
DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNICAL UNIVERSITY MUNICH

Master’s Thesis in Electrical Engineering

Quantum-Enhanced Deterministic Control
for Continuous Robot Navigation Tasks

Alexander Künzner

DEPARTMENT OF ELECTRICAL ENGINEERING

TECHNICAL UNIVERSITY MUNICH

Master’s Thesis in Electrical Engineering

Quantum-Enhanced Deterministic Control
for Continuous Robot Navigation Tasks

Quantenverstärkte Deterministische
Steuerung für Kontinuierliche Aufgaben der

Roboternavigation

Author: Alexander Künzner
External Supervisor: MSc. Theodora-Augustina Drăgan
Internal Supervisor: Prof. Dr. Robert Wille
Submission Date: 15 October 2024

Abstract

This thesis studies whether integrating variational quantum circuits (VQC) into rein-
forcement learning (RL) frameworks can address inherent challenges classical RL face
- scaling to continuous action and state spaces in more industrial-like environments
that rely only on local feature generation. It aims to determine if quantum and hybrid
models offer performance advantages and parameter efficiency over classical neural
networks (NN) in simulated robot navigation tasks. An advanced RL environment is
implemented, simulating continuous robot navigation with local sensory inputs like
LiDAR, velocity, and orientation to closely mimic real-world conditions. A dynamic
reward system encourages consistent progress and penalizes inefficiencies. Within the
deep deterministic policy gradient (DDPG) framework, three function approximators
are investigated: classical NNs and two VQC-based ansatzes, hybrid and quantum.
Each is evaluated across multiple VQC setups by varying the qubit count and the
number of layers to determine effects on performance and scalability. The ansatzes
are then compared against classical NNs with a similar number of parameters to
assess relative performance and parameter efficiency. Training and testing of all 117
models are conducted in a simulated robot navigation environment to systematically
compare performance, aiming to uncover the strengths and limitations of integrating
quantum computing into RL for robotic applications. The results demonstrate that
quantum-enhanced models using VQCs successfully learn continuous robot navigation
tasks using only local features in three environments of varying difficulty. Increasing
the depth of the VQCs, particularly by adding more layers, substantially improves
performance, with deeper quantum circuits (QC) outperforming simpler ones. Hybrid
models provide balanced performance, especially in more complex environments, by
showing characteristics of quantum and classical approaches. Some quantum models
exhibit superior parameter efficiency, achieving comparable or superior results to classi-
cal models, though with significantly fewer trainable parameters. Findings confirm the
potential of quantum reinforcement learning (QRL) to address challenges in continuous
robot navigation tasks, indicating possible quantum advantages in parameter efficiency.
However, practical implementation on real quantum hardware remains challenging
due to current hardware limitations and noise constraints. Further research is needed
to explore advanced algorithms and address issues like hyper-parameter sensitivity
and barren plateaus to fully realize the potential of quantum-enhanced RL in robotics.

ii

Contents

Abstract ii

1. Introduction 1

2. Reinforcement Learning 3
2.1. Fundamentals . 3

2.1.1. Markov Decision Processes . 4
2.1.2. Policies and Value Functions . 8

2.2. Learning Methods . 10
2.2.1. Model-Free and Model-Based Methods 10
2.2.2. On-Policy and Off-Policy Learning 11
2.2.3. Value-Based Methods . 11
2.2.4. Policy Gradient Methods . 12
2.2.5. Actor-Critic Methods . 12
2.2.6. Monte Carlo vs. Temporal-Difference Methods 13
2.2.7. Overview of Concepts . 13

2.3. Solution Methods . 14
2.3.1. Tabular Solutions . 15
2.3.2. Approximate Solutions . 15

3. Quantum Computing 19
3.1. Fundamentals . 19
3.2. Quantum Machine Learning . 23

3.2.1. QML Encoding Techniques . 26

4. Quantum Reinforcement Learning 29
4.1. Quantum Kernels in RL . 29
4.2. Related Work in VQC-based QRL . 33

5. Problem Statement and Solution 39
5.1. Challenges in QRL for Robot Navigation 39
5.2. Proposed Methodology . 40

5.2.1. Design of RL Environment . 41

iii

Contents

5.2.2. Computation of Reward Thresholds 42
5.2.3. RL Models: Classical, Hybrid, and Quantum 44
5.2.4. Hardware, Software, and Computational Resources 49

6. Results 52
6.1. Experimental Setup and Remarks . 52
6.2. Training Results . 54

6.2.1. Classical Performance . 54
6.2.2. Quantum Performance . 57
6.2.3. Hybrid Performance . 59

6.3. Test Results . 63
6.3.1. 3×3 Environment . 63
6.3.2. 4×4 Environment . 65
6.3.3. 5×5 Environment . 65

6.4. Cross-Environment Training and Test Performance Analysis 67
6.4.1. Training Summary . 67
6.4.2. Test Summary . 70
6.4.3. Interpretation and Trends of Summaries 71

7. Conclusion and Future Work 74

A. Appendix 76
A.1. Hyper-Parameter Details for DDPG . 76

List of Figures 79

List of Tables 81

List of Abbreviations 83

Bibliography 85

iv

1. Introduction

Reinforcement learning (RL) has emerged as a powerful framework for solving complex
decision-making problems in recent years, with applications ranging from game-playing
artificial intelligence (AI) [1] to autonomous robotics [2, 3]. Despite its success, RL faces
significant challenges when scaling to high-dimensional state and action spaces [4].
Traditional algorithms often employ semi-efficient strategies to optimize computational
resources or limit research scenarios to discrete settings [5], restricting state and action
spaces to non-realistic environments. Furthermore, the current RL literature frequently
utilizes Atari 2600 games as standard benchmarks [6], which incorporate globally
generated features instead of local ones, highlighting the limitation of RL to idealized
environments. As neural networks (NN) increase in size to address growing problem
complexities [7], the number of weights - and consequently the computational resources
required - also increases. In contrast to these limitations, quantum computing has
attracted increasing attention due to its potential to solve specific classes of problems
polynomially or exponentially faster than classical computers [8, 9], as demonstrated by
Shor’s [10] and Grover’s algorithms [11]. QC leverages principles of quantum mechan-
ics, such as superposition and entanglement, to process information in fundamentally
new ways [8]. This has led to the exploration of quantum-enhanced machine learning
(QML) methods, including quantum reinforcement learning (QRL), which aims to
exploit quantum computational advantages to improve RL performance [9].

This thesis explores the integration of QC into RL, focusing specifically on the appli-
cation of variational quantum circuits (VQC) within the RL framework as function
approximators. By leveraging quantum mechanics principles, this work addresses
inherent challenges in classical RL, including the lack of more industrial-like environ-
ments, the application of function approximation in continuous action and state spaces,
and the reliance on local feature generation. Additionally, it seeks to tackle the growing
computational requirements of NNs for more complex problems.

The contributions of this thesis provide insights into the scalability and hybridiza-
tion performances of different quantum-enhanced ansatzes that build upon the deep
deterministic policy gradient (DDPG) algorithm to learn policies in robot navigation
scenarios across three distinct environments. Thirteen different architectures based on

1

1. Introduction

quantum, hybrid, and classical ansatzes are compared across 117 models, including
1,170 evaluation runs. The work demonstrates the feasibility of quantum-enhanced
function approximators for complex robotics tasks. It confirms that VQC-based models
can successfully learn continuous robot navigation in a simulated environment using
only local features. The results also imply potential quantum advantages in parameter
efficiency compared to a classical baseline, with a hybrid ansatz balancing characteris-
tics of both quantum and classical methods.

The thesis is structured as follows: Chapter 2 introduces the theory of RL, providing an
overview of theory and algorithms focusing on actor-critic models. The fundamentals
of QC are discussed in Chapter 3, including the foundational workings of quantum
physics within the QML frame. Chapter 4 merges insights from RL and QC to provide
context on the spectrum of QRL methods and related work applying VQC-based
techniques for RL. Moving on to the limitations of current RL techniques, Chapter 5
introduces the RL environment and circuits used in this work. Chapter 6 analyzes
and summarizes the training and test results, including discussions of trends and
interpretations of the three approaches. Finally, Chapter 7 concludes the thesis by
placing its insights into a broader scope and providing recommendations for future
research directions.

2

2. Reinforcement Learning

2.1. Fundamentals

Supervised learning, unsupervised learning, and RL are three fundamental paradigms
within ML, each differing in how they utilize data. In supervised learning, models are
trained on labeled datasets, where the input data is paired with the correct output,
allowing the model to learn a mapping from inputs to outputs. On the other hand,
unsupervised learning deals with unlabeled data, focusing on identifying patterns
or structures within the data, such as clustering or dimensionality reduction [12].
RL diverges from both by placing an agent to interact with an environment to learn
optimal behaviors (policies) through trial-and-error [13], where each interaction serves
as sampled data that informs the learning process of the agent.

Figure 2.1.: Reinforcement learning loop: agent-environment interaction [12].

In RL, the learning process pivots around an agent, the decision-maker, that interacts
with an environment to learn a policy π : S→ A, which maps states st ∈ S to actions
at ∈ A [12, 14]. The primary objective of the policy is to maximize the cumulative
reward, also known as the return, which is the total reward an agent accumulates over
time [13]. This dynamic interaction between the agent and the environment is vital to
the RL process, as it mirrors the adaptive nature of learning from experience [12]. The
learning process can be broken down into several steps, as shown in Figure 2.1. Note

3

2. Reinforcement Learning

that agent and policy are often used interchangeably as "the policy is . . . the agent’s
brain" [15, p. 33].

• State (St): At each time step t, the agent observes the current state St of the
environment. The state represents the current situation or context in which the
agent finds itself, including features or conditions relevant to the task at hand.
Feature elements of an observed state could be the coordinates of a robot, its
orientation, or sensor measurements.

• Action (At): Based on the observed state St, the agent chooses an action At. The
action is selected according to the agent’s current policy π, which determines
actions to take in response to different states.

• Environment Response: After the agent takes action At, the environment transi-
tions to a new state St+1. This transition is influenced by the agent’s action and
the underlying dynamics of the environment, including noise.

• Reward (Rt): As a result of the action taken, the agent receives feedback in the
form of a reward Rt. The reward Rt, which can be positive (a reward) or negative
(a penalty), is a scalar value that establishes a measurement of how favorable the
outcome of the action was in terms of achieving the agent’s general objective.

• Loop Continuation: The process then repeats, with the agent using the new
observed state St+1 to select the subsequent action At+1, receiving a new reward
Rt+1, and so on. This loop continues until a terminating condition is met, such as
reaching a goal state, a maximum number of steps, or convergence to an optimal
policy. Over time, the agent’s policy is updated to maximize its cumulative
reward, improving its actions to become more effective.

The agent-environment interaction described above forms the basis of RL. However,
RL is typically framed within the mathematical structure of a Markov decision process
(MDP) [16, 1, 13, 12]. The details of this framework are discussed in the following
section.

2.1.1. Markov Decision Processes

MDPs are a fundamental mathematical framework for modeling sequential decision-
making problems [13]. Although there exist various types and classifications of MDPs,
such as partially observable MDPs (POMDP) [16, 13], constrained, and risk-aware
MDPs [17], this thesis focuses on standard MDPs and their mathematical framework.
In real-world scenarios, standard MDPs often fall short due to noisy sensor readings

4

2. Reinforcement Learning

or other factors unknown to the agent, making extensions like POMDPs necessary.
However, this thesis will be limited to the standard MDP framework, which forms
the core of RL by defining the interaction between an agent and its environment over
discrete time steps [1]. An MDP is characterized by a set of states, actions, transition
probabilities, and rewards, which collectively describe the environment in which the
agent operates [3]. The content in Section 2 is primarily based on the works of [12] and
[13].

While many MDP extensions address various complexities, they differ in the nature of
their state and action spaces. According to [13], MDPs can be classified into finite and
infinite categories. Finite MDPs have a limited number of states and actions, meaning
the agent encounters only a finite set of distinct states and can choose from a finite
set of actions [1]. In contrast, infinite MDPs involve state or action spaces that are
unbounded or continuous, typical in scenarios such as a robot’s physical positioning or
the continuous adjustment of a steering wheel. The following key components formally
define an MDP:

1. State Space (S): The state space S represents all possible situations or configura-
tions in which the agent can find itself within the environment. A state St ∈ S at
time step t contains all the information necessary for decision-making. In a finite
MDP, S consists of a limited number of discrete states. In contrast, in an infinite
MDP, S may represent a continuous set corresponding to infinite possible states,
such as a robot’s position and orientation.

2. Action Space (A): The action space A consists of all possible actions the agent can
perform. For a given state St ∈ S , the agent selects an action At ∈ A(St) based on
its policy, which is a decision-making strategy. In finite MDPs, the set of actions
A is finite and discrete. In infinite MDPs, the action space can be continuous,
such as choosing a real-valued speed or steering angle.

3. Joint State-Reward Probabilities (p(s′, r | s, a)): The joint state-reward probability
function defines the probability of transitioning to a state s′ and receiving a
reward r, given that the agent was in state s and took action a. This function is
represented as [12]:

p(s′, r | s, a) = Pr{St = s′, Rt = r | St−1 = s, At−1 = a}, (2.1)

where s′ ∈ S , r ∈ R, s ∈ S , and a ∈ A. The joint probability describes the
combined interactions of the environment and the reward structure in RL. It cap-
tures the likelihood of arriving at a specific state while receiving a certain reward.

5

2. Reinforcement Learning

This probability integrates the transitions between states and the corresponding
rewards, reflecting the complete outcome of an action chosen by a policy π.

4. State-Transition Probabilities (p(s′ | s, a)): The state-transition probabilities
describe the likelihood of moving from one state to another given a specific action
taken by the agent. These probabilities can be derived from the joint state-reward
probabilities (cf. Equation 2.1) by summing over all possible rewards r ∈ R:

p(s′ | s, a) = ∑
r∈R

p(s′, r | s, a). (2.2)

In this context, p(s′ | s, a) represents the probability of transitioning to state
s′ given that the agent was in state s and took action a. These state-transition
probabilities allow the agent to predict the consequences of its actions and adjust
its policy accordingly, which is essential for learning optimal behaviors in RL.

5. Expected Rewards (r(s, a) and r(s, a, s′)): The expected rewards can be repre-
sented in two different ways, depending on the level of detail required for the
decision-making process:

• Expected Reward for State-Action Pairs (r(s, a)): This function represents
the expected reward received after taking action a in state s. It is defined as
[13]:

r(s, a) = E[Rt | St−1 = s, At−1 = a] = ∑
r∈R

r ∑
s′∈S

p(s′, r | s, a). (2.3)

Here, r(s, a) captures the expected reward over all possible state transitions
and associated rewards, providing a scalar measurement of the desirability
of an action in a given state. This is useful in RL for value-based methods,
which involve estimating the value of taking an action in a particular state
to make informed decisions about which actions to take to maximize future
rewards.

• Expected Reward for State-Action-Next-State Triples (r(s, a, s′)): This func-
tion provides a more detailed view by considering a specific transition to the
next state s′. It is given by [12]:

r(s, a, s′) = E[Rt | St−1 = s, At−1 = a, St = s′] = ∑
r∈R

r
p(s′, r | s, a)
p(s′ | s, a)

. (2.4)

This representation of the expected reward helps understand the immediate
outcomes of specific transitions, allowing more granular control in policy de-
sign and optimization. In contrast, the expected reward for a state-action pair,

6

2. Reinforcement Learning

denoted as r(s, a), considers the average reward over all possible transitions
resulting from taking action a in state s. It is calculated by summing over
all possible next states and their associated rewards, weighted by the state-
transition probabilities. This difference is significant in RL because r(s, a, s′)
focuses on the reward given a particular next state, allowing the agent to
differentiate between the outcomes of specific transitions. Model-based Algo-
rithms, which aim to predict and optimize over exact state transitions rather
than general expectations, benefit from this more detailed expected reward
representation.

In an MDP, the agent aims to maximize its long-term cumulative reward, defined as the
total sum of rewards received over time [3]. This cumulative reward can be specified in
two ways:

• Cumulative Reward: The sum of rewards until a terminal time step T, suitable
for tasks with natural endpoints:

Gt =
T−t

∑
k=0

Rt+k+1, (2.5)

• Discounted Cumulative Reward: Future rewards are discounted by a factor
γ ∈ [0, 1) to reflect their present value [13], suitable for continuing tasks:

Gt =
∞

∑
k=0

γkRt+k+1. (2.6)

In summary, the MDP framework provides a complete mathematical model for decision-
making in environments where outcomes are partly random and partly under the
control of an agent. By specifying state and action spaces, transition and reward
probabilities, and expected rewards, MDPs formally model the interactions between an
agent and its environment. This structure is crucial in RL, laying the foundation for
understanding how agents learn from their actions to maximize cumulative rewards
over time. Modeling and analyzing these components allows for developing algorithms
that can effectively handle various environments, whether finite or infinite, discrete or
continuous.

With a solid understanding of the MDP framework, the focus now shifts to the agents
themselves, particularly the policies that guide their decision-making processes. The
next section will explore policies, how agents use them to select actions based on the
current state, and how these policies can be optimized to achieve the best possible
outcomes.

7

2. Reinforcement Learning

2.1.2. Policies and Value Functions

The agent is the decision-maker that interacts with the environment, learns from it,
and makes decisions to maximize cumulative rewards [13]. The policy is a central
component of the agent’s decision-making process, defining the agent’s behavior by
mapping states to actions. Formally, a policy π is a function π : S → A, where π(a|s)
denotes the probability of taking action a when in state s [13]. The notation used for a
policy depends on its type. A stochastic policy, for example, is typically denoted by π,
where actions are selected according to a probability distribution, i.e., At ∼ π(·|St). In
contrast, a deterministic policy is usually denoted by µ, where actions are a specific
state function, represented as At = µ(St) [15]. This chapter will use the notation π to
represent a policy in general contexts. The appropriate notation will be used when
necessary (e.g., in Section 2.3.2).

Another key concept in RL is the value function, which estimates an agent’s expected
cumulative reward from a given state following a particular policy. The state-value
function vπ(s) for a policy π is defined as [12]:

vπ(s) = Eπ [Gt | St = s] = Eπ

[
∞

∑
k=0

γkRt+k+1 | St = s

]
, (2.7)

where Gt represents the cumulative reward from time step t, and γ is the discount factor
that balances the importance of immediate and future rewards. Similarly, the action-
value function, or Q-function, qπ(s, a), represents the expected cumulative reward
starting from state s, taking action a, and thereafter following policy π [13]:

qπ(s, a) = Eπ [Gt | St = s, At = a] = Eπ

[
∞

∑
k=0

γkRt+k+1 | St = s, At = a

]
. (2.8)

RL algorithms can be broadly classified based on how they utilize the policy and
value functions. Policy-based methods optimize the policy by adjusting its parameters
to maximize expected rewards, while value-based methods focus on estimating the
value functions to guide the agent’s actions indirectly. Some algorithms combine both
approaches, known as actor-critic methods, where the policy (actor) and value function
(critic) are learned simultaneously [18].

According to [19], the Bellman equation is a fundamental component of dynamic
programming and plays a crucial role in RL algorithms. This equation breaks down the
value function into recursive subproblems, which helps optimize sequential decision-
making processes. The Bellman equation is based on the principle of optimality, which

8

2. Reinforcement Learning

states that an optimal policy must ensure that, regardless of the starting state and
initial action, the remaining decisions form an optimal policy relative to the state
resulting from the first decision. In RL, this equation provides a method to calculate the
value of a state or a state-action pair by considering the expected cumulative rewards,
balancing immediate rewards and future gains. This creates a recursive relationship
that facilitates iterative improvements of value estimates over time, allowing the agent
to learn optimal strategies for interacting with the environment. The Bellman equation
for the state-value function vπ(s) under a policy π is given by [12]:

vπ(s) = Eπ[Gt | St = s] = ∑
a∈A

π(a|s)∑
s′,r

p(s′, r|s, a)[r + γvπ(s′)], (2.9)

for all s ∈ S . This equation expresses the value of a state s as the expected sum of
immediate rewards and the discounted value of the subsequent states, assuming the
agent follows policy π. It captures the trade-off between taking an immediate action
and the future benefits of states that result from that action. Similarly, the Bellman
equation for the action-value function qπ(s, a) under a policy π is defined as [12]:

qπ(s, a) = Eπ[Gt | St = s, At = a] = ∑
s′,r

p(s′, r|s, a)[r + γqπ(s′, a′)], (2.10)

for all (s, a) ∈ S ×A. This equation calculates the expected return of taking action a in
state s and then following policy π. It helps evaluate how good a specific action is at a
given state under the policy.

Value functions are used to evaluate and compare policies. A policy π is considered
better than or equal to another policy π′ if it yields a greater or equal expected
(discounted) return for all states. Mathematically, this means vπ(s) ≥ vπ′(s) for all
states s ∈ S . An optimal policy, represented as π∗, achieves the highest value for every
state, as defined by the optimal value function:

v∗(s) = max
π

vπ(s), (2.11)

for all s ∈ S . Similarly, the optimal action-value function q∗(s, a) is defined as:

q∗(s, a) = max
π

qπ(s, a), (2.12)

for all (s, a) ∈ S × A. The Bellman optimality equations for these optimal value
functions define the value of a state or state-action pair under an optimal policy by
relating it to the values of subsequent states, assuming the best actions are taken [13]:

v∗(s) = max
a ∑

s′,r
p(s′, r | s, a)[r + γv∗(s′)], (2.13)

9

2. Reinforcement Learning

q∗(s, a) = ∑
s′,r

p(s′, r | s, a)[r + γ max
a′

q∗(s′, a′)], (2.14)

for all s ∈ S and (s, a) ∈ S ×A, respectively. Equations 2.13 and 2.14 are foundational
in RL because they enable dynamic programming methods to iteratively update value
functions. By utilizing these recursive relationships, algorithms such as policy iteration
and value iteration systematically improve value estimates, eventually converging to the
optimal value function. This approach enables the agent to make optimal decisions by
assessing the long-term impact of its actions and maximizing cumulative (discounted)
rewards.

In summary, this section has outlined the key concepts of policies and value functions,
which are essential for decision-making in RL. Understanding these components is
crucial for developing algorithms that can effectively learn and adapt to various
environments. The subsequent section will explore how these concepts are applied
in different RL algorithms, emphasizing the methods used to update value functions
based on the agent’s experiences.

2.2. Learning Methods

RL involves various methods agents use to learn and improve their decision-making
strategies. These methods can be broadly categorized based on how they update
policies and value functions, which are critical for balancing exploration (discovering the
environment) and exploitation (making use of gained knowledge) [12]. Understanding
the distinctions between these methods is necessary for selecting the appropriate RL
algorithm for a given task.

2.2.1. Model-Free and Model-Based Methods

RL methods can be divided into two main categories: model-free and model-based meth-
ods. Model-free methods do not rely on a model of the environment to make decisions.
Instead, they learn directly from environmental interactions by updating the policy or
value function based on observed experiences, typically represented as state-action-
reward-next state tuples [13]. These tuples, commonly called "experiences", capture
the state of the environment, the action taken by the agent, the reward received, and
the subsequent state reached. Model-free methods are generally simpler to implement
and are suitable for environments where building an accurate model is difficult or
impossible. Examples of model-free algorithms include Q-learning and policy gradient
methods [15].

10

2. Reinforcement Learning

In contrast, model-based methods employ a model of the environment to predict
future states and rewards, which allows the agent to plan by simulating different
action sequences and evaluating their outcomes. This can lead to more sample-efficient
learning, as the agent can explore potential scenarios without directly interacting with
the environment [15]. Model-based algorithms are often more complex but can be
advantageous in environments where accurate models are available or can be learned
effectively [15]. Examples of model-based methods include AlphaZero [20].

2.2.2. On-Policy and Off-Policy Learning

The terms on-policy and off-policy describe how agents learn from their experiences.
On-policy learning updates the policy used to make decisions based on the actions
taken by the agent under the current policy [13]. An example of this method is SARSA
(State-Action-Reward-State-Action) [12], which learns the value of the policy currently
being executed by the agent. On-policy learning is beneficial in dynamic environments
where the policy must adapt continuously to changing conditions, as it encourages
exploration by incorporating the agent’s actions into policy updates [12].

Off-policy learning methods, such as Q-learning, learn the value of an optimal policy
independently from the behavior policy’s actions to explore the environment. This
flexibility allows off-policy methods to learn from data generated by different policies
[13]. It makes them more sample-efficient and suitable for environments where col-
lecting new data is costly or impractical [12, 18]. Off-policy learning is advantageous
when the goal is to optimize a policy without being constrained by the policy used for
exploration [13].

2.2.3. Value-Based Methods

Value-based methods in RL focus on estimating value functions to guide decision-
making. These methods work by approximating the value of states or state-action pairs
and using these estimates to derive an optimal policy [12]. Two primary value-based
methods are Monte Carlo (MC) and temporal-difference (TD) methods.

MC methods estimate value functions by averaging the returns obtained from complete
episodes [12]. This model-free approach can be applied in both on- and off-policy
settings. In the former, the value function is updated based on returns from episodes
generated under the policy being followed by the agent, ensuring that learning remains
consistent with the agent’s experiences. On the other hand, off-policy MC methods
estimate the value function for a different target policy by using returns generated by a

11

2. Reinforcement Learning

behavior policy, which allows learning from diverse experiences [12, 13].

Unlike MC methods, TD methods update value estimates based on both observed
rewards and the estimated value of the next state, allowing them to bootstrap updates.
This makes TD methods more sample-efficient as they do not need to wait for an
episode to complete before making updates. Examples of TD methods include SARSA
and Q-learning. SARSA is an on-policy TD algorithm that updates the action-value
function based on the actions taken by the current policy [12]. In contrast, Q-learning is
an off-policy TD algorithm that updates the action-value function using the maximum
estimated value of the next state, regardless of the action taken by the current policy
[12, 18].

2.2.4. Policy Gradient Methods

Policy gradient methods directly optimize the policy by adjusting the parameters of
a policy function that maps states to actions. Unlike value-based methods, which
optimize the policy indirectly through value estimation, policy gradient methods aim
to maximize the expected return directly by following the gradient of the performance
measure [12]. This gradient, denoted as ∇θ J(θ), represents the direction in which the
policy parameters θ should be adjusted to increase the expected cumulative reward. By
sampling trajectories from the policy and using them to estimate this gradient, policy
gradient methods update the parameters in the direction that maximizes performance.
The parameter update rule for policy gradient methods is given by [18]:

θt+1 = θt + α∇θ J(θ)
∣∣
θ=θt

(2.15)

where θt represents the parameters at iteration t, α is the learning rate, and ∇θ J(θ) is
the gradient of the expected return with respect to the parameters θ. These methods
are particularly useful for environments with continuous action spaces [3] or when the
policy cannot be easily derived from value functions, as they can effectively handle
high-dimensional or stochastic policies [18].

2.2.5. Actor-Critic Methods

Actor-critic methods combine elements of both value-based and policy gradient meth-
ods [13]. The actor component represents the policy, selecting actions, while the critic
component evaluates these actions by estimating the value function. This interaction
between the actor and critic is illustrated in Figure 2.2, where the actor is responsible
for policy improvement and the critic for policy evaluation through value function

12

2. Reinforcement Learning

approximation. This combination allows actor-critic methods to benefit from the stabil-
ity and efficiency of value-based methods while integrating the direct optimization of
policy gradient methods. Examples include DDPG [5], advantage actor-critic (A2C) [21],
and proximal policy optimization (PPO) [22], which are commonly used in scenarios
requiring robust policy improvement and sample efficiency [18].

Figure 2.2.: Simplified actor-critic interaction [18].

2.2.6. Monte Carlo vs. Temporal-Difference Methods

Monte Carlo and TD methods represent two fundamental approaches in value-based RL.
Monte Carlo methods rely on complete episodes to update value estimates, which can
lead to high variance due to their dependency on full trajectories but remain unbiased
[12]. In contrast, by incorporating bootstrapping, TD methods reduce variance by using
the estimated value of the next state for updates but introduce bias as they rely on other
estimated values for learning [12, 18]. This trade-off between bias and variance makes
TD methods more sample-efficient, especially in environments where full episodes are
long or impractical to simulate.

2.2.7. Overview of Concepts

Table 2.1 provides an overview of various RL methods. The table uses the abbreviations
MF for model-free, MB for model-based, PO for policy optimization, and Q-L for
Q-learning. Abbreviations for the algorithms can be found in Table A.1. AlphaZero
learns from simulated experiences generated by its own policy through Monte Carlo
tree search (MCTS) [20]. Thus, it does not fit into conventional policy-type classifica-
tions and is labeled as N/A. This categorization helps give an overview of current RL

13

2. Reinforcement Learning

methods, aiding in understanding the landscape of RL and the variety of approaches
available for different applications.

As outlined in Section 2.2, RL algorithms can be distinguished by various characteristics,
including the type of model, policy, and method used. The choice of approach depends
on the specific task and the environment in which the agent operates. While this section
provided a general overview of these characteristics, it is not exhaustive. The following
section will explore solution methods for RL problems, starting with the simpler tabular
solutions and then moving on to approximate solutions.

Algorithm Category Learning Approach Policy Type

A2C / A3C MF PO On-Policy
PPO MF PO On-Policy
TRPO MF PO On-Policy
DDPG MF PO, Q-L Off-Policy
TD3 MF PO, Q-L Off-Policy
SAC MF PO, Q-L Off-Policy
DQN MF Q-L Off-Policy
C51 MF Q-L Off-Policy
QR-DQN MF Q-L Off-Policy
HER MF Q-L Off-Policy
World Models MB Learn the model Off-Policy
I2A MB Learn the model Off-Policy
MBMF MB Learn the model Off-Policy
MBVE MB Learn the model Off-Policy
AlphaZero MB Given the Model N/A

Table 2.1.: Overview of RL algorithms [15].

2.3. Solution Methods

This section explores different solution methods for RL problems. The first approach
discussed is tabular methods, suitable for environments with small, discrete state and
action spaces [18]. These methods allow for a straightforward representation of value
functions, making them effective in simple scenarios. However, as the complexity of
the environment increases, tabular methods become impractical [23].

14

2. Reinforcement Learning

To address more complex problems, approximate solutions are introduced. These
methods use function approximators to handle larger or continuous state and action
spaces where tabular methods fail. Among the various approximation techniques,
special attention is given to DDPG, as employed in the robotic navigation case studied
in this thesis. DDPG combines deep learning and RL elements to effectively operate in
high-dimensional and continuous action spaces, making it a suitable choice for robotic
control tasks.

2.3.1. Tabular Solutions

Tabular solutions are a fundamental approach in RL where a table, often called a
Q-table or value table, is used to store and update the value of each state-action pair.
This method is feasible when dealing with environments that have small, discrete
state and action spaces, where all possible state-action combinations can be explicitly
represented and updated [18]. An example where tabular solutions are practical is
grid-based environments, where an agent navigates a grid to reach a goal, and both
the states (grid positions) and actions (moving up, down, left, or right) are finite and
discrete.1

Methods such as Q-learning and SARSA are effective in these simpler environments
as they provide an exhaustive exploration of the state space, ensuring the agent
learns the optimal policy through iterative updates. However, this approach becomes
impractical in environments with larger or continuous state and action spaces due to
the exponential growth in the table size required to store all state-action values. In
such cases, approximations are necessary to efficiently handle the complexity of the
environment.

2.3.2. Approximate Solutions

In RL, exact solutions are often infeasible due to the complexity of the environment
or the high-dimensional state and action spaces. Thus, approximate solutions are
unavoidable in achieving practical results. This thesis applies the DDPG algorithm,
an approximate solution method for continuous action spaces, to address the robot
navigation problem.

1See https://github.com/Farama-Foundation/Minigrid for examples.

15

https://github.com/Farama-Foundation/Minigrid

2. Reinforcement Learning

DDPG

DDPG is an actor-critic method, a class of algorithms that combines value-based meth-
ods and policy gradient methods to improve learning stability and efficiency [24, 5]. As
described in Section 2.2.5 and illustrated in Figure 2.2, actor-critic methods utilize two
components: the actor, which represents the policy and selects actions, and the critic,
which evaluates these actions by estimating the value function. DDPG extends these
principles to continuous action spaces, making it suitable for robotic control tasks. The
pseudo-code of DDPG is shown in Algorithm 1.

DDPG employs an experience replay buffer (RB), denoted as D, to handle the com-
plexity of continuous action spaces and improve training efficiency. The RB stores
transitions, or experiences, (st, at, rt, st+1) collected during the agent’s interaction with
the environment. This approach allows DDPG to break the temporal correlations
between consecutive experiences by sampling random minibatches of transitions from
the RB when updating the networks [25, 1]. By learning from various past experiences
rather than relying solely on the most recent ones, the RB facilitates off-policy learning.
This stabilizes the learning process and avoids divergence, especially in complex envi-
ronments with continuous actions [1].

Actor-critic methods like DDPG extend the concepts of the Bellman optimality equations
(cf. Section 2.1.2) to continuous action spaces and adapt them to meet the stability
needs of gradient-based methods. In DDPG, the policy update is conducted by moving
in the direction of the gradient of the action-value function q, rather than performing a
global maximization of q, which can be computationally intensive in high-dimensional
spaces [24, 5]. The deterministic policy µθ(s) is updated using the rule:

θt+1 = θt + α∇θq(s, a)
∣∣

a=µθ(s)
, (2.16)

which ensures improvement by adjusting the parameters to increase the expected return.

Given that the action space in DDPG is continuous, it is assumed that the function
q∗(s, a) (cf. Equation 2.14) is differentiable with respect to the action a. This allows a
gradient-based approach to efficiently update the policy µ(s). Instead of solving an
optimization problem to compute maxa q(s, a), this is approximated by q(s, µ(s)), with
the gradient moving toward the optimal Q-value [15]. To minimize the Mean Squared
Bellman Error (MSBE), a stochastic gradient descent method is employed. The MSBE
loss function for the Q-learning component of DDPG is defined as:

L(ϕ,D) = E(s,a,r,s′,d)∼D

[(
qϕ(s, a)−

(
r + γ(1− d)qϕtarg(s

′, µθtarg(s
′))
))2

]
, (2.17)

16

2. Reinforcement Learning

where D represents the RB, d is a binary indicator that is 1 if the episode ends at state
s′ and 0 otherwise, and µθtarg denotes the target policy [5].

To ensure stability during training, DDPG employs two sets of function approximators:
online networks (critic: ϕ, actor: θ) and target networks (critic: ϕtarg, actor: θtarg). The
target networks serve as slowly updated copies of the online networks, providing more
stable target Q-values for the learning process. Gradually updating the target network
parameters reduces the risk of oscillations or divergence in the estimated Q-values, as
rapid changes can destabilize the learning process [5]. The target networks are updated
using a technique known as Polyak averaging, which adjusts the network parameters
incrementally toward the online network parameters [15]:

ϕtarg ← (1− τ)ϕtarg + τϕ, (2.18)

θtarg ← (1− τ)θtarg + τθ, (2.19)

where τ is a small hyper-parameter, typically set to around 0.005. A small τ ensures
that the target network parameters are updated predominantly by their previous values,
with only a minor influence from the current online network parameters. Gradual up-
dates help maintain stable learning by providing consistent target values and reducing
the risk of oscillations or divergence in the estimated Q-values [5].

Because DDPG uses a deterministic policy, it relies on off-policy learning to encourage
adequate exploration. This is accomplished by adding noise to the actions during
training, essential for preventing insufficient exploration that can lead to suboptimal
learning, especially in the early stages. Although Ornstein-Uhlenbeck (OU) noise was
initially preferred, recent studies have shown that uncorrelated Gaussian noise with a
zero mean is equally effective [15]. Therefore, this work adopts Gaussian noise with
zero mean to enhance exploration and support the development of a robust policy [5].

In summary, DDPG combines deterministic policy gradients with the actor-critic frame-
work to learn policies in continuous action spaces, making it well-suited for the robot
navigation problem addressed in this work. DDPG enables efficient learning of naviga-
tion strategies in complex environments by directly optimizing the policy to maximize
expected returns. The hyper-parameters used for the robot navigation task are listed in
Table A.1.

Training stability is maintained through target networks, updated slowly relative to the
online networks to prevent disruptive changes, thus stabilizing policy development.
Minimizing the MSBE via stochastic gradient descent ensures accurate value estimates

17

2. Reinforcement Learning

Algorithm 1 DDPG [5]

Initialize (randomly) critic network qϕ(s, a) and actor µθ(s) with weights ϕ and θ

Initialize target networks qϕtarg and µθtarg with weights ϕtarg ← ϕ, θtarg ← θ

Initialize replay buffer D
for episode = 1, M do

Initialize a random process N for action exploration
Receive initial observation state s1

for t = 1, T do
Select action at = µθ(st) +Nt according to the current policy

and exploration noise
Execute action at and observe reward rt, new state st+1, and termination dt

Store transition (st, at, rt, st+1, dt) in D
Sample a random minibatch of N transitions (si, ai, ri, si+1, di) from D
Set yi = ri + γ(1− di)qϕtarg(si+1, µθtarg(si+1))

Update critic by minimizing the loss:
L = 1

N ∑i(yi − qϕ(si, ai))
2

Update the actor policy using the sampled policy gradient:
∇θ J ≈ 1

N ∑i∇aqϕ(s, a)
∣∣
s=si ,a=µθ(si)

∇θµθ(s)
∣∣
s=si

Update the target networks:
ϕtarg ← (1− τ)ϕtarg + τϕ

θtarg ← (1− τ)θtarg + τθ

end for
end for

for effective navigation decisions. The experience RB also allows the agent to learn
from diverse past navigation experiences. This off-policy approach, combined with
exploration noise techniques, enhances the agent’s ability to thoroughly explore the
state-action space and learn robust navigation policies.

This concludes the chapter on classical RL, which has covered various fundamental
algorithms and methods. The next chapter introduces the principles of quantum
computing, providing an overview of its core concepts and potential capabilities.
Subsequently, the focus shifts to the intersection of quantum computing and RL,
exploring how quantum algorithms might transform decision-making processes in
complex environments.

18

3. Quantum Computing

In this chapter, the concept of quantum computing is introduced and explored in the
context of its application to ML. The intersection of these two fields, known as QML,
is a rapidly growing area of research [26]. Traditionally, NNs are used as function
approximators when exact solutions are computationally impractical or unknown (cf.
Section 2.3.2). This chapter, however, introduces an alternative approach by presenting
the fundamentals of quantum computing, followed by a discussion on how quantum
computing can be harnessed to enhance ML techniques. In particular, the chapter
explores the role of parameterized quantum circuits (PQC) as function approximators.

3.1. Fundamentals

Quantum computing represents a novel computational paradigm that exploits the
principles of quantum mechanics as its underlying foundation [27]. Unlike classical
computers, where each bit is limited to representing one of two values (0 or 1), quantum
bits (qubits) - the fundamental unit of information in a quantum system [26] - can
simultaneously represent 2N values. This ability stems from the phenomenon of
superposition, a defining property of qubits [26, 28]. A qubit can exist in a superposition,
meaning it holds a probability of being found in the state |0⟩, |1⟩, or a combination
of both, described mathematically using Dirac notation [28]. The state of a qubit in
superposition can be represented as a linear combination of basis states, typically
expressed as:

|ψ⟩ = α |0⟩+ β |1⟩ , (3.1)

where the coefficients α, β ∈ C are complex numbers representing the probability
amplitudes for the respective states |0⟩ and |1⟩ [28, 29]. The probability of finding the
qubit in state |0⟩ or |1⟩ is given by squaring the absolute value of these coefficients.
Therefore, they must satisfy the normalization condition:

|α|2 + |β|2 = 1, (3.2)

which ensures that the total probability of finding the qubit in one of its possible states
is equal to one [10, 28]. In Dirac notation, the basis states |0⟩ and |1⟩ can also be

19

3. Quantum Computing

expressed as vectors in the computational basis. Specifically:

|0⟩ =
[

1
0

]
, |1⟩ =

[
0
1

]
. (3.3)

The number of possible states grows exponentially for multiple qubit systems [28]. For
instance, in a 3-qubit system (N = 3), there are 23 possible states. The state of the
system is:

|ψ⟩ = α1 |000⟩+ α2 |001⟩+ α3 |010⟩+ · · ·+ α8 |111⟩ , (3.4)

and the normalization condition from Equation 3.2 expands accordingly:

2N

∑
i=1
|αi|2 = 1. (3.5)

More generally, for a system of N qubits, the total state can be expressed as a superpo-
sition of all possible computational basis states. This is written as:

|ϕ⟩ =
2N−1

∑
i=0
|i⟩ = ∑

b0,b1,...,bN−1∈{0,1}
|b0b1 . . . bN−1⟩ , (3.6)

where |i⟩ represents the computational basis states, and the summation runs over
all possible bit strings b0, b1, . . . , bN−1, with bi ∈ {0, 1}. This generalizes the previous
example to an arbitrary number of qubits, where the superposition contains all the
possible states of the system.

Another fundamental property of quantum mechanics is entanglement. Entanglement
describes a phenomenon of two qubits becoming intertwined such that their descrip-
tions cannot be separated [29, 28]. In this intertwined state, the properties of each
qubit depend on one another, making it impossible to factor the system into distinct
components [29]. Consequently, the combined state (|ψ⟩AB) of the system cannot be
expressed as a simple product of the states of each qubit (|ψ⟩A, |ψ⟩B) [30]:

|ψ⟩AB ̸= |ψ⟩A ⊗ |ψ⟩B . (3.7)

Moreover, measuring one qubit’s state immediately affects the other’s state, regardless
of the distance between them [29]. Entanglement thus creates a strong correlation
between the qubits, enabling new mechanisms that classical bits cannot replicate.
Maximally entangled quantum states, known as Bell states, exemplify this phenomenon.
For instance, in one type of Bell state, a pair of entangled qubits can exist simultaneously
in the state |00⟩ or |11⟩, expressed mathematically as [30]:

|ψentangled⟩ =
1√
2
(|00⟩+ |11⟩) . (3.8)

20

3. Quantum Computing

Bell states are essential in applications such as quantum teleportation and quantum
cryptography [28], although these concepts are beyond the scope of this thesis.

As previously described in Equation 3.1, the general state of a single qubit can also be
written in terms of trigonometric functions:

|ψ⟩ = cos
(

θ

2

)
|0⟩+ eiϕ sin

(
θ

2

)
|1⟩ , (3.9)

where θ and ϕ are real numbers, annotated as spherical coordinates that map the state
onto the surface of the Bloch sphere [31, 28], as illustrated in Figure 3.1. The term
eiϕ represents a phase factor and introduces a phase shift in the superposition of the
components |0⟩ and |1⟩.

Figure 3.1.: Bloch sphere representation of a state vector.

Comparing Equation 3.1 and 3.9, one can deduce:

α = cos
(

θ

2

)
, β = eiϕ sin

(
θ

2

)
. (3.10)

The geometrical representation of the state space of a qubit is especially useful for
tracking the evolution of quantum states over time [32]. This evolution can be visualized
as a rotation of the Bloch vector, which points from the sphere’s center to its surface,
illustrating the qubit’s state [32, 31]. Such rotation can be expressed mathematically as
a unitary transformation, realized through quantum gates, the building block of QCs.

21

3. Quantum Computing

Contrary to manipulating bits via classical logic, quantum gates manipulate qubits by
changing their phases and probabilities. Examples of such gates are listed in Table 3.1.
A quantum computer, analogous to a classical computer, operates based on multiple
quantum gates, which together form QCs [28]. A simple example of such a circuit is
illustrated in Figure 3.2.

|0⟩ H •

|0⟩

Figure 3.2.: A simple quantum circuit generating the Bell state from Equation 3.8.

Initially, the two-qubit system is in a separable state since the qubits are not entangled,
as opposed to the case in Equation 3.7. The joint state of the qubits is expressed as
|ψ0⟩ = |0⟩ ⊗ |0⟩ = |00⟩. A Hadamard gate is then applied to the first qubit, putting it
into an equal superposition, transforming the state as follows: H |0⟩ = 1√

2
(|0⟩+ |1⟩).

This results in the system state:

|ψ1⟩ = H |0⟩ ⊗ |0⟩ = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩

which can be expanded as:

|ψ1⟩ =
1√
2
(|00⟩+ |10⟩) .

A controlled-NOT (CNOT) gate operates on two qubits, where the first qubit acts as
the control and the second qubit serves as the target, flipping the target qubit’s state
only when the control qubit is in the |1⟩ state [28] (cf. Table 3.1). Therefore, applying
the CNOT results in the following state change:

|ψ2⟩ =
1√
2
(|00⟩+ |11⟩) .

Finally, after the unitary operations transform the quantum state, a measurement is
performed to extract classical information. This is indicated as the meter symbol on the
wire of the first qubit. In quantum mechanics, the measurement of an observable O on
a quantum state |ψ⟩ yields an expectation value, denoted as [33]:

⟨O⟩ψ = ⟨ψ|O|ψ⟩.

22

3. Quantum Computing

The measurement collapses the superposition of the qubits into one of the basis states,
with probabilities determined by the quantum state’s probability amplitudes. For
instance, in the case of the Bell state (Equation 3.8), measuring the first qubit will
collapse the system into either |00⟩ or |11⟩, each with a probability of 1

2 . The role of
measurement in this thesis is limited to extracting classical data from quantum systems
as needed. For a more detailed discussion on quantum measurement, refer to [28, 34,
35].

While the previously discussed circuit is a relatively small example, accumulating a
larger number of quantum gates enables the implementation of more complex algo-
rithms. Leveraging the unique properties of superposition and entanglement, quantum
computers can process information in parallel [36, 37] and establish strong correlations
between qubits, resulting in computational speedups that surpass those of classical
computers [38, 28, 29]. Notable algorithms demonstrating such speedups include Shor’s
algorithm for factoring large integers - a computationally challenging task for classical
computers [10, 30] - and Grover’s algorithm, which achieves a quadratic performance
improvement in search-based problems [11, 28]. While several quantum algorithms
offer speedups over classical methods in specific areas, the question of whether quan-
tum computing provides a significant advantage for ML tasks remains open [26, 28].
The following sections will explore the applicability of quantum computation in the
domain of ML in greater depth.

3.2. Quantum Machine Learning

Building upon the fundamentals of quantum computing, this section explores how
quantum computers can be utilized in the domain of QML. Given the computational
speedups offered by certain quantum algorithms, it is of considerable interest whether
applying quantum computation in ML could lead to similar improvements. Previous
works have demonstrated such speedups in specific problems within QML [39, 40, 41],
suggesting potential advantages over classical approaches. However, the question of
whether QML can provide significant and practical advantages across a broad range of
ML tasks remains open.

This is especially true considering the limited availability and practicality of current
quantum computers, which remain significant challenges [28]. Even IBM’s quantum
hardware produces inconsistent results across repeated experiments, as shown in [37].
These inconsistencies stem from several key issues, including fault tolerance [42], noise
and decoherence effects, and hardware limitations, which characterize the current era

23

3. Quantum Computing
G

at
e

N
am

e
Sy

m
bo

l
D

es
cr

ip
ti

on
M

at
ri

x
N

ot
at

io
n

Id
en

ti
ty

I
Le

av
es

qu
bi

t
un

ch
an

ge
d

[1
0

0
1]

Pa
ul

i-
X

X
Bi

t-
fli

p
ga

te
(l

ik
e

cl
as

si
ca

lN
O

T)
[0

1
1

0]
Pa

ul
i-

Y
Y

Bi
t-

fli
p

+
ph

as
e

fli
p

ga
te

[0
−

i
i

0

]
Pa

ul
i-

Z
Z

Ph
as

e-
fli

p
ga

te
[1

0
0
−

1]
H

ad
am

ar
d

H
C

re
at

es
su

pe
rp

os
it

io
n

by
ap

pl
yi

ng
a

un
if

or
m

ro
ta

ti
on

1 √
2

[1
1

1
−

1]
Ph

as
e

Sh
if

t
R

ϕ
A

dd
s

a
ph

as
e

of
ϕ

to
th

e
|1
⟩s

ta
te

[1
0

0
eiϕ

]

C
N

O
T

X
or
⊕

C
on

tr
ol

le
d

-N
O

T
ga

te
;fl

ip
s

th
e

se
c-

on
d

qu
bi

t
if

th
e

fir
st

qu
bi

t
is
|1
⟩

 1
0

0
0

0
1

0
0

0
0

0
1

0
0

1
0

U
ni

ta
ry

U
(θ

,ϕ
,λ

)
G

en
er

al
un

it
ar

y
tr

an
sf

or
m

at
io

n
fo

r
a

si
ng

le
qu

bi
t

[co
s(θ 2

)
−

eiλ
si

n
(θ 2

)
eiϕ

si
n
(θ 2

) ei(
ϕ
+

λ
)

co
s(θ 2

)]
R

ot
at

io
n-

X
R

x(
θ)

R
ot

at
io

n
by

an
gl

e
θ

ar
ou

nd
th

e
X

-
ax

is

[co
s(θ 2

)
−

is
in
(θ 2

)
−

is
in
(θ 2

)
co

s(θ 2

)]
R

ot
at

io
n-

Y
R

y(
θ)

R
ot

at
io

n
by

an
gl

e
θ

ar
ou

nd
th

e
Y-

ax
is

[co
s(θ 2

) −
si

n
(θ 2

)
si

n
(θ 2

)
co

s(θ 2

)]
R

ot
at

io
n-

Z
R

z(
θ)

R
ot

at
io

n
by

an
gl

e
θ

ar
ou

nd
th

e
Z

-
ax

is

[e−
iθ

/
2

0
0

eiθ
/

2]

Ta
bl

e
3.

1.
:C

om
m

on
qu

an
tu

m
ga

te
s

w
it

h
de

sc
ri

pt
io

ns
,s

ym
bo

ls
,a

nd
m

at
ri

x
re

pr
es

en
ta

ti
on

s.

24

3. Quantum Computing

of quantum computing - often referred to as the noisy intermediate-scale quantum
(NISQ) era [37, 28, 33]. NISQ devices are said to have between 50 to 100 qubits [26, 43],
which, while impressive, remain far from what is required for large-scale, fault-tolerant
quantum computing [44, 45].

Quantum systems can be realized using diverse qubit technologies, including spin
systems [46], ion traps [47], neutral atoms [48], and superconducting circuits, the latter
being the most prominent candidate [27]. Despite these advances, the noise from quan-
tum gates and decoherence still limits the scalability and reliability of current quantum
systems, leading to deviations from theoretical expectations [37, 33]. To address these
challenges, researchers are focusing on developing approaches that maximize the utility
of QCs despite these limitations. As a result, hybrid quantum-classical algorithms have
gained prominence for their ability to tolerate the noisy conditions of NISQ devices
while still leveraging quantum parallelism [49]. PQCs have emerged as useful tools
in this context. A general QML model is shown in Figure 3.3, where classical data is
encoded into quantum states via the feature map Uϕ(x), followed by a trainable unitary
transformation UΘ. This basic structure underlies the functioning of PQCs.

Figure 3.3.: A schematic setup of a QML model [50].

PQCs are QCs that contain tunable parameters, which can be optimized using classical
optimization algorithms. These circuits emerged during the NISQ era because they
were designed to minimize circuit depth and qubit requirements, thus limiting the
exposure to noise and decoherence effects. A PQC consists of layers of quantum gates,
with only specific gates parametrized by adjustable variables. The parameters are
iteratively updated using classical optimization methods, such as gradient descent, to
minimize a cost function relevant to a given problem, such as classification or regression
[33]. This combination of classical optimization with quantum operations allows PQCs
to perform complex tasks even on the limited qubit systems of NISQ devices. While
both PQCs and VQCs rely on parameterized quantum gates and classical optimization,
the literature refers to VQCs when the objective is to iteratively reduce a cost function.
A general QML workflow is illustrated in Figure 3.4, which outlines the complete
process. The classical data x is first passed through a feature map, represented by the
unitary transformation Uϕ(x), which encodes x into a quantum state. After encoding
the classical data, the quantum state is processed by the VQC, which applies a trainable

25

3. Quantum Computing

unitary transformation UΘ. The output is then measured, producing a classical result z.
The result is post-processed through a function f (z), which is then fed into a classical
optimizer. The optimizer updates the parameters θ, completing one iteration of the
training loop. This iterative process continues to minimize a task-specific cost function.

Figure 3.4.: Simplified workflow of a QML model [50].

3.2.1. QML Encoding Techniques

Various methods have been developed to encode classical data into quantum computers,
mapping classical information to the Hilbert space of quantum states. This process,
essential for ensuring the trainability of quantum models [51], represents the feature
map Uϕ(x), as shown in Figure 3.3.

Pauli feature mapping is an encoding technique that transforms classical data into
quantum states using Pauli-Z rotations and controlled-Z (CZ) operations. Pauli-Z
rotations modify the phase of individual qubits without altering their probability
distributions, while CZ operations create entanglement by correlating pairs of qubits.
This method is commonly utilized in algorithms such as quantum support vector
machines and variational quantum classifiers [51]. Given a classical data vector x =

[x1, x2, . . . , xn], the second-order Pauli feature map embeds this data into a quantum
state by applying Pauli-Z rotations to each qubit and CZ entangling operations between
qubits. The following unitary operation represents this mapping:

Uϕ(x) = exp

(
i

(
∑

i
ϕi(x)Zi + ∑

i<j
ϕij(x)ZiZj

))
,

where Zi is the Pauli-Z operator acting on the i-th qubit, and ϕi(x) and ϕij(x) are
data-dependent phase functions that encode classical data. These functions modify the

26

3. Quantum Computing

phases of the qubits, embedding classical information into the quantum state [33]. For
example, if the classical data vector is x = [x1, x2], the Pauli feature map produces the
quantum state:

|ψ(x)⟩ = exp(iϕ1(x)Z1) exp(iϕ2(x)Z2) exp(iϕ12(x)Z1Z2)|0⟩⊗2,

where ϕ1(x) and ϕ2(x) depend on x1 and x2, respectively, and ϕ12(x) introduces entan-
glement between the qubits, correlating their states.

Another technique is amplitude encoding. This method is useful for embedding
large datasets into a quantum state. The key concept behind amplitude encoding is
normalizing the classical data vector and assigning its elements as the amplitudes of
the quantum state’s basis states. This encoding method can be employed in several
quantum algorithms that rely on efficient data loading, such as QML or quantum
differential equation solvers [52]. To illustrate amplitude encoding, consider a classical
data vector x = [x1, x2, . . . , xn]. By normalizing this vector such that ∑i |xi|2 = 1 (cf.
Equation 3.2 and 3.5), the conditions of a quantum state are satisfied. The classical data
is then encoded into the quantum state as follows:

|ϕ⟩ = x1|00⟩+ x2|01⟩+ · · ·+ xn|11⟩.

Each classical value xi is represented as an amplitude corresponding to the computa-
tional basis state |i⟩ in this equation. If the number of data points is less than 2N , where
N is the number of qubits, padding can be applied to the data. This approach allows
encoding up to 2N data points into N qubits [51], exploiting quantum superposition
for efficient data representation.

Lastly, Angle encoding is one of the most straightforward methods for embedding
classical data into quantum states. In this approach, each classical data point is encoded
as an angle of rotation applied to a qubit. In direct data encoding, the rotation angle θi
is typically set by the value of the classical data xi, such that θi = xi. This encoding is
commonly achieved through rotation gates like Rx, Ry, or Rz, where the gate defines
the axis of rotation, and the classical data determines the angle of rotation. Given an
input data vector x = [x1, x2, . . . , xn], the corresponding quantum state is prepared
using the following transformation:

|ψ(x)⟩ =
n⊗

i=1

Ry(xi)|0⟩.

Here, Ry(xi) represents a rotation around the y-axis (cf. Figure 3.1) by an angle xi,
encoding each data point as a rotation on the respective qubit. This method allows

27

3. Quantum Computing

for encoding classical data with shallow circuit depth, minimizing computational
complexity [53]. Figure 3.5 below illustrates a simple PQC that implements angle
encoding using Ry rotation gates.

|0⟩ Ry(x1)

|0⟩ Ry(x2)

|0⟩ Ry(x3)

Figure 3.5.: A PQC implementing angle encoding with Ry rotation gates.

There are a variety of classical data encoding techniques available in QML, each with
its own advantages and suitable use cases. These include basis encoding, Hamiltonian
encoding, superdense encoding, and others, each providing different ways to map clas-
sical data onto quantum states. For a more comprehensive overview of these methods,
refer to [54, 55, 56].

This chapter has provided a detailed introduction to the fundamentals of quantum
computing, focusing on its applications within ML, particularly through using PQCs.
Key quantum principles, such as superposition, entanglement, and quantum gates,
were explored as the foundational elements enabling quantum computation’s unique
capabilities [26, 28]. The insights gained from quantum computing fundamentals and
QML lay the groundwork for the next chapter, which introduces the primary focus of
this thesis: QRL. This approach combines quantum computational advantages with
classical RL techniques to address complex decision-making problems across diverse
environments [33]. The subsequent discussion will expand on how VQCs are adapted
to RL tasks, offering potential advancements over traditional approaches.

28

4. Quantum Reinforcement Learning

RL has seen considerable success in various fields, from gaming to robotics [41], by
allowing agents to learn optimal policies through interactions with their environment.
However, the growing complexity of modern problems - especially those involving
large state-action spaces - poses significant challenges to classical RL [41]. With the
advent of quantum computing, QRL has emerged as a promising paradigm that aims
to utilize the computational power of quantum mechanics to accelerate and improve
RL processes [57]. By exploiting the principles of superposition and entanglement, as
discussed in the previous section, QRL has the potential to outperform classical RL
methods in specific problem domains [49].

4.1. Quantum Kernels in RL

The QRL landscape encompasses a spectrum of approaches, ranging from quantum-
inspired algorithms on classical hardware to fully quantum systems operating on
universal, fault-tolerant quantum computers [33]. These methods vary in their integra-
tion of quantum and classical resources, offering different degrees of quantum-classical
hybridization. With the rapid advancements in quantum hardware and the emergence
of NISQ devices, hybrid quantum-classical approaches are particularly attractive for
near-term applications, leveraging NISQ resources to enhance RL without requiring
fully fault-tolerant quantum computers [58]. Table 4.1 provides an overview of these
hybridization techniques and offers a comprehensive survey on QRL. The algorithm
classes listed - namely Quantum-Inspired RL Algorithms, VQC-based Function Approxima-
tion, RL Algorithms with Quantum Subroutines, and Full-Quantum RL - each present a
distinct balance between classical and quantum computation, tailored to available hard-
ware and specific RL tasks. This section excludes tabular solutions (cf. Section 2.3.1)
due to their infeasibility in addressing complex RL problems with large state or action
spaces [23].

Quantum-Inspired RL Algorithms

At the classical end of the hybridization spectrum are quantum-inspired RL algorithms.
While entirely executable on classical computing hardware, these algorithms are de-

29

4. Quantum Reinforcement Learning

Classical Compute
Resources

NISQ Resources Universal, Fault-Tolerant & Error-Corrected
Quantum Processing Unit

classical ← Degree of hybridization → quantum

A
lg

or
it

hm
C

la
ss Quantum-inspired RL

Algorithms
VQC-based Function

Approximation
RL Algorithms with

Quantum Subroutines
Full-Quantum RL

Su
bt

yp
e

Amplitude-
Amplification-based

Action Selection

Value-Function Projective Simulation Oracularized
Environments

Policy Quantum Value
Iteration

Quantum Gradient
Estimation

Actor-Critic
Quantum Policy

Iteration
Quantum Policy

Iteration

Multi-Agent RL
Quantum

Boltzmann-Machines
for Function

ApproximationOffline RL

Table 4.1.: Overview of quantum and hybrid RL algorithms categorized by computa-
tional resources and degree of quantum-classical hybridization [33].

signed based on quantum mechanical principles such as superposition and amplitude
amplification. They incorporate these concepts into classical RL models to improve task
performance, such as exploration-exploitation balancing [49]. Despite their reliance
on classical resources, these algorithms derive theoretical inspiration from quantum
mechanics, influencing their design and operation.

One prominent subtype within this class is Amplitude-Amplification-based Action Selection.
This method mirrors the concept of Grover’s algorithm, where favorable actions are
selectively amplified in probability based on the reward function [59]. The states and
actions are embedded in a classical Hilbert space, and the amplitude of states that yield
higher rewards is increased, thus improving the action selection process. Though this
method is quantum-inspired, its implementation remains purely classical and does
not require access to quantum hardware. Integrating these quantum concepts is more
about enhancing classical models than providing actual quantum advantage [33].

VQC-based Function Approximation

As quantum hardware advances, VQCs have become prominent components of hybrid
quantum-classical algorithms in RL tasks. In this hybrid framework, VQCs replace
classical NNs in function approximation. The previously discussed learning methods

30

4. Quantum Reinforcement Learning

in Section 2.2 can be adapted to use VQCs. The following three subtypes, namely Policy,
Value-Function, and Actor-Critic, while serving the same objectives, are thus employed
in a hybrid approximation.

Additionally, Offline RL uses pre-collected data to train RL agents without real-time
interaction with the environment, similar to the model-based methods introduced
in Section 2.2.1. QCs process these static datasets to derive value or policy approx-
imations, extending the use of quantum resources in RL. This quantum adaptation
of offline learning is well-suited for environments where data collection is costly or
time-consuming, aligning with the advantages of classical model-based approaches
regarding sample efficiency [33].

Lastly, using the same learning methods, the VQC-based approximation can also be em-
ployed in multi-agent reinforcement learning (MARL). MARL increases complexity by
including several agents within one environment. Due to the different reward functions
and policies learned by the various agents, uncertainty increases as the agents’ actions
are interdependent and more dynamic, rendering the state-action space nonstationary
[60].

These QCs can be operated on NISQ devices by combining quantum components
with classical optimization techniques. This allows the RL process to utilize quantum
computation, even within current hardware constraints, without necessitating fully
fault-tolerant quantum computers. These VQC-based methods, being adaptable to
NISQ resources, already offer a glimpse into the potential for quantum advantage in
RL, as they extend the classical learning frameworks described earlier with quantum-
enhanced computation [61, 40].

RL Algorithms with Quantum Subroutines

Positioned further along the quantum-classical spectrum, RL Algorithms with Quantum
Subroutines incorporate quantum algorithms as integral components within classical RL
frameworks. These methods require more advanced quantum hardware and exploit
quantum computing for policy iteration, value iteration, or sampling tasks. Unlike
VQC-based approaches that utilize QCs as function approximators, these algorithms
replace classical subroutines with their quantum equivalents.

One example is Projective Simulation, a model where learning is driven by stochastic
processing of episodic memory through quantum random walks [45]. The agent oper-
ates in an environment where actions are rewarded based on sensor perceptions, and

31

4. Quantum Reinforcement Learning

the core mechanism is the episodic and compositional memory (ECM), represented
as a weighted, directed graph. Nodes in this graph, called clips, represent individual
experiences and can be excited based on the agent’s interaction with the environment.
The learning process involves updating the ECM’s structure by modifying connections
between clips or adjusting weights, influencing future decisions [33]. This model-free
approach leverages quantum random walks to simulate action selection, enabling faster
exploration of the state-action space.

Another subtype, Quantum Policy/Value Iteration, replaces classical iterative methods
to update policies or value functions. Techniques such as quantum natural policy gra-
dients (QNPG) utilize quantum Fisher information matrices to precondition gradient
updates, improving learning efficiency and potentially accelerating convergence [62].
By employing quantum properties, these algorithms enable RL agents to make more
informed decisions faster, especially in high-dimensional or complex environments.

Quantum Boltzmann Machines (QBM) are another subtype within this class. These
models extend classical Boltzmann machines by replacing classical spins with qubits,
where the Hamiltonian governs the system’s energy [63]. A key distinction is the
dimensionality; the quantum version operates over a space exponentially larger than
the classical one, corresponding to 2N possible states for N qubits instead of N binary
variables. The quantum framework allows QBMs to perform energy minimization
and gradient descent more efficiently, contributing to faster learning. Although these
methods still rely on classical resources for some computations, the incorporation of
quantum subroutines for estimating distributions over quantum states moves QBMs
closer to fully quantum approaches compared to VQC-based methods [63, 39].

Full-Quantum RL

At the far end of the quantum-classical hybridization spectrum are Full-Quantum RL
algorithms, where all components of the RL process are executed on quantum hard-
ware. These algorithms necessitate universal, fault-tolerant quantum processors, as
they rely entirely on quantum computations [33]. In such settings, classical resources
are minimal, if involved at all, and the RL agent operates fully within a quantum
computational framework.

One subtype in this category is Oracularized Environments, where the RL agent interacts
with a quantum oracle that simulates the environment [64]. This allows for faster
state transitions and more efficient evaluations of policies, making the learning process
quicker than in classical or hybrid environments [65].

32

4. Quantum Reinforcement Learning

Another subtype, Quantum Gradient Estimation, focuses on using quantum algorithms
to compute the gradients needed for optimizing the parameters of QCs in policy net-
works. These quantum techniques offer more efficient gradient estimation than classical
methods, particularly in high-dimensional parameter spaces [66].

The quantum-classical hybridization of RL algorithms reveals a diverse landscape
where varying degrees of quantum integration are explored depending on the available
hardware and specific RL tasks. From quantum-inspired classical methods to fully
quantum RL systems, these approaches mark important steps toward realizing the
potential of quantum computing in RL. As quantum hardware continues to evolve, the
boundary between hybrid and fully quantum algorithms is expected to shift, paving
the way for more widespread adoption of quantum techniques in ML. Despite these
advances in hybrid quantum-classical models, most existing QRL research is limited
to discrete action and state spaces. This limits the applicability of hybridizations in
real-world problems where continuous action and state spaces are prevalent. In fields
such as robotics [41], autonomous systems, and high-dimensional financial modeling,
actions must be fine-tuned to respond to a broad range of possibilities rather than
confined to a fixed set of choices. The following section presents state-of-the-art QRL
applications developed over the past few years.

4.2. Related Work in VQC-based QRL

Building on the discussion of different quantum-classical hybridization techniques
explored in the previous section, this section highlights state-of-the-art research and
applications in VQC-based QRL. As VQCs are well-suited to the capabilities of current
NISQ devices, they represent one of the most feasible approaches to implementing QRL
in the near term. Much of the ongoing work in QRL focuses on integrating VQCs into
hybrid models, taking advantage of quantum properties to enhance learning processes
while still relying on classical optimization techniques. This section explores several
prominent examples, underscoring the relevance of this approach to the contributions
made in this thesis, which fall within the same domain.

[61] presents an early exploration of VQCs in deep reinforcement learning (DRL), adapt-
ing classical techniques like RB and target networks for quantum systems. The work
demonstrates using VQCs as function approximators for Q-value learning, with the RB
storing agent transitions as tuples and updating parameters via random batches from
replay memory (cf. Section 2.3.2). The target network, updated periodically, stabilizes

33

4. Quantum Reinforcement Learning

training by providing a stationary Q-value function, enhancing training robustness.
Their approach is tested in Frozen Lake and a cognitive radio setting. Frozen Lake, a
simple, discrete environment part of the OpenAI Gym suite [67], provides a baseline for
testing RL techniques, while the cognitive radio environment, though more complex,
is noted as having comparable complexity. The QCs used in this study employed a
four qubit system, representing 16 classical states via binary encoding and rotations.
In the Frozen Lake experiment, the agent converged to an optimal policy after 200
episodes, with stable performance. The cognitive radio experiment demonstrated faster
convergence, with quantum models showing robustness under noise. A key finding of
the paper was the reduction in model parameters: the quantum model required only 28
parameters for Frozen Lake, compared to 64 in a classical Q-learning model, suggesting
improved memory efficiency.

[41] addresses the challenge of applying QRL in continuous and discrete action spaces.
The proposed algorithm, DDPG, utilizes VQC with separate reward and environment
registers in different circuit stages. A combination of Rx, Ry, and Rz gates is used along-
side entanglement, while classical optimization techniques are employed to minimize
the mean square loss using an Adam optimizer [68]. The work focuses on amplitude
encoding (cf. Section 4.1), where the amplitudes of a quantum state represent the
environment’s state. The algorithm is tested on tasks such as quantum state generation
and eigenvalue problems, in addition to the Frozen Lake environment. The findings
show the potential of VQCs to handle large state spaces, making them feasible for more
complex RL problems.

[69] proposes a quantum-inspired experience replay mechanism, termed DRL-quantum-
inspired experience replay (DRL-QER), to enhance the training process of DRL by
improving the balance between exploration and exploitation. In contrast to traditional
experience replay methods, DRL-QER adaptively selects experiences from the buffer
based on the complexity of the transitions and the number of times they have been
replayed. This is achieved through two operations: the preparation operation, which
adjusts the probability amplitude of experiences according to their TD errors, and
the depreciation operation, which ensures diversity by decreasing the probability of
overused experiences. These quantum-inspired methods are implemented through
classical simulations and applied to the widely used deep Q-network (DQN) frame-
work. The study applies DRL-QER to various Atari 2600 games, such as Space Invaders,
Breakout, Freeway, and River Raid, which feature high-dimensional state inputs and
discrete action spaces. Experimental results demonstrate that DRL-QER achieves
faster convergence and improved training efficiency compared to traditional methods
like prioritized experience replay (PER) and deep curriculum reinforcement learning

34

4. Quantum Reinforcement Learning

(DCRL). Additionally, DRL-QER is tested with variants of DQN, including double DQN
and dueling DQN architectures, demonstrating its compatibility with more advanced
memory-based DRL algorithms.

[70] takes a different approach, focusing on controlling real-time distributed renewable
energy systems (RES) rather than game-based environments. This study introduces
quantum-inspired RL techniques for MARL systems to manage distributed energy
storage and generation. Nine different quantum-inspired DRL algorithms, including
quantum-inspired Q-learning, policy gradient, and actor-critic methods, are tested
across two 100% RES scenarios. The results show that hybrid methods outperform
classical algorithms regarding frequency deviation reduction and energy consump-
tion. Notably, these methods offer better control under uncertain conditions, such as
stochastic behavior in the energy grid, suggesting their practical application in complex,
real-world systems.

In this work, [71] embeds a shallow VQC-based policy within the REINFORCE al-
gorithm, an MC-based policy gradient method. The proposed approach utilizes a
hardware-efficient ansatz with alternating layers of single-qubit rotation gates and
entangling CNOT gates, with angle encoding employed to map continuous state spaces
into quantum states. The model is tested in standard RL environments such as CartPole-
v0 and Acrobot-v1, which involve continuous state spaces, discrete action spaces, and
a quantum control task. The results show that the VQC models perform similarly to
classical NNs, requiring significantly fewer trainable parameters. Additionally, the
quantum models demonstrate greater resistance to barren plateaus [72], enhancing
their trainability. Overall, the study illustrates the potential for VQCs to reduce the
complexity of RL policies while maintaining strong performance in benchmarking tasks.

[23] explores different architectural choices and data encoding strategies and performs
ablation studies to assess the VQC-based Q-learning approach. The VQC is based
on a hardware-efficient ansatz, consisting of parameterized y- and z-rotations and a
daisy chain of CZ gates. Continuous state spaces are encoded using x-rotations, and
data re-uploading is used to improve expressivity. The model is tested on Frozen
Lake (discrete state space) and CartPole (continuous state space), both with discrete
action spaces. The algorithm is a quantum adaptation of DQN, where Q-values are
updated with an ϵ-greedy policy and experience replay. The results show that VQCs
perform comparably to classical NNs while requiring fewer parameters. Moreover,
deeper circuits lead to faster convergence and more accurate Q-value approximations.

The work by [73] presents a hybrid quantum-classical approach to robot navigation

35

4. Quantum Reinforcement Learning

tasks using the PyBullet real-time physics simulation engine [74] and a simulated
TurtleBot21 robot. The study focuses on discrete RL problems, employing the double
deep Q-network (DDQN) algorithm to train a robot to navigate grid mazes of increasing
complexity, with environments of 3×3, 4×4, and 5×5 grid dimensions, as shown in
Figure 4.1. In these environments, the robot starts in the upper-left corner and can
perform three discrete actions: move forward, rotate left, or rotate right. The robot’s
potential paths to solve each environment are marked in Figure 4.1. The state space the
agent observes includes three real-valued features: its position coordinates x, y and its
z-orientation.2

The proposed solution employs a DDQN algorithm, which reduces overestimation bias
by utilizing two separate action-value functions, q and q′, along with policy networks π

and π′. These target networks (q′ and π′) are periodically updated with the parameters
of the main networks, q and π, ensuring smoother and more reliable learning by
preventing rapid fluctuations in value estimates. The objective of the task is to navigate
the robot to the goal, located in the lower-right corner while avoiding obstacles. The
reward structure penalizes collisions (−1) and unnecessary movements (−0.2), only
providing incremental rewards for moving closer to the goal (+0.1) and a reward of
+10 upon reaching the goal.

For the actor and critic, PQCs are used as function approximators. Figure 4.2 illustrates
the general structure of the PQCs, highlighting two main components: the parame-
terized gates (purple) and the encoding gates (yellow). The encoding occurs in the
orange section of the PQC, where data is uploaded into the circuit using the equation
xli = arctan(λlisi), with λli as a trainable parameter, si representing the observed state
and arctan as the activation function, as shown in Figure 4.3. The parameterized gates
(purple) do not contain observation data but have trainable weights subject to classical
optimization through the Adam optimizer.

The study instructs two variants of PQCs: PQC-1 and PQC-3. PQC-1 encodes one input
feature per qubit using an Rx gate, whereas PQC-3 encodes all observed features on
each qubit using Rx, Ry, and Rz gates. Figure 4.3 provides a detailed view of the PQC-1
and PQC-3 circuits, displaying how the encoding and parameterization are structured
differently. The results indicated that PQC-3, which encodes all features on each qubit,
exhibited faster convergence and better performance than PQC-1. Additionally, large

1https://www.turtlebot.com/
2At the time of writing, the state space has changed in their recent paper update v3 [73], where a dynamic

environment was introduced that incorporates both local and global observations. The 3×3, 4×4, and
5×5 environments, however, were not tested with the new state space.

36

https://www.turtlebot.com/

4. Quantum Reinforcement Learning

(a) 3×3 Environment (b) 4×4 Environment (c) 5×5 Environment

Figure 4.1.: Robotic Navigation Environments from [73]: 3×3 (a), 4×4 (b), and 5×5 (c)
grid mazes with gray walls, blue and red static obstacles, and a green goal
area. The robot starts from the upper-left corner in each environment. The
dashed green line sketches potential paths the robot can take to solve the
environment.

QCs, with up to 39 layers, were tested in more dynamic environments to assess the
scalability and robustness of the quantum approach for complex robotic navigation
tasks.

Figure 4.2.: PQC ansatz layout from [73], showing one layer with repeated encoding
of input data in the yellow blocks Uin(xl) and parameterized operations
in the purple blocks Upar(θ). The structure includes an entangling layer
connecting the qubits through CZ gates, as illustrated by the black dots and
lines between qubits.

Most studies reviewed focus on idealized environments from the OpenAI Gym suite,
such as Frozen Lake, CartPole, Grid World, and others. These environments typically

37

4. Quantum Reinforcement Learning

Figure 4.3.: Input encoding Uin(xl) from [73] for the PQC architectures. PQC-1 (left)
uses Rx gates with each qubit encoding one feature si, modulated by a
trainable weight λi

l . PQC-3 (right) encodes all features si on each qubit
using Rx and Ry gates, with separate trainable weights λi

l for each gate.

feature either discrete state or action spaces, or both, which limit the complexity of
the tasks. While the OpenAI Gym suite is a widely used benchmark for RL algorithms,
offering a variety of games with different combinations of continuous and discrete
state-action spaces, most QRL approaches have concentrated on simplified scenarios.
Few studies have explored more industrial-like environments involving continuous
state and action spaces, leaving a gap in the application of QRL to more realistic tasks.

This thesis addresses the challenge of robot navigation in continuous action and state
spaces, a scenario not thoroughly investigated in existing literature. While early QRL
approaches have shown promise in discrete action spaces, they face difficulties in
continuous domains due to dimensionality issues introduced by discretization [41]. To
overcome this limitation, a quantum-enhanced DDPG algorithm is proposed to solve
sequential decision problems in both classical and quantum domains.

This work extends the research of [73], which explored robot navigation in continuous
state spaces, but with discrete actions. By introducing a continuous action space,
the framework allows for smoother and more adaptive responses based on local
observations without relying on an oracle entity. This approach integrates quantum
algorithms with classical RL techniques, creating a more realistic and flexible approach.
The following chapter will discuss the problem statement and the proposed solution,
highlighting the application of this quantum-classical hybrid method to robot navigation
tasks. This novel approach positions the work as a significant contribution to the field
of QRL.

38

5. Problem Statement and Solution

This chapter addresses the main challenges motivating this thesis, emphasizing the
constraints of existing QRL methodologies within the robotics domain. A comparative
analysis is conducted between the approach of [73] and the framework proposed herein,
focusing on distinctions in action space, state representation, and the complexity of
the learning environment. While previous studies have predominantly employed
discrete action spaces and global state representations, this thesis advances QRL to
accommodate more complex scenarios characterized by continuous action spaces
and localized sensor data. A solution utilizing the DDPG algorithm is proposed
to overcome these challenges. Three methodological approaches are explored: a
classical baseline, a hybrid model integrating classical layers with QCs, and a quantum
approach wherein function approximation is handled solely by a VQC, supplemented
by classical pre- and post-processing steps, including classical optimization as illustrated
in Figure 3.4. Furthermore, this chapter details the software and libraries employed for
implementation and assesses the scalability of quantum and hybrid quantum-classical
circuits relative to task complexity and model size.

5.1. Challenges in QRL for Robot Navigation

As elaborated in Section 4.2, a substantial portion of QRL research utilizes Atari 2600
games as a testing framework [6]. Although certain Atari games incorporate continuous
elements, many rely on discrete action and state spaces, limiting their applicability to
more sophisticated tasks such as robot navigation. The inherent discretization in these
environments does not adequately capture the continuous and dynamic interactions
essential for real-world applications, rendering direct comparisons with industrial
scenarios less relevant. Discretizing action spaces neglects important details about the
relationships within the action domain, which are crucial for solving many real-world
problems [5].

Additionally, Atari games often involve a superficial selection of features. Typically,
features like environmental images or entity coordinates are directly input into NNs,
resulting in a global state representation. This contrasts with the requirements of
robot navigation tasks, where agents depend on localized observations derived from

39

5. Problem Statement and Solution

sensor data. Global features, such as externally provided x, y coordinates, fail to
reflect the autonomous observation generation necessary for navigation in unfamiliar
environments. For instance, a robot navigating without external positioning systems
must rely on local sensor inputs, such as LiDAR readings, to determine its path.
An illustrative example of this limitation is presented in [73], where agents in a
robot navigation scenario receive global features like x, y coordinates within static
environments. Although recent iterations of their work incorporate sensor data to
represent local features in dynamic settings, global features such as the Euclidean
distance to the goal and the angular difference between the robot’s current heading
and the direction toward the goal remain, resulting in a mix of local and global data.
Moreover, existing literature, including the work of [73], frequently emphasizes dis-
cretized state and action spaces, constraining the agent’s capacity for nuanced control
in tasks like navigation and steering. As such discretization simplifies the learning prob-
lem, it reduces the relevance of these approaches for practical, real-world applications
that demand continuous control. Furthermore, although [73] provides comparisons
between classical and various quantum models, there is a notable scarcity of research
investigating the integration of classical NN layers with quantum function approxima-
tion - a hybrid approach. This methodology, wherein classical layers interface with
QCs, has the potential to yield deeper insights into the distinct contributions of classical
and quantum components within RL frameworks.

This thesis aims to address these limitations by implementing a DDPG approach
with diverse ansatzes and varying circuit sizes, thereby significantly enhancing the
complexity compared to the methodologies employed in [73]. Additionally, the task’s
complexity is increased by relying only on local features, continuous action and state
spaces, and a comparative analysis of classical, hybrid, and quantum approaches across
different circuit architectures and ansatzes. This holistic approach contributes to the
advancement of QRL in robotic navigation by providing a more realistic and scalable
testing environment.

5.2. Proposed Methodology

This methodology addresses the challenges in QRL for robot navigation by integrating
advanced simulation environments, dynamic reward structures, and various computa-
tional models. It starts with designing a sophisticated RL environment that employs
continuous action spaces and locally derived sensor data, such as LiDAR readings, to
better emulate real-world robotic interactions. A refined reward system is implemented
to encourage consistent progress while penalizing inefficiencies and promoting robust

40

5. Problem Statement and Solution

learning behaviors. The approach investigates three types of models for function ap-
proximation: classical NNs, hybrid quantum-classical architectures, and predominantly
quantum VQCs. Each model is evaluated across different QC configurations and
ansatzes to assess their performance and scalability. Further, hardware and software
characteristics are considered to support extensive simulations and model training. By
systematically comparing classical, hybrid, and quantum approaches, the methodology
aims to disclose the strengths and limitations of integrating quantum computing into
RL frameworks, ultimately advancing the field of quantum-enhanced robotics.

5.2.1. Design of RL Environment

This thesis extends the work of [73], as discussed in Section 4.2, by utilizing three
static environments as test suites (cf. Figure 4.1) and a simulated TurtleBot2 robot
implemented with the PyBullet real-time physics simulation engine [74], taken and
modified from the GitHub repository1 of [73]. The simulation operates at a frequency
of 100 Hz for collision detection and motion dynamics. The TurtleBot2 features a
differential drive system consisting of two wheels, each controlled by individual motors.
Movement is achieved by setting velocities for each wheel: applying equal positive
or negative velocities results in strict forward or backward motion, while equal but
opposite velocities induce rotation in place. Differing wheel velocities produce curved
trajectories.

Contrary to [73], which utilizes a discretized action space comprising three distinct
actions: forward movement and left and right rotations by 40◦– 50◦ (due to motion
carryover between simulation steps), the current implementation adopts a continuous
action space. This is achieved by allowing wheel velocities to vary continuously within
the range of 0 to 10. Additionally, the state space has been significantly enhanced
from the basic global coordinates (x and y) and local z-orientation to more complex,
industrial-grade sensory inputs, organized in Figure 5.1.2 These include LiDAR data,
linear and angular velocities, and z-orientation. For each environment, the robot
initiates its navigation from the upper left position and aims to reach the goal threshold
located at the bottom right. This enhancement ensures that the state representation
relies solely on local observations, better mirroring real-world robotic applications.

1https://github.com/dfki-ric-quantum/qdrl-turtlebot-env
2At the time of writing, [73] released paper version v3, which introduces a dynamic environment

incorporating LiDAR data as state inputs, along with the Euclidean distance to the goal and the
angular difference between the robot’s current heading and the direction toward the goal (both global
information). However, the static environments 3×3, 4×4, and 5×5 remained untested with the
updated state space.

41

https://github.com/dfki-ric-quantum/qdrl-turtlebot-env

5. Problem Statement and Solution

Consistent with the previous simulation steps, applying the maximum velocity of 10
to both wheels results in an approximate traversal distance of ∼ 0.18 units per action,
although a deterministic statement of distance cannot be made due to motion carryover
affecting subsequent actions. Each action is executed over a duration of 0.5 seconds
and is selected every 50 simulation steps, analogous to [73].

5.2.2. Computation of Reward Thresholds

The reward function employed in the RL setup is defined in Equation 5.1. Unlike the
original implementation presented in [73], which utilizes a static reward of 0.1, the
current approach adopts a dynamic reward structure based on the agent’s progress
toward the goal. Specifically, the reward is determined by the change in Euclidean
distance to the goal between consecutive states, with the progress threshold lowered to
0.05 units from the original 0.1.

r(st, st+1) =

10.0 if ∥st+1 − goal∥ ≤ goal threshold

∥st − goal∥ − ∥st+1 − goal∥ if ∥st − goal∥ − ∥st+1 − goal∥ ≥ 0.05

−1.0 in case of collision

−0.2 otherwise
(5.1)

This modification ensures that the reward function dynamically reflects the agent’s
advancement toward the goal, providing more detailed feedback and encouraging
consistent progress. The other components of the reward function, including collision
penalties and default negative rewards, remain consistent with the original framework
established in [73], thereby promoting trajectories that lead toward the goal.

Successful navigation within an environment is determined by meeting one of two
predefined thresholds, t1 and t2, each representing different levels of effectiveness.
The primary threshold, t1, is manually determined, analogous to the method used by
Hohenfeld [73]. In their work, the reward thresholds were set to 10.5, 11.0, and 10.0
for the 3×3, 4×4, and 5×5 environments, respectively. These values represent lower
bounds derived from a range of successful navigation trajectories. Additionally, the
authors established near-optimal step counts of 20, 30, and 45 steps for the respective
environments. In the original implementation, the robot operated with a discrete action
space comprising three actions: moving forward, left rotation, and right rotation. This
required the robot to execute rotational actions that changed its orientation without
altering its location, effectively consuming steps solely for rotation. To account for
the increased mobility in the current implementation—which introduces a continuous

42

5. Problem Statement and Solution

action space allowing curved trajectories—the near-optimal step counts are adjusted
by subtracting the steps previously needed for rotations. These adjusted step counts
represent the near-optimal benchmarks for the continuous action space in this thesis and
are used to determine the steps required to reach the goal while achieving the reward
threshold t1. The t1 reward thresholds for the continuous action space were established
accordingly through manual testing. The adjusted step counts and corresponding t1

reward thresholds are as follows:

3×3 : t1-steps: 20− 3 = 17, t1 : 12.0,

4×4 : t1-steps: 30− 2 = 28, t1 : 13.5,

5×5 : t1-steps: 45− 5 = 40, t1 : 14.5.

To further accommodate variations in agent performance, a secondary threshold t2 is
introduced. This threshold provides a more tolerant criterion for successful navigation
by allowing an additional 50% of the steps required to achieve t1. The t2 threshold
is calculated by adding half of the near-optimal step count to the t1 threshold, with
a penalty of −0.2 applied for each additional step. For example, the t2 threshold is
calculated as follows:

3×3 : t2-steps: 17× 1.5 = 25.5, t2 : 12.0− (8.5× 0.2) = 12.0− 1.7 = 10.3,

4×4 : t2-steps: 28× 1.5 = 42, t2 : 13.5− (14× 0.2) = 13.5− 2.8 = 10.7,

5×5 : t2-steps: 40× 1.5 = 60, t2 : 14.5− (20× 0.2) = 14.5− 4.0 = 10.5.

Under the t2 threshold, the agent is considered to have successfully navigated the
environment even if it does not consistently decrease the distance to the goal by at least
0.05 units per step. Achieving t2 indicates that the agent has reached the goal, albeit
with reduced efficiency compared to meeting the t1 threshold. All derived reward
and step thresholds are listed for clarity in Table A.1. Furthermore, each episode is
limited to a maximum of 100 steps. If the agent fails to reach the goal within this limit,
the environment is reset, and a collision penalty is applied. This constraint prevents
episodes from running indefinitely and encourages the agent to identify effective paths
within a reasonable number of actions.

Overall, the implementation of dual thresholds t1 and t2, along with step limitations,
provides a balanced evaluation framework. It rewards efficient progress while penal-
izing prolonged or ineffective actions, encouraging the development of robust and
efficient navigation strategies across various environmental complexities.

43

5. Problem Statement and Solution

5.2.3. RL Models: Classical, Hybrid, and Quantum

This study explores three RL solutions: quantum, hybrid, and classical approaches.
While still hybrid in implementation due to the classical optimizer, the quantum model
operates without classical NN layers, relying solely on a VQC for function approxima-
tion. The hybrid approach combines classical and quantum function approximation
by incorporating a classical layer preceding the VQC, allowing the model to leverage
both types of computations. Finally, a purely classical NN serves as a baseline for
comparison, providing a conventional architecture against which the performance of
quantum-based models can be evaluated. All three approaches are built on the DDPG
algorithm, detailed in Section 2.3.2, with the corresponding pseudo-code provided in
Algorithm 1. The specific hyper-parameters used across the environments are pre-
sented in Table A.1, with a concise explanation provided in Appendix A.1. The overall
structure of the QRL flow is illustrated by Figure 3.4.

Figure 5.1 presents the features (observation attributes) used across these three ap-
proaches, outlining the input structure that feeds into each model and highlighting the
information available to the actor and critic networks. For the actor model, six features,
f1 through f6, are employed, while the critic model extends this set by incorporating
two additional action-related features, f7 and f8. The first three features, f1, f2, and f3,
are derived from LiDAR sensors that detect objects within a distance of 2 units. These
sensors are positioned at fixed angles, separated by 45◦

(
π
4 radians

)
, and aligned to

face the robot’s direction of movement. If no object is detected, the full sensor range is
used. Feature f4 represents the robot’s orientation, denoted as its z-orientation, while
features f5 and f6 capture the motion dynamics based on the TurtleBot’s differential
drive system. Specifically, f5 is the linear velocity, and f6 is the angular velocity of the
robot. In addition to these observation features used by the actor, the critic model in-
cludes the left and right wheel velocities, represented by features f7 and f8, respectively.
This addition aligns with the setup of the DDPG algorithm, where the critic evaluates
the actions chosen by the actor (policy). Thus, the critic requires access to both the
observation features and the actions to assess the effectiveness of the chosen actions in
the given state. Finally, all features undergo a pre-processing step, normalizing them
to specific ranges as indicated in the Pre-Processing box, ensuring consistency across
inputs.

44

5. Problem Statement and Solution

Figure 5.1.: Representation of the input features used to train the actor and critic
networks. The input for the actor network consists of the object detection
distances from the LiDAR sensors (f1 to f3), where the full detection range
is used if no object is found within the maximum distance, the robot’s
z-orientation (f4), and its linear (f5) and angular velocities (f6). For the
critic network, the additional left (f7) and right (f8) wheel velocities are
included as actions. All features are pre-processed before being input into
the networks, with the corresponding feature ranges shown.

The classical NN architecture used in this study, based on the implementation of
CleanRL ddpg_continuous_action.py [75] and modified to meet the requirements of
this specific RL problem, consists of a critic network and an actor network. The critic
receives an input that combines the observation and action dimensions, resulting in
an input size of eight, with six observation features and two action features. Its ar-
chitecture includes three fully connected (linear) layers: the first layer maps the input
to an intermediate representation, followed by a second layer, and finally, an output
layer with a single unit representing the Q-value. The activation function, rectified
linear unit (ReLU), defined as ReLU(x) = max(0, x), is applied after the first two layers

45

5. Problem Statement and Solution

to introduce non-linearity, while the final layer uses a linear activation to produce
the Q-value. Additionally, the action input is normalized by dividing by 10.0 before
concatenation with the observation input.

The actor network, with an input dimension of six observation features, follows a
similar structure with three fully connected layers. The first two layers apply ReLU
activations, while the final layer uses tanh to constrain the action output within [−1, 1].
The output, representing the action space’s two dimensions (left and right wheel
velocities), is rescaled to a positive range by applying an environment-specific bias and
scaling factor. This range is then clipped to align with the maximum velocity limit of 10,
as depicted in the figure, ensuring the actions conform to the continuous action space
constraints. In the scope of this thesis, the classical models are annotated with c, with
the number of neurons in the first and second hidden layers specified as subscripts.

Figure 5.2.: Hybrid agent illustrating the processing of features f1 to f6 for the actor
and f1 to f8 for the critic (cf. Figure 5.1). The features are passed through
a fully connected NNLayer, where the input and output correspond to the
number of features. The NN’s output is then forwarded into the respective
quantum circuit qCircuit. The quantum ansatz used in the circuit is the same
as that presented in Figure 5.3. The actor model utilizes 6 features, while
the critic model processes 8 features.

To enable VQC-based function approximation, the classical CleanRL implementation
was customized and modified accordingly, merging the work from [73] with [75]. In
this setup, both the hybrid and quantum approaches incorporate a VQC but differ
in how they process input features and their degree of hybridization. The hybrid
approach includes a classical layer before the QC. Specifically, the input features first

46

5. Problem Statement and Solution

pass through a simple classical NN with fully connected input and output layers. The
number of neurons in the input and output layers matches the observation dimensions:
six for the actor and eight for the critic. This configuration essentially maps the input
features to an identical output size, with the processed output serving as the input
to the VQC. This process is illustrated in Figure 5.2. In both hybrid and quantum
approaches, the VQC structure depends on the number of qubits and layers used. A
schematic representation of the VQC is shown in Figure 5.3. The VQC design is in-
spired by the architectures presented in [73] and [23], but employs a different encoding
scheme to better accommodate the specific requirements of this study. The n-qubit actor
and critic models begin with an initial layer of parameterized rotation gates, Rx, Ry,
and Rz, without feature encoding (white). This is followed by an entanglement chain
composed of CZ gates, where each upper qubit (empty circle) serves as the control,
and the subsequent qubit (filled-in circle) acts as the target. The last qubit controls
the first, ensuring full entanglement across all qubits. Each repeating layer comprises
feature encoding gates, variational gates, and entanglement. The feature encoding gates
(orange) involve alternating between Rx and Ry gates, iterating over the six features for
the actor and eight for the critic. For each encoding gate, classical features are multi-
plied by corresponding trainable parameters, λ, and circulated horizontally according
to the modulo operation, mod 6 for the actor and mod 8 for the critic, with the latter
including action features. After the feature encoding gates, a variational set of gates
identical to the initial layer is applied, concluded by entanglement using CZ gates. This
sequence forms one complete layer of the circuit, which is repeated according to the
specified number of layers. All parameters applied in the circuit are individual to the
respective gates and are not repeated or reused. Lastly, a measurement is performed on
the first qubit for the actor and on the first and second qubits for the critic. Throughout
this work, quantum and hybrid models are annotated by q and h, respectively, with the
number of qubits and layers written as subscripts.

The ansatz illustrated in Figure 5.3 distinguishes between the actor and critic networks
due to their differing numbers of encoded features. With an increase in layers and,
consequently, circuit size, the total weights of each network also vary. For the actor
network, the weights are composed as follows:

The initial layer includes 3 trainable weights per qubit for initialization. Each subse-
quent layer contributes 3× #qubits weights from the variational gates and #features×
#qubits× #layers weights from the encoding process. In the actor network, where
#features = 6, output scaling is applied for both the left and right actions, in line with
the approach outlined in [23] and [73]. This results in the total number of weights being

47

5. Problem Statement and Solution

Fi
gu

re
5.

3.
:A

ge
ne

ra
l

n-
qu

bi
t

ac
to

r
an

d
cr

it
ic

m
od

el
u

se
d

fo
r

fu
nc

ti
on

ap
p

ro
xi

m
at

io
n.

T
he

ga
te

s
(R

x,
R

y,
R

z)
re

p
re

se
nt

va
ri

at
io

na
l

ga
te

s
(w

hi
te

)
co

nt
ai

ni
ng

tr
ai

na
bl

e
p

ar
am

et
er

s
(θ

)
w

it
ho

u
t

d
at

a
en

co
d

in
g.

T
he

or
an

ge
ga

te
s

re
p

re
se

nt
th

e
d

at
a

en
co

d
in

g
of

th
e

cl
as

si
ca

l
fe

at
u

re
s

(c
f.

Fi
gu

re
5.

1)
.

In
bo

th
th

e
ac

to
r

an
d

cr
it

ic
ci

rc
ui

ts
,t

he
cl

as
si

ca
lf

ea
tu

re
s

ar
e

m
ul

ti
pl

ie
d

by
co

rr
es

po
nd

in
g

tr
ai

na
bl

e
pa

ra
m

et
er

s
(λ

).
T

he
fe

at
u

re
s

ar
e

ci
rc

u
la

te
d

as
in

d
ic

at
ed

by
th

e
m

od
u

lo
op

er
at

io
n,

m
od

6
fo

r
th

e
ac

to
r

an
d

m
od

8
fo

r
th

e
cr

it
ic

,w
it

h
th

e
cr

it
ic

co
nt

ai
ni

ng
tw

o
ad

d
it

io
na

lf
ea

tu
re

s
(c

f.
Fi

gu
re

5.
1)

.
T

he
en

co
d

in
g

ga
te

s
al

te
rn

at
e

be
tw

ee
n

R
x

an
d

R
y

ga
te

s,
in

cr
em

en
ti

ng
th

e
fe

at
ur

es
.T

he
qu

bi
ts

ar
e

en
ta

ng
le

d
vi

a
C

Z
ga

te
s,

w
he

re
th

e
up

pe
r

qu
bi

ti
s

th
e

co
nt

ro
l(

em
pt

y
ci

rc
le

),
an

d
th

e
su

bs
eq

ue
nt

qu
bi

ti
s

th
e

ta
rg

et
(fi

lle
d-

in
).

Th
e

la
st

qu
bi

t
is

th
e

co
nt

ro
lq

u
bi

t
fo

r
th

e
fi

rs
t

(t
ar

ge
t)

qu
bi

t,
en

su
ri

ng
fu

ll
en

ta
ng

le
m

en
t

ac
ro

ss
th

e
qu

bi
ts

.
O

nl
y

th
e

fir
st

qu
bi

t
is

m
ea

su
re

d
fo

r
th

e
cr

it
ic

,w
hi

le
th

e
fir

st
tw

o
qu

bi
ts

ar
e

m
ea

su
re

d
fo

r
th

e
ac

to
r.

48

5. Problem Statement and Solution

calculated as follows:

θActor = 3× #qubits + 3× #layers× #qubits + 6× #layers× #qubits + 2.

For the critic network, where #features = 8, the structure is similar, with an additional
single output scaling parameter for the Q-values. Therefore, the total weight count for
the critic network is:

θCritic = 3× #qubits + 3× #layers× #qubits + 8× #layers× #qubits + 1.

The hybrid approach introduces a classical layer alongside the quantum components,
contributing additional weights to the actor and critic models. For the actor, the classical
layer has 6 inputs and 6 outputs, resulting in 36 weights plus 6 biases, totaling 42
parameters. The remaining parameters, including the QC and output scaling, are
identical to those in the quantum ansatz calculation. This gives the total weight count
for the actor as:

θActor = 42 + 3× #qubits + 3× #layers× #qubits + #features× #layers× #qubits + 2.

For the critic network, the classical layer has 8 inputs and 8 outputs, resulting in 64
weights plus 8 biases, totaling 72 parameters. The QC and output scaling structure
remain the same as in the quantum ansatz, giving the total weight count for the critic
network as:

θCritic = 72 + 3× #qubits + 3× #layers× #qubits + #features× #layers× #qubits + 1.

Table 5.1 summarizes the trainable parameters for all models used in this thesis. NNs
with a similar number of parameters as the quantum models were chosen as a classical
baseline for comparison. Additionally, an advanced classical model with hidden layers
of size (256, 256) was included to provide a performance benchmark, allowing for a
comparison of parameter complexity and effectiveness relative to the quantum and
hybrid approaches.

5.2.4. Hardware, Software, and Computational Resources

The workload for this project was distributed over a cluster of machines, most of
which were equipped with an AMD Ryzen 9 5950X processor featuring 16 cores and
32 threads, paired with an NVIDIA GeForce RTX 3090 GPU. Some machines were
equipped with less performant GPUs, such as the NVIDIA GeForce GTX 1080. The
simulated static environment used to train and evaluate the robot was constructed
using PyBullet [74], a real-time physics simulation engine. The environment was

49

5. Problem Statement and Solution

Table 5.1.: Distribution of trainable parameters (θ) for quantum (q), hybrid (h), and
classical (c) models across actor and critic networks. For quantum and hybrid
models, θQ includes variational and data encoding parameters. Output
scaling parameters are included as classical trainable weights, with two for
the actor and one for the critic. The c256,256 model is included for baseline
comparison. The table presents θQ, θC, and θTotal for both actor and critic
networks, along with their total counts.

Actor Critic

Model θQ θC θActor θQ θC θCritic θTotal

q4,3 120 2 122 144 1 145 267
q4,5 192 2 194 232 1 233 427
q8,3 240 2 242 288 1 289 531
q8,5 384 2 386 464 1 465 851

h4,3 120 44 164 144 73 217 381
h4,5 192 44 236 232 73 305 541
h8,3 240 44 284 288 73 361 645
h8,5 384 44 428 464 73 537 965

c7,7 0 121 121 0 127 127 248
c10,10 0 202 202 0 211 211 413
c12,12 0 266 266 0 277 277 543
c16,16 0 418 418 0 433 433 851

c256,256 0 68,098 68,098 0 68,353 68,353 136,451

developed following the OpenAI Gym framework [67], which provides standardized
interfaces for RL environments. QCs were simulated using PennyLane [76], and all
circuit simulations were noise-free. The boilerplate code for the DDPG algorithm was
taken from the CleanRL library [75]. This code was modified to incorporate QCs instead
of classical NNs and hybrid approaches combining classical and quantum models.
CleanRL utilizes the PyTorch library [77] for all ML tasks, including model optimization
using the Adam Optimizer. The replay buffer employed in this project was sourced
from the Stable Baselines3 library [78]. The GitHub repository for the environment
and simulation code was obtained and modified from the original project repository by
[73], as noted in their publication.

50

5. Problem Statement and Solution

The wall-clock times of the experiments averaged over all configurations and environ-
ment sizes, are presented in Table 5.2. The results are differentiated between the hybrid
and quantum ansatz, with time reported in thousands of steps per day. While data was
collected across all environment sizes (3×3, 4×4, 5×5), the time differences between
environments were marginal. The machine cluster used for these experiments was
shared for multiple purposes, leading to varying loads and availability throughout the
process. This factor likely explains the counterintuitive observation that the hybrid
method, which includes an additional classical layer prior to the QC (cf. Figure 5.2),
exhibited an increase in steps per day compared to the pure quantum approach. The
variability in cluster usage should be taken into account, and these results should,
therefore, be interpreted as rough estimations rather than precise benchmarks.

Table 5.2.: Training steps in 24h (in thousands) for different configurations of quantum
(q) and hybrid (h) models based on wall-clock time.

q4,3 h4,3 q4,5 h4,5 q8,3 h8,3 q8,5 h8,5

Steps/24h (x 1000) 20.6 23.3 13.5 14.8 15.8 13.6 9.4 7.7

In summary, the proposed methodology effectively addresses the identified challenges
by implementing the DDPG algorithm with diverse ansatzes and varying circuit sizes.
This approach incorporates continuous action spaces and local feature extraction,
increasing the complexity of the RL setup to better emulate real-world robotic navigation
scenarios. By exploring classical, hybrid, and quantum approaches, the methodology
establishes a comprehensive framework for evaluating the performance and scalability
of quantum-enhanced RL models. The integration of different weights, ansatzes, and
circuit architectures facilitates a robust analysis of each model’s contributions and
limitations. Lastly, the consideration of hardware and software characteristics ensures
the feasibility of the methods.
This structured approach contributes to the advancement of QRL in the context of
robotic navigation by providing a more realistic and scalable testing environment. The
subsequent section presents the results of benchmarking hybrid and quantum models
with 4 and 8 qubits and 3 and 5 layers, respectively, against a classical baseline with
a similar number of weights. These comparisons aim to elucidate the effectiveness of
quantum enhancements in RL and their potential advantages over traditional classical
models.

51

6. Results

This chapter presents the outcomes of a comprehensive series of experiments designed
to evaluate and compare the performance of VQC-based quantum and hybrid models,
as well as classical NN models, within different environmental configurations. The
results are structured to provide insights into both training and testing performances,
encouraging a complete comparative analysis against the findings of [73]. The subse-
quent sections detail the experimental setup, training performance, testing performance,
and overall comparative analysis across various environments and models. The chapter
concludes with trends and interpretations of the different ansatzes.

6.1. Experimental Setup and Remarks

For each configuration and model detailed in the preceding chapter, three distinct
random seeds were employed across the 3×3, 4×4, and 5×5 environments. The
quantum and hybrid models featured configurations with either 4 or 8 qubits and
were implemented using 3 or 5 layers. Training each quantum or hybrid model with
three seeds per environment resulted in a total of 4× 3× 3× 2 = 72 quantum-based
runs. Additionally, five classical NNs were trained as baseline models, each utilizing
three random seeds across all environments, contributing another 5× 3× 3 = 45 runs.
Furthermore, eleven additional classical NNs (c4,4, c8,4, c8,8, c16,8, c32,16, c32,32, c64,32, c64,64,
c128,64, c128,128, and c256,128) were trained on each environment with three distinct seeds.
However, these were excluded from the thesis to maintain focus and prevent excessive
runs, as the included runs sufficiently facilitate comparison without overfilling the
thesis. Consequently, out of a possible 16× 3× 3 = 144 classical runs, only 45 runs
were included in the performance comparisons, resulting in a cumulative total of 117
experimental runs.

In addition to training performance, 117 models - including all quantum and hybrid
models as well as five classical NNs (c7,7, c10,10, c12,12, c16,16, and c256,256) - were sub-
jected to 10 evaluation runs each, resulting in a total of 1,170 test runs to assess the
effectiveness of the trained policies. These five classical NNs were selected based on
their weight configurations: the first four models (c7,7, c10,10, c12,12, and c16,16) possess
weight configurations comparable to the VQC used in the quantum and hybrid ansatz

52

6. Results

(cf. Figure 5.1), ensuring a fair comparison. The fifth model (c256,256) was included to
provide a benchmark through an exhaustive classical NN. The hyper-parameter settings
for each trained model are detailed in Table A.1 and further elaborated in Sections A.1
and 2.3.2. A comparative performance analysis of quantum (q), hybrid (h), and classical
(c) models, including the classical baseline model (c256,256), is presented in Tables 6.1,
6.2, and 6.3, corresponding to each environment.

Model selection for evaluation was based on the exponential moving average (EMA)
peak with a decay factor of 0.99. The model checkpoint closest to this EMA peak at
each timestep was chosen for the evaluation runs. Each performance table includes the
model identifier, total number of weights (θ), the number of successful runs out of 30
total runs (SR/30), and statistical measures for both rewards and steps. Specifically, the
tables report the minimum, maximum, median, mean, and standard deviation (Std) for
rewards and steps, where step counts are calculated only from successful runs. Models
that did not achieve successful runs are denoted with nan for step-related metrics.
Best-performing metrics within each model category are highlighted in bold to facilitate
comparison. Also, rows corresponding to top-performing models - determined primar-
ily by the number of successful runs and reward metrics - are shaded in green, while
models achieving fewer than five successful runs are highlighted in red and excluded
from metric highlighting. It should be noted that the designation of top-performing
models is subject to interpretation based on these criteria. This structured presentation
facilitates a clear and comprehensive performance comparison across different model
types and environments.

To ensure clarity and uniformity in the presentation of results, all training plots adhere
to a consistent layout and design. Figures ranging from 6.1 to 6.10 illustrate the training
performance of the respective models. The legends differentiate between quantum
(q), hybrid (h), and classical (c) models, specifying the number of qubits and layers
for quantum and hybrid configurations and the number of neurons in the hidden
layers for classical models. Each model’s performance is averaged over three seeds,
depicted by a solid line in the model-specific color, where a simple moving average
(SMA) with a window size of 25 is applied adaptively to ensure accurate representation
throughout the training process, preventing skewed averages in the early stages when
data points are sparse. The corresponding standard deviation is denoted as a shaded
area. Additionally, the thresholds t1 and t2, as defined in Section 5.2.2, are indicated by
dashed horizontal lines to denote success criteria specific to each environment. The
t1 threshold also limits the upper standard deviation, preventing the visualization
of rewards that exceed plausible maximum values. Listed in Table A.1, the replay
memory buffer is initialized with 5000 steps. This allows the DDPG algorithm to

53

6. Results

sample and learn from an initial set of experiences, marked by a vertically dashed line
in all plots as “Learning starts”. Across all figures, the x-axis represents the time steps
executed during training, totaling 120,000 steps per model, while the y-axis reflects
the rewards achieved in one episode by the agent. The uniform styling is maintained
throughout, except for the grid plot (Figure 6.10), where some labels are omitted to
enhance readability; however, the notation remains consistent and clear.

6.2. Training Results

This section provides an evaluation of the training performances for quantum, hybrid,
and classical models across the 3×3, 4×4, and 5×5 environments. The thresholds t1

(near-optimal) and t2 (sufficient) success criteria, previously defined in Section 5.2.2, are
used as reference points to compare and assess model performance, providing insight
into the effectiveness and learning ability of each approach. The grid plot shown in
Figure 6.10 provides an overview of the training performances across all configurations,
organized by similar model weights. While a more coherent comparison of these
models is discussed later alongside the overall results, this plot provides a summary of
the training performances covered in this section. Each plot in the grid is also presented
and analyzed individually within the quantum, hybrid, and classical categories. Thus,
these plots do not introduce new insights into the training performance.

6.2.1. Classical Performance

Figures 6.1, 6.2, and 6.3 display the training performance of the classical models c7,7,
c10,10, c12,12, c16,16, and c256,256 in the 3×3, 4×4, and 5×5 environments, respectively.

In the 3×3 environment, all models exhibit a rapid initial increase in average reward
shortly after the commencement of training, followed by a subsequent decline. The
c256,256 model demonstrates the highest stability and consistently achieves both the
t1 and t2 thresholds. Conversely, c12,12 reaches the t2 threshold and nearly attains t1,
maintaining near-threshold performance despite having fewer neurons than c16,16. The
c10,10 and c16,16 models show higher variation in mean rewards in the 3×3 environment,
getting close to the t2 threshold but ultimately failing to reach it. The c7,7 model exhibits
instability and performs the worst, failing to reach the t2 threshold and concluding with
a below-zero mean reward. In the 4×4 environment, all classical models, except for c7,7,
successfully achieve the t2 threshold and demonstrate learning capability. The c256,256

model consistently reaches the t1 threshold, while c10,10 and c12,12 come close. Among
the classical models, c256,256 demonstrates the greatest stability, whereas c12,12 and c16,16

are sufficiently stable, with c7,7 being the least effective. For the 5×5 environment,

54

6. Results

c256,256 achieves the t1 threshold but demonstrates limited stability. Both c12,12 and c16,16

exhibit similar volatility in terms of robustness and reward attainment, although only
c16,16 reaches the t2 threshold. Models c7,7 and c10,10 fluctuate around zero rewards,
indicating inadequate learning.

Overall, all classical models encounter challenges in solving the 3×3 and 5×5 environ-
ments, with increased neuron counts generally correlating with improved performance.
Models with more neurons (c12,12, c16,16, c256,256) achieve better and, most of the time,
more stable results, whereas c7,7 consistently underperforms across all environments.
Despite not reaching the t2 threshold in the 3×3 environment, c10,10 demonstrates a
slightly more robust performance than c7,7, though with a lower average reward than
c16,16, especially in the 5×5 environment, positioning it as a sufficient performer in the
3×3 and 4×4 environments. Furthermore, excluding the c256,256 model, the c12,12 model
stands out as the best-performing classical model overall.

Figure 6.1.: Training performance of all classical models in the 3×3 environment.

55

6. Results

Figure 6.2.: Training performance of all classical models in the 4×4 environment.

Figure 6.3.: Training performance of all classical models in the 5×5 environment.

56

6. Results

6.2.2. Quantum Performance

Figures 6.4, 6.5, and 6.6 illustrate the training performance of the quantum models q4,3,
q4,5, q8,3, and q8,5 in the 3×3, 4×4, and 5×5 environments, respectively.

In the 3×3 environment, only the q8,5 model demonstrates significant learning capacity
by reaching the t2 threshold and approaching the t1 threshold, albeit with considerable
variability and a drop in mean reward at the end of training. The remaining quantum
models (q4,3, q4,5, and q8,3) remain stagnant with average rewards near zero, indicating
a lack of effective learning. Among these low-performing models, q4,5 maintains a
mean reward marginally closer to the zero-reward line compared to the others. In
the 4×4 environment, both q8,5 and q4,5 attain the t2 threshold. The q8,5 model also
reaches the t1 threshold multiple times, even by 60,000 steps - half of the training
steps - though not persistently. The q8,3 model initially shows promising performance
by learning more rapidly than q4,5. Still, it experiences a substantial decline around
100,000 steps, resulting in the lowest average reward at the end of training among the
quantum models. The q4,5 model maintains steady growth in average reward, while q8,5

reaches higher thresholds but lacks consistency. The least complex model, q4,3, fails to
demonstrate concrete learning progress. In the 5×5 environment, all quantum models
generally fluctuate around a mean reward of zero. The q8,5 model stands out by raising
the mean reward to approximately five, surpassing the t2 threshold in some of its runs,
though this is not consistent across all training sessions. The models q4,3, q4,5, and q8,3

exhibit similarly ineffective performance in this more complex environment.

Overall, the quantum models demonstrate limited learning ability across the tested
environments. While q8,5 shows potential by achieving higher thresholds in the 3×3
and 4×4 environments, its performance is characterized by significant variability. The
remaining quantum models (q4,3, q8,3, and q4,5) generally fail to demonstrate significant
learning, particularly in the 3×3 and 5×5 environments. However, q4,5 performs well
in the 4×4 environment. Among the four models, q8,5 performs the best overall, while
q4,5, despite excelling only in the 4×4 environment, is considered the second-best.

57

6. Results

Figure 6.4.: Training performance of all quantum models in the 3×3 environment.

Figure 6.5.: Training performance of all quantum models in the 4×4 environment.

58

6. Results

Figure 6.6.: Training performance of all quantum models in the 5×5 environment.

6.2.3. Hybrid Performance

Figures 6.7, 6.8, and 6.9 present the training performance of the hybrid models h4,3, h4,5,
h8,3, and h8,5 in the 3×3, 4×4, and 5×5 environments, respectively.

In the 3×3 environment, none of the hybrid models’ mean rewards reach the estab-
lished thresholds. h4,3 shows an initial rapid increase in mean reward but subsequently
experiences a sharp decline and persistent oscillations throughout the training, con-
cluding with the worst performance. The models h4,5 and h8,3 stabilize over time and
show consistent growth in mean reward, with h4,5 performing slightly better. The h8,5

model maintains a steady increase in average reward, briefly declines during the later
stages of training, but ultimately recovers and settles marginally below h4,5. In the
4×4 environment, the hybrid models h4,3, h4,5, and h8,3 reach the t2 threshold, with h8,5

coming close. All models exhibit a steep initial increase in mean reward, followed by a
period of stagnation. The h4,3 model learns the quickest but demonstrates significant
fluctuations, ending with an average reward of around five. The h4,5 model shows
consistent learning initially but experiences a sharp drop in the later stages of training,
resulting in the lowest final performance. Conversely, h8,3 and h8,5 display the most
consistent training progress, with h8,5 approaching the t2 threshold and achieving the
highest average reward near ten. In the 5×5 environment, hybrid models h4,3 and h8,3

59

6. Results

perform poorly, oscillating around an average reward of zero with a negative trend in
the later stages of training, though h8,3 is more stable than h4,3. The h8,5 model achieves
the second-highest average reward, albeit with fluctuations. The h4,5 model outperforms
the others by surpassing the t2 threshold early on, although its performance is unstable
and eventually declines slightly below the threshold.

Overall, among the hybrid models, h4,3 exhibits the poorest average performance,
despite briefly crossing the t2 threshold in the 4×4 environment but failing to maintain
it. The h8,5 model nearly achieves the t2 threshold in the 4×4 environment and
generally outperforms h8,3 and h4,3 in mean reward, though it lacks robustness across
environments. h8,3 delivers comparable performance to h4,5 in the 3×3 environment
and reaches t2 in the 4×4 environment but is also prone to instability. The most
effective model is h4,5, as it uniquely surpasses two t2 thresholds and demonstrates
strong learning in the 5×5 environment. Nonetheless, it underperforms in the 4×4
environment compared to h8,5 and h8,3. Overall, h4,5 appears to perform best in training
on average and excels in the largest environment (5×5), though it is not consistent
across all models. h8,3 performs better in the smaller environments, similarly to h8,5.

Figure 6.7.: Training performance of all hybrid models in the 3×3 environment.

60

6. Results

Figure 6.8.: Training performance of all hybrid models in the 4×4 environment.

Figure 6.9.: Training performance of all hybrid models in the 5×5 environment.

61

6. Results

Figure 6.10.: Training performance grid plot of quantum, hybrid, and similarly
weighted classical models across all environments. Thresholds t1 and
t2 are colored in green and red, respectively.

62

6. Results

6.3. Test Results

Following the analysis of training performances in the previous section, this section
presents the test results, focusing on the performance of quantum, hybrid, and classical
models across the 3×3, 4×4, and 5×5 environments. The evaluation is based on the
performance data provided in Tables 6.1, 6.2, and 6.3. Models were selected for testing
based on their training performance and their respective EMA peaks at each timestep,
as detailed in Section 6.1. The test results are compared in relation to the t1 and t2

thresholds established in Section 5.2.2, and summarized in Table 6.4.

6.3.1. 3×3 Environment

A clear performance hierarchy emerges across model types in the 3×3 environment
(Table 6.1). The q8,5 model demonstrates superior performance, achieving a 100%
success rate (30/30) with the highest median (12.10) and mean (12.11) rewards and
the lowest standard deviation (0.06). This performance surpasses all other models,
including the exhaustive classical model c256,256, while using significantly fewer weights
(851 vs. 136,451). The q8,3 model is less successful (8/30), while q4,3 and q4,5 fail to
achieve any successful runs, indicating a potential threshold effect in quantum model
complexity for this environment. Hybrid models demonstrate consistent performance,
with all configurations achieving a success rate of 60% or higher. The h8,3 model leads
with 22/30 successful runs and the highest mean reward (8.70) among hybrids. The
h4,5 model attains the highest reward median (11.47) and the lowest mean number
of steps (23.95) among successful hybrid runs. Both h4,5 and h8,3 can be justified as
top-performing category runs, depending on the assessment criteria. Due to the higher
success rate and average reward, h8,3 is selected as the best configuration. Classical
models show robust performance across all configurations with a marginally lower
average success rate than the hybrid runs. c12,12 attains the highest success rate (25/30)
and mean reward (9.84) among non-exhaustive classical models. The c7,7 model, despite
having the fewest weights (248), manages a 20/30 success rate and the lowest variabil-
ity in steps (standard deviation of 0.0), demonstrating consistent path-finding when
successful. Except for c10,10, which has the worst performance, all other non-exhaustive
models perform well, with only minor differences.

The quantum model q8,5 outperforms all other configurations and models, excelling
in almost all reward and steps-related metrics as well as success rate. Compared
to the exhaustive classical model c256,256, both q8,5 and c256,256 have almost identical
test performances, showing only minor differences, the most significant being the
minimum steps recorded for a successful run, with c256,256 and q8,5 having 15 and 20,

63

6. Results

respectively. Considering the more than two orders of magnitude difference in weights
for the classical model, this suggests a significant difference in computational resource
requirements and network complexity. Furthermore, q8,5 achieves better results than
any of the hybrid models in the 3×3 environment, indicating a substantial advantage
for quantum approaches in small-scale environments. Hybrid models display similar
test efficiency, with lower median reward and step metrics, though more consistent
across all models.

Table 6.1.: Performance comparison of quantum (q), hybrid (h), and classical (c) models
in the 3×3 environment. c256,256 is included for reference but is not con-
sidered in the selection of top-performing models. Each configuration was
evaluated with three seeds, conducting 10 runs per seed based on the peak
EMA (decay factor = 0.99), totaling 30 runs per model. The table includes
the model identifier, total weights (θ), successful runs (SR) out of 30 (SR/30),
and statistics (min, max, median, mean, Std) for rewards and steps (steps cal-
culated from SR only). Models without successful runs display nan for steps.
Best metrics are highlighted in bold, top-performing models are shaded
green, and models with fewer than five successful runs are marked in red
and excluded from metric highlighting.

Reward Steps (SR-based)

Model θ SR/30 Min Max Median Mean Std Min Max Median Mean Std

q4,3 267 0 -1.22 -0.27 -0.28 -0.53 0.38 nan nan nan nan nan
q4,5 427 0 -1.46 0.62 0.34 -0.05 0.63 nan nan nan nan nan
q8,3 531 8 -1.73 12.09 -0.24 2.64 5.21 24 28 27.0 26.75 1.39
q8,5 851 30 12.05 12.38 12.10 12.11 0.06 20 23 21.0 21.37 1.25

h4,3 381 18 -0.34 12.16 11.05 7.16 5.60 23 29 23.0 25.17 2.55
h4,5 541 20 -6.11 12.07 11.47 6.35 7.84 23 26 24.0 23.95 1.05
h8,3 645 22 0.35 12.10 11.34 8.70 4.99 24 29 27.0 27.41 1.44
h8,5 965 20 -0.29 12.11 10.20 7.27 5.48 23 32 26.0 26.60 2.84

c7,7 248 20 0.18 12.40 12.05 8.22 5.57 19 19 19.0 19.00 0.00
c10,10 413 14 -0.82 12.32 0.65 5.55 6.17 19 21 20.0 19.71 0.61
c12,12 543 25 0.54 12.41 11.73 9.84 4.24 19 22 20.0 20.56 1.45
c16,16 851 20 -1.64 12.42 12.05 7.60 6.48 19 22 20.0 20.05 1.10

c256,256 136,451 30 12.01 12.41 12.10 12.12 0.09 15 21 19.0 18.13 1.70

64

6. Results

6.3.2. 4×4 Environment

The analysis of the 4×4 environment (Table 6.2) reveals a shift in performance dynam-
ics. Both q4,5 and q8,5 achieve perfect success rates (30/30), with q4,5 demonstrating
the highest overall performance across all models and configurations. It exhibits the
highest values for minimum (13.41), maximum (13.80), median (13.49), and mean (13.50)
rewards among the quantum models, coupled with the lowest standard deviation (0.06).
The q8,5 model follows closely, with nearly identical performance metrics. In contrast,
the least complex model, q4,3, performs poorly, achieving only 2 successful runs out
of 30, while q8,3 manages a decent 20/30 success rate but with slightly lower overall
reward and step statistics. Hybrid models continue to show consistent performance,
with all variants achieving at least 20/30 successful runs. The h8,5 model is the top
performer, leading with 28/30 successful runs and the highest median (13.43) and mean
(11.77) rewards among hybrids. h4,3 records the lowest mean number of steps (33.10)
among all models with substantial success rates. However, all hybrid models display
moderate to good results, except in step-related metrics, where models with a higher
number of layers tend to show weaker path-finding ability. Similar to the hybrids,
classical models achieve at least 20/30 successful runs. Among non-exhaustive classical
models, c12,12 excels with 26/30 successful runs and competitive reward metrics. c12,12

achieves the highest mean reward (11.28), while c16,16 performs best in step metrics,
with a median and mean step count of 29.50 and the lowest step standard deviation
(0.51). c10,10 performs well with 24/30 successful runs and matches q4,5 and q8,3 for the
highest reward median (13.49). However, it performs worse in step-related rewards and
has the lowest minimum reward across all configurations and environments (-15.72).

In this environment, the quantum models q4,5 and q8,5 demonstrate superior perfor-
mance, surpassing even the exhaustive classical model in reward metrics while using far
fewer weights, similar to the 3×3 environment. This suggests that quantum approaches
may also offer significant advantages in medium-scale environments. Hybrid and
classical models, while slightly underperforming compared to the quantum models
in reward metrics, exhibit more stable performance, particularly in step consistency
and lower variability across runs. Hybrid models show comparable performance to the
slightly better-performing classical models with similar weight counts, though they fall
short compared to the pure quantum models.

6.3.3. 5×5 Environment

The 5×5 environment (Table 6.3) presents the largest and most challenging setting.
Quantum models show mixed results in this environment. The q4,3 model achieves

65

6. Results

Table 6.2.: Performance comparison of quantum (q), hybrid (h), and classical (c) models
in the 4×4 environment. c256,256 is included for reference but is not con-
sidered in the selection of top-performing models. Each configuration was
evaluated with three seeds, conducting 10 runs per seed based on the peak
EMA (decay factor = 0.99), totaling 30 runs per model. The table includes
the model identifier, total weights (θ), successful runs (SR) out of 30 (SR/30),
and statistics (min, max, median, mean, Std) for rewards and steps (steps cal-
culated from SR only). Models without successful runs display nan for steps.
Best metrics are highlighted in bold, top-performing models are shaded
green, and models with fewer than five successful runs are marked in red
and excluded from metric highlighting.

Reward Steps (SR-based)

Model θ SR/30 Min Max Median Mean Std Min Max Median Mean Std

q4,3 267 2 -1.11 13.44 0.36 1.49 3.35 30 30 30.0 30.00 0.0
q4,5 427 30 13.41 13.80 13.49 13.50 0.06 31 41 35.0 35.93 3.89
q8,3 531 20 -1.83 13.79 13.49 8.79 6.71 34 41 36.5 36.95 3.05
q8,5 851 30 12.95 13.51 13.45 13.31 0.22 28 36 35.0 33.10 3.49

h4,3 381 21 -1.07 13.51 13.30 9.31 6.18 30 39 35.0 33.10 3.11
h4,5 541 20 -0.50 13.49 11.65 8.15 6.05 34 46 42.0 40.75 5.46
h8,3 645 20 0.15 13.51 13.05 8.96 6.24 34 36 36.0 35.55 0.60
h8,5 965 28 -2.24 13.56 13.43 11.77 3.85 39 44 40.0 40.61 1.75

c7,7 248 20 -1.70 13.84 13.43 8.44 7.26 29 32 32.0 31.40 0.94
c10,10 413 24 -15.72 13.83 13.49 7.67 11.01 32 83 37.0 37.0 10.09
c12,12 543 26 0.28 13.84 13.39 11.28 4.43 28 33 31.0 30.58 2.25
c16,16 851 20 0.70 13.80 13.43 9.24 6.11 29 30 29.50 29.5 0.51

c256,256 136,451 30 12.79 13.80 13.40 13.31 0.27 28 36 30.0 30.93 2.24

the highest success rate among quantum models (13/30) and the highest mean reward
(6.50), but its median reward (2.70) suggests inconsistent performance. q8,3 and q8,5

follow with 10 successful runs out of 30. q8,5 achieves the highest median reward (2.94)
among quantum models. q4,5 performs the worst with only 6/30 successful runs. The
best step metrics come from the q8,5 model, with a standard deviation of 0.00 and
both the median and mean steps at 52.0. The h4,5 model emerges as the top performer
across all configurations and models, with 28/30 successful runs, the highest mean
reward (13.12), and a competitive median reward (14.20). It also achieves the lowest
median (50.0) and mean (51.71) steps among all VQC-based models. The h4,3 model
also performs well, with 18/30 successful runs and the highest median reward (14.32)
across all models. h4,3 is sufficient in performance (14/30) but underperforms in other

66

6. Results

metrics. h8,3 performs the worst, with only one successful run. Classical models also
display mixed performances but are generally more stable. The c16,16 model leads
with 26/30 successful runs, a high median reward (14.08), and a mean reward of 11.99.
c12,12 achieves 20/30 successful runs and the highest median reward (14.63) across all
models and configurations. The exhaustive c256,256 model maintains its perfect 30/30
success rate and achieves the highest overall median (14.90) and mean (14.81) rewards,
reasserting its advantage in even the most challenging environment.

In the 5×5 environment, hybrid models, particularly h4,5, demonstrate superior perfor-
mance, outperforming most classical and all quantum models in success rate, reward
metrics, and overall performance. This suggests that hybrid approaches may offer a
balanced solution for larger-scale environments. Classical models show a more consis-
tent performance, with the exhaustive c256,256 continuing to excel, though at the cost of
substantially higher computational requirements. The classical models, in general, are
more efficient in path-finding in the 5×5 environment, as indicated by the generally
lower mean and median steps.

6.4. Cross-Environment Training and Test Performance Analysis

This section summarizes the key findings of the quantum, hybrid, and classical ansatzes
in both the training and testing performances across all environments. The presented
information is drawn from the training results (cf. Section 6.2), particularly from
Figure 6.10, which shows a grid with columns representing the different environments
(3×3, 4×4, and 5×5) and rows corresponding to models from the ansatzes with a
comparable number of weights. The test results (cf. Section 6.3) are mainly focused on
the performance tables (cf. Tables 6.1 - 6.3) and the summary of thresholds reached (cf.
Table 6.4). After summarizing the results, this section proceeds to interpret the training
and testing performances, identifying trends across different ansatzes, models, and
environments. The distribution and total number of weights for each architecture are
documented in Table 5.1 and are also listed in the test performance tables.

6.4.1. Training Summary

eThe mean reward training performance of the quantum models in the 3×3 environ-
ment tends to show limited learning ability, as indicated in Figure 6.10. Specifically, the
quantum models with only three layers (q4,3 and q8,3) perform worse than the setups
with five layers. Increasing the number of weights by using more qubits does not
seem to impact performance as much as increasing the number of layers. Only the
model with 8 qubits and 5 layers (q8,5) demonstrates acceptable performance, while

67

6. Results

Table 6.3.: Performance comparison of quantum (q), hybrid (h), and classical (c) models
in the 5×5 environment. c256,256 is included for reference but is not con-
sidered in the selection of top-performing models. Each configuration was
evaluated with three seeds, conducting 10 runs per seed based on the peak
EMA (decay factor = 0.99), totaling 30 runs per model. The table includes
the model identifier, total weights (θ), successful runs (SR) out of 30 (SR/30),
and statistics (min, max, median, mean, Std) for rewards and steps (steps cal-
culated from SR only). Models without successful runs display nan for steps.
Best metrics are highlighted in bold, top-performing models are shaded
green, and models with fewer than five successful runs are marked in red
and excluded from metric highlighting.

Reward Steps (SR-based)

Model θ SR/30 Min Max Median Mean Std Min Max Median Mean Std

q4,3 267 13 -2.37 14.71 2.70 6.50 7.10 56 62 62.0 60.62 2.63
q4,5 427 6 0.79 14.97 2.79 4.56 5.16 54 59 55.0 56.00 2.00
q8,3 531 10 -0.43 14.72 1.97 5.68 6.31 56 58 57.5 57.10 0.99
q8,5 851 10 -5.63 14.96 2.94 4.97 7.61 52 52 52.0 52.00 0.00

h4,3 381 18 -1.83 14.93 14.32 9.52 6.33 55 63 57.0 56.72 1.84
h4,5 541 28 2.63 14.90 14.20 13.12 2.97 46 60 50.0 51.71 5.56
h8,3 645 1 -0.52 14.83 1.04 1.75 2.70 48 48 48.0 48.00 nan
h8,5 965 14 -4.64 13.89 1.46 4.65 7.19 55 74 55.0 60.64 7.96

c7,7 248 10 -1.76 15.14 2.86 5.85 6.65 42 56 45.5 46.20 4.89
c10,10 413 14 0.38 13.77 3.11 6.85 6.03 51 65 51.0 55.00 6.41
c12,12 543 20 -1.98 15.22 14.63 10.03 6.69 37 57 42.0 43.35 4.65
c16,16 851 26 -7.07 14.89 14.08 11.99 5.87 45 52 50.0 49.54 1.73

c256,256 136,451 30 14.37 15.22 14.90 14.81 0.24 39 45 44.0 42.93 2.38

the remaining, less complex models underperform. In the 4×4 environment, a similar
tendency is observed. Again, q4,5 and especially q8,5 perform better than the models
with fewer layers in terms of mean reward, with the 8-qubit models learning faster
than their 4-qubit counterparts but also showing higher standard deviation. In general,
all quantum models, except for q4,3, demonstrate good performance, with q8,3 showing
learning ability, though there is a drop in performance near the end of training. The
performance of the quantum models in the 5×5 environment is less clear. Here, the
quantum models struggle to adapt to the environment, with only moderate results ob-
served for q8,5. Both 4-qubit models underperform, while q8,3 shows marginally better
performance. In this environment, models with more qubits and layers tend to perform

68

6. Results

Table 6.4.: Performance of quantum (q), hybrid (h), and classical (c) models across
3×3, 4×4, and 5×5 environments, assessed against the t1 and t2 threshold
(cf. Section 5.2.2). Crosses (×) indicate models where the mean test reward
successfully met the specified threshold, as documented in Tables 6.1, 6.2,
and 6.3.

3×3 4×4 5×5

Model θ t1 (12.0) t2 (10.3) t1 (13.5) t2 (10.7) t1 (14.5) t2 (10.5)

q4,3 267
q4,5 427 × ×
q8,3 531
q8,5 851 × × ×

h4,3 381
h4,5 541 ×
h8,3 645
h8,5 965 ×

c7,7 248
c10,10 413
c12,12 543 ×
c16,16 851 ×

c256,256 136,451 × × × × ×

better, particularly q8,5, where the variation suggests that some seeds successfully solve
the environment.

A similar analysis for the hybrid models, based on their training performance in Fig-
ure 6.10, shows that all models except for h4,3 perform reasonably well in the 3×3
environment. Notably, h4,5 and h8,3 exhibit stable and constant growth in mean reward
during the latter half of training. While h8,5 outperforms the least complex model h4,3,
it shows large oscillations, recovering at the end with moderate performance. A similar
observation is made in the 4×4 environment. The overall performance of the hybrid
models increases in this setup. h4,3 starts with a strong learning curve but concludes
with only a moderate mean reward. All hybrid configurations display steeper learning
curves than the quantum models, but their performance is less stable, with oscillations
in mean reward across all models—less pronounced in h8,5. The best performances in

69

6. Results

this environment are achieved by h8,3 and h8,5. In the 5×5 environment, h4,5 clearly
outperforms the other hybrid models, showing the best performance overall. h8,5 also
performs well, though not as strongly as h4,5, but significantly better than the remaining
models. In contrast, h8,3 and h4,3 show weaker performance and do not demonstrate a
noteworthy learning ability in this environment. A higher number of layers appears to
be beneficial, with models that have fewer qubits and more layers (h4,5) showing the
best results.

Classical models were chosen based on a similar number of weights as the VQC in the
hybrid and quantum models. In the 3×3 environment, all classical models outperform
the quantum models, except for c16,16, which is outperformed by q8,5. In this case,
the quantum model exceeds both the classical and hybrid models regarding stability
and average mean reward. The less complex classical models, c7,7 and c10,10, display
unstable but comparable performance to the hybrid models. Only c12,12 clearly achieves
higher average results than the hybrid models, but with less stability. The results are
less definitive in the 4×4 environment. Classical models conclude training with the
highest mean reward, but they also exhibit more oscillations compared to the quantum
models and, except for h4,5 and c10,10, also more than the hybrid models. Nevertheless,
all classical models show good performance, with c10,10 and c16,16 performing best
in the 4×4 environment. Finally, the classical models also face challenges in the
5×5 environment. The c7,7 model performs similarly to the quantum and hybrid
models, c10,10 performs slightly worse than h4,5 and marginally better than q4,5, and
c12,12 outperforms both q8,3 and h8,3. Finally, c16,16 performs better than both q8,5 and
h8,5 but also exhibits large fluctuations in mean reward.

6.4.2. Test Summary

Similarly to the training results, a clear trend is observed where increasing model
complexity corresponds to higher test performance. This trend is particularly evident
in the 3×3 environment, where the quantum models with 8 qubits outperform all other
models. Notably, the q8,5 model surpasses both hybrid and classical models, including
the exhaustive c256,256, which has more than two orders of magnitude greater weights.
In the 4×4 environment, quantum models with 5 layers, whether with 4 or 8 qubits,
exhibit strong performance, with the q8,3 model also yielding competitive results. The
simplest quantum configuration fails to achieve success in this environment. In the
5×5 environment, this trend is less pronounced, as the q4,3 model achieves the most
successful runs. However, the q8,3 and q8,5 models perform comparably, indicating that
the general observation from earlier environments still holds. Table 6.4 summarizes
these observations, highlighting the advantage of more complex quantum models,

70

6. Results

especially those with a greater number of layers, in the 3×3 and 4×4 environments.

Hybrid models demonstrate more consistent and robust performance across all envi-
ronments, generally aligning more closely with classical results than with quantum.
However, as shown in Table 6.4, hybrid models do not consistently reach the t1 and t2

thresholds. The hybrid models display stronger learning ability in the more complex
3×3 and 5×5 environments. The complexity of each environment is empirically demon-
strated in Figure 6.10, which shows that all models achieved their best results in the 4×4
environment, followed by the 3×3, and lastly the 5×5 environment. Higher complexity
in hybrid models, particularly those with more qubits and layers, reflects a trend similar
to that of quantum models, though the impact is somewhat less pronounced. This is
reinforced by Table 6.4, where only the h4,5 and h8,5 models meet the t2 thresholds in
the 4×4 and 5×5 environments, respectively.

For classical models, testing results demonstrate a more linear and predictable increase
in performance with increasing complexity. Classical models show a clear, calculable
progression, where higher complexity generally yields better results. Nevertheless,
some minor variations are observed, as seen in Tables 6.1 and 6.2, where the smaller
c12,12 model outperforms the c16,16 model in terms of successful runs in both the 3×3
and 4×4 environments, though not necessarily in reward or step metrics.

6.4.3. Interpretation and Trends of Summaries

This section examines the performance trends of quantum, hybrid, and classical models
across different environment complexities in robot navigation tasks, contextualizing the
findings with those from [73]. The analysis highlights key patterns and observations
regarding the capabilities of each model type in these environments.

Increasing VQC complexity, particularly through additional layers, enhances training
and test performance, indicating that more complex circuit structures outperform
simpler models. This improvement is observable in both training and testing phases,
aligning with the findings of [73], which indicate that a quantum-based approach
demonstrates learning capability and effectively solves the robotic navigation RL envi-
ronment. Additionally, [73] notes that adding more layers by incorporating additional
data encoding gates per qubit improves performance, which corresponds with the
observation of this thesis that increased VQC complexity leads to better outcomes. More
specifically, configurations with 8 qubits showed, on average, better results but were
marginal compared to the performance improvement of adding more layers. A similar
trend is noted in hybrid ansatzes; however, the impact is less pronounced compared

71

6. Results

to purely quantum models. This may be attributed to the configuration of the hybrid
ansatz, where a classical layer precedes the VQC. The classical component potentially
mitigates the slower learning capabilities of the VQC, as indicated by training plots
where the hybrid model positions itself between classical and quantum models, offering
balanced performance, particularly in more complex environments. Although hybrid
models possess slightly more parameters than their quantum and classical counterparts,
this interpretation requires empirical validation. Furthermore, a quantum advantage is
observed in the number of weights when comparing the test results to the exhaustive
c256,256 model, emphasizing the efficiency of quantum approaches in parameter usage,
especially when additional data encoding layers are introduced. This finding aligns
with [73], demonstrating that quantum models can achieve comparable performance
with significantly fewer trainable parameters.

Analyzing the environments reveals that training and test results indicate that the
complexity of the environment, specifically the function approximation capability of the
models, does not follow a straightforward hierarchy with increasing environment size.
The 5×5 environment is the most challenging, followed by the 3×3 environment, while
the 4×4 environment is the least difficult and consistently yields the best results across
all model types. This pattern suggests that environmental complexity significantly
influences model performance. Deeper QCs excel in simpler environments, while
their advantages decline in more complex settings. Hybrid models also perform better
in smaller environments, with their limitations becoming apparent in more complex
scenarios. Classical models demonstrate the least variability in performance across dif-
ferent environments, indicating superior scalability for larger and more complex tasks.
Additionally, performance tables reveal that, on average, quantum models perform
well in reward-related metrics for successful configurations. However, their step-related
metrics are inferior to those of hybrid models and even more so compared to classical
models, suggesting that the VQC approach may be lacking in achieving near-optimal
steps. Nevertheless, hybrid and quantum approaches demonstrate the ability to solve
the environments under study, even with the added complexity of continuous action
and state spaces.

To conclude, this chapter outlines several important findings that highlight the per-
formance patterns of quantum, hybrid, and classical models in robot navigation tasks
across different levels of environmental complexity:

• Quantum and hybrid approaches are capable of solving the tested environments
with local features and continuous action and state spaces.

• Increased VQC complexity, particularly through adding more layers, leads to

72

6. Results

better training and test performance, with an increase in qubits also contributing
positively, though with less impact.

• Classical models exhibit more consistent performance and linear scalability across
different environment complexities.

• Hybrid ansatzes offer balanced performance between classical and quantum
models, especially in complex environments.

• The training environments’ complexities are not proportional to size, as the 5×5
environment is the most challenging, while the 4×4 environment is the least.

• Successful quantum models excel in reward-related metrics but underperform
in step-related metrics compared to hybrid and classical models, with classical
models performing best in step-related metrics.

• A potential quantum advantage in parameter efficiency is observed in some
environments.

73

7. Conclusion and Future Work

This thesis builds upon the work of [73] by investigating the applicability of quantum
reinforcement learning using the deep deterministic policy gradient (DDPG) algorithm,
an actor- ritic approach, in a more complex robot navigation framework. This study
explores a simulated robot navigation setup characterized by continuous action and
state spaces across three distinct environments. Each environment incorporates only
local features, aligning with the requirements of realistic industrial implementations of
robot navigation in various scenarios. A variational quantum circuit (VQC), analogous
to those in [73] and [23], was employed, utilizing a horizontal-circulating data encoding.

A comprehensive series of experiments was designed to evaluate and compare the
performance of VQC-based function approximation in both quantum and hybrid con-
figurations against a classical baseline. The quantum and hybrid models comprised
configurations utilizing 4 and 8 qubits, with 3 and 5 layers, respectively. In total,
24 configurations were examined, including 4 quantum, 4 hybrid, and 16 classical
models. Among these, all VQC-based and 5 classical models were additionally tested
across three environments of different complexity. Each configuration was tested using
three random seeds, resulting in a total of 117 models. These models underwent
10 evaluation runs, culminating in 1170 evaluation runs. Both quantum and hybrid
models successfully trained deterministic policies capable of navigating the various
tested environments, revealing distinct characteristics and behaviors. Notably, an
increase in performance was observed for more complex VQC-based models, where
an increase in both qubit count and layer size enhanced performance, with the latter
exerting a more significant positive impact. Models q8,5 and q4,5 exhibited outstanding
results in the majority of environments, surpassing the reward metrics of classical and
hybrid setups with comparable weight configurations. Furthermore, these quantum
models outperformed a classical model with two orders of magnitude more parame-
ters, namely c256,256. This observation indicates better parameter efficiency for certain
quantum models in less complex environments. Hybrid models demonstrated more
consistent performance across all environments, albeit with lower peak performance
than their quantum counterparts. Compared to quantum models, hybrids’ more rapid
learning ability may be attributed to the preceding classical neural network, integrating
characteristics of both quantum and classical components. Classical components ex-

74

7. Conclusion and Future Work

hibited more robust and predictable performance scaling in relation to an increase in
weights, as experienced in [73]. In contrast, quantum models did not demonstrate a
consistent performance increase when scaling weights, as evidenced by the superior
performance of q4,5 relative to q8,3. While extensive manual testing was conducted
during the development and assessment of VQCs, the resources for hyper-parameter
testing were limited due to the prolonged training times required for larger quantum
circuits. Training VQCs is more sensitive to hyper-parameter adjustments than classical
models, a phenomenon noted in this study and affirmed by other research, such as [79]
and [73]. The hardware and noise constraints of quantum computers, combined with
insufficient error mitigation in the noisy intermediate-scale quantum (NISQ) era, render
the implementation of the VQC utilized in this thesis impractical on real quantum
hardware. Consequently, the performance of this VQC cannot be verified or tested
on actual quantum systems. While this work’s DDPG employs Gaussian noise as an
exploration strategy, the simulated environment introduces additional noise due to
motion carryover; however, the VQC was applied as an idealized, noise-free circuit.

A potential avenue for enhancing results lies in the application of more advanced
Critic-Actor methods, such as twin-delayed DDPG (TD3), which addresses the inherent
challenge of overestimating the value function, leading to sub-optimal policies. TD3
seeks to mitigate this issue by learning multiple value functions and selecting the lowest
value for policy updates, along with less frequent updates of the policy and target
networks [80]. While this work offers insights into the scalability of VQCs within the
domain of quantum reinforcement learning (QRL), further extensive tests are called
for, particularly with increased layer sizes of data encoding gates. Experiments with
4 qubits and 7 layers, utilizing an identical VQC setup, yielded promising results but
were not included due to time constraints. Future work could also benefit from a more
thorough analysis of barren plateaus, a phenomenon analogous to the vanishing gradi-
ent problem encountered in classical algorithms [72]. Although quantum algorithms
have demonstrated superiority over classical implementations in specific domains (cf.
Chapter 3) and quantum machine learning (QML) [39, 40, 41], the applicability and
utility of quantum-enhanced reinforcement learning in the robotics domain remain
unresolved.

75

A. Appendix

A.1. Hyper-Parameter Details for DDPG

This section provides an overview of the hyper-parameters used in the experiments, as
given in Table A.1, followed by a brief explanation. Although some of these parameters
are addressed in Section 2.3.2, they are listed here in full for completeness.

Weight Initialization Scale: This scaling factor is applied during the initialization of
the model’s randomly chosen weights. It influences the starting point of the training
process, potentially affecting the convergence speed and stability.

Random Seed: The seed value initializes the random number generator, ensuring the
experimental results are reproducible. Consistent seeding allows for the replication of
results across different runs.

Total Timesteps: Defines the total number of timesteps for which the experiments are
conducted, determining the duration of the training phase.

Learning Rate: The learning rate for the optimizer is responsible for updating the
weights of the circuit. It dictates the step size during gradient descent, balancing
convergence speed against the risk of overshooting minima.

Output Scaling Learning Rate: The learning rate for the optimizer tasked with ad-
justing the output scaling. This learning rate is only used for the quantum and hybrid
ansatzes.

Replay Buffer Size: The size of the replay memory buffer used to store experience
tuples for training. A larger buffer size allows the model to learn from a more diverse
set of past experiences, enhancing generalization.

Learning Start Timestep: The number of timesteps to collect experience before com-
mencing the learning process. This allows the replay buffer to be pre-filled with diverse
experiences.

76

A. Appendix

Discount Factor: The discount factor in the DDPG algorithm determines the importance
of future rewards compared to immediate rewards. A value close to 1 emphasizes
long-term rewards, encouraging the agent to consider future benefits.

Target Network Update Rate: This coefficient controls the rate at which the target
networks are updated towards the main networks. A smaller value ensures smoother
and more stable updates.

Batch Size: The number of samples drawn from the replay memory buffer during each
training step. A larger batch size can provide a more accurate gradient estimate but
requires more computational resources.

Exploration Noise Scale: The scale of the Gaussian noise (with a mean of 0) added to
the policy’s actions, where the exploration noise controls the standard deviation of the
added noise. This encourages the agent to explore the action space and helps prevent
premature convergence to suboptimal policies.

Policy Update Frequency: The frequency at which the policy network is updated. A
delayed update strategy can help stabilize training by ensuring the policy does not
change too rapidly.

77

A. Appendix

Table A.1.: Hyper-parameters, thresholds and number of near-optimal (NO) steps for
the classical and quantized DDPG algorithm across different environments
(3×3, 4×4, 5×5). Thresholds are defined in Section 5.2.2.

Hyper-Parameter 3×3 4×4 5×5

Number of Seeds 3 3 3
Evaluation Runs per Seed 10 10 10
Total Timesteps 120,000 120,000 120,000

Learning Rates
Circuit 0.001 0.001 0.001
Output Scaling (VQC) 0.01 0.01 0.01
Classical 0.001 0.001 0.001

θ Initialization Scaling 1.0 1.0 1.0
Replay Buffer Size 20,000 20,000 20,000
Discount Factor (γ) 0.99 0.99 0.99
Target Smoothing (τ) 0.005 0.005 0.005
Batch Size 64 64 64
Exploration Noise 0.05 0.05 0.05
Learning Starts 5,000 5,000 5,000
Policy Update Frequency 2 2 2

Metrics
Threshold t1 12.0 14.5 13.5
Threshold t2 10.3 10.7 10.5
Number of NO-Steps (t1) 17 28 40
Number of NO-Steps (t2) 25.5 (26) 42 60

78

List of Figures

2.1. Reinforcement learning loop: agent-environment interaction [12]. 3
2.2. Simplified actor-critic interaction [18]. 13

3.1. Bloch sphere representation of a state vector. 21
3.2. A simple quantum circuit generating the Bell state from Equation 3.8. . 22
3.3. A schematic setup of a QML model [50]. 25
3.4. Simplified workflow of a QML model [50]. 26
3.5. A PQC implementing angle encoding with Ry rotation gates. 28

4.1. Robotic Navigation Environments from [73]: 3×3 (a), 4×4 (b), and
5×5 (c) grid mazes with gray walls, blue and red static obstacles, and
a green goal area. The robot starts from the upper-left corner in each
environment. The dashed green line sketches potential paths the robot
can take to solve the environment. 37

4.2. PQC ansatz layout from [73], showing one layer with repeated encoding
of input data in the yellow blocks Uin(xl) and parameterized operations
in the purple blocks Upar(θ). The structure includes an entangling layer
connecting the qubits through CZ gates, as illustrated by the black dots
and lines between qubits. 37

4.3. Input encoding Uin(xl) from [73] for the PQC architectures. PQC-1 (left)
uses Rx gates with each qubit encoding one feature si, modulated by a
trainable weight λi

l . PQC-3 (right) encodes all features si on each qubit
using Rx and Ry gates, with separate trainable weights λi

l for each gate. 38

5.1. Representation of the input features used to train the actor and critic
networks. The input for the actor network consists of the object detection
distances from the LiDAR sensors (f1 to f3), where the full detection
range is used if no object is found within the maximum distance, the
robot’s z-orientation (f4), and its linear (f5) and angular velocities (f6). For
the critic network, the additional left (f7) and right (f8) wheel velocities
are included as actions. All features are pre-processed before being input
into the networks, with the corresponding feature ranges shown. 45

79

List of Figures

5.2. Hybrid agent illustrating the processing of features f1 to f6 for the actor
and f1 to f8 for the critic (cf. Figure 5.1). The features are passed through
a fully connected NNLayer, where the input and output correspond to
the number of features. The NN’s output is then forwarded into the
respective quantum circuit qCircuit. The quantum ansatz used in the
circuit is the same as that presented in Figure 5.3. The actor model
utilizes 6 features, while the critic model processes 8 features. 46

5.3. A general n-qubit actor and critic model used for function approxima-
tion. The gates (Rx, Ry, Rz) represent variational gates (white) containing
trainable parameters (θ) without data encoding. The orange gates rep-
resent the data encoding of the classical features (cf. Figure 5.1). In
both the actor and critic circuits, the classical features are multiplied by
corresponding trainable parameters (λ). The features are circulated as in-
dicated by the modulo operation, mod 6 for the actor and mod 8 for the
critic, with the critic containing two additional features (cf. Figure 5.1).
The encoding gates alternate between Rx and Ry gates, incrementing
the features. The qubits are entangled via CZ gates, where the upper
qubit is the control (empty circle), and the subsequent qubit is the target
(filled-in). The last qubit is the control qubit for the first (target) qubit,
ensuring full entanglement across the qubits. Only the first qubit is
measured for the critic, while the first two qubits are measured for the
actor. 48

6.1. Training performance of all classical models in the 3×3 environment. . 55
6.2. Training performance of all classical models in the 4×4 environment. . 56
6.3. Training performance of all classical models in the 5×5 environment. . 56
6.4. Training performance of all quantum models in the 3×3 environment. . 58
6.5. Training performance of all quantum models in the 4×4 environment. . 58
6.6. Training performance of all quantum models in the 5×5 environment. . 59
6.7. Training performance of all hybrid models in the 3×3 environment. . . 60
6.8. Training performance of all hybrid models in the 4×4 environment. . . 61
6.9. Training performance of all hybrid models in the 5×5 environment. . . 61
6.10. Training performance grid plot of quantum, hybrid, and similarly weighted

classical models across all environments. Thresholds t1 and t2 are colored
in green and red, respectively. 62

80

List of Tables

2.1. Overview of RL algorithms [15]. 14

3.1. Common quantum gates with descriptions, symbols, and matrix repre-
sentations. 24

4.1. Overview of quantum and hybrid RL algorithms categorized by compu-
tational resources and degree of quantum-classical hybridization [33]. . 30

5.1. Distribution of trainable parameters (θ) for quantum (q), hybrid (h), and
classical (c) models across actor and critic networks. For quantum and
hybrid models, θQ includes variational and data encoding parameters.
Output scaling parameters are included as classical trainable weights,
with two for the actor and one for the critic. The c256,256 model is included
for baseline comparison. The table presents θQ, θC, and θTotal for both
actor and critic networks, along with their total counts. 50

5.2. Training steps in 24h (in thousands) for different configurations of quan-
tum (q) and hybrid (h) models based on wall-clock time. 51

6.1. Performance comparison of quantum (q), hybrid (h), and classical (c)
models in the 3×3 environment. c256,256 is included for reference but
is not considered in the selection of top-performing models. Each con-
figuration was evaluated with three seeds, conducting 10 runs per seed
based on the peak EMA (decay factor = 0.99), totaling 30 runs per model.
The table includes the model identifier, total weights (θ), successful runs
(SR) out of 30 (SR/30), and statistics (min, max, median, mean, Std)
for rewards and steps (steps calculated from SR only). Models without
successful runs display nan for steps. Best metrics are highlighted in
bold, top-performing models are shaded green, and models with fewer
than five successful runs are marked in red and excluded from metric
highlighting. 64

81

List of Tables

6.2. Performance comparison of quantum (q), hybrid (h), and classical (c)
models in the 4×4 environment. c256,256 is included for reference but
is not considered in the selection of top-performing models. Each con-
figuration was evaluated with three seeds, conducting 10 runs per seed
based on the peak EMA (decay factor = 0.99), totaling 30 runs per model.
The table includes the model identifier, total weights (θ), successful runs
(SR) out of 30 (SR/30), and statistics (min, max, median, mean, Std)
for rewards and steps (steps calculated from SR only). Models without
successful runs display nan for steps. Best metrics are highlighted in
bold, top-performing models are shaded green, and models with fewer
than five successful runs are marked in red and excluded from metric
highlighting. 66

6.3. Performance comparison of quantum (q), hybrid (h), and classical (c)
models in the 5×5 environment. c256,256 is included for reference but
is not considered in the selection of top-performing models. Each con-
figuration was evaluated with three seeds, conducting 10 runs per seed
based on the peak EMA (decay factor = 0.99), totaling 30 runs per model.
The table includes the model identifier, total weights (θ), successful runs
(SR) out of 30 (SR/30), and statistics (min, max, median, mean, Std)
for rewards and steps (steps calculated from SR only). Models without
successful runs display nan for steps. Best metrics are highlighted in
bold, top-performing models are shaded green, and models with fewer
than five successful runs are marked in red and excluded from metric
highlighting. 68

6.4. Performance of quantum (q), hybrid (h), and classical (c) models across
3×3, 4×4, and 5×5 environments, assessed against the t1 and t2 thresh-
old (cf. Section 5.2.2). Crosses (×) indicate models where the mean
test reward successfully met the specified threshold, as documented in
Tables 6.1, 6.2, and 6.3. 69

A.1. Hyper-parameters, thresholds and number of near-optimal (NO) steps
for the classical and quantized DDPG algorithm across different envi-
ronments (3×3, 4×4, 5×5). Thresholds are defined in Section 5.2.2. . . 78

82

List of Abbreviations

A2C Advantage Actor-Critic
A3C Asynchronous Advantage Actor-Critic
AI Artificial Intelligence
CNOT Controlled-NOT (Gate)
CZ Controlled-Z (Gate)
DDPG Deep Deterministic Policy Gradient
DDQN Double Deep Q-Network
DQN Deep Q-Learning/Network
DRL Deep Reinforcement Learning
DRL-PER Prioritized Experience Replay
ECM Episodic and Compositional Memory
EMA Exponential Moving Average
HER Hindsight Experience Replay
I2A Imagination-Augmented Agents
MARL Multi-Agent Reinforcement Learning
MB Model-Based
MBMF Model-Based Model-Free
MBVE Model-Based Value Expansion
MC Monte Carlo
MCTS Monte Carlo Tree Search
MDP Markov Decision Process
ML Machine Learning
MSBE Mean Squared Bellman Error
NISQ Noisy Intermediate-Scale Quantum
NN Neural Network
NO Near-Optimal
OU Ornstein-Uhlenbeck
POMDP Partially Observable Markov Decision Process
PPO Proximal Policy Optimization
PQC Parameterized Quantum Circuit
QBM Quantum Boltzmann Machine

83

List of Tables

QC Quantum Circuit
Q-L Q-Learning
QML Quantum Machine Learning
QNPG Quantum Natural Policy Gradients
QR-DQN Quantile Regression Deep Q-Learning/Network
QRL Quantum Reinforcement Learning
RB Replay Buffer
RES Renewable Energy System
ReLU Rectified Linear Unit
RL Reinforcement Learning
SAC Soft Actor-Critic
SARSA State-Action-Reward-State-Action
SMA Simple Moving Average
TD Temporal Difference
TD3 Twin-Delayed Deep Deterministic Policy Gradient
TRPO Trust Region Policy Optimization
VQA Variational Quantum Algorithms
VQC Variational Quantum Circuit

84

Bibliography

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv:1312.5602 [cs].
Dec. 2013.

[2] D. Heimann, H. Hohenfeld, F. Wiebe, and F. Kirchner. Quantum Deep Reinforcement
Learning for Robot Navigation Tasks. arXiv:2202.12180 [quant-ph]. July 2022.

[3] B. Singh, R. Kumar, and V. P. Singh. “Reinforcement learning in robotic appli-
cations: a comprehensive survey.” en. In: Artificial Intelligence Review 55.2 (Feb.
2022), pp. 945–990. issn: 1573-7462. doi: 10.1007/s10462-021-09997-9.

[4] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. Continuous Deep Q-Learning with
Model-based Acceleration. arXiv:1603.00748 [cs]. Mar. 2016.

[5] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra. Continuous control with deep reinforcement learning. 2019. arXiv: 1509.
02971 [cs.LG].

[6] J. S. Obando-Ceron and P. S. Castro. “Revisiting Rainbow: Promoting more In-
sightful and Inclusive Deep Reinforcement Learning Research.” eng. In: arXiv.org
(2021). issn: 2331-8422.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].

[8] E. Ghasemian. “Stationary states of a dissipative two-qubit quantum channel
and their applications for quantum machine learning.” In: Quantum Machine
Intelligence 5.1 (Feb. 2023), p. 13. issn: 2524-4914. doi: 10.1007/s42484-023-
00096-2.

[9] D. Maheshwari, B. Garcia-Zapirain, and D. Sierra-Sosa. “Quantum Machine
Learning Applications in the Biomedical Domain: A Systematic Review.” In: IEEE
Access 10 (2022), pp. 80463–80484. doi: 10.1109/ACCESS.2022.3195044.

[10] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete
Logarithms on a Quantum Computer.” In: SIAM Journal on Computing 26.5 (Oct.
1997), pp. 1484–1509. issn: 1095-7111. doi: 10.1137/s0097539795293172.

85

https://doi.org/10.1007/s10462-021-09997-9
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1706.03762
https://doi.org/10.1007/s42484-023-00096-2
https://doi.org/10.1007/s42484-023-00096-2
https://doi.org/10.1109/ACCESS.2022.3195044
https://doi.org/10.1137/s0097539795293172

Bibliography

[11] L. K. Grover. A fast quantum mechanical algorithm for database search. 1996. arXiv:
quant-ph/9605043 [quant-ph].

[12] R. S. Sutton. Reinforcement Learning: An Introduction. The MIT Press, 2018.

[13] M. Morales. Grokking deep reinforcement learning. Manning Publications, 2020.

[14] Y. Matsuo, Y. LeCun, M. Sahani, D. Precup, D. Silver, M. Sugiyama, E. Uchibe,
and J. Morimoto. “Deep learning, reinforcement learning, and world models.” In:
Neural Networks 152 (2022), pp. 267–275. issn: 0893-6080. doi: https://doi.org/
10.1016/j.neunet.2022.03.037.

[15] OpenAI. Spinning Up in Deep RL. https://spinningup.openai.com/. 2020.

[16] H. Kurniawati. “Partially observable markov decision processes and robotics.” In:
Annual Review of Control, Robotics, and Autonomous Systems 5.1 (2022), pp. 253–277.

[17] Y. Wu, Y. Ye, J. Hu, P. Zhao, L. Liu, G. Strbac, and C. Kang. “Chance Constrained
MDP Formulation and Bayesian Advantage Policy Optimization for Stochastic
Dynamic Optimal Power Flow.” In: IEEE Transactions on Power Systems 39.5 (2024),
pp. 6788–6791. doi: 10.1109/TPWRS.2024.3430650.

[18] F. Scharf, F. Helfenstein, and J. Jäger. “Actor vs Critic: Learning the Policy or
Learning the Value.” eng. In: Reinforcement Learning Algorithms: Analysis and
Applications (), pp. 123–133. issn: 1860-949X.

[19] R. Bellman. “The theory of dynamic programming.” In: Bulletin of the American
Mathematical Society 60.6 (1954), pp. 503–515.

[20] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis. Mas-
tering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm.
2017. arXiv: 1712.01815 [cs.AI].

[21] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver,
and K. Kavukcuoglu. Asynchronous Methods for Deep Reinforcement Learning. 2016.
arXiv: 1602.01783 [cs.LG].

[22] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy
Optimization Algorithms. 2017. arXiv: 1707.06347 [cs.LG].

[23] A. Skolik, S. Jerbi, and V. Dunjko. “Quantum agents in the Gym: a variational
quantum algorithm for deep Q-learning.” In: Quantum 6 (May 2022), p. 720. issn:
2521-327X. doi: 10.22331/q-2022-05-24-720.

[24] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. “De-
terministic policy gradient algorithms.” In: International conference on machine
learning. Pmlr. 2014, pp. 387–395.

86

https://arxiv.org/abs/quant-ph/9605043
https://doi.org/https://doi.org/10.1016/j.neunet.2022.03.037
https://doi.org/https://doi.org/10.1016/j.neunet.2022.03.037
https://spinningup.openai.com/
https://doi.org/10.1109/TPWRS.2024.3430650
https://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1707.06347
https://doi.org/10.22331/q-2022-05-24-720

Bibliography

[25] L.-J. Lin. Reinforcement learning for robots using neural networks. eng. 1992.

[26] J. Preskill. “Quantum Computing in the NISQ era and beyond.” In: Quantum 2
(Aug. 2018), p. 79. issn: 2521-327X. doi: 10.22331/q-2018-08-06-79.

[27] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver.
“A quantum engineer’s guide to superconducting qubits.” In: Applied Physics
Reviews 6.2 (June 2019). issn: 1931-9401. doi: 10.1063/1.5089550.

[28] I. Chuang and M. Nielsen. “Introduction to quantum mechanics.” eng. In: Quan-
tum Computation and Quantum Information. United Kingdom: Cambridge Univer-
sity Press, 2010. isbn: 9781107002173.

[29] D. Bhattacharyya and J. Guha. Quantum Optics and Quantum Computation. 2053-
2563. IOP Publishing, 2022. isbn: 978-0-7503-2715-2. doi: 10.1088/978-0-7503-
2715-2.

[30] H. Haverkort and L. Toma. “Quadtrees and Morton Indexing.” eng. In: Ency-
clopedia of Algorithms. New York, NY: Springer New York, pp. 1637–1642. isbn:
9781493928637.

[31] D. Aerts and M. Sassoli de Bianchi. “The extended Bloch representation of
quantum mechanics: Explaining superposition, interference, and entanglement.”
In: Journal of Mathematical Physics 57.12 (Dec. 2016), p. 122110. issn: 0022-2488.
doi: 10.1063/1.4973356. eprint: https://pubs.aip.org/aip/jmp/article-
pdf/doi/10.1063/1.4973356/16082020/122110_1_online.pdf.

[32] S. Filatov and M. Auzinsh. “Towards Two Bloch Sphere Representation of Pure
Two-Qubit States and Unitaries.” In: Entropy 26.4 (2024). issn: 1099-4300. doi:
10.3390/e26040280.

[33] N. Meyer, C. Ufrecht, M. Periyasamy, D. D. Scherer, A. Plinge, and C. Mutschler.
A Survey on Quantum Reinforcement Learning. 2024. arXiv: 2211.03464 [quant-ph].

[34] H. M. Wiseman and G. J. Milburn. Quantum Measurement and Control. eng.
1st ed. Vol. 9780521804424. Cambridge: Cambridge University Press, 2010. isbn:
0521804426.

[35] S. Rajeev and M. Lahiri. “Single-qubit measurement of two-qubit entanglement in
generalized Werner states.” eng. In: Physical review. A 108.5 (2023). issn: 2469-9926.

[36] D. Loss and D. P. DiVincenzo. “Quantum computation with quantum dots.” In:
Physical Review A 57.1 (Jan. 1998), pp. 120–126. issn: 1094-1622. doi: 10.1103/
physreva.57.120.

[37] D. M. Tran, D. V. Nguyen, B. H. Le, and H. Q. Nguyen. “Experimenting quantum
phenomena on NISQ computers using high level quantum programming.” eng.
In: EPJ quantum technology 9.1 (2022). issn: 2662-4400.

87

https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1063/1.5089550
https://doi.org/10.1088/978-0-7503-2715-2
https://doi.org/10.1088/978-0-7503-2715-2
https://doi.org/10.1063/1.4973356
https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.4973356/16082020/122110_1_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.4973356/16082020/122110_1_online.pdf
https://doi.org/10.3390/e26040280
https://arxiv.org/abs/2211.03464
https://doi.org/10.1103/physreva.57.120
https://doi.org/10.1103/physreva.57.120

Bibliography

[38] E. Rieffel and W. Polak. Quantum computing : a gentle introduction / Eleanor Ri-
effel and Wolfgang Polak. eng. 1st ed. Scientific and engineering computation.
Cambridge, Mass.: MIT Press, 2011. isbn: 0-262-52667-0.

[39] S. Jerbi, L. M. Trenkwalder, H. Poulsen Nautrup, H. J. Briegel, and V. Dunjko.
“Quantum Enhancements for Deep Reinforcement Learning in Large Spaces.” In:
PRX Quantum 2 (1 Feb. 2021), p. 010328. doi: 10.1103/PRXQuantum.2.010328.

[40] Parametrized Quantum Policies for Reinforcement Learning. Zenodo, Jan. 2022. doi:
10.5281/zenodo.5833370.

[41] S. Wu, S. Jin, D. Wen, D. Han, and X. Wang. Quantum reinforcement learning in
continuous action space. 2023. arXiv: 2012.10711 [quant-ph].

[42] D. P. DiVincenzo. “The Physical Implementation of Quantum Computation.” eng.
In: Fortschritte der Physik 48.9-11 (2000), pp. 771–783. issn: 0015-8208.

[43] S. Sim, P. D. Johnson, and A. Aspuru-Guzik. “Expressibility and Entangling
Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical
Algorithms.” In: Advanced quantum technologies (Online) 2.12 (2019), n/a. issn:
2511-9044.

[44] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland. “Surface codes:
Towards practical large-scale quantum computation.” In: Physical Review A 86.3
(Sept. 2012). issn: 1094-1622. doi: 10.1103/physreva.86.032324.

[45] O. Menegasso Pires, E. Inacio Duzzioni, J. Marchi, and R. De Santiago. “Quantum
Circuit Synthesis Using Projective Simulation.” eng. In: Inteligencia artificial 24.67
(2021), pp. 90–101. issn: 1137-3601.

[46] V. Privman, D. Mozyrsky, and I. D. Vagner. “Quantum computing with spin
qubits in semiconductor structures.” In: Computer Physics Communications 146.3
(2002). Quantum Computing for Physical Modeling, pp. 331–338. issn: 0010-4655.
doi: https://doi.org/10.1016/S0010-4655(02)00424-1.

[47] W. K. Hensinger. “Quantum information: Microwave ion-trap quantum comput-
ing.” eng. In: Nature (London) 476.7359 (2011), pp. 155–156. issn: 1476-4687.

[48] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X.
Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M.
Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford,
N. S. Blunt, B. Rogers, T. Noel, and M. Saffman. “Multi-qubit entanglement and
algorithms on a neutral-atom quantum computer.” eng. In: Nature 604.7906 (2022),
pp. 457–462. issn: 0028-0836.

88

https://doi.org/10.1103/PRXQuantum.2.010328
https://doi.org/10.5281/zenodo.5833370
https://arxiv.org/abs/2012.10711
https://doi.org/10.1103/physreva.86.032324
https://doi.org/https://doi.org/10.1016/S0010-4655(02)00424-1

Bibliography

[49] D. Dong, C. Chen, H. Li, and T.-J. Tarn. “Quantum Reinforcement Learning.” In:
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 38.5 (2008),
pp. 1207–1220. doi: 10.1109/TSMCB.2008.925743.

[50] S. Rethinasamy, R. Agarwal, K. Sharma, and M. M. Wilde. “Estimating distin-
guishability measures on quantum computers.” In: Physical Review A 108.1 (July
2023). issn: 2469-9934. doi: 10.1103/physreva.108.012409.

[51] D. Sierra-Sosa, S. Pal, and M. Telahun. “Data rotation and its influence on
quantum encoding.” eng. In: Quantum information processing 22.1 (2023). issn:
1573-1332.

[52] J. Gonzalez-Conde, T. W. Watts, P. Rodriguez-Grasa, and M. Sanz. “Efficient
quantum amplitude encoding of polynomial functions.” eng. In: Quantum 8
(2024), p. 1297. issn: 2521-327X.

[53] E. Ovalle-Magallanes, D. E. Alvarado-Carrillo, J. G. Avina-Cervantes, I. Cruz-
Aceves, and J. Ruiz-Pinales. “Quantum angle encoding with learnable rotation
applied to quantum–classical convolutional neural networks.” eng. In: Applied
soft computing 141 (2023), p. 110307. issn: 1568-4946.

[54] M. A. Khan, M. N. Aman, and B. Sikdar. “Beyond Bits: A Review of Quantum
Embedding Techniques for Efficient Information Processing.” eng. In: IEEE access
12 (2024), pp. 46118–46137. issn: 2169-3536.

[55] M. Weigold, J. Barzen, F. Leymann, and M. Salm. “Expanding Data Encoding
Patterns For Quantum Algorithms.” In: 2021 IEEE 18th International Conference on
Software Architecture Companion (ICSA-C). 2021, pp. 95–101. doi: 10.1109/ICSA-
C52384.2021.00025.

[56] M. Weigold, J. Barzen, F. Leymann, and M. Salm. “Encoding patterns for quantum
algorithms.” eng. In: IET quantum communication 2.4 (2021), pp. 141–152. issn:
2632-8925.

[57] L. Kunczik. Reinforcement learning with hybrid quantum approximation in the NISQ
context / Leonhard Kunczik. eng. Wiesbaden, Germany: Springer Vieweg, 2022. isbn:
9783658376154.

[58] A. Sequeira, L. Paulo Santos, and L. Soares Barbosa. “Trainability issues in
quantum policy gradients.” eng. In: Machine learning: science and technology 5.3
(2024), p. 35037. issn: 2632-2153.

[59] L. Grover. “Synthesis of quantum superpositions by quantum computation.” eng.
In: Physical review letters 85.6 (2000), pp. 1334–1337. issn: 0031-9007.

89

https://doi.org/10.1109/TSMCB.2008.925743
https://doi.org/10.1103/physreva.108.012409
https://doi.org/10.1109/ICSA-C52384.2021.00025
https://doi.org/10.1109/ICSA-C52384.2021.00025

Bibliography

[60] A. Wong, T. Bäck, A. V. Kononova, and A. Plaat. “Deep multiagent reinforcement
learning: challenges and directions.” eng. In: The Artificial intelligence review 56.6
(2023), pp. 5023–5056. issn: 0269-2821.

[61] S. Y.-C. Chen, C.-H. H. Yang, J. Qi, P.-Y. Chen, X. Ma, and H.-S. Goan. “Variational
Quantum Circuits for Deep Reinforcement Learning.” In: IEEE Access 8 (2020),
pp. 141007–141024. doi: 10.1109/ACCESS.2020.3010470.

[62] A. Sequeira, L. P. Santos, and L. S. Barbosa. “On Quantum Natural Policy Gradi-
ents.” eng. In: IEEE transactions on quantum engineering 5 (2024), pp. 1–11. issn:
2689-1808.

[63] M. H. Amin, E. Andriyash, J. Rolfe, B. Kulchytskyy, and R. Melko. “Quantum
Boltzmann Machine.” eng. In: Physical review. X 8.2 (2018), p. 021050. issn: 2160-
3308.

[64] V. Dunjko, J. M. Taylor, and H. J. Briegel. “Framework for learning agents in
quantum environments.” eng. In: arXiv (Cornell University) (2015). issn: 2331-8422.

[65] A. Hamann, V. Dunjko, and S. Wölk. “Quantum-accessible reinforcement learning
beyond strictly epochal environments.” In: Quantum Machine Intelligence 3.2 (Aug.
2021). issn: 2524-4914. doi: 10.1007/s42484-021-00049-7.

[66] W. J. ZENG, G. MAZZOLA, S. E. WOERNER, and N. STAMATOPOULOS. QUAN-
TUM ADVANTAGE USING QUANTUM CIRCUIT FOR GRADIENT ESTIMATION.
eng. 2024.

[67] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. OpenAI Gym. 2016. arXiv: 1606.01540 [cs.LG].

[68] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization.” In: CoRR
abs/1412.6980 (2014).

[69] Q. Wei, H. Ma, C. Chen, and D. Dong. “Deep Reinforcement Learning With
Quantum-Inspired Experience Replay.” In: IEEE Transactions on Cybernetics 52.9
(2022), pp. 9326–9338. doi: 10.1109/TCYB.2021.3053414.

[70] D. Liu, Y. Wu, Y. Kang, L. Yin, X. Ji, X. Cao, and C. Li. “Multi-agent quantum-
inspired deep reinforcement learning for real-time distributed generation control
of 100% renewable energy systems.” In: Engineering Applications of Artificial Intelli-
gence 119 (2023), p. 105787. issn: 0952-1976.

[71] A. Sequeira, L. P. Santos, and L. S. Barbosa. “Policy gradients using variational
quantum circuits.” eng. In: Quantum Machine Intelligence/Quantum machine intelli-
gence 5.1 (2023). issn: 2524-4906.

90

https://doi.org/10.1109/ACCESS.2020.3010470
https://doi.org/10.1007/s42484-021-00049-7
https://arxiv.org/abs/1606.01540
https://doi.org/10.1109/TCYB.2021.3053414

Bibliography

[72] J. R. McClean, S. Boixo, V. N. Smelyanskiy, R. Babbush, and H. Neven. “Barren
plateaus in quantum neural network training landscapes.” In: Nature Communica-
tions 9.1 (Nov. 2018). issn: 2041-1723. doi: 10.1038/s41467-018-07090-4.

[73] H. Hohenfeld, D. Heimann, F. Wiebe, and F. Kirchner. “Quantum Deep Reinforce-
ment Learning for Robot Navigation Tasks.” In: IEEE Access 12 (2024), pp. 87217–
87236. issn: 2169-3536. doi: 10.1109/access.2024.3417808.

[74] E. Coumans and Y. Bai. PyBullet, a Python module for physics simulation for games,
robotics and machine learning. Version 3.0. 2016–2021.

[75] S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G.
Araújo. “CleanRL: High-quality Single-file Implementations of Deep Reinforce-
ment Learning Algorithms.” In: Journal of Machine Learning Research 23.274 (2022),
pp. 1–18.

[76] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G.
Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S. Banning,
C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. D. Matteo,
A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S.
Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T.
Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-Barrera, R. Moyard, Z.
Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko, N. Quesada,
C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni,
A. Száva, S. Thabet, R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber,
D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran.
PennyLane: Automatic differentiation of hybrid quantum-classical computations. 2022.
arXiv: 1811.04968 [quant-ph].

[77] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. 2019. arXiv: 1912.01703
[cs.LG].

[78] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann.
“Stable-Baselines3: Reliable Reinforcement Learning Implementations.” In: Journal
of Machine Learning Research 22.268 (2021), pp. 1–8.

[79] M. Franz, L. Wolf, M. Periyasamy, C. Ufrecht, D. D. Scherer, A. Plinge, C.
Mutschler, and W. Mauerer. “Uncovering instabilities in variational-quantum
deep Q-networks.” In: Journal of the Franklin Institute 360.17 (Nov. 2023), pp. 13822–
13844. issn: 0016-0032. doi: 10.1016/j.jfranklin.2022.08.021.

91

https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1109/access.2024.3417808
https://arxiv.org/abs/1811.04968
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://doi.org/10.1016/j.jfranklin.2022.08.021

Bibliography

[80] S. Fujimoto, H. van Hoof, and D. Meger. Addressing Function Approximation Error
in Actor-Critic Methods. 2018. arXiv: 1802.09477 [cs.AI].

92

https://arxiv.org/abs/1802.09477

	Abstract
	Contents
	Introduction
	Reinforcement Learning
	Fundamentals
	Markov Decision Processes
	Policies and Value Functions

	Learning Methods
	Model-Free and Model-Based Methods
	On-Policy and Off-Policy Learning
	Value-Based Methods
	Policy Gradient Methods
	Actor-Critic Methods
	Monte Carlo vs. Temporal-Difference Methods
	Overview of Concepts

	Solution Methods
	Tabular Solutions
	Approximate Solutions

	Quantum Computing
	Fundamentals
	Quantum Machine Learning
	QML Encoding Techniques

	Quantum Reinforcement Learning
	Quantum Kernels in RL
	Related Work in VQC-based QRL

	Problem Statement and Solution
	Challenges in QRL for Robot Navigation
	Proposed Methodology
	Design of RL Environment
	Computation of Reward Thresholds
	RL Models: Classical, Hybrid, and Quantum
	Hardware, Software, and Computational Resources

	Results
	Experimental Setup and Remarks
	Training Results
	Classical Performance
	Quantum Performance
	Hybrid Performance

	Test Results
	33 Environment
	44 Environment
	55 Environment

	Cross-Environment Training and Test Performance Analysis
	Training Summary
	Test Summary
	Interpretation and Trends of Summaries

	Conclusion and Future Work
	Appendix
	Hyper-Parameter Details for DDPG

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

