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Abstract
Cyber-physical systems (CPS) offer great potential for the digital transformation of industrial value creation in the context 
of Industry 4.0. They unify and integrate several technological approaches, including big data analysis and artificial intel-
ligence, enhancing real-time monitoring and control of manufacturing processes. An extensive knowledge base formed by 
various disciplines, including information systems, engineering, and computer science, already exists for CPS. However, 
this knowledge has not been holistically captured and structured to date. To address this research gap, this study conducts a 
large-scale literature review of 2365 papers representing the current state of the research and then develops a novel categori-
zation on industrial CPS with 10 sections, 32 areas, and 246 fields. The categorization is presented in hierarchical graphical 
form and can also be utilized as a web tool. To conclude, a perspective on future research needs and potentials to enhance 
Industry 4.0 in both research and practice are offered.
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1  Introduction

Industrial value creation is undergoing significant changes 
as part of the digital transformation with Industry 4.0 as the 
guiding term (Lasi et al., 2014), which emerged from a Ger-
man funding initiative in 2013 with a number of program 
equivalents worldwide (Li, 2018). Cyber-physical systems 
(CPS), in addition to other technologies and concepts, are 
of particular relevance for this process (Zhang et al., 2021). 

With their general concept of, “[…] integrations of compu-
tation with physical processes. Embedded computers and 
networks monitor and control the physical processes, usually 
with feedback loops where physical processes affect compu-
tations and vice versa” (Lee, 2006, p. 1), CPS offer exten-
sive application potentials within the industrial domain (Oks 
et al., 2017). In this, they contribute to the realization of use 
cases like the real-time monitoring and control of systems 
and processes, predictive maintenance, and the expansion of 
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human-machine collaboration, among others, and therefore 
drive the optimization of production, products, and services 
with increased effectiveness and efficiency (Colombo et al., 
2017).

However, as CPS are utilized both in industry and many 
other application domains, they qualify as general purpose 
technology (Bresnahan, 2010). As is to be expected with a 
technology/a concept that is associated with vast potentials 
and a wide range of application possibilities, CPS attract 
research interest from a variety of scientific disciplines and 
are utilized by numerous communities of practitioners. 
CPS are therefore constantly being assessed from different 
perspectives, including the technological (hardware, soft-
ware, architectures, information systems, etc.), the process-
oriented (applications, procedures, operations, etc.), the 
organizational (value creation, cost-benefit considerations, 
business models, etc.), the socio-technical (human-computer 
interaction (HCI), work design, etc.) and others (Geisberger 
& Broy, 2015). As a result, an extensive knowledge base 
on the subject of CPS and their application in the industrial 
domain has already been established. However, this knowl-
edge base is very diverse and wide-ranging and therefore 
complex and difficult to determine.

It is therefore the motivation of this research, in order 
to exploit the full potential of CPS for the further estab-
lishment of Industry 4.0 (Vogel-Heuser & Hess, 2016), to 
disclose and examine the current state of knowledge on 
CPS and to categorize all CPS related and relevant topics 
within the industrial application domain, which is highly 
relevant and of great value to both the research and practice-
oriented communities. This paper addresses the aforemen-
tioned research demand with the following two objectives: 
(I) Describe and analyze the state of research on CPS. (II) 
Develop and graphically present a categorization of CPS 
related and relevant topics in the context of Industry 4.0. 
This includes all subjects, technologies, concepts, and proce-
dures that are related or relevant to industrial value creation. 
Both objectives are addressed in a comprehensive manner, 
based on a large-scale literature review. Concerning the first 
objective, the state of research is not thematically restricted 
to allow the derivation of analogies from other disciplines. 
This takes into account that CPS are studied and elaborated 
by a large number of disciplines, particularly in the area of 
basic research, of which the resulting knowledge cannot be 
strictly divided according to application domains. An exclu-
sive focus on the area of manufacturing would therefore 
leave out relevant knowledge. Upon the second objective, 
the categorization is exclusively focused on CPS related and 
relevant topics in the context of Industry 4.0. This focus is 
feasible since for this objective it is no longer a matter of 
knowledge collection but of the subsequent step of arranging 
it in a structured, hierarchical, and comprehensive manner. 
The system of a categorization is therefore suitable, as it 

allows to present a vast amount of topics in a well-arranged 
form while also showing their interrelationships.

Thus, this paper provides an overview of research on CPS 
with pertinence for the Industry 4.0 domain and a categori-
zation of all relevant topics for industrial CPS. It differs from 
a research survey paper in that it identifies and categorizes 
the topics but does not describe and analyze them in full 
depth, as this is done through narrowly defined concept-
specific reviews as presented in related work chapter in 
Section 2.2.

The paper is structured as follows: After the introduction, 
the theoretical foundations of CPS in the industrial context 
are laid and related work is presented in Section 2. The third 
Section presents the methodological approach for the litera-
ture review and the subsequent analysis and development 
steps. The resulting state of research and categorization are 
presented in Section 4 in particular in graphical form. In 
Section 5 the paper closes with conclusions and an outlook 
regarding further consolidation and research needs in the 
field of industrial CPS.

2 � Cyber-Physical Systems as an Enabler 
for Industry 4.0

This Section lays the groundwork for this research; the theo-
retical foundations of CPS are presented in 2.1 and addi-
tional related work is introduced that also seeks to structure 
industrial CPS in 2.2.

2.1 � Foundations of Cyber-Physical Systems

The term CPS was introduced by E. A. Lee in 2006; since 
then, the topic has been further analyzed and developed 
in several scientific and practical disciplines (Geisberger 
& Broy, 2015). In essence, CPS are embedded systems that 
have both a cyber and a physical sphere between which there 
is a continuous and iterative information exchange (Alur, 
2015). In the physical sphere, sensors are used to record 
environmental conditions, which are then evaluated in the 
cyber sphere using local computing power. The informa-
tion obtained from the data stream can be either exchanged 
with other entities via communication interfaces or used in 
the physical sphere to affect the environment according to 
predefined rules of behavior via actuators (Lu et al., 2016). 
CPS can therefore be used for monitoring as well as con-
trolling digital, physical, and especially hybrid processes 
(Jiang et al., 2018). The continuing miniaturization of com-
puter hardware to the point of smart dust, coupled with the 
ongoing reduction of component costs, enables CPS to be 
used extensively in a wide range of contexts and conditions 
(Rajkumar et al., 2010). They can also be operated either 
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completely autonomously or in collaboration and interaction 
with humans (Gil et al., 2019).

Three dimensions are to be taken into account in the 
design, development, and operation of CPS, the technical, 
the human/social, and the organizational (Oks et al., 2017). 
In the technical dimension, application-specific and require-
ment-meeting hardware and software have to be orchestrated 
with an appropriate architecture. Furthermore, the CPS has 
to be integrated into existing physical and digital infra-
structures, and desired interoperability with other systems 
(Gürdür et al., 2016) should be ensured by means of norms 
and standards (Hehenberger et al., 2016). The human/social 
dimension comprises the integration of humans into or the 
interaction of humans with a CPS. In this dimension, HCI, 
safety in use, and the consideration of ethical issues in sys-
tem design are of major importance (Calinescu et al., 2019). 
The organizational dimension is determined by the insertion 
of the CPS into the application purpose and context within 
various institutional structures and frameworks (Oks et al., 
2018).

In addition, CPS can be divided into three levels that 
categorize their application in terms of system size and 
reach. At the micro level, CPS are used in a personal or 
small-group individual context, usually limited to a local 
area. At the meso level, CPS applications are organization-
wide and can have interregional system dimensions. At the 
macro level, CPS are deployed, often as volatile systems of 
systems (Trunzer et al., 2020), in application scenarios that 
encompass entire national economies or are even more far-
reaching, and are designed transregionally or globally (Oks 
et al., 2017). Within these levels, CPS are used in various 
domains in the context of the digital transformation. These 
include urban development (Smart City), healthcare (Smart 
Health), mobility (Smart Mobility), building management 
(Smart Home) and, most prevalently, industrial value crea-
tion (Smart Manufacturing) (Geisberger & Broy, 2015). As 
previous stated, CPS qualify as a general purpose technology 

because of this wide range of applications across levels and 
domains (Bresnahan, 2010). The distinctive characteristic 
of technologies of this kind is that they can be used widely 
and cross-functionally with a high level of utility. Like 
previous general purpose technologies, such as the steam 
engine, assembly lines, or computers, CPS, in combination 
with other technologies of the digital age, are attributed the 
potential to unleash a surge in productivity that is quali-
fying to induce an industrial revolution (Liao et al., 2016; 
Rosenberg & Trajtenberg, 2009). For this reason, the digital 
transformation of industrial value creation through CPS is 
discussed under the guiding term Industry 4.0 (Lu, 2017), 
which anticipates these far-reaching changes. Among other 
things, the establishment of CPS is considered to have the 
potential to address market megatrends, such as increasing 
individualization, dematerialization, and servitization, as 
well as increase sustainability by both optimizing existing 
processes and outputs and innovating new ones (Geisberger 
& Broy, 2015).

CPS used in the industrial domain are referred to as 
industrial CPS (Colombo et al., 2017). This term is used 
inclusively and covers not only CPS used in manufacturing, 
but also peripheral ones, such as in smart products, which 
provide relevant data for value creation (Oks et al., 2017). 
Industrial CPS are therefore broader in scope than cyber-
physical production systems (CPPS) (Monostori, 2014). The 
schematic functioning of industrial CPS, which is shown in 
Fig. 1, can be described as follows: In the physical sphere, 
state data is collected throughout the production and prod-
uct life cycle (Tao et al., 2020). This includes smart (raw) 
materials/components in the pre-production stage, CPPS in 
the production stage, and subsequently, smart products in the 
product in use stage. The recorded data is then used in the 
cyber sphere in two ways. First, in real-time for monitoring 
and control of statuses and processes. Threshold values and 
algorithms are used to detect (imminent) events to react in 
such a way that corresponding actuators are triggered in the 

Cyber sphere

Pre-production stage Production stage

Real-time

Long term

Physical sphere

Smart (raw) materials/Components Cyber-physical production systems

(CPPS)

Smart products

Digital twin and big data analytics

Monitoring and control

Data amount

Product in use stage

Fig. 1   Schematic functioning of industrial CPS
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physical sphere according to pre-defined system logic (Jiang 
et al., 2018). Second, the collected data is processed and 
aggregated in the form of a digital twin for production plants 
and (sub-)products in the long term (Biesinger et al., 2019). 
In addition, the vast, continuously growing data sets are ana-
lyzed using big data analytics (Marini & Bianchini, 2016). 
The insights gained in this way are then used to optimize the 
real-time methods of monitoring and control, thereby con-
tinuously enhancing the performance of the industrial CPS. 
Based on this scheme, industrial CPS constitute the basis 
for a large number of use cases in Industry 4.0, including 
predictive maintenance (Meesublak & Klinsukont, 2020), 
order and batch size planning (Huang et al., 2021), energy 
management (Ma et al., 2019), disaster prevention (Lei et al., 
2020), and quality control (Colledani et al., 2018), among 
others.

2.2 � Related Work

As is to be expected with a widely established general 
purpose technology, the literature base on CPS is already 
exceedingly comprehensive. Literature that is relevant for 
this research as related work in the form of reviews or sys-
tematizations on the topic of CPS can be divided into gen-
eral, topic-specific, and industry-oriented perspectives.

As part of the general examination, Chen (2017b) 
reviewed and analyzed the theoretical foundations of CPS. 
In another general review on CPS, Liu et al. (2017) high-
lighted the system integration, architectures, and challenges 
associated with CPS. Using a less theoretical orientation, 
Hehenberger et al. (2016) introduced methods and applica-
tions for the design, modelling, simulation, and integration 
of CPS. Adjacent to these topics, there is a systematic review 
on interoperability and integration in the context of CPS 
by Gürdür and Asplund (2018). Besides the contributions 
mentioned above, which approach the subject of CPS from a 
broad viewpoint, there are also reviews, such as that by Muc-
cini et al. (2016), on system self-adaptation, which examine 
CPS in general but exclusively with respect to one character-
istic. In addition to reviews, there are also structuring works 
on CPS, such as that by Asare et al. (2012), who designed a 
CPS Concept Map with 51 items (e.g., applications, require-
ments, etc.) and their relations based on taxonomy developed 
during the 2012 NIST CPS Workshop.

Topic-specific research focuses on dedicated applica-
tions, technologies, or domains pertaining to CPS. A gen-
eral overview of possible applications is given in a review 
by Chen (2017a). In this study, ten application areas are 
described and analyzed. The survey on CPS security by 
Humayed et al. (2017) is an example for reviews focus-
ing on exclusively one application field. Other reviews, 
like those on blockchain-enabled CPS (Zhao et  al., 
2021) or CPS clouds (Chaâri et al., 2016), concentrate 

on technologies and their integrated operation with CPS. 
There are also dedicated reviews on CPS utilization in 
specific domains, such as the one by Haque et al. (2014) 
on healthcare.

There is also a wide range of preliminary work in the 
Industry 4.0 domain. For example, Dafflon et al. (2021) dealt 
with the general challenges, approaches, and used techniques 
of CPS for manufacturing in their literature review. The rel-
evance of CPS to complementary concepts and technologies, 
such as internet of things (IoT), big data, and cloud comput-
ing, in the context of digitalized industrial value creation 
has been analyzed (Kim, 2017). The question of interoper-
ability standards to enable interconnectivity between these 
technologies and the devices employing them was addressed 
in the review of Burns et al. (2019). Furthermore, a sys-
tematic mapping study of architectures, technologies, and 
challenges for CPS in Industry 4.0 was conducted by Hofer 
(2018). Further articles focusing on CPS architectures for 
manufacturing were contributed by Lee et al. (2015) and 
Pivoto et al. (2021), whose reviews drew specific attention 
to applications involving the industrial internet of things. 
Other reviews investigated the characteristics of CPS in the 
context of smart factories (Napoleone et al., 2020) and smart 
manufacturing (Thoben et al., 2017). The topic of smart 
manufacturing, in particular the control of its processes, was 
also examined in a literature review by Rojas and Rauch 
(2019). The design process of CPS for manufacturing was 
analyzed in the course of a literature review by Lozano and 
Vijayan (2020); Hermann et al. (2016) contributed design 
principles for Industry 4.0 scenarios. A general state of the 
art on the topic of Industry 4.0 with an additional outlook on 
future trends was provided by (Xu et al., 2018). In addition 
to the analytical studies and reviews cited above, there is also 
research on industrial CPS that present concepts that struc-
ture thematic areas in different forms. Against this backdrop, 
Monostori et al. (2016) offered 23 keywords, roots, expecta-
tions towards research, case studies, and R&D challenges 
regarding the implementation of CPS in manufacturing. 
Additionally, an application map for industrial CPS was 
introduced by Oks et al. (2017), which indicates specific 
CPS application fields for both production and smart prod-
ucts. In addition, a taxonomy consisting of nine items for 
techniques for approaching big data-related issues in CPS 
by Xu and Duan (2019), a classification of CPPS applica-
tions provided by Cardin (2019) and a concept map of CPPS 
research topics by Wu et al. (2020) should be mentioned in 
this regard. Along with that, Berger et al. (2021) provided 
a terminology, taxonomy, and reference model for entities 
in CPPS from a self-organizing systems’ perspective. Con-
cluding, there was a trend map for cyber-physical systems 
research and education in 2030 introduced by Gürdür Broo 
et al. (2021), that provides 44 possible influencing factors in 
7 categories regarding this topic.
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Although the work outlined above is very extensive and 
contributions came from a wide variety of disciplines, there 
is yet no comprehensive approach to the topic of CPS in 
the form of a state of research nor a categorization of CPS 
related and relevant topics in the context of Industry 4.0 
that are presented coherently in a suitable form. This work 
addresses this research gap through its two objectives.

3 � Research Method

In order to address the two research objectives of this study, 
we chose the following research design: A comprehensive 
systematic literature review for data collection was con-
ducted. The resulting data set was analyzed and transferred 
into a state of knowledge on CPS research and a catego-
rization of CPS related and relevant topics in the context 
of Industry 4.0. Following the suggestions of vom Brocke 
et al. (2015) for conducting literature searches in information 
systems research, we defined the search scope as follows. 
We chose a sequential process, following the recommenda-
tions of Tranfield et al. (2003), which is described in more 
detail in subsequent paragraphs. Indexing services and data-
bases were chosen as sources (cf. Fig. 2). As described in 
the motivation for this research, both the state of knowledge 
on CPS and the categorization of CPS related and relevant 
topics in the context of Industry 4.0 are intended to provide 
a comprehensive, general, and holistic overview of the sub-
ject area The coverage of our literature search, therefore, is 
comprehensive as well, in order to include as many relevant 
publications as possible (cf. vom Brocke et al., 2015). In 
terms of technique, we primarily applied a keyword search; 
the exact procedure is described below.

A systematic literature review was chosen for data collec-
tion and analysis because of its transparent, exhaustive, and 
heuristic qualities. In a systematic literature review, research 
contributions on a specific topic are localized, assessed, and 
interpreted. It differs from a traditional narrative review 
because of its methodological strategy and the detailed 
description of each individual process step. Furthermore, it 
aims at minimizing bias and increasing the reproducibility 
and transparency of the researchers’ approaches, decisions, 
and conclusions (Tranfield et al., 2003). The concrete proce-
dure follows the recommendations of Denyer and Tranfield 
(2009) and Tranfield et al. (2003); it consists of five steps 
with sub-steps. All of these were performed manually by the 
research consortium of this paper, with one exception where 
the Citavi 6 function to detect and sort out duplicates was 
used. There were no fewer than five researchers involved 
in any step of the workflow. Table 1 explains the five main 
steps of the systematic literature review.

In the first step (1), the two research objectives were 
defined according to the motivation for this research: The 

first objective is (I) to describe and analyze the state of 
research on CPS, and the second is (II) to develop and graph-
ically present a categorization of CPS related and relevant 
topics in the context of Industry 4.0.

The second step (2) was to identify the relevant literature 
needed to achieve the defined research objectives, which 
included screening, selecting, and assessing the search 
results. For the search, the online databases and library 
services EBSCO, Emerald Insight, Google Scholar, SAGE 
Journals, Science Direct, and Springer Link were selected to 
cover all relevant subject areas. The advanced search func-
tion was used in all databases for more comprehensive search 
options. The keywords were based on the term “cyber-phys-
ical systems”, considering different spellings in the existing 
literature. Both synonyms and plural forms were used to 
ensure an exhaustive search as well as comprehensive and 
valid results. The complete list of search terms is available 
in Appendix Table 3. The keywords and their synonyms 
were combined to search strings by using Boolean opera-
tors. The keyword “Industry 4.0” was intentionally omitted 
despite the thematic focus of the categorization within this 
context. This approach ensures that CPS sources relevant to 
the Industry 4.0 domain that do not explicitly contain the 
term Industry 4.0 in their title, keywords or abstract are also 
collected and considered. E.g., this becomes evident with 
terms such as smart factory, smart manufacturing, etc., since 
these tend to be used synonymously for Industry 4.0 and also 
for each other. Moreover, there are many papers on niche 
topics that only address a technical problem, phenomenon, 
etc., but are relevant to CPS in general, regardless of the 
respective application domain.

In the third step (3), the search results were screened and 
selected based on definite inclusion and exclusion criteria. 
The inclusion criteria were the containment of keywords 
or synonyms and relatedness to the topic. Exclusion crite-
ria included publication languages different from English 
or German, inadequacy of outlet1, or the use of CPS as an 
abbreviation with a different meaning. Using the described 
concepts as search terms, the search returned 2777 publi-
cations. The procedure was as follows: The first reduction 
was realized in the databases EBSCO, Google Scholar and 
Springer Link, where the selection of the option “Source 
type is different from “Academic Journal”” and “Title does 
not contain at least one of the keywords or their synonyms” 
initially reduced the number of papers to be considered. 
Thereupon, after prior discussion, approval and sample 
round, it was decided for each source based on title, key-
words and the abstract about the consideration based on the 
stated exclusion criteria. Six researchers in two-person teams 

1  Publication type outside of a journal article, monograph, contribu-
tion to an edited book, contribution to conference or workshop pro-
ceedings, dissertation, or university report.
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performed this step of the process. After removing dupli-
cates with the software Citavi 6 and merging the results from 
all databases, 2507 publications remained. In a final reduc-
tion by applying quality criteria2, the number of publications 

decreased to 2365. No exclusions were applied with regard 
to subject-specific selections and rankings of the research 
outlets, since all themes as well as new, less established 
research domains had to be considered to achieve a com-
prehensive overview. In contrast to other systematic litera-
ture reviews, a larger number of publications was explicitly 
considered for analysis because of the topic of CPS itself. 
First, CPS emerge from the combination of several hardware 
and software components, rely on complex architectures and 

Fig. 2   Process of the systematic 
literature review
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2  Publications that are a description, preface, or foreword of a work-
shop or conference, none of the keywords or their synonyms existing 
in the abstract, keywords or full text of the publication, or the main 
topic of the publication not being in the context of CPS.
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multilayered communication standards, and involve miscel-
laneous stakeholders (Khaitan & McCalley, 2014). Second, 
the domain of industrial value creation, with its core of pro-
duction, is interlinked with many other domains, such as 
logistics and energy supply, which hold many application 
scenarios for CPS (Oks et al., 2017). Third and last, since the 
research field of CPS is highly topical, findings in specific 
niches can have a universal validity that is relevant to other 
research disciplines as well.

In step four (4), the selected contributions were analyzed 
to extract and synthesize the relevant data, however, in dif-
ferent procedures for the two objectives I and II.

Analysis and synthesis for objective I: First, a data extrac-
tion form, which had been adapted to the requirements of 
the research objective, was applied to outline the present 
state of the research on CPS. The data extraction form, 
which is displayed below (cf. Table 2), includes both stand-
ard information, such as publication type, name of journal, 
authors, etc., as well as a set of specific parameters, such 

as dimensions and application domains. In the next step, 
the sources were analyzed according to the data extraction 
form. The allocation was performed by the research con-
sortium while ensuring objectivity as is typical for qualita-
tive research by applying inter-coder reliability measures 
and discussion of results (Mayring, 2015). Concluding, the 
analysis results were processed quantitatively by summation 
and proportion calculation.

Analysis and synthesis for objective II: For the second 
objective, to elaborate a holistic categorization of CPS 
related and relevant topics in the context of Industry 4.0. Due 
to this large variety, we decided to create a categorization 
as opposed to a classification. According to Jacob’s (2004) 
definition, relevant topics, technologies, concepts, and pro-
cedures cannot always be strictly delimited or assigned, and 
overlapping areas may exist; a classification would require 
stricter delimitation, hierarchies, and representations (Jacob, 
2004). Given the heterogeneity within the field of CPS in 
Industry 4.0, this did not appear to be expedient. A clas-
sification in the form of a taxonomy was equally unsuitable 
for these reasons (Nickerson et al., 2013). Ontologies, as a 
comparable approach, focus more on relationships between 
different phenomena or constructs (Wand & Weber, 2004), 
however our categorization does not aim to represent encom-
passing relationships between different items. To compose 
the categorization, the titles, abstracts, and keywords of the 
contributions were analyzed for terms of interest regarding 
CPS in the context of Industry 4.0. These included topics, 
technologies, concepts, and procedures. Methodically this 
was conducted by the performance of a structured qualita-
tive content analysis. For this purpose, an inductive code 
creation approach, following Mayring (2015), was applied. 
The titles, abstracts, and keywords of all 2365 papers were 
included in the analysis; relevant passages or words were 
marked in Citavi 6. A total of 313 codes were created, often 
by matching words exactly, but also by marking sentences 
or paragraphs to include content or context. The qualitative 
content analysis was conducted by five researchers who reg-
ularly discussed the codes to ensure a common and consist-
ent understanding and coding procedure. Results were com-
pared and adjusted until a common consensus was reached. 
Inter-coder reliability measures were also used for quality 
assurance opposing potential subjectivity in this qualitative 
research procedure (Mayring, 2015). For the development of 
the categorization, 288 categories were derived from the 313 
codes based on their respective properties. The reduction 
results from the clustering of similar codes or the omission 
of codes that were irrelevant or incompatible with the clas-
sification system. The 288 categories were arranged into a 
hierarchy with sub-categories consisting of 246 fields, 32 
areas, and 10 sections using Citavi 6. Each field is a specific 
technology, concept, or procedure. An area is superordinate 
to this and can be separated, for example, by architecture, 

Table 1   Steps of the systematic literature review

Review step Description

1 Formulation of research objectives
2 Search

• Development of search strategy (selection of data-
bases, definition of search terms, and options)

• Conducting the search by applying search strategy
3 Screening, selection, and assessment of search results

• Definition of selection (inclusion and exclusion) and 
quality criteria

• Selection of search results based on selection criteria
• Merging of selections of all databases and removal 

of duplicates
• Assessment of quality based on quality criteria and 

removal in cases of insufficient quality
4 Analysis and synthesis

• Creation of data extraction forms
• Data analysis
• Data synthesis

5 Presentation and interpretation of findings
• Presentation of findings
• Conclusion

Table 2   Extracted data

• Publication type
• Name of journal (only for journal articles)
• Publication language
• Publication year
• Author(s)
• Research institution(s)
• Research discipline
• Dimension (technical, organizational, or socio-technical)
• Application domain
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value creation process or organizational structure. Sections 
are overarching subjects into which the areas and fields are 
classified.

The utilization of software or AI applications was not 
an option for the development of the categorization either, 
since it was not a deductive procedure in which all category 
titles would already have been known, but an inductive one 
in which the categories first had to be developed from the 
literature.

In the fifth (5) and final step of the research process, the 
presentation of the findings is performed.

Presentation and interpretation of findings for objective I: 
The summed and proportional findings were then converted 
into bar graphs showing them into proportional, numerical 
form.

Presentation and interpretation of findings for objective 
II: The resulting categorization was transferred to a graphi-
cal representation for a clearer overview and a more descrip-
tive presentation. In addition, an interactive web tool was 
created to make the data even more accessible (cf. Appen-
dix Fig. 18). The underlying literature for each category is 
provided and linked, and the fields and areas can be marked 
and annotated. Furthermore, a search function has been 
implemented to enable the direct retrieval of terms and 
properties. The web tool features a selection of languages, 
including English and German.

Complementing the graphical representations, the find-
ings in form of the state of research and the categorization 
are extensively described in Section 4 and discussed in Sec-
tion 5. The detailed process of the review steps is outlined 
in Fig. 2.

4 � Findings

In the following, the results of the literature review and anal-
ysis are presented in two subchapters. First, in Section 4.1, 
a state of research on CPS is given, which is determined 
based on the characteristics of the analyzed publications. 
Second, in Section 4.2, a categorization of CPS related and 
relevant topics in the context of Industry 4.0 is provided, 
which organizes them in 10 sections, 32 areas, and 246 fields 
in detail.

4.1 � State of Research on Cyber-Physical Systems

The state of research on cyber-physical systems with regard 
to the distribution of publications by type is predominantly 
divided into contributions to edited volumes and conference 
proceedings (1499) and journal articles (810). The other 
types, including books, dissertations, and reports, on the 
other hand, account for a minor proportion of the total, as 
can be seen in Fig. 3.

In terms of the distribution of the publications accord-
ing to different scientific disciplines, three are the most 
prominent. These are computer science (856), computer 
engineering (808), and engineering (625). Business studies 
(36), mathematics and physics (26), and medicine (15) also 
deal with the subject matter, though there are a significantly 
lower number of publications in these disciplines.

Concerning the distribution of publications according 
to the disciplines specified in Figs. 4 and 5 shows that, in 
terms of the dimension of CPS introduced by Oks et al. 
(2017), the technical is notably the largest, with 2030 con-
tributions. Given the 130 publications in the organizational 
and 44 in the socio-technical disciplines, it is evident that 
the topic of CPS has so far been examined primarily from 
technical and systems design perspectives, while organiza-
tional application and systems integration of humans has 
been of minor interest to date.

When considering the distribution of publications 
that can be allocated to a specific application domain 
(an explicit application is described in relation to singu-
larly one domain), as displayed in Fig. 6, a greater vari-
ety becomes apparent. The four domains that account for 
more than 10% of all domain-specific publications (593) 
are mobility (135), manufacturing (109), energy (104), 
and healthcare (73). With a cumulative total of 313 con-
tributions focusing on manufacturing, energy, logistics, 
robotics, safety and hazard defense, maintenance, smart 
products and coal, oil and gas industry, more than half 
of domain-specific contributions are relevant to industrial 
utilization.

A precise examination of the 109 contributions of the 
application domain manufacturing shows the various utiliza-
tion potentials of CPS in this context; specific topics and the 
distribution of the related literature are illustrated in Fig. 7.

4.2 � Categorization of Cyber-Physical Systems 
Related and Relevant Topics in the Context 
of Industry 4.0

The categorization arranges the CPS related and relevant 
topics in the context of Industry 4.0 in a structured way. To 
this end, the findings from the literature are categorized into 
10 sections. These include the characteristics and the overall 
context of industrial CPS as well as the potentials/opportuni-
ties and challenges/issues associated with their application. 
The requirements of industrial CPS, concepts and technolo-
gies by which they are accompanied, and their functionality 
as socio-technical systems are presented. Besides, the archi-
tecture of industrial CPS is outlined, and its influence on 
industrial value creation is characterized. Finally, the poten-
tials of industrial CPS with respect to trans-organizational 
integration and alliance formation are addressed.
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Fig. 3   Distribution of publica-
tions by type
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Fig. 5   Distribution of publica-
tions by CPS dimension
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Fig. 6   Distribution of publica-
tions by application domain
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Fig. 7   Distribution of publica-
tions in the application domain 
of manufacturing
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To enhance the readability of this sub-section, the catego-
ries are marked in italics. Exemplary underlying literature 
can be found in the Appendix in Table 4. The table is sorted 
chronologically by occurrence of the categories in the text 
and contains sample citations of existing research on the 
respective topics.

The fundamental characteristics of CPS apply to the 
industrial application in the same way that they do to other 
domains, and are divided into general and the self-character-
istics as presented in Fig. 8. General characteristics include 
connectivity and modularity; they highlight the comprehen-
sive adaptability of industrial CPS, which can be designed to 
respond to varying situations and tasks by means of univer-
sal interfaces and modular construction. Real-time capabil-
ity and traceability ensure that system adaptations can be 
both performed ad hoc and verifiable in this context. The 
high degree of autonomy of CPS is reflected in the self-
characteristics, which describe the abilities of CPS to react 
autonomously to internal and external influences and control 
the system state by at least maintaining the system, if not 
optimizing it by anticipation without external intervention. 
CPS, therefore, have a high degree of resilience.

The overall context in which the systems are situated is 
what characterizes them specifically as industrial CPS. In the 
literature, this is widely referred to as Industry 4.0, as shown 
in Fig. 9. Originating from the title of a German governmen-
tal funding initiative, Industry 4.0 has become a catchphrase 
for digitized and interconnected industrial value creation. 
The firm anchorage of industrial CPS in this context high-
lights the innovation potential inherent in and relevance of 
this concept.

The reason for this is apparent due to the potentials/
opportunities that industrial CPS offer for value creation 
processes. From an organizational perspective, they cover 
both production engineering and management aspects 
while also providing benefits for the users of products and 
services. In general, processes can be further automated 
and autonomized, particularly to the previously discussed 
characteristics of industrial CPS. Through the continu-
ous monitoring of physical and digital processes and the 
resulting homogenization, an improved system-wide level 
of information is achieved, which allows for increases in 
efficiency for both management activities and process execu-
tion. Among other things, this enables batch/lot size one 
production at costs approaching those of mass production, 
which means that market demand for product individuali-
zation can be anticipated. Due to universal interfaces and 
increasing location independence, as well as less hierarchical 
system architectures, industrial CPS can be set up in decen-
tralized structures. Decentralization, in combination with 
an improved level of information within the overall system, 
also allows for complex event processing with increasing 
flexibility. For example, production and logistics processes 
can be coordinated with a significantly shorter planning 
horizon facilitated by lead time reductions. The sensor-
aided improvement of the level of information regarding 
the condition of system components allows fault/failure sce-
narios to be detected earlier or even predictive, which leads 
to quality improvements for both production facilities and 
products. The continuous and extensive backflow of status 
information from smart products reinforces this trend even 
further. Among other things, the general rapid increase in 
the availability of data allows for the development of new, 

Fig. 8   Characteristics of indus-
trial CPS
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data-driven business models. Alongside this, potentials for 
market penetration strategies arise in the form of product 
portfolio enlargements and time-to-market reductions. An 
overview of the potentials/opportunities offered by industrial 
CPS is provided in Fig. 10.

In addition to the vast potentials/opportunities, the imple-
mentation of industrial CPS also brings challenges/issues 
with it, including increased system complexity resulting 
from far-reaching changes in system size and structure. In 
that way, the number of system components (technologi-
cal, organizational, inter-organizational) can increase sig-
nificantly due to the connection and interaction of formerly 
independent and self-sufficient systems as well as the dis-
solving of system boundaries towards ad-hoc systems of sys-
tems. Additionally, system architectures become more mul-
tilayered and overall system diversity increases. Alongside 
the changes in system architectures, industrial CPS also lead 
to an increase in complexity in the organizational landscape. 
Linear value creation processes dissolve towards holistic 
value networks which become increasingly inter-organiza-
tional. Also, further organizational units and stakeholder 
groups are involved with and affected by industrial CPS 
than before. This complexity is intensified by time-related 
factors, as, for example, production management becomes 
more real-time-critical and product life cycles are shorten-
ing. Advancing inter-organizational integration in particular 
can lead to reduced transparency concerning system struc-
tures, synchronization problems, and new challenges for 
risk and uncertainty management. Due to the integration 
of numerous system components, the continuous monitor-
ing of conditions, and the thereof resulting data throughput 
rates and volumes, and the inherent real-time feedback loops 
between sensors and actuators in industrial CPS, commu-
nication problems, such as delays or jitter, pose a severe 
threat to system functionality. As with many digitization 
matters, the implementation of industrial CPS occasionally 
arouses concerns and reservations among employees due 
to notions that working conditions might change and cer-
tain professions might become obsolete. High implementa-
tion efforts are an additional challenge/issue. With regard to 
the acquisition of new production plants or the retrofitting 
of existing ones to integrate them into industrial CPS and 
the, in many cases, high capital requirement resulting from 
this, a conclusive cost-benefit calculation is often rather 

difficult in advance. Particularly in the case of industrial 
CPS which have trans-organizational structures or are used 
to facilitate hybrid value creation networks, juridical mat-
ters arise because responsibilities and liability issues in the 
event of system failures or manufacturing defects that lead 
to malfunctioning products cannot always be unequivocally 
clarified.

Two further challenges/issues that are discussed in detail 
in the literature on industrial CPS are safety and security. 
The field of safety is divided into hazard defense and state. 
In hazard defense, strategies are described to prevent system 
failures through environmental monitoring or, in the case of 
such failures, to facilitate emergency management. System 
state control, which attempts to detect fault/failure situations 
before they become safety issues, is closely related. While 
safety deals with the operational integrity of systems, i.e., 
the protection of people and the environment from physi-
cal damage, security addresses data and information pro-
tection within a system. In the context of industrial CPS, 
this concerns the defense against threats and vulnerabilities 
like (cyber-) attacks and the securing of privacy, e.g., via 
preventing data abuse. Additionally, practical measures are 
presented for attack detection, information flow control, and 
access and control message protection (cryptography, digi-
tal signatures, and steganography). In summary and rela-
tion, the challenges/issues associated with industrial CPS 
are illustrated in Fig. 11.

Industrial CPS are subject to various requirements, as 
listed in Fig. 12, that are necessary or advantageous for 
their functionality and operation. These include auton-
omy, which ensures the functioning of systems within the 
defined functional objectives, especially if they cannot be 
operated from outside in either a planned or unplanned 
capacity. To this end, systems must be designed in order to 
be context-aware and sensitive so that changes in state and 
status are not only sensed but can also be considered in the 
superordinate application context and operate according 
to predefined algorithms. This ensures a high degree of 
dependability and reliability with regard to system avail-
ability and behavior as well as the value creation processes 
based on it. This dependable and reliable system avail-
ability is particularly necessary because, especially in the 
context of large-scale interconnected systems, (sub-)sys-
tem failures can have serious consequences, including the 

Fig. 10   Potentials/opportunities 
of industrial CPS
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collapse of entire systems of systems. Availability is also 
of utmost importance whenever safety-relevant processes 
are monitored and controlled by the system. In the context 
of maintaining system functionality under adverse condi-
tions and in critical situations, robustness and resilience 
are also essential for industrial CPS. To a certain extent, 
the systems should be able to cope with environmental 
changes; their configuration should be able to robustly 
sustain these conditions. If the environmental changes are 
so severe that they cannot be handled by robustness, the 
systems should be so resilient that they adjust and adapt 
their configurations accordingly. The system state must 
be observable, with a high degree of reliability, and the 
information output on the state and control processes must 
be trustworthy so that fact-based decisions by administra-
tors are possible at all times. In this context of system 
monitoring and control, it is also vital to have the most 
accurate predictability of expected system behavior in dif-
ferent situations so that the controllability of the system is 
given, despite its complexity and high degree of automa-
tion and autonomy.

In order to react to changes and new requirements in 
industrial CPS-based value creation processes, such as short-
term capacity fluctuations or long-term market, production 
or product-related trends, it is a further requirement of 
industrial CPS that they are scalable, which can be executed 
briefly. Furthermore, since, as previously mentioned, value 
creation activities are becoming increasingly interactive and 

networked both intra- and inter-organizationally, the interop-
erability of individual industrial CPS is also of great interest.

All the requirements mentioned above should be met 
under the premise of sustainability in order to achieve effi-
ciency and effectiveness in economic, ecological, and social 
dimensions.

In light of the far-reaching and holistic digitization of 
industrial value creation, a wide range of complementing 
concepts and technologies are being applied. In this, indus-
trial CPS often serve as a linking element that systematically 
integrates these concepts and technologies in a goal-oriented 
and application-specific manner. Big data analyses are one 
of these concepts. Based on the widespread utilization of 
sensor technology in production and in products as such, 
industrial CPS often generate extensive data (5 Vs: volume, 
velocity, variety, value, veracity), which can be transferred 
by algorithm-based analyses such as pattern detection/rec-
ognition in smart data for general optimization purposes, as 
well as data-driven services and business models (data as 
a service). As often distributed and decentralized systems, 
industrial CPS use cloud, edge and ubiquitous computing to 
perform data processing and system control detached from 
the conventional automation pyramid. In many applica-
tion scenarios of industrial CPS, the use of artificial intel-
ligence (AI), e.g., as a foundation for the self-characteristics 
described previously, is suitable. Conventional methods to 
this end include reasoning or machine learning. As previ-
ously indicated, industrial CPS can be connected ad hoc to 

Fig. 11   Challenges/issues of 
industrial CPS
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systems of systems according to context and task. To ensure 
integrity in the exchange of data and resources, distributed 
ledger technologies, such as blockchain, offer an adequate 
solution. Another concept that is compatible with industrial 
CPS is additive manufacturing. On the one hand, topics as 
resource efficiency, availability of spare parts, rapid proto-
typing, etc. can be addressed via this concept. On the other 
hand, production processes itself can apply technologies 
such as 3D printing.

Another concept that goes hand in hand with the digitiza-
tion of industrial processes is work 4.0/future of work, which 
describes the elaboration of innovative working methods 
that are either possible or necessary due to technological 
changes. This may concern the general conditions of work 
in the industrial sector, which can even allow execution of 
work independent of time and location and in virtual teams/
crowd working. Additionally, the introduction of indus-
trial CPS is often accompanied by extensive changes in 
job requirements and professional training. Thus, the need 
for interdisciplinary competencies arises due to increasing 
system complexity, which is also reflected in a progressive 
linking and overlapping of disciplines relevant to value 
creation. Furthermore, the increasing automation associ-
ated with industrial CPS in particular leads to a reduction of 
low-wage-sector and unskilled jobs demand. Role changes 
become, therefore, necessary, which often require extensive 
training measures.

The spectrum of concepts and technologies that comple-
ment industrial CPS is shown Fig. 13.

In addition to the primary technical consideration of 
industrial CPS, the literature also examines the integration 
of humans in the form of socio-technical systems. In the 

field of production-supporting activities, this affects work 
execution. Due to increasing availability of information and 
new forms of HCI, information can be provided through 
various decision support systems, e.g., by means of action 
guidelines in maintenance. In addition, media discontinui-
ties are being reduced due to increasing document/content 
digitization. The topic of knowledge in relation to industrial 
CPS is also covered by the literature. Additionally, due to 
new methods of system-integrated education and qualifica-
tion, the integration of implicit knowledge can be achieved, 
making previously person-bound knowledge increasingly 
available to a wider circle of personnel (e.g., by the creation 
of action guidelines for machine repairs and further main-
tenance activities). The socio-technical systems integration 
of industrial CPS is presented in Fig. 14.

CPS have a common architecture with individual specifi-
cations depending on the application domain. The architec-
ture of industrial CPS, which is described hereafter, serves 
as the underlying principle and scheme for the definition 
of concrete system features and configurations from design 
alternatives, depending on functional and non-functional 
requirements, and for the selection of suitable system com-
ponents. Thereby, industrial CPS are allocated to the super-
ordinate domain of information technology (IT), respec-
tively, information and communication technology (ICT). 
From this domain, industrial CPS combine technologies and 
concepts of the (industrial) internet of things ((I)IoT) or web 
of things (WoT), which can be partitioned into a cyber sphere 
and a physical sphere according to the underlying logic of 
CPS. Software architecture and the data processing of indus-
trial CPS are situated within the cyber sphere while hard-
ware architecture and human-computer interaction (HCI) 

Fig. 13   Complementing 
concepts and technologies to 
industrial CPS
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exist within the physical sphere. Network architecture serves 
as a connective link between the two spheres.

In the area software architecture, industrial CPS literature 
covers the following topics: Adequate operating systems for 
the respective system components are analyzed, the design 
of these systems from a programming standpoint with the 
subfields algorithms and programming languages as well 
as software agents with further subfields mobile agents and 
multi-agents. Further topics are sufficient middleware in 
the form of data distribution services (DDS) and workflow 
engines. Beyond that, concepts are presented that allow 
dynamic software updating (DSU) for CPS.

Concerning data in the context of industrial CPS, the fol-
lowing focal points receive particular attention in the lit-
erature. First, the data acquisition by sensors is discussed. 
This data can then be aggregated with existing data or fused 
with data from external sources. The resulting data sets are 
analyzed and evaluated by processing. The literature also 
examines how data traffic, in the form of dissemination, 
exchange, and transmission, can be performed both within 
a system but in exchange with other systems. With regard to 
the qualitative aspects of data, their quality and reliability 
are considered. Further topics are data recovery and the con-
cept of supervisory control and data acquisition (SCADA).

The domain of hardware architecture contains the com-
ponents that physically constitute industrial CPS. These are 
mainly embedded systems that are extended by sensors that 
continuously record physical environmental conditions. The 
resulting data is processed by processors and field program-
mable gate arrays (FPGA). The subsequent operation of 
actuators, which, in turn, affect the physical environment, 
is carried out by controllers. Identifiers ensure the individual 
identifiability of each system component. Furthermore, pas-
sive components can be integrated into industrial CPS via 
radio-frequency identification (RFID) technologies, such as 
near field communication (NFC). In addition, the field of 
robotics is receiving a considerable amount of attention in 
the context of industrial CPS.

In the area of HCI, the integration of humans in indus-
trial CPS is addressed. Against this backdrop, the literature 
deals, among other things, with the support of humans in 
the performance of physical work. E.g., cobots or collabo-
rative robotics are used to enable humans and machines to 
carry out tasks jointly in order to integrate the respective 
superior skills optimally. Technology can also be worn on 
the human body as wearables; these wearables can provide 
physical support, as seen with (powered) exoskeletons, or 
can be used to provide information in the form of augmented 
reality (AR) and virtual reality (VR) devices. In the field of 
user interfaces of industrial CPS, the literature deals with 
different forms of human-machine-interfaces (HMI) and 
graphical user interfaces (GUI), which can be operated via 
gesture control or voice control. In the overall context of 

HCI, unrestrained human-machine collaboration combined 
with the highest standards of workplace safety is of particu-
lar importance.

The network architecture of industrial CPS draws on 
a variety of established technologies and concepts and 
adapts them to the specifics inherent in industrial CPS as 
needed. In general, the network architecture provides the 
link between the cyber sphere and the physical sphere and 
enables the transfer of signals and data. The literature on 
industrial CPS deals extensively with the subject of how 
network architectures can be designed in these systems and 
what requirements they have to meet, and a great deal of 
attention is paid to the networks themselves. Different types 
of networks and their suitability for a variety of applica-
tions due to differences in transmission power, range, and 
data transfer rates are considered. The first worth mention-
ing are sensor networks (SN), which can be divided into 
mobile actuator/sensor networks (MASN), wireless sensor 
networks (WSN) and wireless sensor and actuator networks 
(WSAN). These network types are used to link sensors and 
actuators and to ensure the transfer of measured environ-
mental values and coordinated actuator behavior. Controller 
area networks (CAN) are used as a serial bus system and 
are particularly useful in safety-relevant areas. For short-
distance applications, wireless personal area networks 
(WPAN), such as Bluetooth or wireless personal body net-
works (WPBN), offer the advantage that interference with 
other networks can be reduced and that there is a low power 
requirement for transmitting units. For large-scale coverage, 
the pervasive wireless local area networks (WLAN) are used. 
For the integration of geographically remote system units, 
wide area networks (WAN) are used in form of long range 
wide area networks (LoRaWAN) and low power wide area 
networks (LPWAN), which offer high energy efficiency. Cel-
lular networks with LTE and 5G standards are also used for 
interconnecting widely separated system units, especially 
if those are mobile. Depending on the type of network and 
application, different protocols are used to determine the 
communication syntax. In the context of industrial CPS, 
IP, MAC, message queue telemetry transport (MQTT), 
TCP, and TCP/IP are mentioned in the literature. Dynamic 
spectrum access for the optimization of frequency spectra 
of connections and routing for the coordination of mes-
sage streams are also being considered, as they can help to 
handle increased data volumes in a system-efficient man-
ner. The subject of plant networking is also receiving a 
large amount of interest; therefore, plug-and-produce and 
(standardized) interfaces that enable the interoperability of 
diverse production plants with minimal setup effort are of 
great importance in the process of industrial CPS develop-
ment. In this context of machine-to-machine communication 
(M2M), the OPC Unified Architecture (OPC UA) provides a 
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platform-independent, service-oriented architecture (SOA) 
for the exchange of machine data.

Figure 15 provides a holistic visualization of the architec-
ture underlying industrial CPS.

Within the realization of the already described potentials 
through the application of CPS they transform industrial 
value creation. This applies to all sequential stages and 
organizational levels in value chains and value networks; 

they can be broken down into the pre-production stage, pro-
duction stage, and product in use stage.

Already in the pre-production stage, the monitoring of 
raw, auxiliary, and operating materials, as well as of sup-
plier parts and construction groups intended for later pro-
duction begins. Through the continuous collection and 
consolidation of data on smart (raw)materials/components, 
information regarding condition, processing, and transport 

Fig. 15   Architecture of indus-
trial CPS
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becomes available in form of digital twins, already in the 
earliest stages of the value chain and is manipulation-proof 
passed on across organizational boundaries. This applies 
both to newly extracted raw materials and to reprocessed 
and renewed materials and components within the scope of 
lifecycle management.

In the production stage, the transformation of industrial 
value creation is discussed in the context of the holistic con-
cepts, digital factory, smart factory, and smart manufactur-
ing. Manufacturing systems that use CPS in their processes 
are referred to as cyber-physical production systems (CPPS). 
In the literature, CPPS are examined from different focal 
points; specifically, production system development, produc-
tion execution, and production support can be clustered.

Production system development describes all activities 
and procedures on the way to a CPS-based production sys-
tem. In the subarea design, the planning and development 
of the production processes takes place. Within the design 
space exploration, the options and alternatives for the future 
system configuration are discussed and structured. The sub-
sequent IT design process can be carried out with different 
system level design methodologies. With component-based 
development, the aim is to design standardized components 
that can be used several times in different applications of 
modular systems with the same or related requirements, 
minimizing the amount of effort required. Contract-based 
development is particularly important when a large number 
of modules from various providers are combined into a sin-
gle system. Hereby, the definition of formal contracts for the 
use of standardized interfaces ensures compatibility. Model-
based design and development is used in particular when the 
intended system has a high degree of complexity. By using 
predefined models with advanced functional characteristics, 
systems can be simulated and tested in detail, even before 
physical engineering. Due to the previously discussed chal-
lenges associated with CPS, such as complexity, method-
combining procedures are feasible. If these are participative, 
co-creative, or open, the term co-design is used.

Simulation is used to determine the behavior and perfor-
mance, as well as the safety and security, of CPPS before 
they are constructed and launched. In this process, modeling 
is used to create a physical or digital representation of the 
system or its individual parts. Deliberate reductions and 
omissions lead to an individual abstraction of the original. 
Depending on the application purpose, models can take the 
form of formal descriptions, physical objects or computer-
based virtualizations. In co-simulation, different simulation 
tools that use different models, each of which represents 
subsystems, are interconnected to enable a holistic system 
simulation. This procedure is particularly suitable for CPPS 
since components and systems from different (technical) 
disciplines are combined in this process. Due to the ongo-
ing digitization and increasing automation of production 

through the establishment of CPS, production control con-
tinues to receive a great deal of attention in the literature. 
For programmable logic controllers (PLC), which are used 
to control systems, robots, and actuators, hardware-in-the-
loop simulation is applied to make them operational before 
they are directly connected to the hardware to be controlled.

For the subsequent engineering of CPPS, two initial situ-
ations can be distinguished: Greenfield, when a completely 
new production system is designed, and brownfield/retrofit, 
when an existing production system is upgraded to a CPPS. 
In the literature, the following activities are described for 
both cases with the specifics that the respective initial situ-
ation entails. In requirements engineering, the first step is 
to define the characteristics and general parameters that 
the system should fulfill. One of the factors that affect the 
requirements for CPPS is product line engineering, which, 
therefore, should be considered in close connection with 
production line engineering. Depending on the selection 
of the hardware to be utilized, software engineering should 
be adjusted accordingly. For the combination and iterative 
adaptation of CPPS hardware and software, it is advanta-
geous to prototype them before integrating them into a con-
sistent CPPS.

In the production execution stage, the plants are operated. 
Manufacturing is an essential part of this. In this area, the 
literature deals with the effects of implementing industrial 
CPS on production management with the subfields process 
control and process management. It is also described how 
the application of industrial CPS enables advanced manufac-
turing, which refers to the execution of particularly complex 
production processes for the manufacturing of equally com-
plex products, both of which are only possible through the 
use of digital technologies and concepts. Moreover, cloud 
manufacturing, which describes a less organization- and 
location-bound value creation through flexible, virtual pro-
duction networks, benefits from the utilization of industrial 
CPS. Another topic that receives attention in the context 
of CPS-based manufacturing is industrial services. This 
includes service composition, which is concerned with the 
arrangement and orchestration of service bundles, often 
from various providers, that are combined to form inte-
grated service systems. One service to be highlighted in this 
field is maintenance. Due to the many degrees of freedom 
regarding potential events and their resolution, processes 
related to maintenance are difficult to optimize. However, 
based on live sensor data and results of big data analytics, 
condition-based and predictive maintenance procedures can 
increasingly be implemented in CPPS with great optimiza-
tion potential.

Overall, i.e., beyond the maintenance application, indus-
trial CPS, with their sensors and actuators, offer vast poten-
tials for reforming monitoring/control in production. Condi-
tion monitoring enables a meaningful and comprehensive 
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status overview to be obtained in real-time for all equipped 
system components, including both production infrastructure 
and production parts. Event processing is focused on the 
continuity and real-time capability through the application 
of industrial CPS. This enables a reliable event-triggered 
control, in which events are reacted to mostly automatically 
with adequate measures when they occur. To prevent adverse 
events, predictive control uses the ability to recognize trends 
and patterns in data and take countermeasures before criti-
cal values are reached. Also, for the field of fuzzy control, 
industrial CPS offer implications for the definition of control 
variables as well as for the already known SCADA.

In addition to the usage of monitoring/control, the exor-
bitant increase in status information, and data sets generated 
by industrial CPS, sensor technology can also be exploited 
for analysis. Testing is carried out, among other activities in 
this area, all of which can be largely automated by model-
based testing with optimized testbed conditions. These test 
activities can examine hardware and software as well as pro-
cesses in production plants and production output. Addition-
ally, the literature deals with validation and verification as a 
means for requirements fulfilment with the subfields model 
checking and runtime verification. In supplement to this, 
eigen analysis is explicitly mentioned.

The third and last subject area concerning CPPS is con-
stituted by production support, including the area logis-
tics. Here, the whole context of material handling within 
an organization but also beyond its borders is examined. 
Especially for warehouse systems, industrial CPS offer far-
reaching application potentials, which allow for optimiza-
tions in warehouse volumes and processes through increased 
transparency. In addition to warehousing, internal logistics 
also benefit in the form of automated guided vehicles (AGV), 
which ensure highly automated, event-based, and system-
integrated flows of materials into production. With the 
establishment of intelligent transportation systems (ITS), 
industrial CPS are also applied in logistics between geo-
graphically dispersed production sites of an organization 
or different organizations in a value chain, which results in 
supply chain optimization, including the delivery of final 
products to vendors and end-users.

Another area involved in production support is the smart 
grid integration of plants. The integration of industrial CPS 
in the power supply of production facilities affects the gen-
eral energy efficiency of these facilities by better incorporat-
ing energy requirements, availability, and costs into produc-
tion planning and execution. In addition, methods such as 
energy harvesting from physical processes of industrial CPS 
and battery management in less grid-dependent production 
processes offer opportunities to improve energy balances.

In the third stage, the product in use stage, industrial CPS 
are used to feed back relevant information regarding product 
performance into the CPPS. In particular, smart products, 

which, due to their integrated sensor and actuator technol-
ogy, enable information and data generation similar to that 
of the production systems that manufacture them, allow 
monitoring throughout the entire product life cycle (prod-
uct usage data). This continuously collected information 
regarding the condition and usage of the products is a highly 
valuable source for the evaluation and possible adjustment 
of product planning and production execution parameters.

By the holistic approach of lifecycle management, recy-
cling or downcycling is applied at the end of product use, in 
the course of which the data collected over the entire product 
lifecycle in the form of a digital twin is, at best, reintroduced 
into the reprocessing or renewal in the new pre-production 
stage.

Apart from the subjects that can be clearly assigned to the 
individual stages, there are also those that are relevant across 
company/organization boundaries throughout the entire 
value chain. These include the digital twin, which combines 
the industrial CPS-based information of the entire lifecycles 
of both production plants and products. The integrated sup-
ply chain, which merges inter-organizational logistics pro-
cesses due to increased transparency from industrial CPS, 
is another example of an activity that takes place across 
company/organization boundaries throughout the entire 
value chain. In this, procedures such as ad-hoc connectivity 
increase the interoperability of production systems, facili-
ties, and services, which expands the potential realization of 
industrial CPS. In this context, the increasing establishment 
of platform ecosystems, which enable the linking of hetero-
geneous services and hardware to industrial CPS in the form 
of systems of systems, is particularly noteworthy.

A general overview of how CPS transform industrial 
value creation is shown in Fig. 16.

The application potentials of industrial CPS across 
company/organizational boundaries offer opportunities for 
horizontal and vertical integration/operational and strate-
gic alliances. The horizontal integration can either be per-
formed within a company/organization between production 
sites, departments, manufacturing sectors, etc., which pre-
viously operated largely independently, or along the value 
chain/within the value network across organizational bound-
aries, both upstream and downstream.

The cooperation between companies/organizations or 
their organizational units can be performed at the opera-
tional or strategic level (vertical integration). While integra-
tion at the operational level is mostly about technical and 
procedural cooperation, which coordinate the execution of 
value creation activities, sometimes automated, ad-hoc and 
for short periods of time, those at the strategic level repre-
sent rather long-term alliances between two or more part-
ners, which closely interconnect their industrial CPS and 
related processes.
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The schematics of these integrations and alliances are 
shown in Fig. 17.

5 � Discussion and Outlook

In the final Section of this study, the results are discussed, 
contributions to extant research, highlighted and limitations 
pointed out. Finally, a concluding and prospective outlook 
is given.

5.1 � Contributions

The contribution of this study is twofold. First, it provides 
insight into the existing literature on CPS by organizing 

2365 publications according to discipline, CPS dimen-
sion, and application field. Second, the resulting data set 
was analyzed and transferred into a categorization of CPS 
related and relevant topics in the context of Industry 4.0. 
Thereby, this study contributes by complementing the 
existing topic-specific reviews and categorizations. In 
addition to the general category formation, the industrial 
CPS architecture by incorporating technological, data-
driven, and socio-technical views as well as the overview 
of value creation on the basis of this concept, are par-
ticularly noteworthy. Thus, our results enhance the CPS 
concept map of Asare et al. (2012), whose overview comes 
the closest to the scope of this work, significantly and set 
the focus on industrial CPS.

Both contributions thus provide new knowledge to the 
research on CPS in the context of Industry 4.0. The state of 
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Fig. 17   Organizational integra-
tion and strategic alliances 
based on industrial CPS

offer opportunities for horizontal and vertical integration/operational and strategic alliances:

Horizontal integration

Company/Organization

Vertical integration

Company/OrganizationCompany/Organization Company/Organization

Strategic level

Operational level



Information Systems Frontiers	

1 3

research first provides insights into the distributions of publi-
cations by discipline (cf. Figs. 4 and 5). Most originate from 
computer science, computer engineering, and engineering, 
meaning that the subject area has so far been considered 
from a highly technical perspective. The business, value cre-
ation, and information systems perspectives have therefore 
been somewhat neglected, which implicates great potential 
for future research in these areas. It is not surprising that 
research was initially conducted from a technical perspec-
tive, as technological developments for specific problems 
are developed first and then other application scenarios or 
generalization potentials are considered. At this point, we 
are at a frontier of information systems research, which can 
be more involved here to contextualize the technical devel-
opments in a larger context, e.g., business, socio-technical, 
development with the user/stakeholder, and value creation. 
This is also reflected in the state of research on CPS dimen-
sions (cf. Fig. 5). So far, there have been primarily technical 
studies and only a few from the organizational and human/
social disciplines.

The application domains for CPS are wide ranging (cf. 
Fig. 6). It can therefore be confirmed that CPS are a gen-
eral purpose technology. Nevertheless, it is noteworthy that 
many applications are in the domain of smart manufacturing. 
Here, a distinction can be made between discrete and pro-
cess manufacturing (Ning et al., 2017; Zhang et al., 2020). 
There have been and are several public funding programs 
and initiatives in these areas due to the feasible potential. 
This can also be linked to fact that the application of CPS is 
easier to realize in an organization (on meso level) than in 
an overarching system.

Furthermore, the manufacturing domain was examined 
in more detail (cf. Fig. 7). There, as well, the application 
fields for CPS are wide ranging, and there are a large num-
ber of applications in industry in general. Related work by 
Monostori et al. (2016) also highlights the relevance of CPS 
in manufacturing. The literature thus suggests that we can 
assume far-reaching changes that qualify for an industrial 
revolution.

In addition to the state of research, the categorization 
of industrial CPS also provides several new insights for 
research on CPS in the context of Industry 4.0. As com-
pared to existing taxonomies, reviews, and categorizations 
(cf. Section 2), our study is much more comprehensive and 
provides a detailed categorization and analysis of industrial 
CPS. We arrange our findings into 10 sections, the key con-
clusions of which are summarized below.

With regard to the characteristics of industrial CPS, it is 
apparent that CPS are a further development of systems that 
are oriented toward autonomous operation and independ-
ent action (cf. Fig. 8). This aspect is supported by Berger 
et al. (2021), who examined CPPS from a self-organizing 
systems’ perspective. Our results also show that CPS are 

clearly an enabler for Industry 4.0. Figure 10 shows that 
CPS have far-reaching potential that is relevant for industry, 
consumers, and the common good, in terms of sustainability, 
for example. There is also a large number of challenges to 
be overcome, particularly in the areas of safety and secu-
rity, which is not surprising given the increased openness 
and interaction of entities and systems (cf. Fig. 11). Our 
results also contribute to an extension of the works of Liu 
et al. (2017) and Hofer (2018). For CPS to function prop-
erly, numerous requirements must be fulfilled (cf. Fig. 12). 
This point was also taken up by other authors, e.g., Asare 
et al. (2012), who also mentioned a few requirements in their 
concept map. In addition, CPS are a concept that can be seen 
as a hub of various complementary concepts and technolo-
gies of the digital age. CPS can only unfold their potential 
through interaction with these concepts and technologies (cf. 
Fig. 13). The relevance of CPS to complementary concepts 
in the context of digitalized industrial value creation has 
also been stated by (Kim, 2017). As shown in Fig. 14, CPS 
integrate humans in the form of socio-technical systems that 
require a user- and stakeholder-centric consideration. The 
architecture of CPS can be characterized as highly complex, 
which is also supported by other authors who described CPS 
architectures (Hofer, 2018; Lee et al., 2015; Pivoto et al., 
2021). The architecture suggested by this study integrates 
software, hardware, network, data processing, and HCI com-
ponents (cf. Fig. 15). CPS also offer application potential 
for the entire industrial value creation network (cf. Fig. 16). 
The interconnectivity and general network character of CPS 
generates potential for operational and strategic alliances 
with other organizations and entities (cf. Fig. 17).

The categorization of CPS related and relevant topics in 
the context of Industry 4.0 described above offers a vari-
ety of possible applications in practice. First, it provides an 
overview of the existing state of concepts and technologies 
in the area of industrial CPS. Thus, the categorization also 
serves as means of analyzing potential by documenting and 
evaluating existing technologies and systems and performing 
compatibility checks. In addition, it can be used for strategy 
development. Thus, organization-specific potentials and 
limitations regarding digitization and Industry 4.0 can be 
narrowed down. It can also help develop retrofit or green-
field digitization strategies. Furthermore, the categorization 
enables CPS design by facilitating the selection of system-
relevant technologies and concepts as well as the definition 
of interfaces and standards. Finally, it can be used in educa-
tion and training, for example through user-centered formats 
for knowledge transfer, in the context of system implementa-
tions, and digitization activities.

The architecture in Fig. 15 and the value creation based 
on industrial CPS in Fig. 16 go far beyond existing cate-
gorizations and can also be used as a design tool; a fully 
functional web tool was developed to that end. The web 
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tool enables users to better comprehend industrial CPS and 
capture their architecture and use across the entire indus-
trial value chain. Specifically, the tool can be applied within 
established methods or in the form of a canvas in workshops.

5.2 � Future Work

The planned continuation of the research work is threefold: 
First, the state of knowledge and the categorization shall be 
updated by periodic repetitions of the review. On the one 
hand, this will allow new research foci, concepts, technol-
ogies, etc. to be observed in order to integrate them into 
the existing findings. On the other hand, trends, changes in 
thematic emphases, etc. can be identified over time, which 
allows statements to be made about the development of the 
research landscape and the implementation and application 
state of CPS in the context of Industry 4.0.

In addition to the scientific literature, funding projects 
and best practices from industry related to industrial CPS 
will be systematically analyzed. These can then underpin 
the individual topics in the categorization, particularly in 
the artifact Industry 4.0 Compendium, which is a functional 
web tool of the categorization (cf. Appendix Fig. 18), as 
a supplement to the scientific literature, and increase the 
added value for users from practice. Thus, this extension 
contributes to the managerial contribution. The respective 
systematic search and analysis process of funding projects 
and best practices has already started.

Furthermore, the extensive literature dataset provides an 
opportunity to undertake deductive—including software-
assisted—analyses in order to elaborate quantitative meas-
ures and weighted links of the identified categories. In this 
way, the present qualitative findings of the study could be 
supplemented by quantitative ones, which would facilitate 
a more comprehensive interpretation.

5.3 � Limitations

The limitations of our study are primarily determined by 
the subject area and the methodology. With industrial CPS, 
we are exploring a still relatively young and dynamic field 
of research. As a result, findings are constantly increasing 
as new developments and studies are being undertaken and 
published. Thus, the data presented here is only a snap-
shot representing the state of research and categorization 
of industrial CPS at one point in time. New findings and 
developments may have emerged in the meantime that would 
affect the results of this study.

The systematic literature review is influenced by the 
selection of literature databases and search engines. We 
aimed to make a selection that is as comprehensive as pos-
sible, including different disciplines and leading publishers. 

Search strings also influence the results of literature 
searches; we therefore attempted to search for publications 
on CPS as broadly and comprehensively as possible by using 
a wide variety of spellings.

The third limitation of our study results from the exclu-
sive consideration of title, keywords, and abstract for the 
structured qualitative content analysis. In our opinion, this 
has no impact on the categorization, but it cannot be guaran-
teed that our approach did not necessarily exploit the com-
plete amount of information.

5.4 � Outlook

The final goal of our study is to provide an outlook on how 
research on and the use of industrial CPS can be further 
advanced. As our results show, interdisciplinary approaches 
are advisable or even necessary for this purpose due to the 
interwoven and wide-ranging characteristics of the topic. 
Therefore, the aim of research should be to break down 
existing silos and collaborate with related disciplines to 
develop methods and concepts that bring the topic of indus-
trial CPS further into application. Specifically, information 
systems research has the potential to play a central role. Due 
to its interdisciplinary approaches, information systems 
research should act as a link between the disciplines and 
the entire body of knowledge, especially regarding system 
design, development, and implementation. This leads to the 
implication for information systems research to further con-
tribute to the implementation and application of Industry 
4.0 by transferring and adapting specific insular knowledge 
about CPS to value creating applications.

Since the introduction of the concept of CPS, there have 
been many vision papers and agendas on the subject. There-
fore, we suggest an interim assessment and investigation of 
the current state of knowledge and implementation to deter-
mine the further implementation capabilities of scenarios 
foreseen in agendas and vision papers. Moreover, it is advis-
able to aim and research towards analogy building in order 
to enable the transfer of results and knowledge from other 
disciplines regarding CPS to be applied in industry, but also 
to make the extensive knowledge from the industrial domain 
available to other disciplines.

We believe that our categorization of industrial CPS can 
enhance the knowledge transfer into practice. It can particu-
larly contribute to the design and development of new indus-
trial CPS applications. Through the Industry 4.0 Compen-
dium web tool (cf. Appendix Fig. 18), the results of this study 
have been made available to the research and practice com-
munity in an application-oriented manner (Oks & Jalowski, 
2020); it offers search, selection, and note-taking functions. 
These features help reduce the plethora and complexity of 
information, making it more accessible and thus fostering 
CPS-oriented activities in the context of Industry 4.0.
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Appendix
Table 3   Search terms Language Keywords Synonyms

English Cyber-physical • Cyber physical
• Cyberphysical

Cyber-physical system • Cyber physical system
• Cyberphysical system
• Cyber-physical systems
• Cyber physical systems
• Cyberphysical systems

CPS -German
Cyber-physisches System • Cyber physisches System

• Cyberphysisches System
• Cyber-physische Systeme
• Cyber physische Systeme
• Cyberphysische Systeme

Cyber-physikalisches System • Cyber physikalisches System
• Cyberphysikalisches System
• Cyber-physikalische Systeme
• Cyber physikalische Systeme
• Cyberphysikalische Systeme

Table 4   Categories with exemplary underlying literature

Categories (fields, areas, 
and sections)

Exemplary literature

Characteristics
Connective • Chen, X., Sun, J., & Sun, M. (2014). A Hybrid Model of Connectors in Cyber-Physical Systems. In S. Merz & J. Pang (Eds.), Lecture Notes in 

Computer Science: Vol. 8829. Formal Methods and Software Engineering (pp. 59–74). Springer. https​://doi.org/10.1007/978-3-319-11737​-9_5 
• Reppa, V., Polycarpou, M. M., & Panayiotou, C. G. (2015). Distributed sensor fault diagnosis for a network of interconnected cyberphysical 

systems. IEEE Transactions on Control of Network Systems, 2(1), 11–23. https​://doi.org/10.1109/TCNS.2014.23673​62 
Modular • González-Nalda, P., Etxeberria-Agiriano, I., Calvo, I., & Otero, M. C. (2016). A modular CPS architecture design based on ROS and Docker. 

International Journal on Interactive Design and Manufacturing, 11(4). Advance online publication. https​://doi.org/10.1007/s1200​8-016-0313-8 
• Suh, D., Jeon, K., Chang, S., Kim, J., & Kim, J. (2015). Auto-localized multimedia platform based on a modular cyber physical system aligned in 

a two-dimensional grid. Cluster Computing, 18(4), 1449–1464. https​://doi.org/10.1007/s1058​6-015-0479-z 
Real-time-capable • Alsaydia, O. M. A., & Hameed, M. M. (2016). Design and analysis a real time cyber physical cloud computing system. Imperial Journal of 

Interdisciplinary Research, 2(9), 279–283.
• Lu, C., Saifullah, A., Li, B., Sha, M., Gonzalez, H., Gunatilaka, D., Wu, C., Nie, L., & Chen, Y. (2016). Real-time wireless sensor-actuator net-

works for industrial cyber-physical systems. Proceedings of the IEEE, 104(5), 1013–1024. https​://doi.org/10.1109/JPROC​.2015.24971​61 
Traceable • Huang, J., Zhu, Y., Cheng, B., Lin, C., & Chen, J. (2016). A PetriNet-based approach for supporting traceability in cyber-physical manufacturing 

systems. Sensors, 16(3). https​://doi.org/10.3390/s1603​0382 
• Mohajerin Esfahani, P., Vrakopoulou, M., Andersson, G., & Lygeros, J. (2012). A tractable nonlinear fault detection and isolation technique with 

application to the cyber-physical security of power systems. In 51st IEEE Annual Conference on Decision and Control (CDC) (pp. 3433–3438). 
https​://doi.org/10.1109/CDC.2012.64262​69 

Self-characteristics • Bordel, B., Alcarria, R., Martín, D., Robles, T., & de Rivera, D. S. (2016). Self-configuration in humanized cyber-physical systems. Journal of 
Ambient Intelligence and Humanized Computing, 8. Advance online publication. https​://doi.org/10.1007/s1265​2-016-0410-3 

• Dai, W., Dubinin, V. N., Christensen, J. H., Vyatkin, V., & Guan, X. (2017). Towards self-manageable and adaptive industrial cyber-physical 
systems with knowledge-driven autonomic service management. IEEE Transactions on Industrial Informatics, 13(2). https​://doi.org/10.1109/
TII.2016.25954​01 

• Dutt, N., Jantsch, A., & Sarma, S. (2015). Self-aware cyber-physical systems-on-chip. In IEEE/ACM International Conference on Computer-
Aided Design (ICCAD) (pp. 46-50). https​://doi.org/10.1109/ICCAD​.2015.73725​48 

• Smirnov, A., Kashevnik, A., & Shilov, N. (2015). Cyber-physical-social system self-organization: ontology-based multi-level approach and case 
study In. 9th IEEE International Conference on Self-Adaptive and Self-Organizing Systems (pp. 168–169). https​://doi.org/10.1109/SASO.2015.29 

Overall context
Industry 4.0 • Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. IEEE International Conference on Automation, Quality and Testing, 

Robotics, 1–4. https​://doi.org/10.1109/AQTR.2014.68578​43 
• Mosterman, P. J., & Zander, J. (2016). Industry 4.0 as a cyber-physical system study. Software & Systems Modeling, 15(1), 17–29. https​://doi.

org/10.1007/s1027​0-015-0493-x 
Potentials/Opportunities
Automated • Kao, H.‑A., Jin, W., Siegel, D., & Lee, J. (2015). A cyber physical interface for automation systems - Methodology and examples. Machines, 3(2), 

93–106. https​://doi.org/10.3390/machi​nes30​20093​ 
• Leitão, P., Colombo, A. W., & Karnouskos, S. (2016). Industrial automation based on cyber-physical systems technologies: Prototype implemen-

tations and challenges. Computers in Industry, 81, 11–25. https​://doi.org/10.1016/j.compi​nd.2015.08.004 

https://doi.org/10.1007/978-3-319-11737-9_5
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Automatization • Duarte, R. P., Neto, H., & Vestias, M. (2016). XtokaxtikoX: A stochastic computing-based autonomous cyber-physical system. In IEEE Interna-
tional Conference on Rebooting Computing (ICRC) (pp. 1–7). https​://doi.org/10.1109/ICRC.2016.77387​16 

• Gronau, N. (2016). Determinants of an appropriate degree of autonomy in a cyber-physical production system. Procedia CIRP, 52, 1–5. https​://
doi.org/10.1016/j.proci​r.2016.07.063 

Efficiency gains • Bayhan, H., Meißner, M., Kaiser, P., Meyer, M., & Hompel, M. ten (2020). Presentation of a novel real-time production supply concept with 
cyber-physical systems and efficiency validation by process status indicators. The International Journal of Advanced Manufacturing Technology, 
108, 527–537. https​://doi.org/10.1007/s0017​0-020-05373​-z 

Effectiveness gains • Rocher, G., Tigli, J.‑Y., Lavirotte, S., & Le Thanh, N. (2020). Effectiveness assessment of cyber-physical systems. International Journal of 
Approximate Reasoning, 118, 112–132. https​://doi.org/10.1016/j.ijar.2019.12.002 

Management • Schuh, G., Potente, T., Thomas, C., & Hempel, T. (2014). Short-term cyber-physical production management. Procedia CIRP, 25, 154–160. https​
://doi.org/10.1016/j.proci​r.2014.10.024 

Process • Song, Z., Labalette, P., Burger, R., Klein, W., Nair, S., Suresh, S., Shen, L., & Canedo, A. (2015). Model-based cyber-physical system integration 
in the process industry. In Q.-S. Jia (Ed.), IEEE International Conference on Automation Science and Engineering (CASE) (pp. 1012–1017). 
https​://doi.org/10.1109/CoASE​.2015.72942​31 

Batch/Lot size one • Bauernhansl, T., Tzempetonidou, M., Rossmeissl, T., Groß, E., & Siegert, J. (2018). Requirements for designing a cyber-physical system for 
competence development. Procedia Manufacturing, 23, 201–206. https​://doi.org/10.1016/j.promf​g.2018.04.017 

• Niemueller, T., Lakemeyer, G., Reuter, S., Jeschke, S., & Ferrein, A. (2017). Benchmarking of cyber-physical systems in industrial robotics. In 
C. Brecher, D. B. Rawat, H. Song, & S. Jeschke (Eds.), Intelligent Data Centric Systems. Cyber-Physical Systems: Foundations, Principles and 
Applications (pp. 193–207). Academic Press. https​://doi.org/10.1016/b978-0-12-80380​1-7.00013​-4 

Product individualization • Jiang, P., Leng, J., Ding, K., Gu, P., & Koren, Y. (2016). Social manufacturing as a sustainable paradigm for mass individualization. Proceedings 
of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(10), 1961–1968. https​://doi.org/10.1177/09544​
05416​66690​3 

• Tan, C., Hu, S. J., Chung, H., Barton, K., Piya, C., Ramani, K., & Banu, M. (2017). Product personalization enabled by assembly architecture and 
cyber physical systems. CIRP Annals, 66(1), 33–36. https​://doi.org/10.1016/j.cirp.2017.04.106 

Decentralization • Li, H., Lai, L., & Poor, H. V. (2012). Multicast routing for decentralized control of cyber physical systems with an application in smart grid. IEEE 
Journal on Selected Areas in Communications, 30(6), 1097–1107. https​://doi.org/10.1109/JSAC.2012.12070​8 

• Schuhmacher, J., & Hummel, V. (2016). Decentralized control of logistic processes in cyber-physical production systems at the example of ESB 
Logistics Learning Factory. Procedia CIRP, 54, 19–24. https​://doi.org/10.1016/j.proci​r.2016.04.095 

Complex event process-
ing

• Babiceanu, R. F., & Seker, R. (2015). Manufacturing cyber-physical systems enabled by complex event processing and big data environments: 
A framework for development. In T. Borangiu, D. Trentesaux, & A. Thomas (Eds.), Studies in Computational Intelligence: Vol. 594. Service 
orientation in holonic and multi-agent manufacturing (pp. 165–173). Springer. https​://doi.org/10.1007/978-3-319-15159​-5_16 

• Klein, R., Rilling, S., Usov, A., & Xie, J. (2013). Using complex event processing for modelling and simulation of cyber-physical systems. Inter-
national Journal of Critical Infrastructures, 9(1/2), 148. https​://doi.org/10.1504/IJCIS​.2013.05161​0 

Enhanced flexibility • Boschi, F., Zanetti, C., Tavola, G., & Taisch, M. (2016). Functional requirements for reconfigurable and flexible cyber-physical system. In 42nd 
Annual Conference of the IEEE Industrial Electronics Society (pp. 5717-5722). https​://doi.org/10.1109/IECON​.2016.77940​18 

• Rosenthal, F., Jung, M., Zitterbart, M., & Hanebeck, U. D. (2019). CoCPN – Towards flexible and adaptive cyber-physical systems through 
cooperation. In 16th IEEE Annual Consumer Communications & Networking Conference (CCNC) (pp. 1-6). https​://doi.org/10.1109/
CCNC.2019.86518​82 

Lead time reductions • Barros, A. C., Azevedo, A., Rodrigues, J. C., Marques, A., Toscano, C., & Simões, A. C. (2017). Implementing cyber-physical systems in manu-
facturing. In The 47th International Conference on Computers & Industrial Engineering. 1–9.

• Kolberg, D., & Zühlke, D. (2015). Lean automation enabled by Industry 4.0 technologies. IFAC-PapersOnLine, 48(3), 1870–1875. https​://doi.
org/10.1016/j.ifaco​l.2015.06.359 

Fault/Failure reduction • Alippi, C., Ntalampiras, S., & Roveri, M. (2016). Model-free fault detection and isolation in large-scale cyber-physical systems. IEEE Transac-
tions on Emerging Topics in Computational Intelligence, 1(1), 61-71. https​://doi.org/10.1109/TETCI​.2016.26414​52 

• Zhang, Z., An, W., & Shao, F. (2016). Cascading failures on reliability in cyber-physical system. IEEE Transactions on Reliability, 65(4), 
1745–1754. https​://doi.org/10.1109/TR.2016.26061​25 

Quality improvement • Bonci, A., Pirani, M., & Longhi, S. (2019). Tiny cyber-physical systems for performance improvement in the factory of the future. IEEE Transac-
tions on Industrial Informatics, 15(3), 1598–1608. https​://doi.org/10.1109/TII.2018.28557​47 

• Regan, G., McCaffery, F., Paul, P. C., Reich, J., Armengaud, E., Kaypmaz, C., Zeller, M., Guo, J.Z., Longo, S., O’Carroll, E., & Sorokos, I. 
(2020). Quality improvement mechanism for cyber physical systems - An evaluation. Journal of Software: Evolution and Process, 32(11). https​://
doi.org/10.1002/smr.2295 

Business model develop-
ment

• Rauch, E., Seidenstricker, S., Dallasega, P., & Hämmerl, R. (2016). Collaborative cloud manufacturing: Design of business model inno-
vations enabled by cyberphysical systems in distributed manufacturing systems. Journal of Engineering, 2016(3), 1–12. https​://doi.
org/10.1155/2016/13086​39 

• Rudtsch, V., Gausemeier, J., Gesing, J., Mittag, T., & Peter, S. (2014). Pattern-based business model development for cyber-physical production 
systems. Procedia CIRP, 25, 313–319. https​://doi.org/10.1016/j.proci​r.2014.10.044 

Product portfolio enlarge-
ment

• Meixner, K., Rabiser, R., & Biffl, S. (2019). Towards modeling variability of products, processes and resources in cyber-physical production sys-
tems engineering. In C. Salinesi & T. Ziadi (Eds.), Proceedings of the 23rd International Systems and Software Product Line Conference volume 
B – SPLC’19, (pp. 49-56). ACM Press. https​://doi.org/10.1145/33076​30.33424​11 

• Tan, C., Hu, S. J., Chung, H., Barton, K., Piya, C., Ramani, K., & Banu, M. (2017). Product personalization enabled by assembly architecture and 
cyber physical systems. CIRP Annals, 66(1), 33–36. https​://doi.org/10.1016/j.cirp.2017.04.106 

Time-to-market reduction • Canedo, A., Schwarzenbach, E., & Al Faruque, M. A. (2013). Context-sensitive synthesis of executable functional models of cyber-physical 
systems. In C. Lu, P. R. Kumar, & R. Stoleru (Eds.), 2013 ACM/IEEE International Conference on Cyber-Physical Systems (p. 99-108). IEEE. 
https​://doi.org/10.1145/25025​24.25025​39 

• Villalonga, A., Castano, F., Beruvides, G., Haber, R., Strzelczak, S., & Kossakowska, J. (2019). Visual analytics framework for condition moni-
toring in cyber-physical systems. In 23rd International Conference on System Theory, Control and Computing (ICSTCC) (pp. 55-60). https​://doi.
org/10.1109/ICSTC​C.2019.88856​11 
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Challenges/Issues
Complexity • Kim, J.‑C., We, K.‑S., & Lee, C.‑G. (2011). How resource componentizing for addressing the mega-complexity of cyber-physical systems. In 

17th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (pp. 61–66). https​://doi.org/10.1109/
RTCSA​.2011.35 

• Liang, G., & Zhang, L. (2015). Extension of model for research and design of complex cyber physical system. In M. S. P. Babu (Ed.), 6th IEEE 
International Conference on Software Engineering and Service Science (pp. 478–481). IEEE. https​://doi.org/10.1109/ICSES​S.2015.73391​01 

Transparency • Dahlmanns, M., Pennekamp, J., Fink, I. B., Schoolmann, B., Wehrle, K., & Henze, M. (2021). Transparent end-to-end security for publish/sub-
scribe communication in cyber-physical systems. In M. Gupta, M. Abdelsalam, & S. Mittal (Eds.), Proceedings of the 2021 ACM Workshop on 
Secure and Trustworthy Cyber-Physical Systems (pp. 78–87). ACM. https​://doi.org/10.1145/34459​69.34504​23 

• Lee, J., Bagheri, B., & Kao, H.‑A. (2014). Recent advances and trends of cyber-physical systems and big data analytics in industrial informatics. 
In C. E. Pereira (Ed.), 12th IEEE International Conference on Industrial Informatics. IEEE. https​://doi.org/10.13140​/2.1.1464.1920 

Synchronization • Andrade, H. A., Derler, P., Eidson, J. C., Li-Baboud, Y.‑S., Shrivastava, A., Stanton, K. B., & Weiss, M. (2015). Towards a reconfigurable distrib-
uted testbed to enable advanced research and development of timing and synchronization in cyber-physical systems. In International Conference 
on ReConFigurable Computing and FPGAs (ReConFig) (pp. 1-6). https​://doi.org/10.1109/ReCon​Fig.2015.73933​52 

• Deng, X., & Yang, Y. (2013). Communication synchronization in cluster-based sensor networks for cyber-physical systems. IEEE Transactions 
on Emerging Topics in Computing, 1(1), 98–110. https​://doi.org/10.1109/TETC.2013.22732​19 

Risk and uncertainty 
management

• Axelrod, C. W. (2013). Managing the risks of cyber-physical systems. In IEEE Long Island Systems, Applications and Technology Conference 
(LISAT) (pp. 1–6). https​://doi.org/10.1109/LISAT​.2013.65782​15 

• Pereira, A., Rodrigues, N., Barbosa, J., & Leitão, P. (2013). Trust and risk management towards resilient large-scale cyber-physical systems. In 
22nd IEEE International Symposium on Industrial Electronics (ISIE) (pp. 1–6). https​://doi.org/10.1109/ISIE.2013.65638​37 

Communication • Elattar, M., Wendt, V., & Jasperneite, J. (2017). Communications for cyber-physical systems. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat 
(Eds.), Springer Series in Wireless Technology. Industrial Internet of Things: Cybermanufacturing Systems (pp. 347–372). Springer. https​://doi.
org/10.1007/978-3-319-42559​-7_13 

• Henneke, D., Elattar, M., & Jasperneite, J. (2015). Communication patterns for cyber-physical systems. In 2015 IEEE 20th Conference on Emerg-
ing Technologies & Factory Automation (ETFA) (pp. 1–4). https​://doi.org/10.1109/ETFA.2015.73016​23 

Delay • Nandanwar, A., Behera, L., Shukla, A., & Karki, H. (2016). Delay constrained utility maximization in cyber physical system with mobile robotic 
networks. In 42nd Annual Conference of the IEEE Industrial Electronics Society (pp. 4884-4889). https​://doi.org/10.1109/IECON​.2016.77939​26 

• Shen, B., Zhou, X., & Kim, M. (2016). Mixed scheduling with heterogeneous delay constraints in cyber-physical systems. Future Generation 
Computer Systems, 61, 108–117. https​://doi.org/10.1016/j.futur​e.2015.10.021 

Jitter • Gawand, H. L., Bhattacharjee, A. K., & Roy, K. (2014). Real time jitters and cyber physical system. International Conference on Advances in 
Computing, Communications and Informatics (ICACCI), 2004–2008. https​://doi.org/10.1109/ICACC​I.2014.69685​05 

• Zhang, X.‑L., & Liu, P. (2015). A new delay jitter smoothing algorithm based on pareto distribution in cyber-physical systems. Wireless Net-
works, 21(6), 1913–1923. https​://doi.org/10.1007/s1127​6-015-0891-6 

Employee concerns and 
reservations

• Dressler, F. (2018). Cyber physical social systems: Towards deeply integrated hybridized systems. International Conference on Computing, 
Networking and Communications (ICNC), 420–424. https​://doi.org/10.1109/ICCNC​.2018.83904​04 

• Waschull, S., Bokhorst, J., Molleman, E., & Wortmann, J. C. (2020). Work design in future industrial production: Transforming towards cyber-
physical systems. Computers & Industrial Engineering, 139, 105,679. https​://doi.org/10.1016/j.cie.2019.01.053 

High implementation 
efforts

• Horváth, I., & Gerritsen, B. H. M. (2012). Cyber-physical systems: Concepts, technologies and implementation principles. In TMCE 2012.
• Hu, F., Lu, Y., Vasilakos, A. V., Hao, Q., Ma, R., Patil, Y., Zhang, T., Lu, J., Li, X., & Xiong, N. N. (2016). Robust cyber–physical systems: 

Concept, models, and implementation. Future Generation Computer Systems, 56, 449–475. https​://doi.org/10.1016/j.futur​e.2015.06.006 
Costs/Availability of 

capital
• Bajaj, N., Nuzzo, P., Masin, M., & Sangiovanni-Vincentelli, A. L. (2015). Optimized selection of reliable and cost-effective cyber-physical system 

architectures. In Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 561–566). https​://doi.org/10.7873/DATE.2015.0913 
• Shin, S. Y., Chaouch, K., Nejati, S., Sabetzadeh, M., Briand, L. C., & Zimmer, F. (2021). Uncertainty-aware specification and analysis for 

hardware-in-the-loop testing of cyber-physical systems. Journal of Systems and Software, 171. https​://doi.org/10.1016/j.jss.2020.11081​3 
Juridical matters • Brecher, C., Ecker, C., Herfs, W., Obdenbusch, M., Jeschke, S., Hoffmann, M., & Meisen, T. (2016). The need of dynamic and adaptive data 

models for cyber-physical production systems. In H. Song, D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Intelligent Data Centric Systems. 
Cyber-Physical Systems: Foundations, Principles and Applications (pp. 321–338). Academic Press. https​://doi.org/10.1016/B978-0-12-80380​
1-7.00021​-3 

• Husic, M., & Hozdic, E. (2014). Legal aspects of the implementation of cyber-physical systems in production industry. In 18th International 
Research/Expert Conference.

Safety • Khalid, A., Kirisci, P., Ghrairi, Z., Pannek, J., & Thoben, K.‑D. (2017). Safety requirements in collaborative human–robot cyber-physical 
system. In M. Freitag, H. Kotzab, & J. Pannek (Eds.), Lecture Notes in Logistics. Dynamics in Logistics (pp. 41–51). Springer. https​://doi.
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• Trapp, M., Schneider, D., & Liggesmeyer, P. (2013). A safety roadmap to cyber-physical systems. In J. Münch, K. Schmid, & H. D. Rom-
bach (Eds.), Perspectives on the Future of Software Engineering: Essays in Honor of Dieter Rombach (pp. 81–94). Springer. https​://doi.
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Security • Brazell, J. B. (2014). The need for a transdisciplinary approach to security of cyber physical infrastructure. In S. C. Suh, U. J. Tanik, J. N. Car-
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State • Roth, M., & Liggesmeyer, P. (2013). Modeling and analysis of safety-critical cyber physical systems using state/event fault trees. In 32nd Interna-
tional Conference on Computer Safety, Reliability and Security.

• Sistla, A. P., Žefran, M., & Feng, Y. (2012). Runtime monitoring of stochastic cyber-physical systems with hybrid state. In S. Khurshid & K. Sen 
(Eds.), Lecture Notes in Computer Science: Vol. 7186. Runtime Verification, (pp. 276–293). Springer. https​://doi.org/10.1007/978-3-642-29860​
-8_21 

Environmental monitor-
ing

• Mois, G., Sanislav, T., & Folea, S. C. (2016). A cyber-physical system for environmental monitoring. IEEE Transactions on Instrumentation and 
Measurement, 65(6), 1463–1471. https​://doi.org/10.1109/TIM.2016.25266​69 

• Sanislav, T., Mois, G., Folea, S. C., Miclea, L., Gambardella, G., & Prinetto, P. (2014). A cloud-based cyber-physical system for environmental 
monitoring. In 2014 3rd Mediterranean Conference on Embedded Computing (MECO) (pp. 6–9). https​://doi.org/10.1109/MECO.2014.68626​54 

Emergency management • Gelenbe, E., & Wu, F.‑J. (2013). Future research on cyber-physical emergency management systems. Future Internet, 5(3), 336–354. https​://doi.
org/10.3390/fi503​0336 

• Wu, G., Lu, D., Xia, F., & Yao, L. (2011). A fault-tolerant emergency-aware access control scheme for cyber-physical systems. Information 
Technology and Control, 40(1), 29–40. https​://doi.org/10.5755/j01.itc.40.1.190 

Fault/Failure detection • Abid, M., Khan, A. Q., Rehan, M., & Haroon-ur-Rasheed (2014). TS fuzzy approach for fault detection in nonlinear cyber physical systems. In Z. 
H. Khan, A. B. M. S. Ali, & Z. Riaz (Eds.), Studies in Computational Intelligence: Vol. 540. Computational Intelligence for Decision Support in 
Cyber-Physical Systems (pp. 421–447). Springer. https​://doi.org/10.1007/978-981-4585-36-1_14 

• Alippi, C., Ntalampiras, S., & Roveri, M. (2016). Model-free fault detection and isolation in large-scale cyber-physical systems. IEEE Transac-
tions on Emerging Topics in Computational Intelligence, 1(1), 61-71. https​://doi.org/10.1109/TETCI​.2016.26414​52 

Threats and vulner-
abilities

• DeSmit, Z., Elhabashy, A. E., Wells, L. J., & Camelio, J. A. (2016). Cyber-physical vulnerability assessment in manufacturing systems. Procedia 
Manufacturing, 5, 1060–1074. https​://doi.org/10.1016/j.promf​g.2016.08.075 

• Fernandez, E. B. (2016). Preventing and unifying threats in cyberphysical systems. In 17th IEEE International Symposium on High Assurance 
Systems Engineering (HASE) (pp. 292-293). https​://doi.org/10.1109/HASE.2016.50 

(Cyber-) Attacks • Chen, C.‑M., Hsiao, H.‑W., Yang, P.‑Y., & Ou, Y.‑H. (2013). Defending malicious attacks in cyber physical systems. In 1st IEEE International 
Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA) (pp. 13-18). https​://doi.org/10.1109/CPSNA​.2013.66142​40 

• Gawand, H. L., Bhattacharjee, A. K., & Roy, K. (2015). Online monitoring of a cyber physical system against control aware cyber attacks. Proce-
dia Computer Science, 70, 238–244. https​://doi.org/10.1016/j.procs​.2015.10.079 

Privacy • Fink, G. A., Edgar, T. W., Rice, T. R., MacDonald, D. G., & Crawford, C. E. (2016). Security and privacy in cyber-physical systems. In H. Song, 
D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Intelligent Data Centric Systems. Cyber-Physical Systems: Foundations, Principles and Applica-
tions (pp. 129–141). Academic Press. https​://doi.org/10.1016/B978-0-12-80380​1-7.00009​-2 

• Zhang, H., Shu, Y., Cheng, P., & Chen, J. (2016). Privacy and performance trade-off in cyber-physical systems. IEEE Network, 30(2), 62–66. 
https​://doi.org/10.1109/MNET.2016.74370​26 

Data abuse • Alguliyev, R., Imamverdiyev, Y., & Sukhostat, L. (2018). Cyber-physical systems and their security issues. Computers in Industry, 100, 212–223. 
https​://doi.org/10.1016/j.compi​nd.2018.04.017 

• Gudivada, V. N., Ramaswamy, S., & Srinivasan, S. (2018). Data management issues in cyber-physical systems. Transportation Cyber-Physical 
Systems, 173–200. https​://doi.org/10.1016/B978-0-12-81429​5-0.00007​-1 

Attack detection • Chen, Y., Kar, S., & Moura, J. M. F. (2016). Dynamic attack detection in cyber-physical systems with side initial state information. IEEE Trans-
actions on Automatic Control, 62(9), 4618-4624 https​://doi.org/10.1109/TAC.2016.26262​67 

Information flow control • Akella, R., Tang, H., & McMillin, B. M. (2010). Analysis of information flow security in cyber–physical systems. International Journal of Criti-
cal Infrastructure Protection, 3(3-4), 157–173. https​://doi.org/10.1016/j.ijcip​.2010.09.001 

Access and control mes-
sage protection

• Misra, S., Krishna, P. V., Saritha, V., Agarwal, H., Shu, L., & Obaidat, M. S. (2015). Efficient medium access control for cyber–physical systems 
with heterogeneous networks. IEEE Systems Journal, 9(1), 22–30. https​://doi.org/10.1109/JSYST​.2013.22534​21 

Cryptography, digital 
signatures, and steg-
anography

• Vegh, L., & Miclea, L. (2015). Improving the security of a cyber-physical system using cryptography, steganography and digital signatures. Inter-
national Journal of Computer and Information Technology, 4(2), 427–434. https​://ijcit​.com/archi​ves/volum​e4/issue​2/Paper​04022​9.pdf

Requirements
Autonomy • Hong, I., Youn, H., Chun, I.‑G., & Lee, E. (2014). Autonomic computing framework for cyber-physical systems. In V. V. Das (Ed.), Computer 

Science Series: Vol. 1, Computation and Communication Technologies: Third International Conference on Advances in Computing, Control, and 
Telecommunication Technologies (ACT 2011) (pp. 140–143). Curran.

• Theuer, H., & Lass, S. (2016). Mastering complexity with autonomous production processes. Procedia CIRP, 52, 41–45. https​://doi.
org/10.1016/j.proci​r.2016.07.058 

Context-awareness/Sen-
sitivity

• Canedo, A., Schwarzenbach, E., & Al Faruque, M. A. (2013). Context-sensitive synthesis of executable functional models of cyber-physical 
systems. In C. Lu, P. R. Kumar, & R. Stoleru (Eds.), 2013 ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (p. 99-108). 
https​://doi.org/10.1145/25025​24.25025​39 

• Timonen, J. (2015). Improving situational awareness of cyber physical systems based on operator’s goals. In C. Onwubiko (Ed.), 2015 Inter-
national Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA) (pp. 1-6). https​://doi.org/10.1109/Cyber​
SA.2015.71661​21 

Dependability • Sanislav, T., Mois, G., & Miclea, L. (2016). An approach to model dependability of cyber-physical systems. Microprocessors and Microsystems, 
41, 67–76. https​://doi.org/10.1016/j.micpr​o.2015.11.021 

• Soubiran, E., Guenab, F., Cancila, D., Koudri, A., & Wouters, L. (2016). Ensuring dependability and performance for CPS design: Application to 
a signaling system. In H. Song, D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Intelligent Data Centric Systems. Cyber-Physical Systems: Founda-
tions, Principles and Applications (pp. 363–375). Academic Press. https​://doi.org/10.1016/B978-0-12-80380​1-7.00023​-7 

Reliability • Ge, L., Wang, S., Wang, X., & Liang, D. (2016). Analytical FRTU deployment approach for reliability improvement of integrated cyber-physical 
distribution systems. IET Generation, Transmission & Distribution, 10(11), 2631–2639. https​://doi.org/10.1049/iet-gtd.2015.1050 

• Hazra, A., Dasgupta, P., & Chakrabarti, P. P. (2016). Formal assessment of reliability specifications in embedded cyber-physical systems. Journal 
of Applied Logic, 18, 71–104. https​://doi.org/10.1016/j.jal.2016.09.001 

https://doi.org/10.1007/978-3-642-29860-8_21
https://doi.org/10.1007/978-3-642-29860-8_21
https://doi.org/10.1109/TIM.2016.2526669
https://doi.org/10.1109/MECO.2014.6862654
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https://doi.org/10.1109/MNET.2016.7437026
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https://doi.org/10.1109/TAC.2016.2626267
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https://doi.org/10.1109/JSYST.2013.2253421
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Availability • Parvin, S., Hussain, F. K., Hussain, O. K., Thein, T., & Park, J. S. (2013). Multi-cyber framework for availability enhancement of cyber physical 
systems. Computing, 95(10-11), 927–948. https​://doi.org/10.1007/s0060​7-012-0227-7 

• Wang, Z., Jin, Y., Yang, S., Han, J., & Lu, J. (2021). An improved genetic algorithm for safety and availability checking in cyber-physical sys-
tems. IEEE Access, 9, 56,869–56,880. https​://doi.org/10.1109/ACCES​S.2021.30726​35 

Robustness • Rungger, M., & Tabuada, P. (2013). A symbolic approach to the design of robust cyber-physical systems. In 52nd IEEE Annual Conference on 
Decision and Control (CDC) (pp. 3932–3937). https​://doi.org/10.1109/CDC.2013.67604​90 

• Tabuada, P., Caliskan, S. Y., Rungger, M., & Majumdar, R. (2014). Towards robustness for cyber-physical systems. IEEE Transactions on Auto-
matic Control, 59(12), 3151–3163. https​://doi.org/10.1109/TAC.2014.23516​32 

Resilience • Bujorianu, M. L., & Piterman, N. (2015). A modelling framework for cyber-physical system resilience. In C. Berger & M. R. Mousavi (Eds.), 
Information Systems and Applications, incl. Internet/Web, and HCI: Vol. 9361. Cyber Physical Systems. Design, Modeling, and Evaluation 
(pp. 67–82). Springer. https​://doi.org/10.1007/978-3-319-25141​-7_6 

• Woo, H., Yi, J., Browne, J. C., Mok, A. K., Atkins, E. M., & Xie, F. (2008). Design and Development Methodology for Resilient Cyber-Physical 
Systems. In 28th International Conference on Distributed Computing Systems Workshops (pp. 525–528). IEEE. https​://doi.org/10.1109/ICDCS​
.Works​hops.2008.62 

Observability • Cam, H. (2014). Controllability and Observability of Risk and Resilience in Cyber-Physical Cloud Systems. In S. Jajodia, K. Kant, P. Samarati, 
A. Singhal, V. Swarup, & C. Wang (Eds.), Secure Cloud Computing (pp. 325–343). Springer. https​://doi.org/10.1007/978-1-4614-9278-8_15 

• Chen, Y., Kar, S., & Moura, J. M. F. (2015). Cyber-physical systems: Dynamic sensor attacks and strong observability. In IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1752–1756). IEEE. https​://doi.org/10.1109/ICASS​P.2015.71782​71 

Trustworthiness • Boyes, H. A. (2013). Trustworthy cyber-physical systems – A review. In System Safety: The 8th IET System Safety Conference incorporating the 
Cyber Security Conference 2013. IET. https​://doi.org/10.1049/cp.2013.1707 

• David, M. W., Yerkes, C. R., Simmons, M. E., & Franceschini, W. (2016). Towards trustworthy smart cyber-physical systems. In K.-Y. Lam, 
C.-H. Chi, & S. Qing (Eds.), Lecture Notes in Computer Science: Vol. 9977. Information and Communications Security (pp. 392–399). Springer. 
https​://doi.org/10.1007/978-3-319-50011​-9_30 

Predictability • Mubeen, S., Lisova, E., & Vulgarakis Feljan, A. (2020). Timing predictability and security in safety-critical industrial cyber-physical systems: A 
position paper. Applied Sciences, 10(9), 3125. https​://doi.org/10.3390/app10​09312​5 

• Sun, B., Li, X., Wan, B., Wang, C., Zhou, X., & Chen, X. (2016). Definitions of predictability for cyber physical systems. Journal of Systems 
Architecture, 63, 48–60. https​://doi.org/10.1016/j.sysar​c.2016.01.007 

Controllability • Alcaraz, C., & Lopez, J. (2016). Safeguarding structural controllability in cyber-physical control systems. In I. G. Askoxylakis, S. Ioannidis, S. 
K. Katsikas, & C. Meadows (Eds.), Lecture Notes in Computer Science: Vol. 9879. Computer Security – ESORICS 2016 (pp. 471–489). Springer. 
https​://doi.org/10.1007/978-3-319-45741​-3_24 

• Jiang, Y., Yin, S., & Kaynak, O. (2018). Data-driven monitoring and safety control of industrial cyber-physical systems: Basics and beyond. IEEE 
Access, 6, 47,374–47,384. https​://doi.org/10.1109/ACCES​S.2018.28664​03 

Interoperability • Bermejo Munoz, J., Galan, S. G., Lopez, L. R., Prado, R. P., Munoz, J. E., Grimstad, T., & Lopez, D. R. (2012). Interoperability in large scale 
cyber-physical systems. In 17th IEEE Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1–6). IEEE. https​://doi.
org/10.1109/ETFA.2012.64897​88 

• Schilberg, D., Hoffmann, M., Schmitz, S., & Meisen, T. (2017). Interoperability in smart automation of cyber physical systems. In S. Jeschke, 
C. Brecher, H. Song, & D. B. Rawat (Eds.), Springer Series in Wireless Technology. Industrial Internet of Things: Cybermanufacturing Systems 
(pp. 261–286). Springer. https​://doi.org/10.1007/978-3-319-42559​-7_10 

Scalability • García-Valls, M., Calva-Urrego, C., de la Puente, Juan A., & Alonso, A. (2016). Adjusting middleware knobs to assess scalability limits of dis-
tributed cyber-physical systems. Computer Standards & Interfaces. Advance online publication. https​://doi.org/10.1016/j.csi.2016.11.003 

• Padmanabh, K. (2013). On the Scalability of a Cyber Physical System. Journal of the Indian Institute of Science, 93(3), 499–509. http://journ​
al.iisc.ernet​.in/index​.php/iisc/artic​le/downl​oad/2169/3045

Sustainability • Estevez, C., & Wu, J. (2016). Green cyber-physical systems. In H. Song, D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Intelligent Data Centric 
Systems. Cyber-Physical Systems: Foundations, Principles and Applications. (pp. 225–237). Academic Press. https​://doi.org/10.1016/B978-0-12-
80380​1-7.00015​-8 

• Song, Z., & Moon, Y. (2016). Assessing sustainability benefits of cybermanufacturing systems. The International Journal of Advanced Manufac-
turing Technology. Advance online publication. https​://doi.org/10.1007/s0017​0-016-9428-0 

Concepts and technologies
Big data • Hahanov, V. I., Miz, V., Litvinova, E. I., Mishchenko, A., & Shcherbin, D. (2015). Big Data driven cyber physical systems. In 13th International 

Conference on the Experience of Designing and Application of CAD Systems in Microelectronics (CADSM) (pp. 76–80). IEEE. https​://doi.
org/10.1109/CADSM​.2015.72308​00 

• Jara, A. J., Genoud, D., & Bocchi, Y. (2014). Big data for cyber physical systems: An analysis of challenges, solutions and opportunities. In 
8th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS) (pp. 376–380). IEEE. https​://doi.
org/10.1109/IMIS.2014.139 

Pattern detection/Rec-
ognition

• Bhuiyan, M. Z. A., Wu, J., Weiss, G. M., Hayajneh, T., Wang, T., & Wang, G. (2020). Event detection through differential pattern mining in 
cyber-physical systems. IEEE Transactions on Big Data, 6(4), 652–665. https​://doi.org/10.1109/TBDAT​A.2017.27318​38 

• Spezzano, G., & Vinci, A. (2015). Pattern detection in cyber-physical systems. Procedia Computer Science, 52, 1016–1021. https​://doi.
org/10.1016/j.procs​.2015.05.096 

Smart data • Oks, S. J., Fritzsche, A., & Möslein, K. M. (2017). An application map for industrial cyber-physical systems. In S. Jeschke, C. Brecher, H. Song, 
& D. B. Rawat (Eds.), Springer Series in Wireless Technology. Industrial Internet of Things: Cybermanufacturing Systems (pp. 21–46). Springer. 
https​://doi.org/10.1007/978-3-319-42559​-7_2 

• Tao, F., Qi, Q., Wang, L., & Nee, A. (2019). Digital twins and cyber–physical systems toward smart manufacturing and Industry 4.0: Correlation 
and comparison. Engineering, 5(4), 653–661. https​://doi.org/10.1016/j.eng.2019.01.014 

https://doi.org/10.1007/s00607-012-0227-7
https://doi.org/10.1109/ACCESS.2021.3072635
https://doi.org/10.1109/CDC.2013.6760490
https://doi.org/10.1109/TAC.2014.2351632
https://doi.org/10.1007/978-3-319-25141-7_6
https://doi.org/10.1109/ICDCS.Workshops.2008.62
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http://journal.iisc.ernet.in/index.php/iisc/article/download/2169/3045
http://journal.iisc.ernet.in/index.php/iisc/article/download/2169/3045
https://doi.org/10.1016/B978-0-12-803801-7.00015-8
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https://doi.org/10.1109/TBDATA.2017.2731838
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Data as a service • Marini, A., & Bianchini, D. (2016). Big data as a service for monitoring cyber-physical production systems. In T. Claus, F. Herrmann, M. Manitz, 
& O. Rose (Eds.), Proceedings, 30th European Conference on Modelling and Simulation ECMS 2016. European Council for Modelling and 
Simulation. https​://doi.org/10.7148/2016-0579 

• Quadri, I., Bagnato, A., Brosse, E., & Sadovykh, A. (2015). Modeling methodologies for cyber-physical systems: Research field study on inherent 
and future challenges. Ada User Journal, 36(4), 246–253. https​://pure.au.dk/porta​l/files​/10718​2954/Model​ing_metho​dolog​ies_for_Cyber​_Physi​
cal_Syste​ms.pdf

Cloud computing • Glotfelter, P., Eichelberger, T., & Martin, P. J. (2014). Physicloud: A cloud-computing framework for programming cyber-physical systems. In 
IEEE Conference on Control Applications (CCA) (pp. 1533–1538). IEEE. https​://doi.org/10.1109/CCA.2014.69815​42 

Edge computing • Rodríguez, A., Valverde, J., Portilla, J., Otero, A., Riesgo, T., & La Torre, E. de (2018). Fpga-Based High-Performance Embedded Systems for 
Adaptive Edge Computing in Cyber-Physical Systems: The ARTICo³ Framework. Sensors, 18(6). https​://doi.org/10.3390/s1806​1877 

Ubiquitous computing • Chen, H. (2017). Theoretical foundations for cyber-physical systems: A literature review. Journal of Industrial Integration and Management, 
02(03). https​://doi.org/10.1142/S2424​86221​75001​30 

Artificial intelligence 
(AI)

• Lv, Z., Chen, D., Lou, R., & Alazab, A. (2021). Artificial intelligence for securing industrial-based cyber–physical systems. Future Generation 
Computer Systems, 117, 291–298. https​://doi.org/10.1016/j.futur​e.2020.12.001 

• Radanliev, P., Roure, D. de, van Kleek, M., Santos, O., & Ani, U. (2020). Artificial intelligence in cyber physical systems. AI & Society, 1–14. 
https​://doi.org/10.1007/s0014​6-020-01049​-0 

Reasoning • Håkansson, A., Hartung, R. L., & Moradian, E. (2015). Reasoning strategies in smart cyber-physical systems. Procedia Computer Science, 60, 
1575–1584. https​://doi.org/10.1016/j.procs​.2015.08.267 

• Tepjit, S., Horváth, I., & Rusák, Z. (2019). The state of framework development for implementing reasoning mechanisms in smart cyber-physical 
systems: A literature review. Journal of Computational Design and Engineering, 6(4), 527–541. https​://doi.org/10.1016/j.jcde.2019.04.002 

Machine learning • O’Donovan, P., Gallagher, C., Bruton, K., & O’Sullivan, D. T. (2018). A fog computing industrial cyber-physical system for embedded low-
latency machine learning Industry 4.0 applications. Manufacturing Letters, 15, 139–142. https​://doi.org/10.1016/j.mfgle​t.2018.01.005 

• Olowononi, F. O., Rawat, D. B., & Liu, C. (2021). Resilient machine learning for networked cyber physical systems: A survey for machine learn-
ing security to securing machine learning for CPS. IEEE Communications Surveys & Tutorials, 23(1), 524–552. https​://doi.org/10.1109/COMST​
.2020.30367​78 

Systems of systems • Díaz, J., Pérez, J., Pérez, J., & Garbajosa, J. (2016). Conceptualizing a framework for cyber-physical systems of systems development and deploy-
ment. In R. Bahsoon & R. Weinreich (Eds.), Proccedings of the 10th European Conference on Software Architecture Workshops - ECSAW ‘16 
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https​://doi.org/10.1007/978-3-319-42559​-7_2 

Physical sphere • Alur, R. (2015). Principles of cyber-physical systems. The MIT Press.
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29, 3717–3721. https​://doi.org/10.1016/j.proen​g.2012.01.559 
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In Proceedings of the the 28th Chinese Control and Decision Conference (2016 CCDC) (pp. 6867–6871). IEEE. https​://doi.org/10.1109/
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In 2020 Winter Simulation Conference (WSC) (pp. 2671–2682). IEEE. https​://doi.org/10.1109/WSC48​552.2020.93840​96 

Dynamic software updat-
ing (DSU)

• Kang, S., Chun, I., & Kim, W.‑T. (2014). Dynamic software updating for cyber-physical systems. In 18th IEEE International Symposium on 
Consumer Electronics (ISCE) (pp. 1–3). IEEE. https​://doi.org/10.1109/ISCE.2014.68844​73 

• Park, M. J., Kim, D. K., Kim, W.‑T., & Park, S.‑M. (2010). Dynamic software updates in cyber-physical systems. In International Conference on 
Information and Communication Technology Convergence (ICTC) (pp. 425–426). IEEE. https​://doi.org/10.1109/ICTC.2010.56748​07 

https://doi.org/10.1007/978-3-319-13359-1_23
https://doi.org/10.1007/978-3-319-13359-1_23
https://doi.org/10.1007/978-3-030-60910-8
https://doi.org/10.5861/ijrsm.2019.4001
https://doi.org/10.4018/978-1-5225-1677-4.ch015
https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.3182/20130925-3-CZ-3023.00010
https://doi.org/10.1016/j.proeng.2012.01.559
https://doi.org/10.1109/EITEC.2016.7503688
https://doi.org/10.1109/FIE.2015.7344228
https://doi.org/10.1109/TII.2011.2166772
https://doi.org/10.1109/CCDC.2016.7532235
https://doi.org/10.1109/CCDC.2016.7532235
https://doi.org/10.1007/978-3-319-42553-5_35
https://doi.org/10.1007/978-3-319-42553-5_35
https://doi.org/10.1007/978-3-319-39083-3_1
https://doi.org/10.1109/TST.2015.7085626
https://doi.org/10.1109/JPROC.2016.2521931
https://doi.org/10.1007/978-3-642-18308-9_9
https://doi.org/10.1007/978-3-642-18308-9_9
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https://doi.org/10.1109/INDIN.2014.6945601
https://doi.org/10.1016/j.comnet.2015.12.017
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https://doi.org/10.1007/978-3-319-32467-8_66
https://doi.org/10.1109/TNET.2015.2403862
https://doi.org/10.1109/TII.2012.2183878
https://doi.org/10.1007/978-3-662-47487-7_6
https://doi.org/10.1109/ICPADS.2011.60
https://doi.org/10.1109/WSC48552.2020.9384096
https://doi.org/10.1109/ISCE.2014.6884473
https://doi.org/10.1109/ICTC.2010.5674807
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Data acquisition • Dai, W., Zhang, Z., Wang, P., Vyatkin, V., & Christensen, J. H. (2017). Service-oriented data acquisition and management for industrial cyber-
physical systems. In 15th IEEE International Conference on Industrial Informatics (INDIN) (pp. 759–764). IEEE. https​://doi.org/10.1109/INDIN​
.2017.81048​67 

• Huang, W., Dai, W., Wang, P., & Vyatkin, V. (2017). Real-time data acquisition support for IEC 61,499 based industrial cyber-physical systems. 
In 43rd Annual Conference of the IEEE Industrial Electronics Society (IECON) (pp. 6689–6694). IEEE. https​://doi.org/10.1109/IECON​
.2017.82171​68 

Data aggregation • Ren, J., Wu, G., Su, X., Cui, G., Xia, F., & Obaidat, M. S. (2016). Learning automata-based data aggregation tree construction framework for 
cyber-physical systems. IEEE Systems Journal, 12(2), 1467-1479. https​://doi.org/10.1109/JSYST​.2015.25075​77 

• Stojmenovic, I. (2014). Machine-to-machine communications with in-network data aggregation, processing, and actuation for large-scale cyber-
physical systems. IEEE Internet of Things Journal, 1(2), 122–128. https​://doi.org/10.1109/JIOT.2014.23116​93 

Data fusion • Kühnert, C., & Arango, I. M. (2017). A generic data fusion and analysis platform for cyber-physical systems. In J. Beyerer, O. Niggemann, & C. 
Kühnert (Eds.), Technologien für die intelligente Automation. Machine Learning for Cyber Physical Systems: Selected papers from the Interna-
tional Conference ML4CPS 2016 (pp. 45–54). Springer. https​://doi.org/10.1007/978-3-662-53806​-7_6 

• Li, H., Zhang, L., Xiao, T., & Dong, J. (2015). Data fusion and simulation-based planning and control in cyber physical system for digital assem-
bly of aeroplane. International Journal of Modeling, Simulation, and Scientific Computing, 6(3). https​://doi.org/10.1142/S1793​96231​55002​70 

Data processing • Kos, A., Tomažič, S., Salom, J., Trifunovic, N., Valero, M., & Milutinovic, V. (2015). New benchmarking methodology and programming model 
for big data processing. International Journal of Distributed Sensor Networks, 11(8), 1–7. https​://doi.org/10.1155/2015/27175​2 

• Stojmenovic, I. (2014). Machine-to-machine communications with in-network data aggregation, processing, and actuation for large-scale cyber-
physical systems. IEEE Internet of Things Journal, 1(2), 122–128. https​://doi.org/10.1109/JIOT.2014.23116​93 

Data traffic • Li, H. (2012). Data traffic scheduling for cyber physical systems with application in voltage control of microgrids. In IEEE Global Communica-
tions Conference (GLOBECOM) (pp. 3334–3339). IEEE. https​://doi.org/10.1109/GLOCO​M.2012.65036​29 

• Qu, C., Chen, W., Song, J. B., & Li, H. (2015). Distributed data traffic scheduling with awareness of dynamics state in cyber physical systems 
with application in smart grid. IEEE Transactions on Smart Grid, 6(6), 2895–2905. https​://doi.org/10.1109/TSG.2015.23992​47 

Data dissemination • Bodkhe, U., & Tanwar, S. (2020). Taxonomy of secure data dissemination techniques for IoT environment. IET Software, 14(6), 563–571. https​://
doi.org/10.1049/iet-sen.2020.0006 

• Li, K., Kurunathan, H., Severino, R., & Tovar, E. (2018). Cooperative key generation for data dissemination in cyber-physical systems. In 9th 
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (pp. 331–332). IEEE. https​://doi.org/10.1109/ICCPS​.2018.00039​ 

Data exchange • Lien, S.‑Y., & Cheng, S.‑M. (2013). Resource-optimal network resilience for real-time data exchanges in Cyber-Physical Systems. In 24th IEEE 
International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1603–1608). IEEE. https​://doi.org/10.1109/
PIMRC​.2013.66663​98 

• Müller, R., Vette, M., Hörauf, L., & Speicher, C. (2016). Consistent data usage and exchange between virtuality and reality to manage complexi-
ties in assembly planning. Procedia CIRP, 44, 73–78. https​://doi.org/10.1016/j.proci​r.2016.02.126 

Data transmission • Fang, K., & Guo, B. (2015). An efficient data transmission strategy for cyber-physical systems in the complicated environment. In 2015 7th 
International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC) (Vol. 2, pp. 541–545). IEEE. https​://doi.org/10.1109/
IHMSC​.2015.164 

• França, R. P., Iano, Y., Monteiro, A. C. B., & Arthur, R. (2021). Applying a methodology in data transmission of discrete events from the 
perspective of cyber-physical systems environments. In V. Sugumaran, A. K. Luhach, & A. Elçi (Eds.), Advances in Systems Analysis, Software 
Engineering, and High Performance Computing. Artificial Intelligence Paradigms for Smart Cyber-Physical Systems (pp. 278–300). IGI Global. 
https​://doi.org/10.4018/978-1-7998-5101-1.ch013​ 

Data quality • Sha, K., & Zeadally, S. (2015). Data quality challenges in cyber-physical systems. Journal of Data and Information Quality, 6(2-3), 1–4. https​://
doi.org/10.1145/27409​65 

• Song, Z., Sun, Y., Wan, J., & Liang, P. (2016). Data quality management for service-oriented manufacturing cyber-physical systems. Computers 
& Electrical Engineering. Advance online publication. https​://doi.org/10.1016/j.compe​lecen​g.2016.08.010 

Data reliability • Wang, D. (2017). Data reliability challenge of cyber-physical systems. In C. Brecher, D. B. Rawat, H. Song, & S. Jeschke (Eds.), Cyber-physical 
systems: Foundations, principles and applications (pp. 91–101). Academic Press. https​://doi.org/10.1016/B978-0-12-80380​1-7.00006​-7 

Data recovery • Nower, N., Tan, Y., & Lim, Y. (2015). Incomplete feedback data recovery scheme with Kalman filter for real-time cyber-physical systems. In 7th 
International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 845–850). IEEE. https​://doi.org/10.1109/ICUFN​.2015.71826​63 

Supervisory control 
and data acquisition 
(SCADA)

• Segovia, M., Cavalli, A. R., Cuppens, N., & Garcia-Alfaro, J. (2019). A study on mitigation techniques for SCADA-driven cyber-physical systems 
(position paper). In N. Zincir-Heywood, G. Bonfante, M. Debbabi, & J. Garcia-Alfaro (Eds.), Lecture Notes in Computer Science: Vol 11,358. 
Foundations and Practice of Security (pp. 257–264). Springer. https​://doi.org/10.1007/978-3-030-18419​-3_17 

• Stefanov, A., Liu, C.‑C., Govindarasu, M., & Wu, S.‑S. (2015). SCADA modeling for performance and vulnerability assessment of integrated 
cyber-physical systems. International Transactions on Electrical Energy Systems, 25(3), 498–519. https​://doi.org/10.1002/etep.1862 

Embedded systems • Bonakdarpour, B. (2008). Challenges in transformation of existing real-time embedded systems to cyber-physical systems. ACM SIGBED Review, 
5(1), 1–2. https​://doi.org/10.1145/13662​83.13662​94 

• Lee, E. A. (2009). Introducing embedded systems: A cyber-physical approach. In P. Marwedel (Ed.), Proceedings of the 2009 Workshop on 
Embedded Systems Education (pp. 1–2). ACM. https​://doi.org/10.1145/17190​10.17190​11 

Sensors • Ashok, P., Krishnamoorthy, G., & Tesar, D. (2011). Guidelines for managing sensors in cyber physical systems with multiple sensors. Journal of 
Sensors, 2011, 1–15. https​://doi.org/10.1155/2011/32170​9 

• Dunets, R., Klym, H., & Kochan, R. (2016). Models of hardware integration of sensors elements with cyber-physical systems. In 13th Interna-
tional Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET). https​://doi.org/10.1109/
TCSET​.2016.74520​33 

Processors • Adyanthaya, S., Geilen, M., Basten, T., Schiffelers, R., Theelen, B., & Voeten, J. (2013). Fast multiprocessor scheduling with fixed task binding 
of large scale industrial cyber physical systems. In Euromicro Conference on Digital System Design (pp. 979–988). IEEE. https​://doi.org/10.1109/
DSD.2013.111 

• Craven, S., Long, D., & Smith, J. (2010). Open source precision timed soft processor for cyber physical system applications. In V. Prasanna 
(Ed.), International Conference on Reconfigurable Computing and FPGAs (ReConFig) (pp. 448–451). IEEE. https​://doi.org/10.1109/ReCon​
Fig.2010.72 

https://doi.org/10.1109/INDIN.2017.8104867
https://doi.org/10.1109/INDIN.2017.8104867
https://doi.org/10.1109/IECON.2017.8217168
https://doi.org/10.1109/IECON.2017.8217168
https://doi.org/10.1109/JSYST.2015.2507577
https://doi.org/10.1109/JIOT.2014.2311693
https://doi.org/10.1007/978-3-662-53806-7_6
https://doi.org/10.1142/S1793962315500270
https://doi.org/10.1155/2015/271752
https://doi.org/10.1109/JIOT.2014.2311693
https://doi.org/10.1109/GLOCOM.2012.6503629
https://doi.org/10.1109/TSG.2015.2399247
https://doi.org/10.1049/iet-sen.2020.0006
https://doi.org/10.1049/iet-sen.2020.0006
https://doi.org/10.1109/ICCPS.2018.00039
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Field programmable gate 
array (FPGA)

• Grimm, T., Janssen, B., Navarro, O., & Hübner, M. (2015). The value of FPGAs as reconfigurable hardware enabling cyber-physical systems. In 
20th IEEE Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1–8). IEEE. https​://doi.org/10.1109/ETFA.2015.73014​96 

• Sarma, S., & Dutt, N. (2014). Fpga emulation and prototyping of a cyberphysical-system-on-chip (CPSoC). In 25th IEEE International Sympo-
sium on Rapid System Prototyping (RSP) (pp. 121–127). IEEE. https​://doi.org/10.1109/RSP.2014.69669​02 

Actuators • Cheng, S.‑T., & Chou, J.‑H. (2012). Fuzzy-based actuators controlling for minimizing power consumption in cyber-physical system. In L. Barolli 
(Ed.), 26th IEEE International Conference on Advanced Information Networking and Applications (AINA) (pp. 160–166). IEEE. https​://doi.
org/10.1109/AINA.2012.109 

• Taha, A. F., Gatsis, N., Summers, T., & Nugroho, S. A. (2019). Time-varying sensor and actuator selection for uncertain cyber-physical systems. 
IEEE Transactions on Control of Network Systems, 6(2), 750–762. https​://doi.org/10.1109/TCNS.2018.28732​29 

Controllers • Goswami, D., Schneider, R., & Chakraborty, S. (2011). Co-design of cyber-physical systems via controllers with flexible delay constraints. 
In Proceedings of the 16th Asia and South Pacific Design Automation Conference (pp. 225–230). IEEE. https​://doi.org/10.1109/ASPDA​
C.2011.57221​88 

• Reniers, M., van de Mortel-Fronczak, J., & Roelofs, K. (2017). Model-based engineering of supervisory controllers for cyber-physical systems. In 
S. Jeschke, C. Brecher, H. Song, & D. B. Rawat (Eds.), Springer Series in Wireless Technology. Industrial Internet of Things: Cybermanufactur-
ing Systems (pp. 111–136). Springer. https​://doi.org/10.1007/978-3-319-42559​-7_5 

Identifiers • Huang, X., & Dong, J. (2019). Reliable control of cyber-physical systems under sensor and actuator attacks: An identifier-critic based integral 
sliding-mode control approach. Neurocomputing, 361, 229–242. https​://doi.org/10.1016/j.neuco​m.2019.06.069 

Radio-frequency identifi-
cation (RFID)

• Huebner, A., Facchi, C., Meyer, M., & Janicke, H. (2013). RFID systems from a cyber-physical systems perspective. In M. Kucera (Ed.), 2013 
proceedings of the 11th Workshop on Intelligent Solutions in Embedded Systems (WISES) (pp. 1–6). IEEE.

• Wu, N., & Li, X. (2011). RFID applications in cyber-physical system. In C. Turcu (Ed.), Deploying RFID - Challenges, Solutions, and Open 
Issues. InTech. https​://doi.org/10.5772/17464​ 

Near field communication 
(NFC)

• Katiyar, K., Gupta, H., & Gupta, A. (2014). Integrating contactless near field communication and context-aware systems: Improved internet-of-
things and cyberphysical systems. In 5th International Conference - Confluence The Next Generation Information Technology Summit (Conflu-
ence).

Robotics • Khalid, A., Kirisci, P., Ghrairi, Z., Thoben, K.‑D., & Pannek, J. (2016). A methodology to develop collaborative robotic cyber physical systems 
for production environments. Logistics Research, 9(1). https​://doi.org/10.1007/s1215​9-016-0151-x 

• Michniewicz, J., & Reinhart, G. (2014). Cyber-physical robotics – Automated analysis, programming and configuration of robot cells based on 
cyber-physical-systems. Procedia Technology, 15, 566–575. https​://doi.org/10.1016/j.protc​y.2014.09.017 

Cobots/Collaborative 
robotics

• Khalid, A., Kirisci, P., Ghrairi, Z., Pannek, J., & Thoben, K.‑D. (2017). Safety requirements in collaborative human–robot cyber-physical 
system. In M. Freitag, H. Kotzab, & J. Pannek (Eds.), Lecture Notes in Logistics. Dynamics in Logistics (pp. 41–51). Springer. https​://doi.
org/10.1007/978-3-319-45117​-6_4 

• Rodić, A., Stevanović, I., & Jovanović, M. (2019). Smart cyber-physical system to enhance flexibility of production and improve collaborative 
robot capabilities – Mechanical design and control concept. In N. A. Aspragathos, P. N. Koustoumpardis, & V. C. Moulianitis (Eds.), Mecha-
nisms and Machine Science: Vol 67. Advances in Service and Industrial Robotics (pp. 627–639). Springer. https​://doi.org/10.1007/978-3-030-
00232​-9_66 

Wearables • Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50, 202–221. https​://doi.org/10.1016/j.micpr​
o.2017.03.008 

• Yelizarov, A. A., Nazarov, I. V., Skuridin, A. A., Yakimenko, S. I., & Ikonnikova, D. M. (2020). Features of wireless charging of mobile and 
wearable devices for the IoT and cyber physical systems. In 2020 International Conference on Engineering Management of Communication and 
Technology (EMCTECH) (pp. 1–4). IEEE. https​://doi.org/10.1109/EMCTE​CH496​34.2020.92615​67 

(Powered) Exoskeletons • Bances, E., Schneider, U., Siegert, J., & Bauernhansl, T. (2020). Exoskeletons towards Industrie 4.0: Benefits and challenges of the IoT communi-
cation architecture. Procedia Manufacturing, 42, 49–56. https​://doi.org/10.1016/j.promf​g.2020.02.087 

Augmented reality (AR) • Lukman Khalid, C. M., Fathi, M. S., & Mohamed, Z. (2014). Integration of cyber-physical systems technology with augmented reality in the 
pre-construction stage. In 2nd International Conference on Technology, Informatics, Management, Engineering & Environment (TIME-E) 
(pp. 151–156). IEEE. https​://doi.org/10.1109/TIME-E.2014.70116​09 

• Scheuermann, C., Meissgeier, F., Bruegge, B., & Verclas, S. (2016). Mobile augmented reality based annotation system: A cyber-physical human 
system. In L. T. de Paolis & A. Mongelli (Eds.), Lecture Notes in Computer Science: Vol. 9768. Augmented Reality, Virtual Reality, and Com-
puter Graphics (pp. 267–280). Springer. https​://doi.org/10.1007/978-3-319-40621​-3_20 

Virtual reality (VR) • Frontoni, E., Loncarski, J., Pierdicca, R., Bernardini, M., & Sasso, M. (2018). Cyber physical systems for Industry 4.0: Towards real time virtual 
reality in smart manufacturing. In L. T. de Paolis & P. Bourdot (Eds.), Lecture Notes in Computer Science: Vol 10,851. Augmented Reality, 
Virtual Reality, and Computer Graphics (pp. 422–434). Springer. https​://doi.org/10.1007/978-3-319-95282​-6_31 

• Mikkonen, T., Kemell, K.‑K., Kettunen, P., & Abrahamsson, P. (2019). Exploring virtual reality as an integrated development environment for 
cyber-physical systems. In 45th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) (pp. 121–125). IEEE. https​
://doi.org/10.1109/SEAA.2019.00027​ 

User interface • Paelke, V., & Röcker, C. (2015). User interfaces for cyber-physical systems: Challenges and possible approaches. In A. Marcus (Ed.), Lecture 
Notes in Computer Science: Vol. 9186. Design, User Experience, and Usability (pp. 75–85). Springer. https​://doi.org/10.1007/978-3-319-20886​
-2_8 

• Sonntag, D., Zillner, S., van der Smagt, P., & Lörincz, A. (2017). Overview of the CPS for smart factories project: Deep learning, knowledge 
acquisition, anomaly detection and intelligent user interfaces. In S. Jeschke, C. Brecher, H. Song, & D. B. Rawat (Eds.), Springer Series in Wire-
less Technology. Industrial Internet of Things: Cybermanufacturing Systems (pp. 487–504). Springer. https​://doi.org/10.1007/978-3-319-42559​
-7_19 

Human-machine-inter-
face (HMI)

• Pedersen, N., Bojsen, T., & Madsen, J. (2017). Co-simulation of cyber physical systems with HMI for human in the loop investigation. In TMS/
DEVS Symposium on Theory of Modeling & Simulation (pp. 1-12). Society for Modeling and Simulation International (SCS). https​://doi.
org/10.22360​/sprin​gsim.2017.tmsde​vs.012 

• Wittenberg, C. (2016). Human-CPS interaction - Requirements and human-machine interaction methods for the Industry 4.0. IFAC-PapersOn-
Line, 49(19), 420–425. https​://doi.org/10.1016/j.ifaco​l.2016.10.602 
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https://doi.org/10.5772/17464
https://doi.org/10.1007/s12159-016-0151-x
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Graphical user interface 
(GUI)

• Wan, K., Alagar, V., & Wei, B. (2013). Intelligent graphical user interface for managing resource knowledge in cyber physical systems. In M. 
Wang (Ed.), Lecture Notes in Computer Science: Vol. 8041. Knowledge Science, Engineering and Management (pp. 89–103). Springer. https​://
doi.org/10.1007/978-3-642-39787​-5_8 

Gesture control • Horváth, G., & Erdős, G. (2017). Gesture control of cyber physical systems. Procedia CIRP, 63, 184–188. https​://doi.org/10.1016/j.proci​
r.2017.03.312 
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Wireless personal area 
network (WPAN)

• Devesh, M., Kant, A. K., Suchit, Y. R., Tanuja, P., & Kumar, S. N. (2020). Fruition of CPS and IoT in context of Industry 4.0. In S. Choudhury, 
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3rd International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA) (pp. 66–69). IEEE. https​://doi.org/10.1109/
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monitoring in cyber-physical systems. In 23rd International Conference on System Theory, Control and Computing (ICSTCC) (pp. 55–60). IEEE. 
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Processing • Parashchuk, I., & Kotenko, I. (2019). Formulation of a system of indicators of information protection quality in automatic systems of numerical 
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Technology: Vol. 438. Advances in Production Management Systems: Innovative and Knowledge-Based Production Management in a Global-
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Event-triggered control • An, J., Yao, J., Zhou, H., & Hu, F. (2013). A better understanding of event-triggered control from a CPS perspective. In International Conference 
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Validation • Arrieta, A., Sagardui, G., & Etxeberria, L. (2014). Towards the automatic generation and management of plant models for the validation of highly 
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• Farooq, B., Bao, J., Raza, H., Sun, Y., & Ma, Q. (2021). Flow-shop path planning for multi-automated guided vehicles in intelligent textile 
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Energy harvesting • Erol-Kantarci, M., Illig, D. W., Rumbaugh, L. K., & Jemison, W. D. (2016). Energy-harvesting low-power devices in cyber-physical systems. In 
H. Song, D. B. Rawat, S. Jeschke, & C. Brecher (Eds.), Intelligent Data Centric Systems. Cyber-Physical Systems: Foundations, Principles and 
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cyber-physical system. In Design, Automation & Test in Europe Conference & Exhibition (DATE) (pp. 567–572). IEEE. https​://doi.org/10.7873/
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Battery management • Man, K. L., Ting, T. O., Krilavicius, T., Wan, K., Chen, C., Chang, J., & Poon, S. H. (2012). Towards a hybrid approach to SoC estimation for a 
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• Zhang, F., & Shi, Z. (2009). Optimal and adaptive battery discharge strategies for cyber-physical systems. In 48th IEEE Conference on Decision 
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Smart products • Barbosa, J., Leitao, P., Trentesaux, D., Colombo, A. W., & Karnouskos, S. (2016). Cross benefits from cyber-physical systems and intelligent 
products for future smart industries. In 14th IEEE International Conference on Industrial Informatics (INDIN) (pp. 504–509). IEEE. https​://doi.
org/10.1109/INDIN​.2016.78192​14 

• Riel, A., Kreiner, C., Macher, G., & Messnarz, R. (2017). Integrated design for tackling safety and security challenges of smart products and 
digital manufacturing. CIRP Annals - Manufacturing Technology, 66(1), 177–180. https​://doi.org/10.1016/j.cirp.2017.04.037 
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the entire product life 
cycle (product usage 
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• Oks, S. J., Fritzsche, A., & Möslein, K. M. (2017). An application map for industrial cyber-physical systems. In S. Jeschke, C. Brecher, H. Song, 
& D. B. Rawat (Eds.), Springer Series in Wireless Technology. Industrial Internet of Things: Cybermanufacturing Systems (pp. 21–46). Springer. 
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• Shangguan, D., Chen, L., & Ding, J. (2019). A hierarchical digital twin model framework for dynamic cyber-physical system design. Pro-
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Condition • El Hamdi, S., Abouabdellah, A., & Oudani, M. (2019). Industry 4.0: Fundamentals and main challenges. In International Colloquium on Logis-
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