not change the maximum
stack usage, which is at 16,644 bytes for Saber-CCA.

8.3 Results for X25519

Table 9 shows the latencies for the complete scalar multi-
plication and the required arithmetic operations in F2255−19

on ARM architectures and the extended PULPino design.
The below-average addition/subtraction performance was
explained in Sect. 7. The XSMUL’s multiplication perfor-
mance is beyond that of the superior ARM A7, A8, and A15
processors, which feature vector extensions. Compared to the
ARM Cortex M4, latency is lower by factor 1.5 if the core
frequency is reduced or a flash pre-fetch engine is used, and
factor two otherwise. The PULPino software-only reference
implementation is outperformed by factor ten. In [41], the
author optimizes his implementation to only use the RISC-V
32-bit basis instruction set and the multiply extension. The
standalone hardware designs in [36–38] aremore powerful in
terms of latency, but requiremore FPGA resources. The hard-
ware/software codesign in [35] shows that an extension for
X25519 can be realized with a more compact overhead than
our hybrid approach. However, it should be noted that their
system-on-chip already includes a powerful general purpose
CPU.

Compared to an unoptimized reference implementation,
the usage of XSMUL instruction set extensions improves the
code size approximately by factor three (Table 10). Without
the cycle count/ code size trade-off discussed in Sect. 7, the
code size of the proposed implementation is comparable to
[40].

Similar to our Saber implementation, the stack usage is
unchanged by our hardware extension and is at 788 bytes.

8.4 Design exploration

In the following, we describe the applicability of our exten-
sion to other cryptographic schemes. We start by evaluating
other lattice-based proposals and consider two groups: (i)
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Table 8 Cycle count for scalar
multiplication in X25519

Type Scalar Mul. Inv. Mul. Add. Sub.

This work HW/SW 411,810 19,350 87 68 84

Zynq SoC [35] HW/SW 135,446 18,489 33 17 17

Zynq [36] HW 13,639 2928 10 2 2

Zynq [37] HW 10,465 2548 8 2 2

Zynq MC [38] HW 34,052 1667 55 10 10

Zynq SC [38] HW 79,400 14,630 55 10 10

ARM C. M4 [39] SW 609,779–971,272a 42,590 153–237 52–95 65–124

ARM C. M4 [40] SW 894,391 64,425 273 86 86

ARM C. A7 [40] SW 825,914 62,648 290 52 52

ARM C. A15 [40] SW 572,910 41,978 225 36 36

PULPino Ref. [29] SW 4,103,653 343,334 1691 42 42

RISC-V Hifive1 [41] SW 4,432,988 – – – –

a Depends on the frequency and the usage of a flash pre-fetch-engine

Table 9 Resource utilization for
hardware/software and hardware
designs of X25519

Type Overhead Frequency
LUTs FFs DSPs

This worka HW/SW 8337 1185 16 76MHz (−8%)

Zynq SoC [35] HW/SW 2707 962 15 105MHz

Zynq [36] HW 21,107 26,483 260 115MHz

Zynq [37] HW 17,939 21,077 175 115MHz

Zynq MC [38] HW 43,675 34,009 220 100MHz

Zynq SC [38] HW 3592 2783 20 200MHz

a Utilization given as diff. to orig. PULPino

Table 10 Code size for X25519 in byte (compiled with −O3, GCC
PULPino RISC-V compiler 7.1.1 20170509)

ISA Code size

This work RISC-V 4628

PULPino Ref [29] RISC-V 14,768

ARM Cortex M4 [39] ARM 3324

ARM Cortex M4 [40] ARM 4152

schemes that do not inherently require the NTT and use a
coefficient ring allowing easy reductions, and (ii) schemes
that inherently require the NTT.

Different n and Nslice fornon-NTT, coefficient-reduction-
friendly polynomial multiplication

NTRU is similar to Saber in the fact that the main com-
putational cost lies in polynomial multiplication and the
coefficient reduction is virtually free. Polynomials in NTRU
are defined in the ring Zq [X ]/〈�n(X)〉. The polynomial
length is n ∈ [509, 677, 701, 821], and coefficients are in
the ring Zq , where q is either a power of two ≤ 213 or 3
[6]. We evaluate the multiplication algorithms from Sects. 5
and 6 for other values n.

The other dimension of interest is the number of multiply
& accumulate units N . We chose N = 16, but designers
might prefer a lower or higher number, depending on the use
case.

Our implementations are transformed into two-dimensional
cost functions latency(n)(N ). Extrapolated values can be
found in Table 11. We make a couple of interesting observa-
tions. Had we chosen N ∈ [4, 8], Toom–Cook or Karatsuba
would have been the better choice for the Saber imple-
mentation, even more so if matrix–vector optimizations are
considered. If operations are not efficient enough in hard-
ware, the advantageous time complexity of complicated
algorithms is more important than their overhead. In NTRU,
the prime values of n make the application of ring-splitting
difficult. Coefficient reductionmodulo 3 requires more effort
than the bit masking for powers of 2 but can be integrated into
our architecture. For the proposed design with Nslice = 16,
2-level Karatsuba should be chosen for NTRU if n = 509,
and Toom–Cook-4-way for all other values of n.

Lattice-based cryptography with inherent NTT usage
Supporting Kyber [43] imposes two problems: (i) It inher-
ently uses the NTT, i.e., it sends/receives data in NTT-
representation, and (ii) coefficient reduction is a computa-
tionally expensive operation. The authors of [8] solve the first
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Table 11 Extrapolated values from the two-dimensional cost function latency(n)(Nslice) for the XSMUL extension

Nslice = 4 Nslice = 8
n = 256 n = 512 n = 768 n = 1024 n = 256 n = 512 n = 768 n = 1024

Ring-splitting 89,300 350,500 783,700 1,389,000 28,200 107,600 238,200 420,000

1L-Karatsuba 65,200 247,100 545,600 960,900 25,700 92,600 201,100 351,000

Schoolbook 80,300 316,200 707,700 1,254,900 29,500 114,200 254,200 449,600

2L-Karatsuba 57,500 202,000 434,000 753,600 25,300 81,200 168,200 286,300

Toom–Cook-4-way 58,700 185,200 379,800 642,400 27,700 79,200 154,900 254,800

Nslice = 16 Nslice = 32
n = 256 n = 512 n = 768 n = 1024 n = 256 n = 512 n = 768 n = 1024

Ring-splitting 11,000 38,400 82,900 144,300 5300 16,800 34,600 58,700

1L-Karatsuba 12,200 40,800 85,800 147,400 7100 21,200 42,500 71,000

Schoolbook 12,500 47,000 103,500 182,000 6100 21,800 47,200 82,100

2L-Karatsuba 14,300 39,900 78,100 128,700 9600 23,900 43,700 68,900

Toom–Cook-4-way 17,200 41,000 75,700 120,100 10,900 25,500 44,400 67,500

problem by modifying Kyber, s.t. data is not sent in its NTT-
representation. Solving the second problem would require
significant changes to our design. Multiplication modulo a
prime q is usually computed with Montgomery modular
multiplication [44] to avoid computationally expensive divi-
sions. Therefore, we would have to extend our design with
Montgomery multipliers, which have a significant overhead
compared to the multipliers currently used. It is unlikely
that extending our design with Montgomery multiplication
is reasonable compared to state-of-the-art NTT implementa-
tions. The same holds for the signature standards Falcon and
Dilithium.

Other cryptographic primitives
Our design is capable of handling the matrix–vector mul-
tiplication of the unstructured lattice-based scheme Frodo
[45]. Frodo’s matrix coefficients fit into w-bit and the modu-
lus q also allows virtually free reductions. Multiplications
in NTRU Prime can be supported, but implementing the
reduction algorithm on our platform requires further evalua-
tion. Our architectural approach is applicable to other curves
besides Curve25519. For Curves using Mersenne primes
such as the NIST curve P-521, the adoption is straightfor-
ward. The XSMUL’s width would have to be adjusted to
support field elements of 521-bit and the cycle count of
the integer multiplication with integrated reduction would
accordingly double. For curves using Solinas primes like P-
192, P-224, P-256 and P-384, modular reduction is more
complicated. Therefore, the best approachwould be to use the
generalized integermultiplication and use theXSMUL’s vec-
torization capabilities to integratemodular reduction suitable
for those primes. For Solinas primes, a set of fast additions
and subtractions can be used. Schemes like SIKE and RSA
require integer arithmetic of more than 272-bit and typi-

cally use Montgomery’s modular multiplication algorithm
[44]. Only intermediate improvements can be expected, if
the XSMUL is used.

8.5 Hybrid key encapsulation

We propose our architecture as basis for integration of hybrid
key encapsulations into embedded systems. To get from our
Saber and X25519 implementations to a secured handshake
between two parties, hybrid handshakes need to be standard-
ized. This is an active research topic. The topic of negotiation
is reviewed in [46], the topic of combiners formultiple secrets
in [2]. Robust combiners often require hash functions, which
could potentially be supported by the Keccak extension we
adapt from [11]. Particularly interesting for embedded sys-
tems is the KEMTLS handshake from [1]. The complete
authenticated handshake is built solely with KEMs. Signa-
tures are only used to prove the authenticity of a certificate,
which often can be preinstalled in embedded applications.
During the KEMTLS handshake, the client would have to
perform one key generation, one decapsulation, and one
encapsulation. In a hybrid handshake, each of those oper-
ations would be needed for the contemporary and the PQC
standard. KEMTLS reduces the amount of necessary com-
munication significantly, and does not require support for
signatures on the embedded device. Both are desirable for
the use case we consider for our architecture.

In recent works, contemporary accelerators have been
used for PQC [8–10]. These efforts are crucial so that legacy
hardware can stay protected in a post-quantum age. How-
ever, this does not mean that big-integer coprocessors are the
best architecture for both polynomial and integer multiplica-
tion and consequently the best choice for new designs. The
mapping of polynomials to integers implies an unavoidable
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overhead. Our architecture handles both operations natively.
A new design that considers both contemporary cryptogra-
phy and PQC should be implemented, s.t. both are supported
equally efficient. Our results show that this is the case for our
design. A direct comparison with [8] and [9] would be unfair
due to differences in the used platforms.

8.6 Side channel security

All our implementations run in constant time. The instruc-
tion set extensions we proposed need a constant cycle count
and we integrated these instructions into algorithms such as
our ring-splitting multiplication and a constant-time Mont-
gomery ladder. We did not consider any countermeasures
against power or electromagnetic based side-channel attacks.
Therefore, our implementation is as vulnerable to these
attacks as a generic unhardened software implementation of
Saber and X25519 without instruction set extensions.

For lattice-based PQC,masking and shuffling are themost
prevalent countermeasures against power and electromag-
netic side channel attacks [12]. Masking, while widely used,
seems to be vulnerable to horizontal template attacks, as the
polynomial arithmetic is a long linear operationwithoutmask
refreshing for arithmetically masked polynomials. Shuffling
could be more efficient, as it eliminates the temporal con-
nection of operations. Applying both countermeasures to our
extensions would not differ much from applying them to a
generic software implementation.

For elliptic curve cryptography, scalar blinding can be
used to avoid leakage of secret information over the power
and electromagnetic side channel [47]. In this case, the appli-
cability of our architecture depends on the chosen blinding
factor.

9 Conclusion and future work

Our extended PULPino core supports efficient multiplication
of polynomials and big integers. This enables high perfor-
mance in a hybrid handshakewith a contemporary and a PQC
primitive. Our prototype implementation demonstrates this
with Saber and X25519. Without our extension, the scalar
multiplication in X25519 alone would take longer than opti-
mized encapsulation/decapsulation with Saber and X25519.
With 16 additional DSP slices and factor 1.5 more LUT
logic, the overhead to achieve this on a FPGA platform is
feasible for embedded devices. We show that the XSMUL
supports a variety of multiplication algorithms. Our mem-
ory optimized ring-splitting multiplication is the best choice

for Saber, whereas for NTRU, Toom–Cook-4-way would be
the rational choice. The XSMUL itself is also scalable and
can be modified to fit different use cases. Our platform is
the first of its kind and presents an alternative to relying on
loosely coupled, contemporary accelerators for polynomial
multiplication.

For our work, we see three important areas left open for
future efforts. First, it is important to harden our instruc-
tion set extensions against side-channel attacks. Second, it
needs to be evaluated how we can port our design efficiently
for ASIC implementations. Third, a uniform architecture for
NTT and big-integer arithmetic would allow to combine all
lattice-based schemeswith contemporary primitives and pro-
vide an interesting comparison to our architecture.
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Appendix A: Mapping of XSMUL slices to DSP
slices

In Sect. 3.2 of our paper, we emphasized that our designmaps
well to DSP slices and manual optimizations are required to
achieve an optimal utilization. In the following, this mapping
to Xilinx DSP48E2 and DSP48E1 slices is shown. Detailed
information on the configuration possibilities can be found
in the respective Xilinx User Guides [48, 49].

A.1 DSP48E2mapping

For DSP48E2 slices, the complete multiply& accumulate
unit required for the XSMUL can be mapped into one slice.
The used resources are marked in red (Fig. 4).
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Fig. 4 Used resources in a DSP48E2 slice, adapted from [48]

Fig. 5 Used resources in a DSP48E1 slice, adapted from [49]

A.2 DSP48E1mapping

The multiplication carry path and output register are imple-
mented outside of the DSP48E1 slice in LUT logic, as the
central adder has one input less than the adder in DSP48E2
slices. The addition carry path and its register are mapped
into the slice. The used resources are marked in red (Fig. 5).

Appendix B: Operation trade-off in (multi)-
level Karatsuba and Toom–Cook-4-way

Table 12 shows the operations required for the schoolbook
multiplication, 1/2-level Karatsuba, and Toom–Cook-4-way
implementations that were proposed for Saber (256-coeff
polynomials) in Section VI-A. Polynomial multiplications
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Table 12 Operations for
Schoolbook, 1/2-level Karatsuba
and Toom–Cook-4-way
multiplication in Saber

Algorithm Polynomial multiplications Polynomial additions/subtractions

Schoolbook 1× 256-coeff polynomials –

1-level Karatsuba 3× 128-coeff polynomials 2× 256-coeff polynomials

4× 128-coeff polynomials

2-level Karatsuba 9× 64-coeff polynomials 2× 256-coeff polynomials

10× 128-coeff polynomials

12× 64-coeff polynomials

Toom–Cook-4-waya 7× 64-coeff polynomials 27× 128-coeff polynomials

21× 64-coeff polynomials

a Requires an additional scaling step with bit-shifts and scalar multiplications

are traded for pre- and post-processing consisting of polyno-
mial additions and scalar multiplication (for Toom–Cook-4-
way).
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