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Abstract

Solving Partial Differential Equations (PDEs) is fundamental to understanding various
physical phenomena across various disciplines. Traditional solvers in industry often face
challenges such as computational complexity, mesh generation, and convergence issues.
In recent years, neural networks have emerged as a promising alternative for tackling
PDEs due to their ability to approximate complex functions and learn underlying
patterns from data. This thesis presents novel advancements in solving PDEs using
neural networks, coupled with innovative approaches in network initialization and
domain decomposition techniques. Firstly, a neural network-based solver is introduced
to solve PDEs efficiently over square domains. Employing a neural network architecture
with a single hidden layer, emphasis is placed on training only the final layer to
directly solve PDEs without the need for explicit data. This methodology handles
non-time-dependent PDEs with boundary conditions, including linear and non-linear
equations. Secondly, the thesis explores domain decomposition strategies combined
with neural networks for tackling complex PDE problems. By partitioning the domain
into subdomains, each has its neural network approximator. The coupling of neural
networks at shared boundary points ensures solution continuity over the entire domain
and accuracy in the overall solution. Furthermore, we dive into the "Sampling Where It
Matters" (SWIM) concept, aimed at enhancing the initialization of neural networks for
improved performance in various tasks, including PDE solving. SWIM leverages the
gradient of the truth function along with input points to intelligently initialize network
parameters, leading to more efficient convergence and enhanced solution accuracy.
Through several experiments, the efficacy and versatility of the proposed methodologies
are demonstrated, including a comparative study against existing methods such as
Physics-Informed Neural Networks (PINNs) and Finite Element Method (FEM). This
comparative analysis showcases where the presented method stands against existing
methods, providing valuable insights into their performance and applicability.
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1 Introduction

In recent years, the intersection of scientific computing and machine learning has led to
remarkable advancements in the field of solving Partial Differential Equations (PDEs)
using neural networks. Along with academic interest in this field, there has also been
a surge in industrial interest. Advances in hardware, such as GPUs and distributed
computing frameworks, have made it feasible to train large-scale neural networks and
deploy them in parallel on high-performance computing clusters. This scalability and
parallelism enable neural network-based solvers to tackle increasingly complex and
computationally demanding problems in industry. Companies that adopt these neural
network-based PDE solvers early can gain a competitive edge by accelerating inno-
vation, reducing time-to-market, and improving product performance. By leveraging
cutting-edge AI technologies, they can differentiate their products and services in the
marketplace and drive business growth.

One can observe a notable shift in research from traditional numerical methods to
approaches that directly learn solutions from equations without relying on predefined
basis functions or meshes. One such technique is Physics-Informed Neural Network
(PINN) [RPK19]. This technique converts solving a PDE into an optimization problem.
The solution is learned by minimizing the residual of the governing equations, boundary,
and initial conditions by updating the network parameters via the conventional training
of neural networks using backpropagation. The network is trained once the loss value
has converged or is below a certain predefined threshold value. The solution of the PDE
is represented by a neural network using the trained parameters. These methods can
also be combined with the availability of data by adding a term in the loss function;
this has an additional benefit in that it utilizes a data-driven approach, where solutions
are approximated based on patterns learned from data along with explicit physical
equations. Many of the fundamental concepts behind PINN were proposed in the 1990s
by [LLF98]. In recent years, several effective neural network-based methods for PDEs
have surfaced, such as Deep Operator Network (DeepONet) that learn the mapping
from any functional parametric dependence to the solution; thus, they learn an entire
family of PDEs [Lu+21]. Fourier Neural Operator (FNO) learning operators based on
parameterizing the integral kernel in the Fourier space [Li+21], and Deep Galerkin
Method (DGM), a meshless deep learning algorithm to solve high dimensional PDEs
[SS18].

Neural network-based solvers have some advantages, such as solving PDEs without
explicit mesh generation, simplifying the implementation process, and enabling efficient
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1 Introduction

handling of irregular geometries. This feature streamlines solver development and
enhances applicability to diverse problem domains since generating a mesh is one of
the most time-consuming step in the simulation pipeline. Additionally, using neural net-
works eliminates the need for in-depth knowledge of numerical discretization techniques
and stability considerations, making it accessible to a broader spectrum of researchers
and practitioners with a primary focus on the physics of the problem. Furthermore,
once trained, neural network-based solvers offer fast evaluation of solutions, facilitating
near-real-time predictions crucial for problems such as weather simulations. While neu-
ral network-based solvers for PDEs offer promising advantages, but they do have some
limitations. The first limitation is the solution accuracy [JKK20]. Neural network-based
solvers can provide solutions for many PDEs, but they may struggle with achieving
the same level of accuracy as traditional numerical methods. Conventional methods
like Finite Difference Method (FDM) or Finite Element Method (FEM) are often based
on well-established mathematical principles and can achieve highly accurate solutions
provided sufficient mesh resolution and computation time. The second limitation is with
the increase in number of layers and nodes in the hidden layers, the improvement in
the solution accuracy is not always guaranteed. Another limitation is the computational
cost. Neural network-based solvers typically require significant computational resources
and time for training, particularly for large-scale problems. In contrast, conventional
solvers can solve with similar accuracy in a comparatively short time. Because of their
limited accuracy and substantial computational demands, the general consensus is that
presently, neural network-based solvers struggle to compete with classical numerical
methods in effectiveness [HK24].

In the thesis, we focus on the Local Extreme Learning Machine (locELM) method in-
troduced in [DL21] that solves linear/non-linear PDEs with domain decomposition. The
idea introduced in this work was to freeze the weights of all the layers to the initial value
except the linear layer. This makes the optimization problem simple since only a few
parameters need to be trained compared to the conventional training of neural networks.
It also combines domain decomposition to obtain the solution of PDE over multiple
subdomains, where each subdomain has its neural network to approximate the solution.
This requires additional continuity constraints being forced on the common boundaries
of the subdomains. It also introduces a block time-marching scheme together with the
method mentioned above for long-time simulations of time-dependent linear/non-linear
partial differential equations. Later [Che+22] introduces a new approach of domain
decomposition that uses partition of unity or overlapping domain decomposition, which
results in skipping the forcing of additional continuity constraints on the shared points
between the subdomain as the solution over each subdomain smoothly transitions to
other subdomains. In the thesis, we mainly look into the initialization of neural networks
for each subdomain. We compare random initialization with Sampling Where It Matters
(SWIM) initialization [Bol+23]. SWIM initialization uses the input data and truth label
to place activation functions between input points where the gradient of the truth label
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is high. This helps initialize more activation functions at the location where the true
label has a high gradient magnitude.

The thesis is structured as follows: Chapter 2 introduces neural networks and explains
the universal approximation theorem of neural networks for function approximation.
Different initialization techniques are presented, the SWIM method is introduced. Chap-
ter 3 describes implementation details of the locELM method in solving PDEs. It also
contains the results of experiments on linear Poisson PDEs and also presents the results
of the extension of the implementation to non-linear PDEs. Finally, we discuss the
conclusion and future research directions in Chapter 4.
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2 Background theory

2.1 Introduction to neural networks

Neural networks are a fundamental component of modern machine learning. Inspired
by the biological neural networks of the human brain [Ako13], Artificial Neural Net-
works (ANNs) are computational models composed of interconnected nodes, known as
neurons, which work collectively to process and learn from data.

2.1.1 The Neuron

At the core of neural networks lies the neuron, the basic computational unit. A neuron
receives input signals from other neurons or input data, processes these inputs, and
generates an output signal. The key components of a neuron are:

• Input Weights (w): Each input signal is associated with a weight, which determines
its significance in influencing the neuron’s output.

• Activation Function (σ): After aggregating the weighted inputs, the neuron applies
an activation function to introduce non-linearity and determine the output signal.

• Bias (b): A bias term is added to the weighted sum before applying the activation
function, allowing the neuron to better fit the data.

The output of a neuron j in layer l is computed as follows [Bis06]:

zl
j =

n(l−1)

∑
i=1

wl
jix

(l−1)
i + bl

j (2.1)

xl
j = σ(zl

j)

Where:

• zl
j is the weighted sum of inputs to neuron j in layer l.

• nl−1 is the number of neurons in the previous layer.

• wl
ji is the weight of the connection between neuron i in layer l − 1 and neuron j in

layer l.

• x(l−1)
i is the output of neuron i in layer l − 1.
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2 Background theory

• bl
j is the bias of neuron j in layer l.

• σ is the activation function.

2.1.2 Structure of Neural Networks

Neural networks are organized into layers, with each layer comprising multiple neurons.
The three main types of layers in a neural network are:

• Input Layer: Receives the initial data input and passes it to the subsequent layers.

• Hidden Layers: Intermediate layers between the input and output layers. These
layers perform complex transformations on the input data through interconnected
neurons.

• Output Layer: Produces the final output of the neural network.

The connections between neurons are characterized by weights, which are adjusted
during the training process to optimize the network’s performance.

2.2 Training Neural Networks

Training a neural network involves adjusting its parameters (weights and biases) to
minimize the difference between the predicted outputs and the actual targets. This
process typically involves two main steps: forward propagation and backpropagation.

2.2.1 Forward Propagation

During forward propagation, input data is fed into the neural network, and the activa-
tions of neurons are computed layer by layer until the output is generated. The steps
involved in forward propagation are as follows:

1. Input Propagation: The input data is fed into the input layer.

2. Hidden Layer Computations: The weighted inputs are aggregated, biases are
added, and activation functions are applied in each hidden layer as given in eq. 2.1.

3. Output Layer Computations: The process continues through the hidden layers
until the output layer produces the final prediction.

2.2.2 Backpropagation

Backpropagation is the process of computing gradients of the loss function with respect
to the network’s parameters. These gradients are then used to update the parameters
through optimization algorithms such as gradient descent [RHW86]. The steps involved
in backpropagation are:
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2.2 Training Neural Networks

1. Compute Loss: Calculate the difference between the predicted outputs and the
actual targets using a suitable loss function, such as Mean Squared Error (MSE):

L(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2

Where:

• N is the number of training examples.

• y is the vector of actual target values.

• ŷ is the vector of predicted values.

2. Compute Gradients: Compute the gradients of the loss function with respect to
the parameters of the network using the chain rule.

3. Update Parameters: Use an optimization algorithm, such as gradient descent, to
update the parameters in the direction that minimizes the loss.

2.2.3 Optimization Techniques

Several optimization techniques are employed to enhance the training process and
improve the performance of neural networks:

• Gradient Descent: A first-order optimization algorithm that updates the parame-
ters in the direction of the negative gradient of the loss function [RHW86]. The
weight update rule for gradient descent is given by:

w(l)
ij = w(l)

ij − α
∂L

∂w(l)
ij

Where:

– w(l)
ij is the weight connecting neuron i in layer l − 1 to neuron j in layer l.

– α is the learning rate, determining the step size of the update.

• Stochastic Gradient Descent (SGD): A variant of gradient descent that updates
the parameters using a random subset of training examples at each iteration,
reducing computation time and memory requirements [BCN18].

• Adam: An adaptive optimization algorithm that maintains separate learning
rates for each parameter and adjusts them based on past gradients, improving
convergence speed and performance [KB17].

• Broyden-Fletcher-Goldfarb-Shanno (BFGS): This technique aims to iteratively
improve upon an initial estimate of the solution by approximating the inverse
Hessian matrix [Fle70].
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2 Background theory

• Least squares method: Least-squares estimation provides a means of determining
estimates of model parameters that are optimal in minimizing the sum of the
squares of the estimation errors [Fad24]. This optimization method is particularly
interesting from the point of view of this thesis as we use it to train only the linear
layer parameters of the neural network to solve PDEs. The process of constructing
the least squares system is mentioned later in the section 3.1.4.

2.3 Universal Approximation Theorem of neural networks
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Figure 2.1: Function approximation using superposition of step functions for different
error tolerances

The Universal Approximation Theorem (UAT) is a foundational result in the theory
of neural networks, providing a fundamental understanding of their expressive power
and capabilities. Formally stated, the theorem asserts that a feedforward neural network
with a single hidden layer containing a finite number of neurons can approximate any
continuous function to arbitrary accuracy, given a sufficiently large number of neurons
and appropriate activation functions [Cyb89]. This theorem underscores the remarkable
versatility of neural networks in modeling complex relationships between inputs and
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2.4 Sampling neural network parameters

outputs, making them powerful tools for a wide range of tasks in machine learning.
In fig. 2.1, we observe the function approximation using the superposition of step

functions for different error tolerances. These step functions can be thought of as
different neurons in the single hidden layer of a neural network, with the activation
function set as a step function. As the number of neurons in the hidden layer increases,
the neural network can approximate the target function more accurately, highlighting
the universal approximation capabilities of neural networks. Some key observations
from the fig. 2.1 for a neural network used for function approximation in 1D are:

• The neural network can approximate the target function with increasing accuracy
as the number of neurons in the hidden layer increases.

• For every neuron to contribute to the approximation of a function, the shift in the
step function corresponding to that neuron is always within the domain.

• More step functions are placed in the region where the function gradient magni-
tude is high to approximate a function within the given error tolerance.

We will later see how these observations are handled using the SWIM method. In
the present work, we obtain the solution by freezing the hidden layer parameters and
only optimizing the linear layer parameters so that the neural network’s output satisfies
the PDE. This strategy offers both advantages and disadvantages. One significant
advantage lies in simplifying the optimization problem, as it reduces the number of
parameters being updated during training, leading to potentially faster convergence
and computationally less intensive optimization processes. However, this approach
also carries certain disadvantages, such as a reduction in the expressive power of the
neural network. By freezing the hidden layer parameters, the network loses the ability
to adapt and learn from the data at intermediate stages, potentially limiting its capacity
to capture intricate patterns and representations within the dataset. In the next section,
we will see how we can improve the initialization of the neural network using the SWIM
method.

2.4 Sampling neural network parameters

Initialization of the network parameters is a crucial step in setting up for effective learn-
ing. Essentially, it involves assigning initial values to the neural network’s parameters
(like weights and biases). The initialization of neural networks becomes extremely
important since freezing the hidden layer parameters decreases the expressive power of
neural networks. While random initialization was commonly used, more sophisticated
methods have emerged to ensure smoother and faster learning. For example, techniques
like Xavier initialization [GB10] and He initialization [He+15] have become popular
choices. Xavier initialization aims to keep the variance of activations and gradients
consistent across layers, while He initialization is tailored for networks using Rectified
Linear Units (ReLUs) as activation functions. These methods help address challenges
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2 Background theory

like vanishing or exploding gradients, ensuring the network can learn effectively. Choos-
ing the proper initialization method can significantly impact the network’s performance
during training and its ability to generalize to new data.

The thesis predominantly investigates the SWIM method, a neural network approach
where each hidden layer’s weight and bias pairs are entirely determined by two points
from the input space, with only the final layer being trained using the least squares
method. The outline of the method is that it strategically places the activation function
between input points with a high gradient magnitude of the truth label between them
based on a probability distribution. The process involves sampling a pair of input
point combinations from a uniform distribution, followed by selecting the pairs based
on a conditional probability distribution, which depends on the gradient of the true
label. This technique aims to enhance the network’s ability to capture crucial features
and relationships within the data by targeting such pairs. This approach links the
initialization process with the network’s capacity to efficiently learn from the training
data, potentially leading to improved performance and generalization capabilities. The
conditional probability distribution is defined as follows:

p(l)(x(1)0 , x(2)0 |{Wj, bj}l−1
j=1) ∝


∥ f (x(2)0 )− f (x(1)0 )∥Y
∥x(2)l−1−x(1)l−1∥Xl−1

if x(1)l−1 ̸= x(2)l−1

0, otherwise,
(2.2)

where, x(1)0 and x(2)0 are the pair of input points sampled from the input space, x(1)l−1 and

x(2)l−1 are the hidden layer prediction of previous layer for the pair of input points x(1)0 and

x(2)0 , Wj and bj are the weights and biases of the jth neuron in the hidden layer. f (x(2)0 )

and f (x(1)0 ) are the true label for the pair of input points x(1)0 and x(2)0 respectively. These
weights and biases in the SWIM method are given as follows

Wl,i = s1
x(2)l−1,i − x(1)l−1,i

∥x(2)l−1,i − x(1)l−1,i∥2
, bl,i = ⟨Wl,i, x(1)l−1,i⟩+ s2, (2.3)

where, s1 and s2 are scalar constants, x(1)l−1,i and x(2)l−1,i are hidden layer prediction of

previous layer for the ith pair of input points x(1)0,i and x(2)0,i whereas the output layer
weights are set by minimizing the loss function. The scalars s1 and s2 influence the
placement of the activation function between the input points. Currently, SWIM method
works for ReLU and tanh activation functions as follows:

• For ReLU activation, s1 is set to 1 and s2 to 0, mapping x(1) and x(2) to 0 and 1
respectively in the output of the activation function.

• For tanh activation, s1 is set as s1 = 2s2 and s2 is set as s2 = ln(3)/2, mapping x(1)

and x(2) to −0.5 and 0.5 respectively in the output of the activation function.

The SWIM method also has an option to select the pairs of input points uniformly
and not based on the gradient of the true label. This option is useful when no true label
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2.4 Sampling neural network parameters

is available and the network has to be trained using the SWIM method. In the context
of using neural networks for solving PDEs, the uniform sampling of input points can
be beneficial since we do not have the solution of the PDE before solving it. Another
option SWIM method provides is to prune duplicate activation functions. Since the pair
of input points are sampled based on a conditional probability distribution, there is a
possibility that the same pair of input points is sampled multiple times. These duplicate
activation function do no contribute to the approximation of the function and can be
pruned. In all the experiments we present in section 3.2, we always use the pruning
option to remove the duplicate and improve the computational time as it results in less
linear layer parameters to solve.
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Figure 2.2: Function to be approximated and 200 pair of input points sampled using
SWIM method

In the discussion about the basis functions in section 2.3, we mentioned the importance
of placing activation functions such that the shift of the basis functions are within the
domain, and more activation functions are placed in the region of the domain where
the gradient of the true function is high. In the fig. 2.2, we can observe the pair of
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input points selected for placing the activation function for two different functions.
The shift will always be inside the domain since the input points are used to place the
activation function. From fig. 2.2c and 2.2f we can also observe that with the SWIM
method, more pairs of input points are sampled in the region where the gradient of
the function being approximated is high compared to the uniform sampling of input
points given in fig. 2.2b and 2.2e. The advantage of using a uniformly sampled pair of
input points over random initialization is that the input points are still used to place
the activation function, and the shift of the activation function is within the domain.
The only downside compared to the SWIM method is that since we do not have the
solution, the activation functions are placed uniformly instead of placing more activation
functions in the region where the gradient of the true function is high.
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3 Solving partial differential equations
using sampled networks

3.1 Implementation details

In this section, we will go through the process to obtain a solution for a linear/non-linear
PDE using neural networks with domain decomposition.

Consider the following problem

Lu(x) +N u(x) = f (x) x ∈ Ω,

Bu(x) = g(x) x ∈ ∂Ω, (3.1)

where x ∈ Ω ⊂ Rdx and dx ⊂ N+ is the dimension of x. u is the solution of the PDE
and let the dimension of the solution be du ⊂ N+. f (x) and g(x) are known functions.
L, N and B are the linear, non-linear and boundary operator of the PDE applied on the
solution u.

Figure 3.1: Neural network with 2D input, 1D output and 1 hidden layer

Let us start with an assumption that the solution of the PDE given in eq. 3.1 can be
represented by a neural network with one hidden layer, as given in Fig. 3.1. The output
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3 Solving partial differential equations using sampled networks

of the neural network is given as

u(x) =
Nu

∑
i=0

wliσi(x) + bl = σ(x) · Wl + bl , (3.2)

σ(x) = (σ1(x), σ2(x), . . . , σNu(x)), (3.3)

where Nu is the number of neurons in the hidden layer and σ(x) is some activation
function σ applied on the output from the hidden layer of the neural network and Wl
and bl are the parameters of the linear layer. The concept introduced in [DL21] to obtain
the solution of a PDE is that the hidden layer parameters are not trained in the solution
process, which means they are fixed to the initial value with which they are initialized
to and only linear layer parameters are updated. These parameters can be initialized
randomly based on the distribution of choice or set intelligently using the SWIM method;
more about the initialization of network parameters is discussed in section 3.1.3. Since
the network output satisfies the PDE (initial assumption), we can substitute the output
with eq. 3.1 to get the following equations

L(σ(x) · Wl + bl) +N (σ(x) · Wl + bl) = f (x) x ∈ Ω,

B(σ(x) · Wl + bl) = g(x) x ∈ ∂Ω. (3.4)

In the next sections, we will look into additional conditions imposed due to the
introduction of domain decomposition, preparation of input to the neural network,
initializing the neural network parameters using the SWIM method, and finally, the loss
function and optimization process to obtain the solution of the PDE.

3.1.1 Domain decomposition

Domain decomposition proves to be a helpful strategy in the scientific realm for solving
PDEs in a computationally efficient manner. This method involves partitioning the
overall computational domain into smaller, more manageable subdomains, treating each
as an independent unit. It involves dividing a complex computational domain into
smaller subdomains, each of which can be solved independently or semi-independently.
The primary goal is to distribute the computational workload across multiple processors
or compute nodes, leveraging parallelism to accelerate the solution process.

One notable aspect of domain decomposition, particularly in neural networks, is
the ability to approximate relatively simple solutions within each subdomain. By
decomposing the problem into smaller units, the inherent complexities of PDEs in each
subdomain become more manageable for neural networks. The localized nature of
subdomain problems allows for utilizing neural network architectures to efficiently
capture and approximate the underlying solution within each distinct region [Hei+21].
Modifications have been proposed in PINN that combine domain decomposition with
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3.1 Implementation details

it called Extended Physics-Informed Neural Network (XPINN) [DE20]. The continuity
conditions are enforced by adding a loss term that satisfies the solution continuity at
the shared boundaries of adjacent subdomains. The main downside of this approach
is that the overall solution can still contain discontinuities as the continuity constraints
are weakly satisfied in the loss term. An improvement was proposed by [MMN21] in
which overlapping subdomains resulted in strict enforcing of continuity conditions on
the subdomain interface. A similar trend is observed in [DL21] and [Che+22], where the
former introduced the locELM method that uses continuity conditions on the interface
of subdomains. In contrast, the latter introduced partition of unity or overlapping
subdomains to enforce continuity of the solution across subdomains.
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(a) Grid domain decomposition
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(b) Arbitrary domain decomposition

Figure 3.2: Two types of domain decomposition

In the case of domain decomposition, the domain is divided into multiple subdomains.
For each subdomain, the solution is obtained by an individual neural network. These
different networks’ solutions are stitched together to get the solution over the entire
domain. To ensure the overall solution continuity over the domain, extra constraints
are imposed on the boundaries of the neighboring subdomains. The order of the PDE
constraints the derivatives of that order. Hence, the order of the continuity constraints is
one order less than the order of the PDE solved in 3.1 to maintain the continuity of the
solution as well as the lower derivatives of the solution. This is done by first sampling
points on the shared boundary between two adjacent subdomains. These "shared points"
are different from the internal and boundary points we sample in the case of no domain
decomposition. The extra constraint imposed in addition to the equations given in 3.1
are
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3 Solving partial differential equations using sampled networks

Cmuj(z)− Cmuk(z) = 0 z ∈ ∂Ωshared, (3.5)

where Cm are the continuity conditions starting from m = 0 to one order less than the
PDE, uj(x) and uk(x) are the solutions of the PDEs in adjacent subdomains j and k on
the shared boundary ∂Ωshared. Substituting the output of the neural network given in eq.
3.2 in eq. 3.5 we get,

Cm(σj(z) · Wlj + bl j)− Cm(σk(z) · Wlk + blk) = 0 z ∈ ∂Ωshared. (3.6)

In the thesis, two distinct domain decomposition strategies are implemented in 2D:
grid-based and arbitrary decomposition approaches.

In grid-like domain decomposition, the number of partitions in the x and y directions
is used as an input in the 2D case, resulting in equal domain splits based on the number
of partitions in that direction. In arbitrary domain decomposition, the subdomains are
defined by coordinates of the vertices of subdomains. In the current work, the limitation
in the implementation with the arbitrary domain decomposition method is that the
shape of subdomains can only be a rectangle, and the union of all the subdomains should
cover the entire domain. The two types of domain decomposition implementation are
given in fig.3.2.
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Figure 3.3: Points sampled with domain decomposed into 2 subdomains. For the left
subdomain interior points and boundary points are marked in blue and red
colors respectively and for the right domain interior and boundary points
are marked in orange and green color respectively. The shared points are
marked in black color.
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3.1.2 Input points

The first stage involves systematically sampling points from the interior domain and
boundaries. Before using these sampled points as input to the neural network, the coor-
dinates are normalized to [−1, 1]R

d
. More specifically, the input to the neural network is

prepared as follows. Let Nin
j be the number of points sampled from the interior of jth

subdomain and Nbc
j be the number of points sampled from the domain boundary local

to the subdomain. For the case with more than one subdomain, we also need to sample
points from the shared boundary between adjacent subdomains. Let the number of
points sampled from the shared boundary be Nsh

jk common to the adjacent subdomains j
and k. An example of points sampling is given in the fig. 3.3.

We set the points for jth subdomain as follows:1

Pin
j = [x1, x2, . . . , xNin

j
]T, (3.7)

Pbc
j = [y1, y2, . . . , yNbc

j
]T, (3.8)

Psh
jk = [z1, z2, . . . , zNsh

jk
]T, (3.9)

where x ∈ [aj, bj]
d represents points sampled randomly from a uniform distribution

from the interior domain with aj and bj being the lower and upper bounds of the jth

subdomain, y represents points sampled from the domain boundary and z represents
points sampled from the shared boundary. Let the center of jth subdomain be xn and rn

so that the domain’s bounds can be represented as [xn − rn, xn + rn]d. The normalized
coordinates then can be given as:

(Pin
j )norm =

1
rn
(Pin

x − xn), (3.10)

(Pbc
j )norm =

1
rn
(Pbc

j − xn), (3.11)

(Psh
jk )norm =

1
rn
(Psh

jk − xn). (3.12)

The normalization procedure maps the coordinates from [xn − rn, xn + rn]d to [−1, 1]d,
which then is used as an input to the neural network.

Normalizing the input can enhance the results along with domain decomposition if
random initialization is used for the neural network. Normalizing the inputs for each
subdomain, we perform an affine transformation that maps each smaller partition onto
the domain [−1, 1]d, making it symmetric and better suited for random initialization.
In the next section, we discuss the initialization of a neural network using the SWIM
method.

1Shared points are only sampled if there are more than 1 subdomains
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3 Solving partial differential equations using sampled networks

3.1.3 Sampling Where It Matters initialization

The SWIM method demonstrates effectiveness when ground truth label data is accessible;
however, in our scenario of employing neural networks to solve the PDE, the solution
remains unknown, posing a challenge in obtaining prior knowledge of the PDE solution.
In this case, when using In the SWIM algorithm, the activation function can be placed
uniformly and not based on the gradient of the true label. The advantage this still has
over random initialization is that the activation functions are still placed in between
the pair of input points, which results in the shift of activation function still within the
domain compared to random initialization, where some activation functions whose shift
might be far away from the domain of interest and may not help in approximating the
solution of the PDE. Another advantage is the effectiveness of SWIM initialization does
not depend on the exact position of the domain in the input space, whereas for random
initialization, since the weights and biases are sampled from a normal and uniform
distribution respectively, it might have a bias of performing better on certain domain
bounds.

For a particular case of PDEs where the right-hand side of the PDE gives a good hint
of the solution of PDE; for example, in the Poisson equation, we use the right-hand side
function to place the activation functions within the domain. An obvious advantage it
presents compared to uniformly placing activation functions is if the right-hand side
function of the PDE gives a good hint of the solution of PDE; the SWIM method will
place more activation functions in the region where the solution also might have a high
gradient magnitude.

3.1.4 Loss function and optimization

In neural networks, the loss function is a critical metric for quantifying the disparity
between model predictions and actual target values. The loss function describes the
model’s performance by assigning a penalty based on the deviation between predicted
and true outcomes. Common loss functions include mean squared error (MSE) for re-
gression tasks and categorical cross-entropy for classification problems. During training,
the model iteratively adjusts its parameters to minimize this loss, effectively enhancing
its predictive accuracy and generalization capabilities.

The loss function in problems where neural networks are used to obtain the solution
of PDE is generated by evaluating the PDE, boundary conditions, and shared conditions
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on collocation points. The loss function is given as

Loss =
Nsub

∑
j=1

(

Nin
j

∑
i=1

λin|Luj(xi) +N uj(xi)− f j(x)|2 +
Nbc

j

∑
i=1

λb|Buj(yi)− gj(yi)|2

+

Nsh
jk

∑
i=1

λsh|Cmuj(zi)− Cmuk(zi)|2). (3.13)

In the case of a single domain, the loss function will only have contributions from
internal and boundary points. In the above equation, λin, λb, and λsh are parameters
multiplied to each term of the loss function to balance the contribution from the dif-
ferent type of points. We describe the process to set these parameters later in this section.

Since we do not train the hidden layer parameters but just the linear layer parameters,
the complete problem can be defined by a linear or non-linear system of equations for
linear or non-linear PDEs, respectively.

From eq. 3.4 and eq. 3.6 we can construct the following system of equations:

R =

 λin(L(σj(x) · Wlj + bl j) +N (σj(x) · Wlj + bl j)), 1 ≤ j ≤ Nsub
λb(B(σj(y) · Wlj + bl j)), 1 ≤ j ≤ Nsub

λsh(Cm(σj(z) · Wlj + bl j)− Cm(σk(z) · Wlk + blk)), 1 ≤ j < k ≤ Nsub

−
 f (x)

g(y)
0

 ,

(3.14)

where the least squares problem is to minimize 0.5∥R∥2.

To simplify the equations we assume only 2 subdomains from now. For the case
where the pde does not have a non-linear part or N = 0 we can rewrite eq. 3.14 as
follows

R =


λin(L(σ1(x) · Wl1 + bl1)) 0

0 λin(L(σ2(x) · Wl2 + bl2))

λb(B(σ1(y) · Wl1 + bl1)) 0
0 λb(B(σ2(y) · Wl2 + bl2))

λsh(Cm(σ1(z) · Wl1 + bl1)) −λsh(Cm(σ2(z) · Wl2 + bl2))

−


f1(x)
f2(x)
g1(y)
g2(y)

0

 . (3.15)

Since L, B and C are linear operators applied on the solution. The residual equation
3.15 can be written as a linear system of equations as follows


λinL(σ1(x)) λinL(1) 0 0

0 0 λinL(σ2(x)) λinL(1)
λbB(σ1(y)) λbB(1) 0 0

0 0 λbB(σ2(y)) λbB(1)
λshCm(σ1(z)) λshCm(1) −λshCm(σ2(z)) −λshCm(1)




Wl1
bl1

Wl2
bl2

 =


f1(x)
f2(x)
g1(y)
g2(y)

0

 . (3.16)
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3 Solving partial differential equations using sampled networks

This linear system of equations can be solved for the parameters of the linear layer us-
ing SciPy’s [Vir+20] linear least squares solver: scipy.optimize.lsq_linear [BCL99]. For a
linear system of equations, the parameters λin and λb are set to normalize the maximum
of rows of the coefficient matrix to 1. This strategy of balancing loss terms is given in
[Che+22], and from our experiments, we can conclude that it is the best strategy among
the few we tried. The results for the same can be seen in 3.2.1.2.
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(a) Points sampled in a 9 subdomain grid like domain
decomposition split

(b) Resulting sparsity pattern of the co-
efficient matrix of linear system of
equations

Figure 3.4: Visualization of points sampled in the case of 9 subdomains and resulting
sparsity pattern of coefficient matrix in the linear system of equations.

For more than two subdomains, the system of equations can be written in a similar
manner to the one given in eq. 3.16 and can be solved using a linear least squares
solver. In fig.3.4, we can observe the points sampled from the domain divided into
nine subdomains and the sparsity pattern of the resulting matrix of the coefficient matrix.

For the case where N ̸= 0, the system of equations has to be solved using SciPy’s
non-linear least squares solver. In the current work, these equations are solved using
a non-linear least squares solver: scipy.optimize.least_squares [Mor78]. The solver com-
putes the Jacobian matrix of the residual with respect to the parameters solved for
using a finite difference scheme. The computational speed can be improved significantly
by providing the Jacobian matrix. If the linear layer parameters can be expressed as
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ϕ = (Wl , bl). The Jacobian matrix is computed by taking the partial derivative of residual
with respect to the linear layer parameters

J =
∂R
∂ϕ

. (3.17)

3.1.5 Summary

In this section, we have discussed the entire process of obtaining the solution for the PDE.
We discuss several aspects of the solution-obtaining process, like sampling input points,
preparing input for the network, and modifications in case of domain decomposition.
Finally, we mention the loss function and optimization process to train the network
parameters. In this section, we summarize the entire process. The solution of the PDE is
obtained using neural networks with domain decomposition by following these steps:

1. Sample points from the interior, boundary, and shared boundaries between sub-
domains in the case of domain decomposition and normalize the coordinates to
[−1, 1]d. This will be the input to the neural network.

2. Fit the network using SWIM method.

3. Construct the loss function based on the PDE and boundary conditions and in case
of domain decomposition add the continuity constraints on the points sampled
from the shared boundaries.

4. In case of:

• Linear PDEs solve the resulting linear system of equations using a linear least
squares solver.

• Non-linear PDEs compute the residual vector and Jacobian of it with respect to
linear layer parameters and solve the resulting non-linear system of equations
using a non-linear least squares solver.
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3.2 Experiments

3.2.1 Linear Partial Differential Equation

3.2.1.1 Problem Description

The Poisson equation is a fundamental PDE widely employed in various scientific disci-
plines, particularly physics, engineering, and mathematics. It describes the distribution
of a scalar field, such as temperature, pressure, or electrostatic potential, within a given
domain. Mathematically, the Poisson equation is expressed as:

∆u = f (x1, x2, . . . , xd), (3.18)

where ∆ represents the Laplacian operator, u is the scalar field of interest, and f is a
given function of independent variables x1, x2, . . . , xd. This equation can be generalized
to any dimension d. The results in the following subsections are compared for four
different solution functions of the Poisson equation. The different Poisson equations
and its solution is given as follows for any dimensions d:

• Decaying sin

∆u =
d

∑
i=1

−e−1.5xi (222.75 sin(15xi) + 45 cos(15xi)) (3.19)

u =
d

∑
i=1

sin(15xi)e−1.5xi

• Sum of sin functions with two frequencies

∆u =
d

∑
i=1

−4 sin(2xi)− 100 sin(10xi) (3.20)

u =
d

∑
i=1

sin(2xi) + sin(10xi)

• Gaussian function

∆u =
d

∑
i=1

(400x2
i − 20) exp

(
−10

d

∑
i=1

x2
i

)
(3.21)

u = exp

(
−10

d

∑
i=1

x2
i

)

• Polynomial (5th order)

∆u = 80(
d

∑
i=1

x3
i )− 270(

d

∑
i=1

xi) (3.22)

u = 4(
d

∑
i=1

x5
i )− 45(

d

∑
i=1

x3
i ) + 81(

d

∑
i=1

xi)
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The boundary condition for the above-mentioned equations is given by evaluating
the true solution at the boundary points. In this section, for all the experiments we
use the right-hand side of the Poisson equation to initialize the network parameters
and always prune the duplicate activation functions in the SWIM method.
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Figure 3.5: Solution of PDEs used for experiments over a 2D domain [−1, 1]2

3.2.1.2 Balancing PDE and boundary conditions losses

In this experiment, we present a comparative analysis of the results obtained by balancing
losses from internal and boundary points across four different functions, employing
various loss-balancing techniques. The primary objective of this experiment was to
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mitigate errors in the solution by effectively distributing the loss between internal and
boundary points. Notably, all experiments were conducted for a single domain, i.e.,
no domain decomposition, ensuring a consistent evaluation for all the strategies. The
strategies we compare are:

• Default least squares problem.

λin = 1,

λb = 1. (3.23)

• Normalize the coefficient matrix rows by maximum of the rows.

λin =
1

max
1≤l≤Nl

(L(σl(xi)),L(1))
,

λb =
1

max
1≤l≤Nl

(B(σl(yi)),B(1))
, (3.24)

here [L(σl(xi)),L(1)] represents a row of the coefficient matrix for the internal
points xi and [B(σl(yi)),B(1)] represents a row for the boundary points yi, these
equations for the row are also given in eq. 3.15. λin is computed by taking the
maximum of each row of PDE conditions part of the coefficient matrix and is a
vector of the dimension Nin × 1. Similarly, λbc is computed by taking the maximum
of each row of boundary conditions part of the coefficient matrix and is a vector of
the dimension Nbc × 1.

• Normalize the internal points block and the boundary points block of the matrix
by the maximum of blocks respectively

λin =
1

max
1≤i≤Nin

max
1≤l≤Nl

(L(σl(xi)),L(1))
,

λb =
1

max
1≤i≤Nbc

max
1≤l≤Nl

(B(σl(xi)),B(1))
. (3.25)

• Scale the PDE and boundary conditions by inverse of points sampled from interior
and boundary respectively

λin =
100
Nin

,

λb =
100
Nbc

, (3.26)

in this strategy λin and λb are simply computed by scaling the rows by inverse
of the number of points sampled in the interior and boundary of the domain
respectively.
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For this experiment, we investigated a Poisson problem defined over a 2D square
domain spanning from [-1, 1] in both dimensions. The various right-hand side functions
for the Poisson equation are detailed in section 3.2.1.1. To address boundary conditions,
we utilize the solution of the PDE at the boundary points. To investigate the impact of
balancing losses from the PDE and boundary conditions on accuracy, we maintain a
constant layer width of 6000, and the number of boundary points sampled is also fixed
at 500 while varying the number of points sampled from the domain. The results we
present are averages obtained from five different random states used for sampling points
from the domain. This approach allows us to assess how different configurations of
sampled points influence the model’s accuracy. For all the next experiments we compute
the error on test points sampled from the domain linearly that are different from the
points sampled for solving/training.

The results of implementing the strategies above are presented in figs. 3.6, 3.7. From
this data, it is evident that normalizing the coefficient matrix rows by the maximum
value within each row and scaling the PDE and boundary losses by the inverse of
the points sampled from the interior and boundary, respectively, yielded comparable
outcomes. Both approaches demonstrated an improvement in the overall accuracy when
compared to the default solution. This finding suggests that these normalization and
scaling techniques play a crucial role in enhancing the solution’s accuracy. Further,
comparing the absolute error contours in fig. 3.6 for the default and normalizing rows
strategy, it is clear that the error concentrated at the boundaries for the default strategy
is observed to be reduced and distributed over the domain for normalizing rows strategy.
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(b) Normalize rows of coefficient matrix

Figure 3.6: Error contour plots for decaying sine problem

Conclusion 1 In [Che+22], the authors suggest normalizing the rows of the coefficient matrix
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by the maximum value within each row if the constants in the PDE exhibit disparate magnitudes
and the results for our experiments align with their conclusion. In all the following experiments,
we always normalize the coefficient matrix rows by the maximum value within each row.
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Figure 3.7: Results for balancing PDE and boundary conditions losses fixing layer width
constant at 6000, boundary points sampled at 500 and increasing number of
internal points sampled from the domain
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3.2.1.3 Ratio of layer width to internal points

In this section, we run experiments to figure out the best balance between how wide
the hidden layer of the neural network should be and how many internal points should
be sampled from the domain. We are particularly interested in this because we use the
SWIM method to initialize the network weights, which uses a pair of input points to
place the activation function for each neuron in the hidden layer. By trying out various
ratios of internal points sampled to layer width, we aim to pinpoint the setups that
make the network work best. This is important because it helps to understand how to
design neural networks that can capture complex patterns effectively while keeping
computations manageable.

In this experiment, we investigate various ratios between the number of points sam-
pled and the layer width. For each ratio, we increment the layer width proportionally
with the number of points sampled, with the number of points sampled becoming the
ratio times the layer width. The boundary points sampled are constant throughout
the experiment set at 500. Since only internal points are used to place the activation
functions, we fix the number of points sampled from the boundary. The results we
present are averages over five different random states used for sampling points from
the domain. We compute the average error for different Poisson problems detailed
in the section.3.2.1.1. The results are presented for 1D and 2D Poisson problems. By
experimenting with these different ratios, we aim to enhance our understanding of how
the relationship between point sampling density and layer width impacts the accuracy
of our results in solving the Poisson problem.

From the results given in fig.3.8, the network seems to overfit the functions after layer
width of 200 and the accuracy for all the ratios is also similar. In fig.3.9, overfitting is
not observed and the plots follow the expected trend of increasing ratio resulting in
improvement in accuracy, although the improvement is marginal. Following conclusion
can be made from this experiment.

Conclusion 2 For 1D experiments in fig.3.8 the results suggest that for layer width of 200 for
all the functions have the best accuracy for all ratios of internal point to layer width. After layer
width of 200 neural network overfits the function and increasing it further results in increasing
on test points.

For 2D experiments in fig.3.9 the results were as expected with increase in layer width and
number of points sampled the accuracy decreases exponentially. In the plots for ratio set at 6, the
accuracy was observed to be marginally better than other ratios we tried. Although increasing
ratio improved the accuracy marginally the size of system of linear equation increases with the
ratio resulting in the time taken to solve to increase with it. For further experiments in 2D we go
ahead with ratio set at 5 balancing the accuracy and time taken to obtain the solution.
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Figure 3.8: Layer width vs average error plot of five different ratios of internal point to
layer width for four functions in 1D
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Figure 3.9: Layer width vs average error plot of five different ratios of internal point to
layer width for four functions in 2D
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3 Solving partial differential equations using sampled networks

3.2.1.4 Input points mapping in SWIM method

In this experiment, we understand the relation between the hidden layer’s weight and
the solution’s accuracy with the SWIM method. In the SWIM method, the activation
function is placed in such a way that the tanh function is exactly between the two input
points, and the input points map to +/ − 0.5 in the activation function output. In this
experiment, we vary the mapping of the input points from +/ − 0.1 to +/ − 0.9. This
affects the steepness of activation functions used as a basis function to approximate
the solution. The idea is to approximate a function with high gradients; a steeper
activation function will be better, whereas to approximate a smoother function, a less
steep activation function should work better. We test if the default +/ − 0.5 mapping
in the SWIM method is ideal for the task of approximating the solution of PDEs. In
fig.3.10, we can see the different values tested for the activation function output for the
pair of input points.
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Figure 3.10: Different steepness of tanh activation functions due to input points mapped
to different values

For the experiments, we used a domain from [−1, 1]d and 4 Poisson PDEs introduced
in 3.2.1.1. For the 1D case, the layer width is increased from 50 to 1500, and for the
2D case, the layer width is increased from 1000 to 5000 with the number of internal
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points fixed at five times the layer width for both cases. The number of boundary points
sampled in the 2D experiments were fixed at 500. The results we present are averages
over five different random states used for sampling points from the domain.

From fig.3.11, we can observe that for smooth functions like Polynomial, a clear
improvement in accuracy can be seen with less steep activation function whereas, for
other functions in 1D, a marginal improvement is observed for the same.

From fig.3.12, we can observe that the default steepness of the activation function
works best for all the true solutions of the PDE tested.
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Figure 3.11: Layer width vs average error plot of 5 steepness value of the tanh activation
function for 4 1D Poisson problems
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Figure 3.12: Layer width vs average error plot of 5 steepness value of the tanh activation
function for 4 2D Poisson problems

Conclusion 3 For 1D experiments the results given in fig.3.11 suggest that less steep activation
functions work well for all the functions approximated.

For 2D experiments the results given in fig.3.12 suggest that the default steepness of activation
function performs well compared other steepness tested.

For further 1D and 2D experiments the output of activation function at the pair of input
points is set to be +/-0.1 and +/-0.5 respectively.
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3.2.1.5 Domain decomposition

In this experiment, we present the results of using domain decomposition on accuracy
and time taken to obtain the solution of the Poisson equation. The domain size is fixed
to [−1, 1]2 for the 2D case, and three grid domain decomposition configurations are
compared, i.e., one subdomain (1 × 1), four subdomains (2 × 2) and nine subdomains
(3 × 3). The PDEs solved are the same as in previous sections and are given in 3.2.1.1.
The layer width is increased from 1000 to 5000, and the number of points sampled
is fixed to 5 times the layer width. Number of boundary points sampled for all the
cases is fixed at 500 points. For the comparison between 1 domain case and domain
decomposition, the total layer width and number of points sampled from the domain are
kept constant. This means increasing the number of subdomains results in decreasing
the number of points sampled and layer width per subdomain.

Some of the key observations from the results presented in fig.3.13 are for functions
that do not have a lot of local variations, for example, Polynomial and Gaussian functions
using only one subdomain gives the best accuracy for all the layer width tested, whereas
for functions with local variations increasing the number of subdomains resulted in the
accuracy being similar to 1 subdomain case for higher layer width, but with domain
decomposition, the time taken to solve the system is less compared to 1 domain solution.
This is due to the SWIM method’s quick sampling of the weights for each local neural
network. Also, constructing a linear system of equations is done comparatively faster for
increasing the number of subdomains. This can be observed in fig. 3.14 where the break-
down of the total time is presented into different components of the solution-obtaining
procedure. The time required to solve the linear system of equations is consistent for all
the domain decomposition configurations as the size of the least squares system being
solved is marginally increased with an increasing number of subdomains as additional
continuity constraints have to be satisfied.

An essential consideration in our experiments is choosing the dense least squares
solver over the sparse least squares solver. As outlined in section 3.1, we discussed
the sparsity of the coefficient matrix resulting from domain decomposition. Utilizing
the sparse least squares solver led to degraded accuracy and increased computational
time. This can be attributed to the resulting system’s ill-conditioning, a challenge not
effectively addressed by the sparse solver [GD21]. Moving forward, exploring precondi-
tioners tailored for handling sparse ill-conditioned systems of linear equations present a
promising avenue for future research and optimization.
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Figure 3.13: Layer width vs average error and layer width vs time taken to solve for 4
different functions with 3 domain decomposition configuration
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Figure 3.14: Distribution of time taken to obtain solution of PDE with different domain
decomposition configurations for 5th order polynomial function with layer
width set at 5000 and number of points sampled from interior and boundary
set at 25000 and 500 respectively.
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Conclusion 4 From fig. 3.13 and fig. 3.14 we can conclude that fixing the total number of
nodes in the hidden layer and points sampled from the domain with domain decomposition, the
accuracy remains The same is true for larger layer widths, whereas the time taken to obtain the
solution is reduced for a 2 × 2 split. Further increasing the number of subdomains reduce the
accuracy, whereas the time taken to solve is comparable with a 2 × 2 split.

3.2.1.6 Comparison with conventional methods

In this section, we compare the SWIM method’s solution with FEM and PINN. The
domain size is fixed to [−1, 1]2 for the 2D case. For FEM results, we used FEniCS, a
python-based FEM library [Bar+23]. First and second-order basis functions are em-
ployed, with the number of nodes varying from 1002 to 10002. Meanwhile, for the
SWIM method, the number of points sampled from the domain and boundary is fixed
at 10000 and 300 respectively, with the layer width increased from 500 to 3000. PINN
utilized a fixed number of points sampled from the domain and boundary at 10000 and
300 respectively, with a layer width of 500 chosen for comparison. The parameters are
chosen such that the time it takes to obtain the solution for FEM and SWIM methods is
comparable, and approximately the same number of trainable parameters are present in
the PINN and SWIM method with largest layer width. This comparative analysis sheds
light on the performance differences across the methods, highlighting how variations in
basis functions, number of points sampled, and layer width influence solution accuracy
and computational efficiency.

The results are presented in fig. 3.15 in which the accuracy or the average error in
the solution is plotted against the computational time required to obtain the solution of
the PDE. The results suggest that the SWIM method performs well compared to FEM,
whereas PINN struggle to approximate the solution with comparable accuracy and time
taken to solve the PDE. The general trend observed is that the accuracy of the SWIM
method lies between the accuracy of FEM of first-order and second-order basis functions.
An interesting observation for random initialized neural networks is that it outperforms
all methods for functions without local variations, e.g., 5th order polynomial function.

We can also observe for the SWIM and random initialized neural network the general
trend that increasing layer width results in increasing computational time and improve-
ment in accuracy is not followed. This shows that increasing just one parameter out of
the layer width and number of interior points does not guarantee improvement in the
accuracy or computational time.

Conclusion 5 For simple PDEs like the Poisson equation, the accuracy of the SWIM method lies
in between the accuracy of FEM with first and second-order basis functions. SWIM method for all
the cases outperforms random initialization or for simple functions like the 5th order polynomial,
both the methods perform equally well. PINN struggle to compete with other methods, suggesting
the presented method is a good alternative to solving PDEs using neural networks.
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Figure 3.15: Average error vs time taken to solve for FEM, PINN, SWIM and random
initialized neural network solution
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3.2.1.7 3D linear PDEs

In this section, we present the results for the method extended to 3D linear Poisson
PDEs. The experimental setup is same as other previous experiments were we solve the
Poisson preoblems given in section 3.2.1.1. The domain is extended to [−1, 1]3 for the
3D case. The boundary conditions are set to be the solution of the PDE at the boundary
points. The results given in table 3.1 suggest that the method works well for the 3D case
too and can be extended to higher dimensions as well. The advantage of this method
lies in that fact that the ease with which the lower dimensional implementation can be
extended to higher dimensions. The changes required to extend the method to higher
dimensions are the architecture of neural network and computation of extra derivative
term in the loss function. Comparing with conventional methods which suffer from the
curse of dimensionality, the neural network based methods are more scalable and can
be a good alternate to solving PDEs in higher dimensions.

Table 3.1: Results for 3D linear Poisson PDEs for 4 functions
Functions Points sampled Layer Width Error

Interior domain Boundary Max error Avg error
Decaying sine 32768 322 · 6 8000 3.15e-03 3.20e-04

Sine 2 freq 32768 322 · 6 8000 6.61e-06 6.68e-07
Gaussian 32768 322 · 6 8000 6.52e-06 1.29e-07

Polynomial 32768 322 · 6 8000 1.32e-08 4.32e-10

3.2.1.8 Analysis of linear layer parameters

In this experiment, we observe the relation between the linear layer parameters, specif-
ically the weights of the linear layer and the distance between the input points. The
experiment is done for the 2D case for a square [−1, 1]2 domain. Results for the problems
from section 3.2.1.1 are presented in figs. 3.16, 3.17, 3.18, and 3.19. The linear layer
parameters are arranged in decreasing magnitude in the first plot for all the functions.
The distance between the input points is presented in the second plot, corresponding
to the sorted order of the magnitude of linear layer parameters in the first plot. This
provides some insights into the relation between the magnitude or the importance of
the activation function and the distance between the input points chosen to place the
activation function. The results suggest a clear relation between the input points and the
magnitude of linear layer parameters for all the functions. For the pair of points that are
very close to each other, the magnitude of the corresponding linear layer parameter is
very low. A cut-off for linear layer parameter magnitude is set as 10−5 and corresponding
distance between the input points is marked. This shows that for distance between
input point less than the cut-off distance, the corresponding activation function does not
contribute in approximating the solution of the PDE.

In the third plot, we present the singular values of the covariance operator of the basis
functions. In [MQS23], a similar experiment is done to improve basis functions into
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orthonormal basis functions for DeepONets based on singular values of the covariance
matrix. The covariance operator is given as follows

C =
N

∑
k=1

τk ⊗ τk =
N

∑
k=1

τk ⟨τk, ·⟩ , (3.27)

where τk are the predictions of the basis functions for a point k and ⊗ denotes the outer
product. N is the total number of points sampled from the domain.

The singular value plots also suggest that approximately 500 basis functions are
enough to approximate the function space. This is an important observation as the
number of basis functions could be reduced, effectively improving the computational
time with minimal effect on the accuracy of the solution.
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Figure 3.17: Sum of sine functions with 2 frequencies
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Figure 3.18: Gaussian function
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Figure 3.19: 5th order polynomial function

Conclusion 6 These experiments suggest that some basis functions do not contribute to approx-
imating the solution for the PDE. These basis functions can be discarded, resulting in fewer
parameters to solve. Thus reducing the computational time taken to solve the linear system of
equations.
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3.2.2 Non-linear Partial Differential Equation

In the previous section, we extensively experiment with the linear Poisson equation.
This section extends our implementation and shows that it can also solve non-linear
partial differential equations.

3.2.2.1 Non-linear Poisson equation

The non-linear Poisson equation extends the fundamental concept of the traditional
Poisson equation by introducing non-linear terms. Widely employed across scientific
disciplines such as physics, chemistry, and biology, this equation serves to describe the
distribution of diffusing quantities exhibiting non-linear behaviors within a given spatial
domain.

Mathematically, the non-linear Poisson equation can be represented as

∇ · (g(u)∇u) = F(x1, x2, . . . , xd). (3.28)

In this formulation, g(u) = 1 + u, ∇ denotes the gradient operator, u is the scalar
field of interest, and F denotes a function of independent variables x1, x2, . . . , xd. This
equation can be easily extended to any dimension d.

In this section we present the results for the following non-linear partial differential
equation in 2D

∇ · ((1 + u)∇u) = 0.5 ∗ exp(−0.5 ∗ (x + y)) + exp(−(x + y)). (3.29)

The solution of the eq.3.29 is given as

u = exp(−0.5 ∗ (x + y)). (3.30)

The eq.3.29 is solved over a 2D domain [−1, 1]2 and the boundary conditions are enforced
by evaluating the solution of the PDE given in 3.30 at the boundary points.

In this section, we compare the solution accuracy and time taken to solve the non-linear
Poisson equation by SWIM method, FEM and PINN. The domain size is fixed to [−1, 1]2

for the 2D case. For FEM, first-order basis functions are used to solve the non-linear
Poisson equation, and the number of nodes is increased from 1002 to 10002. For the
SWIM method, the number of points sampled from the domain and boundary is fixed
at 1000 and 300 respectively, with the layer width increasing from 100 to 700. For PINN,
we use 1000 and 300 points sampled from the domain and boundary respectively, and
the layer width is set at 200 so that the number of trainable parameters is approximately
equal for the SWIM method with the largest layer width. We present the results in fig.
3.20 with the pair of input points sampled uniformly as the right-hand side function
does not give us a good idea about the solution of the PDE, and duplicate activation
functions are pruned in the SWIM method. The results suggest that for the simple
problem we tried the SWIM method performs well compared to FEM, whereas PINN
struggle to approximate the solution with comparable accuracy and time taken to solve
the non-linear PDE is also high.
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Figure 3.20: Accuracy vs time taken to solve for FEM, PINN and SWIM initialized neural
network solution

3.2.2.2 Navier Stokes - Steady state lid driven cavity

In the previous section we present the results for a scalar non-linear PDE. Now, we
delve into the solution of the Navier-Stokes equation in two dimensions, approximated
using neural networks. Given that the solution for the Navier-Stokes problem comprises
a vector belonging to R3, representing the u, v, and p variables in 2D, and we need to
solve three equations in total—continuity, x-momentum, and y-momentum—the neural
network architecture is designed accordingly. It consists of two input neurons, a hidden
layer, and three output neurons, facilitating the representation of the final solution of
the equation.

The solution procedure resembles the method described earlier in section 3.1. Initially,
we compute a residual vector for all the equations available to us, including the bound-
ary conditions. This vector depends on the linear layer parameters corresponding to the
three output variables. Subsequently, we compute the Jacobian of the residual vector
with respect to all trainable parameters.

Finally, we employ a non-linear least squares approach to minimize the residual,
effectively refining the solution until convergence is achieved. This iterative process
ensures that the neural network effectively captures the dynamics of the Navier-Stokes
equation, yielding accurate and reliable results for fluid flow simulations.

The continuity equation is given as follows in 2D

∂u
∂x

+
∂v
∂y

= 0. (3.31)
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The 2D incompressible steady state Navier-Stokes equation is given as follows

u
∂u
∂x

+ v
∂u
∂y

= −∂P
∂x

+
1

Re

(
∂2u
∂x2 +

∂2u
∂y2

)
, (3.32)

u
∂v
∂x

+ v
∂v
∂y

= −∂P
∂y

+
1

Re

(
∂2v
∂x2 +

∂2v
∂y2

)
, (3.33)

where the non-dimensional parameter Reynolds number (Re) is given as

Re =
UL
ν

, (3.34)

where U is the characteristic velocity, L is the characteristic length and ν is the kinematic
viscosity.
This section presents the results of a steady state-driven cavity problem with Reynolds
number 100. The steady-state lid-driven cavity problem is a classic benchmark scenario
in fluid dynamics, extensively studied for its relevance in understanding fluid flow
patterns and boundary effects. In this scenario, a fluid-filled cavity is bounded by
rigid walls on three sides, with the top lid moving at a constant velocity parallel to the
base. The governing equations, typically the Navier-Stokes equations and appropriate
boundary conditions describe the fluid’s velocity and pressure distribution within the
cavity. The solution to this problem provides insights into complex fluid behavior,
including forming vortices, boundary layer development, and velocity gradients across
the cavity.

Figure 3.21: Boundary conditions for lid-driven cavity problem

Along with the eq. 3.31, 3.32 and 3.33 we enforce the boundary conditions where the
top lid moves at a constant velocity u = 1 and the other boundaries are set to no-slip
condition. Neumann boundary conditions are applied to pressure on all the bound-
aries. The boundary conditions are given in fig. 3.21. Since the gradient of pressure is
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constrained in the Navier-Stokes equation as well as in the boundary conditions. The
pressure is set to 0 in the bottom left corner of the domain. The entire pressure field is
computed with respect to this reference pressure.

The solution contour plots are presented in fig. 3.22 and a comparison of the center-
line u-velocity is given in fig. 3.23. Further increasing the Reynolds number, the solution
was not as accurate, suggesting that while neural networks can approximate solutions
for complex problems like Navier Stokes, they might not be as effective as traditional
computational fluid dynamics methods regarding accuracy and reliability.
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Figure 3.22: Contour plots for lid-driven cavity problem with Reynolds number 100
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3 Solving partial differential equations using sampled networks
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Figure 3.23: Comparison of centerline u-velocity with benchmark solution for lid-driven
cavity problem with Reynolds number 100. Benchmark solution is taken
from [GGS82]

3.3 Discussion

In this thesis, we extensively experiment with the linear Poisson PDE. We start with
balancing losses between the PDE and boundary conditions. The results show that
normalizing the coefficient matrix of the linear system of equations is the best strategy
to balance the two losses. We then experiment with the ratio of interior points to layer
width. The SWIM method uses the pair of input points to initialize the weights of
the network parameters making it a particularly interesting experiment. We observe
a marginal effect on the accuracy with the increasing ratio. The ratio of 5 is selected
as a good balance between accuracy and computational time; since the computational
time increases with increase in ratio. The next experiment aims to understand the effect
of the activation function’s steepness on the solution’s accuracy. We observe that the
steepness of the activation function significantly affects the solution’s accuracy. For 1D
PDEs, less steep tanh functions are better suited, whereas, for the 2D PDEs, the default
steepness of the activation function performs well. In the next experiment, we observe
the effect of domain decomposition on the accuracy and computational time needed
to obtain the solution. For larger layer widths, the 2 × 2 split performs the best with
comparable accuracy to a single domain, taking less time to obtain the solution. We then
also compare the presented method with existing conventional numerical methods like
FEM and PINN. The presented method shows comparable solution accuracy to FEM
and is far superior to the PINN accuracy. In the next experiment, we present the results
of extending the implementation to 3D, showcasing the scalability of the method. To
conclude the experiments with the linear Poisson equation, we present an analysis of
the linear layer parameters, the relation of the distance between the input points, and
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3.3 Discussion

the magnitude of linear layer parameters can be observed. The results suggest that some
basis functions do not contribute to approximating the solution of the PDE, and similar
results are also observed in the plot of singular values of the covariance operator of the
basis functions. We then extend the implementation to solve the non-linear Poisson
equation and compare the accuracy and computational time with FEM. The results
show that the presented method also works well for simple non-linear PDEs. Finally,
we showcase that this method can also be used to solve the steady-state Navier-Stokes
equation for the lid-driven cavity problem. The method works well for the Reynolds
number of 100, but increasing the Reynolds number to 500 results in an inaccurate
solution. This suggests that the presented method can solve a large variety of simple
PDEs, but with the increase in complexity of the problem, the presented method might
not be the most efficient way to solve such problems.
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4 Conclusion and Future Research Outlook

In this thesis, we present a neural network-based PDE solver for square domains. We
first present the theory required to understand the concepts of neural networks, the
universal approximation theorem of neural networks-the foundational theorem of neural
networks, and explain the SWIM method used to train a neural network in chapter 2.
Then we present the implementation details of the neural network based PDE solver
in section 3.1. In this, we go through the steps required to implement the neural
network-based PDE solver. We present the sampling of input points and then prepare
the input to the neural network by normalizing the points. We then briefly explain
the method to initialize the network in case of different PDEs. Further, we present the
modifications required in domain decomposition and end the chapter by describing
the training process of the neural network for linear/non-linear PDEs. In section 3.2,
we extensively performed experiments with the linear Poisson equation to improve the
solution accuracy and understand the SWIM method in detail. In this section, we also
present the results for solving non-linear PDEs. We start with the non-linear Poisson
equation and then finally obtain the solution of the steady-state Navier-Stokes equation
for the lid-driven cavity case.

As part of future research, there are several directions one can take to improve and
understand the method better. One possible direction to improve the method with
domain decomposition for linear PDEs could be to use a sparse preconditioner for the
resulting coefficient matrix. It would enable the method to take advantage of the sparsity
of the coefficient matrix and solve the system of linear equations efficiently. This is
important as the condition number of the resulting coefficient matrix is high, making
it difficult for the sparse solver to work well for such a system of linear equations.
Another possible direction related to domain decomposition could be to use arbitrary
domain decomposition hierarchically. This can be achieved by solving the PDE with
a single domain and then initializing subdomains only in the region where the error
in the single-domain solution is high. Then, the PDE can be solved by combining the
solution from all the subdomains. Another obvious direction could be to look into
time-dependent PDEs. The method can be extended to solve the time-dependent PDEs
by either assuming time as another dimension and solving for the solution dependent
on space and time or by using conventional time-stepping methods with basis functions
updated after regular time intervals using the SWIM method. From the results in section
3.2.1.8, we can also conclude that the improvement or pruning of unnecessary basis
functions could also be looked into, improving computational time to solve PDEs.
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