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Abstract

This dissertation presents a series of advancements in Smoothed Particle Hydrody-
namics (SPH) aimed at improving the modeling of solid dynamics, particularly in
addressing hourglass instabilities, and the simulation of thin structures, plates and
shells, under large deformations. The research is structured in three major phases
to create a robust framework for accurate, stable, and efficient simulations of solid
materials.

The Total Lagrangian SPH (TLSPH) method for elastic solid dynamics suffers
from hourglass modes, which can grow and lead to simulation failure, particularly
in cases involving large deformations. In the first phase of this dissertation, we
address this long-standing issue for the full-dimensional, or volume-particle, SPH
method by proposing an essentially non-hourglass formulation based on volumet-
ric and deviatoric stress decomposition. Recognizing that nonphysical zigzag parti-
cle distributions, induced by hourglass modes, are primarily characterized by shear
deformation, and drawing inspiration from the standard SPH discretization of the
viscous term in the Navier-Stokes (NS) equation, our formulation computes the ac-
tion of shear stress directly through the Laplacian of displacement rather than the
divergence of shear stress. A comprehensive set of challenging benchmark tests
demonstrate that, while improving both accuracy and computational efficiency, this
formulation essentially suppresses hourglass modes and achieves excellent numeri-
cal stability with a single general effective parameter. Additionally, the deformation
of a practically relevant stent structure is simulated to highlight the potential appli-
cation of the present method in biomechanics.

However, existing hourglass control methods have been effective only for a lim-
ited range of material models. A comprehensive solution capable of addressing
hourglass issues across a wide spectrum of materials—encompassing elasticity, plas-
ticity, and anisotropy—has remained elusive. In the second phase of our research,
we introduce a unified TLSPH formulation based on volumetric-deviatoric stress
decomposition, aimed at fundamentally mitigating hourglass modes in general sim-
ulations. In contrast to previous approaches that rely on stress points or additional
viscous or hourglass-control stresses within the momentum equation, our formu-
lation uses a weighted average of the standard, hourglass-prone formulation and
the non-hourglass formulation developed in the first phase, employing a single lim-
iter to dynamically adjust the balance between the two. This dimensionless charac-
teristic allows seamless integration with complex material models. To validate the
formulation, simulations across a range of benchmark cases involving elastic, plas-
tic, and anisotropic materials are conducted. To demonstrate its versatility, we also
apply the formulation to simulate a complex scenario involving a viscous plastic
Oobleck material, contacts, and very large deformations. This unified formulation
addresses a critical gap in TLSPH simulations by providing a comprehensive solu-
tion to mitigate hourglass modes, enhancing the reliability and accuracy of simula-
tions across diverse material models and complex scenarios.

For plate and shell structures, the traditional full-dimensional SPH method is
computationally inefficient. To address this, we propose a reduced-dimensional,
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surface-particle SPH formulation based on mid-surface reconstruction. This for-
mulation is tailored for both quasi-static and dynamic analyses of plate and shell
structures undergoing finite deformations and large rotations. Leveraging Ufly-
and–Mindlin plate theory, the surface-particle formulation resolves thin structures
using only one layer of particles at the mid-surface. To account for geometric non-
linearity and capture finite deformations and large rotations, two reduced dimen-
sional linear-reproducing correction matrices are introduced, alongside weighted
non-singular transformations between the rotation angle and pseudo-normal. Ad-
ditionally, a new anisotropic Kelvin-Voigt damping mechanism is specifically devel-
oped for thin and moderately thick plate and shell structures to enhance numeri-
cal stability. To further improve robustness, a shear-scaled momentum-conserving
hourglass control algorithm with an adaptive limiter is incorporated to mitigate dis-
crepancies between particle positions, pseudo-normal and those predicted by the de-
formation gradient. A series of benchmark problems, for which analytical solutions
or numerical results from literature or traditional volume-particle SPH methods are
available for quantitative and qualitative comparison, are examined to demonstrate
the accuracy and stability of the proposed method.

In conclusion, the advancements presented in this dissertation mark a signifi-
cant step forward in the development of SPH for solid dynamics. The novel for-
mulations provide a robust and reliable toolset for addressing complex deformation
problems, offering valuable insights into material behavior under extreme condi-
tions and opening new possibilities for the practical application of SPH in real-world
engineering scenarios.



vii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,
PD Dr. Xiangyu Hu, for his unwavering support, patience, and continuous guid-
ance throughout my PhD journey. His invaluable suggestions, insightful feedback,
and warm encouragement have been instrumental in shaping this work. I am par-
ticularly thankful for his thorough advice, which inspired new ideas and provided
motivation during moments of frustration. I greatly appreciate his detailed feed-
back during our weekly group meetings, his careful revision of our papers, and his
exceptional ability to guide research progress. His broad vision, passion for science,
and deep understanding of solid dynamics and Smoothed Particle Hydrodynamics
(SPH) have been truly inspiring.

I also extend my sincere gratitude to Prof. Nikolaus A. Adams, Director of the
Chair of Aerodynamics and Fluid Mechanics at the Technical University of Munich,
apl. Prof. Christian Stemmer, and my mentor, Prof. Oskar J. Haidn, for providing
an excellent research environment. I am grateful to have had the opportunity to
work alongside such dedicated individuals and to benefit from their support and
resources.

I would like to acknowledge my collaborators at the Chair, including Chi Zhang,
Massoud Rezavand, Yujie Zhu, Bo Zhang, Shuoguo Zhang, Feng Wang, Yaru Ren,
Shuaihao Zhang and Haitao Li, and beyond the Chair, including Yongchuan Yu,
Hao Ma, Xiaojing Tang, Zhentong Wang, Mai Ye, Zhenxi Zhao, Yuan Jia, Junwei
Jiang, Abdella Mohamed, Ibraheem Nasser, and Nicolò Salis. It has been a privilege
to collaborate with such talented individuals, and I have thoroughly enjoyed the
stimulating discussions and camaraderie throughout my PhD journey.

I am also grateful to other members of the Chair for their support, interesting
discussions, and companionship, including Yiqi Feng, Wenbin Zhang, Yu Fan, Dr.
Wanli Wang, Dr. Yazhou Wang, Jingyu Wang, Yu Jiao, Youjie Xu, and many others.
A special thanks to our staff members, Angela Grygier and Hua Liu, for their kind
assistance and support throughout my time at the Chair.

I am deeply thankful to the Chinese Scholarship Council and the German Re-
search Foundation (DFG) for their financial support, which made this research pos-
sible at the Technical University of Munich.

A heartfelt acknowledgment goes to Prof. Guilin Wen and Prof. Hanfeng Yin, my
master’s supervisors at Hunan University, Changsha, China. I am forever grateful
for their encouragement to pursue computational dynamics and for their guidance
during my Master’s thesis, which ignited my passion for scientific research.

Lastly, I would like to express my profound gratitude to my parents and my
older sister, to whom I dedicate this dissertation. Without their boundless love, en-
couragement, and unwavering support, this thesis would not have been possible.





ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Review of SPH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 State of art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Hourglass modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Reduced-dimensional model . . . . . . . . . . . . . . . . . . . . 4

1.3 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Fundamentals and modeling approaches in solid dynamics 7
2.1 Kinematics and governing equations . . . . . . . . . . . . . . . . . . . . 7
2.2 Material models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Linear elastic material . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Neo-Hookean elastic material . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Plastic material . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.4 Holzapfel-Odgen material . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Electrophysiologically induced active stress model . . . . . . . 11

2.3 Theoretical model of thin structures . . . . . . . . . . . . . . . . . . . . 12
2.3.1 3D plate model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Stress correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Conservation equations . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 3D shell model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Stress correction and conservation equation . . . . . . . . . . . . 17

2.3.3 2D plate/shell model . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Theory and fundamentals of the SPH method . . . . . . . . . . . . . . . 18

2.4.1 Integral interpolation and particle approximation . . . . . . . . 18
2.4.2 The smoothing kernel . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 SPH method of solid dynamics . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 SPH discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.2 Time integration scheme . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Summaries of publications 23
3.1 An essentially non-hourglass formulation for total Lagrangian smoothed

particle hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.1 Summary of the publication . . . . . . . . . . . . . . . . . . . . . 23



x

3.1.2 Individual contributions of the candidate . . . . . . . . . . . . . 25
3.2 Unified non-hourglass formulation for total Lagrangian SPH solid dy-

namics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Summary of the publication . . . . . . . . . . . . . . . . . . . . . 26
3.2.2 Individual contributions of the candidate . . . . . . . . . . . . . 28

3.3 An SPH formulation for general plate and shell structures with finite
deformation and large rotation . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Summary of the publication . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Individual contributions of the candidate . . . . . . . . . . . . . 30

4 Conclusions and outlooks 31
4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Outlooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 35

A Original journal papers 43
A.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



1

Chapter 1

Introduction

1.1 Review of SPH

Smoothed Particle Hydrodynamics (SPH), a fully Lagrangian, mesh-free method,
was originally developed for astrophysical simulations and fluid dynamics [1, 2].
Over the past few decades, SPH has garnered increasing attention and has been
widely adopted in various fields [3, 4, 5, 6, 7, 8]. In SPH, the continuum is repre-
sented by a set of particles, with each particle carrying fundamental physical prop-
erties such as mass and velocity. The governing equations are discretized by replac-
ing their integral forms with finite summations over the corresponding values of
neighboring particles within a defined support domain. This is achieved through
the use of a Gaussian-like kernel function, which serves as the weighting function
for particle interactions [9, 10, 11], as illustrated in Figure 1.1. For a more detailed ex-
planation of the SPH method theory and fundamentals, we refer to Section 2.4. The
particle approximation is recalculated at every time step, ensuring that the method
dynamically adapts to the local distribution of particles. This characteristic enables
SPH to naturally handle large deformations and complex geometries, making it a
versatile tool in computational mechanics.

W(ri - rj, h): Kernel function

Ωi: Support domain of 

particle i

Target particle i

Neighboring particle j

Searching 

radius

FIGURE 1.1: Particle interaction and the kernel function.

Since many common abstractions, which are intrinsically linked to numerous
physical systems, can be modeled through particle interactions, the SPH method
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provides a versatile approach to discretizing multi-physics equations within a uni-
fied computational framework [12]. This allows for shared algorithms, such as
neighboring particle search and time stepping, simplifying parallel computation
and significantly improving computational efficiency [13]. More importantly, the
unified computational framework facilitates monolithic and strong coupling, which
is seamless, spatio-temporally localized, and conservative both locally and globally
[14, 15]. The SPH method has proven successful in addressing multi-physics prob-
lems within a unified framework [12, 13], including fluid-structure interaction (FSI)
[16, 17, 18, 19, 20], cardiac electrophysiology [21, 22], laser beam welding [23, 24],
porous media [25, 26, 27], and other domains. FSI, in particular, represents a typical
multi-physics system where fluid and solid dynamics are tightly coupled. Unlike
partition-based FSI solvers, where solid dynamics are discretized using the Finite
Element Method (FEM) [28, 29] and fluid dynamics using SPH, the unified compu-
tational framework based solely on the SPH method [16, 17, 19] requires that solid
dynamics equations, especially those involving large strain, are also discretized us-
ing the SPH method.

Despite its promising achievements, early studies revealed that the original SPH
method for solid dynamics could be unstable and inaccurate due to three primary
deficiencies: linear inconsistency, tensile instability, and hourglass modes. The first
issue arises from incomplete kernel support at domain boundaries or with irregu-
lar particle distributions [10]. Several solutions have been proposed to address this,
including the normalized smoothing approach [30], kernel gradient correction [3,
31], and the finite particle method (FPM) [32]. Tensile instability, characterized by
nonphysical fractures and the formation of voids or particle clustering in solid [33]
and fluid simulations [34], respectively, arises due to the zero-order inconsistency in
particle discretization [35]. While this deficiency can generally be alleviated using
artificial stress techniques [36, 37, 38] or the generalized transport-velocity formula-
tion [39, 40], it can be completely eliminated by the Total Lagrangian SPH (TLSPH)
method, where the kernel function is evaluated once in the initial undeformed ref-
erence configuration [41], unlike the traditional Updated Lagrangian SPH (ULSPH)
method, which requires no additional correction terms [42, 31]. Since its develop-
ment, the TLSPH method has been successfully applied to numerous solid dynam-
ics simulations, including electromagnetically driven rings [43], thermomechanical
deformations [44], shell models [45, 46, 47], and biomechanics [21].

1.2 State of art

The problem of numerical instability caused by hourglass modes continues to pose
challenges in TLSPH solid dynamics. Additionally, the traditional full-dimensional,
or volume-particle, SPH method (referred to as the volume SPH method) becomes
computationally inefficient when applied to plate and shell structures. This dis-
sertation tackles both of these issues, concentrating on the elimination of hourglass
modes and the development of a reduced-dimensional, surface-particle SPH method
(referred to as the shell SPH method) to improve computational efficiency for thin-
walled structures.

1.2.1 Hourglass modes

In modeling solid dynamics using SPH, hourglass instabilities can result in spu-
rious, non-physical deformations, especially in cases involving large deformations
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and highly strained material behavior, as illustrated in Figure 1.2. The artifact of

FIGURE 1.2: Hourglass modes exist when 2D plate oscillating [48].

hourglass modes was first observed in FEM simulations and is characterized by a
zigzag mesh and field pattern [49, 50]. Similar to FEM, hourglass modes in SPH oc-
cur when the deformation gradient remains unchanged as particles shift into a non-
physical zigzag pattern, resulting in zero-energy modes [51, 52, 53]. To address this
issue in the ULSPH method, Beissel and Belytschko [54] introduced a stabilization
term to the potential energy function, while Vidal et al. [55] proposed an artificial
viscosity term by minimizing a local measure of the Laplacian of the deformation
field. Although both schemes have been successfully applied to various benchmark
cases, they rely on empirical, case-dependent parameters [56]. A more robust ap-
proach is to introduce additional integration or stress points between the original
particles to represent the stress field [51, 41, 57, 45, 53]. While this approach ef-
fectively eliminates hourglass modes, it increases algorithmic complexity, computa-
tional overhead, and suffers from the lack of a clear rule for determining the optimal
placement of stress points [58].

In the TLSPH method, it has been found that introducing artificial viscosity, sim-
ilar to that used in computational fluid dynamics (CFD), can effectively reduce hour-
glass modes in dynamic simulations [59, 60]. However, since these artificial viscos-
ity formulations rely on the particle velocity gradient, their effectiveness becomes
questionable when the velocity field is flat or insignificant. More recently, Kondo
et al. [61], Ganzenm"uller [62], and Shimizu et al. [63] introduced artificial force or
stress methods to correct the inconsistencies caused by the zigzag pattern between
the local displacement field and the linear prediction from the deformation gradient.
While these methods are both effective and computationally efficient, they may sup-
press the non-linear components of the displacement field due to excessive artificial
stiffness [64, 65]. Furthermore, they often require case-dependent, empirically tuned
parameters to achieve physically meaningful results [56].

Aside from introducing additional stress points [58], a common feature among
these schemes is their integration into the momentum equation as corrective or stabi-
lizing terms [54, 61], similar to the hourglass-control stress terms used in many FEM
[66, 67]. These methods typically rely on basic material parameters, such as sound
speed [38, 59, 60] or Young’s modulus [54, 61, 62]. The dependence on material pa-
rameters implies that the correction terms are tied to the physical characteristics of
the material, despite being aimed at mitigating a purely numerical instability. This
leads to challenges in generalizing these solutions for more complex material mod-
els. For instance, determining optimal parameters becomes difficult when dealing
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with non-isotropic contributions in the material model, or deciding the appropriate
correction magnitude for plastic materials exhibiting complex yielding and harden-
ing behaviors. As a result, these parameters are often non-generalized and require
case-specific or material model-specific tuning to avoid either insufficient or exces-
sive correction [64, 65, 56, 68, 69]. Thus far, a comprehensive solution that effectively
addresses hourglass issues across a broad range of material models—encompassing
elasticity, plasticity, and anisotropy—remains elusive.

1.2.2 Reduced-dimensional model

In the case of plate and shell structures—common thin structures in scientific and
engineering fields such as shipbuilding [70, 71], aerospace [72], and medical treat-
ment [73]—the traditional volume SPH method is computationally inefficient [74].
Given the availability of well-established and mature reduced-dimensional theories,
such as Kirchhoff-Love [75] and Uflyand-Mindlin (or Mindlin-Reissner) [76, 77, 78,
79], which are based on mid-surface reconstruction for plate and shell structures, it
is anticipated that a much more efficient shell SPH method can be developed using
only a single layer of particles. As shown in Figure 1.3, the shell model requires sig-
nificantly fewer particles to simulate plate problems compared to the volume model,
offering considerable computational savings.

FIGURE 1.3: 3D square plate: Particles colored by von Mises stress σ̄ obtained by the
shell (left) and volume (right) methods. Note that the left panel shows the stress σ̄ of
the plate mid-surface [80].

Early meshless methods for plates and shells were primarily based on Petrov or
element-free Galerkin formulations [81, 82, 83, 84, 85], or the reproducing kernel par-
ticle method [86, 87, 47], which have been applied to problems involving plastic de-
formation and material failure [85]. In the context of SPH, Maurel and Combescure
[45] were the first to develop a shell SPH method for total Lagrangian quasi-static
and dynamic analyses of moderately thick plates and shells, based on the Uflyand-
Mindlin theory and assuming small deformations. In their work, an artificial vis-
cosity term was introduced to mitigate numerical instability issues, while a stress
point method was employed to address hourglass or zero-energy modes. While
the use of stress points is effective in preventing zero-energy modes, it introduces
several issues [62, 88] as mentioned in Section 1.2.1. Nonetheless, this method was
later extended for large deformation analyses by Ming et al. [89] and for dynamic
damage-fracture analyses by Caleyron et al. [90]. Lin et al. [46] developed a similar
method for quasi-static analyses, incorporating an artificial viscosity term based on
membrane and shearing decomposition. Ming et al. [91] were the first to consider
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finite deformation by accounting for all strain components, using Gauss-Legendre
quadrature to more accurately capture non-linear stress. Since the introduction of
the SPH shell model, it has been successfully applied in several engineering fields,
including composite plate and shell structures [92, 93], explosion analysis [94], and
ship simulations [71].

1.3 Aims and objectives

The primary goal of this dissertation is to develop and improve SPH formulations
for solid dynamics, with a particular emphasis on addressing the hourglass instabil-
ities and extending the applicability of SPH to plate and shell structures.

The first objective is to develop a Non-Hourglass Formulation for TLSPH elastic
dynamics. This formulation is designed to eliminate the non-physical deformations
that commonly arise in traditional SPH simulations due to hourglass instabilities.
By introducing a novel formulation, this objective seeks to enhance the accuracy and
stability of TLSPH in handling elastic dynamics problems, particularly in scenarios
involving large deformations and complex stress conditions. The work addressing
this objective is presented in detail in Paper I [88]

• Wu, D., Zhang, C., Tang, X. and Hu, X., 2023. An essentially non-hourglass
formulation for total Lagrangian smoothed particle hydrodynamics. Computer
Methods in Applied Mechanics and Engineering, 407, p.115915.

which has been attached in Appendix A.1.
The second objective is to create a Unified Non-Hourglass TLSPH Formulation. This

formulation builds on the first objective, extending the approach to a broader range
of materials and deformation scenarios. The unified formulation aims to provide a
comprehensive solution for both elastic, plastic and anisotropic deformations, offer-
ing improved computational robustness across various solid dynamics applications.
This work is detailed in Paper II [48]

• Wu, D., Tang, X., Zhang, S. and Hu, X., 2024. A generalized essentially non-
hourglass total Lagrangian SPH solid dynamics. Computational Mechanics, pp.1-
33.

which is attached in Appendix A.2.
The last but not least objective of the dissertation is to extend the SPH method

to handle General Plate and Shell Structures. These structures, which are common
in engineering applications, present unique challenges due to their thin geometries
and susceptibility to large deformations and rotations. The goal is to develop a spe-
cialized SPH formulation capable of accurately simulating the complex behavior of
plates and shells, ensuring that SPH can be applied to a wider range of solid dynam-
ics problems. This work is detailed in Paper III [80]

• Wu, D., Zhang, C. and Hu, X., 2024. An SPH formulation for general plate and
shell structures with finite deformation and large rotation. Journal of Computa-
tional Physics, 510, p.113113.

which is attached in Appendix A.3.
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1.4 Outline

The structure of this dissertation is as follows. Chapter 1 introduces the SPH method,
reviews the state of the art regarding hourglass modes and reduced-dimensional
models in SPH, and outlines the aims and objectives of this dissertation. Funda-
mentals and modeling approaches in solid dynamics are described in Chapter 2,
covering the kinematics and governing equations, various material models, the the-
oretical model for plates, the theory and fundamentals of the SPH method, and its
application to solid dynamics. As summarized in Chapter 3, this dissertation intro-
duces an essentially non-hourglass formulation for TLSPH elastic dynamics, further
develops a unified non-hourglass formulation capable of addressing a wide array of
material behaviors, and proposes a collocated reduced-dimensional SPH formula-
tion for total Lagrangian quasi-static and dynamic analyses of general plate or shell
structures, involving finite deformation or/and large rotation. Finally, in Chapter 4
the conclusions are summarized and recommendations for future work are given.
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Chapter 2

Fundamentals and modeling
approaches in solid dynamics

This chapter provides a comprehensive overview of the fundamental concepts and
methods used for modeling solid dynamics. It begins with a discussion of kine-
matics and governing equations, which form the foundation for understanding the
motion and deformation of solid materials within the total Lagrangian framework.
The chapter then examines constitutive relations, which describe the behavior of
various materials under loading conditions. Following this, a theoretical model for
thin structures is introduced, outlining the principles for modeling thin structures
subjected to large deformations. The chapter also reviews the theory of SPH, cover-
ing the key principles of this mesh-free method. Lastly, the application of the SPH
method to solid dynamics is explored in detail.

2.1 Kinematics and governing equations

In the context of continuum mechanics within the total Lagrangian framework, the
kinematics and governing equations are formulated with respect to the initial, un-
deformed reference configuration, Ω0 ⊂ RD, where D represents the spatial dimen-
sion. A deformation map ϕ is used to describe the transformation between the initial
configuration Ω0 and the current deformed configuration Ω = ϕ

(
Ω0) . This map

characterizes the deformation of the body at any given time t as

r = ϕ
(
r0, t

)
, (2.1)

where r0 and r denote the initial and current positions of a material point, respec-
tively. The deformation gradient tensor F is then defined as

F = ∇0r = ∇0u + I, (2.2)

where u = r− r0 is the displacement,∇0 ≡ ∂
∂r0 the gradient operator with respect to

the initial configuration Ω0 and I the identity matrix.
The conservation equations for mass and momentum in the total Lagrangian

formulation are expressed as {
ρ = J−1ρ0

ρ0ü = ∇0 ·PT,
(2.3)

where ρ0 and ρ are the initial and current densities, respectively, J = det(F), ü the
acceleration, P the first Piola-Kirchhoff stress tensor, and T the matrix transposition
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operator. P can be obtained by
P = FS, (2.4)

where S is the second Piola-Kirchhoff stress tensor, and P can also be obtained by
the alternative Kirchhoff or Cauchy stress as

P = ττF−T = JσσF−T. (2.5)

2.2 Material models

A range of material models is included in this section, covering elastic, plastic (per-
fect, linear, and non-linear hardening, viscous), anisotropic materials with fiber di-
rection, and electrophysiologically induced active stress models.

2.2.1 Linear elastic material

Using the deformation gradient tensor F, the Green-Lagrangian strain tensor E is
obtained as

E =
1
2

(
FTF− I

)
=

1
2
(C− I) , (2.6)

where C is the right Cauchy deformation gradient tensor. The Eulerian Almansi
strain εε can be converted from E as

εε = F−T ·E ·F−1 =
1
2

(
I−F−TF−1

)
. (2.7)

When the material is linear and isotropic, the second Piola-Kirchhoff stress S reads

S = K tr (E) I + 2G
(

E− 1
3

tr (E) I

)
= λ tr (E) I + 2µE,

(2.8)

and the Cauchy stress σσ is
σσ = λ tr (εε) I + 2µεε, (2.9)

where λ and µ are the Lamé constants, K = λ + 2µ/3 the bulk modulus and G = µ
the shear modulus. The relationship between the two moduli is given by

E = 2G (1 + ν) = 3K (1− 2ν) , (2.10)

where E denotes the Young’s modulus and ν the Poisson’s ratio.

2.2.2 Neo-Hookean elastic material

The Kirchhoff stress ττ for the neo-Hookean elastic material can be derived form the
strain energy function [95]

We = Wv (J) +Ws
(
b̄b
)

. (2.11)

Here, the volume-preserving left Cauchy-Green deformation gradient tensor is de-
noted by b̄b = |bb|−

1
d bb. The volume-dependent strain energy Wv (J), with the bulk
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modulus K, can be written as

Wv (J) =
1
2

K
[

1
2
(

J2 − 1
)
− ln J

]
. (2.12)

The shear-dependent strain energy Ws
(
b̄b
)

can be expressed as [96]

Ws
(
b̄b
)
=

1
2

G
(
tr
(
b̄b
)
− D

)
. (2.13)

The Kirchhoff stress tensor ττ is then derived by partially differentiating the strain
energy function with respect to the deformation gradient F as

ττ =
∂We

∂F
FT =

K
2
(

J2 − 1
)

I + G dev
(
b̄b
)

, (2.14)

where

dev
(
b̄b
)
= b̄b− 1

D
tr
(
b̄b
)

I = |bb|−
1
D

[
bb− 1

D
tr (bb) I

]
(2.15)

returns the trace-free part of b̄b, i.e., tr
(
dev

(
b̄b
))

= 0.

2.2.3 Plastic material

Four distinct plastic models are introduced, including perfect plasticity, linear hard-
ening, non-linear hardening, and viscous plastic models. To describe the stress-
strain evolution in plasticity, we employ the classical J2 flow theory [97]. Accord-
ing to this theory, the deformation gradient tensor F is decomposed into an elastic
volumetric part Fe and a plastic deviatoric part Fp as [95]

F = FeFp. (2.16)

The elastic part of left Cauchy-Green tensor bbe is defined as bb = FeF
T
e . For plasticity

analysis, the plastic right Cauchy deformation gradient tensor Cp is introduced as

Cp = FT
pFp. (2.17)

The relationship between bbe and Cp is described as

bbe = FC−1
p FT. (2.18)

The plastic behavior is governed by the deviatoric component of the Kirchhoff
stress, denoted as ττde = G dev

(
b̄b
)
. To model plasticity, a scalar yield function f (ττde)

is introduced. When f (ττde) > 0, indicating that the material has entered the plastic
regime, ττde is mapped back to the yield surface—a boundary separating elastic and
plastic regions—via a return mapping process, resulting in ττe

de.
While detailed descriptions of the non-linear hardening plastic model can be

found in our previous work [98], and further insights into the viscous plastic model
are available in Ref. [96], we will focus primarily on the perfect and linear harden-
ing plastic models in the following discussion. It is important to note that the main
differences among these four plastic models lie in the return mapping process. The
scalar yield function f (ττde) for both the perfect and linear hardening plastic models
can be expressed as

f (ττde) = ‖ττde‖F −
√

2
3
(
κξ + τy

)
, (2.19)
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Algorithm 1: Algorithm for J2 flow theory with linear isotropic hardening.

1 Update deformation tensor Fn+ 1
2

2 Compute elastic predictor (Note that C0
p = I.)

bbtrial,n+ 1
2

e = Fn+ 1
2

(
C

n− 1
2

p

)−1 (
Fn+ 1

2

)T
,

ττ
trial,n+ 1

2
de = G dev

(
b̄btrial,n+ 1

2
e

)
.

3 Check for plastic loading (Note that ξ0 = 0.)

f trial,n+ 1
2 = ‖ττtrial,n+ 1

2
de ‖F −

√
2
3

(
κξn− 1

2 + τy

)
.

4 if f trial,n+ 1
2 ≤ 0 then

5 Elastic state, set (•)n+ 1
2 = (•)trial,n+ 1

2 , and
(

C
n+ 1

2
p

)−1
=

(
C

n− 1
2

p

)−1
.

6 else
7 Plastic state, and perform 9 (the return mapping)
8 end
9 Compute normalized shear modulus

G̃ =
1
d

tr
(

b̄btrial,n+ 1
2

e

)
G.

Compute increment of hardening factor

ξ incre,n+ 1
2 =

0.5 f trial,n+ 1
2

G̃ + κ/3.0
.

Update hardening factor

ξn+ 1
2 = ξn− 1

2 +

√
2
3

ξ incre,n+ 1
2 .

Update stress and deformation gradient

ττ
n+ 1

2
de = ττ

trial,n+ 1
2

de − 2G̃ξ incre,n+ 1
2 ττ

trial,n+ 1
2

de /‖ττtrial,n+ 1
2

de ‖F,

bbn+ 1
2

e =
1
G

ττ
n+ 1

2
de +

1
d

tr
(

bbtrial,n+ 1
2

e

)
I,(

C
n+ 1

2
p

)−1
=
(

Fn+ 1
2

)−1
bbn+ 1

2
e

(
Fn+ 1

2

)−T
.

where κ is the hardening modulus, ξ the hardening factor which is 0 for perfect plas-
ticity, and τy the initial flow stress, also called yield stress. Note that ‖ • ‖F denotes a
Frobenius norm of a tensor variable. The detailed algorithm of the linear hardening
plastic model from Ref. [95] is presented in Algorithm 1. The superscript (•)trial

denotes quantities related to a trial elastic state, which is evaluated to determine if it
exceeds the elastic limit. The time-stepping algorithm is applied in the elastoplastic
material description. It is noteworthy that the plasticity algorithm operates at the
mid point of the n-th time step, i.e., parameters are denoted as (•)n+ 1

2 . Additionally,
it should be emphasized that the updated bbe obtained through the return mapping
process can be substituted into Eq. (2.14) to calculate the Kirchhoff stress ττ for plastic
materials by replacing bb.
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2.2.4 Holzapfel-Odgen material

The Holzapfel-Ogden model [99] accounts for the anisotropic properties of muscle
tissue, such as the myocardium. As outlined in Ref. [21], the strain energy function
is expressed as

W =
a

2b
exp [b(I1 − 3)]− a ln J +

λ

2
(ln J)2

+ ∑
i= f ,s

ai

2bi
{exp

[
bi (Iii − 1)2

]
− 1}

+
a f s

2b f s
{exp

[
b f sI2

f s

]
− 1},

(2.20)

where a, b, a f , b f , as, bs, a f s and b f s represent eight positive material constants. The
series of parameters a have units of stress, while b are dimensionless. Here, the
principle invariants are defined as

I1 = tr C, I2 =
1
2
[
I2
1 − tr(C2)

]
, I3 = det(C) = J2, (2.21)

where the left Cauchy-Green deformation tensor C = FTF, and three other indepen-
dent invariants associated with directional preferences are given by

I f f = C : f 0 ⊗ f 0, Iss = C : s0 ⊗ s0, I f s = C : f 0 ⊗ s0, (2.22)

where f 0 and s0 are the undeformed muscle fiber and sheet unit direction, respec-
tively.

The second Piola-Kirchhoff stress S is derived by

S = 2
∂W

∂C
− pC−1 = 2 ∑

j

∂W

∂Ij

∂Ij

∂C
− pC−1 j = 1, f f , ss, f s, (2.23)

where

∂I1

∂C
= I,

∂I f f

∂C
= f0 ⊗ f0,

∂Iss

∂C
= f0 ⊗ f0,

∂I f s

∂C
= f0 ⊗ s0 + s0 ⊗ f0, (2.24)

and p = ∂W
∂J serves as the Lagrange multiplier introduced to enforce incompressibil-

ity. Substituting Eqs. (2.20) and (2.24) into Eq.(2.23) and applying ττ = FSFT, the
Kirchhoff stress ττ is obtained as

ττ = {λ ln J − a} I + a exp [b (I1 − 3)] bb

+ 2a f
(
I f − 1

)
exp

[
b f
(
I f − 1

)2
]

F( f0 ⊗ f0)F
T

+ 2as (Is − 1) exp
[
bs (Is − 1)2

]
F(s0 ⊗ s0)F

T

+ a f sI f sexp
[
b f s
(
I f s
)2
]

F ( f0 ⊗ s0 + s0 ⊗ f0)FT.

(2.25)

2.2.5 Electrophysiologically induced active stress model

Building on the methodology presented in Refs. [100, 21], we incorporate the stress
tensor with the transmembrane potential Vm using the active stress approach. This
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approach decomposes the Kirchhoff stress ττ into passive and active components as

ττ = ττpassive + ττactive, (2.26)

where the passive component ττpassive represents the stress required to achieve a
given passive muscle deformation, and is modeled using the previously mentioned
Holzapfel-Odgen material. The active component ττactive denotes the tension acti-
vated by the depolarization of the propagating transmembrane potential. Following
the active stress approach proposed in Ref. [100], the active component is deter-
mined as

ττactive = TaF f0 ⊗ f0FT, (2.27)

where Ta represents the active muscle contraction stress.

2.3 Theoretical model of thin structures

We first introduce the theoretical mode of 3D plate, and then that of 3D shell in which
material points may possess different initial normal directions leading to different
initial local coordinate systems. After that, we briefly describe the 2D plate and
shell models, which resolve the plane strain problem, as a simplification of the 3D
counterparts.

2.3.1 3D plate model

We adopt the Uflyand–Mindlin plate theory [76, 77] to account for transverse shear
stress, which is particularly important for moderately thick plates. According to this
theory, the behavior of the plate can be represented by a single layer of material
points located at its mid-surface, as illustrated in Figure 2.1.

Current Configuration

Initial Configuration

d

η

ζ 

y

x

z

n
0 or nr

0

nr

φ 
θ 

n

YX

Z

ξ 

FIGURE 2.1: Schematic of a 3D plate model [80].Note that while the shell domain is
discretized by spheres herein, it is important to clarify that a sphere or particle domain
is actually a cube.
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Kinematics

We introduce X = (X, Y, Z) to represent the global coordinate system, and ξ =
(ξ, η, ζ) and x = (x, y, z), associated with so-called pseudo-normal vector n, to de-
note the initial and current local coordinate systems, respectively. Note that the ini-
tial local coordinate system is same with the global one for plate. Each material point
possesses five degrees of freedom, viz., three translations u = {u, v, w}T and two ro-
tations θ = {θ, ϕ}T expressed in the global coordinates. Positive values of θ and
ϕ indicate that the plate is rotated anticlockwise around the coordinate axis when
the axis points toward the observer and the coordinate system is right-handed. The
two rotations are used to update the pseudo-normal n = {n1, n2, n3}T which is also
defined in the global coordinate system and remains straight but is not necessar-
ily perpendicular to the mid-surface, i.e., the pseudo normal may be different with
the real normal nr, as shown in Figure 2.1. Note that n0 = {0, 0, 1}T denotes the
pseudo-normal in the initial configuration with the superscript (•)0 denoting the
initial configuration. Additionally, it is worth clarifying that although the plate do-
main is discretized using spheres in Figure 2.1, which is a common practice in parti-
cle methods, it is essential to understand that a sphere or particle domain is actually
a cubic shape.

For a plate, the position r of a material point at a distance χ away from the mid-
surface along the pseudo normal n can be expressed as

r (ξ, η, χ, t) = rm (ξ, η, t) + χn (ξ, η, t) , χ ∈ [−d/2, d/2] , (2.28)

where d is the thickness, rm the position of the material point at the mid-surface
with the subscript (•)m denoting the mid-surface. Note that since the thickness is
assumed to be constant during deformation and the pseudo normal n represents the
plate thickness direction, the distance χ is always between−d/2 and d/2. Therefore,
the displacement u of the material point can be determined by

u (ξ, η, χ, t) = um (ξ, η, t) + χ∆n (ξ, η, t) , (2.29)

where ∆n = n− n0. Then we can define the deformation gradient tensor as

F = ∇0r = ∇0u + I = (a1, a2, a3) , (2.30)

where∇0 ≡ ∂/∂ξ is the gradient operator with respect to the initial configuration, I

the identity matrix, and a1, a2, a3 are specified by
a1 = rm,ξ + χnξ

a2 = rm,η + χnη

a3 = n
(2.31)

with ∇0rm ≡ (rm,ξ , rm,η)T and ∇0n ≡ (nξ , rη)T. The deformation gradient tensor can
be decomposed into two components as

F = Fm + χFn, (2.32)

where Fm =
(

rT
m,ξ , rT

m,η , nT
)

and Fn =
(

nT
ξ , nT

η , 0
)

. The change rate of this deforma-
tion gradient is expressed as

Ḟ = ∇0u̇ = ∇0u̇m + χ∇0ṅ, (2.33)
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where u̇m and ṅ denote the velocity and change rate of pseudo-normal, respectively.
Furthermore, the real normal nr is given as

nr =
rm,ξ × rm,η∣∣rm,ξ × rm,η

∣∣ . (2.34)

Stress correction

As the thickness is significantly less than the length and width of plate, the following
boundary conditions hold when the plate is free from external forces on its surfaces
where χ = ± d

2 or z = ± d
2

σl
xz

∣∣∣
z=± d

2

= 0, σl
yz

∣∣∣
z=± d

2

= 0, (2.35)

σl
zz

∣∣∣
z∈[− d

2 , d
2 ]
= 0, (2.36)

with the superscript (•)l denoting the current local coordinates. Taking the bound-
ary condition Eq. (2.36) and constitutive Eq. (2.9) into account, the following relation
of strains holds [86]

ε̄l
zz =

−ν
(

εl
xx + εl

yy

)
1− ν

, (2.37)

where the current local strain εεl is obtained by

εεl = QεεQT. (2.38)

Here, Q is the orthogonal transformation matrix from the global to current local
coordinates. Following Batoz and Dhatt [101], Q can be given as

Q =

n3 +
(n2)

2

1+n3
− n1n2

1+n3
−n1

− n1n2
1+n3

n3 +
(n1)

2

1+n3
−n2

n1 n2 n3

 . (2.39)

To satisfy the boundary conditions of Eq. (2.35), the transverse shear stress should
be corrected as [102]

σ̄l
xz = σ̄l

zx = βσl
xz, σ̄l

yz = σ̄l
zy = βσl

yz, (2.40)

where β denotes the shear correction factor which is typically set to 5/6 for the rect-
angular section of the isotropic plate. Taking the corrected strain ε̄εl into constitutive
Eq. (2.9) and then applying Eq. (2.40), the corrected current local Cauchy stress σ̄σl is
obtained.

Conservation equations

The mass conservation equation can be written as

ρ = J−1
m ρ0, (2.41)
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where Jm = det(Fm), ρ0 and ρ represent the initial and current densities, respectively.
The momentum conservation equation is

ρül = ∇ ·
(

σ̄σl
)T

(2.42)

or

ρ

 ül

v̈l

ẅl

 =


∂σ̄l

xx
∂x +

∂σ̄l
xy

∂y + ∂σ̄l
xz

∂z
∂σ̄l

yx
∂x +

∂σ̄l
yy

∂y +
∂σ̄l

yz
∂z

∂σ̄l
zx

∂x +
∂σ̄l

zy
∂y + ∂σ̄l

zz
∂z

 . (2.43)

With Eqs. (2.35) and (2.36), we can integrate Eq. (2.43) along χ or z ∈ [−d/2, d/2] as

dρ

 ül
m

v̈l
m

ẅl
m

 =


∂Nl

xx
∂x +

∂Nl
xy

∂y
∂Nl

yx
∂x +

∂Nl
yy

∂y
∂Nl

zx
∂x +

∂Nl
zy

∂y

 , (2.44)

where the stress resultant Nl is calculated by the Gauss–Legendre quadrature rule
as

Nl =
∫ d/2

−d/2
σ̄σl (z) dz =

N

∑
ip=1

σ̄σl (zip
)

Aip. (2.45)

Here, zip is the integral point, Aip the weight, and N the number of the integral point.
Since the quadrature rule is conducted to yield an exact result for polynomials of
degree 2N − 1 or lower [103], N is determined by the applied constitutive relation.

By multiplying both sides of Eq. (2.42) by z and integrating along z ∈ [−d/2, d/2],
the angular momentum conservation equation can be obtained as

d3

12
ρ

n̈l
1

n̈l
2

n̈l
3

 =


∂Ml

xx
∂x +

∂Ml
xy

∂y
∂Ml

yx
∂x +

∂Ml
yy

∂y
∂Ml

zx
∂x +

∂Ml
zy

∂y

+

−Nl
xz

−Nl
yz

0

 , (2.46)

where the moment resultant Ml is calculated as

Ml =
∫ d/2

−d/2
zσ̄σl (z) dz =

N

∑
ip=1

zipσ̄σl (zip
)

Aip. (2.47)

Note that ∫ d/2

−d/2
z

∂σ̄l
xz

∂z
dz =

[
zσ̄l

xz

]d/2

−d/2
−
∫ d/2

−d/2
σ̄l

xzdz = −Nl
xz. (2.48)

Therefore, the two governing equations, including the evolution of mid-surface
displacement and pseudo normal, respectively, for the 3D plate can be described as{

dρül
m = ∇l ·

(
Nl)T

d3

12 ρn̈l = ∇l ·
(
Ml)T

+ Ql ,
(2.49)
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where

Nl =

Nl
xx Nl

xy 0
Nl

yx Nl
yy 0

Nl
zx Nl

zy 0

 , Ml =

Ml
xx Ml

xy 0
Ml

yx Ml
yy 0

Ml
zx Ml

zy 0

 , Ql =

−Nl
xz

−Nl
yz

0

 . (2.50)

In total Lagrangian formulation, the conservation equations above are converted
into {

dρ0üm = (Fm)
-T∇0 ·

(
JmNT)

d3

12 ρ0n̈ = (Fm)
-T∇0 ·

(
JmMT)+ JmQTQl ,

(2.51)

where N = QTNlQ and M = QTMlQ are the stress and moment resultants, respec-
tively, in global coordinates.

2.3.2 3D shell model

Based on the 3D plate model, the 3D shell model is obtained by introducing the ini-
tial local coordinate system and the transformation matrix from the global to initial
local coordinate system. As the transformation matrix is a unit matrix for plates,
both plates and shells can be constructed in their initial local coordinates, allowing
for a unified model for both structures.

Kinematics

The kinematics of shell can be constructed in the initial local coordinates denoted
with the superscript (•)L. Each material point possesses five degrees of freedom,
viz., three translations uL =

{
uL, vL, wL}T and two rotations θL =

{
θL, ϕL}T as

shown in Figure 2.2. The pseudo-normal vector is also presented in initial local
coordinates by nL =

{
nL

1 , nL
2 , nL

3
}T, especially denoted by n0,L = {0, 0, 1}T in the

initial local configuration. The local position rL of a material point can be expressed

Current Configuration

Initial Configuration

d
ηξ 

ζ 

y

x

znr

φ θ 

n

YX

Z

n
0 or nr

0

FIGURE 2.2: Schematic of a 3D shell model [80].
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as
rL (ξ, η, χ, t) = rL

m (ξ, η, t) + χnL (ξ, η, t) , χ ∈ [−d/2, d/2] . (2.52)

The local displacement uL can thus be obtained by

uL (ξ, η, χ, t) = uL
m (ξ, η, t) + χ∆nL (ξ, η, t) , (2.53)

where ∆nL = nL − n0,L. Similar to 3D plates, the local deformation gradient tensor
of 3D shells can be defined as

FL = ∇0,LrL +∇0,LnL −∇0,Ln0,L =
(

aL
1 , aL

2 , aL
3

)
, (2.54)

where∇0,L ≡ ∂/∂ξ is the gradient operators defined in the initial local configuration,
and aL

1 , aL
2 , aL

3 are detailed by
aL

1 = rL
m,ξ + χnL

ξ − χn0,L
ξ

aL
2 = rL

m,η + χnL
η − χn0,L

η

aL
3 = nL.

(2.55)

Stress correction and conservation equation

With the local deformation gradient tensor FL, the local Eulerian Almansi strain εεL

can be calculated by the Eq. (2.7). After that, the current local εεl is obtained according
to the coordinate transformation as

εεl = Q
(
Q0)T

εεLQ0QT, (2.56)

where Q0, the orthogonal transformation matrix from the global to initial local coor-
dinates, is calculated from Eq. (2.39) while the current pseudo normal n is replaced
by the initial one n0. And then the corrected strain ε̄εl is estimated by applying Eq.
(2.37). After getting the current local Cauchy stress σσl by Eq. (2.9), the corrected one
σ̄σl is obtained by Eq. (2.40).

Note that the total Lagrangian conservation equations of a 3D shell has the same
form as Eqs. (2.51) with Fm =

(
Q0)T

FL
mQ0.

2.3.3 2D plate/shell model

If a plate/shell is assumed to be a strip that is very long and has a finite width, and
the transverse load is assumed to be uniform along the length, the analysis can be
simplified at any cross section as a plane strain problem [104].

The kinematics of 2D plate and shell can also be built in initial local coordinates.
The 2D model is in the global X-Z plane, and each material point possesses three de-
grees of freedom, viz., two translations uL =

{
uL, wL}T and one rotation θL =

{
ϕL}T

expressed in the initial local coordinates. The pseudo-normal vector is presented in
the initial local coordinates by nL =

{
nL

1 , nL
3
}T, especially denoted by n0,L = {0, 1}T

in the initial local configuration. Similar to 3D model, the local position rL of a ma-
terial point can be expressed as

rL (ξ, χ, t) = rL
m (ξ, t) + χnL (ξ, t) , χ ∈ [−d/2, d/2] , (2.57)
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the local displacement uL can be evaluated as

uL (ξ, χ, t) = uL
m (ξ, t) + χ∆nL (ξ, t) . (2.58)

and the local deformation gradient tensor is written as

FL = ∇0,LrL +∇0,LnL −∇0,Ln0,L =
(

aL
1 , aL

3

)
, (2.59)

where aL
1 and aL

3 are given by{
aL

1 = rL
m,ξ + ζnL

ξ − ζn0,L
ξ

aL
3 = nL.

(2.60)

The coordinate transformation matrix Q from global to current local coordinates is
simplified from Eqs. (2.39) as

Q =

[
n3 −n1
n1 n3

]
, (2.61)

and the 2D transformation matrix Q0 from global to initial local coordinates can also
calculated by Eq. (2.61) while the current pseudo normal n is replaced by the initial
one n0. The corrected relation of strains is simplified from Eq. (2.37) as

ε̄l
zz =

−νεl
xx

1− ν
. (2.62)

Finally, the 2D conservation equation is identical to 3D Eq. (2.51) with

Nl =

[
Nl

xx 0
Nl

zx 0

]
, Ml =

[
Ml

xx 0
Ml

zx 0

]
, Ql =

[
−Nl

xz
0

]
. (2.63)

2.4 Theory and fundamentals of the SPH method

Before introducing the discretizations of the governing equations, we first summa-
rize the theory and fundamentals of the SPH method.

2.4.1 Integral interpolation and particle approximation

In the SPH method, the continuum media is discretized into a finite number of La-
grangian particles, whose interactions are governed by a compact-support kernel
function, typically a Gaussian-like function, which approximates the spatial differ-
ential operators. Each particle i, located at the position vector ri and moving with the
material velocity u̇i, carries particle-average field variables, such as mass mi, density
ρi, volume Vi, etc. The discretization of a variable field f (r) can then be written as

fi =
∫

f (r)W(ri − r, h)dr, (2.64)

where the kernel function W(ri − r, h) is radially symmetric with respect to ri and h
the smoothing length. By introducing particle summation, this variable field can be



2.4. Theory and fundamentals of the SPH method 19

approximated by

fi ≈∑
j

VjW(ri − rj, h) f j = ∑
j

mj

ρj
W(ri − rj, h) f j, (2.65)

where the summation is conducted over all the neighboring particles j in the support
domain of the particle i.

Following Ref. [9], the original SPH approximation of the spatial derivative op-
erator of the variable field f (r) at particle i can be obtained by

∇ fi =
∫

Ω
∇ f (r)W(ri − r, h)dV

= −
∫

Ω
f (r)∇W(ri − r, h)dV ≈ −∑

j
Vj∇iWij f j,

(2.66)

where ∇iWij =
∂W(rij,h)

∂rij
eij is the derivative of the kernel function with rij denoting

the particle distance and eij the unit vector pointing from particle j to particle i.
Following Ref. [6], we can modify Eq. (2.66) into a strong form as

∇ fi = ∇ fi − fi∇1 ≈ −∑
j

Vj∇iWij fij, (2.67)

where fij = fi − f j is the interparticle difference value. This strong-form approxi-
mation of the spatial derivative is useful for computing the local structure of a field.
And Eq. (2.66) can also be rewritten into a weak form as

∇ fi = fi∇1 +∇ fi ≈ 2 ∑
j

Vj∇Wij f̃ij, (2.68)

where f̃ij =
(

fi + f j
)

/2 denotes the interparticle average value. This weak-form
approximation of the derivative is applied to determine the surface integration with
respect to a variable for solving the conservation law. Due to the anti-symmetric
property of the derivative of the kernel function, i.e., ∇iWij = −∇jWji, the momen-
tum conservation of the particle system is achieved with Eq. (2.68).

2.4.2 The smoothing kernel

In the SPH method, the smoothing kernel plays a critical role in determining the
consistency and accuracy of both kernel and particle approximations. Therefore, se-
lecting an appropriate kernel function is essential for ensuring reliable results in SPH
simulations. As highlighted by Liu and Liu [105] and Monaghan [9], the smoothing
kernel must be normalized over its support domain, expressed as∫

Ω
W(ri − r, h)dr = 1, (2.69)

and also should be compactly supported as

W(ri − r) = 0, for |ri − r| > kh. (2.70)

Here, k is the smoothing factor, |ri − r| ≤ kh defines the support domain. Addition-
ally, the smoothing kernel must satisfy the symmetry condition, which is essential
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for ensuring conservation properties, and it should approximate a delta function as
the smoothing length approaches zero. For further details, refer to Ref. [106].

Various smoothing kernels have been proposed for SPH method [1, 2, 107, 108,
9, 106, 105]. A fifth-order Wendland kernel [109] reads

W(ri − r, h) = α

{
(1 + 2q)(2− q)4 if 0 ≤ q ≤ 2
0 if 2 ≤ q

, (2.71)

where q = |ri − r|/h the constant α is 7
64πh2 for 2D problems and 21

256πh3 for 3D prob-
lems. For thin structure modeling, a reduced-dimensional kernel is applied, and
thus α is 3

4h for 2D thin structures and 7
4πh2 for 3D thin structures according to Eq.

(2.69).

2.5 SPH method of solid dynamics

2.5.1 SPH discretization

Following Refs. [9, 6], the momentum conservation Eq. (2.3) is discretized in the
weak-form SPH approximation of the spatial derivative as

ρ0
i üi = ∑

j

(
PiB

0
i

T
+ PjB

0
j

T
)
∇0

i WijV0
j , (2.72)

where ∇0
i Wij =

∂W
(

r0
ij,h
)

∂r0
ij

e0
ij denotes the gradient of the kernel function evaluated at

the initial reference configuration with r0
ij representing the initial particle distance

and e0
ij the initial unit vector pointing from particle j to particle i. Additionally, ρ0

i

is the initial density of particle i, and V0
j is the initial volume of particle j. Here, the

superscript (•)0 is introduced to represent variables defined at the initial reference
configuration. The kernel gradient correction (KGC) correction matrix B0 is adopted
to ensure first-order completeness as [3, 110, 111, 31, 53]

B0
i =

(
∑

j
V0

j

(
r0

j − r0
i

)
⊗∇0

i Wij

)−1

. (2.73)

The deformation tensor F is updated based on its rate of change, which is approxi-
mated in the strong-form discretization of the spatial derivative [9, 6] as

dFi

dt
= Ḟi = ∇0u̇i = ∑

j
V0

j
(
u̇j − u̇i

)
⊗∇0

i WijB
0
i . (2.74)

In total Lagrangian framework, this is equivalent to directly calculating F = ∇0r. It
is worth noting that, due to the KGC correction matrix employed in Eq. (2.74) for
computing Ḟi [3, 110, 111, 31, 53], the rotational motion is accurately captured [110],
objectivity is preserved and the ghost or artificial forces due to rigid-body rotation
are eliminated [112].

Following the approach in Ref. [60], we introduce an artificial damping stress ττd
based on the Kelvin-Voigt type damper when calculating the Kirchhoff stress ττ as

ττd =
χ

2
dbb
dt

, (2.75)
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where the artificial viscosity factor χ = ρCh/2 with C =
√

K/ρ, where K is bulk
modules, and h denoting the smoothing length. Here, bb = FFT denotes the the
left Cauchy-Green deformation gradient tensor, and its change rate can be obtained
directly as

dbb
dt

=

[
dF

dt
FT + F

(
dF

dt

)T
]

. (2.76)

Note that the artificial damping stress in Eq. (2.75) is proportional to the smoothing
length h. As the resolution increases or static equilibrium reaches, the effect of this
numerical dissipation diminishes. Also note that the numerical dissipation of Eq.
(2.75) plays the main role to ensure non-increasing of total energy.

2.5.2 Time integration scheme

In accordance with Ref. [113], the position-based Verlet scheme is employed for time
integration. Initially, the deformation gradient tensor, density, and particle position
are updated to the midpoint of n-th time step as

Fn+ 1
2 = Fn + 1

2 ∆tḞn

ρn+ 1
2 = ρ0 1

J

rn+ 1
2 = rn + 1

2 ∆tu̇n.

(2.77)

Upon calculating the Kirchhoff stress ττn based on the applied constitutive relation
and the artificial damping stress ττn

d = χ
2

[
ḞnFn+ 1

2 ,T + Fn+ 1
2 Ḟn,T

]
and subsequently

obtaining particle acceleration using Eq. (2.72), the velocity is updated through

u̇n+1 = u̇n + ∆tün+1. (2.78)

After that, the rate of change of the deformation gradient tensor Ḟn+1 is computed
using Eq. (2.74). Finally, the deformation gradient tensor and particle positions are
updated to a new time step with

Fn+1 = Fn+ 1
2 + 1

2 ∆tḞn+1

ρn+1 = ρ0 1
J

rn+1 = rn+ 1
2 + 1

2 ∆tu̇n+1.

(2.79)

Adhering to the Courant-Friedrichs-Lewy (CFL) condition and the limit under
external force as referenced in Refs. [114, 115, 116, 108, 105], the time step size is
given as

∆t = CFL min

(
h

C + |u̇|max
,

√
h
|ü|max

)
, (2.80)

where the CFL number is set to 0.6, as recommended in Refs. [117, 12].

2.6 Summary

In this chapter, we explored the governing equations and kinematics of solid dynam-
ics, which form the foundational basis for modeling the behavior of solid materials
under various conditions. The constitutive relations were then examined to describe
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material responses, followed by the introduction of a theoretical model for thin struc-
tures. The SPH method was presented as an effective mesh-free approach, adaptable
to both general and thin-structured solids. Finally, the SPH for solid dynamics was
discussed.
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Chapter 3

Summaries of publications

In this chapter, a brief summary of the relevant publications associated with this
thesis is provided.

3.1 An essentially non-hourglass formulation for total Lag-
rangian smoothed particle hydrodynamics

D. Wu, C. Zhang, X. J. Tang and X. Y. Hu

3.1.1 Summary of the publication

In modeling elastic solid dynamics using TLSPH, hourglass instabilities can result
in spurious, non-physical deformations, particularly in cases involving large defor-
mations and highly strained material behavior. Specifically, the gradient operator in
Eq. (2.74) averages the relative velocities with respect to all neighboring particles,
leading to a smeared-out mean field at the particle center. This approximation can
result in an underestimated deformation gradient and, consequently, an inaccurate
stress field when a zigzag particle distribution occurs. As shown in Figure 3.1, this
zigzag distribution indicates significant local, especially shear, deformations.

x

y

x

y

a a a a a a a a

b

-b

ij = 1 j = 2 j = 3 j = 4

ij = 1

j = 2 j = 3

j = 4

(a) Initial configuration (b) Current configuration

ṫ -u

ṫ u

ṫ -u ṫ -u

ṫ u

FIGURE 3.1: Schematic of zero-energy modes by considering the simple case where a
single row of particles is uniformly distributed along the x-axis in the initial configu-
ration. Note that, when applying Eq. (2.74), the deformation gradient tensor remains
unchanged under the action of shearing [88].

To address this long-standing issue, we propose an essentially non-hourglass
formulation based on volumetric-deviatoric stress decomposition. This approach is
motivated by the observation that the nonphysical zigzag particle distribution, in-
duced by hourglass modes, is primarily characterized by shear deformation. Draw-
ing inspiration from the standard SPH discretization of the viscous term in the Navier-
Stokes (NS) equation [118, 9, 119], the proposed formulation computes the shear
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stress directly by discretizing the Laplacian operator on the displacement field (anal-
ogous to velocity in the NS equation) to capture shear deformation directly, rather
than relying on the deformation gradient and first Piola-Kirchhoff stress tensor. The
acceleration due to shear stress in the proposed framework is expressed as

üsi = ζG ∑
j

(
J−

2
d

i + J−
2
d

j

)
rij

r0
ij

∂W
(

r0
ij, h
)

∂r0
ij

V0
j

ρ0
i

, (3.1)

where the parameter ζ deviates slightly from unity due to numerical errors in kernel
summation and is influenced by the smoothing length h and the choice of kernel
function [120]. It should be noted that ζ is not necessary to be changed in accordance
with the specific constitutive relation. The flowcharts for both the original and the
proposed SPH formulations are presented in Figure 3.2.

Constitutive relation

Stress decomposition

Discretization

Constitutive relation

SPH-ENOG

SPH

FIGURE 3.2: Flowcharts of the original total Lagrangian SPH (denoted as SPH) in Ref.
[17] and present (denoted as SPH-ENOG) formulations.

A comprehensive set of challenging benchmark cases has been simulated to demon-
strate that the proposed formulation not only improves accuracy and computational
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efficiency but also effectively suppresses hourglass modes, achieving excellent nu-
merical stability with a single general effective parameter. Additionally, the defor-
mation of a stent structure, relevant to practical applications, is simulated to show-
case the potential of this method in biomechanics. Figure 3.3 illustrates the compar-
ison of deformed particle configurations during 2D plate oscillation.

FIGURE 3.3: 2D oscillating plate: Comparison of the deformed configuration colored
by von Mises stress σ̄ at serial time instants obtained by the SPH (top panel) and the
SPH-ENOG (bottom panel) [88].

3.1.2 Individual contributions of the candidate

This article [88] was published in the international peer-reviewed journal Computer
Methods in Applied Mechanics and Engineering. My contribution to this work was
the development of the method and the corresponding computer code for its im-
plementation. I have performed simulations, analyzed the results, and wrote the
manuscript for the publication.
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3.2 Unified non-hourglass formulation for total Lagrangian
SPH solid dynamics

D. Wu, X. J. Tang, S. H. Zhang and X. Y. Hu

3.2.1 Summary of the publication

Hourglass modes remain a significant source of numerical instability in TLSPH solid
dynamics, especially under large deformations, regardless of material properties.
While some methods, such as introducing additional stress points [51, 41, 57, 45],
increase computational complexity, most existing hourglass control methods rely
on material parameters like sound speed [38, 59, 60] or Young’s modulus [54, 61,
62]. This dependence on material properties suggests the physical relevance of the
correction terms in mitigating a pure numerical instability, and thus often requires
tuning on a case-by-case basis to avoid inadequate or excessive correction [64, 65,
56, 68, 69]. As a result, finding a comprehensive solution that can effectively address
hourglass issues across a wide range of material models—encompassing elasticity,
plasticity, and anisotropy—remains a challenge.

Constitutive relation

Return mapping

Stress decomposition

SPH-UNOG

SPH

with discrepancy

Constitutive relation

Return mapping

and limiter

FIGURE 3.4: Flowcharts of the original total Lagrangian SPH (denoted as SPH) in Ref.
[17] and present (denoted as SPH-UNOG) formulations.
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FIGURE 3.5: 3D Taylor bar: Deformed configuration colored by von Mises stress σ̄ at
serial temporal instants obtained by SPH-UNOG, and its comparison with that of SPH.
The material is modeled by isotropic hardening elastic-plasticity.

In this study, we present a unified non-hourglass TLSPH formulation based on
volumetric-deviatoric stress decomposition, capable of addressing a wide range of
material behaviors, including elasticity, plasticity, anisotropy, and more. Unlike ap-
proaches that use staggered formulations or additional stress points, this method is
built on the standard collocated TLSPH formulation. By comparing the standard
SPH formulation with the Laplacian operator introduced in our previous work [88]
for resolving hourglass issues in elasticity, we introduce a correction in the shear
stress discretization. This correction relies solely on the dimensionless discrepancy
produced by tracing back the initial inter-particle direction from the current defor-
mation gradient. Compared to the method in Ref. [62], the proposed formulation
integrates naturally with the standard SPH divergence operator, and its dimension-
less nature enables seamless handling of complex material models. Rather than in-
troducing extra hourglass-control or viscous stress, as seen in previous FEM, mesh-
less, or SPH methods [66, 67, 38, 59, 60, 54, 61, 62], this formulation conceptually
represents a weighted average of two SPH formulations: one being the standard,
hourglass-prone version, and the other an essentially non-hourglass formulation for
elastic dynamics [88], without adding extra stresses.

Flowcharts for the original and current SPH formulations are shown in Figure
3.4. By employing a limiter with a single set of dimensionless parameters to adap-
tively adjust the weighting, extensive benchmark tests are conducted to validate the
stability and accuracy of this formulation for elastic, plastic, and anisotropic mate-
rials. A complex scenario involving viscous plastic Oobleck material, contact, and
large deformations is also simulated to demonstrate the versatility of the proposed
method. Figure 3.5 illustrates a comparison of deformed particle configurations dur-
ing a 3D Taylor bar collision. Our approach addresses a critical gap in TLSPH simu-
lations by offering a unified solution for mitigating hourglass modes, enhancing the
reliability and accuracy of simulations across various material models and complex
scenarios.
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3.2.2 Individual contributions of the candidate

This article [48] was published in the international peer-reviewed journal Computa-
tional Mechanics. My contribution to this work was the development of the method
and the corresponding computer code for its implementation. I have performed
simulations, analyzed the results, and wrote the manuscript for the publication.
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3.3 An SPH formulation for general plate and shell struc-
tures with finite deformation and large rotation

D. Wu, C. Zhang and X. Y. Hu

3.3.1 Summary of the publication

For plate and shell structures, the traditional full-dimensional, or volume-particle,
SPH method is not computationally efficient [74]. Furthermore, well-established
reduced-dimensional theories, such as Kirchhoff-Love [75] and Uflyand-Mindlin (or
Mindlin-Reissner) [76, 77, 78, 79], based on mid-surface reconstruction, provide a
foundation for more efficient modeling of these structures. Therefore, it is expected
that a reduced-dimensional or surface-particle SPH method, utilizing only a single
layer of particles, can offer a much more computationally efficient alternative.

FIGURE 3.6: Pulled-out cylindrical shell: Particles colored by the von Mises stress σ̄ of
the mid-surface under 3 point force magnitudes, and its comparison with the results
obtained without hourglass control applied.

In this work, we propose a collocated surface-particle SPH formulation for to-
tal Lagrangian quasi-static and dynamic analyses of general plate and shell struc-
tures, which may be thin or moderately thick, involving finite deformations and/or
large rotations. First, to better capture the geometric non-linearity induced by finite
deformations and large rotations, two new reduced-dimensional correction matri-
ces for linearly reproducing position and normal direction are introduced, along
with a weighted conversion algorithm that ensures non-singularity under large ro-
tations. Second, a new non-isotropic Kelvin-Voigt damping mechanism, based on
Ref. [60], is proposed to achieve numerical stability for both thin and moderately
thick plate and shell structures. Third, to address hourglass modes using only collo-
cated particles—without the need for additional stress points—we draw inspiration
from Refs. [61, 62] and develop a shear-scaled momentum-conserving formulation
with an adaptive limiter.

A series of numerical examples involving quasi-static and dynamic analyses of
both thin and moderately thick plate and shell structures are provided. The results
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FIGURE 3.7: Pulled-out cylindrical shell: Curves of radical displacements as a function
of the point force magnitude and spatial resolution, and their comparison with those of
Maurel and Combescure [45] and Jiang et al. [121].

are compared with analytical and numerical solutions from the literature, as well as
those obtained using the volume-particle SPH method, to demonstrate the accuracy
and stability of the proposed approach. Figure 3.6 illustrates the distribution of von
Mises stress at the mid-surface under varying force magnitudes when a cylindrical
shell is pulled by a pair of point forces. Figure 3.7 shows the quantitative analysis
and convergence study.

3.3.2 Individual contributions of the candidate

This article [80] was published in the international peer-reviewed journal Journal of
Computational Physics. My contribution to this work was the development of the
method and the corresponding computer code for its implementation. I have per-
formed simulations, analyzed the results, and wrote the manuscript for the publica-
tion.
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Chapter 4

Conclusions and outlooks

4.1 Conclusions

The research presented in this publication-based dissertation addresses several crit-
ical challenges in the field of SPH for solid dynamics, with a particular emphasis
on mitigating hourglass instabilities in the full-dimensional (volume-particle) SPH
method and extending its applicability to thin structures, plates and shells. Through-
out the three phases of this work, significant advancements have been made that
substantially improve the stability, accuracy, and applicability of SPH methods for a
wide range of solid dynamics applications.

To address the artifact of hourglass modes in elastic solid dynamics, we have de-
veloped an efficient, robust, and essentially non-hourglass formulation w ithout the
need for case-dependent tuning parameters or additional computational effort in the
TLSPH method. This formulation effectively suppresses the long-standing issue of
hourglass modes and demonstrates robustness in simulations involving large strain
dynamics. Additionally, the deformation of complex stent structures has been stud-
ied, showcasing the versatility of this formulation and paving the way for practical
applications in biomechanics.

While the above non-hourglass formulation is focused on elastic structural re-
sponses, we have also developed a unified non-hourglass formulation to address
hourglass issues across a wide range of material models. This comprehensive ap-
proach closes a critical gap in TLSPH simulations by enhancing the reliability and ac-
curacy of simulations for diverse material models and complex scenarios. Through
extensive validation using benchmark cases and a single set of modeling parameters,
we have demonstrated the robustness and accuracy of this formulation. Moreover,
the successful simulation of the large deformation of Oobleck material highlights the
potential of this approach for real-world applications.

For plate and shell structures, the traditional full-dimensional SPH method is
computationally inefficient. To address this, we have developed a reduced-dimensional
SPH method based on mid-surface reconstruction, using only a single layer of par-
ticles for more efficient quasi-static and dynamic analyses of both thin and mod-
erately thick plate and shell structures. By introducing two reduced-dimensional
linear-reproducing correction matrices, this method accurately reproduces linear
gradients of the position and pseudo-normal. Finite deformations are accounted for
by considering all strain components, aided by Gauss-Legendre quadrature along
the thickness. To handle large rotations, a weighted non-singularity conversion is
introduced between the rotation angles and pseudo-normal. Additionally, a non-
isotropic Kelvin-Voigt damping mechanism and a momentum-conserving hourglass
control algorithm with a limiter are proposed to enhance numerical stability and
suppress hourglass modes. An extensive set of numerical examples has been con-
ducted, demonstrating the accuracy and robustness of the proposed method.
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Overall, the advancements made in this dissertation significantly contribute to
the field of SPH for solid dynamics. By resolving the long-standing issue of hour-
glass instabilities and extending the applicability of SPH to plates and shells, these
developments enhance the practicality and effectiveness of SPH as a valuable tool
for real-world engineering applications.

4.2 Outlooks

The present work can be further enhanced in several potential directions, related
to numerical features and/or physical modeling. Several possibilities for future re-
search include:

• Although the proposed non-hourglass formulation is designed for a wide range
of material models, it could be extended to model damage and fracture, where
similar volumetric and deviatoric decompositions are often applied [95].

• While the proposed non-hourglass formulation has been developed for TL-
SPH, it is expected that a similar idea can be applied to updated Lagrangian
SPH solid dynamics, as a future work, for situations where latter is preferred.

• Beyond hourglass modes, another numerical stability issue involves the non-
positivity of the deformation gradient determinant under large anisotropic
stretch or compression [122]. Addressing this problem offers another promis-
ing area for future research.

• The current SPH formulation for general plate and shell structures assumes
constant thickness, a straight pseudo-normal, and particles with two rotational
degrees of freedom. Future research could explore models that account for
variable thickness and particles with additional drilling rotation.

• The proposed thin-structure formulation currently applies only to isotropic
and linear elastic material models. Future extensions could include nonlinear
elastic, plastic, anisotropic, and fracture material models.

• The formulation is currently limited to simulating a whole piece of thin struc-
ture. Another promising direction is to simulate more complex structures, such
as I-beams, which are composed of several pieces of thin structures.

• A comprehensive stability analysis, particularly concerning spatial and tem-
poral discretization, is also planned as part of future research efforts.

• The simulation results for the pinched hemispherical shell still exhibit hour-
glass modes. Future work will focus on developing a modified or new non-
hourglass formulation. One potential approach is to explore methods similar
to those used in traditional mesh-based techniques, where concentrated parti-
cle stress is redistributed to surrounding particles using a specific distribution
function. Additionally, we plan to apply the non-hourglass formulation from
our previous work [88, 48] to address hourglass issues by calculating the accel-
eration induced by shear stress through a Laplacian operator.

• We have observed that the traction-free boundary conditions are not strictly
maintained in our current thin-structure formulation, and addressing this is-
sue is another priority for future research.
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• The present thin-structure formulation, initially developed for plate and shell
structures with moderate to high moduli, could be extended to handle soft thin
structures, such as membranes.

• Future work could also involve developing SPH methods for fluid-structure
interactions, especially within a unified computational framework for multi-
physics modeling, focusing on interactions between fluids and thin structures.
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Abstract

The total Lagrangian smoothed particle hydrodynamics (TL-SPH) for elastic solid dynamics suffers from hourglass modes
which can grow and lead to the failure of simulation for problems with large deformation. To address this long-standing
issue, we present an essentially non-hourglass formulation based on volumetric-deviatoric stress decomposition. Inspired by
the fact that the artifact of nonphysical zigzag particle distribution induced by the hourglass modes is mainly characterized by
shear deformation and the standard SPH discretization for the viscous term in the Navier–Stokes (NS) equation, the present
formulation computes the action of shear stress directly through the Laplacian of displacement other than from the divergence of
shear stress. A comprehensive set of challenging benchmark cases are simulated to demonstrate that, while improving accuracy
and computational efficiency, the present formulation is able to essentially suppress the hourglass modes and achieves very
good numerical stability with a single general effective parameter. In addition, the deformation of a practically relevant stent
structure is simulated to demonstrate the potential of the present method in the field of biomechanics.
© 2023 Published by Elsevier B.V.

Keywords: Hourglass modes; Zero-energy modes; Kirchhoff stress; Smoothed particle hydrodynamics; Total Lagrangian formulation

1. Introduction

Smoothed particle hydrodynamics (SPH), a fully Lagrangian mesh-free method and originally developed for the
astrophysical simulation and fluid dynamics [1,2], has attracted more and more interest over the past decades [3–6].
In SPH method, the continuum is represented by particles, where the physical properties of the system, e.g. mass and
velocity, are located, and the discretization of the governing equation is achieved through the particle interactions
with the help of a Gaussian-like kernel function [7–9]. Since a significant number of common abstractions, which
are intrinsically related to numerous physical systems, are realized through particle interactions, SPH method can be
used to discretize the multi-physics equations within a unified computational framework [10], so that the algorithms,
such as neighboring particle search and time stepping, can be shared, parallel computation can be simplified and
efficiency can be greatly improved [11]. More importantly, the unified computational framework permits monolithic
and strong coupling, which is seamless, spatio-temporal local and conservative locally and globally [12,13]. The
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fluid–structure interaction (FSI) represents a typical multi-physical system in which fluid and solid dynamics are
coupled. Unlike the partition-based coupling for the FSI solver, where solid dynamics equations are discretized by
the finite element method (FEM) [14,15] and fluid dynamics equations by SPH method, the unified computational
framework based on SPH method [16–18] requires that solid dynamics equations, particularly those associated with
large elastic strain, are also discretized by SPH method.

Notwithstanding its promising achievement, early attempts indicated that the original SPH method for solid
dynamics may be unstable and not accurate due to three deficiencies: linear inconsistency, tensile instability and
hourglass modes. The first deficiency is caused by incomplete kernel support at domain boundary or with irregular
particle distributions [8]. As the cure for this problem, several algorithms have been proposed in the literature,
such as the normalized smoothing approach [19], the kernel gradient correction [3,20] and the finite particle
method (FPM) [21]. Tensile instability, which is characterized by nonphysical fractures and void region or particle
clustering in solid [22] and fluid simulations [23], respectively, arises due to the zero-order inconsistency of the
particle discretization [24]. While this deficiency can be generally alleviated by the artificial stress [25–27] and
the generalized transport-velocity formulation [28,29], it can be completely eliminated by the total Lagrangian
SPH (TL-SPH) method, in which the kernel function is only evaluated once in the initial undeformed reference
configuration [30] unlike the traditional updated Lagrangian SPH (UL-SPH) method, without introducing additional
correction term [20,31]. Since its inception, the TL-SPH method has been successfully applied in many simulations
of elastic solid dynamics, such as electromagnetically driven rings [32], thermomechanical deformations [33], shell
models [34–36], FSI [18,37,38], biomechanics [39], etc.

The artifact of hourglass modes was first observed in FEM simulations, and is characterized by the zigzag mesh
and field pattern [40,41]. Similar to FEM, the hourglass modes in SPH are caused by the deformation gradient
remaining unchanged when the particles move to the nonphysical zigzag pattern, i.e., the zero-energy modes [42–
44]. To address this issue in the UL-SPH method, Beissel and Belytschko [45] introduced a stabilization term to
the potential energy function and Vidal et al. [46] an artificial viscosity term by minimizing a local measure of the
Laplacian of the deformation field. Both schemes have been successfully applied in some benchmark cases, however,
with empirical case-dependent parameters [47]. A more robust approach is to introduce additional integration or
stress points between the original particles to present the stress field [44,48]. While this approach removes the
hourglass modes effectively, it increases the complexity of algorithm and computational overhead, and suffers from
the lack of a rule on determining the location of stress points [49].

In the TL-SPH method, it is found that introducing artificial viscosity similar to that used in computational
fluid dynamics (CFD) can effectively decrease hourglass modes for the simulation of dynamical problems [50,51].
Since these artificial viscosity formulations reply on the particle velocity gradient, their validity is questionable
when the velocity field becomes flat or less significant. More recently, Kondo et al. [52], Ganzenmüller [53] and
Shimizu et al. [54] introduced artificial force or stress methods to correct the inconsistency due to the zigzag pattern
between the local displacement field and that linearly predicted from the deformation gradient. While effective and
computationally efficient, these schemes may suppress non-linear part of the displacement field with excessive
artificial stiffness [55,56] and, again, require the empirical case-dependent tuning parameter to obtain physically
meaningful results [47].

In this paper, an essentially non-hourglass formulation without case-dependent tuning parameter is developed for
the TL-SPH method to simulate elastic solid dynamics. Inspired by the fact that the zigzag particle distribution is
mainly characterized by shear deformation and the standard SPH discretization of Laplacian operator for the viscous
force in the Navier–Stokes (NS) equation [7,57,58], we propose a simple and computationally efficient discretization
for shear deformation and stress based on volumetric and deviatoric decomposition [59]. The present formulation
is implemented in the TL-SPH method with a general effective correction parameter for the error introduced by
the kernel summation. A set of benchmark cases are first studied to validate the stability, accuracy and efficiency
of the present formulation. Then, a bio-mechanical application, i.e., the deformation of a stent structure, is used to
demonstrate its potential in the field of bio-mechanics. The remainder of this paper is organized as follows. Section 2
introduces the governing equations of solid dynamics together with volumetric and deviatoric decomposition. The
details of the present formulation are described in Section 3. Numerical examples are provided and discussed in
Section 4, and then the concluding remarks are presented in Section 5. For better comparison and future in-depth
studies, all the computational codes for this study are released in the SPHinXsys repository [10,60] at https://www
.sphinxsys.org and https://github.com/Xiangyu-Hu/SPHinXsys.
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2. Kinematics and governing equations

Considering continuum mechanics in the total Lagrangian framework, the kinematics and dynamic equations are
expressed in terms of the initial, undeformed reference configuration Ω0

⊂ Rd with d denoting the dimension. A
deformation map ϕ between the initial configuration Ω0 and current deformed configuration Ω = ϕ

(
Ω0
)

describes
the body deformation at time t as

r = ϕ
(
r0, t

)
, (1)

where r0 and r are the initial and current positions of a material point, respectively. Subsequently, the deformation
gradient tensor F is given by

F = ∇
0r = ∇

0u + I, (2)

where u = r − r0 is the displacement, ∇
0

≡
∂

∂ r0 the gradient operator with respect to the initial configuration Ω0

and I the identity matrix.
The conservation equations for mass and momentum in the total Lagrangian formulation can be expressed as{

ρ = J−1ρ0

ρ0ü = ∇
0
· PT,

(3)

where ρ0 and ρ are the initial and current densities, respectively, J = det(F), ü the acceleration, P the first
Piola–Kirchhoff stress tensor, and T the matrix transposition operator. While P can be obtained directly by

P = FS, (4)

where S is the second Piola–Kirchhoff stress tensor, P is obtained by the alternative Kirchhoff-stress approach in
this work as

P = ττF− T. (5)

Here, the Kirchhoff stress ττ is decomposed into volumetric and deviatoric components, and can be derived form
the following strain energy function [59]

We = Wv (J ) + Ws
(
b̄b
)
. (6)

Here, the volume-preserving left Cauchy–Green deformation gradient tensor b̄b = J−
2
d bb = |bb|

−
1
d bb with bb = FFT.

For neo-Hookean materials, the volume-dependent strain energy Wv (J ) weighted by the bulk modulus K can be
expressed as

Wv (J ) =
1
2

K
[

1
2

(
J 2

− 1
)
− ln J

]
, (7)

whereas the shear-dependent strain energy Ws
(
b̄b
)

weighted by the shear modulus G [61] is given by

Ws
(
b̄b
)

=
1
2

G
(
tr
(
b̄b
)
− d

)
. (8)

Then, the Kirchhoff stress tensor ττ can be derived as

ττ =
∂We

∂F
FT

=
K
2

(
J 2

− 1
)
I + G dev

(
b̄b
)
, (9)

where

dev
(
b̄b
)

= b̄b −
1
d

tr
(
b̄b
)
I = J−

2
d

[
bb −

1
d

tr (bb) I
]

. (10)

The deviatoric operator dev
(
b̄b
)

returns the trace-free part of b̄b, i.e., tr
(
dev

(
b̄b
))

is equal to zero. Note that while
the volumetric component of the constitutive Eq. (9) can be modified depending on the material property and all
counterparts are appropriate for this study, only the Eq. (9) is utilized in this study.
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3. Methodology

3.1. Fundamentals of SPH method

In SPH method, the continuum media is discretized by a finite number of Lagrangian particles whose interactions
are realized by a compact-support kernel function, usually a Gaussian-like function, to approximate the spatial
differential operators. Each particle i , located at the position vector r i and moving with the material velocity u̇i ,
carries particle-average field variables, such as mass mi , density ρi , volume Vi , etc. Then, the discretization for a
variable field f (r) can be written as

fi =

∫
f (r)W (r i − r, h)d r, (11)

where the kernel function W (r i − r, h) is radially symmetric with respect to r i and h the smoothing length. By
introducing particle summation, this variable field can be approximated by

fi ≈

∑
j

V j W (r i − r j , h) f j =

∑
j

m j

ρ j
W (r i − r j , h) f j , (12)

where the summation is conducted over all the neighboring particles j in the support domain of the particle i .
Following Ref. [7], the original SPH approximation of the spatial derivative operator of the variable field f (r)

at particle i can be obtained by

∇ fi =

∫
Ω

∇ f (r)W (r i − r, h)dV

= −

∫
Ω

f (r)∇W (r i − r, h)dV ≈ −

∑
j

V j∇i Wi j f j ,
(13)

where ∇i Wi j =
∂W(ri j ,h)

∂ri j
ei j is the derivative of the kernel function with ri j denoting the particle distance and ei j

the unit vector pointing from particle j to particle i . Following Ref. [6], we can modify Eq. (13) into a strong form
as

∇ fi = ∇ fi − fi∇1 ≈ −

∑
j

V j∇i Wi j fi j , (14)

where fi j = fi − f j is the interparticle difference value. This strong-form approximation of the spatial derivative
is useful for computing the local structure of a field. And Eq. (13) can also be rewritten into a weak form as

∇ fi = fi∇1 + ∇ fi ≈ 2
∑

j

V j∇Wi j f̃i j , (15)

where f̃i j =
(

fi + f j
)
/2 denotes the interparticle average value. This weak-form approximation of the derivative is

applied to determine the surface integration with respect to a variable for solving the conservation law. Due to the
anti-symmetric property of the derivative of the kernel function, i.e., ∇i Wi j = −∇ j W j i , the momentum conservation
of the particle system is achieved with Eq. (15).

3.2. Total Lagrangian SPH

With Eq. (15) in hand, the momentum conservation Eq. (3) is discretized in the TL-SPH formulation as

ρ0
i üi =

∑
j

(
PiB0

i
T

+ P jB0
j
T
)

· ∇
0
i Wi j V 0

j , (16)

where ∇
0
i Wi j =

∂W
(

r0
i j ,h

)
∂ r0

i j
e0

i j denotes the gradient of the kernel function evaluated at the initial reference

configuration. Here, we introduce the superscript (•)0 to represent the variable defined at the initial reference
configuration. The correction matrix B0 is adopted to fulfill first-order completeness as [3,44,62]

B0
i =

⎛⎝∑
j

V 0
j

(
r0

j − r0
i

)
⊗ ∇

0
i Wi j

⎞⎠−1

. (17)
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Fig. 1. Schematic of zero-energy modes by considering the simple case where a single row of particles is uniformly distributed along the
x-axis in the initial configuration. Note that, when applying Eq. (18), the deformation gradient tensor remains unchanged under the action
of shearing.

Note that the correction matrix in the TL-SPH formulation is symmetric and computed only once. The deformation
tensor F is updated by its change rate approximated by using Eq. (14) as

dFi

dt
= Ḟi =

∑
j

V 0
j

(
u̇ j − u̇i

)
⊗ ∇

0
i Wi jB0

i , (18)

Following Ref. [51], an artificial damping stress ττ d based on the Kelvin–Voigt type damper is introduced when
calculating Kirchhoff stress ττ as

ττ d =
γ

2
·

dbb
dt

, (19)

where the artificial viscosity factor γ = ρch/2 with c =
√

K/ρ and the change rate of the left Cauchy–Green
deformation gradient tensor

dbb
dt

=

[
dF
dt

· FT
+ F ·

(
dF
dt

)T
]

. (20)

3.3. Essentially non-hourglass formulation

Although the aforementioned TL-SPH formulation guarantees the first-order consistency and avoids the tensile
instability, the deficiency of hourglass modes still persists often when there is large strain or deformation [30]. More
specifically, the gradient operator in Eq. (18) averages the relative velocities respected to all neighboring particles,
leading to a smeared-out mean field at the particle center. This mean approximation may result in an underestimated
deformation gradient and subsequently a wrong stress field when there is a zigzag particle distribution, as shown
in Fig. 1, which actually indicates very large local, especially shear, deformations.

Based on the observation that the zigzag particle distribution exhibits large shear deformation, one may consider
a more robust formulation in which such shear deformation can be captured directly without using Eq. (18). On the
other hand, one may notice that, in a standard SPH formulation of the viscous force [7,57,58] in weakly compressible
NS equation, the Laplacian operator is directly discretized with the velocity field rather than first computing the
shear rate and stress tensors, and from them computing shear force by applying divergence operation [63]. Baring
these in mind, one may try to find an essentially non-hourglass formulation in which the shear force is obtained by
the discretization of the Laplacian operator on the displacement (analog to velocity in NS equation) field to capture
the shear deformation directly, other than from the deformation gradient and first Piola–Kirchhoff stress tensor.
Actually, it is shown later that such discretization can be achieved with the help of Kirchhoff stress decomposition.

We first rewrite the Kirchhoff stress by combining the Eqs. (9), (10) and (19) as

ττ =
K
2

(
J 2

− 1
)
I −

1
d

J−
2
d G tr (bb) I + J−

2
d Gbb + ττ d , (21)

where the first term of the right-hand side is the Kirchhoff volumetric stress term, the second and third terms
together give the Kirchhoff deviatoric stress and the fourth is the numerical damping term. Since the second term
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is the component of the elements on the primary diagonal of the Kirchhoff stress tensor, the separated third term,
denoted as ττ s , actually contains all the shear stress components. For the shear part of the first Piola–Kirchhoff stress
Ps = ττ sF− T

= J−
2
d GbbF− T

= J−
2
d GF, the particle acceleration induced by the ττ s , together with Eq. (2) and the

weakly-compressible assumption, can be derived as

üs =
∇

0
· PT

s

ρ0 =
J−

2
d G∇

0
· FT

ρ0 = G
J−

2
d ∇

02r
ρ0 , (22)

where the acceleration due to ττ s is calculated directly from the Laplacian operator of the current position vector.
Inspired by the standard SPH discretization of the viscous term in the NS equation [57], and other similar

formulations for heat condition [7] and pressure projection [64], we discretize üs in the total Lagrangian formulation
as

üsi = ζ G
∑

j

(
J

−
2
d

i + J
−

2
d

j

)
r i j

r0
i j

∂W
(

r0
i j , h

)
∂r0

i j

V 0
j

ρ0
i

, (23)

where the parameter ζ is slightly different from unit due to the numerical error of kernel summation, and relevant to
the smoothing length h and the choice of kernel function [65], and not necessary to be changed in accordance with
the specific constitutive relation. As will be shown in the numerical examples, ζ is general effective and therefore
remained constant in this work. Furthermore, applying the Laplacian operator to the shear deformation underlies
that the shear stress is diffused accordingly, implying no shear stress concentration. Thanks to the anti-symmetric
form [7], the present formulation also preserves momentum conservative property.

To demonstrate that the present formulation ensures non-increasing of elastic energy, we can construct a shear
strain energy of the system as

Ws = −

∑
i

V 0
i

∑
j

1
2

G
r i j · r i j

r0
i j

∂W
(

r0
i j , h

)
∂r0

i j

V 0
j ≥ 0. (24)

Note that the negative sign is due to the non-positive derivative of the kernel function. Applying the differential
operator on both sides of Eq. (24), we obtain the variation of the shear strain energy as follow

dWs = −

∑
i

V 0
i

∑
j

G
r i j · dr i j

r0
i j

∂W
(

r0
i j , h

)
∂r0

i j

V 0
j . (25)

With Eq. (23) in hand, it is straightforward to derive for a particle pair that

G
r i j

r0
i j

∂W
(

r0
i j , h

)
∂r0

i j

V 0
j · dr i ≥ 0, (26)

and

G
r i j

r0
i j

∂W
(

r0
i j , h

)
∂r0

i j

V 0
j · dr j ≤ 0, (27)

where dr i and dr j , respectively, are the position change of particles i and j acted by the inter-particle shear force.
Subtracting Eq. (27) from Eq. (26) yields the following inequality

G
r i j

r0
i j

∂W
(

r0
i j , h

)
∂r0

i j

V 0
j · dr i j ≥ 0, (28)

implying that dWs ≤ 0 as given by Eq. (25). This confirms that Eq. (23) decreases the shear strain energy
as it should. Note that, since elastic shear force is non-dissipative, the decreased shear strain energy actually is
transformed to kinetic energy of the system, other than to thermal energy as the viscous shear force in fluid. See
also the discussion in Section 4.2 and Fig. 8.

It is worth noting that Eq. (23) does not guarantee the first order consistency without introducing the kernel
gradient correction, particularly for the truncated support domain and irregular particle distribution. Particles with
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incomplete support domains are typically surface particles or those located at the constrained boundary. For the
former, the truncated support domain provides a implicit way of imposing free stress boundary condition, similar
with the free surface particle in the SPH simulation of free-surface flows. For the later, the support domain is
typically supplemented by extending several layers of particles, imposing the constrained boundary condition. As
for the irregular particle distributions, the introduction of the kernel gradient correction can improve the accuracy.
However, this improvement for regular or homogeneous particle distributions is negligible, which is the case for
the numerical examples examined in the present study. When the particles are generated, as for all test cases in this
work, either from lattice positions or by the body-fitted particle generator [66], regular or homogeneous distributions
can be ensured.

Besides the shear stress ττ s , the remaining Kirchhoff stress, denoted as ττ r , is expressed as

ττ r =
K
2

(
J 2

− 1
)
I −

ζ

d
J−

2
d G tr (bb) I + ττ d . (29)

Note that the correction factor ζ is also applied in the second term to fulfill the consistency of the Kirchhoff shear
stress. With the Pr = ττ rF− T in hand, the acceleration üri of particle i , induced by the ττ ri , is calculated by using
the Eq. (16) while substituting Pr for P. Finally, the acceleration of the particle i is given as

üi = üri + üsi . (30)

For clarity, the flowcharts for the original and present SPH formulations are given, respectively, in Fig. 2. Note
that Eq. (21) is also applied to calculate ττ , which is later converted into P, in the original formulation for direct
comparison.

3.4. Time integration scheme

Following Ref. [38], the position-based Verlet scheme is applied for the time integration. First, the deformation
gradient tensor, density and particle position are updated to the midpoint as⎧⎪⎨⎪⎩

Fn+
1
2 = Fn

+
1
2∆tḞn

ρn+
1
2 = ρ0 1

J

rn+
1
2 = rn

+
1
2∆t u̇n.

(31)

After the calculation of the particle acceleration with Eq. (30), the velocity is updated by

u̇n+1
= u̇n

+ ∆t ü. (32)

Finally, the change rate of deformation gradient tensor Ḟn+1 with Eq. (18) is calculated and the deformation gradient
tensor and position of particles are updated to a new time step with⎧⎪⎨⎪⎩

Fn+1
= Fn+

1
2 +

1
2∆tḞn+1

ρn+1
= ρ0 1

J

rn+1
= rn+

1
2 +

1
2∆t u̇n+1.

(33)

To maintain the numerical stability, the time step ∆t is given as

∆t = CFL min

(
h

cv + |u̇|max
,

√
h

|ü|max

)
. (34)

Note that the present Courant–Friedrichs–Lewy (CFL) number is set as 0.6.

4. Numerical examples

In this part, a set of benchmark tests where analytical or numerical reference data in literature are available
for qualitative and quantitative comparison are studied to demonstrate the accuracy and efficiency of the present
essentially non-hourglass formulation (SPH-ENOG). For comparison, the original formulation, SPH, and the
artificial stress method in Ref. [53] (denoted as SPH-GM) are considered. Having the validation, the deformation
of a complex stent structure is studied to demonstrate the versatility of the presented formulation. The 5th-order
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Fig. 2. Flowcharts of the original total Lagrangian SPH (denoted as SPH) in Ref. [17] and present (denoted as SPH-ENOG) formulations.

Wendland kernel [67] with a smoothing length of h = 1.15 dp, where dp is the initial particle spacing, and a cut-off
radius of 2.3 dp is employed. After the kernel function and smoothing length are selected, the parameter ζ is set
as 1.07 according to numerical experiments and remains constant throughout this work.

4.1. 2D oscillating plate

In this part, we consider the oscillation of a thin plate with one edge fixed and the others free, which has been
theoretically [68] and numerically [26,28] studied in the literature. This plane strain problem can be modeled by a
2D plate strip of length L , perpendicular to the fixed edge, and thickness H . Following the Refs. [26,28], the plate
strip is clamped between several layers of constrained SPH particles, as shown in Fig. 3. The initial velocity vy ,
perpendicular to the plate strip, is given by

vy(x) = v f c
f (x)
f (L)

, (35)

where v f is a constant that varies with different cases, and

f (x) = (sin(kL) + sinh(kL)) (cos(kx) − cosh(kx))
− (cos(kL) + cosh(kL)) (sin(kx) − sinh(kx))

(36)
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Fig. 3. 2D oscillating plate: Initial configuration.

Fig. 4. 2D oscillating plate: Comparison of the deformed configuration colored by von Mises stress σ̄ at serial time instants obtained by
the SPH (top panel) and the SPH-ENOG (bottom panel) with the length L = 0.2 m, height H = 0.02 m, v f = 0.15, and spatial particle
discretization H/dp = 10. The material is modeled with density ρ0 = 1000.0 kg/m3, Young’s modulus E = 2.0 MPa, and Poisson’s ratio
ν = 0.3975. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

with k determined by

cos(kL) cosh(kL) = −1 (37)

and kL = 1.875. The material properties are set as follows: density ρ0 = 1000.0 kg/m3, Young’s modulus
E = 2.0 MPa and Poisson’s ratio ν varies for different cases. The frequency ω of the oscillating plate is theoretically
given by

ω2
=

E H 2k4

12ρ
(
1 − ν2

) . (38)

Fig. 4 shows the deformed particle configuration with von Mises stress σ̄ contour obtained by the SPH and
SPH-ENOG for the case of L = 0.2 m, H = 0.02 m, v f = 0.15, ν = 0.3975 and the initial particle spacing
dp = H/10 = 0.002 m. It can be noted that, while SPH is able to preserve uniform particle distribution for this
problem when the deformation is moderate as in Ref. [17], its results exhibit particle disorder when the deformation
is large, as shown in top panel of Fig. 4, especially near the region of maximum displacement and stress. The larger
the deformation of the plate strip is, the more pairs of particles stick together, which is consistent with that reported
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Fig. 5. 2D oscillating plate: Time history of the vertical position y observed at the midpoint of the plate strip end obtained by the SPH-ENOG
in the long term with the length L = 0.2 m, height H = 0.02 m and v f = 0.05. The material is modeled with density ρ0 = 1000.0 kg/m3,
Young’s modulus E = 2.0 MPa and Poisson’s ratio ν = 0.3975. Note that dp is the initial particle spacing.

in Ref. [53] for a static problem (see their Fig. 6). On the contrary, the SPH-ENOG, similar to SPH-GM, suppresses
such phenomenon and features smooth deformation and stress fields.

A convergence study and the comparisons between numerical and theoretical solutions are performed to
demonstrate the accuracy of the present formulation. The convergence study tests three different spatial resolutions:
H/dp = 10, H/dp = 20, and H/dp = 40. Fig. 5 shows the time history of vertical position y of the midpoint at the
end of the strip with v f = 0.05. It can be observed that the differences between different solutions are deceasing, as
the spatial solution increases, similar with those of Refs. [26,28]. Also, a long-term simulation is conducted herein
to demonstrate the numerical stability of the proposed formulation. For quantitative validation, Table 1 reports the
oscillation period T obtained by the present SPH-ENOG with the spatial particle resolution H/dp = 40 and its
comparison with the theoretical solution for a wide range of v f and ν. The error is about 9.00% for ν = 0.22 and
decreases to about 5.00% when the Poisson’s ratio is increased to 0.4. As the thickness is assumed to be very small
in the analytical theory, Table 2 shows the comparison when the length L remains the same and thickness H is
half of its previous value. A significantly better agreement is obtained with the maximum error decreasing to 2.29%
with ν = 0.4. It should be noted that when v f = 0.15 and ν = 0.4, the deformation is too large and the plate is in
contact with the constrained base, so the period of the plate is not informative.

4.2. 3D oscillating plate

In this section, we further consider the oscillation of a 3D thin plate with a simple support boundary condition
for all lateral edges. Following Refs. [69–71], a square plate with length and width L = W = 0.4 m and height
H = 0.01 m, as shown in Fig. 6(a), is considered. The simple support boundary condition is imposed on the center
line of lateral faces, viz., the corresponding particles are fixed in z direction. The initial vertical velocity vz is given
by

vz(x, y) = sin
mπx

L
sin

nπy
W

, (39)

where m and n are integers controlling the x- and y-directional vibration modes, respectively. The material properties
are set as follows: density ρ0 = 1000.0 kg/m3, Young’s modulus E = 100.0 MPa and Poisson’s ratio ν = 0.3. The
theoretical vibration period of the plate is given by

T =
2
π

[(m
L

)2
+

( n
W

)2
]−1√

ρ0 H
D

, (40)
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Table 1
2D oscillating plate: Quantitative validation of the oscillation period for L = 0.2 m and H = 0.02 m with
various v f and ν.

v f ν TSPH-ENOG TTheoretical Error

0.01 0.22 0.29439 0.27009 9.00%
0.05 0.22 0.29428 0.27009 8.96%
0.1 0.22 0.29373 0.27009 8.75%
0.15 0.22 0.29374 0.27009 8.76%

0.01 0.30 0.28197 0.26412 6.76%
0.05 0.30 0.28166 0.26412 6.64%
0.1 0.30 0.28096 0.26412 6.38%
0.15 0.30 0.28126 0.26412 6.50%

0.01 0.40 0.26534 0.25376 4.56%
0.05 0.40 0.26473 0.25376 4.32%
0.1 0.40 0.26382 0.25376 3.96%
0.15 0.40 0.26656 0.25376 5.04%

Table 2
2D oscillating plate: Quantitative validation of the oscillation period for L = 0.2 m and H = 0.01 m with
various v f and ν.

v f ν TSPH-ENOG TTheoretical Error

0.01 0.22 0.57670 0.54018 6.76%
0.05 0.22 0.57205 0.54018 5.90%
0.1 0.22 0.56458 0.54018 4.52%
0.15 0.22 0.56677 0.54018 4.92%

0.01 0.30 0.55414 0.52824 4.90%
0.05 0.30 0.54638 0.52824 3.43%
0.1 0.30 0.53971 0.52824 2.17%
0.15 0.30 0.54027 0.52824 2.28%

0.01 0.40 0.51914 0.50752 2.29%
0.05 0.40 0.51074 0.50752 0.63%
0.1 0.40 0.50808 0.50752 0.11%
0.15 0.40 – – –

where

D =
E H 3

12
(
1 − v2

) (41)

denotes the flexural rigidity.
Fig. 6(b–d) shows the deformed particle configuration with von Mises stress contour obtained by the SPH-

ENOG for the vibration modes of (m, n) = (1, 1), (2, 1) and (2, 2) with the spatial resolution H/dp = 9. With
the same setup, Fig. 7 shows the deformed particle configuration colored by pressure for the vibration modes of
(m, n) = (1, 1) and (2, 2). For all cases, the SPH-ENOG captures smooth deformation and stress fields, indicating
its numerical stability and robustness. Fig. 8 shows kinetic, elastic strain and total energy for the vibration modes
of (m, n) = (1, 1) and (2, 2), and the former is compared with that of the theoretical solution. It can be noted that
the SPH-ENOG provides a well estimation of kinetic energy profile for the vibration mode of (m, n) = (1, 1) in the
long term, and exhibits only a 3.4% reduction in oscillation amplitude after 7 periods for the case of (m, n) = (2, 2).
Due to the smeared-out and underestimated deformation gradient field which is prone for hourglass modes in the
original formulation, it is not out of expectation that the amplitude of the present elastic strain energy evaluated from
the deformation gradient is apparently smaller than that of kinetic energy for both vibration modes. In Fig. 8(b),
we also show the kinetic energy obtained by SPH. Compared with SPH, SPH-ENOG shows improved accuracy
in predicting vibration period and does not introduce extra numerical dissipation, indicating that the numerical
dissipation is primarily due to the utilized numerical damping term, i.e., Eq. (19). Given that the plate in the
theoretical solution is assumed to be thin enough to ignore the shear deformation [69], the numerical periods are
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Fig. 6. 3D oscillating plate: (a) Schematic of initial setup for the case of (m, n) = (2, 2), (b–d) deformed configuration colored by von
Mises stress σ̄ for the vibration modes of (m, n) = (1, 1), (2, 1) and (2, 2) at the quarter-period time point obtained by the SPH-ENOG with
the length and width L = W = 0.4 m, height H = 0.01 m, and spatial particle discretization H/dp = 9. The material is modeled with
density ρ0 = 1000.0 kg/m3, Young’s modulus E = 100.0 MPa and Poisson’s ratio ν = 0.3. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. 3D oscillating plate: Deformed configuration colored by pressure for the vibration modes of (m, n) = (1, 1) and (2, 2) at the
quarter-period time point obtained by the SPH-ENOG with the length and width L = W = 0.4 m, height H = 0.01 m, and spatial particle
discretization H/dp = 9. The material is modeled with density ρ0 = 1000.0 kg/m3, Young’s modulus E = 100.0 MPa and Poisson’s ratio
ν = 0.3. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

estimated with acceptable phase error in comparison to the theoretical solutions, as is the case in Ref. [70] (see
their Fig. 3(b)) and the numerical results of the 2D oscillating plate.

Furthermore, a convergence study and a quantitative validation are performed to demonstrate the accuracy of the
present formulation. The convergence study tests three different spatial resolutions, i.e., H/dp = 3, H/dp = 5,
and H/dp = 9, for the vibration modes of (m, n) = (1, 1), (2, 1) and (2, 2). Table 3 shows the periods of the
oscillations converge rapidly with increasing resolution and are in good agreements with the theoretical ones. The
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Fig. 8. 3D oscillating plate: Time history of the kinetic, elastic strain and total energy for the vibration mode of (m, n) = (1, 1) and (2, 2)
obtained by the SPH-ENOG in the long term with the length and width L = W = 0.4 m, height H = 0.01 m, spatial particle discretization
H/dp = 9, and the kinetic energy is compared with that of the theoretical solution for both modes and SPH for the mode of (m, n) = (2, 2).
The material is modeled with density ρ0 = 1000.0 kg/m3, Young’s modulus E = 100.0 MPa and Poisson’s ratio ν = 0.3.

Table 3
3D Oscillating plate: Quantitative validation of the oscillation period for vibration modes of (m, n) = (1, 1), (2, 1)
and (2, 2) with three different spatial resolutions.

SPH-ENOG H/dp = 3 H/dp = 5 H/dp = 9 Theoretical

(m, n) = (1, 1) 0.0541881 0.0532965 0.0528678 0.0532208
(m, n) = (2, 1) 0.0226420 0.0223003 0.0221520 0.0212883
(m, n) = (2, 2) 0.0142465 0.0140275 0.0138464 0.0133052

total CPU wall-clock times required by the SPH and SPH-ENOG with the spatial resolution of H/dp = 9 and
physical time of 1 s are approximately 8.73 h and 8.57 h, respectively. The computations in present study are all
performed on an Intel Core i7-9700F 3.0 GHz 8-core desktop computer. In comparison to the Hamiltonian MPS
(moving particle semi-implicit) method in Ref. [70], SPH-ENOG achieves the comparable accuracy in terms of the
estimated period, but with much less CPU wall-clock time, which suggests higher computational efficiency of the
present SPH method.
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Fig. 9. Punching strip: Vertical compression states of 0%, 25%, and 50% with rubber particles colored by von Mises stress σ̄ . The rubber
strip is modeled with the length L = 9 mm, height H = 3 mm and spatial particle discretization H/dp = 30, and its material is set as
density ρ0 = 1100 kg/m3, Young’s modulus E = 1.0 GPa and Poisson’s ratio ν = 0.45. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

4.3. Punching strip

In this section, we consider the example of punched rubber where a rubber strip is compressed by punch tools.
This example is a classic challenging test [53] not only for meshless methods [72] but also for FEM [73] due
to the large deformation. The rubber strip is defined by a rectangular block of length L = 9 mm and height
H = 3 mm, and its material is modeled with density ρ0 = 1100 kg/m3, Young’s modulus E = 1.0 GPa and
Poisson’s ratio ν = 0.45. The punch tools are modeled as rigid rectangular blocks with the dimension 9 mm ×

0.3 mm, discretized by the same particle spacing with the strip, and initialized with a punch velocity of 2 mm/s
until the vertical compression ratio of 50% is reached. A splitting random-choice dynamic relaxation method [74]
is applied to obtain the quasi-steady solution.

Fig. 9 shows the initial and deformed configuration colored by von Mises stress σ̄ obtained by the present SPH-
ENOG with the spatial particle discretization H/dp = 30. As the punch tools compress, the rubber strip experiences
imposed deformation and the material expands outward towards the open sides. The very smooth particle distribution
and stress fields are observed even near the sharp corners of the punch tools where the largest deformation exists,
demonstrating the effectiveness and robustness of the proposed formulation. The present deformed configuration
is of the volume preservation, in contrast to the outcome of SPH-GM stated in Ref. [53] (see their Fig. 7), which
is reflected in the high Poisson’s ratios ν ∈ [0.45, 0.5) [75]. Fig. 10 shows the convergence study with particle
refinement. It can be observed that both the deformation pattern and von Mises stress σ̄ exhibit good convergence
properties.

4.4. Pulling test

In this section, the 2D pulling rubber strip [53,72] and 3D pulling rubber cylinder [76] are considered to
investigate the robustness and versatility of the proposed formulation. Following Ref. [53,72], the 2D rubber strip
is of a square with the side length L = 2 mm, and its rubber material properties are the same as the previous
punching strip test. The tensile deformation is initialized by imposing the velocity of v = (0, ±0.1 mm/s) to
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Fig. 10. Punching strip: A sequence of particle refinement analyses using the present SPH-ENOG. Three different spatial resolutions,
H/dp = 30, H/dp = 45 and H/dp = 60, are applied. The material is modeled with density ρ0 = 1100 kg/m3, Young’s modulus
E = 1.0 GPa and Poisson’s ratio ν = 0.45.

the top and bottom rows of particles, respectively. The initial particle pacing dp = L/30 is applied to discretize
the system, and the splitting random-choice dynamic relaxation method [74] is applied to obtain the quasi-static
elongation. Fig. 11(a) and (b) respectively show the particle configuration with von Mises stress contour obtained
by the SPH and SPH-ENOG when the 500% tension is reached, i.e., the length of the strip is increased to 12 mm.
The SPH is unstable and its result exhibits particle disorder in the rows of particles, and the disorder phenomenon
is more obvious near the top and bottom boundaries. As expected, the present SPH-ENOG formulation is able to
stably predict the large tensile deformation. Different with the unrealistic result of SPH-GM reported in Ref. [53]
(see their Fig. 8), the present deformed configuration is of the typical I-shaped cross section of I-beam, which is
consistent with that of Ref. [72] (see their Fig. 7), although slight discrepancy is exhibited near the top and bottom
boundaries due to the large stress gradient. The robustness of the SPH-ENOG is further demonstrated for a even
more challenging case by increasing the stretch to 1000% in tension, as shown in Fig. 11(c).

The 2D pulling test can be extended to 3D by considering the initial configuration of a cylinder with the radius
R = 1 mm and height H = 2 mm. The Poisson’s ratio is changed to ν = 0.49 following the Ref. [76], and the
initial particle spacing dp = 0.1 mm. The body-fitted particle generator [66] is applied to generate initial particle
distribution. Fig. 12(a) and (b) respectively show the deformed configuration colored with von Mises stress obtained
by the SPH and SPH-ENOG when the 240% tension is reached. Again the deformed configuration is of the typical
I-shape and is in good agreement with the results from a mesh-based method as in Ref. [76] (see their Fig. 5).
Some particles near the top and bottom boundaries run away in the SPH result, while the smooth particle and stress
distributions are observed in the SPH-ENOG result. Fig. 12(c) shows the particle distribution and von Mises stress
field for a even more challenging case with 480% tension.

4.5. Bending column

To further investigate the robustness and accuracy of the present formulation, we consider a bending-dominated
problem where the numerical solution is available in literature [77] for quantitative validation. Following Ref. [39],
a rubber-like material column spanning the length L = 6 m and square cross section (height H = 1 m) is clamped
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Fig. 11. 2D pulling rubber square strip: Deformed configuration plotted with von Mises stress σ̄ and scaled in the vertical direction for
clarity. The material parameters are of density ρ0 = 1100 kg/m3, Young’s modulus E = 1.0 GPa and Poisson’s ratio ν = 0.45, and the
spatial particle discretization is set as L/dp = 20.

Fig. 12. 3D pulling rubber cylinder: Deformed configuration plotted with von Mises stress σ̄ and scaled in the vertical direction for clarity.
The material parameters are of density ρ0 = 1100 kg/m3, Young’s modulus E = 1.0 GPa and Poisson’s ratio ν = 0.49, and the spatial
particle discretization is set as H/dp = 20. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 13. Bending column: Initial configuration.

Fig. 14. Bending column: Deformed configuration colored by von Mises stress σ̄ at serial temporal instants obtained by the present SPH-

ENOG with initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s. The material is modeled with density ρ0 = 1100 kg/m3, Young’s modulus
E = 17 MPa and Poisson’s ratio ν = 0.45, and spatial particle discretization is set as H/dp = 12 with H denoting the height of the column
and dp the initial particle spacing. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

on its bottom and oscillates freely by imposing an initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s as shown in
Fig. 13. The neo-Hookean material model is applied with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa
and Poisson’s ratio ν = 0.45.

Fig. 14 shows the time evolution of the deformed configuration colored by von Mises stress contour obtained by
the present formulation. The well-ordered particle distribution and smooth stress field are observed in the present
result. For quantitative validation, Fig. 15 reports the time history of the z-axis position of point S, given in Fig. 13,
with different resolutions, H/dp = 6, H/dp = 12, and H/dp = 24, and its comparison with the reference result
reported by Aguirre et al. [77]. It can be observed that a good agreement is achieved as the increase of the spatial
resolution. As shown in Fig. 16, compared with the original SPH, the present SPH-ENOG shows better agreement
with the reference especially in the long run (after 1.5 s), implying its robustness in the large time scale simulation.

To evaluate the computational performance, we also analyze the total CPU time of the SPH and SPH-ENOG for
simulating the bending column with physical time of 3 s. Table 4 summarizes the CPU wall-clock time with the
corresponding total particle number, which shows the cost of calculation is reduced by about 2% when using the
SPH-ENOG.

A more challenging problem is studied to show the outperformance of the present formulation by increasing

the initial velocity to v0 = 20
(√

3
2 , 1

2 , 0
)T

m/s. As shown in Fig. 17, the simulation result of the SPH exhibits
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Fig. 15. Bending column: Time history of the vertical position z observed at node S obtained by the SPH-ENOG with three different spatial

resolutions and the initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s, and its comparison with that of Aguirre et al. [77]. The material is

modeled with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, and Poisson’s ratio ν = 0.45. Note that H is the height of the
column and dp the initial particle spacing.

Fig. 16. Bending column: Time history of the vertical position z observed at node S obtained by the SPH-ENOG and SPH with initial

uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s, and its comparison with that of Aguirre et al. [77]. The material is modeled with density

ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa Poisson’s ratio ν = 0.45, and the spatial particle discretization is H/dp = 24 with H
denoting the height of the column and dp the initial particle spacing.
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Table 4
Computational efficiency for the SPH and SPH-ENOG with different spatial resolutions.

Model Resolution CPU wall-clock time (s)

SPH 1296 5.10
SPH-ENOG 1296 4.98

SPH 10,368 103.89
SPH-ENOG 10,368 99.74

SPH 82,944 1777.46
SPH-ENOG 82,944 1746.83

Fig. 17. Bending column: Deformed configuration colored by von Mises stress at two temporal instants obtained by the SPH (top panel) and

SPH-ENOG (bottom panel) with initial uniform velocity v0 = 20
(√

3
2 , 1

2 , 0
)T

m/s. The material is modeled with density ρ0 = 1100 kg/m3,
Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45, and the spatial particle discretization is H/dp = 12 with H denoting the
height of the column and dp the initial particle spacing. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

noticeable particle disorder, especially near the clamped bottom where the maximum von Mises stress exists, while
the present SPH-ENOG captures the very regular particle distribution and smooth stress field, further demonstrating
the robustness of the proposed formulation.

4.6. Twisting column

In this section, the bending column is extended to a twisting column in line with Refs. [50,51,78]. As shown
in Fig. 18, the twisting is initialized with a sinusoidal rotational velocity field of ω = [0,Ω0 sin (πy0/2L) , 0]
with Ω0 = 105 rad/s. Th column is considered as being nearly incompressible material, modeled of density
ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.499.

Fig. 19 shows the deformed configuration at different time instants with von Mises stress contour obtained by
the SPH and SPH-ENOG. Both simulations perform well and produce very similar results in terms of deformation
patterns compared with those in the literature (see Fig. 28 in Ref. [50]), except small fluctuation of stress near the
bottom constrained surface produced by SPH. A significantly more challenging problem is studied by increasing
the initial angular velocity to Ω0 = 300 rad/s with ν = 0.49. As shown in Fig. 20, a stable simulation by applying
the proposed formulation is demonstrated. The unstabilized results of the SPH show obvious particle disorder,
especially between the second and third spiral lines from the bottom. On the contrary, the results calculated by the
SPH-ENOG exhibit the very ordered particle distribution and smooth stress field. Note that similar test has been
simulated in Ref. [51] (see their Fig. 10) by an artificial viscosity formulation but with a very critical Poisson’s ratio
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Fig. 18. Twisting column: Initial configuration.

Fig. 19. Twisting column: Deformed configuration colored by von Mises stress at different time instants for the SPH (top panel) and
SPH-ENOG (bottom panel) with initial rotational velocity ω = [0,Ω0 sin (πy0/2L) , 0] with Ω0 = 105 rad/s. The material is modeled with
density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.499, and the spatial particle discretization is set as
H/dp = 10 with H denoting the height of the column and dp the initial particle spacing. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

ν = 0.49995 to avoid the hourglass modes. In the present study, we apply ν = 0.49, indicating much large time
steps can be used, and obtain stable simulation without exhibiting particle disorder. Also note that, the artificial
viscosity formulation may face further difficulties when the velocity field becomes flat or less significant as the
static test cases in this work. A convergence study is also carried out by sequentially refining the spatial resolution
from H/dp = 4 to H/dp = 8 and H/dp = 12. As shown in Fig. 21, both the deformation and von Mises stress
σ̄ exhibit good convergence properties.
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Fig. 20. Twisting column: Deformed configuration colored by von Mises stress at different time instants for the SPH (top panel) and SPH-
ENOG (bottom panel) with initial sinusoidal rotational velocity Ω0 = 300 rad/s. The material is modeled with density ρ0 = 1100 kg/m3,
Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.49, and the spatial particle discretization is set as H/dp = 10 with H denoting
the height of the column and dp the initial particle spacing. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 21. Twisting column: A sequence of particle refinement analyses using the SPH-ENOG with the initial sinusoidal rotational velocity
Ω0 = 300 rad/s. The material is modeled with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.49.
Note that H is the height of the column and dp the initial particle spacing.

Finally, the robustness of the present formulation is further examined by increasing the initial angular velocity
to Ω0 = 400 rad/s. Fig. 22 shows the deformed configuration with different time instants. The extremely large
deformations of the whole twisting process, including the recovery process and reverse rotation, are well captured
as expected.
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Fig. 22. Twisting column: Deformed configuration plotted with von Mises stress at serial time instants obtained by the SPH-ENOG with the
initial sinusoidal rotational velocity Ω0 = 400 rad/s. The material is modeled with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa
and Poisson’s ratio ν = 0.49, and the spatial particle discretization is set as H/dp = 12 with H denoting the height of the column and dp
the initial particle spacing.

Fig. 23. Stent structure: Problem setup. The corresponding computer-aided design (CAD) file in STL format can be downloaded from our
code repository or GrabCAD.

4.7. Stent structure

A realistic cardiovascular stent, widely used in biomedical applications, is investigated in this section to
demonstrate the robustness and versatility of the SPH-ENOG. As shown in Fig. 23, a Palmaz-Schatz shaped stent
with the length of L = 20 mm, outer diameter D = 10 mm and thickness T = 0.1 mm is considered herein. One of
the element structures on the planar surface is also shown on the bottom panel of Fig. 23. The material properties are

22



D. Wu, C. Zhang, X. Tang et al. Computer Methods in Applied Mechanics and Engineering 407 (2023) 115915

Fig. 24. Stent structure: Deformed configuration under two diametrically opposed point forces F = 0.1 N colored by von Mises stress at
t = 0.18 ms and t = 0.34 ms. The neo-Hookean material is applied with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and
Poisson’s ratio ν = 0.45. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 25. Stent structure: Deformed configuration under punching setup colored by von Mises stress at t = 0.18 ms and t = 0.34 ms.
The neo-Hookean material is applied with density ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa and Poisson’s ratio ν = 0.45. Also, the initial particle distribution
is generated by the body-fitted particle generator [66] with initial particle spacing dp = T/3. Two diametrically
opposed point forces F = 0.1 N are applied on the stent to active the deformation as shown in Fig. 23(a), and the
stent is also punched by two rigid tools modeled as cuboids with dimensions 20 ×0.15 × 0.15 mm3 with the punch
velocity of 0.1 m/s as shown in Fig. 23(b) to further examine the robustness of the present formulation.
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Fig. 24 shows the overall deformation of the stent structure under point forces at time instants t = 0.18 ms and
t = 0.34 ms colored by the von Mises stress. The deformation pattern and smooth stress field of this complex thin
structure are well captured, especially around the points of applying forces and sharp corners of the stent where the
maximum stress exists. Fig. 25 shows the compressed stent colored by von Mises stress at different time instants.
It is remarkable that the extremely large deformation is well captured, paving the way of realistic cardiovascular
applications.

5. Concluding remarks

In this paper, we present an efficient, robust and essentially non-hourglass formulation without introducing case-
dependent tuning parameter and extra computational effort for the TL-SPH method. The proposed formulation
demonstrates its capability of suppressing the long standing issues of the hourglass modes and shows its robustness
in the simulation of large strain dynamics. Last but not least, the deformation of complex stent structures is studied
to demonstrate the versatility of the presented formulation, representing a stepping stone to practical applications in
the field of biomechanics. Note that, although the present formulation is proposed for elastic structural responses,
it may be extended for modeling elastic–plastic and damage/fracture, in which the same volumetric and deviatoric
decomposition is often applied [59].
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Abstract
The persistence of hourglass modes poses a significant numerical instability issue in total Lagrangian smoothed particle
hydrodynamics (TLSPH) solid dynamics, especially when dealing with substantial deformations, regardless of material
properties. However, existing hourglass control methods have shown effectiveness only within limited applications. Thus
far, a comprehensive solution capable of addressing hourglass issues across a wide range of material models, including
elasticity, plasticity, and anisotropy, remains elusive. In this study, we introduce a unified TLSPH formulation grounded
in volumetric-deviatoric stress decomposition, aimed at fundamentally mitigating hourglass modes in general simulations.
Different conceptually from previous approaches using stress points or extra viscous or hourglass-control stresses within the
momentum equation, our formulation is based on the weighted average of a standard but hourglass-prone formulation and an
essentially non-hourglass formulation for elastic materials, employing a single limiter to dynamically adjust the weighting
between the two formulations. Crucially, the dimensionless characteristic of the formulation enables seamless handling of
complexmaterialmodels. To validate the effectiveness of our formulation,we conduct simulations across a range of benchmark
cases involving elastic, plastic, and anisotropic materials. To illustrate its versatility, we apply the formulation to simulate a
complex scenario involving viscous plastic Oobleck material, contacts, and very large deformation. Our work addresses a
critical gap in TLSPH simulations by offering a unified approach to mitigate hourglass modes, enhancing the reliability and
accuracy of simulations across diverse material models and complex scenarios.
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1 Introduction

Smoothed particle hydrodynamics (SPH), a fully Lagrangian
mesh-free method, has attracted escalating interest in recent
decades [1–5]. In SPH, the continuum is represented by par-
ticles, and the governing equations are discretized through
particle interactions based on aGaussian-like kernel function
[6–8]. As numerous fundamental abstractions, intrinsically
linked to various physical systems, can be effectively rep-
resented through particle interactions, SPH method has
succeeded in addressing multi-physics problems within a
unified computational framework [9, 10], including fluid–
structure interaction [11–14], cardiac electrophysiology [15,
16], laser beam welding [17, 18], porous media [19–21], and
various other domains. In such unified computational frame-
work, the total Lagrangian SPH (TLSPH) formulation [22,
23] is often used to model solid dynamics.

123



Computational Mechanics

However, the numerical instability issue of hourglass
modes persists in TLSPH solid dynamics, arising from
vanishing deformation gradient as particles move to a non-
physical zigzag pattern, i.e., the zero-energy modes [22,
24]. Initial attempts to address the issue involve a staggered
formulation, introducing extra integration or stress points
[25–28]. Since the inherent complexity and the undefined
methodology for the placement of these additional stress
points [29] greatly limit the practical application of this stag-
gered formulation for general problems, more recent efforts
focus on enhancing the traditional SPH framework with cor-
rective or stabilizing terms [30, 31].

A shared attribute among these terms is their integration
into the momentum equation as additional force, similar to
the hourglass-control stress terms in many finite element
methods (FEM) [32, 33], relying on dimensional and basic
material parameters, such as sound speed [34–36] or Young’s
modulus [30, 31, 37]. The inclusion of material parame-
ters implies the physical relevance of the correction terms
in mitigating a pure numerical instability, thereby leading to
the issue of generalizing these solutions for more complex
material models. For example, challenges may arise in deter-
mining optimal parameters for the presence of non-isotropic
contributions in the material model, or in deciding the appro-
priate correction magnitude for plastic materials exhibiting
complex yielding and hardening behaviors. Consequently,
parameters are non-generalized, and frequently needed to
be tuned on a case-by-case or material model-specific basis
to avoid inadequate or excessive correction [38–42]. Thus
far, a comprehensive solution capable of effectively address-
ing hourglass issues across a wide range of material models,
including elasticity, plasticity, and anisotropy, remains elu-
sive.

In this study, basedonvolumetric-deviatoric stress decom-
position, we present a unified non-hourglass TLSPH for-
mulation capable of addressing a wide array of material
behaviors, from elasticity and plasticity to anisotropy and
beyond. Different from the approaches using staggered for-
mulation or extra stress points, the present method is based
on standard collocation TLSPH formulation. By comparing
the standard SPH formulation with the original Laplacian
operator applied in our previous work [43] to handle the
hourglass issues for standard elasticity, we introduce a cor-
rection in the discretization of shear stress, relying only on
the dimensionless discrepancy produced by a tracing-back
prediction of the initial inter-particle direction from the cur-
rent deformation gradient. Compared with the one in Ref.
[37], the present formulation is naturally incorporated with
the standard SPH divergence operator and its dimensionless
characteristic enables seamless handling of complexmaterial
models. Note that, other than introducing extra hourglass-
control or viscous stress as in previous FEM, meshless or
SPH methods, the present formulation is conceptually a

weighted average of two previous SPH formulations: one
standard but prone to hourglass effects, and the other is from
an essentially non-hourglass formulation of elastic dynamics
[43], without additional stresses. By employing a limiter with
a single set of dimensionless parameters to adaptively adjust
the weighting, extensive benchmark examples are tested to
validate the stability and accuracy of the present formulation
for elastic, plastic and anisotropicmaterials.A complex prob-
lem, involving viscous plasticOobleckmaterial, contacts and
very large deformation, is also simulated to illustrate the ver-
satility of the proposed formulation.

The structure of this paper is as follows. Section2
describes the TLSPH formulation of solid dynamics. A vari-
ety of material models applied in this study are outlined in
Sect. 3, and the present formulation are detailed in Sect. 4.
Numerical examples are presented anddiscussed inSect. 5. In
Sect. 6, brief concluding remarks are offered. To foster future
in-depth investigations, all computational codes utilized in
this study [9, 44] are publicly available via the SPHinXsys
project website at https://www.sphinxsys.org.

2 Total Lagrangian SPH

In the context of the total Lagrangian framework, the
kinematics and governing equations for describing the defor-
mation of a solid body are formulated with respect to the
initial, undeformed reference configuration. Subsequently,
the discretization of these equations for TLSPH is detailed,
and the time integration scheme is introduced.

2.1 Kinematics and governing equations

The deformation gradient tensor F is given by

F = ∇0r = ∇0u + I, (1)

where u = r− r0 is the displacement with r0 and r denoting
the initial and current positions of a material point, respec-
tively, ∇0 ≡ ∂

∂ r0
the material gradient operator with respect

to the initial configuration and I the identity matrix.
The governing equations in total Lagrangian formulation

can be expressed as{
ρ = J−1ρ0

ρ0ü = ∇0 · PT,
(2)

where ρ0 and ρ are the initial and current densities,
respectively, J = det(F), ü the acceleration, P the first
Piola–Kirchhoff stress tensor, and T the matrix transposition
operator. Note that the mass continuity equation is implicitly
satisfied in total Lagrangian formulation. P can be obtained
by the Kirchhoff stress ττ as
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P = ττF−T. (3)

2.2 SPH discretization

Following Refs. [3, 6], the momentum conservation Eq. (2)
is discretized in the weak-form SPH approximation of the
spatial derivative as

ρ0
i üi =

∑
j

(
PiB0

i
T + P jB0

j
T
)

∇0
i Wi j V

0
j , (4)

where∇0
i Wi j = ∂W

(
r0i j ,h

)
∂r0i j

e0i j denotes the gradient of the ker-

nel function evaluated at the initial reference configuration
with r0i j representing the initial particle distance and e0i j the
initial unit vector pointing from particle j to particle i . Addi-
tionally, ρ0

i is the initial density of particle i , and V 0
j is the

initial volume of particle j . Here, the superscript (·)0 is intro-
duced to represent variables defined at the initial reference
configuration. The kernel gradient correction (KGC) correc-
tion matrix B0 is adopted to ensure first-order completeness
as [1, 24, 45–47]

B0
i =

⎛
⎝∑

j

V 0
j

(
r0j − r0i

)
⊗ ∇0

i Wi j

⎞
⎠

−1

. (5)

The deformation tensor F is updated based on its rate of
change, which is approximated in the strong-form discretiza-
tion of the spatial derivative [3, 6] as

dFi

dt
= Ḟi = ∇0u̇i =

∑
j

V 0
j

(
u̇ j − u̇i

)⊗ ∇0
i Wi jB0

i . (6)

In total Lagrangian framework, this is equivalent to directly
calculating F = ∇0r . It is worth noting that, due to the KGC
correction matrix employed in Eq. (6) for computing Ḟi [1,
24, 45–47], the rotational motion is accurately captured [45],
objectivity is preserved and the ghost or artificial forces due
to rigid-body rotation are eliminated [48].

Following the approach in Ref. [36], we introduce an
artificial damping stress ττ d based on the Kelvin–Voigt type
damper when calculating the Kirchhoff stress ττ as

ττ d = χ

2

dbb

dt
, (7)

where the artificial viscosity factor χ = ρCh/2 with C =√
K/ρ, where K is bulkmodules, as obtained from themate-

rial models in Sect. 3, and h denoting the smoothing length.
Here, bb = FFT denotes the the left Cauchy-Green defor-
mation gradient tensor, and its change rate can be obtained
directly as

dbb

dt
=
[
dF
dt

FT + F
(
dF
dt

)T]
. (8)

Note that the artificial damping stress in Eq. (7) is propor-
tional to the smoothing length h. As the resolution increases
or static equilibrium reaches, the effect of this numerical
dissipation vanishes. Also note that, since the present non-
hourglass formulation presented in Sect. 4 is non-dissipative,
the numerical dissipation of Eq. (7) plays the main role to
ensure non-increasing of total energy.

2.3 Time integration scheme

In accordance with Ref. [23], the position-based Verlet
scheme is employed for time integration. Initially, the defor-
mation gradient tensor, density, and particle position are
updated to the midpoint of n-th time step as

⎧⎪⎨
⎪⎩

Fn+ 1
2 = Fn + 1

2�tḞn

ρn+ 1
2 = ρ0 1

J

rn+ 1
2 = rn + 1

2�t u̇n .

(9)

Upon calculating the Kirchhoff stress ττ n based on the
applied constitutive relation and the artificial damping stress

ττ nd = χ
2

[
ḞnFn+ 1

2 ,T + Fn+ 1
2 Ḟn,T

]
and subsequently obtain-

ing particle acceleration using Eq. (4), the velocity is updated
through

u̇n+1 = u̇n + �t ün+1. (10)

After that, the rate of change of the deformation gradient ten-
sor Ḟn+1 is computed using Eq. (6). Finally, the deformation
gradient tensor and particle positions are updated to a new
time step with

⎧⎪⎨
⎪⎩

Fn+1 = Fn+ 1
2 + 1

2�tḞn+1

ρn+1 = ρ0 1
J

rn+1 = rn+ 1
2 + 1

2�t u̇n+1.

(11)

Adhering to the Courant-Friedrichs-Lewy (CFL) condi-
tion and the limit under external force as referenced in Refs.
[49–53], the time step size is given as

�t = CFLmin

(
h

C + |u̇|max
,

√
h

|ü|max

)
, (12)

where the CFL number is set to 0.6, as recommended in Refs.
[9, 54].
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3 Material models

A series of material models, covering elastic, (perfect, linear
and non-linear hardening, viscous) plastic, anisotropic with
fiber direction, and electrophysiologically induced active
stress model, are included here for validating the proposed
non-hourglass formulation. Note that the Kirchhoff stress ττ

used in governing Eqs. (2) and (3) are decomposed into vol-
umetric and deviatoric components for all models.

3.1 Standard elastic material

The Kirchhoff stress ττ for the standard elastic material is
derived form the strain energy function [55]

We = Wv (J ) + Ws
(
b̄b
)
. (13)

Here, the volume-preserving left Cauchy-Green deformation

gradient tensor is denoted by b̄b = |bb|− 1
d bb. For neo-Hookean

materials, the volume-dependent strain energy Wv (J ), with
the bulk modulus K , is written as

Wv (J ) = 1

2
K

[
1

2

(
J 2 − 1

)
− ln J

]
. (14)

The shear-dependent strain energy Ws
(
b̄b
)
is expressed as

[56]

Ws
(
b̄b
) = 1

2
G
(
tr
(
b̄b
)− d

)
, (15)

where d denotes the dimension, G the shear modulus. Sub-
sequently, the Kirchhoff stress tensor ττ is obtained through
partial differentiation of the strain energy function with
respect to the deformation gradient F as

ττ = ∂We

∂F
FT = K

2

(
J 2 − 1

)
I + G dev

(
b̄b
)
, (16)

where

dev
(
b̄b
) = b̄b − 1

d
tr
(
b̄b
)
I = |bb|− 1

d

[
bb − 1

d
tr (bb) I

]
(17)

returns the trace-free part of b̄b, i.e., tr
(
dev
(
b̄b
)) = 0.

3.2 Plastic material

Four distinct plastic models are considered in this study,
encompassing perfect, linear hardening, non-linear harden-
ing, and viscous plastic models. We apply the classical J2
flow theory [57] to characterize the stress–strain evolution in
plasticity. According to this theory, the deformation gradient

tensor F can be decomposed into its elastic volumetric part
Fe and plastic deviatoric part Fp as [55]

F = FeFp. (18)

The elastic part of left Cauchy-Green tensor bbe is thus defined
as bb = FeFT

e . For plasticity analysis, the plastic right Cauchy
deformation gradient tensor Cp is introduced as

Cp = FT
pFp. (19)

The relationship between bbe and Cp is described as

bbe = FC−1
p FT. (20)

The plastic behavior is governed by the deviatoric com-
ponent of the Kirchhoff stress which is denoted as ττ de =
G dev

(
b̄b
)
. To incorporate the plastic behavior, a scalar yield

function f (ττ de) is introduced. If f (ττ de) > 0, indicating the
material undergoes plasticity, ττ de will be mapped back by a
returnmapping to the yield surface, a boundary that separates
elastic and plastic regions, as ττ ede. The detailed algorithm of
the plastic model is presented in Appendix A. It should be
emphasized that the updated bbe obtained through the return
mapping process can be substituted into Eq. (16) to calculate
the stress ττ for plastic materials by replacing bb.

3.3 Holzapfel-Odgenmaterial

The Holzapfel-Odgen model [58] considers the anisotropic
nature of the muscle, such as myocardium. Following Ref
[15], the strain energy function is given as

W = a

2b
exp [b(I1 − 3)] − a ln J + λ

2
(ln J )2

+
∑
i= f ,s

ai
2bi

{exp
[
bi (Iii − 1)2

]
− 1}

+ a f s

2b f s
{exp

[
b f sI

2
f s

]
− 1},

(21)

where a, b, a f , b f , as , bs , a f s and b f s represent eight positive
material constants, and λ is a Lamé parameter. The series of
parameters a have units of stress, while b are dimensionless.
Here, the principle invariants are defined as

I1 = trC, I2 = 1

2

[
I 21 − tr(C2)

]
, I3 = det(C) = J 2,

(22)

where the left Cauchy-Green deformation tensor C =
FTF, and three other independent invariants associated with
directional preferences are given by
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Fig. 1 Flowcharts of the
original total Lagrangian SPH
(denoted as SPH) in Ref. [12]
and present (denoted as
SPH-UNOG) formulations

I f f = C : f 0⊗ f 0, Iss = C : s0⊗s0, I f s = C : f 0⊗s0,

(23)

where f 0 and s0 are the undeformed muscle fiber and sheet
unit direction, respectively.

The second Piola–Kirchhoff stress S can be derived by

S = 2
∂W

∂C
− pC−1

= 2
∑
j

∂W

∂I j

∂I j
∂C

− pC−1 j = 1, f f , ss, f s, (24)

where

∂I1
∂C

= I,
∂I f f
∂C

= f 0 ⊗ f 0,
∂Iss
∂C

= f 0 ⊗ f 0,

∂I f s
∂C

= f 0 ⊗ s0 + s0 ⊗ f 0, (25)

and p = ∂W
∂ J serves as the Lagrange multiplier introduced

to enforce incompressibility. Substituting Eqs. (21) and (25)
into Eq. (24) and applying ττ = FSFT, the Kirchhoff stress ττ

is obtained as

ττ = {λ ln J − a} I + a exp [b (I1 − 3)] bb

+ 2a f
(
I f − 1

)
exp
[
b f
(
I f − 1

)2]F( f 0 ⊗ f 0)FT

+ 2as (Is − 1) exp
[
bs (Is − 1)2

]
F(s0 ⊗ s0)FT

+ a f sI f sexp
[
b f s

(
I f s
)2]F

(
f 0 ⊗ s0 + s0 ⊗ f 0

)
FT.

(26)
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Fig. 2 Oscillating plate: Initial configuration

3.4 Electrophysiologically induced active stress
model

Building on the methodology outlined in Refs [15, 59],
we incorporate the stress tensor with the transmembrane
potential Vm using the active stress approach. This approach
decomposes the Kirchhoff stress ττ into passive and active
components as

ττ = ττ passive + ττ active, (27)

where the passive component ττ passive describes the stress
required to achieve a given passive muscle deformation,
which is modeled by the above-mentioned Holzapfel-Odgen
material, and the active component ττ active denotes the
tension activated by the depolarization of the propagat-
ing transmembrane potential. Following the active stress
approach proposed in Ref. [59], the active component is
obtained as

ττ active = TaF f 0 ⊗ f 0FT, (28)

where Ta represents the active muscle contraction stress.

4 Unified non-hourglass formulation

Since the hourglassmodes exhibit very large local, especially
shear, deformation [43], we introduce a correction term in the
discretization of shear-stress term to suppress this instability.
We first decompose the Kirchhoff stress by considering the
material model aforementioned in Sect. 3 as dummy

ττ = ττ s + ττ r . (29)

Here, the first term of the right-hand side ττ s = c bbe,

with c = |bbe|− 1
d G for elastic and plastic materials and c =

a exp [b (I1 − 3)] for muscle model, contains the main shear
stress components, and the second term gives the remain-
ing Kirchhoff stress. For example, ττ r = K

2

(
J 2 − 1

)
I −

1
d |bbe|− 1

d G tr (bbe) I + ττ d for the elastic and plastic materials
applied in this study. Note that bbe = bb for elastic deforma-
tion, including those in the muscle models.

For standard elastic material, the shear part of the first
Piola–Kirchhoff stress Ps = ττ sF−T = c bbF−T, and the par-

Table 1 Oscillating plate: Quantitative validation of the oscillation
period for L = 0.2 m and H = 0.02 m with various v f and ν

v f ν TSPH-UNOG TTheoretical Error (%)

0.05 0.22 0.29324 0.27009 8.57

0.1 0.22 0.29223 0.27009 8.20

0.15 0.22 0.29221 0.27009 8.19

0.05 0.30 0.28212 0.26412 6.82

0.1 0.30 0.28096 0.26412 6.38

0.15 0.30 0.28083 0.26412 6.33

0.05 0.40 0.26589 0.25376 4.78

0.1 0.40 0.26483 0.25376 4.36

0.15 0.40 0.26767 0.25376 5.48

Table 2 Oscillating plate: Quantitative validation of the oscillation
period for L = 0.2 m and H = 0.01 m with various v f and ν

v f ν TSPH-UNOG TTheoretical Error (%)

0.05 0.22 0.56959 0.54018 5.44

0.1 0.22 0.56151 0.54018 3.95

0.15 0.22 0.56126 0.54018 3.90

0.05 0.30 0.54541 0.52824 3.25

0.1 0.30 0.53859 0.52824 1.96

0.15 0.30 0.53719 0.52824 1.69

0.05 0.40 0.51230 0.50752 0.94

0.1 0.40 0.50690 0.50752 0.12

0.15 0.40 – – –

ticle acceleration induced by the shear stress can be obtained
by the standard SPH method as follows

ρ0üs,i =
∑
j

(
ci bbiF−T

i + c j bb jF−T
j

) ∂W
(
r0i j , h

)
∂r0i j

V 0
j e

0
i j ,

(30)

which may suffer from serious hourglass modes. To obtain
an essentially non-hourglass formulation as proposed in our
previous study [43], the discretization for shear acceleration
is instead obtained by applying a non-nested Laplacian for-
mulation with the help of Kirchhoff stress decomposition as

ρ0
i üs,i =

∑
j

(
ci + c j

) r i j
r0i j

∂W
(
r0i j , h

)
∂r0i j

V 0
j . (31)

Note that, although it is proved theoretically in Ref. [43]
that Eq. (31) ensures non-increasing of elastic energy, it is
essentially a non-dissipative formulation. By using the entity
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FF−1 = I and bb = FFT, one can reformulate Eq. (31)
approximately as

ρ0i üs,i=
∑
j

(
ci bbiF−T

i +c j bb jF−T
j

) ∂W
(
r0i j , h

)
∂r0i j

V 0
j

⎡
⎣ 1

2

(
F−1
i +F−1

j

) ri j

r0i j

⎤
⎦ . (32)

Comparing Eqs. (30) and (32), one can observe that a
tracing-back prediction of the initial inter-particle direction

from the current deformation gradient is

e0i j ≈ 1

2

(
F−1
i + F−1

j

) r i j
r0i j

. (33)

Such prediction is exact when the deformation is linear, but
produces discrepancy for general, especially large deforma-

Fig. 3 Oscillating plate: Comparison of the deformed configuration
colored by von Mises stress σ̄ at two time instants obtained by the SPH
(top panel) and SPH-UNOG (bottom panel) with the length L = 0.2 m,

height H = 0.02 m, v f = 0.15, and spatial particle discretization
H/dp = 10. Thematerial is modeledwith density ρ0 = 1000.0 kg/m3,
Young’s modulus E = 2.0 MPa, and Poisson’s ratio ν = 0.3975

Fig. 4 Oscillating plate: Time
history of the vertical position y
observed at the midpoint of the
plate strip end obtained by
SPH-UNOG in the long term
with the length L = 0.2 m,
height H = 0.02 m and
v f = 0.05. The material is
modeled with density
ρ0 = 1000.0 kg/m3, Young’s
modulus E = 2.0 MPa and
Poisson’s ratio ν = 0.3975.
Note that dp is the initial
particle spacing. Also note that
vanished damping of the
oscillation magnitude even for
the case with the lowest
resolution
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Fig. 5 3D oscillating plate: a Schematic of initial setup for the case
of (m, n) = (2, 2), b–d deformed configuration colored by von Mises
stress σ̄ for the vibration modes of (m, n) = (1, 1), (2, 1) and (2, 2)
at the quarter-period time point obtained by the SPH-UNOG with the

length and width L = W = 0.4 m, height H = 0.01 m, and spatial
particle discretization H/dp = 9. The material is modeled with density
ρ0 = 1000.0 kg/m3, Young’s modulus E = 100.0 MPa and Poisson’s
ratio ν = 0.3

Fig. 6 3D oscillating plate: Deformed configuration colored by pressure for the vibration modes of (m, n) = (1, 1) and (2, 2) at the quarter-period
time point obtained by the SPH-UNOG with the spatial particle discretization H/dp = 9

tions. Since Eq. (30) is prone to hourglass modes and Eq.
(31) essentially free of them, one can incorporate a correc-
tion term into Eq. (30) based on the discrepancy as

ρ0üs,i =
∑
j

(
ci bbiF−T

i + c j bb jF−T
j

) ∂W
(
r0i j , h

)
∂r0i j

V 0
j

(
e0i j + γi j ê

0
i j

)
, (34)

where

ê0i j = 1

2

(
F−1
i + F−1

j

) r i j
r0i j

− e0i j , (35)

123



Computational Mechanics

Fig. 7 3D oscillating plate: Time history of the kinetic, elastic strain
and total energy for the vibration mode of (m, n) = (1, 1) and (2, 2)
obtained by the SPH-UNOG in the long term with the spatial particle

discretization H/dp = 9, and the kinetic energy is compared with that
of the theoretical solution for both modes and SPH for the mode of
(m, n) = (2, 2)

and

γi j = min
(
10
[
max

(∣∣∣ê0i j ∣∣∣− 0.05, 0
)]

, 1
)

. (36)

Here, γi j serves as a magnitude limiter. It is easy to find
that Eq. (34) is a reformulation of the weighted average of
Eqs. (30) and (32). The formulation is essentially the stan-

dard discretization Eq. (30) when the discrepancy
∣∣∣ê0i j ∣∣∣ is less

than 0.05 until which the hourglass modes are not noticeable,
and then linearly increases the weight of the non-hourglass

discretization Eq. (32). When the discrepancy
∣∣∣ê0i j ∣∣∣ reaches

0.15 and beyond, suggesting that the hourglass modes are
substantial, the formulation is essentially Eq. (32). Such

weighted-average form conceptually identifies the present
formulation from previous FEM, meshless or SPH methods
[30–37] as neither Eqs. (30) nor (32) is a dissipative formu-
lation or relevant to extra hourglass-control or viscous stress.
As will also be shown in Sections. 5.1 and 5.2, such non-
dissipative characteristic also aligns with the second law of
thermodynamics, and able to preserve oscillation magnitude
and total energy in long-time simulations, even with low res-
olution.

Note that the correction term is purely numerical, and
vanishes as the discrepancy decreaseswith increasing the res-
olution of discretization. Also note that the correction term,
being dimensionless and purely geometric, is independent of
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Fig. 8 3D oscillating plate: Time history of the kinetic energy for the vibration mode of (m, n) = (2, 2) obtained by the SPH-UNOG in the long
term under three spatial particle resolutions, and its comparison with that obtained by the SPH when H/dp = 9

Table 3 3D Oscillating plate:
Quantitative validation of the
oscillation period for vibration
modes of (m, n) = (1, 1), (2, 1)
and (2, 2) with three different
spatial resolutions

SPH-UNOG H/dp = 3 H/dp = 5 H/dp = 9 Theoretical

(m, n) = (1, 1) 0.0662058 0.0571145 0.0535212 0.0532208

(m, n) = (2, 1) 0.0290619 0.0240839 0.0222732 0.0212883

(m, n) = (2, 2) 0.0184439 0.0151971 0.0139816 0.0133052

Fig. 9 Punching test: Geometry, loading and deformed configuration colored by vonMises strain ε̄ obtained by SPH-UNOG under p = 400 N/mm

the material model, which can be implemented in a straight-
forwardway by simply extending bb to bbe in Eq. (34), enabling
seamless handling of complex material models. For exam-
ple, bbe can be obtained through return mapping as shown in
Algorithm 1 for plastic materials. Therefore, together with
the correction matrix B0 of Eq. (5) fulfilling the first-order
completeness, the unified non-hourglass formulation can be
written as

ρ0üs,i =
∑
j

(
ci bbe,iF−T

i B0
i + c j bbe, jF−T

j B0
j

) ∂W
(
r0i j , h

)
∂r0i j

V 0
j

(
e0i j + γi j ê

0
i j

)
. (37)
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Fig. 10 Punching test: Deformed configuration colored by pressure obtained by the SPH (top panel) and SPH-UNOG (bottom panel) with initial
load p = 800 N/mm. The spatial particle discretization is H/dp = 26

Fig. 11 Punching test: Convergence study of the compression percent-
age obtained using the present method with particle refinement

WithPr = ττ rF−T at hand, the acceleration ür ,i of particle
i , resulting from the remaining stress ττ r ,i , is calculated using
the Eq. (4) with Pr substituted for P. Finally, the acceleration
of particle i is expressed as

üi = ür ,i + üs,i . (38)

For clarity, the flowcharts for the original and present SPH
formulations are given, respectively, in Fig. 1.

5 Numerical examples

In this section, we conduct a series of benchmark tests with
available analytical or numerical reference data from the lit-

erature to qualitatively and quantitatively assess the accuracy
and stability of the proposed unified non-hourglass formu-
lation (denoted as SPH-UNOG). For comparison, we also
consider the original standard SPH formulation. Following
the validation,we explore the deformation of a complex prob-
lem of Oobleck octopus to showcase the potential of the
present formulation. The 5th-order Wendland kernel [60],
characterized by a smoothing length of h = 1.15dp (where
dp denotes the initial particle spacing) and a cut-off radius
of 2.3dp, is employed throughout.

5.1 2D Oscillating plate

First, we examine the oscillation of a thin plate with one edge
fixed while the other edges remain free. This classical prob-
lem has been extensively explored both theoretically [61] and
numerically [43, 62] in the literature. The problem is repre-
sented as a plane strain scenario, modeling a 2D plate strip
of length L = 0.2 m, perpendicular to the fixed edge, with
a thickness of H = 0.02 m. In accordance with previous
studies [43, 62], the plate strip is clamped between several
layers of constrained SPH particles, as depicted in Fig. 2. The
initial velocity, denoted as vy and directed perpendicular to
the plate strip, is prescribed as follows

vy(x) = v f c
f (x)

f (L)
, (39)
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Fig. 12 Punching test: Deformed configuration colored by pressure obtained by the SPH-UNOG with initial load p = 600 and 1800 N/mm. The
spatial particle discretization is H/dp = 26

where v f represents a constant that varies among different
cases, and

f (x) = (sin(kL) + sinh(kL)) (cos(kx) − cosh(kx))

− (cos(kL) + cosh(kL)) (sin(kx) − sinh(kx))
(40)

with k determined by

cos(kL) cosh(kL) = −1 (41)

and kL = 1.875. The material properties are defined as
follows: density ρ0 = 1000.0 kg/m3, Young’s modulus
E = 2.0MPa and Poisson’s ratio ν varies for different cases.
The theoretical expression for the frequency ω of the oscil-

lating plate is provided by

ω2 = EH2k4

12ρ
(
1 − ν2

) . (42)

Figure3 depicts the deformed particle configuration,
accompanied by the von Mises stress σ̄ contour, simulated
by both SPH and SPH-UNOG under v f = 0.15 and Pois-
son’s ratio ν = 0.3975. It can be noted that, the SPH results
exhibit particle disorder under large deformation, evident
in top panel of Fig. 3, especially in the vicinity of maxi-
mum stress. As the plate strip undergoes larger deformation,
an increasing number of particle pairs adhere together. In
contrast, SPH-UNOG mitigates such instability, exhibiting
smooth deformation and stress fields.

Table 4 Punching test: The
compression percentage for the
specimen with dimensions
L = 20 mm, H = 10 mm and
spatial particle discretization
H/dp = 27, and its comparison
to the results presented in Ref.
[66]

p (N/mm) Compression of SPH-UNOG (%) Compression [66] (%) Error (%)

100 22.70045 23.85155 4.83

200 38.10087 39.61885 3.83

300 49.65808 49.84955 0.38

400 56.96744 56.64995 0.56

500 61.77618 61.52457 0.41

600 65.27827 65.13541 0.22
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Fig. 13 Pulling test: Deformed configuration plotted with vonMises stress σ̄ and scaled in the vertical direction for clarity. The material parameters
are of density ρ0 = 1100 kg/m3, Young’s modulus E = 1.0 GPa and Poisson’s ratio ν = 0.45, and the spatial particle discretization is set as
L/dp = 30

In order to validate the accuracy of present formulation, a
convergence study and comparisons between numerical and
theoretical solutions are undertaken. The convergence study
involves testing three distinct spatial resolutions: H/dp =
10, H/dp = 20, and H/dp = 40. The time history of ver-
tical position y of the midpoint at the end of the strip, with
v f = 0.05, is illustrated in Fig. 4. It can be observed that
the discrepancies among various solutions diminish rapidly
as the spatial resolution increases. Furthermore, a long-term
simulation is conducted herein to underscore the numerical
stability of the proposed formulation.

For quantitative validation, oscillation period T obtained
by SPH-UNOGwith a spatial particle resolution of H/dp =
40 are presented in Table 1. A comparison is made with the-
oretical solutions across a broad range of v f and ν. The
error remains below 9.00% for ν = 0.22 and decreases
to approximately 5.00% as the Poisson’s ratio is increased

Fig. 14 Bending column: Initial
configuration

to 0.4. Considering the assumption of a very small thick-
ness in the analytical theory, Table 2 presents a comparison
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Table 5 Bending column:Parameters for theHolzapfel-Ogdenmaterial
model. Note that the anisotropic terms are set to zero for the isotropic
material

a = 5.86 MPa a f = ka as = 0.0 a f s = 0.0

b = 1.0 b f = 0.0 bs = 0.0 b f s = 0.0

where the length L remains the samewhile the thickness H is
reduced to half of its previous value.A significantly improved
agreement is achieved, with the maximum error decreasing
to less than 1.0% for ν = 0.4. Noted that when v f = 0.15
and ν = 0.4, the deformation becomes substantial, leading
to the plate coming into contact with the constrained base.
Consequently, the period of the plate in this scenario is not
informative.

5.2 3D oscillating plate

In this section, the oscillation of a 3D thin plate is further
explored with a simple support boundary condition applied
to all lateral edges. Following the setups in Refs. [63–65],
a square plate is modeled with length and width L = W =
0.4 m and height H = 0.01 m, as illustrated in Fig. 5a. The
simple support boundary condition is imposed on the center
line of the lateral faces, where the corresponding particles
are fixed in the z direction. The initial vertical velocity vz is
specified by

vz(x, y) = sin
mπx

L
sin

nπ y

W
, (43)

where m and n are integers controlling the x- and y-
directional vibration modes, respectively. The material prop-
erties are specified as follows: density ρ0 = 1000.0kg/m3,
Young’s modulus E = 100.0MPa, and Poisson’s ratio ν =
0.3.The theoretical vibrationperiodof theplate is determined
by

T = 2

π

[(m
L

)2 +
( n

W

)2]−1
√

ρ0H

D
, (44)

where

D = EH3

12
(
1 − v2

) (45)

denotes the flexural rigidity.
Figure5b–d displays the deformed particle configuration

with von Mises stress contour obtained by the SPH-UNOG
for the vibration modes of (m, n) = (1, 1), (2, 1), and (2, 2),
with a spatial resolution of H/dp = 9. Using the same setup,
Fig. 6 illustrates the deformed particle configuration colored
by pressure for the vibration modes of (m, n) = (1, 1) and

(2, 2), showcasing similarity with those observed in the lit-
erature (refer to Fig. 2 in Ref. [64]), verifying that the current
formulation effectively prevents the accumulation of spuri-
ous modes.

In all scenarios, the SPH-UNOGmethod successfully cap-
tures smooth deformation and stress fields, demonstrating
its numerical stability and robustness. Figure7 presents the
kinetic, elastic strain, and total energy for the vibrationmodes
of (m, n) = (1, 1) and (2, 2). The kinetic energy profiles are
compared with the theoretical solutions. Considering that the
theoretical solution assumes the plate to be thin enough to
neglect shear deformation [63], the numerical periods are
estimated with acceptable phase error compared to the theo-
retical solutions, similar to the findings in Ref.

[64] (see their Fig. 3(b)) and the numerical results of the
2D oscillating plate. Notably, SPH-UNOG accurately esti-
mates the kinetic energy profiles, and exhibits only a 0.18%
reduction in oscillation amplitude after 3.5 periods for the
case of (m, n) = (1, 1), and a 0.83% reduction after 7 peri-
ods for (m, n) = (2, 2). In Fig. 8, the comparison of kinetic
energy obtained by SPH-UNOG and SPH is presented. It is
evident that SPH-UNOG does not introduce extra numerical
dissipation, suggesting that the numerical dissipation primar-
ily arises from the employed numerical damping term, i.e.,
Eq. 7.

A convergence study and quantitative validation are con-
ducted to demonstrate the accuracy of the present formu-
lation. The convergence study tests three different spatial
resolutions, namely H/dp = 3, H/dp = 5, and H/dp = 9,
for the vibration modes of (m, n) = (1, 1), (2, 1), and (2, 2).
Figure8 illustrates that the periods of the oscillations con-
verge rapidly, approaching 2nd-order rate, with increasing
resolution for (m, n) = (2, 2), while Table 3 summarizes the
periods of the oscillations, demonstrating their good agree-
ments with the theoretical values. Given that the present
formulation achieves a maximum of second-order accuracy
[52], the observed 2nd-order convergence rate confirms this
level of accuracy, indicating the applied Kelvin–Voigt type
viscous damping does not impact the order of convergence
noticeably.

5.3 Punching test

A classical punch test, as referenced in [66, 67], is depicted
schematically in Fig. 9. The test involves a rectangular speci-
men with dimensions L = 40 mm in length and H = 10 mm
in height. This specimen is subjected to a vertically applied
load p (N/mm) that is uniformly distributed across half of the
top edge’s length. The top is constrained horizontally, while
the bottom is fixed in the vertical direction. The material
considered is an incompressible neo-Hookean type, charac-
terized by the shear modulus G = 80 N/mm2 and Poisson’s
ratio v = 0.49.
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Fig. 15 Bending column: Deformed configuration colored by von
Mises stress σ̄ at serial temporal instants for Neo-Hookean (top panel)
and Holzapfel-Ogden (bottom panel) materials obtained by SPH-

UNOG with initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s. The

spatial particle discretization is set as H/dp = 12 with H denoting the
height of the column and dp the initial particle spacing

Fig. 16 Bending column: Time history of the vertical position z observed at node S obtained by SPH-UNOG for isotropic Holzapfel-Ogdenmaterial

with three different spatial resolutions and the initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s, and its comparison with that of Aguirre et al. [70]
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Fig. 17 Bending column: Time history of the vertical position z observed at node S obtained by SPH-UNOG and SPH with initial uniform velocity

v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s, and its comparison with that of Aguirre et al. [70]. The spatial particle discretization is H/dp = 24

Fig. 18 Bending column: Time history of the vertical position z observed at node S obtained by SPH-UNOG for the Holzapfel-Ogden material

model with initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

m/s. The spatial particle discretization is H/dp = 12

Figure10 illustrates the SPH simulation results under a
vertical load of p = 800 N/mm, where notable particle dis-
order and hourglass modes are observed, particularly near
the point B (shown in the Fig. 9) of the top edge. In con-
trast, the SPH-UNOG method demonstrates a highly regular
particle arrangement and a smooth pressure distribution, and
produce very similar results in terms of deformation and pres-
sure patterns compared with those in the literature (see Fig.
12 in Ref. [67]), highlighting the robustness of the proposed
formulation. Additionally, a numerical convergence study is
conducted. Figure11 presents the compression percentage at

point A (from Fig. 9) as a function of the resolution refine-
ment parameter N , where H/dp = 2N . The formulation
shows rapid convergence with a compression percentage of
63.915% at N = 7, differing by only 0.44% from the 64.2%
reported in Ref. [67].

To facilitate a comparison with the results presented in
Ref. [66], we adjust the length of the specimen to L = 20
mm, and the load p is defined as pressure, while keeping all
other parameters unchanged. Table 4 summarizes the com-
parison when H/dp = 27, demonstrating a high level of
agreement between our results and those reported in Ref.
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Fig. 19 Bending column: Deformed configuration colored by von
Mises stress at two temporal instants obtained by the SPH (top panel)
and SPH-UNOG (bottom panel) for isotropic Holzapfel-Ogden mate-

rial model with initial uniform velocity v0 = 20
(√

3
2 , 1

2 , 0
)T

m/s. The

spatial particle discretization is H/dp = 12

Fig. 20 Bending column: Deformed configuration at 0.4 s colored by von Mises stress obtained by SPH-UNOG for anisotropic Holzapfel-Ogden

material model with initial uniform velocity v0 = 20
(√

3
2 , 1

2 , 0
)T

m/s. The spatial particle discretization is H/dp = 12

[66]. Figure12a shows the regular particle distribution and
a smooth pressure field. To further demonstrate the supe-
rior performance of the current formulation, we subject it to
a more demanding challenge by increasing the pressure to
p = 1800 N/mm. As depicted in Fig. 12b, SPH-UNOG con-
tinues to exhibit a regular particle distribution and a smooth
pressure field, thereby underscoring the robustness of our
formulation.

5.4 Pulling test

In this section, the robustness of the proposed formulation is
examined through the analysis of a 2D pulling rubber strip
[37, 68]. Following the setup in Ref. [37, 68], the rubber

strip is square-shaped with a side length of L = 2 mm,
and its material properties are characterized by a density
ρ0 = 1100 kg/m3, a Young’s modulus E = 1.0 GPa, and
a Poisson’s ratio ν = 0.45. The tensile deformation is mod-
eled by applying a velocity of v = (0,±0.1 mm/s) to the
top and bottom rows of particles, respectively. The initial
particle spacing dp = L/30 is utilized to discretize the
system, and the splitting random-choice dynamic relaxation
method [69] is employed to achieve quasi-static elongation.
Figure13a and b depict the particle configurations along
with von Mises stress contours obtained by SPH and SPH-
UNOG, respectively, when the material experiences a 500%
tension, resulting in an increase in strip length to 12 mm.
The SPH method displays instability, evident from parti-
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cle disorder within the rows, particularly pronounced near
the top and bottom boundaries. In contrast, the current
SPH-UNOG formulation successfully predicts the signifi-
cant tensile deformation in a stable manner, as anticipated.
In contrast to the unrealistic outcome reported in Ref. [37]
(see their Fig. 8), the resulting deformed configuration in
our study exhibits a typical I-shaped cross-section, consis-
tent with the findings of Ref. [68] (see their Fig. 7), although
slight discrepancies are observed near the top and bottom
boundaries due to the large stress gradient. The robustness of
SPH-UNOG is further demonstrated by subjecting the mate-
rial to an even more challenging condition, with a stretch of
1000% in tension, as illustrated in Fig. 13c.

5.5 Bending column

To further assess the robustness and accuracy of the present
formulation, we address a bending-dominated problem with
a pre-existing numerical solution available in the litera-
ture [70] for quantitative validation. Both neo-Hookean and
Holzapfel-Odgenmaterialmodels are employed in this inves-
tigation. Following Ref. [15], a column with a length of L =
6m and a square cross-section (height H = 1m) is clamped
at its bottom, oscillating freely under the imposition of an

initial uniform velocity v0 = 10
(√

3
2 , 1

2 , 0
)T

, as depicted

in Fig. 14. The neo-Hookean material is modeled with den-
sity ρ0 = 1100 kg/m3, Young’s modulus E = 17 MPa, and
Poisson’s ratio ν = 0.45. For the Holzapfel-Odgen model,
material parameters are detailed in Table 5 with anisotropic
terms adjusting accordingly. It is important to note that the
Poisson’s ratio ν of the Holzapfel-Odgen material is also set
as 0.45 and a = E/2(1+ ν) to facilitate a direct comparison
with neo-Hookean in the isotropic scenario.

Figure15 illustrates the time evolution of the deformed
configuration, represented by the von Mises stress contour,
as obtained through the present formulation. The results
obtained from both material models exhibit remarkable sim-
ilarity, featuring a well-ordered particle distribution and a
smooth stress field. For quantitative validation, the time his-
tory of the z-axis position of point S (as marked in Fig. 14)
for the isotropic Holzapfel-Ogden material model is pre-
sented in Fig. 16. Different spatial resolutions, H/dp = 6,
H/dp = 12, and H/dp = 24, are considered, with a com-
parison to the reference results reported byAguirre et al. [70].
Notably, robust convergence and a high level of agreement
are evident with increasing spatial resolution. As shown in
Fig. 17, the outcomes computed by SPH and SPH-UNOG
closely align with negligible discrepancies, and the quantita-
tive disparities between the two materials are also minimal.

We further show the versatility of the present formulation
by investigating this example incorporating the anisotropic
Holzapfel-Odgen material model. In the case of anisotropic

Fig. 21 Twisting column: Initial configuration

material, we set the fiber and sheet directions aligned with z
and x coordinates, respectively. We conduct three tests with
varying anisotropic ratios: a f /a = 0.1, a f /a = 0.5, and
a f /a = 1.0. Figure18 shows the time history of the vertical
displacement of point S. It can be observed that the deforma-
tion is reduced as the anisotropic ratio increases.

To showcase the superior performance of the present
formulation, we tackle a more challenging problem by ele-

vating the initial velocity to v0 = 20
(√

3
2 , 1

2 , 0
)T

m/s for

the Holzapfel-Ogden material model. As shown in Fig. 19,
the simulation result of the SPH exhibits noticeable particle
disorder, especially near the clamped bottomwhere the max-
imum von Mises stress exists, while SPH-UNOG captures a
highly regular particle distribution and a smooth stress field,
underscoring the robustness of the proposed formulation.
Furthermore, Fig. 20 presents the deformed configuration
colored by von Mises stress for the anisotropic Holzapfel-
Odgen material model.

5.6 Twisting column

In this section, we extend the bending column problem to
encompass a twisting column, which represents a highly
nonlinear scenario, following Refs. [35, 36, 71–74]. As illus-
trated in Fig. 21, the twisting is initiated with a sinusoidal
rotational velocityfieldgivenbyω = [0,�0 sin (π y0/2 L) , 0]
with �0 = 105 rad/s. The column, modeled using the
Holzapfel-Odgen material, is assumed to exhibit nearly
incompressible behavior,with a Poisson’s ratio of ν = 0.499.
The remaining material parameters remain consistent with
those outlined in the previous section. Figure22 presents
the deformed configuration of the isotropic material model
at different time instants, accompanied by the von Mises
stress contour obtained through SPH-UNOG. The simula-
tion performs well, exhibiting deformation patterns highly
consistent with those reported in the literature (see Fig. 28 in
Ref. [35]). Addressing a notably more challenging scenario,
we increase the initial angular velocity to �0 = 330 rad/s
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Fig. 22 Twisting column: Deformed configuration colored by von
Mises stress at different time instants for the isotropic Holzapfel-Odgen
material model obtained by SPH-UNOG. The initial rotational velocity

ω = [0, �0 sin (π y0/2 L) , 0] with �0 = 105 rad/s. The spatial parti-
cle discretization is set as H/dp = 10 with H denoting the height of
the column and dp the initial particle spacing

Fig. 23 Twisting column: Deformed configuration colored by von Mises stress at two time instants for the isotropic Holzapfel-Odgen material
model obtained by SPH and SPH-UNOG with initial sinusoidal rotational velocity �0 = 330 rad/s. The spatial particle discretization is set as
H/dp = 10
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Fig. 24 Twisting column: A sequence of particle refinement and anisotropic ratio increasing analyses using SPH-UNOG with the initial sinusoidal
rotational velocity �0 = 330 rad/s

Fig. 25 Twisting column: Deformed configuration plotted with von Mises stress at serial time instants when a f /a = 1.0 obtained by SPH-UNOG
with the initial sinusoidal rotational velocity �0 = 480 rad/s. The spatial particle discretization is set as H/dp = 12

with a Poisson’s ratio of ν = 0.49. It is worth noting that
�0 = 100 rad/s and 200 rad/s are already considered chal-
lenging, as indicated in Refs. [71, 73]. As shown in Fig. 23,
the proposed formulation demonstrates stability, contrast-
ing with the visibly disordered particle results from SPH.
Conducting a convergence study involving sequential refine-
ment of spatial resolution from H/dp = 4 to H/dp = 8
and H/dp = 12, and an analysis of anisotropic behavior
across varying anisotropic ratios (a f /a = 0.1, a f /a = 0.5,
and a f /a = 1.0), Fig. 24 demonstrates robust convergence
properties for both deformation and von Mises stress σ̄ , and
provides insight into the smooth stress characteristic of the
anisotropic Holzapfel-Odgen material.

Table 6 Muscle contraction: Parameters for the Holzapfel-Ogden
material model. Note that the anisotropic terms are set to zero for the
isotropic analysis

a = 0.059 kPa a f = 18.472 kPa as = 2.841 kPa a f s = 0.216 kPa

b = 8.023 b f = 16.026 bs = 11.12 b f s = 11.436

Finally, to further assess the robustness of the present for-
mulation, we increase the initial angular velocity to �0 =
480 rad/s with a f /a = 1.0. As shown in Fig. 25, the
deformed configuration at various time instants is presented.
Remarkably, the formulation adeptly captures the extremely
large deformations encompassing the entire twisting process,
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Fig. 26 Muscle contraction: Deformed configuration colored by trans-
membrane potential Vm obtained by SPH-UNOG when the transmem-
brane potential of top face Vm = 30 mV with three different spatial

resolutions and both isotropic and anisotropic material properties. Note
that dp is the initial particle spacing

including the recovery phase and reverse rotation, as antici-
pated.

5.7 Electrophysiologically inducedmuscle
contraction

Following Refs. [15, 75], we examine a unit cube of muscle
characterized by an orthogonal material direction, where the
muscle fiber and sheet directions align with the global coor-
dinates. The passive response is described by the Holzapfel-
Ogden model, and the material parameters are detailed in
Table 6. To initiate the excitation-induced response, a linear
distribution of transmembrane potential is applied along the
vertical direction, with Vm = 0 mV at the bottom face and

Fig. 27 Muscle contraction: Deformed configuration colored by von
Mises strain ε̄ obtained bySPH-UNOGwhen the transmembrane poten-
tial of top face is increased to Vm = 300 mV with both isotropic and
anisotropic material properties. The spatial particle discretization is set
as dp = 0.025

Table 7 Muscle contraction: Quantitative validation of the deformation

dp = 0.1 dp = 0.05 dp = 0.025 Zhang et al. [15]

Displacement 0.4988 0.5248 0.5355 0.535

Vm = 30 mV at the top face. For simplicity, we neglect the
time variation of the transmembrane potential, and an acti-
vation law for active stress is employed by

Ta = −0.5Vm . (46)

Two distinct tests involving iso- and anisotropic models are
conducted in this study.

Figure26 shows the deformed configuration of the cubic
muscle with particle refinement. The results showcase
good convergence properties, and qualitative agreement is
observed for the isotropic test, aligning well with the find-
ings presented in Ref. [75] (refer to Figure 7 in their work).
Moreover, Table 7 indicates that the displacement of the top
face at fine particle resolution is 0.5355, demonstrating good
agreementwith the value of 0.535 reported inRef. [15]. In the
case of the anisotropic test, deformation is reduced owing to
the presence of fibers and sheets. The transmembrane poten-
tial of top face is increased to Vm = 300 mV to further test
the robustness of present formulation. As shown in Fig. 27,
particle deformation and vonMises strain fields are well cap-
tured.

5.8 Taylor bar

A well-documented Taylor bar example, as explored in Refs
[68, 70, 74, 76–85], is utilized to assess the effectiveness
of the proposed formulation in high-speed impact scenar-
ios. A 2D copper bar, characterized by an initial length

123



Computational Mechanics

Fig. 28 2D Taylor bar: Deformed configuration colored by von Mises
stress σ̄ at serial temporal instants obtained by SPH-UNOGwith initial
uniform velocity v0 = (0,−227)T m/s, and its comparison with that of
SPH. The material is modeled by isotropic hardening elastic–plasticity
with Young’s modulus E = 117GPa, density ρ0 = 8.930×103 kg/m3,

Poisson’s ratio ν = 0.35, yield stress τy = 0.4GPa, and harden-
ing modulus κ = 0.1GPa. The spatial particle discretization is set
as H/dp = 40 with H denoting the height of the column and dp the
initial particle spacing

Fig. 29 2D Taylor bar: Deformed configuration colored by von Mises stress σ̄ obtained by SPH-UNOG with three different spatial resolutions and
the initial uniform velocity v0 = (0,−227)T m/s

of L = 0.03m and a height of H = 0.006m, is mod-
eled for plane-strain analysis by undergoing impact against
a rigid frictionless wall at time t = 0 s with a veloc-
ity of v0 = (0,−227)T m/s. To simulate the material
response, a hyperelastic–plastic model with linear harden-
ing is employed. The material parameters include Young’s
modulus E = 117GPa, density ρ0 = 8.930 × 103 kg/m3,
Poisson’s ratio ν = 0.35, yield stress τy = 0.4GPa, and
hardening modulus κ = 0.1GPa. It should be noted that
since the applied artificial damping stress ττ d significantly
influences the deformation in high-velocity impact scenar-

ios, ττ d used in the Taylor cases is given as

ττ d = 0.125
χ

2

dbb

dt
, (47)

indicating the adoption of a smaller numerical damping com-
pared to other cases. Despite setting the CFL number to 0.1
for instability, which increases the computational overhead,
the results converge rapidly even in low-resolution scenarios.

Figure28 shows the deformed configuration of 2D Taylor
bar at different time instants with von Mises stress con-
tour obtained by SPH-UNOG, and its comparison with that
simulated by SPH when the time t = 60μs. While both
simulations exhibit satisfactory performance and produce
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Fig. 30 2D Taylor bar: Deformed configuration colored by von Mises strain ε̄ obtained by SPH-UNOG (top panel) and SPH (bottom panel) with
initial uniform velocity v0 = (0,−400)T m/s. The spatial particle discretization is set as H/dp = 40

comparable results in terms of deformation and stress pat-
terns, SPH-UNOG demonstrates a more uniform particle
distribution compared to SPH. In contrast to the nearly 90◦
contact angles, angles of the left and right lower corners
of the deformed bar, shown in Ref. [37] (see their Fig. 9),
the resulting deformed configuration in our study displays
contact angles of less than 90◦, consistent with the obser-
vations in Refs. [68] (see their Fig. 10), [79] (see their Fig.
6), and [84] (see their Fig. 9), despite the consideration of
a 2D case here. A convergence study is undertaken, incre-
mentally refining the spatial resolution from H/dp = 10 to
H/dp = 20 and H/dp = 40. The convergence properties
of both deformation and von Mises stress σ̄ are shown in
Fig. 29. A significantly more challenging problem is studied
by increasing the initial velocity to

v0 = (0,−400)T m/s. As illustrated in Fig. 30, the unsta-
bilized results from SPH exhibit noticeable particle disorder.
Conversely, the outcomes obtained through SPH-UNOG
demonstrate an orderly particle distribution and a smooth
strain field, even in the presence of significant strain (the
maximum von Mises strain exceeds 400).

The 2D Taylor bar is expanded to a 3D analysis, featuring
a squared cross-section with dimensions of 0.006×0.006m,
as shown in Fig. 31. Figure32 illustrates the deformed con-
figuration of the 3D Taylor bar at various time instants,
accompanied by von Mises stress contours obtained through
SPH-UNOG, and a comparative analysis is presented against
the simulation conducted by SPH at t = 60μs. Although
both simulations demonstrate good performance and yield
comparable results in terms of deformation and stress pat-
terns, SPH-UNOG still exhibits a more uniform particle
distribution compared to SPH. A sequence of particle refine-

Fig. 31 3D Taylor bar: Problem setup

ment analyzes, from H/dp = 8 to H/dp = 12, H/dp = 16
and H/dp = 20, is also conducted. As presented in Fig. 33,
the good convergence characteristics of both deformation and
the vonMises stress σ̄ are observed. For further convergence
analysis and quantitative validation, Fig. 34 illustrates the
temporal evolution of the x-axis position of point Smarked in
Fig. 31. It is evident from observation that the displacement
converges rapidly, approximating a second-order rate, and the
x-axis position of the highest resolution is x = 6.956mm,
aligning closelywith the results inRef. [83].Amore demand-
ing scenario is investigated by increasing the initial velocity
to v0 = (0, 0,−350)T m/s. As depicted in Fig. 35, the results
obtained through SPH-UNOG still exhibit an organized par-
ticle distribution and a smooth stress field.

Following Refs. [68, 76], we now investigate a round alu-
minum bar with the initial length L = 2.346 cm and radius
R = 0.391 cm. The material is modeled by perfect plasticity,
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Fig. 32 3D Taylor bar: Deformed configuration colored by von Mises
stress σ̄ at serial temporal instants obtained by SPH-UNOG with ini-
tial uniform velocity v0 = (0, 0,−227)T m/s, and its comparison
with that of SPH. The material is modeled by isotropic hardening
elastic–plasticity with Young’s modulus E = 117GPa, density ρ0 =

8.930×103 kg/m3, Poisson’s ratio ν = 0.35, yield stress τy = 0.4GPa,
and hardening modulus κ = 0.1GPa. The spatial particle discretization
is set as H/dp = 20 with H denoting the height of the column and dp
the initial particle spacing

Fig. 33 3D Taylor bar: Deformed configuration colored by von Mises strain ε̄ obtained by SPH-UNOG with four different spatial resolutions and
the initial uniform velocity v0 = (0, 0,−227)T m/s

123



Computational Mechanics

Fig. 34 3D Taylor bar: Time history of the horizontal position x
observed at node S obtained by SPH-UNOGwith initial uniform veloc-
ity v0 = (0, 0,−227)T m/s under four different resolutions

i.e., hardening modulus κ = 0 Pa, with initial density ρ0 =
2700 kg/m3, Young’s modulus E = 78.2GPa, Poisson’s
ratio ν = 0.3, and yield stress τy = 0.29GPa. The initial
impact velocity is set as v0 = (0, 0,−373)T m/s. A conver-
gence study is conducted with three resolutions, R/dp = 8,
R/dp = 12 and R/dp = 16. As shown in Fig. 36, the good
convergence characteristics of both deformation and the von
Mises strain ε̄ are observed. For quantitative validation, Table
8 summarizes the deformation under various resolutions and
compares it with the results from Ref. [68]. Favorable con-
vergence properties and high accuracy are observed.

5.9 Necking bar

In this section, we examine a plane-strain bar undergoing
uniform extension, a standard test problem analyzed in Refs.
[55, 86, 87]. The bar dimensions are length L = 53.334mm
and height H = 12.826mm. To control the location of the
necking, the center dimension of the bar is reduced to 0.982 of
the side height (1.8% reduction), as shown in Fig. 37. A total
displacement of 8mm is applied on the constrained boundary
particles, an additional 4 layers of particles on both sides.
The bar exhibits elastic deformation governed by the Neo-
Hookean law and the plastic response characterized by the
nonlinear isotropic hardening law. Material parameters are
detailed in Table 9.

Figure38 depicts the deformed configuration of the neck-
ing bar at different instants, featuring von Mises strain
contours, obtained through SPH-UNOG, and a compara-
tive analysis with the simulation performed by SPH under
the applied displacement of 6.75 mm. While SPH exhibits
noticeable particle disorder, SPH-UNOG presents com-
mendable performance in capturing deformation and strain
patterns with a organized particle distribution. It should be
noted that, despite the symmetry of this necking bar problem,
the strain field exhibits asymmetry owing to the initial asym-
metric particle distribution. A series of particle refinement
analyses are performed, with the spatial resolution varying
from H/dp = 20 to H/dp = 40 and H/dp = 60.

Theresults, depicted in Fig. 39, reveal quite good conver-
gence properties in both deformation and vonMises stress σ̄ ,
reinforcing the reliability of the simulation outcomes. For a

Fig. 35 3D Taylor bar: Deformed configuration colored by von Mises strain ε̄ at serial temporal instants obtained by SPH-UNOG with initial
uniform velocity v0 = (0, 0,−350)T m/s. The spatial particle discretization is set as H/dp = 20
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Fig. 36 3D round Taylor bar: Deformed configuration colored by von
Mises strain ε̄ obtained by SPH-UNOG with three different spatial
resolutions and the initial uniform velocity v0 = (0, 0,−373)T m/s.
The perfect plastic material is modeled with density ρ0 = 2700 kg/m3,

Young’s modulus E = 78.2GPa, Poisson’s ratio ν = 0.3, and yield
stress τy = 0.29GPa. Note that R is the radius of bar and dp the initial
particle spacing

Table 8 3D round Taylor bar:
Quantitative validation of
deformed geometries for perfect
plastic material

R/dp = 8 R/dp = 12 R/dp = 16 Chen et al. [68]

Length (cm) 1.4816 1.4597 1.4483 1.454

Radius (cm) 0.9120 0.9362 0.9624 1.051

Fig. 37 Necking bar: Problem setup

Table 9 Necking bar: Non-linear hardening elastic–plastic material
parameters

Parameters Value

Shear modulus 80.1938 GPa

Bulk modulus 164.21 GPa

Initial flow stress 450 MPa

Saturation flow stress 715 MPa

Saturation exponent 16.93

Linear hardening coefficient 129.24 MPa

more comprehensive convergence analysis and quantitative
validation, Figs. 40 and 41 present the necking displacement
of the bar center dimension and the corresponding reaction
force exerted by the material in response to the applied ten-
sile load. These results are compared with the highest-order
finite element outcomes reported in Ref. [87].

Table 10 Oobleck octopus: Viscoplastic material parameters

Parameters Value

Density 1000.0 kg/m3

Shear modulus 11.2 kPa

Bulk modulus 109.0 kPa

Yield stress 0.1 Pa

Viscosity 10

Herschel Bulkley power 2.8

The significant convergence properties and accuracy are
noted, reaffirming the reliability of the simulation. And we
canobserve that after a short elastic response, indicated by the
initial linear segment of the reaction force curve, the bar tran-
sitions to plastic deformation, marked by a slowly increasing
reaction force. Subsequently, the deformation shifts to a
mode where plastic effects concentrate in the necking area,
leading to a decrease in the reaction force. Figures42 and
43 present a comparative analysis of displacement and reac-
tion force curves between SPH-UNOG and SPH. Notably,
SPH exhibits inaccuracies after a stretching of 1.2 mm due
to hourglass modes, while SPH-UNOG maintains accurate
performance throughout.
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Fig. 38 Necking bar: Deformed configuration colored by von Mises
strain ε̄ at various instants obtained by SPH-UNOG, and its comparison
with that of SPH. The spatial particle discretization is set as H/dp = 40
with H denoting the height of bar and dp the initial particle spacing

Fig. 39 Necking bar: A sequence of particle refinement analyzes using
SPH-UNOG. Three different spatial resolutions, H/dp = 20, H/dp =
40 and H/dp = 60, are applied

Fig. 40 Necking bar: Necking displacement versus imposed displace-
ment obtained by SPH-UNOG with three different spatial resolutions,
and its comparison with that of Elguedj and Hughes [87]

Fig. 41 Necking bar: Reaction force versus imposed displacement
obtained by SPH-UNOG with three different spatial resolutions, and
its comparison with that of Elguedj and Hughes [87]

5.10 Oobleck octopus

In this section, we analyze mechanical behaviors of an
octopus made of shear thickening oobleck, a viscoplastic
material. The octopus undergoes deformation under its own
gravity and the punch from a half-cylinder, as illustrated in
Fig. 44. Note that the half-cylinder stops punching after 0.3 s.
The material properties of oobleck are provided in Table 10
[56].

Figure45 shows the first stage of the octopus deforma-
tion, wherein the octopus feet collide with each other at high
velocity. Moving on to the second stage, as illustrated in
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Fig. 42 Necking bar: Necking displacement versus imposed displace-
ment obtained by SPH-UNOG and SPH, and their comparison with
that of Elguedj and Hughes [87]. The spatial particle discretization is
H/dp = 40

Fig. 43 Necking bar: Reaction force versus imposed displacement
obtained by SPH-UNOG and SPH, and their comparison with that
of Elguedj and Hughes [87]. The spatial particle discretization is
H/dp = 40

Fig. 46, significant plastic flow is observed in the octopus.
The smooth deformation and huge strain fields highlight the
potential of the present formulation for real-world applica-
tions.

Fig. 44 Oobleck octopus: Initial configuration

6 Concluding remarks

In conclusion, our presented unified non-hourglass formu-
lation addresses a critical gap in TLSPH simulations by
offering a comprehensive approach to mitigate hourglass
modes, enhancing the reliability and accuracy of simula-
tions across diverse material models and complex scenarios.
Through comprehensive validation by benchmark cases,
together with a single set of modeling parameters, we show
the robustness and accuracy of the present formulation.
Furthermore, the successful simulation of the very large
deformation of Oobleck serves as a compelling demonstra-
tion of the formulation potential in real-world scenarios.

Although the current formulation is designed for TLSPH,
it is expected that a similar idea can be applied to updated
Lagrangian SPH solid dynamics, as a future work, for situa-
tions where latter is preferred. Furthermore, beside hourglass
modes, another related numerical stability issue [88], i.e. the

non-positivity of the determinant of the deformation gra-
dient under large anisotropic stretch or compression, can be
also identified as an area for future research.

Appendix A Plastic algorithm

While specific details regarding the non-linear hardening
plastic model are available in our previous work [89] and
insights into the viscous plastic model can be found in Ref.
[56], we just focus on in-depth elaboration of the perfect and
linear hardening plastic models in the following. Note that
the primary distinctions among these four plastic models are
specifically related to the return mapping which is employed
to update the stress and strain states when a material under-
goes deformation beyond its elastic limit.
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Fig. 45 Oobleck octopus: Deformed configuration of first stage colored by von Mises strain ε̄ at serial temporal instants obtained by SPH-UNOG

The scalar yield function f (ττ de) of the perfect and linear
hardening plastic models can be expressed as

f (ττ de) = ‖ττ de‖F −
√
2

3

(
κξ + τy

)
, (A.1)

where κ is the hardening modulus, ξ the hardening factor
which is 0 for perfect plasticity, and τy the initial flow stress,
also called yield stress. Note that ‖ · ‖F denotes a Frobe-
nius norm of a tensor variable. The detailed algorithm of the

linear hardening plastic model from Ref. [55] is presented
in Algorithm 1. The superscript (·)tr ial designates quanti-
ties pertaining to a trial elastic state which is assessed to
determine whether it exceeds the elastic limit, and the time
stepping algorithm is performed in the elastoplastic material
description. It is noteworthy that, since a position-based Ver-
let time-integration scheme [23] is applied in this paper (see
also Sec. 2.3), the plastic model algorithm is operated at the
mid point of the n-th time step, i.e., the parameter is denoted

by (·)n+ 1
2 .
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Fig. 46 Oobleck octopus: Deformed configuration of second stage
colored by von Mises strain ε̄ at serial temporal instants obtained by
SPH-UNOG

Algorithm 1: Algorithm for J2 flow theory with linear
isotropic hardening.

1 Update deformation tensor Fn+ 1
2

2 Compute elastic predictor (Note that C0
p = I.)

bb
trial,n+ 1

2
e = Fn+ 1

2

(
Cn− 1

2
p

)−1 (
Fn+ 1

2

)T
,

ττ
tr ial,n+ 1

2
de = G dev

(
b̄b
trial,n+ 1

2
e

)
.

3 Check for plastic loading (Note that ξ0 = 0.)

f trial,n+ 1
2 = ‖ττ tr ial,n+ 1

2
de ‖F −

√
2

3

(
κξn− 1

2 + τy

)
.

4 if f trial,n+ 1
2 ≤ 0 then

5 Elastic state, set (·)n+ 1
2 = (·)tr ial,n+ 1

2 , and(
Cn+ 1

2
p

)−1

=
(

Cn− 1
2

p

)−1

.

6 else
7 Plastic state, and perform 9 (the return mapping)
8 end
9 Compute normalized shear modulus

G̃ = 1

d
tr

(
b̄b
trial,n+ 1

2
e

)
G.

Compute increment of hardening factor

ξ incre,n+ 1
2 = 0.5 f trial,n+ 1

2

G̃ + κ/3.0
.

Update hardening factor

ξn+ 1
2 = ξn− 1

2 +
√
2

3
ξ incre,n+ 1

2 .

Update stress and deformation gradient

ττ
n+ 1

2
de = ττ

tr ial,n+ 1
2

de − 2G̃ξ incre,n+ 1
2 ττ

tr ial,n+ 1
2

de /‖ττ tr ial,n+ 1
2

de ‖F ,

bb
n+ 1

2
e = 1

G
ττ
n+ 1

2
de + 1

d
tr

(
bb
trial,n+ 1

2
e

)
I,

(
Cn+ 1

2
p

)−1

=
(
Fn+ 1

2

)−1
bb
n+ 1

2
e

(
Fn+ 1

2

)−T
.
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In this paper, we propose a reduced-dimensional smoothed particle hydrodynamics (SPH) 
formulation for quasi-static and dynamic analyses of plate and shell structures undergoing finite 
deformation and large rotation. By exploiting Uflyand–Mindlin plate theory, the present surface-

particle formulation is able to resolve the thin structures by using only one layer of particles 
at the mid-surface. To resolve the geometric non-linearity and capture finite deformation and 
large rotation, two reduced-dimensional linear-reproducing correction matrices are introduced, 
and weighted non-singularity conversions between the rotation angle and pseudo normal are 
formulated. A new non-isotropic Kelvin-Voigt damping is proposed especially for the both thin 
and moderately thick plate and shell structures to increase the numerical stability. In addition, 
a shear-scaled momentum-conserving hourglass control algorithm with an adaptive limiter is 
introduced to suppress the mismatches between the particle position and pseudo normal and 
those estimated with the deformation gradient. A comprehensive set of test problems, for which 
the analytical or numerical results from literature or those of the volume-particle SPH model are 
available for quantitative and qualitative comparison, are examined to demonstrate the accuracy 
and stability of the present method.

1. Introduction

For computational continuum dynamics, as alternatives to conventional mesh-based methods, e.g. finite element method (FEM) 
and finite volume method (FVM), meshless methods have flourished in the past decades [1–4]. Smoothed particle hydrodynamics 
(SPH), initially developed by Lucy [5] and Gingold and Monaghan [6] for astrophysical simulations, is one typical example. In SPH, 
the continuum is modeled by particles associated with physical properties such as mass and velocity, and the governing equations are 
discretized in the form of particle interactions using a Gaussian-like kernel function [7,3,8]. Since a significant number of physical 
system abstractions can be realized through particle interactions, SPH has been used to model multi-physical systems within a unified 
computational framework [9], which is able to achieve seamless monolithic, strong and conservative coupling [10,11].

To achieve such a unified computational framework, it is crucial to discretize all relevant physics equations using effective and 
efficient SPH methods. In the case of plate and shell structures which are omnipresent thin structures in scientific and engineering 
fields such as shipbuilding [12,13], aerospace [14], and medical treatment [15], etc., the traditional full-dimensional or volume-

particle SPH method, is not computationally efficient [16]. Since there are well-developed and matured reduced-dimensional theories, 
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such as Kirchhoff-Love [17] and Uflyand-Mindlin (or Mindlin-Reissner) [18–21], for plate and shell structures based on mid-surface 
reconstruction, it is expected to develop the computationally much more efficient reduced-dimensional or surface-particle SPH 
method with a single-layer of particles only.

The early meshless methods for plates and shells were based on Petrov or element-free Galerkin formulation [22–26], or the repro-

ducing kernel particle method [27–29], including plastic deformation and material failure [26]. As for SPH, Maurel and Combescure 
[30] first developed a surface-particle SPH method for total Lagrangian quasi-static and dynamic analyses of moderately thick plates 
and shells based on the Uflyand-Mindlin theory and the assumption of small deformation. In their work, besides an artificial viscos-

ity term to alleviate numerical instability issues, a stress point method is applied to temper hourglass or zero-energy modes which 
exhibit in the traditional SPH method using collocated particles for both deformation and stress. While being effective on preventing 
zero-energy modes, using stress points may faces several issues, such as how to locate or generate these points for complex geome-

tries, complicated numerical algorithms and the compensation of computational efficiency [31,32]. Nevertheless, this method was 
later applied in large deformation analyses by Ming et al. [33] and dynamic damage-fracture analyses by Caleyron et al. [34]. Lin 
et al. [35] developed a similar method for quasi-static analyses, but applied an artificial viscosity term based on membrane and 
shearing decomposition. Ming et al. [36] first considered finite deformation by taking all strain terms into account with the help of 
Gauss-Legendre quadrature for more accurately capturing of non-linear stress. Since the introduction of the surface-particle model 
in SPH, it has succeeded in some engineering applications, such as composite plate and shell structures [37,38], explosion analysis 
[39], and ship simulations [13].

In this work, we propose a collocated surface-particle SPH formulation for total Lagrangian quasi-static and dynamic analyses of 
general plate or shell structures, which may be thin or have moderate thickness, involving finite deformation or/and large rotation. 
First, to better resolve the geometric non-linearity induced by finite deformation and large rotation, two new reduced-dimensional 
correction matrices for linearly reproducing position and normal direction are introduced, and a weighted conversion algorithm, 
which achieves non-singularity under large rotation, is proposed. Second, a new non-isotropic Kelvin-Voigt damping base on Ref. [40]

is proposed for achieve good numerical stability for both thin and moderately thick plate or shell structures. Third, in order to address 
hourglass modes using collocated particles only other than introducing extra stress points, drawing the inspiration from Refs. [41,31], 
a shear-scaled momentum-conserving formulation with an adaptive limiter is developed by mitigating the discrepancy between the 
actual particle position and pseudo normal and those estimated by the deformation gradient. A set of numerical examples involving 
quasi-static and dynamic analyses for both thin and moderately thick plate or shell structures are given. The results are compared 
with analytical, numerical solutions in literature or/and those obtained by the volume-particle SPH method to demonstrate the 
numerical accuracy and stability of the present method.

The remainder of this manuscript is organized as follows. Section 2 introduces the theoretical model of plates and shells, including 
the kinematics, constitutive relation, stress correction and conservation equations. The proposed surface-particle SPH formulation, 
including the reduced-dimensional linear-producing correction matrices, weighted conversion algorithm, non-isotropic damping and 
momentum-conserving hourglass control, is described in Section 3. Numerical examples are presented and discussed in Section 4 and 
then concluding remarks are given in Section 5. For a better comparison and future opening for in-depth studies, all the computational 
codes of this work are released in the open-source repository of SPHinXsys [42,9] at https://github .com /Xiangyu -Hu /SPHinXsys.

2. Theoretical models

We first introduce the theoretical mode of 3D plate, and then that of 3D shell in which material points may possess different 
initial normal directions leading to different initial local coordinate systems. After that, we briefly describe the 2D plate and shell 
models, which resolve the plane strain problem, as a simplification of the 3D counterparts.

2.1. 3D plate model

We consider the Uflyand–Mindlin plate theory [18,19] to account for transverse shear stress which is significant for moderately 
thick plates. The theory implies that the plate behavior can be represented by one layer of material points at its mid-surface, as 
shown in Fig. 1.

2.1.1. Kinematics

We introduce 𝑿 = (𝑋,𝑌 ,𝑍) to represent the global coordinate system, and 𝝃 = (𝜉, 𝜂, 𝜁) and 𝒙 = (𝑥, 𝑦, 𝑧), associated with so-

called pseudo-normal vector 𝒏, to denote the initial and current local coordinate systems, respectively. Note that the initial local 
coordinate system is same with the global one for plate. Each material point possesses five degrees of freedom, viz., three translations 
𝒖 = {𝑢, 𝑣,𝑤}T and two rotations 𝜽 = {𝜃,𝜑}T expressed in the global coordinates. Positive values of 𝜃 and 𝜑 indicate that the plate 
is rotated anticlockwise around the coordinate axis when the axis points toward the observer and the coordinate system is right-

handed. The two rotations are used to update the pseudo-normal 𝒏 =
{
𝑛1, 𝑛2, 𝑛3

}T
which is also defined in the global coordinate 

system and remains straight but is not necessarily perpendicular to the mid-surface, i.e., the pseudo normal may be different with 
the real normal 𝒏𝑟, as shown in Fig. 1. Note that 𝒏0 = {0,0,1}T denotes the pseudo-normal in the initial configuration with the 
superscript (∙)0 denoting the initial configuration.

For a 3D plate, the position 𝒓 of a material point at a distance 𝜒 away from the mid-surface along the pseudo normal 𝒏 can be 
expressed as
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Fig. 1. Schematic of a 3D plate model. Note that, the spherical shape (also in other figures) here does not represent the exact shape of a SPH particle, which is defined 
by the SPH formulation, but is for schematic illustration.

𝒓 (𝜉, 𝜂,𝜒, 𝑡) = 𝒓𝑚 (𝜉, 𝜂, 𝑡) + 𝜒𝒏 (𝜉, 𝜂, 𝑡) , 𝜒 ∈
[
−𝑑∕2, 𝑑∕2

]
, (1)

where 𝑑 is the thickness, 𝒓𝑚 the position of the material point at the mid-surface with the subscript (∙)𝑚 denoting the mid-surface. 
Note that since the thickness is assumed to be constant during deformation and the pseudo normal 𝒏 represents the plate thickness 
direction, the distance 𝜒 is always between −𝑑∕2 and 𝑑∕2. Therefore, the displacement 𝒖 of the material point can be determined 
by

𝒖 (𝜉, 𝜂,𝜒, 𝑡) = 𝒖𝑚 (𝜉, 𝜂, 𝑡) + 𝜒Δ𝒏 (𝜉, 𝜂, 𝑡) , (2)

where Δ𝒏 = 𝒏− 𝒏0. Then we can define the deformation gradient tensor as

𝔽 =∇0𝒓 =∇0𝒖+ 𝕀 =
(
𝒂1,𝒂2,𝒂3

)
, (3)

where ∇0 ≡ 𝜕∕𝜕𝝃 is the gradient operator with respect to the initial configuration, 𝕀 the identity matrix, and 𝒂1, 𝒂2, 𝒂3 are specified 
by

⎧⎪⎨⎪⎩

𝒂1 = 𝒓𝑚,𝜉 + 𝜒𝒏𝜉

𝒂2 = 𝒓𝑚,𝜂 + 𝜒𝒏𝜂

𝒂3 = 𝒏
(4)

with ∇0𝒓𝑚 ≡ (𝒓𝑚,𝜉 , 𝒓𝑚,𝜂)T and ∇0𝒏 ≡ (𝒏𝜉 , 𝒓𝜂)T. The deformation gradient tensor can be decomposed into two components as

𝔽 = 𝔽𝑚 + 𝜒𝔽𝑛, (5)

where 𝔽𝑚 =
(
𝒓T𝑚,𝜉 , 𝒓

T
𝑚,𝜂,𝒏

T
)

and 𝔽𝑛 =
(
𝒏T𝜉 ,𝒏T𝜂 ,0

)
. The change rate of this deformation gradient is expressed as

𝔽̇ =∇0𝒖̇ =∇0𝒖̇𝑚 + 𝜒∇0𝒏̇, (6)

where 𝒖̇𝑚 and 𝒏̇ denote the velocity and change rate of pseudo-normal, respectively. Furthermore, the real normal 𝒏𝑟 is given as

𝒏𝑟 =
𝒓𝑚,𝜉 × 𝒓𝑚,𝜂
|||𝒓𝑚,𝜉 × 𝒓𝑚,𝜂

|||
. (7)

2.1.2. Constitutive relation

With the deformation gradient tensor 𝔽 , the Green-Lagrangian strain tensor 𝔼 can be obtained as

𝔼 = 1
2
(
𝔽 T𝔽 − 𝕀

)
= 1

2
(ℂ− 𝕀) , (8)

where ℂ is the right Cauchy deformation gradient tensor. The Eulerian Almansi strain 𝜖𝜖 can be converted from 𝔼 as
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𝜖𝜖 = 𝔽−T ⋅ 𝔼 ⋅ 𝔽−1 = 1
2
(
𝕀− 𝔽−T𝔽−1) . (9)

When the material is linear and isotropic, the Cauchy stress 𝜎𝜎 reads

𝜎𝜎 = 𝐾 tr (𝜖𝜖) 𝕀+ 2𝐺
(
𝜖𝜖 − 1

3
tr (𝜖𝜖) 𝕀

)

= 𝜆 tr (𝜖𝜖) 𝕀+ 2𝜇𝜖𝜖,
(10)

where 𝜆 and 𝜇 are the Lamé constants, 𝐾 = 𝜆 + 2𝜇∕3 the bulk modulus and 𝐺 = 𝜇 the shear modulus. The relationship between the 
two moduli is given by

𝐸 = 2𝐺 (1 + 𝜈) = 3𝐾 (1 − 2𝜈) , (11)

where 𝐸 denotes the Young’s modulus and 𝜈 the Poisson’s ratio.

2.1.3. Stress correction

As the thickness is significantly less than the length and width of plate, the following boundary conditions hold when the plate is 
free from external forces on its surfaces where 𝜒 = ± 𝑑

2 or 𝑧 = ± 𝑑
2

𝜎𝑙
𝑥𝑧
|||𝑧=± 𝑑

2
= 0, 𝜎𝑙

𝑦𝑧
|||𝑧=± 𝑑

2
= 0, (12)

𝜎𝑙
𝑧𝑧
|||𝑧∈[− 𝑑

2 , 𝑑
2

] = 0, (13)

with the superscript (∙)𝑙 denoting the current local coordinates. Taking the boundary condition Eq. (13) and constitutive Eq. (10)

into account, the following relation of strains holds [27]

𝜖𝑙
𝑧𝑧 =

−𝜈
(
𝜖𝑙
𝑥𝑥 + 𝜖𝑙

𝑦𝑦

)

1 − 𝜈
, (14)

where the current local strain 𝜖𝜖𝑙 is obtained by

𝜖𝜖𝑙 =ℚ𝜖𝜖ℚT. (15)

Here, ℚ is the orthogonal transformation matrix from the global to current local coordinates. Following Batoz and Dhatt [43], ℚ can 
be given as

ℚ =
⎡⎢⎢⎢⎣

𝑛3 +
(𝑛2)2
1+𝑛3

− 𝑛1𝑛2
1+𝑛3

−𝑛1

− 𝑛1𝑛2
1+𝑛3

𝑛3 +
(𝑛1)2
1+𝑛3

−𝑛2
𝑛1 𝑛2 𝑛3

⎤⎥⎥⎥⎦
. (16)

To satisfy the boundary conditions of Eq. (12), the transverse shear stress should be corrected as [44]

𝜎̄𝑙
𝑥𝑧 = 𝜎̄𝑙

𝑧𝑥 = 𝜅𝜎𝑙
𝑥𝑧, 𝜎̄𝑙

𝑦𝑧 = 𝜎̄𝑙
𝑧𝑦 = 𝜅𝜎𝑙

𝑦𝑧, (17)

where 𝜅 denotes the shear correction factor which is typically set to 5∕6 for the rectangular section of the isotropic plate. Taking the 
corrected strain 𝜖̄𝜖𝑙 into constitutive Eq. (10) and then applying Eq. (17), the corrected current local Cauchy stress 𝜎̄𝜎𝑙 is obtained.

2.1.4. Conservation equations

The mass conservation equation can be written as

𝜌 = 𝐽−1
𝑚 𝜌0, (18)

where 𝐽𝑚 = det(𝔽𝑚), 𝜌0 and 𝜌 represent the initial and current densities, respectively. The momentum conservation equation is

𝜌𝒖̈𝑙 =∇ ⋅
(
𝜎̄𝜎𝑙)T (19)

or

𝜌
⎡⎢⎢⎣

𝑢̈𝑙

𝑣̈𝑙

𝑤̈𝑙

⎤⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

𝜕𝜎̄𝑙
𝑥𝑥

𝜕𝑥 +
𝜕𝜎̄𝑙

𝑥𝑦
𝜕𝑦 + 𝜕𝜎̄𝑙

𝑥𝑧
𝜕𝑧

𝜕𝜎̄𝑙
𝑦𝑥

𝜕𝑥 +
𝜕𝜎̄𝑙

𝑦𝑦
𝜕𝑦 +

𝜕𝜎̄𝑙
𝑦𝑧

𝜕𝑧
𝜕𝜎̄𝑙

𝑧𝑥
𝜕𝑥 +

𝜕𝜎̄𝑙
𝑧𝑦

𝜕𝑦 + 𝜕𝜎̄𝑙
𝑧𝑧

𝜕𝑧

⎤
⎥⎥⎥⎥⎦
. (20)

With Eqs. (12) and (13), we can integrate Eq. (20) along 𝜒 or 𝑧 ∈
[
−𝑑∕2, 𝑑∕2

]
as
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𝑑𝜌
⎡⎢⎢⎣

𝑢̈𝑙
𝑚

𝑣̈𝑙
𝑚

𝑤̈𝑙
𝑚

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝜕𝑁𝑙
𝑥𝑥

𝜕𝑥 +
𝜕𝑁𝑙

𝑥𝑦
𝜕𝑦

𝜕𝑁𝑙
𝑦𝑥

𝜕𝑥 +
𝜕𝑁𝑙

𝑦𝑦
𝜕𝑦

𝜕𝑁𝑙
𝑧𝑥

𝜕𝑥 +
𝜕𝑁𝑙

𝑧𝑦
𝜕𝑦

⎤⎥⎥⎥⎥⎦
, (21)

where the stress resultant ℕ𝑙 is calculated by the Gauss–Legendre quadrature rule as

ℕ𝑙 =
𝑑∕2

∫
−𝑑∕2

𝜎̄𝜎𝑙 (𝑧)𝑑𝑧 =
𝑁∑

𝑖𝑝=1
𝜎̄𝜎𝑙 (𝑧𝑖𝑝

)
𝐴𝑖𝑝. (22)

Here, 𝑧𝑖𝑝 is the integral point, 𝐴𝑖𝑝 the weight, and 𝑁 the number of the integral point. Since the quadrature rule is conducted to 
yield an exact result for polynomials of degree 2𝑁 − 1 or lower [45], 𝑁 is determined by the applied constitutive relation.

By multiplying both sides of Eq. (19) by 𝑧 and integrating along 𝑧 ∈
[
−𝑑∕2, 𝑑∕2

]
, the angular momentum conservation equation 

can be obtained as

𝑑3

12
𝜌
⎡⎢⎢⎣

𝑛̈𝑙
1

𝑛̈𝑙
2

𝑛̈𝑙
3

⎤⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

𝜕𝑀𝑙
𝑥𝑥

𝜕𝑥 +
𝜕𝑀𝑙

𝑥𝑦
𝜕𝑦

𝜕𝑀𝑙
𝑦𝑥

𝜕𝑥 +
𝜕𝑀𝑙

𝑦𝑦
𝜕𝑦

𝜕𝑀𝑙
𝑧𝑥

𝜕𝑥 +
𝜕𝑀𝑙

𝑧𝑦
𝜕𝑦

⎤⎥⎥⎥⎥⎦
+
⎡⎢⎢⎣

−𝑁𝑙
𝑥𝑧

−𝑁𝑙
𝑦𝑧

0

⎤⎥⎥⎦
, (23)

where the moment resultant 𝕄𝑙 is calculated as

𝕄𝑙 =
𝑑∕2

∫
−𝑑∕2

𝑧𝜎̄𝜎𝑙 (𝑧)𝑑𝑧 =
𝑁∑

𝑖𝑝=1
𝑧𝑖𝑝𝜎̄𝜎

𝑙 (𝑧𝑖𝑝
)
𝐴𝑖𝑝. (24)

Note that

𝑑∕2

∫
−𝑑∕2

𝑧
𝜕𝜎̄𝑙

𝑥𝑧
𝜕𝑧

𝑑𝑧 =
[
𝑧𝜎̄𝑙

𝑥𝑧

]𝑑∕2
−𝑑∕2

−
𝑑∕2

∫
−𝑑∕2

𝜎̄𝑙
𝑥𝑧𝑑𝑧 = −𝑁𝑙

𝑥𝑧. (25)

Therefore, the two governing equations, including the evolution of mid-surface displacement and pseudo normal, respectively, 
for the 3D plate can be described as

{
𝑑𝜌𝒖̈𝑙

𝑚 =∇𝑙 ⋅
(
ℕ𝑙)T

𝑑3

12 𝜌𝒏̈𝑙 =∇𝑙 ⋅
(
𝕄𝑙)T +𝐐𝑙 ,

(26)

where

ℕ𝑙 =
⎡⎢⎢⎣

𝑁𝑙
𝑥𝑥 𝑁𝑙

𝑥𝑦 0
𝑁𝑙

𝑦𝑥 𝑁𝑙
𝑦𝑦 0

𝑁𝑙
𝑧𝑥 𝑁𝑙

𝑧𝑦 0

⎤⎥⎥⎦
,𝕄𝑙 =

⎡⎢⎢⎣

𝑀𝑙
𝑥𝑥 𝑀𝑙

𝑥𝑦 0
𝑀𝑙

𝑦𝑥 𝑀𝑙
𝑦𝑦 0

𝑀𝑙
𝑧𝑥 𝑀𝑙

𝑧𝑦 0

⎤⎥⎥⎦
,𝐐𝑙 =

⎡⎢⎢⎣

−𝑁𝑙
𝑥𝑧

−𝑁𝑙
𝑦𝑧

0

⎤⎥⎥⎦
. (27)

In total Lagrangian formulation, the conservation equations above are converted into

{
𝑑𝜌0𝒖̈𝑚 =

(
𝔽𝑚
)−T ∇0 ⋅

(
𝐽𝑚ℕT)

𝑑3

12 𝜌0𝒏̈ =
(
𝔽𝑚
)−T ∇0 ⋅

(
𝐽𝑚𝕄T)+ 𝐽𝑚ℚT𝐐𝑙 ,

(28)

where ℕ =ℚTℕ𝑙ℚ and 𝕄 =ℚT𝕄𝑙ℚ are the stress and moment resultants, respectively, in global coordinates.

2.2. 3D shell model

Based on the 3D plate model, the 3D shell model is obtained by introducing the initial local coordinate system and the transfor-

mation matrix from the global to initial local coordinate system. As the transformation matrix is a unit matrix for plates, both plates 
and shells can be constructed in their initial local coordinates, allowing for a unified model for both structures.

2.2.1. Kinematics

The kinematics of shell can be constructed in the initial local coordinates denoted with the superscript (∙)𝐿. Each material point 
possesses five degrees of freedom, viz., three translations 𝒖𝐿 =

{
𝑢𝐿, 𝑣𝐿,𝑤𝐿}T and two rotations 𝜽𝐿 =

{
𝜃𝐿,𝜑𝐿}T as shown in Fig. 2. 

The pseudo-normal vector is also presented in initial local coordinates by 𝒏𝐿 =
{
𝑛𝐿
1 , 𝑛𝐿

2 , 𝑛𝐿
3
}T

, especially denoted by 𝒏0,𝐿 = {0,0,1}T

in the initial local configuration. The local position 𝒓𝐿 of a material point can be expressed as
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Fig. 2. Schematic of a 3D shell model.

𝒓𝐿 (𝜉, 𝜂,𝜒, 𝑡) = 𝒓𝐿
𝑚 (𝜉, 𝜂, 𝑡) + 𝜒𝒏𝐿 (𝜉, 𝜂, 𝑡) , 𝜒 ∈

[
−𝑑∕2, 𝑑∕2

]
. (29)

The local displacement 𝒖𝐿 can thus be obtained by

𝒖𝐿 (𝜉, 𝜂,𝜒, 𝑡) = 𝒖𝐿
𝑚 (𝜉, 𝜂, 𝑡) + 𝜒Δ𝒏𝐿 (𝜉, 𝜂, 𝑡) , (30)

where Δ𝒏𝐿 = 𝒏𝐿 − 𝒏0,𝐿. Similar to 3D plates, the local deformation gradient tensor of 3D shells can be defined as

𝔽𝐿 =∇0,𝐿𝒓𝐿 +∇0,𝐿𝒏𝐿 −∇0,𝐿𝒏0,𝐿 =
(
𝒂𝐿
1 ,𝒂𝐿

2 ,𝒂𝐿
3
)
, (31)

where ∇0,𝐿 ≡ 𝜕∕𝜕𝝃 is the gradient operators defined in the initial local configuration, and 𝒂𝐿
1 , 𝒂𝐿

2 , 𝒂𝐿
3 are detailed by

⎧⎪⎨⎪⎩

𝒂𝐿
1 = 𝒓𝐿

𝑚,𝜉 + 𝜒𝒏𝐿
𝜉 − 𝜒𝒏0,𝐿𝜉

𝒂𝐿
2 = 𝒓𝐿

𝑚,𝜂 + 𝜒𝒏𝐿
𝜂 − 𝜒𝒏0,𝐿𝜂

𝒂𝐿
3 = 𝒏𝐿.

(32)

2.2.2. Stress correction and conservation equation

With the local deformation gradient tensor 𝔽𝐿, the local Eulerian Almansi strain 𝜖𝜖𝐿 can be calculated by the Eq. (9). After that, 
the current local 𝜖𝜖𝑙 is obtained according to the coordinate transformation as

𝜖𝜖𝑙 =ℚ
(
ℚ0)T 𝜖𝜖𝐿ℚ0ℚT, (33)

where ℚ0, the orthogonal transformation matrix from the global to initial local coordinates, is calculated from Eq. (16) while the 
current pseudo normal 𝒏 is replaced by the initial one 𝒏0. And then the corrected strain 𝜖̄𝜖𝑙 is estimated by applying Eq. (14). After 
getting the current local Cauchy stress 𝜎𝜎𝑙 by Eq. (10), the corrected one 𝜎̄𝜎𝑙 is obtained by Eq. (17).

Note that the total Lagrangian conservation equations of a 3D shell has the same form as Eqs. (28) with 𝔽𝑚 =
(
ℚ0)T 𝔽𝐿

𝑚 ℚ0.

2.3. 2D plate/shell model

If a plate/shell is assumed to be a strip that is very long and has a finite width, and the transverse load is assumed to be uniform 
along the length, the analysis can be simplified at any cross section as a plane strain problem [46].

The kinematics of 2D plate and shell can also be built in initial local coordinates. The 2D model is in the global 𝑋-𝑍 plane, 
and each material point possesses three degrees of freedom, viz., two translations 𝒖𝐿 =

{
𝑢𝐿,𝑤𝐿}T and one rotation 𝜽𝐿 =

{
𝜑𝐿}T

expressed in the initial local coordinates. The pseudo-normal vector is presented in the initial local coordinates by 𝒏𝐿 =
{
𝑛𝐿
1 , 𝑛𝐿

3
}T

, 
especially denoted by 𝒏0,𝐿 = {0,1}T in the initial local configuration. Similar to 3D model, the local position 𝒓𝐿 of a material point 
can be expressed as
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𝒓𝐿 (𝜉,𝜒, 𝑡) = 𝒓𝐿
𝑚 (𝜉, 𝑡) + 𝜒𝒏𝐿 (𝜉, 𝑡) , 𝜒 ∈

[
−𝑑∕2, 𝑑∕2

]
, (34)

the local displacement 𝒖𝐿 can be evaluated as

𝒖𝐿 (𝜉,𝜒, 𝑡) = 𝒖𝐿
𝑚 (𝜉, 𝑡) + 𝜒Δ𝒏𝐿 (𝜉, 𝑡) , (35)

and the local deformation gradient tensor is written as

𝔽𝐿 =∇0,𝐿𝒓𝐿 +∇0,𝐿𝒏𝐿 −∇0,𝐿𝒏0,𝐿 =
(
𝒂𝐿
1 ,𝒂𝐿

3
)
, (36)

where 𝒂𝐿
1 and 𝒂𝐿

3 are given by

{
𝒂𝐿
1 = 𝒓𝐿

𝑚,𝜉 + 𝜁𝒏𝐿
𝜉 − 𝜁𝒏0,𝐿𝜉

𝒂𝐿
3 = 𝒏𝐿.

(37)

The coordinate transformation matrix ℚ from global to current local coordinates is simplified from Eqs. (16) as

ℚ =
[
𝑛3 −𝑛1
𝑛1 𝑛3

]
, (38)

and the 2D transformation matrix ℚ0 from global to initial local coordinates can also calculated by Eq. (38) while the current pseudo 
normal 𝒏 is replaced by the initial one 𝒏0. The corrected relation of strains is simplified from Eq. (14) as

𝜖𝑙
𝑧𝑧 =

−𝜈𝜖𝑙
𝑥𝑥

1 − 𝜈
. (39)

Finally, the 2D conservation equation is identical to 3D Eq. (28) with

ℕ𝑙 =
[
𝑁𝑙

𝑥𝑥 0
𝑁𝑙

𝑧𝑥 0

]
,𝕄𝑙 =

[
𝑀𝑙

𝑥𝑥 0
𝑀𝑙

𝑧𝑥 0

]
,𝐐𝑙 =

[
−𝑁𝑙

𝑥𝑧
0

]
. (40)

3. SPH method for plate and shell structures

In this section, we first introduce the reduced-dimensional SPH method, and detail the proposed formulations for plate and shell 
structures, including the discretization of conservation equations, non-singular conversion algorithm for the kinematics between 
rotation angles and pseudo normal, and the algorithms to increase numerical stability and alleviate hourglass modes. After that, the 
time-integration schemes are presented.

3.1. Reduced-dimensional SPH method

In full-dimensional SPH method, the smoothed field 𝑓 (𝒓) is obtained as

𝑓 (𝒓) = ∫
Ω

𝑓 (𝒓′)𝑊 (𝒓− 𝒓′, ℎ)𝑑𝒓′, (41)

where 𝑓 (𝒓′) is the original continuous field before smoothing, Ω the entire space and 𝑊 (𝒓−𝒓′, ℎ) a Gaussian-like kernel function with 
smoothing length ℎ denoting the compact support. By carrying out the integration of Eq. (41) along the thickness of the plate/shell 
structure, we can obtain the reduced-dimensional smoothed field by

𝑓 (𝐫) ≈ ∫̂
Ω

𝑓
(
𝐫′
)
𝑊
(
𝐫 − 𝐫′, ℎ

)
𝑑𝐫′, (42)

where Ω̂ denotes the reduced space and 𝑊 (𝒓− 𝒓′, ℎ) the reduced kernel function. Note that Eqs. (41) and (42) have identical forms 
of formulation. A reduced-dimensional fifth-order Wendland kernel [47] reads

𝑊 (𝑞,ℎ) = 𝛼

{
(1 + 2𝑞) (1 − 𝑞∕2)4 if 0 ≤ 𝑞 ≤ 2
0 otherwise

, (43)

where 𝑞 = ||𝐫 − 𝐫′||∕ℎ and the constant 𝛼 is equal to 3
4ℎ and 7

4𝜋ℎ2
for 2D and 3D problems, respectively. Also note that the reduced 

kernel function has identical form with the full-dimensional counterpart except different dimensional normalizing constant param-

eter, allowing the integration of unit can be satisfied in the reduced space. Due to the almost identical forms, in present work from 
here, we do not identify the full- and reduced-dimensional formulations unless explicitly mentioned.

In the reduced-dimensional SPH method, similarly to the full-dimensional counterpart [7], the gradient of the variable field 𝑓 (𝒓)
at a surface particle 𝑖 can be approximated as
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∇𝑓𝑖 = ∫
Ω

∇𝑓 (𝒓)𝑊 (𝒓𝑖 − 𝒓, ℎ)𝑑𝒓

= −∫
Ω

𝑓 (𝒓)∇𝑊 (𝒓𝑖 − 𝒓, ℎ)𝑑𝒓 ≈ −
∑

𝑗
𝑓𝑗∇𝑊𝑖𝑗𝑉𝑗 ,

(44)

where 𝑉 is the reduced particle volume, i.e. length and area for 2D and 3D problems, respectively. Here, the summation is conducted 
over all the neighboring particles 𝑗 located at the support domain of the particle 𝑖, and ∇𝑊𝑖𝑗 = − 𝜕𝑊

(
𝒓𝑖𝑗 ,ℎ

)
𝜕𝑟𝑖𝑗

𝒆𝑖𝑗 is the gradient of the 
kernel function with 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗 and 𝒆𝑖𝑗 = 𝒓𝑖𝑗∕|𝒓𝑖𝑗 | denoting the unit vector pointing from particle 𝑗 to 𝑖. Equation (44) can be 
modified into a strong form as

∇𝑓𝑖 =∇𝑓𝑖 − 𝑓𝑖∇1 ≈
∑

𝑗
𝑓𝑖𝑗∇𝑊𝑖𝑗𝑉𝑗 , (45)

where 𝑓𝑖𝑗 = 𝑓𝑖 − 𝑓𝑗 is the interparticle difference value. This strong-form derivative operator can be used to determine the local 
structure of a field, such as the deformation gradient tensor. And Eq. (44) can also be modified into a weak form as

∇𝑓𝑖 = 𝑓𝑖∇1+∇𝑓𝑖 ≈ −
∑

𝑗

(
𝑓𝑖 + 𝑓𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 . (46)

This weak-form derivative operator is applied here for solving the conservation equations. Thanks to its anti-symmetric feature, i.e., 
∇𝑊𝑖𝑗 = −∇𝑊𝑗𝑖, the momentum conservation of the particle system is ensured [7].

Note that the fundamental theory of the reduced-dimensional SPH method is generally outlined above without specifying whether 
the initial or update formulation is used. In the present work, this SPH method is applied for total Lagrangian formulation [48], as 
also illustrated in conversion Eq. (28). Therefore, the smoothing kernel function and its derivatives are only evaluated once, also 
denoted with superscript (∙)0 at the initial configuration, and kept unchanged during the simulation.

3.2. First-order consistency corrections

For the full-dimensional SPH in total Lagrangian formulation, in order to remedy the 1st-order inconsistency which is caused by 
incomplete kernel support at domain boundary or with irregular particle distribution, the symmetric correction matrix 𝔹0

𝑖 for each 
particle [49,3] is introduced for each particle to satisfy the linear-reproducing condition

(∑
𝑗
𝒓0𝑖𝑗 ⊗∇0𝑊𝑖𝑗𝑉

0
𝑗

)
𝔹0

𝑖 = 𝕀. (47)

Then the strong-form approximations of gradient Eq. (45) is modified as

∇0𝑓𝑖 ≈

(∑
𝑗

𝑓𝑖𝑗∇0𝑊𝑖𝑗𝑉
0
𝑗

)
𝔹0

𝑖 , (48)

and the weak-form approximations of divergence Eq. (46) as

∇0 ⋅ 𝑓𝑖 ≈ −
∑

𝑗

(
𝑓𝑖𝔹0

𝑖 + 𝑓𝑗𝔹0
𝑗

)
∇0𝑊𝑖𝑗𝑉

0
𝑗 . (49)

In the reduced-dimensional SPH, we generalize the linear-reproducing condition as

[
𝔾Tℚ0

𝑖

(∑
𝑗
𝒒0𝑖𝑗 ⊗∇0𝑊𝑖𝑗𝑉

0
𝑗

)(
ℚ0

𝑖
)T𝔾
]
𝔹0,𝐿

𝑖 =𝕂𝑖, (50)

where 𝒒0𝑖𝑗 is the initial inter-particle difference of a linear vector, ℚ0
𝑖 is the transformation matrix from the global to initial local 

coordinates, and 𝔾 is a reducing matrix, i.e.,

𝔾 =
[
1
0

]
and

⎡⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎦
(51)

for 2D and 3D problems, respectively. It ensures that the corrections are carried out within the local reduced space. Similarly, the 
strong-form approximations of gradient Eq. (45) is modified as

∇0𝑓𝑖 ≈

(∑
𝑗

𝑓𝑖𝑗∇0𝑊𝑖𝑗𝑉
0
𝑗

)
𝔹̃0

𝑖 , (52)

where 𝔹̃0
𝑖 =
(
ℚ0

𝑖
)T𝔾𝔹0,𝐿

𝑖 𝔾Tℚ0
𝑖 and the weak-form approximations of divergence Eq. (46) as
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∇0 ⋅ 𝑓𝑖 ≈ −
∑

𝑗

(
𝑓𝑖𝔹̃0

𝑖 + 𝑓𝑗 𝔹̃0
𝑗

)
∇0𝑊𝑖𝑗𝑉

0
𝑗 . (53)

Here, we introduce the correction matrix 𝔹̃0
𝑖 = 𝔹̃0,𝒓

𝑖 , 𝒒0𝑖𝑗 = 𝒓0𝑖𝑗 and 𝕂𝑖 is the reduced identity matrix denoted as

𝕂𝑖 =𝕂𝒓 =
[
1
]

and

[
1 0
0 1

]
(54)

for 2D and 3D problems, respectively, to correct the position-based quantities. Similarly, we introduce the correction matrix 𝔹̃0
𝑖 =

𝔹̃0,𝒏
𝑖 , 𝒒0𝑖𝑗 = 𝒏0𝑖𝑗 and

𝕂𝑖 =𝕂𝒏
𝑖 =
[
1∕𝑅𝐿

𝑖
]

and

[
1∕𝑅𝐿

1,𝑖 0
0 1∕𝑅𝐿

2,𝑖

]
, (55)

where 𝑅𝐿
𝑖 , 𝑅𝐿

1,𝑖 and 𝑅𝐿
2,𝑖 are the curvature radii of particle 𝑖 for 2D and 3D problems, respectively, to correct rotation-based quantities. 

Note that, as SPH is nearly of 2nd order accuracy for evenly distributed particles [50], ensuring 1st-order completeness for the 
gradient is adequate.

3.3. Discretization of conservation equations

With two correction matrices obtained from Eq. (50) and following Eq. (53), the momentum equations (28) are discretized as

𝑑𝜌0𝑖 𝒖̈𝑚,𝑖 =
∑

𝑗

(
𝐽𝑚,𝑖ℕ𝑖

(
𝔽𝑚,𝑖
)−T 𝔹̃0,𝒓

𝑖 + 𝐽𝑚,𝑗ℕ𝑗
(
𝔽𝑚,𝑗
)−T 𝔹̃0,𝒓

𝑗

)
∇0𝑊𝑖𝑗𝑉

0
𝑗 , (56)

and

𝑑3

12
𝜌0𝑖 𝒏̈𝑖 =

∑
𝑗

(
𝐽𝑚,𝑖𝕄𝑖

(
𝔽𝑚,𝑖
)−T 𝔹̃0,𝒏

𝑖 + 𝐽𝑚,𝑗𝕄𝑗
(
𝔽𝑚,𝑗
)−T 𝔹̃0,𝒏

𝑗

)
∇0𝑊𝑖𝑗𝑉

0
𝑗

+ 𝐽𝑚,𝑖
(
ℚ0

𝑖
)T𝑸𝑙

𝑖 .

(57)

Note that, as collocated particles are used in the present formulation, both the deformation gradient 𝔽𝑚,𝑖, stress and moment resul-

tants, i.e. ℕ𝑖 and 𝕄𝑖, are computed at the same particles.

3.4. Kelvin–Voigt type damping

Following Ref. [40], when calculating the current local Cauchy stress by using the constitutive Eq. (10), an artificial damping 
stress 𝜎𝜎𝑙

𝑑 based on the Kelvin-Voigt type damper is introduced here as

𝜎𝜎𝑙
𝑑 = 𝐽−1

𝑚 ℚ
(
ℚ0)T 𝔽𝐿𝔼̇𝐿𝛾𝛾

(
𝔽𝐿)Tℚ0ℚT, (58)

where the numerical viscosity matrix

𝛾𝛾 =
[
𝜌𝑐ℎ∕2 0

0 𝜌𝑐𝑠∕2

]
and

⎡⎢⎢⎣

𝜌𝑐ℎ∕2 0 0
0 𝜌𝑐ℎ∕2 0
0 0 𝜌𝑐𝑠∕2

⎤⎥⎥⎦
(59)

where 𝑐 =
√

𝐾∕𝜌 and 𝑠 = min(ℎ, 𝑑), for 2D and 3D problems, respectively. Note that, different from Ref. [40], where an isotropic 
numerical damping is applied, the present damping leads to a smaller out-of-plane contribution when 𝑑 < ℎ, which makes it suitable 
for both thin and moderately thick plate and shell structures. The change rate of the Green-Lagrangian strain tensor is given as

𝔼̇𝐿 = 1
2

[(
𝔽̇𝐿)T 𝔽𝐿 +

(
𝔽𝐿)T 𝔽̇𝐿

]
. (60)

Here, the change rate of the deformation gradient tensor of particle 𝑖 is

𝔽̇𝐿
𝑖 =∇0,𝐿𝒖̇𝐿

𝑖 =∇0𝒖̇𝐿
𝑚,𝑖 + 𝜒∇0𝒏̇𝐿

𝑖 , (61)

where

⎧⎪⎪⎨⎪⎪⎩

∇0𝒖̇𝐿
𝑚,𝑖 =ℚ0

𝑖

(∑
𝑗
𝒖̇𝑚,𝑖𝑗 ⊗∇0𝑊𝑖𝑗𝑉 0

𝑗

)
𝔹̃0,𝒓

𝑖
(
ℚ0

𝑖
)T

∇0𝒏̇𝐿
𝑖 =ℚ0

𝑖

(∑
𝑗
𝒏̇𝑖𝑗 ⊗∇0𝑊𝑖𝑗𝑉 0

𝑗

)
𝔹̃0,𝒏

𝑖
(
ℚ0

𝑖
)T (62)

are obtained following the consistency condition Eq. (50) and the strong-form correction Eq. (52).
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3.5. Hourglass control

Inspired from Refs. [41,31] in full-dimensional SPH for total Lagrangian solid dynamics, we introduce a hourglass control algo-

rithm here to alleviate the hourglass modes in the dynamics of plate and shell structures.

First, we estimate the position of the inter-particle middle point linearly using the deformation gradient tensor from particles 𝑖
and 𝑗, respectively, as

𝒓𝑖+ 1
2
= 𝒓𝑚,𝑖 −

1
2
𝔽𝑚,𝑖𝒓0𝑚,𝑖𝑗 , 𝒓𝑗− 1

2
= 𝒓𝑚,𝑗 +

1
2
𝔽𝑚,𝑗𝒓0𝑚,𝑖𝑗 . (63)

One can find that the inconsistency beyond linear estimation 𝒓̂𝑖𝑗 = 𝒓𝑖+ 1
2
− 𝒓𝑗− 1

2
is

𝒓̂𝑖𝑗 = 𝒓𝑚,𝑖𝑗 −
1
2
(
𝔽𝑚,𝑖 + 𝔽𝑚,𝑗

)
𝒓0𝑚,𝑖𝑗 . (64)

To suppress the position inconsistency 𝒓̂𝑖𝑗 , we introduce an extra correction term to the discrete momentum conservation Eq. (56) as

𝑑𝜌0𝑖 𝒖̈
𝑐𝑜𝑟
𝑚,𝑖 =

∑
𝑗

𝛼𝐺𝛽𝑖𝑗𝛾
𝒓
𝑖𝑗𝐷𝒓̂𝑖𝑗

𝜕𝑊
(
𝒓0𝑖𝑗 , ℎ

)

𝜕𝑟0𝑖𝑗
𝑉 0

𝑗 (65)

where 𝛽𝑖𝑗 = 𝑊 0
𝑖𝑗∕𝑊0 leads to less correction to further neighbors, 𝛾𝒓𝑖𝑗 =min

(
2 |||𝒓̂𝑖𝑗

|||∕
|||𝒓𝑚,𝑖𝑗

||| ,1
)

is an adaptive limiter for less correction 
on the domain where the inconsistency is less pronounced, D the dimension, and parameter 𝛼 = 0.002 according to the numerical 
experiment and remains constant throughout this work. Note that, since the inconsistency decreases with decreasing particle spacing, 
different from Refs. [31], the present correction is purely numerical and vanishes with increasing resolution. Similarly, for the 
predicted pseudo normal, the difference of the intermediate point can be described as

𝒏̂𝑖𝑗 = 𝒏𝑖𝑗 − 𝒏0𝑖𝑗 −
1
2
(
𝔽𝒏,𝑖 + 𝔽𝒏,𝑗

)
𝒓0𝑖𝑗 . (66)

Similar with Eq. (65), the extra correction term added to the discrete angular momentum conservation Eq. (57) is

𝑑3

12
𝜌0𝑖 𝒏̈

𝑐𝑜𝑟
𝑖 =

∑
𝑗

𝛼𝐺𝑑2𝛽𝑖𝑗𝛾
𝒏
𝑖𝑗𝐷𝒏̂𝑖𝑗

𝜕𝑊
(
𝒓0𝑖𝑗 , ℎ

)

𝜕𝑟0𝑖𝑗
𝑉 0

𝑗 , (67)

where the adaptive limiter is 𝛾𝒏𝑖𝑗 =min
(
2 |||𝒏̂𝑖𝑗

|||∕
|||𝒏𝑖𝑗 − 𝒏0𝑖𝑗

||| ,1
)

. Note that, different with Refs. [41,31], the present correction force is 
introduced in particle pairwise pattern, implying momentum conservation [7]. Also note that, the correction force is scaled to the 
shear, rather than Young’s, modulus, due to the fact that the hourglass modes are characterized by shear deformation [32].

3.6. Conversion between rotations and pseudo normal

Different from the mid-surface displacement, which can be numerically integrated directly from its evolution equation, the pseudo 
normal is not suitable for direct numerical integration since its unit magnitude may not be maintained strictly. In the present work, 
different from using Rodrigues formula [51,35], we update the pseudo normal 𝒏𝐿 with a more straightforward formulation base on 
Euler angles [51,44]

𝒏𝐿 =ℝ𝐿
𝜂 ℝ

𝐿
𝜉 𝒏

0,𝐿, (68)

where ℝ𝐿
𝜉 ≡ ℝ𝜉(𝜃𝐿) and ℝ𝐿

𝜂 ≡ ℝ𝜂(𝜑𝐿) are the local rotation matrices respected to the axes 𝜉 and 𝜂, respectively, or, equivalently, 
with the change rate

𝒏̇𝐿 = ℝ̇𝐿
𝜂 ℝ̇

𝐿
𝜉 𝒏

0,𝐿, (69)

where ℝ̇𝐿
𝜉 ≡ℝ𝜉(𝜃𝐿, 𝜃̇𝐿) and ℝ̇𝐿

𝜂 ≡ℝ𝜂(𝜑𝐿, 𝜑̇𝐿). Here, the rotations and their change rates are numerically integrated directly with the 
help of conversion relations.

Specifically, for a 2D problem, ℝ𝐿
𝜉 is a unit matrix, and ℝ𝐿

𝜂 can be described as

ℝ𝐿
𝜂 =
[
cos𝜑𝐿 sin𝜑𝐿

−sin𝜑𝐿 cos𝜑𝐿

]
. (70)

Then, one has the relation as

𝒏𝐿 = (sin𝜑𝐿, cos𝜑𝐿)T, (71)

its 1st-order time derivative corresponding Eq. (69)
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𝒏̇𝐿 = (cos𝜑𝐿 ⋅ 𝜑̇𝐿,−sin𝜑𝐿 ⋅ 𝜑̇𝐿)T, (72)

and 2nd-order derivative

𝒏̈𝐿 = (−sin𝜑𝐿 ⋅
(
𝜑̇𝐿)2 + cos𝜑𝐿 ⋅ 𝜑̈𝐿,−cos𝜑𝐿 ⋅

(
𝜑̇𝐿)2 − sin𝜑𝐿 ⋅ 𝜑̈𝐿)T. (73)

Note that Eq. (73) suggests two theoretically equivalent conversion relations

𝜑̈𝐿 =
𝑛̈𝐿
1 + sin𝜑𝐿 ⋅

(
𝜑̇𝐿)2

cos𝜑𝐿 and 𝜑̈𝐿 =
𝑛̈𝐿
2 + cos𝜑𝐿 ⋅

(
𝜑̇𝐿)2

− sin𝜑𝐿 . (74)

Although each of them can be used to obtain the rotation angle 𝜑𝐿 and its change rate with direct numerical integration and hence 
the pseudo normal with Eq. (68), there are singularities at large rotation angles 𝜑𝐿 = 0.5𝜋 + 𝑘𝜋 (1st relation) or 𝜑𝐿 = 𝑘𝜋 (2nd 
relation) with 𝑘 = 0, 1, 2, 3, ... [52,51,53]. In order to eliminate the singularities, we propose to uses both relations with a weighted 
average as

𝜑̈𝐿 =
(
cos𝜑𝐿)2 𝑛̈𝐿

1 + sin𝜑𝐿 ⋅
(
𝜑̇𝐿)2

cos𝜑𝐿 +
(
sin𝜑𝐿)2 𝑛̈𝐿

2 + cos𝜑𝐿 ⋅
(
𝜑̇𝐿)2

− sin𝜑𝐿

= cos𝜑𝐿
(
𝑛̈𝐿
1 + sin𝜑𝐿 ⋅

(
𝜑̇𝐿)2)− sin𝜑𝐿

(
𝑛̈𝐿
2 + cos𝜑𝐿 ⋅

(
𝜑̇𝐿)2) ,

(75)

which cancels both denominators.

As for 3D problems, the rotation matrices ℝ𝐿
𝜉 and ℝ𝐿

𝜂 are

ℝ𝐿
𝜉 =
⎡⎢⎢⎣

1 0 0
0 cos𝜃𝐿 −sin𝜃𝐿

0 sin𝜃𝐿 cos𝜃𝐿

⎤⎥⎥⎦
, (76)

and

ℝ𝐿
𝜂 =
⎡⎢⎢⎣

cos𝜑𝐿 0 sin𝜑𝐿

0 1 0
−sin𝜑𝐿 0 cos𝜑𝐿

⎤⎥⎥⎦
. (77)

Similarly, one has the relation between rotations and pseudo normal [54]

𝒏𝐿 = (cos𝜃𝐿 sin𝜑𝐿,−sin𝜃𝐿, cos𝜃𝐿 cos𝜑𝐿)T, (78)

its 1st-order time derivatives corresponding Eq. (69)

⎧
⎪⎨⎪⎩

𝑛̇𝐿
1 = −sin𝜃𝐿 sin𝜑𝐿𝜃̇𝐿 + cos𝜃𝐿 cos𝜑𝐿𝜑̇𝐿

𝑛̇𝐿
2 = −cos𝜃𝐿𝜃̇𝐿

𝑛̇𝐿
3 = −sin𝜃𝐿 cos𝜑𝐿𝜃̇𝐿 − cos𝜃𝐿 sin𝜑𝐿𝜑̇𝐿,

(79)

and 2nd-order derivatives

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑛̈𝐿
1 = − sin𝜃𝐿 sin𝜑𝐿𝜃̈𝐿 − cos𝜃𝐿 sin𝜑𝐿(𝜃̇𝐿)2 − 2 sin𝜃𝐿 cos𝜑𝐿𝜃̇𝐿𝜑̇𝐿

− cos𝜃𝐿 sin𝜑𝐿(𝜑̇𝐿)2 + cos𝜃𝐿 cos𝜑𝐿𝜑̈𝐿

𝑛̈𝐿
2 = sin𝜃𝐿(𝜃̇𝐿)2 − cos𝜃𝐿𝜃̈𝐿

𝑛̈𝐿
3 = −sin𝜃𝐿 cos𝜑𝐿𝜃̈𝐿 − cos𝜃𝐿 cos𝜑𝐿(𝜃̇𝐿)2 + 2 sin𝜃𝐿 cos𝜑𝐿𝜃̇𝐿𝜑̇𝐿

− cos𝜃𝐿 cos𝜑𝐿(𝜑̇𝐿)2 − cos𝜃𝐿 sin𝜑𝐿𝜑̈𝐿.

(80)

Note that, one can obtain 3 theoretically equivalent conversion relations, respectively, by 1st and 3rd expressions of Eq. (80) as

{
𝜃̈𝐿 = −

(
𝑛̈𝐿
3 cos𝜑𝐿 + 𝑛̈𝐿

1 sin𝜑𝐿 +
(
𝜑̇𝐿)2 cos𝜃𝐿 +

(
𝜃̇𝐿)2 cos𝜃𝐿

)
∕ sin𝜃𝐿

𝜑̈𝐿 =
(
𝑛̈𝐿
1 cos𝜑𝐿 − 𝑛̈𝐿

3 sin𝜑𝐿 + 2𝜑̇𝐿𝜃̇𝐿 sin𝜃𝐿)∕cos𝜃𝐿,
(81)

1st and 2nd expressions

⎧⎪⎨⎪⎩

𝜃̈𝐿 =
(
sin𝜃𝐿 (𝜃̇𝐿)2 − 𝑛̈𝐿

2

)
∕cos𝜃𝐿

𝜑̈𝐿 = (𝑛̈𝐿
1 cos𝜃𝐿 +

(
𝜑̇𝐿)2 cos2 𝜃𝐿 sin𝜑𝐿 +

(
𝜃̇𝐿)2 sin𝜑𝐿 − 𝑛̈𝐿

2 sin𝜑𝐿 sin𝜃𝐿

+ 2𝜑̇𝐿𝜃̇𝐿 cos𝜑𝐿 cos𝜃𝐿 sin𝜃𝐿)∕ cos𝜑𝐿 cos2 𝜃𝐿,

(82)

and 2nd and 3rd expressions
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⎧⎪⎨⎪⎩

𝜃̈𝐿 =
(
sin𝜃𝐿 (𝜃̇𝐿)2 − 𝑛̈𝐿

2

)
∕cos𝜃𝐿

𝜑̈𝐿 = −(𝑛̈𝐿
3 cos𝜃𝐿 +

(
𝜑̇𝐿)2 cos𝜑𝐿 cos2 𝜃𝐿 +

(
𝜃̇𝐿)2 cos𝜑𝐿 − 𝑛̈𝐿

2 cos𝜑𝐿 sin𝜃𝐿

− 2𝜑̇𝐿𝜃̇𝐿 cos𝜃𝐿 sin𝜑𝐿 sin𝜃𝐿)∕ sin𝜑𝐿 cos2 𝜃𝐿.

(83)

Again, each of these conversion relations suffers singularities at large rotations similar to that of 2D formulations. To eliminate the 
singularities, we first apply the weighted average to the conversion between 𝜃̈𝐿 and 𝒏̈𝐿 with Eqs. (81) and (82) as

𝜃̈𝐿 = −
(
𝑛̈𝐿
3 cos𝜑𝐿 + 𝑛̈𝐿

1 sin𝜑𝐿 +
(
𝜑̇𝐿)2 cos𝜃𝐿 +

(
𝜃̇𝐿)2 cos𝜃𝐿

)
sin𝜃𝐿

+
(
sin𝜃𝐿 (𝜃̇𝐿)2 − 𝑛̈𝐿

2

)
cos𝜃𝐿.

(84)

Then, for the conversion relation between 𝜑̈𝐿 and 𝒏̈𝐿, according to Eq. (81), we can rewrite the relation as

cos𝜃𝐿 = 𝐵∕𝜑̈𝐿, (85)

where 𝐵 denotes the numerator of the 2nd expression in Eq. (81). We further denote the numerators of the 2nd expressions in Eqs. 
(82) and (83), respectively, as 𝐵1 and 𝐵2. Inserting Eq. (85) into Eqs. (82) and (83), we have

{
𝜑̈𝐿 =

(
𝐵2 cos𝜑𝐿)∕𝐵1

𝜑̈𝐿 =
(
𝐵2 sin𝜑𝐿)∕𝐵2,

(86)

and obtain the weighted average of the conversion relation as

𝜑̈𝐿 =
𝐵1𝐵2 cos𝜑𝐿 +𝐵2𝐵2 sin𝜑𝐿

𝐵2
1 +𝐵2

2

. (87)

3.7. Time stepping

For the time integration of plate and shell dynamics, we use the position-based Verlet scheme [55,56]. At the beginning of each 
time step, the deformation gradient, particle position, rotation angles and pseudo normal are updated to the midpoint of the 𝑛-th 
time step as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝔽𝐿,𝑛+ 1
2 = 𝔽𝐿,𝑛 + 1

2Δ𝑡𝔽̇𝐿,𝑛

𝒓
𝑛+ 1

2
𝑚 = 𝒓𝑛

𝑚 + 1
2Δ𝑡𝒖̇𝑛

𝑚

𝜽𝐿,𝑛+ 1
2 = 𝜽𝐿,𝑛 + 1

2Δ𝑡𝜽̇𝐿,𝑛

𝒏𝐿,𝑛+ 1
2 = 𝒏𝐿,𝑛 + 1

2Δ𝑡𝒏̇𝐿,𝑛.

(88)

With updated 𝔽𝐿,𝑛+ 1
2 in hand, the corrected Almansi strain 𝜖̄𝜖𝑙,𝑛+ 1

2 is obtained by Eqs. (9) and (14) or (39). Then the corrected 
Cauchy stress 𝜎̄𝜎𝑙,𝑛+ 1

2 is calculated by applying constitutive relation Eq. (10) and correction Eq. (17). After getting the resultant ℕ𝑙,𝑛+ 1
2 , 

𝕄𝑙,𝑛+ 1
2 and 𝑸𝑙,𝑛+ 1

2 by the Gauss-Legendre quadrature Eqs. (22) and (24), the conservation equations are solved to obtain the 𝒖̈𝑛+1
𝑚

and 𝒏̈𝑛+1. After transforming 𝒏̈𝑛+1 to 𝒏̈𝐿,𝑛+1, 𝜽̈𝐿,𝑛+1
is obtained through the conversion relation between the pseudo normal and 

rotation angle, i.e., Eq. (75) for 2D problems and Eqs. (84) and (87) for 3D problems. At this point, the velocity and angular velocity 
are updated by

{
𝒖̇𝑛+1

𝑚 = 𝒖̇𝑛
𝑚 +Δ𝑡𝒖̈𝑛+1

𝑚
𝜽̇𝐿,𝑛+1 = 𝜽̇𝐿,𝑛 +Δ𝑡𝜽̈𝐿,𝑛+1,

(89)

and the change rate of pseudo normal 𝒏̇ is updated by Eq. (72) or (79). Finally, the change rate of the deformation gradient 𝔽̇𝐿,𝑛+1 is 
estimated by Eq. (61), and then the deformation gradient, density, particle position, rotation angles and pseudo normal are updated 
to the new time step with

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝔽𝐿,𝑛+1 = 𝔽𝐿,𝑛+ 1
2 + 1

2Δ𝑡𝔽̇𝐿,𝑛+1

𝜌𝑛+1 =
(
𝐽𝑛+1

𝑚
)−1 𝜌0

𝒓𝑛+1
𝑚 = 𝒓

𝑛+ 1
2

𝑚 + 1
2Δ𝑡𝒖̇𝑛+1

𝑚

𝜽𝐿,𝑛+1 = 𝜽𝐿,𝑛+ 1
2 + 1

2Δ𝑡𝜽̇𝐿,𝑛+1

𝒏𝐿,𝑛+1 = 𝜽𝐿,𝑛+ 1
2 + 1

2Δ𝑡𝒏̇𝐿,𝑛+1.

(90)
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For the numerical stability, the time-step size Δ𝑡 is given by

Δ𝑡 = CFLmin
(
Δ𝑡1,Δ𝑡2,Δ𝑡3

)
, (91)

where

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ𝑡1 = min
(

ℎ
𝑐𝑣+|𝒖̇𝑚|𝑚𝑎𝑥

,
√

ℎ
|𝒖̈𝑚|𝑚𝑎𝑥

)

Δ𝑡2 = min
(

1
𝑐𝑣+|𝜽̇𝐿|𝑚𝑎𝑥

,
√

1
|𝜽̈𝐿|𝑚𝑎𝑥

)

Δ𝑡3 = ℎ

(
𝜌
(
1−𝜈2

)
∕𝐸

2+
(
𝜋2∕12

)
(1−𝜈)

[
1+1.5(ℎ∕𝑑)2

]
)1∕2

.

(92)

Note that the time-step size Δ𝑡3 follows the Refs. [57,35] and depends on the thickness and material properties, and the present 
Courant-Friedrichs-Lewy (CFL) number is set as 0.6 [58,9]. An overview of the complete solution procedure is presented in Algo-

rithm 1.

Algorithm 1: The present SPH method for plate/shell structures.

1 Setup parameters and initialize the simulation;

2 Construct the particle-neighbor list and compute the kernel values;

3 Compute the correction matrices ̃𝔹0,𝒓 and 𝔹̃0,𝒏 for each particle (Section 3.2);

4 while simulation is not finished do

5 Compute the time-step size Δ𝑡 using Eq. (91);

6 Update the deformation gradient tensor 𝔽𝐿 , particle position 𝒓𝑚 , rotation angle 𝜽𝐿 and pseudo normal 𝒏 for half time step Δ𝑡∕2;

7 Compute and correct the Cauchy stress 𝜎𝜎𝑙 (Sections 2.1.2 and 2.1.3);

8 Compute the resultants ℕ𝑙 and 𝕄𝑙 , and shear force 𝑸𝑙 (Eq. (27));

9 Compute the acceleration 𝒖̈𝑚 (Eqs. (56) and (65)) and 𝒏̈ (Eqs. (57) and (67));

10 Compute the angular acceleration 𝜽̈𝐿
(Eq. (75) for 2D problems, and Eqs. (84) and (87) for 3D problems);

11 Update the velocity 𝒖̇𝑚 and angular velocity 𝜽̇𝐿
for a time step Δ𝑡;

12 Compute the change rate of pseudo normal 𝒏̇𝐿 using Eq. (72) or (79);

13 Compute the change rate of the deformation gradient tensor 𝜕𝔽𝐿∕𝜕𝑡 (Eq. (61));

14 Update the deformation gradient tensor 𝔽𝐿 , density 𝜌, particle position 𝒓𝑚 , rotation angle 𝜽𝐿 and pseudo normal 𝒏 for another half time step Δ𝑡∕2;

15 end

16 Terminate the simulation.

Furthermore, it is important to highlight that achieving full incremental objectivity is facilitated by employing the finite defor-

mation formulation [59,60] and adopting the local particle material model [61]. Additionally, reference-validated time step sizes 
further ensure the elimination of objectivity concerns [59]. The absence of objectivity issues is also demonstrated through conver-

gence analysis and comparison of results with references in the following numerical examples.

4. Numerical examples

To demonstrate the accuracy and stability of the proposed surface-particle SPH method (denoted as shell method), this section 
investigates a series of benchmark tests where analytical or numerical reference data from the literature or/and volume-particle SPH 
method (denoted as volume method) are available for qualitative and quantitative comparison. Following Refs. [62], the smoothing 
length ℎ = 1.15𝑑𝑝, where 𝑑𝑝 denotes the initial particle spacing, and a cut-off radius of 2.3𝑑𝑝 is employed in all the following 
simulations, to maintain acceptable accuracy while minimizing computational efforts with small number of neighboring particles. 
Note that a splitting random-choice dynamic relaxation method, as outlined in [63], is applied to quickly acquire the quasi-static 
solutions for steady analysis.

4.1. 2D oscillating plate strip

The first example involves a plate strip with initial uniform transverse velocity along the length with one edge fixed and the others 
free, which has previously been theoretically [64] and numerically [65,66,32] investigated in the literature. As shown in Fig. 3(a), 
this plate strip is assumed to be infinitely long along the 𝑦-axis with a finite width 𝑎 = 0.2 m along the 𝑥-axis. To demonstrate that 
both thin and moderately thick structures can be simulated, this plate strip is modeled with the thicknesses 𝑑 = 0.01 m and 0.001 m. 
The material properties are set as follows: density 𝜌0 = 1000.0 kg∕m3, Young’s modulus 𝐸 = 2.0 MPa, and Poisson’s ratio 𝜈 varies for 
different cases. Fig. 3(b) shows the discrete model of the chosen cross-section with clamped edges at 𝑥 = 0. The transverse velocity 
𝑣𝑧 is applied to the plate strip as

𝑣𝑧(𝑥) = 𝑣𝑓 𝑐
𝑓 (𝑥)
𝑓 (𝑎)

, (93)

where 𝑣𝑓 is a constant that varies with different cases, and
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Fig. 3. 2D oscillating plate strip: Initial configuration with width 𝑎 = 0.2 m.

Fig. 4. 2D oscillating plate strip: Deformed particle configuration colored by von Mises stress 𝜎̄ of the mid-surface at serial time instants with the width 𝑎 = 0.2 m, 
thickness 𝑑 = 0.001 m, 𝑣𝑓 = 0.01, and spatial particle resolution 𝑎∕𝑑𝑝 = 40, and the comparison of particle distribution obtained by using iso- and anisotropic Kelvin-

Voigt damping. The material is modeled with density 𝜌0 = 1000.0 kg∕m3 , Young’s modulus 𝐸 = 2.0 MPa, and Poisson’s ratio 𝜈 = 0.4. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

𝑓 (𝑥) = (sin(𝑘𝑎) + sinh(𝑘𝑎)) (cos(𝑘𝑥) − cosh(𝑘𝑥))

− (cos(𝑘𝑎) + cosh(𝑘𝑎)) (sin(𝑘𝑥) − sinh(𝑘𝑥))
(94)

with 𝑘 determined by

cos(𝑘𝑎) cosh(𝑘𝑎) = −1 (95)

and 𝑘𝑎 = 1.875. The frequency 𝜔 of the oscillating plate strip is theoretically given by

𝜔2 = 𝐸𝑑2𝑘4

12𝜌
(
1 − 𝜈2

) . (96)

Fig. 4 shows the particles with von Mises stress 𝜎̄ contour for the case of 𝑑 = 0.001 m, 𝑣𝑓 = 0.01, 𝜈 = 0.4, with an initial particle 
spacing of 𝑑𝑝 = 𝑎∕40 = 0.005 m. Additionally, it showcases the comparison of particle distribution obtained by employing iso- and 
anisotropic Kelvin-Voigt damping, highlighting the effectiveness of the anisotropic damping, and illustrating how excessive damping 
in the thickness direction contaminates the numerical results when isotropic damping is applied. It should be noted that the present 
method predicts smooth deformation and stress fields without singularities for large rotations (more than 𝜋). Three different spatial 
resolutions, 𝑎∕𝑑𝑝 = 40, 𝑎∕𝑑𝑝 = 80, and 𝑎∕𝑑𝑝 = 160, are tested in the convergence study. Fig. 5 shows the time history of vertical 
position 𝑧 of the strip endpoint with 𝑑 = 0.01 m, 𝑣𝑓 = 0.025 and 𝜈 = 0.4. It can be observed that typical 2nd-order convergence 
has been achieved. In addition, a long-term simulation is performed herein to demonstrate the numerical stability of the proposed 
formulation. For quantitative validation, Tables 1 and 2 detail the oscillation period 𝑇 for a wide range of 𝑣𝑓 and 𝜈, obtained by 
the present method with the spatial particle resolution 𝑎∕𝑑𝑝 = 160, when thickness 𝑑 = 0.01 m and 0.001 m, respectively, and the 
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Fig. 5. 2D oscillating plate strip: Time history of the vertical position 𝑧 observed at the plate strip endpoint in the long term when 𝑑 = 0.01 m, 𝑣𝑓 = 0.025 and 𝜈 = 0.4.

Table 1

2D oscillating plate strip: Quantitative validation of the 
oscillation period for 𝑎 = 0.2 m and 𝑑 = 0.01 m with var-

ious 𝑣𝑓 and 𝜈.

𝑣𝑓 𝜈 𝑇Shell model 𝑇Theoretical Error

0.025 0.22 0.58137 0.54018 7.63%

0.05 0.22 0.57715 0.54018 6.92%

0.1 0.22 0.56801 0.54018 5.15%

0.025 0.30 0.56804 0.52824 7.53%

0.05 0.30 0.56308 0.52824 6.60%

0.1 0.30 0.55481 0.52824 5.03%

0.025 0.40 0.54447 0.50752 7.28%

0.05 0.40 0.53683 0.50752 5.78%

0.1 0.40 0.53252 0.50752 4.93%

Table 2

2D oscillating plate strip: Quantitative validation of the os-

cillation period for 𝑎 = 0.2 m and 𝑑 = 0.001 m with various 
𝑣𝑓 and 𝜈.

𝑣𝑓 𝜈 𝑇Shell model 𝑇Theoretical Error

0.0025 0.22 5.80249 5.40182 7.42%

0.005 0.22 5.75544 5.40182 6.55%

0.01 0.22 5.64181 5.40182 4.44%

0.0025 0.30 5.66756 5.28243 7.29%

0.005 0.30 5.61006 5.28243 6.20%

0.01 0.30 5.49156 5.28243 3.96%

0.0025 0.40 5.42826 5.07519 6.96%

0.005 0.40 5.34224 5.07519 5.26%

0.01 0.40 5.27522 5.07519 3.94%

comparison to theoretical solution obtained form small perturbation analysis. The differences, which are less than 8.00% for 𝜈 = 0.22
and decrease to about 5.00% when the Poisson’s ratio is increased to 0.4, are acceptable.

4.2. 3D square plate

In this section, a 3D square plate under different types of boundary conditions is considered for quasi-steady analyses, as shown 
in Fig. 6. With side length 𝑎 = 𝑏 = 254 mm and thickness 𝑑 = 25.4 mm, the plate material is defined with density 𝜌0 = 1600 kg∕m3, 
Young’s modulus 𝐸 = 53.7791 GPa and Poisson’s ratio 𝜈 = 0.3. Three types of boundary conditions denoted as SS0, SS1 and SS3 
following Refs. [46,35] are implemented as
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Fig. 6. 3D square plate: Problem setup with 𝑎 = 𝑏 = 254 mm and thickness 𝑑 = 25.4 mm.

Fig. 7. 3D square plate: Particles colored by von Mises stress 𝜎̄ of tests with SS0 obtained by the present shell (left) and volume (right) methods under the loading 
factor 𝑃1 = 25. Note that the left panel shows the stress 𝜎̄ of the plate mid-surface. The material is modeled with the density 𝜌0 = 1600 kg∕m3 , Young’s modulus 
𝐸 = 53.7791 GPa and Poisson’s ratio 𝜈 = 0.3. The spatial particle resolution is set as 𝑑∕𝑑𝑝 = 8.

▶ SS0: constrained mass center without constrained boundaries;

▶ SS1: 𝑢 = 𝑤 = 𝜑 = 0 on edges parallel to 𝑥-axis and 𝑣 = 𝑤 = 𝜃 = 0 on edges parallel to 𝑦-axis;

▶ SS3: 𝑢 = 𝑣 = 𝑤 = 0 on all edges.

Note that, for the case of SS0, the outer square ring with width 𝑑 is imposed with negative pressure 𝑞02. The uniformly distributed 
loads are parameterized by the loading factors 𝑃 and 𝑃1 as 𝑞0 = 𝑃𝐸 (𝑑∕𝑎)4, 𝑞01 = 𝑃1𝐸 (𝑑∕𝑎)4 and 𝑞02(2𝑎𝑑 + 2𝑏𝑑 + 4𝑑2) = 𝑞01𝑎𝑏, so 
that the applied negative force along the 𝑧-axis prevents the center of mass from moving.

For comprehensive validation, a convergence study of tests with SS0 is conducted, and the results are compared with those 
obtained by the volume method released in the SPHinXsys repository [9]. Fig. 7 shows the particle distribution and stress fields

under the loading factor 𝑃1 = 25 with the spatial discretization 𝑑∕𝑑𝑝 = 8. Fig. 8 shows the non-dimensional deflection 𝑤̄𝐶 = 𝑤𝐶∕𝑑
and 𝑤̄𝐴 = 𝑤𝐴∕𝑑 probed at the central point 𝐶 and corner point 𝐴, respectively, obtained by both SPH shell and volume methods. 
It should be emphasized that there are only quite small differences between the results of the present reduced-dimensional and 
full-dimensional models.

The particles colored by von Mises stress 𝜎̄ at the mid-surface for three spatial discretizations, 𝑎∕𝑑𝑝 = 20, 𝑎∕𝑑𝑝 = 40 and 𝑎∕𝑑𝑝 =
80, with the SS1 and SS3 boundary conditions under 𝑃 = 200 are shown in Fig. 9. It can be observed that the regular particle 
distribution and smooth stress field are obtained. Also, both the deformation and von Mises stress 𝜎̄ exhibit good convergence 
properties with particle refinement. In order to demonstrate the accuracy of the present method, the non-dimensional deflections 
𝑤̄𝐶 for tests with SS1 and SS3 under various spatial resolutions are compared to those of the Ref. [46]. As shown in Figs. 10, the 
numerical results quickly converge to the reference solutions obtained by the finite element method (FEM) with increasing resolution.

4.3. Dynamic response of a 3D square plate

Following Ref. [67], the 3D square plate studied in Section 4.2 is considered herein with the thickness 𝑑 = 12.7 mm and Young’s 
modulus 𝐸 = 68.94 GPa. The SS0 and SS3 boundary conditions are applied for dynamic analyses under a step loading of uniform 
normal pressure 𝑞01 = 𝑞0 = 2.068427 MPa. For convergence study, three different spatial discretizations, i.e., 𝑑∕𝑑𝑝 = 2, 𝑑∕𝑑𝑝 = 4 and 
𝑑∕𝑑𝑝 = 8, are considered.

For quantitative validation, Fig. 11 shows the time history of the deflections 𝑤𝐶 probed at the central point 𝐶 and 𝑤𝐴 at the 
corner point 𝐴 with SS0 boundary condition and its comparison to the results obtained by the volume method. Also, Fig. 12 shows 
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Fig. 8. 3D square plate: Load-deflection curves of tests with SS0 under three different spatial resolutions, and their comparison with those of the volume method [9].

the time history of the deflection 𝑤𝐶 with the SS3 boundary condition and its comparison with that of Ref. [67]. In general, the 
present results are in good agreements with those obtained by the volume method and of Ref. [67]. Note that a long-term simulation 
is conducted, when the SS3 boundary condition is applied, to demonstrate the numerical stability of the proposed formulation, and 
only exhibits a 0.86% reduction in oscillation amplitude after 7 periods.

4.4. 3D cantilevered plate

Following Refs [68–70], the static response of a 3D cantilevered plate subjected to a distributed end shear load 𝑓0 is considered. 
As shown in Fig. 13, the plate with length 𝑎 = 10 m, width 𝑏 = 1 m and thickness 𝑑 = 0.1 m is clamped at 𝑦 = 0, and has material 
parameters of density 𝜌0 = 1100 kg∕m3, Young’s modulus 𝐸 = 1.2 MPa and Poisson’s ratio 𝜈 = 0.0. The shear load is parameterized 
by a loading factor 𝐹 as 𝑓0 = 𝐹𝐸𝐼∕𝑎2 with the inertia moment 𝐼 = 𝑏𝑑3∕12. Three different resolutions, i.e., 𝑏∕𝑑𝑝 = 5, 𝑏∕𝑑𝑝 = 7 and 
𝑏∕𝑑𝑝 = 9, are considered for convergence study.

Fig. 14 shows the particles colored by the vertical displacement under different loading factor 𝐹 at the spatial resolution 𝑏∕𝑑𝑝 = 9. 
A regular particle distribution and smooth vertical displacement field are noted. Fig. 15 gives the displacement 𝑢𝑐 and 𝑤𝑐 of the 
point 𝐶 , defined in Fig. 13, as a function of the loading factor 𝐹 and the initial particle spacing 𝑑𝑝, and their comparison with 
those in Ref. [70]. It can be noted that the displacement is converging rapidly, again at about 2nd-order, with increasing resolution, 
demonstrating the accuracy of the present method.

4.5. Scordelis-Lo roof

As shown in Fig. 16, the Scordelis-Lo roof with length 𝑎 = 50 m, radius 𝑟 = 25 m, thickness 𝑑 = 0.25 m and 𝛽 = 40◦ is considered 
herein, and the material properties are density 𝜌0 = 36 kg∕m3, Young’s modulus 𝐸 = 432 MPa and zero Poisson’s ratio. The roof 
is supported at its ends by fixed diaphragms, i.e. the translations in 𝑥 and 𝑧 directions are constrained, and subjected to a gravity 
loading of 𝑔 = 10 m∕s2.

The FEM solution of the vertical displacement 𝑤 at the midpoint of the side edge converges to 0.3024 m as reported in Refs. 
[71,72]. A sequentially refined resolutions of 𝑏∕𝑑𝑝 = 15, 20, 25, 30 and 40 with 𝑏 = 2𝑟𝛽 denoting the arc length of the roof end are 
considered to assess the convergence property of the present method. Fig. 17 shows the particles colored with the von Mises stress 
𝜎̄ of the mid-surface obtained at different resolutions. The regular particle distribution and smooth stress fields are noted. With 
increasing resolution, a clear convergence is exhibited. The profile of normalized displacement 𝑤̄ = 𝑤

0.3024 m
with varying spatial 

resolution obtained by the present method is depicted in Fig. 18. It can be noted that the result converges rapidly to 𝑤 = 0.2991 m

when 𝑑𝑝 = 𝑏∕40 = 0.8727 m with 1.09% error compared to the solution of Refs. [71,72]. Note that since 𝑑𝑝 > 𝑤, i.e., the size of a 
particle is considerably larger than the displacement, the present method struggles to accurately capture such small displacements. 
Another possible reason for the small discrepancy is the not-strictly imposed traction-free boundary condition as SPH does not have 
explicit definition of material surface.
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Fig. 9. 3D square plate: Particles colored by von Mises stress 𝜎̄ of the mid-surface with particle refinement under the loading factor 𝑃 = 200 and SS1 and SS3 boundary 
conditions. The plate material has parameters of the density 𝜌0 = 1600 kg∕m3 , Young’s modulus 𝐸 = 53.7791 GPa and Poisson’s ratio 𝜈 = 0.3.

Fig. 10. 3D square plate: Load-deflection curves of tests with SS1 and SS3 under three different spatial resolutions, and their comparison with that of Reddy [46].



Journal of Computational Physics 510 (2024) 113113

19

D. Wu, C. Zhang and X. Hu

Fig. 11. 3D square plate with dynamic response: Time history of the deflection 𝑤𝐶 and 𝑤𝐴 probed at the central point 𝐶 and corner point 𝐴, respectively, with SS0 
boundary condition. The material is modeled with the density 𝜌0 = 1600 kg∕m3 , Young’s modulus 𝐸 = 68.94 GPa and Poisson’s ratio 𝜈 = 0.3.

Fig. 12. 3D square plate with dynamic response: Time history of the deflection 𝑤𝐶 observed at the central point 𝐶 with SS3 boundary condition in the long term.

Fig. 13. 3D cantilevered plate: Initial configuration with the length 𝑎 = 10 m, width 𝑏 = 1 m and thickness 𝑑 = 0.1 m.
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Fig. 14. 3D cantilevered plate: Particles colored by the vertical displacement 𝑤𝑐 under the various loading factor 𝐹 at spatial resolution 𝑏∕𝑑𝑝 = 9. The material is set 
as the density 𝜌0 = 1100 kg∕m3 , Young’s modulus 𝐸 = 1.2 MPa and Poisson’s ratio 𝜈 = 0.0.

Fig. 15. 3D cantilevered plate: Load-deflection curves with three various spatial discretizations, and their comparison with that of Payette et al. [70].

Fig. 16. Scordelis-Lo roof: Initial configuration with the length 𝑎 = 50 m, radius 𝑟 = 25 m, thickness 𝑑 = 0.25 m and 𝛽 = 40◦ .

4.6. Pinched hemispherical shell

We now consider a pinched hemispherical shell with an 18◦ circular cutout at its pole following Refs. [73–75,69,70]. As shown 
in Fig. 19(a), the hemispherical shell with the radius 𝑟 = 10.0 m and thickness 𝑑 = 0.04 m is loaded by four alternating radial point 
forces 𝑭 , prescribed along the equator at 90◦ intervals. A linear elastic material with the density 𝜌0 = 1100 kg∕m3, Young’s modulus 
𝐸 = 68.25 MPa and Poisson’s ratio 𝜈 = 0.3 is applied.

Fig. 19(b-d) shows the distribution of von Mises stress 𝜎̄ at the mid-surface under varying magnitude of the point force 𝑭 . The 
regular particle distribution is observed, although slight stress fluctuation, i.e., the hourglass modes, is exhibited particularly under 
high force magnitudes. Although we emphasize that the parameter 𝛼 of hourglass control algorithm remains constant throughout 
this work, we have also explored adjustments to 𝛼 in pursuit of improved results without hourglass modes. As shown in Fig. 20, 
the smooth stress fields are observed. Considering that 𝛼 is not universally applicable, a more robust hourglass control method may 
be required. For quantitative analysis and convergence study, the radial deflections 𝑤𝐴 and 𝑤𝐵 of monitoring points 𝐴 and 𝐵 as a 
function of the point force magnitude and resolution are compared with those of Ref. [69]. Three different spatial discretizations, 
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Fig. 17. Scordelis-Lo roof: Particles colored by the von Mises stress 𝜎̄ of the mid-surface obtained by the present method with particle refinement. The material is set 
as the density 𝜌0 = 36 kg∕m3 , Young’s modulus 𝐸 = 432 MPa and Poisson’s ratio 𝜈 = 0.0.

Fig. 18. Scordelis-Lo roof: Convergence study of the displacement, normalized by a reference result of 0.3024 m [71,72], obtained using the present method with 
particle refinement.

i.e., 2𝜋𝑟∕𝑑𝑝 = 80, 160 and 240, are considered for convergence study. As shown in Fig. 21, the results of present SPH shell model is 
quickly converging to those of Ref. [69].

4.7. Pulled-out cylindrical shell

A more challenging benchmark test with large displacements is considered in this section following Refs. [30,76]. As shown in 
Fig. 22, a cylindrical shell with the radius 𝑟 = 5.0 m, length 𝑎 = 10.35 m and thickness 𝑑 = 0.094 m is subjected to a pair of point 
forces 𝑭 which are equal in magnitude and opposite in direction. A linear elastic material with the density 𝜌0 = 1100 kg∕m3, Young’s 
modulus 𝐸 = 10.5 MPa and Poisson’s ratio 𝜈 = 0.3125 is applied.

Fig. 23 shows the distribution of von Mises stress 𝜎̄ at the mid-surface under varying magnitude of the point force 𝑭 . While the 
result, obtained without the hourglass control algorithm applied when 𝐹 = 50 kN, exhibits particle disorder, particularly near the 
location of the applied point forces, the application of hourglass control ensures a regular particle distribution and smooth stress 
fields. For quantitative analysis and convergence study, the radial displacements 𝑤𝐴, 𝑤𝐵 and 𝑤𝐶 of monitoring points 𝐴, 𝐵 and 𝐶 as 
a function of the point force magnitude and resolution are compared with those of Ref. [30,76]. Three different spatial discretizations, 
i.e., 𝑏∕𝑑𝑝 = 80, 160 and 240 with 𝑏 = 2𝜋𝑟 denoting the circumference length of the end, are considered for convergence study. As 
shown in Fig. 24, the bifurcation point of the curve is accurately predicted, suggesting good accuracy and robustness of the present 
method.
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Fig. 19. Pinched hemispherical shell: (a) Initial configuration with the radius of the mid-surface 𝑟 = 10.0 m and thickness 𝑑 = 0.04 m, (b-d) particles colored by 
the von Mises stress 𝜎̄ of the mid-surface under 3 point force magnitudes at spatial discretization 2𝜋𝑟∕𝑑𝑝 = 160. The material parameters are set as the density 
𝜌0 = 1100 kg∕m3 , Young’s modulus 𝐸 = 68.25 MPa and Poisson’s ratio 𝜈 = 0.3.

Fig. 20. Pinched hemispherical shell: Particles colored by the von Mises stress 𝜎̄ of the mid-surface under 2 point force magnitudes at spatial discretization 2𝜋𝑟∕𝑑𝑝 =
160.

4.8. Pinched semi-cylindrical shell

We further consider a pinched semi-cylindrical shell with finite deformation and rotation following Refs. [77,78,69,79]. As 
shown in Fig. 25(a), the semi-cylindrical shell with the radius 𝑟 = 1.016 m, length 𝑎 = 3.048 m and thickness 𝑑 = 0.03 m is com-

pletely clamped at a circumferential periphery and experiences a pinching force at the center of free-hanging periphery. Along its 
longitudinal edges, the vertical direction and the rotation about the 𝑦-axis are constrained. The elastic material properties are density 
𝜌0 = 1100 kg∕m3, Young’s modulus 𝐸 = 20.685 MPa and Poisson’s ratio 𝜈 = 0.3.

Fig. 25(b-d) shows the distribution of von Mises stress 𝜎̄ at the mid-surface under varying magnitude of the point force 𝑭 . Noted 
that the present method features regular particle distribution and smooth stress fields, even close to the constrained edges and place 
where the point force is applied, without singularities for finite rotations (more than 0.5𝜋). For quantitative analysis and convergence 
study, the downward deflection 𝑤𝐴 of monitoring point 𝐴 as a function of the point force magnitude and resolution is compared 
with that of Ref. [69]. Three different spatial discretizations, i.e., 𝜋𝑟∕𝑑𝑝 = 20, 40 and 80, are considered for convergence study. As 
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Fig. 21. Pinched hemispherical shell: Curves of radical displacements of points 𝐴 and 𝐵 as a function of the point force magnitude and spatial resolution, and their 
comparison with those of Sze et al. [69].

Fig. 22. Pulled-out cylindrical shell: Initial configuration with the radius of the mid-surface 𝑟 = 5.0 m, length 𝑎 = 10.35 m and thickness 𝑑 = 0.094 m.

shown in Fig. 26, the result difference obtained by the present SPH shell method between different resolution rapidly decreases as 
the spatial refinement, and the results agree well with those of Ref. [69].

5. Concluding remarks

In this paper, we present a reduced-dimensional SPH method for quasi-static and dynamic analyses of both thin and moderately 
thick plate and shell structures. By introducing two reduced-dimensional linear-reproducing correction matrices, the method repro-

duces linear gradients of the position and pseudo-normal. The finite deformation is taken into account by considering all terms of 
strain with the help of Gauss-Legendre quadrature along the thickness. To cope with large rotations, the method introduces weighted 
non-singularity conversion relation between the rotation angles and pseudo normal. A non-isotropic Kelvin-Voigt damping and a 
momentum-conserving hourglass control algorithm with a limiter are also proposed to increase numerical stability and to suppress 
hourglass modes. An extensive set of numerical examples have been investigated to demonstrate the accuracy and robustness of the 
present method.

This study assumes plate and shell structures behave as continuous media, represented by a smooth distribution of particles, while 
also maintaining constant thickness, straight pseudo-normal, and particles with two rotation degrees of freedom. Furthermore, the 
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Fig. 23. Pulled-out cylindrical shell: Particles colored by the von Mises stress 𝜎̄ of the mid-surface under 3 point force magnitudes at spatial resolution of 𝑏∕𝑑𝑝 = 160, 
and its comparison with the results obtained without hourglass control applied. The material parameters are set as the density 𝜌0 = 1100 kg∕m3 , Young’s modulus 
𝐸 = 10.5 MPa and Poisson’s ratio 𝜈 = 0.3125.

Fig. 24. Pulled-out cylindrical shell: Curves of radical displacements of points 𝐴, 𝐵 and 𝐶 as a function of the point force magnitude and spatial resolution, and their 
comparison with those of Maurel and Combescure [30] and Jiang et al. [76].

proposed method only employs an isotropic and linear elastic material model, and is restricted to simulations of a whole piece of thin 
structure. The extensions of this method are to explore variations like changing thickness, considering additional drilling rotation, 
and applying nonlinear elastic, plastic, anisotropic, and fracture material models. Another outlook is to simulate complex structures, 
such as I-beams, which are combined by several pieces of thin structures. A comprehensive stability analysis concerning spatial 
and temporal discretization is also part of our future work. The simulation results for the pinched hemispherical shell still exhibit 
hourglass modes. Developing a modified or new hourglass-control algorithm is planned for future work. One potential direction is to 
explore methods similar to those used in traditional mesh-based approaches, where the concentration of particle stress is mitigated 
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Fig. 25. Pinched semi-cylindrical shell: (a) Initial configuration with the radius 𝑟 = 1.016 m, length 𝑎 = 3.048 m and thickness 𝑑 = 0.03 m, (b-d) particles colored by the 
von Mises stress 𝜎̄ of the mid-surface under 3 point force magnitudes at spatial resolution 𝑏∕𝑑𝑝 = 80. The material parameters are set as the density 𝜌0 = 1100 kg∕m3 , 
Young’s modulus 𝐸 = 20.685 MPa and Poisson’s ratio 𝜈 = 0.3.

Fig. 26. Pinched semi-cylindrical shell: Curves of radical displacements of point 𝐴 as a function of the point force magnitude and spatial resolution, and their 
comparison with those of Sze et al. [69].

by redistributing it to surrounding particles using a specific distribution function. And we also aim to apply the essentially non-

hourglass formulation proposed in our previous work [32] to handle the hourglass issues by calculating the acceleration induced 
by shear stress through a Laplacian operator. We also notice that the traction-free boundary condition is not strictly imposed in 
our study, suggesting a future work to improve. Note that the current method, initially designed for plate and shell structures with 
moderate to high moduli, can be extended to soft thin structures like membranes. Additionally, future work, along with the multi-

physical modeling within unified computational framework, may also involve developing SPH methods for interactions between fluid 
and thin structures.
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List of symbols

The next list describes the symbols that are used within the body of the document.

𝒏 =
{
𝑛1, 𝑛2, 𝑛3

}T
pseudo normal

𝒖 = {𝑢, 𝑣,𝑤}T displacements

𝜽 = {𝜃,𝜑}T rotations

𝝃 = (𝜉, 𝜂, 𝜁) initial local coordinate system

𝑿 = (𝑋,𝑌 ,𝑍) global coordinate system

𝒙 = (𝑥, 𝑦, 𝑧) current local coordinate system

(∙)0 indicating the parameter (∙) is defined at the initial configuration and global coordinate system

(∙)𝑙 indicating the parameter (∙) is defined at the current configuration and current local coordinate system

(∙)0,𝐿 indicating the parameter (∙) is defined at the initial configuration and initial local coordinate system

(∙)𝑚 representing the mid-surface parameter
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