
SCHOOL OF NATURAL SCIENCES
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Quantum Science and Technology

Towards Geometric Neural Wave-Functions

Benjamin Classen



SCHOOL OF NATURAL SCIENCES
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Quantum Science and Technology

Towards Geometric Neural Wave-Functions

Ansatz zu Geometrischen Neuronalen
Wellenfunktionen

Author: Benjamin Classen
Supervisor: Professor Christian Mendl
Submission Date: 19. Juli 2024



I confirm that this Master’s thesis in Quantum Science and Technology is my own work and I
have documented all sources and material used.

München, 19. Juli 2024 Benjamin Classen



Acknowledgments

To Lucy, who always kept up my curiosity, and who taught me to stop searching for answers
and start looking for questions.



Abstract

Deep neural networks provide a novel and highly successful avenue to calculate notoriously
challenging electronic ground state wave-functions for molecular Hamiltonians. Whereas
initial architectures were trained separately for any given molecular Hamiltonian, neural
networks have recently been proposed which simultaneously calculate the ground state wave-
functions for multiple geometrical arrangements of a given molecule. This work constitutes
a further foray in that vein, proposing a neural architecture which explicitly recognizes
rotations of a molecule’s atomic positions. Such explicit recognition of spatial symmetries
has a celebrated history in related fields of research as a means to reduce training effort and
increase expressiveness of the ansatz. While our proposed neural wave-function is indeed
able to recognise spatial symmetries as desired, it nevertheless fails the tests of empiricism,
being far from competitive with the state-of-the-art, which we corroborate with a series of
numerical experiments.
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Kurzfassung

Neuronale Netze stellen einen neuartigen und äußerst erfolgreichen Ansatz zur Berechnung
der notorisch schwierigen elektronischen Grundzustandswellenfunktionen für molekulare
Hamiltonians dar. Während initiale Architekturen separat für jeden gegebenen moleku-
laren Hamiltonian trainiert wurden, wurden kürzlich neuronale Netze vorgeschlagen, die
simultan die Grundzustandswellenfunktionen für mehrere geometrische Anordnungen eines
gegebenen Moleküls berechnen. Die vorliegende Arbeit schlägt in dieselbe Kerbe, indem
sie eine neuronale Architektur vorschlägt, die explizit Rotationen der atomaren Positionen
eines Moleküls erkennt. Eine solche explizite Erkennung räumlicher Symmetrien hat sich
in verwandten Forschungsbereichen als sehr gewinnbringend dafür erwiesen, Trainingszeit
zu reduzieren und die Expressivität des Ansatzes zu steigern. Die von uns vorgeschlagene
neuronale Wellenfunktion ist zwar in der Lage, räumliche Symmetrien wie gewünscht zu
erkennen, ist aber nicht konkurrenzfähig mit dem aktuellen Stand der Technik, was wir mit
einer Reihe von numerischen Experimenten untermauern.
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1. Introduction

Artificial intelligence in its various flavors has proved to be truly paradigm-shifting across a
wide span of domains. The advent of deep neural networks demonstrating image-recognition
of unprecedented accuracy [1] heralded an era of seemingly ubiquitous breakthroughs in
diverse areas like mastering chess and go [2], folding proteins [3], the most recent prodigy
ChatGPT and countless more.

While a satisfying understanding of the actual mechanism underlying AI’s seeming om-
nipotence is sill mostly elusive [4], the ability of deep neural networks to model arbitrary
functions to any degree desired has been known for decades [5]. Nevertheless, only relatively
recently have researchers begun to exploit neural networks as approximations for a partic-
ularly notorious class of functions, namely the wave-functions corresponding to quantum
mechanical Hamiltonians. The initial foray of Carleo et al. in 2017 [6] modelling a many-body
quantum state of N spins with a deep neural net spurred lots of investigations how to
model the wave-functions of other systems via neural nets. One class of such systems are
quantum chemical Hamiltonians governing the behaviour of molecules. The two concurrently
published models FermiNet [7] and PauliNet [8] constituted the first attempts to calculate the
ground state wave-function of molecular Hamiltonians. Both reported impressive levels of
accuracy, and, interestingly, doing so by calculating the wave-function in first quantization.
This starkly contrasts conventional quantum chemistry methods which mostly work in the
framework of second quantization. More in the spirit of conventional quantum chemistry
methods, Choo et al. [9] examined with considerable success the use of neural networks to
parametrize wave-functions of second-quantized molecular Hamiltonians.

Since then, the two lines of research of parametrizing molecular wave-functions in first and
second quantization respectively have been pursued somewhat in parallel. In both, much ef-
fort has been invested on methodological fine-tuning resulting in reduced computational cost
and increased accuracy. Especially however for first-quantized neural network wave-functions
- or 1Q-NN-WFs, as we will refer to them - the sights have been set on more ambitious goals.
The vanilla versions of FermiNet and PauliNet described the wave-function for any particular
molecular geometry only. In practice however, often relative energies between different molec-
ular geometries are of interest [10], prompting the search for 1Q-NN-WFs with the ability to
model the wave-functions corresponding to different molecular geometries with one set of
parameters at once. This is not only desirable on practical grounds, alleviating the massive
computational burden resulting from retraining a model for every molecular configuration
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1. Introduction

[11], but furthermore incentivises the neural network to learn features of electronic correlation
in general, rather than (over-)fitting to specific geometries [12]. One fruitful approach to slim
down training efforts is to minimize the amount of unphysical information the neural network
has to learn. For example, initial 1Q-NN-WFs were not able to recognise rotated molecular
geometries as such and thus had to learn geometrical symmetries from vast amount of data.
Incorporating such kinds of symmetries explicitly in the neural architecture has proven to
reduce computational costs significantly in closely related fields of research [13]. However, a
neural wave-function that fully recognizes rotational symmetries of the molecule has not yet
been proposed and is an active field of research [14].

In this thesis, we aim to construct a neural wave-function that recognizes rotated molecular
geometries and is thus guaranteed to treat them on equal footing. To that order, we will
harness concepts from 1Q-NN-WFs as well as neural wave-functions working in second
quantization, or 2Q-NN-WFs, as we will refer to them.

2



2. A primer on conventional quantum
chemistry

I think I can safely say that nobody
understands quantum mechanics.

Richard Feynman

We will in the following provide a synopsis of the quintessential concepts and jargon of
conventional quantum chemistry methods that calculate a molecule’s ground state wave-
function as a means to determine the ground state energy. Whereas 1Q-NN-WFs deviate
signicifantly from these conventional approaches, 2Q-NN-WFs do not, making it indispensable
to be familiar with the basic notions.

2.1. The molecular Hamiltonian

The non-relativistic time-independent Hamiltonian describing molecules in a quantum me-
chanical framework encompasses single-particle energies as well as pairwise electromagnetic
interaction between electrons and atoms respectively. It is given by

Ĥ = T̂n + T̂e + Ûen + Ûee + Ûnn (2.1)

where

T̂n = −∑
a

h̄
2Ma

∇2
Ra

(2.2)

captures the kinetic energy of each atomic nucleus,

T̂e = −∑
i

h̄
2me

∇2
ri

(2.3)

captures the kinetic energy of each electron
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2. A primer on conventional quantum chemistry

Ûen = −∑
a,i

Zae2

4πε0|Ra − ri|
(2.4)

captures the pairwise electromagnetic interaction between each atom and electron,

Ûee = ∑
i<j

e2

4πε0|ri − rj|
(2.5)

captures the pairwise electromagnetic interactions among the electrons, and

Ûnn = ∑
a1<a2

Za1 Za2

4πε0|Ra1 − Ra2 |
(2.6)

captures the pairwise electromagnetic interactions among the atoms[15]. The many-body
interactions involved necessitate the introduction of approximations to be made in order for
any plausible solution to be computationally attainable. A particularly popular approximation
is the classic approximation of Born and Oppenheimer which is motivated by the starkly
different velocity of the atoms and electrons[16]. Since electrons move on a timescale that
is orders of magnitude smaller than the one of the much heavier nuclei, the atoms can be
considered static for any time frame of observed electronic motion. This not only annihilates
the atomic kinetic energies in the original Hamiltonian, 2.2, but furthermore reduces the
atomic interactions energies to mere constants, allowing to remove them from the Hamiltonian.
Employing atomic units (i.e. h̄ = me = 4πε0 = e = 1) then yields

Ĥel = −∑
i
∇2

ri
− ∑

a,i

Za

|Ra − ri|
+ ∑

i<j

1
|ri − rj|

(2.7)

Potential energy surface: The stationary nature of the atomic position within the electronic
structure problem implies that any spatial configuration of a molecule, i.e. a specimen of
all 3M spatial coordinates {Ra}M

a=1 for a molecule consisting of M atoms, fully defines the
electronic Hamiltonian Ĥel . Associating for any the given molecular spatial configuration the
lowest eigenvalue of its corresponding electronic Hamiltonian, i.e. the ground state energy,
defines a map E : R3M → R. This map is known as the potential energy surface.

2.2. A mathematical toolkit

We now turn to the essential quantum chemical methods developed over the last decades
aiming to solve the molecular Hamiltonian. The description of these techniques detailed
here draws rests in large part on the seminal introductory book on the topic by Szabo and
Ostlund [15]. After introducing some basic notation and terminology, we present a synopsis of
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2. A primer on conventional quantum chemistry

common quantum chemical procedures using the low-level Hartree-Fock theory as stepstone
for more accurate post-Hartree-Fock methods.

Atomic orbitals as basic building blocks: The electronic wave-function of a molecule’s
ground state is the eigenfunction of the electronic Hamiltonian 2.2 with minimal correspond-
ing eigenvalue. Since solving the Hamiltonian analytically is intractable due to the many-body
interactions, it is commonplace to reduce the search space to a vector space constructed by a
finite set of basis functions. The size of this set is determined by how one positions oneself
on the tradeoff of accuracy vs. computational cost, as a bigger set of basis functions enables
higher accuracy at the price of increased computational cost. The basis functions itself are
referred to as atomic orbitals. An atomic orbital ϕµ is a function

ϕµ : R3 → R (2.8)

r 7→ ϕµ(r) (2.9)

The set of atom orbitals are in general not orthonormal. The set of pairwise scalar products
define the overlap matrix

Sµν := ⟨ϕµ, ϕν⟩ =
∫

d3r ϕµ(r)ϕν(r) (2.10)

From atomic orbitals to molecular wave-functions: The guiding principle underlying the
composition of an N-electron wave-function Ψ(r1, ..., rN) ≡ Ψ(⃗r) with r⃗ = (r1, ..., rN) is to
construct it as a product of N atomic orbitals. To account for fermionic antisymmetry,
only properly antisymmetrized linear combinations of such atomic orbitals constitute a
legitimate wave-function. A particularly convenient and almost exclusively utilized manner
of antisymmetrization is to construct Slater-determinants of atomic orbitals as

Ψ(⃗r) = ⟨⃗r|Ψ⟩ = 1√
N!

∣∣∣∣∣∣∣
ϕ1(r1) . . . ϕN(r1)

...
. . .

...
ϕ1(rN) . . . ϕN(rN)

∣∣∣∣∣∣∣ =
1√
N!

det[ϕµi] ≡
1√
N!

det[ϕ] (2.11)

ϕµi ≡ ϕµ(ri) (2.12)

Equivalently, we can substitute the atomic orbitals in the Slater-determinant by linear com-
binations of atomic orbitals. We refer to these linear combinations of atomic orbitals as
molecular orbitals χi defined by

χi = ∑
ν

Cνiϕν (2.13)

5



2. A primer on conventional quantum chemistry

with a matrix of molecular orbital coefficients C. It is usually desirable to choose C in a way
that the resulting molecular orbitals χi are orthonormal, i.e.

⟨χi, χj⟩ = δij (2.14)

We now turn to integrating electronic spin into our formalism. We introduce spin orbitals as
the products of spatial molecular orbitals and the spin function w, defined by

χi → χ↑
i , χ↓

i (2.15)

χα
i → χiw(α) (2.16)

modifying the orthonormality relations to

⟨χα
i , χ

β
j ⟩ = δijδαβ (2.17)

Each spatial orbital can accommodate two electrons with spins up and down respectively. We
will in the following refer to χi as spin orbitals and assume the spin-related double counting
to be absorbed into the enumerating index i.

2.3. Hartree-Fock Theory

Hartree-Fock theory assumes the wave-function to take the form of a single determinant
constituted of orthonormal molecular orbitals as in eq. 2.11. The wave-function corresponding
to the physical ground state, |Ψ0⟩ is the one minimizing the energy, i.e.

|Ψ0⟩ = arg min
Ψ

⟨Ψ| Ĥ |Ψ⟩
⟨Ψ|Ψ⟩ = arg min

Ψ
E[Ψ] (2.18)

Assuming the trial wave-function Ψ to be normalized, E[Ψ] can be expressed as

E[Ψ] = ⟨Ψ| Ĥ |Ψ⟩ = ∑
i
⟨χi| hi |χi⟩+

1
2 ∑

mn
[χmχm|χnχn]− [χmχn|χnχm] (2.19)

where the one-particle term hi

hi ≡ h(ri) = −∇ri − ∑
a

1
|Ra − ri|

(2.20)

captures each of the single-electron energy contributions, and terms of the form
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2. A primer on conventional quantum chemistry

[χiχj|χkχl ] =
∫∫

d3r1d3r2
χi(r1)χj(r1)χk(r2)χl(r2)

|r1 − r2|
(2.21)

capture the electron-electron Coulomb interaction. Minimizing the functional E[Ψ] via
variational methods yields a set of descriptive integro-differential equations for the molecular
orbitals χµ that form |Ψ0⟩:

hiχµ(ri) + ∑
ν ̸=µ

[∫
d3r2

χν(r2)2

|r1 − r2|

]
χµ(ri)− ∑

ν ̸=µ

[∫
d3r2

χν(r2)χµ(r2)

|r1 − r2|

]
χν(r1) = εµχµ(r1) (2.22)

with associated orbital-energies εµ. Introducing the Coulomb operator

Jµ(ri) =
∫

d3r2
χ2

µ(ri)

|ri − r2|
(2.23)

as well as the exchange operator

Kµ(ri)χµ(ri) =

[∫
d3r2

χµ(r2)χν(r2)

|ri − r2|

]
χµ(ri) (2.24)

which, contrasting the Coulomb operator, can only be expressed via its action on the molecular
orbitals, and the Fock operator

f(ri) = h(ri) + ∑
ν ̸=µ

Jν(ri)− Kν(ri) = h(ri) + ∑
ν

Jν(ri)− Kν(ri) (2.25)

where the second equality follows from

[
Jµ(ri)− Kµ(ri)

]
χµ(ri) = 0 (2.26)

allows to compact eq. 2.22 as

f(ri)χµ(ri) = εµχµ(ri) (2.27)

Expressing the spin orbitals χj in the set of atomic orbitals phiµ as

χj = ∑
µ

Cµjϕµ (2.28)

and introducing the Fock matrix

7



2. A primer on conventional quantum chemistry

Fµν =
∫

d3r ϕµ(ri)f(ri)ϕν(ri) (2.29)

allows to express eq. 2.27 in the form of the Roothaan equations

FC = SCε (2.30)

with the overlap integral S defined as in 2.10 and the diagonal orbital energy matrix ε =

diag(ε1, ..., εN).

The iterative procedure employed to solve 2.30, commonly referred to as the self-consistent
field method or SCF in short, yields molecular coefficients C which fully specify the Hartree-
Fock wave-function. As is obvious from eq. 2.27, the set of resulting orbitals χj form the set of
eigenvectors of the Fock matrix. While the hermicity of the Fock matrix enforces the orbitals
to be orthogonal, they are further normalized to be pairwise orthonormal, i.e.

∫
d3rχi(r)χj(r) = δij (2.31)

This orthonormality relation implies together with the definitions of C and S

C†SC = 1 (2.32)

In a molecule containing N electrons, the N orbitals χ1, ..., χN with the lowest associated
orbital energy ε1, ..., εN form the Hartree-Fock wave-function. The occupied and non-occupied
orbitals are referred to as active and virtual orbitals respectively.

Accuracy of Hartree-Fock theory: Hartree-Fock theory often yields qualitatively correct
within a computational runtime that is deemed acceptable, being in the order of O(N4),
with N being the number of the molecule’s electrons, assuming a naive implementation
[17]. While the energy of the Hartree-Fock wave-function recovers around 99% of the actual
energy, this is far from sufficient for quantum chemical applications. Furthermore, a host of
rather banal chemical phenomena are not predicted to an even qualitatively correct degree
by the HF method, such as the behaviour of strongly correlated systems [18] or the bond
breaking of a dissociating molecule [19]. Hartree-Fock theory is howeverinsdispensable
as stepstone towards more accurate quantum chemistry, which are tellingly referred to as
post-Hartree-Fock methods.

An insight on the limitations of Hartree-Fock theory can be gleaned by scrutinizing the Fock
operator

8



2. A primer on conventional quantum chemistry

f(ri) = h(ri) + ∑
ν

Jν(ri)− Kν(ri) (2.33)

where pairwise electron-electron interactions are encoded in the Coulomb and exchange
operators. They are formed as sums over all of the orbitals, hence representing a mean-field
potential for the orbital χi and thus taking account electronic correlation only in a crude
fashion.

2.4. On the nature of electronic correlation

Electronic correlation arises due to the antisymmetry principle as well as the pairwise
Coulomb interaction between the electrons. The correlation resulting from the antisymme-
try principle is referred to as Fermi correlation and is recovered by Slater-determinantal
wave-functions such as the Hartree-Fock wave-function. The remaining correlation, which
is not recovered by a single-Slater-determinantal wave-function, can be divided into static
and dynamic correlation. Static correlation arises from near-degeneracy of the ground-state,
while dynamic correlation results from electronic movement [20]. Resolution of both types of
correlation demands to consider linear combinations of Slater-determinants rather than just a
single Slater-determinant. This idea forms the backbone of Configuration Interaction (CI) and
Coupled Cluster (CC) methods, to which we will return in full swing at a later stage.

Electronic antisymmetry and cusp conditions: Electronic-electronic interactions imprint
some prominent features on the structure of Ψ(r1, ..., rN), an especially prominent one being
the antisymmetry principle. Another feature are sharp peaks of Ψ(r1, ..., rN) at certain
locations. One set of such locations are those where two electrons coalesce. The existence
of such sharp peaks can be understood from inspecting the electronic Hamiltonian eq. 2.7
which contains terms of the form 1

∥ri−r j∥ . These terms diverge for ri → ri, necessitating
counterbalancing diverging contributions from the kinetic terms corresponding to r1 and
r2. Diverging kinetic terms imply diverging gradients of Ψ with the respect to r1 and r2,
resulting in infinitely sharp cusps of Ψ. While folklore has it that these electronic cusps pose
a significant obstacle in correct modelling of the wave-function, some counterarguments have
been raised, see [21]. Regardless, attempts have been undertaken to introduce modifying
factors to a Slater-determinantal wave-function which explicitly incorporate the electronic-
electronic cusp conditions. A particularly celebrated example is the introduction of the called
Jastrow-factor, first introduced by Robert Jastrow in 1955 [22]. Given a fully antisymmetric
wave-function Ψ(r1, ..., rN)S, e.g. a single Slater-determinant or a sum thereof, the Slater-
Jastrow wave-function is given by

Ψ(r1, ..., rN)SJ = exp[J(r1, ..., rN ; R1, ..., RM)]Ψ(r1, ..., rN)S (2.34)

9



2. A primer on conventional quantum chemistry

with the Jastrow-factor J being a fully symmetric function with respect to the electronic
coordinates ri. The functional form of J is chosen in a way such that it enforces the electronic
cusps[23]. The inclusion of such a deceivingly simple Jastrow-factor allows to retrieve a
surprising amount of the electronic correlation lacking in the Hartree-Fock wave-function [24]

A second set of locations introducing cusps into the wave-function are those where the
position of one electron and nuclues coalesce. The reasoning is identical to the reasoning for
electronic cusps, however with the culprit now being terms of the form 1

∥ri−Rm∥ with some
atomic position Rm. Such terms demand cusps for the wave-function whenever ri = Rm for
some electron i and some atom m. These nuclear cusps are arranged for by choosing the
atomic orbitals to implement the atomic cusps automatically. We will address how this is
achieved in the next section alongside more general considerations regarding the nature of
the atomic orbitals.

2.5. Choosing an optimal basis set

No specifications were introduced so far regarding the exact form of the atomic and molecular
spin orbitals ϕ(r) and χ(r) respectively. The fundamental dilemma lying at the heart of
committing to any concrete set of atomic orbitals consists of leveraging the trade-off between
expressiveness and computational complexity, both straightforwardly depending on the num-
ber of basis functions. The standard route is to choose chemically-informed orbital shapes and
to choose the number of included basis functions depending on the required accuracy of the
task at hand [25]. A panoply of different bases have been developed, many of them suiting sub-
tly different purposes [26]. We review here the fundamental building blocks of these basis sets.

The most common atomic orbital basis functions are of the form

ϕnlm,j(r; Rj) = Rnl(∥Rj − r∥)Ylm(θ, ϕ) (2.35)

being comprised of the radial component Rnl and an angular component Ylm, usually chosen
to be a spherical harmonic. The triple index nlm enumerates the atomic orbitals per atom by
the quantum numbers n = s, p, d, ..., l = 0, ..., n − 1 and m = −l, ..., l − 1, l. The angles θ and ϕ

are defined such that

Rj − r =

sin(θ) cos(ϕ)∥Rj − r∥
sin(θ) sin(ϕ)∥Rj − r∥

cos(θ)(∥Rj − r∥)

 (2.36)

Slater-type orbitals (STOs) as first introduced by John Slater in 1930 [27] determine the radial
part up to normalization to be of the form

10



2. A primer on conventional quantum chemistry

Rl;STO(r) ∝ rle−αr (2.37)

with r = ∥r∥ and α being some exponent of choice. STOs became fashionable due to their
innate correct modelling of the nuclear cusp conditions[28]. Nonetheless, STOs are usually
not the function of choice due to the high cost of evaluating one- and two electron integrals
[25]. Instead, Gaussian functions usually constitute the radial part

Rl;GTO(r) ∝ rle−αr2
(2.38)

thus forming so-called Gaussian-type orbitals (GTOs). While this necessitates a larger set
of basis functions compared to the case of employing STOs, this is far outweighed by the
vastly reduced computational effort of evaluating integrals of products of GTOs [25]. In order
to still at least approximately fulfill the cusp condition, basis functions are built from linear
combinations from GTOs as

ϕnlm,j(r) = rl

(
∑

s
cse−αsr2

)
Ylm(θ, ϕ) (2.39)

with as sharp a peak at the nucleus’s position as possible.

The basis set of a molecule is the union of the atomic orbital sets for all constituting atoms.
In order for any basis set to at least qualitatively be able to describe the wave-function’s
behaviour correctly, it must contain at least as many orbitals as electrons that are present.
Basis sets including one orbital per electron are termed minimal basis sets, such as the STO-nG
basis sets, where n indicates the number of GTOs per orbital. Empirically it hols true though
that, in order to capture electronic correlation adequately, one needs to include way more
basis functions at least per valence electron, yielding basis sets such as the cc-pVDZ basis
with 14 basis functions for each atom with more than two electrons [26].

Before we now turn to covering CI and CC methods, a short primer on the terminology of
second quantization is in order, as both methods are most conveniently formulated in the
framework of second quantization.

2.6. Second quantization in quantum chemistry

Because of the ubiquitous nature of the formalism of second quantization, we will restrict
ourselves to shortly introduce the common notation and conventions as employed in this
work. The conventions are adopted from Szabo and Ostlund’s classic [15]. An in-depth
description of the use of second quantization in quantum chemistry, which we in part also
lean on, can be found in [29].

11



2. A primer on conventional quantum chemistry

Given a set of orthonormal spin orbitals {χµ}µ we assign a creation operator ĉ†
µ and annihi-

lation operator ĉµ to each spin orbital, equipped with the usual fermionic anticommutation
relations

{
ĉ†

µ, ĉ†
ν

}
=
{

ĉµ, ĉν

}
= 0{

ĉ†
µ, ĉν

}
= δµν

(2.40)

For a Slater-determinant |Ψ⟩ consisting of N spin-orbitals we introduce the notation

|Ψ⟩ = |χµ1 χµ2 ...χµN ⟩ (2.41)

and define the action of the creation and annihilation operators on such states as

ĉ†
ν |χαχβ...χω⟩ = |χνχαχβ...χω⟩

ĉν |χνχαχβ...χω⟩ = |χαχβ...χω⟩
ĉ†

ν |0⟩ = |χν⟩
ĉν |0⟩ = 0

(ĉ†
ν)

† = ĉν

(2.42)

where we furthermore introduced the vacuum state |0⟩. In a slight overload of notation, we
will refer to kets such as those on the right side of the above equation as Slater-determinants.
The ordering of the orbitals within any Slater-determinants therefore enshrines, via the order-
ing of the creation operators corresponding to that Slater-determinant, the wave-functions’
antisymmetry.

Second-quantized wave-functions and operators: We can now connect the dots of first and
second quantization by defining a mapping between the spin orbitals employed so far of the
form χµ(r) and the respective kets |χµ⟩ by

χµ(r) = ⟨r|χµ⟩ (2.43)

We identify a generic ket |χ1χ2...χN⟩ with a N-electron Slater-determinant consisting of spin
orbitals χ1, χ2, ..., χN , i.e.

|χ1χ2...χN⟩ =
1√
N!

det[χµi] (2.44)

as was hinted at in the terminology above and in eq. 2.11.

12



2. A primer on conventional quantum chemistry

Establishing an analogous mapping between operators expressed in first and second quan-
tization respectively enables to conduct calculations in the handy framework of second
quantization. Such a mapping is achieved by operators of the form

Ĥ(n) = ∑
µ⃗a,µ⃗b

h(n)
a⃗,⃗b

ĉ†
an

ĉ†
an−1

...ĉ†
a1

ĉb1 ...ĉbn−1 ĉbn (2.45)

Since the electronic Hamiltonian exclusively contains terms including up to two electrons
interacting, it suffices to consider operators of the above form for n = 1 and n = 2. The
electronic Hamiltonian can thus be expressed as

Ĥ = Ĥ(1) + Ĥ(2) (2.46)

with the one-body and two-body operators being defined via

h(1)µν =
∫

d3r χ∗
µ(r)

(
−1

2
∇r − ∑

m

Zm

|r − Rm|

)
χν(r)

h(2)µναβ =
∫∫

d3r1d3r2 χ∗
µ(r1)χν(r1)

1
|r1 − r2|

χ∗
α(r2)χβ(r2)

(2.47)

The energy’s expectation value of any (normalized) wave-function |Ψ⟩ is thus given by

⟨Ψ|Ĥ|Ψ⟩ = ∑
µν

h(1)µν ⟨Ψ|ĉ†
µ ĉν|Ψ⟩+ ∑

µναβ

h(2)µναβ ⟨Ψ|ĉ†
µ ĉ†

ν ĉβ ĉα|Ψ⟩

= ∑
µν

h(1)µν Γ(1)
µν +

1
2 ∑

µναβ

h(2)µναβΓ(2)
µναβ

(2.48)

where we introduced the 1- and 2-reduced density matrices (1- and 2-RDMs) respectively as

Γ(1)
µν = ⟨Ψ| ĉ†

µ ĉν |Ψ⟩

Γ(2)
µναβ = ⟨Ψ| ĉ†

µ ĉ†
ν ĉβ ĉα |Ψ⟩

(2.49)

2.7. Configuration Interaction theory

The main philosophy behind Configuration interaction (CI) theory is to construct the N-
electron-wave-function not as a single Slater determinant, but as a linear combination of
Slater-determinants, each comprised of a different set of N spin orbitals. CI theory chooses
the single-determinantal HF wave-function

13



2. A primer on conventional quantum chemistry

|ΨHF⟩ = |χ1χ2...χN⟩ = ĉ†
N ...ĉ†

2 ĉ†
1 |0⟩ (2.50)

as starting point and postulates a more accurate wave-function as

|ΨCI⟩ = λ0 |ΨHF⟩+ ∑
a∈A
r∈V

λr
a |Ψr

a⟩+ ∑
a, b∈A
r, s∈V

λrs
ab |Ψrs

ab⟩+ ...

≡ |ΨCI(λ)⟩
(2.51)

where we defined A and V as the active and virtual space of spin orbitals respectively. In
this case, the active space is defined as the set of spin orbitals comprising the Hartree-Fock
wave-function. Kets of the form |Ψr

a⟩ resemble singly-excited determinants, terms of the form
|Ψrs

ab⟩ resemble doubly-excited determinants and so forth. Put precisely,

|Ψr
a⟩ = |χ1...χa−1χrχa+1...χN⟩ = ĉ†

N ...ĉ†
a+1ĉ†

r ĉ†
a−1...ĉ†

1 |0⟩
= ĉ†

r ĉa |ΨHF⟩
|Ψrs

ab⟩ = ĉ†
r ĉ†

s ĉb ĉa |ΨHF⟩
(2.52)

The set of parameters λ∗ corresponding the wave-function with minimal energy can thus be
determined via the standard Rayleigh-Ritz functional

λ∗ := arg min
λ

⟨ΨCI(λ)| Ĥ |ΨCI(λ)⟩
⟨ΨCI(λ)|ΨCI(λ)⟩

(2.53)

CI wave-functions in binary notation: We will additionally introduce a second notation for
CI wave-functions that will come in handy in later stages of this work. For a ket of the form
|χi1 χi2 ...χiN ⟩ we define a canonical ordering of the spin via their respective orbital energies as
defined by the Fock matrix in eq. 2.27. Assuming now |χi1 χi2 ...χiN ⟩ to be such a canonically
ordered ket with index set I = {i1, i2, ..., iN}, we then identify

|x⟩ : = |χi1 χi2 ...χiN ⟩ (2.54)

x = (x1, x2, ..., xNorb) with xi = 1I(xi) (2.55)

with the boolean indicator function 1A(x) indicating the presence of x in A. For a molecule
with ten spin orbitals and four electrons, the Hartree-Fock wave-function would correspond
to xHF = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0) whereas a single excited state would e.g. correspond to
xSE = (1, 1, 1, 0, 1, 0, 0, 0, 0, 0). We can therefore compactly denote the full CI wave-function as

|Ψ⟩ = ∑
x

ψ(x) |x⟩ = ∑
x

ψx |x⟩ (2.56)
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2. A primer on conventional quantum chemistry

Note that the coefficients ψ(x) do not inhabit any antisymmetry relations, as the antisymmetry
of |Ψ⟩ is fully captured in the basis states |x⟩.

Computation of CI wave-functions: The full CI-optimized wave-function will yield the
closest possible approximation to the actual ground state wave-function within the space
spanned by the orbital basis set, rendering CI-calculations invaluable for benchmarking other
approximative methods [15]. Unfortunately, as the number of determinants constituting the
full CI wave-functions grows factorially with the number of orbitals emplyoed, conducting full
CI calculations is prohibitive for most systems of interest and only possible for small molecules
and small basis sets [30]. Recently, the largest-ever full CI calculation was carried out,
calculating the ground state CI wave-function of propane in the STO-3G basis encompassing
1.3 trillion determinants, distributed over 256 servers [31]. The computational burden can be
alleviated significantly by, instead of treating all determinants on equal footing, restricting to
a subset of presumably predominant determinants, an approach commonly referred to as
selected CI. Studies employing such techniques have blossomed in the recent past, see e.g.
[32, 33]. In a similar vein, Monte Carlo procedures, where relevant determinants are sampled
stochastically, are applied to an increasing extent, yielding highly encouraging results, see
e.g. [34, 35]. Furthermore, machine-learning tools have been employed in aiding to select the
relevant determinants, either in a supervised fashion [36] or in an unsupervised manner via
reinforcement learning [37].

2.8. Coupled Cluster theory

Coupled cluster theory does not introduce a separate parameter for each excited Slater-
determinant, but rather parametrizes the excitation process itself. Concretely, it postulates the
wave-function to be of the form

|Ψ⟩CC = exp(T̂) |Ψ⟩HF (2.57)

with

T̂ = ∑
i

T̂i (2.58)

T̂1 = ∑
a∈A
r∈V

tar ĉ†
r ĉa (2.59)

T̂2 = ∑
a,b∈A
r,s∈V

tabrs ĉ†
r ĉ†

s ĉa ĉb (2.60)

and T̂3, T̂4, ... defined equivalently. The parameters tar, tabrs, ... are referred to as the CC-
amplitudes. Note the drastic difference between the CC wave-function and its CI counterpart,
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2. A primer on conventional quantum chemistry

which we could identically denote as |Ψ⟩CI = T̂ |Ψ⟩HF. Whereas we could set all T̂i for i > 2
to zero in the CC case and still obtain a wave-function containing excitations of up to N
electrons due to the exponential coupling excitations of all orders, the CI wave-function
would be restricted to determinants with up to two excitations. Such a restriction scheme is
in fact often done in practice, and its compatibility with CC is one of the main reasons that
CC is often referred to as the gold-standard of quantum chemistry [38]. It has furthermore
been refined to a variety of flavours and for a host of use cases [39]. However, the great
strength of CC theory is in fact Janus-faced. As the CC wave-function contains excitations
of order up to N, evaluating the energy of the CC wave-function in the same fashion as the
CI wave-function in eq. 2.53 is not possible in polynomial time. Thus, one has to resort
to other computational schemes in order to determine the optimal set of CC-amplitudes.
These schemes do not however guarantee that the obtained CC wave-function corresponds
to one actually attainable by the molecule and might yield an energy that is lower than the
ground state energy. In short, CC is not variational. CC shares this shortcoming with other
post-Hartree-Fock methods such as Møller–Plesset perturbation theory [40] we will therefore
not cover in much detail.

2.9. Dividing and conquering the electronic correlation: local
correlation

Even when introducing significant simplifications such as trimming the CC approach to only
contain singly and doubly excited determinants, expensive scaling still hinders application
for large molecules or large basis sets. A particularly promising facet of further improvement
is to exploit the local nature of electronic correlation. Despite this character being recognized
for many decades [41], investigations on how to best capitalize on that locality have been
rather scarce and are an active field of research [42].

Localized orbitals: One key primary insight on how to operationalize locality is that spin
orbitals, being as a linear combination of atomic orbitals in general delocalized, can be
transformed into locally concentrated and equally expressive spin orbitals. In such a localized
scheme, a preponderance of pairwise orbital interactions is negligible, implying favourable
scaling [43]. Localized spin orbital can be generated by making use of a certain degree of
freedom that Hartree-Fock theory presents us with. Namely, applying a unitary rotation O
within the spin orbital space of the form

χ′
nu = ∑

νµ

Oνµχµ (2.61)

with |det(O)| = 1 leaves a determinantal wave-function up to an unphysical phase factor
invariant, as
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O |Ψ⟩ = 1√
N!

det[Oχ] =
1√
N!

det[O]det[χ] =
(−1)k
√

N!
det[χ] (2.62)

We can now employ different strategies to obtain orbitals with as little spatial span as possible
[44]. These localized orbitals allow best to capture essentially local phenomena and in many
instances decrease computational efforts significantly [45]. A series of different localization
schemes have been developed. Notable examples are the Foster-Boys [46] and the Pipek-
Mezey [47] algorithm, both of which define loss functions quantifying the amount of spatial
extension. A different category of localized orbitals consists of diagonalizing density matrices
(which will be introduced in a later section) and yield Natural Bond Orbitals, which are
especially well suited to capture electronic correlation [48].

2.10. Quo vadis, quantum chemistry?

Herculean efforts to develop approaches of tackling the electronic structure problem notwith-
standing, the list of unsolved problems remains long. At the heart of them all resides the
unfavorable scaling up to large systems and to large basis sets enabling sufficient accuracy. It
is the essence of quantum mechanics, which, returning to Richard Feynman, who opened
this section, are probably understood by nobody. But if nobody, or no body, understands
quantum mechanics, a machine may do just fine?
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3. Quantum chemistry in the age of artificial
intelligence

With four parameters I can fit an
elephant, and with five I can make him
wiggle his trunk.

John von Neumann

With astonishing breakthroughs and achievements being heralded almost in a daily manner,
the advent of AI evermore proves to be truly paradigm-shifting to the world of sciences and
society at large. The seeming omnipotence of AI rests not in the least on the guarantee that
certain mathematical architectures such as multilayer feedforward network can be twisted in
ways to approximate arbitrary functions on Euclidean spaces to any desired level of accuracy
[5].

The empirical success earning AI its laurels has motivated many forays into the use of
machine learning techniques in the context of quantum chemistry. A majority of applications
attempted to predict molecular properties based on training data sets obtained via CC,
DFT or similar methods with the goal of achieving comparable success with significantly
decreased computational effort. Notable examples include the identification of possible
novel molecules [49], molecular dynamics [50], electron densities [51] and many more. The
archetypal undertaking in this regard however is the prediction of a molecule’s energy based
on its Hamiltonian alone, or equivalently on the atomic coordinates alone as they fully specify
the Hamiltonian. An accurate such model would in effect bypass any laborious ab-initio
calculations and simply output the ground state energy, thus allowing to straightforwardly
model a molecule’s potential energy surface. This can in principle be achieved via one of
two routes: either one trains the neural net in a supervised manner on a pre-computed
set of reference data, which itself is obtained via costly but accurate techniques, such as
CCSD(T) or advanced DFT methods. Alternatively, one instead parameterized the electronic
wave-function via the neural net and minimizes its energy expectation value directly without
reliance on any external data. The former approaches we will subsume under the category
neural-network-potential-energy-surfaces (NN-PESs) and the latter one we will subsume
under the category neural-network-wave-functions. We will provide short synopses on the
pros and cons of both approaches in the following. Based on the understanding we gain of
advantages and disadvantages of certain NN-WFs we will afterwards propose the architecture
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of NN-WF ourselves.

3.1. AI for PES: the wiggling elephant in the room?

NN-PESs calculate the energy of a molecular geometry via a black-box functional, receiving,
in most cases, only the atomic positions as input. Paradigmatic specimens of neural nets
belonging to this class, such as GemNet [52] or NequIP [53], consist of sophisticated neural
architectures with parameter amounts in the millions, which almost exclusively rely on the
geometric information contained in the spatial configuration of the atoms of a molecule.
Hence, only a modicum of physical domain knowledge is implemented. Such neural nets
are trained on representative datasets such as the MD-17 dataset [54]. The MD-17 dataset
contains the energies and forces of samples of molecular dynamics simulations of eight
different organic molecules, with the reference values being obtained via DFT. State-of-the-art
NN-PESs easily reach an accuracy well within the regime of the so-called chemical accuracy
of less than 1 kcal/mol [55], or 1.6 Millihartree, utilizing on the order of magnitude of one
million parameters [52].

On the flip side, the appealing simplicity of NN-PESs is in fact Janus-faced: while easing
implementation and leaving much leeway for the neural net to learn optimal representations
and functionals itself, the very reductionist model appears to hinder an effective learning of
the underlying physics. Perhaps unsurprisingly, extrapolation of NN-PESs to inputs outside
the training domain generally yields poor results [56], possibly suggesting a high-resolution
interpolation within the training domain rather than supreme modelling of the relevant
physical laws. Or, in the words of John von Neumann, the elephant is taught to wiggle his
trunk. Much of the promise of NN-PESs rests however on a faithful generalization to unseen
molecules, as their accuracy is bottlenecked by the reference DFT calculations, and hence
replacing DFT techniques by NN-PESs could only be warranted by a gain in computational
complexity.

Various endeavors have aimed at increasing the generalizability of NN-PESs by furthermore
including more domain knowledge. Examples for such endeavors include SpookyNet [57],
including information on the molecule’s total charge and spin state, UNiTE [58], which
predicts the energy based upon cheap low-level electronic structure calculations similar to
Hartree-Fock or DeepHF [59], which predicts the energy difference between a Hartree-Fock
calculation and an expensive post-Hartree-Fock method based upon the Hartree-Fock orbitals.
Other approaches tweak the neural architecture with encouraging results, such as the Allegro
model [60].

The aforementioned non-exhaustive list of state-of-the-art NN-PESs is characterised by the
common paradigm of utilizing an essentially black-box functional determining the energy.
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Since this field of inquiry is still in its infancy, it is to be expected that many of the downsides of
current approaches will be mitigated in due time and NN-PESs will contend with conventional
quantum chemistry techniques for relevant applications. The immanent bottleneck of high-
quality reference data can in principle however not be overcome. We thus turn to a somewhat
orthogonal line of research focusing on parametrizing molecular wave-functions via neural
networks as intermediaries for obtaining the molecular energy. It is such an approach we will
pursue ourselves in the later stages of this work.

3.2. AI for wave-functions: of artificial and human intelligence

Directly modelling the wave-function relieves the necessity for external data. It is thus an
avenue where the accuracy of what the artificial intelligence is able to achieve is not bottle-
necked by what human intelligence was able to achieve beforehand. Approaches aiming
at parametrizing physically plausible wave-functions necessitate a much more explicit and
deliberate construction of the neural architecture to ensure that physical constraints such
as the antisymmetry with respect to electron exchange are fulfilled. We start this section
by outlining some key models put forward over the last years. Based on the state-of-the
art, we will then derive some desiderata for a NN-WF explicitly tailored to maximize the
capacity of the NN-WF for "insight" into the underlying physics. We do this in the hopes of
leveraging the enormous potential of pattern recognition that neural nets have showcased in
many application areas.

We can divide the totality of neural wave-functions into those operating in the framework of
first quantization, 1Q-NN-WFs, and those working within second quantization, 2Q-NN-WFs.

3.3. Neural wave-functions in first quantization

Neural wave-functions in first quantization construct wave-functions in their spatial repre-
sentation Ψ(r1, r2, ..., rN) = Ψ(⃗r). The particular wave-function of interest is the ground state
wave-function, the eigenfunction associated with the minimal eigenvalue of the electronic
Hamiltonian’s

Ĥ = −∑
i
∇2

ri
− ∑

m,i

Zm

|Rm − ri|
+ ∑

i<j

1
|ri − rj|

(3.1)

First-quantized neural wave-functions rests on a series of pillars we will illuminate now.

Jastrow-Slater wave-function: Pioneering neural wave-functions such as FermiNet [7] and
PauliNet [8] represent the wave-function as
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Ψ(⃗r; R⃗, θ) = eJ(⃗r;⃗R,θ)
Ndet

∑
k=1

ck

∣∣∣∣∣∣∣
ϕk

1(r1 ;⃗ r, R⃗, θ) . . . ϕk
N(r1 ;⃗ r, R⃗, θ)

...
. . .

...
ϕk

1(rN ;⃗ r, R⃗, θ) . . . ϕk
N(rN ;⃗ r, R⃗, θ)

∣∣∣∣∣∣∣ = eJ(⃗r;⃗R,θ)
Ndet

∑
k=1

ck det[Φk]

(3.2)

with r⃗ = (r1, ..., rN) denoting the N electrons’ positions, R⃗ = (R1, ..., RN) denoting the set of
atomic coordinates, which are parameters of the function rather than variables, θ a set of
trainable parameters, a fixed number of determinants Ndet and ϕk

n(rm ;⃗ r, R⃗, θ) being backflow-
generalized molecular orbitals, which we elaborate upon in the following section. For the
sake of completeness, we point out the spin-explicit wave-function of FermiNet and PauliNet
to be of the form

Ψ(⃗r↑ ,⃗ r↓; R⃗, θ) = eJ(⃗r↑ ,⃗r↓ ;⃗R,θ)
Ndet

∑
k=1

ck det[Φ↑
k ] det[Φ↓

k ] (3.3)

with Φ
↑
k , Φ

↓
k being determinants akin to the one employed in eq. 3.2, but depending solely

on the positions of spin-up electrons and spin-down electrons respectively. The resulting
wave-function is thus only antisymmetric with respect to exchange of electrons of differing
spin. Nevertheless, the such constructed wave-function yields correct expectation values for
spin-independent observables [7]. Utilizing the determinant’s properties for block diagonal
matrices, we can immediately reconcile eq. 3.3 with the generic wave-function eq. 3.2 by
defining

Φk =

(
Φ↑ 0
0 Φ↓

)
(3.4)

and hence det[Φ] = det[Φ↑
k ] det[Φ↓

k ]. The spin-explicit wave-function in eq. 3.3 this consti-
tutes the special case of the generic wave-function eq. 3.2 with the off-diagonal orbitals being
identically equal to zero. We will in the following only employ spin-explicit notation if it is
necessary for understanding and omit it otherwise.

Neural backflow orbitals: The concept of backflow was originally introduced by Feynman
[61] in order to describe the purely quantum mechanical effect of diametrically opposed
probability current and momentum of a wave-function. This effect can be modelled by
postulating fictitious electronic positions [62]

r̃m = rm + ∑
i ̸=m

ηim(ri − rm) (3.5)
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with free parameters ηim and by evaluating the orbitals accordingly as ϕn(r̃m) → ϕn(rb
m). The

slight variation of that theme consisting of backflow-adapted orbitals instead

ϕ̃n(rm ;⃗ r) = ϕn(rm) + ∑
i ̸=m

ηimϕn(ri) (3.6)

has been exploited extensively as basic building block for the electronic wave-function [63]
and can thus accurately be seen as antecedents to 1Q-NN-WFs of the form eq. 3.2. Luo and
Clark [64] recognized the concomitant optimization of an overall wave-function in the form of
eq. 3.2 and the backflow-optimization of the basis orbitals ϕn to be reminiscent of the layered
structure of neural nets and introduced generalized backflow-orbitals

ϕ̃n(rm ;⃗ r) = ϕn(rm) + fn(rm ;⃗ r; θ) (3.7)

with fn being a neural net with trainable parameters θ. Furthermore introducing multiplicative
corrective terms yields the most generic form of backflow-orbitals as

ϕ̃n(rm ;⃗ r) = ϕn(rm) f
⊗
n (rm ;⃗ r; θ) + f

⊕
n (rm ;⃗ r; θ) (3.8)

where we drop the explicit parameter-like dependence of the orbitals on the atomic positions.
Note that for reasons of readability we omitted the tildes in the determinant in eq. 3.2. Such
generalized molecular orbitals do not compromise the wave-function’s antisymmetry due
to the employment of determinants in eq. 3.2. Furthermore, a single determinant consisting
of such modified orbitals is vastly more expressive compared to conventional one-electron-
orbital Slater-determinants due to the freedom granted by the corrective terms [7]. In fact,
any antisymmetric N-electron wave-function can in principle be represented by a single
Slater-determinant comprised of such backflow orbitals [65]. A popular choice for backflow
orbitals is exemplified by FermiNet’s orbitals

ϕk
i (rm ;⃗ r) = (wk

i · hL
m (⃗r) + gk

i )∑
j

πk
ijexp(−∥Σk

ij(rm − Rj)∥) (3.9)

with trainable parameters wk
i ∈ RF, gk

i ∈ R and Σk
ij ∈ R3×3 and a learnable function

hL
j (⃗r) ∈ RF. PauliNet on the other hand relies on pre-computed multi-reference-HF one-

electron orbitals which are subjected to backflow modification in the training process.

Parameter optimization: The parameters are optimized in a variational manner via refinement
of gradient descent methods [66] such as Kronecker Factorized Approximate Curvature
(KFAC) [67] in FermiNet or stochastic gradient descent in PauliNet. The loss function is the
Hamiltonian itself [68]
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E[Ψθ ] =

∫
d3⃗r Ψ(⃗r; θ)ĤΨ(⃗r; θ)

|Ψ(⃗r; θ)|2 (3.10)

Costly integral evaluations can be sufficiently substituted by stochastic variational Monte Carlo
(VMC) methods, as heavily used in the study of correlated systems [69]. VMC reformulates
the above energy expectation value as

E[Ψθ ] =
∫

d3⃗r
|Ψ(⃗r; θ)|2∫
d3⃗r|Ψ(⃗r; θ)|2

ĤΨ(⃗r; θ)

Ψ(⃗r; θ)
= E⃗r∼|Ψ(⃗r;θ)|2 [Eloc(⃗r)] (3.11)

where Eloc(⃗r) =
ĤΨ(⃗r;R⃗,θ)
Ψ(⃗r;R⃗,,θ

). Drawing samples from the distribution p(⃗r) ∝ |Ψ(⃗r; R⃗, θ)|2 allows
to stochastically evaluate the expectation value to a satisfactory degree of accuracy. A
common strategy of obtaining samples is making use of Monte Carlo Markov chains such as
the Metropolis-Hastings algorithm [68]. The gradient guiding the parameter’s update is then
given by

∇θE[Ψθ ] = 2E⃗r∼|Ψ(⃗r;θ)|2
[(

Eloc(⃗r)− E⃗r∼|Ψ(⃗r;θ)|2 [Eloc(⃗r)]
)
∇θΨ(⃗r; θ)

]
(3.12)

Computational complexity: The vanilla versions of FermiNet and PauliNet, while quite
similar in spirit, offer differing trade-offs between accuracy and complexity. While FermiNet
is able to reach somewhat lower energies - details about accuracy and results will be discussed
in the following - it does so at the expense of utilizing many more training parameters and
thus necessitating many more parameters. The theoretical scaling of O(N4) with N being
the number of electrons, which is very moderate comparing to costly conventional quantum
chemistry approaches such as CCSD(T) with a scaling of O(N7), is in practice overshadowed
by an enormous prefactor [56]. An architecturally slimmed down version of FermiNet still
demanded five times the computational cost of vanilla PauliNet [70]. Whereas PauliNet, albeit
confined to simple molecular systems such as H2, LiH, B, Be, H10, could be trained within
time spans ranging from tens of minutes to a couple of hours, training FermiNet took much
longer, up to a staggering 1104 hours of GPU for the admittedly much complexer molecule
cyclobutadiene [70]. Digesting how PauliNet achieved highly accurate results within a much
narrower parameter space spurred much subsequent, and in fact still ongoing, research. It
was hypothesized that the heavily physics-inspired orbital construction of PauliNet consisting
of additively corrected Hartree-Fock orbitals, or additively and multiplicatively corrected
Hartree-Fock orbitals in a generalization of PauliNet [71], constitutes a very significant in-
ductive bias contrasting the orbitals of FermiNet, which are to a large degree relearned from
scratch. On the other hand, some experimental data contradicts this hypothesis, as will be
discussed in the following section.

Ground state energy accuracy: Vanilla PauliNet and FermiNet, while being limited to small
molecules, were able to showcase an impressive degree of accuracy when calculating the
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ground state energy. Various attempts have been undertaken to improve upon the architecture
of FermiNet and PauliNet to boost the accuracy even further. Gerard et al. [12] synthesized
the architectures of PauliNet and FermiNet yielding more accurate results, in some instances
providing the most accurate results ever recorded.

Figure 3.1.: The results from [12]. Reference energies were calculated with a non-variational
conventional quantum chemistry approach, thereby potentially underestimating
the true ground state energy.

Lots of effort has been invested to fine-tune the Monte Carlo simulation component. Variants
such as Diffusion Monte Carlo [72] have been put to use with FermiNet-type wave-functions
improving upon initial results [73, 74], though not outperforming Gerard et al. [12].

Other approaches tweaked the neural architecture to a more extensive degree. von Glehn
et al. [75] introduced the seemingly omnipotent transformer architecture [76] to replace
convolutional layers from the FermiNet architecture, enabling accuracies on par or better than
the one displayed in fig. 3.1.

One common feature of variational Monte Carlo methods such as the 1Q-NN-WFs is to allow
the treatment of certain systems, where conventional quantum chemistry approaches fail
to even yield qualitatively correct results. Systems out of equilibrium geometries serve as
prime examples, since CC methods often yield highly dubious results [7]. A paradigmatic
model system small enough to be tractable for a FCI calculation is given by a four-hydrogen
rectangle parametrized by the hydrogen atoms’ distance to the center of the mass as well
as the spanned angle. Vanilla FermiNet was able to in essence match the FCI result for the
hydrogen rectangle.
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Figure 3.2.: The results from FermiNet for the hydrogen rectangle as taken from [7]. FermiNet
achieves results on par with a FCI calculation in the complete basis set limit, which
consists of FCI calculations in some bases extrapolated via some extrapolation
formula.

Potential energy surfaces with 1Q-NN-WFs: The neural wave-functions discussed above
share the drawback that they have to be retrained for every molecular geometry anew, and a
fortiori for every different molecule anew. This not only prohibits a large-scale implementa-
tion of 1Q-NN-WFs to model potential energy surfaces, but also raises questions how much
of the accuracy of the 1Q-NN-WFs are due to fitting to a given atomic geometry rather than
awareness of universal features of electronic correlation [17]. Attempts to generalize the
architecture of FermiNet and PauliNet to be able to model arbitrary electronic wave-functions
have been put forward.

Scherbela et al. [10] developed a trial wave-function very similar in spirit to PauliNet, where
within the training process it is enforced that, while training the model for different spatial
geometries of the same molecule, a preponderance of learnable weights are shared within the
models for different geometries. This empirically not only showed to speed up the training
process for different spatial arrangements of the same molecule by an order of magnitude
while retaining or improving accuracy, but furthermore suggests that general characteristics
of electronic correlation, which are physically highly similar between different geometries,
are being captured by the model.

A different technique to realize the joint training of multiple atomic geometries was developed
by Gao et al. [56] by partnering a neural wave-function such as FermiNet for a given spatial
configuration with another neural net which reparametrizes the wave-function model to the
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spatial geometry at hand.

Figure 3.3.: The neural architecture in [56]. The network MetaGNN on the right calculates
parameters of the neural wave-function from the atomic positions only.

In a subsequent publication, the authors extended this technique to the case of treating
different molecules within the same model [11]. As the way this is realized depends crucially
on the neural architecture chosen, which we introduce shortly, we will elaborate upon the
philosophy behind [11] at at later stage. Recently, Scherbela at el. [14] proposed a modularized
version of the FermiNet architecture, which calculates atom-wise parameters characterising
the atomic orbitals and thereby allows to compose bigger molecules by combining pre-learned
atomic features and conduct some additional learning on the whole structure for the purpose
of fine-tuning.

3.4. Neural wave-functions in second quantization

Neural wave-functions in second quantization (2Q-NN-WFs) consider a second-quantized
Hamiltonian of the form

Ĥ = ∑
ij

hij ĉ†
i ĉj + ∑

ijkl
hijkl ĉ†

i ĉ†
j ĉl ĉk (3.13)

2Q-NN-WFs thus model wave-functions in the same Hilbert space of Slater-determinants as
e.g. CI techniques do. Current 2Q-NN-WFs are restricted to the case of S = 0-wave-functions,
i.e. wave-funcitons with an equal number of spin up and spin down electrons. The quintessen-
tial inspiration for 2Q-NN-WFs is the mathematically substantiated hope that highly accurate
CI-wave-functions can be determined in polynomial time despite the exponential size of the
parameter space [77]. The aim with neural nets is then to model the exponentially sized
parameter space accurately with a limited amount of parameters.

Any N-electron wave-function can be expressed via a basis set composed of Norb spin-orbitals
as
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|Ψθ⟩ = ∑
x

ψ(x; θ) |x1, ..., xNorb⟩ (3.14)

= ∑
x

ψ(x; θ) |x⟩ (3.15)

with x = (x1, ..., xNorb), xj ∈ {0, 1}, ∑Norb
i xi = N < Norb and coefficients ψ(x; θ) = ⟨x|ψθ⟩. As

the antisymmetry is contained in the kets |x⟩ th coefficients ψ(x; θ) = ⟨x|ψθ⟩ do no need to
fulfill according constraints. 2Q-NN-WFs thus naturally embed the electronic antisymmetry
and eliminate the necessity to explicitly incorporate cusp conditions via a Jastrow-factor by
utilizing conventional basis sets. This drops much of the constraints on the neural architecture
that 1Q-NN-WFs have to grapple with and allows to achieve high degrees of accuracy with
simple architectures, yet they do so at the expense of giving up the flexibility of learnable
basis functions [17]. Second-quantized neural wave-functions thus present with a unique
portfolio of strengths and weaknesses and therefore, compared to their first-quantization
counterparts, rest on fundamentally different building blocks, which we will spotlight now.

Wave-function parametrization: The canonical strategy in 2Q-NN-WFs is to calculate the
amplitudes ψ(x; θ) from eq. 3.14 as the output of the neural net as done in multiple 2Q-
NN-WFs [78, 79, 80, 81]. The state-of-the art investigation in [80] utilizes simple multilayer-
perceptrons calculating matrices ϕk

ij from occupation strings x as input, as showcased in fig.
3.4

Figure 3.4.: The neural architecture in [80]. The amplitudes are calculated straightforwardly
via MLPs which work on the occupation strings as input. The term backflow is
used differently in this context comparing to ours and can thus be ignored.

from which the amplitudes are derived as
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ψ(x; θ) =
D

∑
k=1

det[ϕk
{i={l:xl=1},j}] (3.16)

As 2Q-NN-WFs cannot optimize the employed basis set functions, they rely on utilizing
a large number of Slater-determinants to capture electronic correlation, as conventional
quantum chemistry approaches do [78]. It is a common empirical finding however that the
CI-expansion in eq. 3.14 is dominated heavily by a very limited amount of Slater-determinants.
This fuels the hope that efficient reparametrizations of the amplitudes ψ(x; θ) via θ exist [77],
contrasting a convential FCI-expansion with all the factorially many amplitudes ψ(x) = ψx

being free parameters.

Mapping orbitals onto spin systems: Alternatively, as the binary structure of the wave-
function in eq. 3.14 insinuates, the electronic problem can alternatively be mapped onto
a virtual set of interacting qubits. This is equally achieved by the Jordan-Wigner [82] or
Bravyi-Kitaev mapping [83], which can jointly be expressed as

ĉj →
1
2 ∏

i∈U(j)
σ̂x

i ×

 σ̂x
j ∏

i∈P(j)
σ̂z

i − iσ̂y
j ∏

i∈R(j)
σ̂z

i


ĉ†

j →
1
2 ∏

i∈U(j)
σ̂x

i ×

 σ̂x
j ∏

i∈P(j)
σ̂z

i + iσ̂y
j ∏

i∈R(j)
σ̂z

i

 (3.17)

with Pauli-matrices σ̂, an update set of qubits U(j), a parity set of qubits P(j) and a rest set of
qubits R(j), which depend on the particular mapping of choice. Choo et al. [9] settle for the
popular Jordan-Wigner transformation, where U(j) = j, P(j) = {0, 1, ..., j − 1}, R(j) = P(j),
implicating a mapping of the form

ĉj →
(

j−1

∏
i=0

σ̂z
i

)
σ̂−

j

ĉ†
j →

(
j−1

∏
i=0

σ̂z
i

)
σ̂+

j

(3.18)

with σ̂∓
j = σ̂x

j ± σ̂
y
j . Following the groundbreaking initial foray into neural wave-functions by

Carleo et al. [6], Choo et al. parametrize the ensuing wave-function as

ψ(θ) ≡ Ψθ = e∑i ai σ̂
z
i

M

∏
i=1

2cosh

[
bi + ∑

j
Wijσ̂

z
j

]
(3.19)
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with trainable weights θ = {aij, bij, Wij}.

Parameter optimization: The weights are analogously to neural networks working in
first quantization optimized via stochastic gradient-descent-like techniques with the wave-
function’s expectation value

Eθ =
⟨Ψθ|Ĥ|Ψθ⟩
⟨Ψθ|Ψθ⟩

(3.20)

which can analogously to its real-space equivalent eq. 3.10 be evaluated via Monte-Carlo
techniques. To that end, Choo et al. [9] rewrite the above expectation value as

Eθ = ∑
σ

pθ(σ)Eloc(σ) = Eσ∼pθ(σ)[Eloc(σ)] (3.21)

with a vector of qubit configurations σ = (σ1, ..., σM), the local energy

Eloc(σ) = ∑
σ′

Ψθ(σ′)

Ψ∗
θ(σ)

〈
σ′∣∣Ĥ∣∣σ〉 (3.22)

and a probability distribution

pθ(σ) =
|Ψθ(σ)|2

∑σ |Ψθ(σ)|2
(3.23)

Note that we employ σ for configurations in the qubit space and x for configurations in
the original orbital space. Resorting once again to sampling strategies like the Metropolis-
Hastings algorithm allows to evaluate the expectation value in eq. 3.21 stochastically. Con-
cretely, sampling from pθ(σ) ∼ |Ψθ(σ)|2 is performed via Monte Carlo chains of occupation
configurations σ0 → σ1 → σ2 → ... where at each iteration k the transition to a proposed
configuration σprop is accepted with probability

P(σprop = σk+1) = min

(
1,
∣∣∣∣Ψθ(σprop)

Ψθ(σk)

∣∣∣∣2
)

(3.24)

The resulting Markov chain is downsampled according to a rate K to obtain the final set of
configurations {σ0, σK, σ2K, ..., σMK}. These samples are used to calculate the expectation
value from eq. 3.21.

Alternatives to MCMC sampling: As this MCMC-based optimization scheme proves to be
inefficient for molecular CI expansions which are dominated by the Hartree-Fock determinant
as well as a couple of excited determinants [80], a series of investigations have aimed

29



3. Quantum chemistry in the age of artificial intelligence

at improving this sampling procedure. One line of research has been centered around
constructing the amplitudes ψ(x; θ) in an autoregressive fashion[78, 84] since the distribution
is heavily skewed towards a few configurations, thus resulting for any sampling procedure
in the same configurations being drawn quite often. We will however not delve into these
autoregressive neural architectures, as we instead follow the concurrent approach of drawing
inspiration from selected-CI methods [80, 79]. These approaches circumvent the stochastic
MCMC-sampling by introducing, for each step n in the gradient descent procedure, a core
space Vn of orbital configurations xi. The gradient is calculated as ∇Ẽθ with

Ẽθ = ∑
k∈V

|ψ(xk)|2

∑i∈V |ψ(xi)|2
Eloc(xk) (3.25)

being a surrogate for the actual energy E. As the set V is quite limited, this evaluation can be
done exactly without the need to invoke any stochastic methods. Ensuring that the gradient
calculated via the surrogate quantity Ẽ resembles the hypothetical gradient calculated with
respect to the actual energy faithfully is achieved via slightly varying techniques in [80] and
[79] respectively. In [79], the authors ensure that all relevant configurations are gradually
included in the core space V . This is achieved by defining the connected space

Cn = {x : ∃x̃ ∈ V s.t. | ⟨x|Ĥ|x̃⟩ | ≥ ε} (3.26)

with the hyperparameter ε and governing the core space via the update rule

Vn+1 = V ∪ Cn (3.27)

as illustrated in figure 3.5

Figure 3.5.: The update rule of the core space as taken from [79].

To avoid an overly bloated core space V , the authors in [80] instead use a core space with fixed
size Nu, where the update rule consists of defining the space Vn+1 as the Nu configurations
x1, ..., xNu with largest amplitudes |ψ(xi)|. Whereas the continually expanded core space V in
[79] eventually encompasses enough configurations in order for Ẽ to be a reasonably close
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approximation to E, the same cannot be necessarily said about the fixed-size core space in
[80]. In order to calculate the overall energy with a trained model, the authors in [80] thus
fall back on a standard MCMC-calculation scheme. This incurs negligible computational cost,
as the MCMC-scheme is invoked only once as the capstone of the forward pass, whereas it
is invoked for every single step of gradient descent during the training in previous approaches.

Since [80] will serve as a benchmark later, we hereby explicitly introduce it by name as Neural
Network Backflow (referred to as NNBF).

Computational complexity: 2Q-NN-WFs usually employ orders of magnitude fewer parame-
ters than their first-quantized counterparts and hence naturally offer better computation times.
The main computational bottlenecks for a broad amount of 2Q-NN-WFs from the MCMC
sampling of the wave-function, which is highly time-consuming due to the stark dominance
by the Hartree-Fock determinant within most occurring wave-functions [9]. It is for that
precise reason that the class of autoregressive neural wave-functions was developed, leading
to vastly reduced sampling efforts [78], reaching CC-benchmarks within a few minutes of
training [84]. The few recent selected-CI based methods [80, 84] also are able to circumvent
the significant computational cost associated with the wave-function sampling, rendering the
computation of the local energy eq. 3.22 with a scaling of O(NO), with NO the total number
of a molecule’s orbitals, the most burdensome computational task.

Ground state energy accuracy: We limit ourselves to a much shorter discussion of the
accuracy reported for 1Q-NN-WFs, since 2Q-NN-WFs so far were restricted to minimal basis
sets, hence being far from competitive with overall state-of-the-art methods. For these basis
sets however, chemical accuracy was achieved with orders of magnitude fewer parameters
than necessary for a FCI calculation. As current and future research concentrates on scaling
2Q-NN-WFs to larger bases [80], better comparability of 1Q-NN-WFs and 2Q-NN-WFs can
be expected.

3.5. Desiderata for a neural wave-function

Equipped with a rough understanding of the current state-of-the-art of neural wave-functions,
we now turn to the goal of designing a neural wave-function with maximal capacity for
gaining insight into the underlying physics. To that end, we postulate a handful of core
tenets that such a neural wave-function architecture needs to possess, and we address to what
degree these tenets are fulfilled in current approaches.

Fulfilling physical constraints: Obvious constraints that any neural wave-function needs to
adhere to are the wave-function’s normalizability - i.e. being a square-integrable function - as
well as correct behaviour under exchange of two electrons and under nearing of two electrons
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- i.a. antisymmetry and cusps. Conventional quantum chemistry approaches employ basis
functions to construct molecular orbitals and subsequent wave-functions which adhere to
these constraints constraints as discussed in section 2.4. As 2Q-NN-WFs inherit the wave-
functions from conventional quantum chemistry approaches, there is no need for further
accommodation of physical constraints. The approaches working in first quantization on the
other hand need to implement the physicality constraints manually, which they achieve by
using suitable Gaussian envelope functions for the molecular orbitals, Slater-determinants in
the construction of the molecular wave-function and Jastrow factors for cusps, as described in
section 2.4.

Locality and size-consistency: As the Coulomb interaction is a local phenomenon, any neural
wave-function needs to properly account for this locality. Thus, a proper wave-function of a
molecule consisting of two far-apart composites will have to factorize, a property referred to
as size-consistency [85]. Recent 1Q-NN-WFs [11] claimed to have successfully constructed
size-consistent wave-functions of the form

Ψ(⃗r; θ) = eJ(⃗r;θ)
Ndet

∑
k=1

ck

∣∣∣∣∣∣∣
ϕk

1(r1 ;⃗ r; θ) . . . ϕk
N(r1 ;⃗ r; θ)

...
. . .

...
ϕk

1(rN ;⃗ r; θ) . . . ϕk
N(rN ;⃗ r; θ)

∣∣∣∣∣∣∣ = eJ(⃗r;θ)
Ndet

∑
k=1

ck det[ϕk
mn] (3.28)

by using localized orbitals ϕk
j , where we have dropped the explicit dependence on the R⃗

for reasons of readability. They are localized in the sense that, considering two molecules
A and B far apart, orbitals localized at A will evaluate to zero when evaluated at positions
of electrons of B. It may however be possible that the size-consistency as reported in [11] is
rather an artefact of the methodology used in asserting the size-consistency. We will sketch
in appendix A.1 why we deem wave-functions of the form of 3.28 not necessarily suited for
achieving size-consistency.

The limited amount of NN-WFs working with generic electronic Hamiltonians in second
quantization [9, 78, 84, 79, 80] parametrize the wave-function in its occupation number
representation

|Ψ⟩ = ∑
x

ψ(x) |x⟩ (3.29)

While the aforementioned neural nets do not explicitly enforce size-consistency, their ansatz
can easily be accommodated to be size-consistent. Consider again the thought experiment of
a molecule consisting of two disjoint composites A1 and A2 described by Norb spin orbitals
each. We reorder the orbital string xi such that the entries in position 1 to Norb correspond to
the spin orbitals of A1 and the entries in position Norb + 1 to 2Norb correspond to spin orbitals
of A2. We compactly denote this as x = x1x2. If now the coefficient function ψ is constructed
in a manner such that it factorizes as
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ψ(x) = ψ1(x1)ψ2(x2) (3.30)

the overall wave-function of the molecule is given by

|Ψ⟩A1 A2
= ∑

x
ψ(x) |x⟩ = ∑

x1

∑
x2

ψ1(x2)ψ2(x2) |x1x2⟩ (3.31)

=

(
∑
x1

ψ(x1) |x1⟩
)(

∑
x2

ψ(x2) |x2⟩
)

= |Ψ⟩A1
|Ψ⟩A2

(3.32)

and hence is size-consistent [85].

Recognition of system symmetries: In lines of research similar to NN-WFs it crystallized
early on omitting to explicitly encode symmetries of the input domain induces significant
training difficulties and leads to ballooning parameter spaces [13]. This empirical finding
was recently substantiated with a theoretical foundation [86, 87, 88]. The nature of the
symmetries in the input domain can be easily grasped for the case of NN-PESs, where
substantial effort has been invested to encode such symmetries, see [52, 53, 89]. For a NN-PES
E(R⃗; θ) predicting the energy of an M-atom molecule based on the geometric configuration
R⃗ = (R1, ..., RM) ∈ R3×M of the M atoms it is obvious that the energy should be invariant
with respect to rotations, translations and inversions of the molecular geometry, i.e.

E(OR⃗ + T ; θ) = E(R⃗; θ) for O ∈ O(3), T ∈ R3×M (3.33)

This does not however translate trivially to wave-functions, as wave-functions are, unlike
scalar energies, of geometric character. We clearly do not want a wave-function that is
invariant to spatial rotations, as this would in effect yield a spherical wave-function. We
thus need a more fanciful notion than simple invariance. We first try to roughly capture
our intuition as to what behaviour we would expect. Consider two dislocated copies of the
same molecule, one with molecular geometry R⃗1 and the other with molecular geometry
R⃗1. We assume the two composites to be exact replicas of each other, implying that there is
some map O ∈ R3×3 combining a translation and a rotation such that OR⃗1 = R⃗2. We refer
to the respective wave-functions as Ψ1(⃗r1; R⃗1) and Ψ2(⃗r2, ; R⃗2). Intuition now dictates that
evaluating Ψ1 at the electronic positions r⃗1 should yield the same values as evaluating Ψ2 at
r⃗2 = O⃗r1. Put alternatively, were we to realign the two geometries, the two wave-functions
should coincide exactly.

While we postpone a more rigorous mathematical treatment to a later stage, suffice it say
here that a preponderance of hitherto proposed approaches for NN-WFs in first quantization
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does not explicitly encode correct transformational behaviour, i.e. were we to calculate the
wave-functions of two rotated molecules. Globe [11] and the related approach PESNet [56]
circumvent this by defining for each molecular configuration a principal-component-based
coordinate frame which itself rotates alongside the molecule and expressing all coordinates
in that frame, in effect hiding rotations of the molecule from the neural net. In the latest
publication on the matter as of the writing of this manuscript, Scherbela et al. [14] state the
incorporation of correct behaviour for rotated inputs as open problem in the field.

NN-WFs working in second quantization are unbothered by considerations regarding spatial
symmetry, as they use the second-quantized Hamiltonian as starting point, the scalar elements
of which are invariant to rotations of the molecule, cf. section 2.6.

Transferability to unseen molecules: Recall our guiding doctrine of aiming to construct a
NN-WF with maximal capacity for grasping underlying physical patterns. Such a NN-WF
would ideally, once being trained on a small set of representative molecules, be able to
predict the wave-function of arbitrary molecules, as they are all governed by the same laws of
quantum mechanics. While seeming to be a dauntingly ambitious goal, some NN-WFs in first
quantization have indeed achieved some success in employing a model that is transferable
to arbitrary and therefore also unseen molecules [56, 14]. The key paradigm employed is to
parametrize local constituents of the wave-function and compose the overall wave-function
from these local components. We will elucidate the underlying mathematical finesse in the
next chapter.

The matter of transferability of wave-functions for NN-WFs in second quantization is dealt
with quickly, as this simply was not a concern in hitherto studies and therefore also not
addressed. All the studies focused on individual Hamiltonians without the ambition to
generalize across different Hamiltonians resulting from different geometries. For example, the
recent state-of-the-art 2Q-NN-WF proposed in [80] calculates the amplitudes ψ(x; θ) without
incorporating features of the Hamiltonian or the molecular geometry in any way. This clearly
necessitates the retraining for every novel molecular geometry.

We will now proceed to introduce the mathematical armamentarium necessary to realize the
above desiderata.

3.6. Enabling locality and transferability: Message-passing graph
neural networks

Graph neural networks are neural networks that model functions acting on a graph G =

(V ,W) with nodes V and edges W which have enjoyed tremendous success in a variety of
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domains [90]. A particular subclass of graph neural networks that has proved to be suitable for
many problems within quantum chemistry are message-passing neural networks (MPNNs).
In their seminal work, Gilmer et al. [91] developed the first use case of message-passing
graph neural networks (MMPNs) within the context of quantum chemistry. MPNNs consist
of so-called node feature vectors { f v ∈ RF : v ∈ V} - equivalently referred to as hidden or
latent states - as well as edge feature vectors {evw ∈ RF : ⟨v, w⟩ ∈ W} are being attributed
to each node and edge respectively. Both the feature vectors as well as the edge vectors are
learnable. The forward pass of MPNNs consists of two phases, a message passing phase and
a readout phase. The messaging phase consists of a finite number T updates of the nodes’
and edges’ feature vectors, i.e. f v ≡ t f v with t ∈ {0, ..., T}. The update is governed by the
update rule

t+1 f v = Ut
(t f v, tmv

)
tmv = ∑

w∈N (v)
Mt
(t f v, t f w, evw

) (3.34)

with node update functions Ut, message functions Mt and a node’s neighbourhood N (v).
The readout phase calculates the desired output quantity ŷ from the feature vectors as

ŷ = R({T f v : v ∈ G}) (3.35)

with some readout function R.

Figure 3.6.: An illustration a) the graph structure, b) message passing and c) the graph with
updated feature vectors.

This framework is of particular use for quantum chemical applications, as not in the least
indicated by the number of citation of [91], reaching the whooping mark of 8000. The graph
structure of MPNNs allows to neatly describe molecules by e.g. identifying the graph’s nodes
with the molecule’s atoms. Still, the architecture leaves enough leeway regarding the exact
form of the message, update and readout functions to encompass domain-knowledge or
use-case specific constraints. In fact, as Gilmer et al. point out and as still holds true, many
of the paradigmatic studies employ neural architectures that can be formulated as MPNNs
across the whole of AI-for-quantum-chemistry applications. That includes a preponderance
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of the past and state-of-the-art NN-PESs, among them SchNet [92], PhysNet [93], GemNet
[52] and its predecessor DimeNet(++) [13], UNiTE [58] and NequIP [53], as well as some very
recent state-of-the-art NN-WFs [11, 56, 14]. For example, Gao et al. [11] imbue the atoms
of a molecule with feature vectors and construct the orbital-wise outputs of their neural
architecture by instantiating additional nodes for the orbitals which receive messages from
the atoms without sending messages on their own.

Figure 3.7.: The graph architecture in [11]. Illustrated are the inter-atomic message passing in
a), the instantiation of orbital-wise additional nodes in b) and the construction of
orbital-wise feature vectors via the surrounding atoms in c).

On the other hand, certain features of the MPNN design have received some scrutiny as well,
cf. [60], as the interdependence between atomic features hinders parallel computation and
hence scaling to large molecules.

We would like to note that we are aware that to some degree, attention has - literally - shifted
towards attention-based transformer architectures, see e.g. [75] or upcoming work from
Günnemann et al. (Nicholas Gao, personal communication). We nevertheless settle for a
conventional MPNN architecture, as such an architecture could be relatively effortlessly
transformed into an attention-based architecture [94] and can thus reasonably be interpreted
as a first progenitor towards attention-based neural networks.

3.7. Recognizing symmetries: Equivariant neural networks

We now pick up the thread of how to incorporate system symmetries into the architecture of
the neural net architecture. Before going abstract, we first want to concretely provide an even
more native example for the relevance of encoding symmetries correctly.

Consider the calculation of atomic forces from a given NN-PES Fθ. This use case is in fact far
from hypothetical and has been investigated extensively, see e.g. [95]. We can obtain these
forces by differentiating the neural net with respect to the atomic positions [96], such that the
force acting on atom a is given as

Fa = −∇RaFθ(R) := Qθ(R) (3.36)

36



3. Quantum chemistry in the age of artificial intelligence

where we introduced the neural net Qθ as the gradient of Fθ with respect to Ra. It is intuitively
clear that, if one were to rotate the original molecule and thus the atomic positions by a
rotation matrix O ∈ SO(3), the force should rotate accordingly, as the rotation does not bear
any meaningful physical effect and merely constitutes a re-orientation of the coordinate frame.
For rotated coordinates R′ = OR we thus expect the final force to be given by F′

a = OFa.
Formulated in terms of the neural net this amounts to

Qθ(OR) = Qθ(R′) = F′
a = OFa = OQθ(R) (3.37)

This example also highlights the fact that the correct behaviour is not trivially guaranteed
at all. Here, the map Qθ needs to commute with any rotation matrix O, which of course
imposes significant constraints on the anatomy of Qθ.

Comparing the first and last term of the above chain of equalities allows us then to introduce
the idea of so-called equivariance as a generalization of invariance. The neural net Qθ is not
invariant with respect to rotations, but equivariant - it changes "in the same manner".

A mathematical primer on equivariance: Group theory provides us with the vocabulary to
formalise the concept of equivariance [97, 98]. A function f : X → Y with vector spaces X
and Y is called equivariant with respect to a group G and representations RX and RY if for
all g ∈ G, x ∈ X

f (RX (g)x) = RY (g) f (x) (3.38)

A representation RG of a group G is a homomorphism RG : G → Cd×d for some d, thus
satisfying

RG(g)RG(h) = RG(gh)∀g, h ∈ G (3.39)

We will restrict ourselves the case G = SO(3) for now. We abuse notation by referring to
SO(3)-equivariance when we just state equivariance. We make the group explicit in case it
is not SO(3). From the above definition it also follows immediately that compositions of
equivariant functions are again equivariant.

Representations of the group SO(3) exist for all d = 2l + 1, l ∈ N0. For l = 1, any rotation
matrix O ∈ SO(3) is straightforwardly represented by itself, as seen in the introductory
example above. For a general l, it is known that any representation can up to a similarity
transformation be expressed as the direct sum of irreducible representations, or irreps.
For SO(3), the irreps RSO(3)(O) = Dl(O) ∈ C(2l+1)×(2l+1) are referred to as the Wigner-D
matrices [99]. Any Wigner-D matrix Dl is spanned by the 2l + 1-dimensional basis set
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3. Quantum chemistry in the age of artificial intelligence

{|lm⟩ : −l ≤ m ≤ l} as Dl(O) = ∑m,m′ Dl
m,m′(O) |lm⟩⟨lm′|. The spatial expression of the basis

states is given by the spherical harmonics

⟨r|lm⟩ = Ylm(r) (3.40)

As said before, every representation of a given rotation matrix O can up to a similarity
transformation be expressed as the direct sum of irreducibles

SRSO(3)(O)S−1 =
⊕

l

τl⊕
i=1

Dl
i(O) (3.41)

with RSO(3)(O) ∈ C(2D+1)×(2D+1) and multiplicities τl such that ∑l τl(2l + 1) = 2D + 1.
Representations that can be expressed as a non-trivial direct sum of irreducibles are referred
to as reducibles. A subclass of reducibles that is of particular relevance to our endeavor are
those generated by tensor products of representations. A tensor product of representations
R1(O)⊗R2(O) = R(O) is again a representation. The transformation between the bases
{|l1m1⟩ ⊗ |l2m2⟩ = |l1m1; l2m2⟩ : −l1 ≤ m1 ≤ l1;−l2 ≤ m2 ≤ l2} of the representations R1

and R2 and the basis {|LM⟩} of R is determined by

|LM⟩ =
l1

∑
m1=−l1

l2

∑
m2=−l2

|l1m1; l2m2⟩ ⟨l1m1; l2m2|LM⟩ =
l1

∑
m1=−l1

l2

∑
m2=−l2

CLl2l1
Mm2m1

|l1m1; l2m2⟩ (3.42)

with |l1m1; l2m2⟩ = |l1m1⟩ ⊗ |l2m2⟩ and the Clebsch-Gordan coefficients [100]

CLl2l1
Mm2m1

= ⟨l1m1; l2m2|LM⟩ (3.43)

Only terms where |l1 − l2| ≤ L ≤ l1 + l2 and M = m1 + m2 are non-zero.

Equivariance in practice: The concept of group equivariance has for the most part attained
much higher status in the neural network community than simply being mathematical acrobat-
ics, being implemented over a wide spectrum of use cases [101], even within the transformer
architecture [102]. Within the machine-learning-for-quantum-chemistry community there
has however been debate however on the benefit-to-cost ratio of equivariant versus more
banal invariant neural nets. A significant amount of attempts, see e.g. [60, 53, 103, 57], have
been undertaken to construct MPNNs with equivariant feature vectors due to their presumed
heightened expressiveness [103]. Yet empirically the results have not unequivocally favoured
the more complex SO(3)-equivariant network designs over SO(3)-invariant counterparts [13,
52], which only rely on SO(3)-invariant inputs such as distances and angles, spurring some
debate over the usefulness of equivariant network designs. For NN-WFs however, where
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the output quantity is not scalar anymore, an equivariant model is evermore desirable, as
in order for the wave-function’s energy to be SO(3)-invariant, the wave-function needs to be
equivariant [56]. Some attempts have been made to achieve equivariance, though rather in a
circumventing fashion [11] with the search for a fully equivariant neural wave-function still
an open question [14].

For instructive purposes, we will shortly showcase cornerstones of prototypical implemen-
tation for a SO(3)-equivariant NN-PES inspired by [96]. Whereas the state-of-the-art of
equivariant NN-PESs may be more accurately be represented by NequIP [53], its architectural
finetunings are not as relevant to our approach.

As neural networks are usually a composition of multiple layers, equivariance of the full
neural net corresponds to equivariance of each layer on its own in order to propagate the
rotation of the input through the neural net. The scheme in [96] represents a MPNN utilizing
feature vectors - or, more accurately, matricized feature vectors - of the form

f v =
lmax⊕
l=0

f (l)v ∈ RL×F (3.44)

with L = ∑lmax
l=0 2l + 1. The basis vectors are the spherical harmonics. Thus, the j-th column of

f ought to be understood as

( f ):,j =



f0,0;j
f1,−1;j
f1,0;j
f1,0;j
...

flmax ,lmax ;j


= f0,0;jY0,0 + f1,−1;jY1,−1 + ... + flmax ,lmax ;jYlmax ,lmax (3.45)

where we make use of NumPy-ian indexing, i.e. ( f ):,j denoting the j-th column of the matrix
f . We can recognize these matrix feature vectors to be equivalent to the vectorial feature
vectors described in section 3.6 by regarding a matrix as unstacked vector and vice versa.

The feature vectors 0 f ≡ 0 f (E(R⃗)) as constructed from the molecular geometry R⃗ via some
SO(3)-equivariant function E. We thus know them to transform as

R⃗ 7→ OR⃗ (3.46)
0 f (l)v 7→ Dl(O)0 f (l)v (3.47)
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Figure 3.8.: An illustration of a graph with SO(3)-equivariant feature vectors, taken from [53].
For all practical purposes, we concatenate the differently-colored components
into one vector.

thus rendering the whole feature vector 0 f equivariant. The key challenge for MMPNs
to overcome is to preserve the equivariance throughout the message-passing, that is, to
couple feauture vectors non-trivially while preserving SO(3)-equivariance. This coupling is
achieved by considering the tensor product of two neighbouring feature vectors f ⊗ g. We
have seen above that tensor products of spherical harmonics |l1m1⟩ ⊗ |l2m2⟩ yields another
set of spherical harmonics |LM⟩ with the transformation between the two sets governed
by the Clebsch-Gordan coefficients. Therefore, the resulting tensor product is still SO(3)-
equivariant. All that remains is to express the coefficients of |l1m1⟩ ⊗ |l2m2⟩ in the new basis
|LM⟩. Each pairs of components l1 and l2 generate a set of feature vectors of degree l3 with
l3 ∈ {|l2 − l1|, ..., l2 + l1} coupling of feature vectors f and g is given element-wise by

(
f (l1) ⊗CG g(l2)

)
l3,m3

=
l1

∑
m1=−l1

l2

∑
m2=−l2

Cl3,l2,l1
m3,m2,m1

f l1,m1
⊙ gl2,m2

(3.48)

with the element-wise product ⊙ (note that we are dealing with F-dimensional vectors,
hence element-wise product). For example, the fragments f (1) and f (1) will yield equivariant
fragments with values l3 = 0, 1, 2. In general, we will have a series of resulting equivariant
fragments. For example, the pairs l1 = l2 = 0, l1 = l2 = 1 and l1 = l2 = 2 all yield a
fragment with l3 = 0. The simplest way to recombine all obtained equivariant fragments
into a single feature vector is by summing over all fragments with a given value of l3, which
we implicitly mean whenever we speak about this type of tensor product. We refer to this
equivariance-preserving technique as Clebsch-Gordan contraction. By truncating the resulting
to a certain lmax it is possible to work with tensors of constant shape.

For later purposes we also define a vector Y(R) ∈ RF of spherical harmonics as
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Y(R) =



Y0,0(R)

Y1,−1(R)

Y1,0(R)

Y1,0(R)

...
Ylmax ,lmax(R)


(3.49)

We can recognize eq. 3.45 to essentially describe a molecular orbital. The coefficient vector of
a molecular orbital thus constitutes a naturally equivariant quantity. As molecular orbitals are
equivariant, so are products of molecular orbitals and linear combinations thereof, implying
that CI wave-functions are equivariant. This implies that the amplitudes of a CI wave-function
|Ψ⟩ = ∑x ψ(x; θ) |x⟩ calculated by a neural wave-function need to be SO(3)-invariant, as the
equivariance of the wave-function is fully captured by the SO(3)-equivariance of |x⟩.

HF-Z2-equivariance: This insight translates to another kind of equivariance which was
highlighted in a recent study on NN-WFs [14] and will thus be shortly addressed by us. As
the molecular orbitals are obtained as being the eigenvectors of the Fock matrix, they are
only defined up to a phase factor of ±1. We can treat this gauge freedom adequately in
the equivariance paradigm. We assume now that we receive for spin orbital j the vector of
molecular coefficients −cj instead of cj. We refer to this flipped sign as the HF-sign-flip. For
a given CI wave-function |Ψ⟩ = ∑x ψ(x) |x⟩, the basis kets will change as

|x⟩ 7→ |x̃⟩ := (−1)xj |x⟩ (3.50)

The kets are thus equivariant to the HF-sign-flip. We dub this equivariance the HF-Z2-
equivariance. We define a unitary U j via U j : |x⟩ 7→ |x̃⟩. Occurrence of the HF-sign-flip thus
corresponds to a basis change {|x⟩}x 7→ {|x̃⟩}x̃. The Hamiltonian Ĥ = ∑x,y Hx,y |x⟩⟨y| will
under this basis change transform as Ĥ 7→ U jĤU†. In order for the energy ⟨Ψ|Ĥ|Ψ⟩ to be
HF-Z2-invariant, |Ψ⟩ has to transform as |Ψ⟩ 7→ U j |Ψ⟩, i.e. it has to be HF-Z2-equivariant.
As the kets |x⟩ themselves are HF-Z2-equivariant, it is necessary for the amplitudes ψ(x) to
be HF-Z2-invariant. The same line of reasoning can be applied to the necessity of SO(3)-
equivariance of the wave-function for SO(3)-invariance of the energy [11].
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wave-functions

We now turn towards crafting a neural architecture which adheres to all the desiderata laid
out in section 3.5. We will employ a MPNN to that end, prompting us to structure this section
along the lines of the core notions of a MPNN: we need to define what constitutes the nodes,
how we construct their corresponding feature vectors, how we update feature vectors based
upon neighbouring feature vectors, and how we read out the neural wave-function from the
final graph. We present a high-level description of the core tenets before elaborating on the
mathematical machinery.

Calculation of SO(3)-invariant and HF-Z2-invariant CI amplitudes: Our model repre-
sents a 2Q-NN-WF and thus calculates the amplitudes ψ(x; θ) of a CI wave-function |Ψ⟩ =
∑x ψ(x; θ) |x⟩ based on the molecular geometry. The amplitudes are SO(3)-invariant and
HF-Z2-invariant, thus yielding a fully equivariant wave-function. As current 2Q-NN-WFs do,
see section 3.4, we work exclusively with spinless systems, S = 0, implying the Hilbert space
to be spanned only by determinants with equal number of spin up and down electrons.

Spin orbital as nodes: Our model proposes a two-layered graph. The first layer corresponds
to the molecular geometry with atoms as nodes. We extract a second layer from the first layer
consisting of one node per spin orbital. While graphs based on atomic nodes are posed with
the problem how to construct a possibly varying number of spin orbitals from atomic nodes
[11], we can straightforwardly map nodes to orbitals one-to-one. Message-passing takes place
among the nodes of the second layer.

SO(3)-equivariant feature vectors: We imbue the spin orbital nodes with SO(3)-equivariant
feature vectors, where we import the geometric structure from a Hartree-Fock precalculation.
While we output a scalar amplitude rendering the employment of geometric feature vectors
not strictly necessary, believe in the enhanced expressiveness of geometric feature vectors for
our use case due to the molecular orbital coefficients being naturally equivariant.

Constant parameter count, locality and transferability: As our model is completely mod-
ular and all learnable parameters describe either local atomic feature vectors or their local
interaction, there are no a priori limitations on training the model for arbitrary molecules and
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molecule geometries at once.

After a thorough description of the key components of the architecture, we will shortly reflect
upon which further finetunings are necessary, before we put our proposed architecture to the
numerical test. We dub our model Molecular-orbital-Feature-Centric-Net, or MFCNet in short.

4.1. The embedding phase: constructing equivariant molecular
orbital features

MFCNet obtains as input the molecular geometry R⃗ ∈ R3×M. As is commonly done in
1Q-NN-WFs, see e.g. [8, 14, 71, 56], we first conduct a Hartree-Fock (HF) precalculation. We
assume the HF precalculation to be conducted in the STO-3G basis [104] which equips atoms
with atomic number Z > 2 with orbitals 1s, 2s and 2p and the 1s-orbital only if Z ≤ 2, i.e. for
the atoms Hydrogen and Helium. We construct the first layer of the graph by attributing
learnable feature vectors xZ,nl ∈ RF to each orbital of each atom. For example, in the STO-3G
the nitrogen atom with seven electrons basis gets equipped with three feature vectors, namely
x7,s1 ∈ RF, x7,s2 ∈ RF and x7,p ∈ RF. We thus deviate slightly from exemplary MPNN-based
neural wave-functions such as [11] and [14], which utilize a single F-dimensional feature
vector per atom. This also prohibits to reuse the same model when basis sets other than
STO-3G are employed. This drawback is however not exclusive to MFCNet, but rather
implicitly present for all 2Q-NN-WFs.

Figure 4.1.: Exemplary atomic feature vectors x7,s1 (green), x7,s2 (yellow) and x7,p (red) for
F = 3. Since we work with multidimensional feature vectors, we choose the F
channels to be depicted along the inward-axis.

From the atomic graph we then proceed to construct the second layer of the graph, where the
atomic feature vectors are recombined and synthesized with the HF coefficients C ∈ RNorb×Norb ,
with Norb denoting the number of molecular orbitals, to yield feature vectors f v for all spin
orbitals v separately. This explicit introduction of spin-orbital-wise feature vectors differen-
tiates MFCNet from MPNN-based NN-WFs [11, 56, 14], which purely utilize atomic nodes
and construct the electronic wave-functions from atomic feature vectors. We design these
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feature vectors f v to be SO(3)-equivariant as well as HF-Z2-invariant. We achieve the former
by imposing the geometrical character of the HF coefficients C onto the feature vectors f v.
Note that utilizing C to realize SO(3)-equivariant NN-WFs was lined out in [14] as a future
avenue of research.

Recall a molecular orbital to be defined as a linear combination of atomic orbitals,

χv(r) = ∑
j

cjvϕj(r) (4.1)

with the index j running over all orbitals of all atoms of a molecule and with C jv = cjv. As
alluded to above, the coefficients cjv will prove to be our gateway to constructing equivariant
feature vectors from the scalar atomic feature fectors xZO. To elucidate where the geometric
structure originates, we first consider the toy example of a molecular orbital containing only
atomic orbitals from a single atom A with ZA > 2. Explicitly spelling this scenario out and
assuming the atom A to contain two s-orbitals and one p-orbital, the molecular orbital χv is
defined as

χv(r) = c1sϕ1s,A(r) + c2sϕ2s,A(r) + c2px ϕ2px ,A(r) + c2py ϕ2py,A(r) + c2pz ϕ2pz,A(r) (4.2)

Recall the atomic orbitals to be of the form

ϕnlm(r) = Rn(∥r∥)Ylm(r) (4.3)

with Ylm denoting the real spherical harmonics [105]. Plugging this definition into the above
eq. 4.2 and absorbing Rn(∥r∥) into the coefficients c̃nlm = Rn(∥r∥)cnlm yields

χv(r) = c̃1sY0,0(r) + c̃2sY0,0(r) + c̃2pxY1,−1(r) + c̃2pyY1,0(r) + c̃2pzY1,1(r) (4.4)

Considering section 3.7 and defining a concatenation operation [·∥·], we can now immediately
recognize the vector

gχv
:=
[
c̃1s∥c̃2s∥c̃2px∥c̃2py∥c̃2pz

]
≡


c̃1s

c̃2s

c̃2px

c̃2py

c̃2pz

 ∈ R5 (4.5)

to be SO(3)-equivariant. Formally, the transformational behaviour of gχv
is given by
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R⃗ 7→ OR⃗ with O ∈ SO(3) =⇒ gχv
7→ DO (4.6)

with

DO = 11 ⊕ 11 ⊕ O ∈ R5×5 (4.7)

and hence rendering gχv
SO(3)-equivariant.

While in practice molecular orbitals will rarely contain contributions from a single atom only,
we can easily accommodate for the general case. Consider the molecular orbital χv to now
contain contributions from M atoms. The matrix Gχv obtained from stacking vectors of the
form of gχv

Gχv :=
[
c̃1s∥c̃2s∥c̃2px∥c̃2py∥c̃2pz

]
≡


c̃1s,1 c̃1s,2 c̃1s,M

c̃2s,1 c̃2s,2 c̃2s,M

c̃2px ,1 c̃2px ,2 ... c̃2px ,M

c̃2py,1 c̃2py,2 c̃2py,M

c̃2pz,1 c̃2pz,2 c̃2pz,M

 ∈ R5×M (4.8)

is again equivariant. As we will utilize Gχv as a means to construct equivariant and learnable
feature vectors, we want to standardize its shape across different basis sets, as in its current
form its shape explicitly depends upon how many s- and p-orbitals a basis set provides any
given atom with. We note that we can aggregate all blocks with identical angular momentum
along the rows of Gχv without torpedoing the SO(3)-equivariance of Gχv . In the case of
working in the STO-3G basis, which contains more than one orbital only for l = 0, this
amounts to

G̃χv =


λc̃2s,1 + µc̃1s,1 λc̃2s,2 + µc̃1s,2 λc̃2s,M + µc̃1s,M

c̃2px ,1 c̃2px ,2 ... c̃2px ,M

c̃2py,1 c̃2py,2 c̃2py,M

c̃2pz,1 c̃2pz,2 c̃2pz,M

 ∈ R4×M (4.9)

with learnable parameters λ, µ, which we can equivalently define by G̃χv = WGχv with a
suiting partly learnable matrix W ∈ R4×5. We merge G̃χv ∈ R4×M now with the atom-and-
orbital-wise feature vectors xZ,nl ∈ RF by introducing the quantity tv ∈ R4×F×M defined
elementwise by

(tv)nlm,i,j = c̃nlm,j(xZj,nl)i (4.10)

which ought to be understood as a "matrix of vectors"
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tv =


(λc̃2s,1xZ1,s1 + µc̃1s,1xZ1,s2) λc̃2s,2xZ2,s1 + µc̃1s,2xZ2,s2

c̃2px ,1xZ1,p c̃2px ,2xZ2,p ...
c̃2py,1xZ1,p c̃2py,2xZ2,p

c̃2pz,1xZ1,p c̃2pz,2xZ2,p

 (4.11)

We furthermore want to augment tv with spatial information regarding the relative positions
of the atoms 1 to M. To that end, we first define a weighted center for the molecular orbital as

Rχv :=
∑M

j=1 C2
j Rj

∑M
j=1 C2

j

with C2
j = ∑

n,l,m
c2

nlm,j (4.12)

with Rj denoting the position of the j-th atom contributing some atomic orbital to χv. Note
that Cj is SO(3)-invariant, being the squared norm of the j-th column of the SO(3)-equivariant
quantity Gχv . Hence, Rχv is SO(3)-equivariant. We import information regarding the relative
atomic positions via the L-dimensional vectors Y(Rk − Rχv), utilizing the CG-contraction ⊗CG
introduced in section 3.7 to define a new tensor f̃ v ∈ RL×F×M column-wise as

(
f̃ v
)

:,j,k = bj(∥Rk − Rχv∥)
[[

tv∥0(L−4)×M×F

]
:,j,k

⊗CG Y(Rk − Rχv)

]
(4.13)

with 0(L−4)×F×M being a tensor of zeros of shape (L − 4)× F × M and bj with j = 1, ..., F
being the j-th spherical Bessel polynomial [100]

bj(r) = (−r)j
(

1
r

d
dr

)j sin(r)
r

(4.14)

Employing Bessel polynomials as a means to diffuse radial information across the different
channels was popularized by Gasteiger et al. in DimeNet [13] and henceforth constitutes a
common design element in numerous PES-NNs and WF-NNs.

Since f̃ v is linear in all molecular orbital coefficients, it is equivariant to the HF-sign-flip,
since this sign flip equates to cnlm,j 7→ −cnlm,j. Since we aim for HF-Z2-invariance instead of
equivariance, we Clebsch-Gordan-contract f̃ v with itself,

˜̃f v = f̃ v ⊗CG f̃ v (4.15)

to render it quadratic with regards to the molecular orbital coefficients.

One last drawback preventing the tensor ˜̃f v from being used as feature vector for the
molecular orbital χv is the explicit dependence of its shape on the number of atoms M with
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non-vanishing contributing atomic orbitals. This is undesirable would necessitate cumbersome
mathematical interventions in order to render feature vectors of different molecular orbitals
with possibly different values of M comparable. We alleviate this by tracing out the atom-
enumerating last dimension and use as feature vector

f χv
= Tr3[

˜̃f χv
] ≡ 0 f χv

≡ 0 f χv
(cχv) (4.16)

with cχM the column of HF-coefficients belonging to χM and the superscript zero indicating
that these are the initial feature vectors after zero steps of message passing.

Figure 4.2.: Exemplary feature vectors for five of the ten molecular orbitals for N2. Arrows
indicate which atoms contribute to which molecular orbitals. In practice, for small
molecules all atoms will contribute. This visualization serves only illustrative
purposes.

We furthermore visualize the computational graph in fig. 4.3.
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Figure 4.3.: Computational graph of how the initial feature vectors are calculated. Squares
denote input into the computational operation.

4.2. The message-passing phase: preserving equivariance

We now turn to concocting a message-phasing scheme that allows the nodes of different
molecular orbitals to communicate and incorporate information of neighbouring nodes while
preserving equivariance of each node’s feature vector. We first have to formalise the concept
of neighbourhood. Contrasting atomistic MPNNs, where distance in euclidean space presents
a canonical choice to define neighbourhood between nodes in the graph [13], we have to
redefine the concept of neighbourhood when considering molecular orbitals as nodes. We
settle on defining the neighbourhood N(v) of a molecular orbital v as

N(v) :=
{

w ̸= v ∈ G : h(2)vvww =

∫∫
d3r1d3r2|χv(r1)|2|χw(r1)|2

∥r1 − r2∥
> ϵ

}
(4.17)

with ϵ being a tunable hyperparameter. Note that this integral, referred to as the Schwartz
integral, has been employed as useful heuristic in other use cases in quantum chemistry [106].
Favourably, it preserves locality for localized MOs [107]. On the other hand, introducing the
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cutoff ϵ poses the threat of introducing discontinuities within the neural net if two molecules
exhibit a value for the Schwartz integral that hovers around the cutoff value. We mitigate this
by curating the input data in a way such that these potential discontinuities are smoothened
out. We elaborate on this procedure in section 4.4.

Remember the updates of the feature vectors in the t-the step of message passing to to be
governed by

t+1 f v = tU
(

t f v, t+1mv

)
(4.18)

t+1mv = ∑
w∈N (v)

t M
(t f v, t f w

)
(4.19)

with update functions U(t) and mixing operations M(t). Note that contrasting the original
definition in section 3.6, we are not employing any edge weights in our model. A commplace
method of non-linear SO(3)-equivariance-preserving mixing of two feature vectors f v and
f w is the use of the CG-contraction, as described in section 3.7. While this CG-contraction
allows mixing of different channels along the same degree of angular momentum as well as
SO(3)-equivariance-preserving mixing across different levels of angular momentum, it has
been criticized for its large computational cost [108]. Though we are aware of the ingenious
techniques developed to slim down computational efforts, we can not straightforwardly
implement them for our use case [109]. We thus aim for a more minimalist technique allowing
to mix equivariant feature vectors of different nodes, relying on theoretical underpinnings
exploring the expressiveness for certain types of mixing operations [110]. Proposition 5 of
[110] circumscribes the amount of design freedom we have in creating a mixing operation
by stating that, given any SO(d)-equivariant function h : Rd×F → Rd, we can find F SO(d)-
invariant differentiable functions ki : Rd×F → R; i = 1, ..., F such that

h(v1, v2, ..., vF) =
F

∑
i=1

ki(v1, v2, ..., vF)vi (4.20)

with vi ∈ Rd. We note that this can be trivially generalized to an SO(d)-equivariant function
h : Rd×F → Rd×F by stacking F functions

hj(v1, v2, ..., vF) =
N

∑
i=1

kij(v1, v2, ..., vF)vi for j = 1, ..., F (4.21)

as h = [h1∥h2∥...∥hF]
T. We now remember our feature vectors to be of the form f =

⊕lmax
l=0 f (l).

We compose an SO(3)-equivariant mixing operation M( f , g) via
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M( f , g) =
lmax⊕
l=0

M(l)( f (l), g(l)) (4.22)

where each of the M(l) are SO(2l + 1)-equivariant functions. We quickly show that M is
indeed SO(3)-equivariant - that is, for R ∈ SO(3), and D =

⊕lmax
l=0 Dl(R) with the Wigner-D-

matrices Dl , it holds that

M(D f , Dg) = DM( f , g) (4.23)

This however follows immediately from the Wigner-D-matrices obeying the set of orthonor-
mality relations [111]

∑
k

Dl
km′(R)∗Dl

km(R) = δmm′ (4.24)

implying Dl(R)†Dl(R) = 12l+1 and hence Dl(R) ∈ SO(2l + 1). The SO(2l + 1)-equivariance
of M(l) now yields

M(D f , Dg) =
lmax⊕
l=0

M(l)(Dl(R) f (l), Dl(R)g(l)) =
lmax⊕
l=0

Dl(R)M(l)( f (l), g(l)) (4.25)

= D
lmax⊕
l=0

M(l)( f (l), g(l)) = DM( f , g) (4.26)

where the second-to-last equality follows from the block-diagonality of D.

We now define f j := f :,j and hj := h:,j. By identifying the set { f (l)j }j ∪ {g(l)
j }j with the set

{vn}n from eq. 4.21 we recognize the functions M(l) to be of the form of h from eq. 4.20,
implying the decomposition M(l) = [M(l)

1 ∥M(l)
2 ∥...∥M(l)

F ] with

M(l)
i =

F

∑
j=1

1M(l)
ij ( f (l)1 , ..., f (l)F , g(l)

1 , ..., g(l)
F ) f (l)j +

F

∑
j=1

2M(l)
ij ( f (l)1 , ..., f (l)F , g(l)

1 , ..., g(l)
F )g(l)

j (4.27)

with n Mij being scalar functions. We can enforce SO(2l + 1)-invariance of n Mij, n = 1, 2 by

n M(l)
ij ( f (l)1 , ..., f (l)F , g(l)

1 , ..., g(l)
F ) ≡ n M(l)

ij ({⟨x(l)p , y(l)
q ⟩ : p, q = 1, ...F; x, y ∈ { f , g}}) (4.28)

= n M(l)
ij (A

(l)) (4.29)
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with A(l) = {⟨x(l)p , y(l)
q ⟩ : p, q = 1, ...F; x, y ∈ { f , g}}, i.e. we only hand in SO(2l + 1)-invariant

scalars to start with. This current setup does not however mix feature fragments f (l1), f (l2) if
l1 ̸= l2. We remedy this by augmenting

n M(l)
ij (A

(l)) 7→ n M(l)
ij

(
lmax⋃
l=0

A(l)

)
(4.30)

which is innocuous from an equivariance-preserving standpoint since we only input SO(3)-
invariant scalar products. We implement the functions n M(l)

ij by multi-layer perceptrons
(MLPs), which are stacks of layers L of the form

L(X) = σ(WX + b) (4.31)

with an element-wise nonlinear activation function σ and learnable parameters W and b.

The resulting mixing-operation M is very much in the spirit of [108], where the authors
presented evidence that such mixing-operations are as expressive as CG-contraction with a
fraction of the amount of trainable parameters.

Lastly, we want to define a coupling strength Jv,w ∈ RL×F between different feature vectors v
and w. We do so by defining

(
J̃v,w

)
l f = b f (h

(2)
vvww − ϵ)) (4.32)

with the Bessel functions b f as above and ϵ being a tunable hyperparameter. The final
coupling strength is defined as

Jv,w = MLPH̃v,w (4.33)

with MLP a column-wise applied MLP. We now succinctly state the message passing scheme
as

t+1 f v = M̃( f v, f v) + ∑
w∈(v)

Jv,w ⊙ M(M̃( f v, f v), f w) (4.34)

with the element-wise product ⊙.

We visualize the computations in a graph in fig. 4.4
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4. MFCNet: towards geometric neural wave-functions

Figure 4.4.: The computations within the interaction layer.

4.3. The read-out phase I: assembling the wave-function

The final piece of the forward pass consists of the readout function R calculating the ampli-
tudes ψ(x; θ) as

R(x; {T f v}v) = ψ(x; θ) = MFCNet(x1x2; R⃗A, C) (4.35)

while preserving locality, i.e. for a molecule A consisting of two non-interacting composites
A1 and A2, we want the wave-function to factorise, i.e.

MFCNet(x1x2; R⃗A, C) = MFCNet(x1; R⃗A1 , C)MFCNet(x2; R⃗A2 , c) (4.36)

We reintroduce explicit spin notation by defining separate indicator variables x↑ = (x↑1 , ..., x↑Norb/2)

and x↓ = (x↓1 , ..., x↓Norb/2) for spin up and spin down orbitals. Since we treated the two spin
orbitals for any given spatial orbital on equal footing, we know the feature vectors to be of
the form

T f v ≡ f v = f ↑v = f ↓v (4.37)

where we drop T for readability and where v now enumerates the Norb/2 spatial orbitals.
We furthermore define for a given determinant x the sets of feature vectors corresponding
to occupied spin-α orbitals F α

x = { f α
v : xα

v = 1} for α ∈ {↑, ↓}. As we only consider wave-
functions with an equal number of spin-up and spin-down electrons, we know these sets to
be of equal size. For both sets we define an average feature vector
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f̄ α
xα =

1
|F α

v |

Norb/2

∑
v=1

xα
v f α

v (4.38)

We now introduce helper variables Iα,β ∈ RNorb/2×Norb/2×F×F as

Iα,β
vw = h(2)vvww⟨(Mαβ

4 ( f α
v , f̄ α

xα), Mαβ
3 (Mαβ

2 ( f β
v , f̄ β

xβ), Mαβ
1 ( f α

v , f β
w))⟩L (4.39)

with mixing functions Mαβ
i as defined in section 4.2. Via weight-sharing we ensure that

M↑↑
i = M↓↓

i and M↑↓
i = M↓↑

i . By considering the matrices Iα,β
vw ∈ RF×F as vectors of length F2

we define new helper variables Ĩα,β ∈ RNorb/2×Norb/2

Iα,β
vw = MLPo( Ĩα,β

vw ) (4.40)

with MLPo being a MLP mapping vectors of length F2 to scalars. We use MLPs with one
hidden layer with k units, with k being a hyperparamter. Finally, we define R(x; { f v}) as

R(x; { f v}v) :=

∣∣∣∣∣ Ĩ↑,↑ Ĩ↑,↓

Ĩ↓,↑ Ĩ↓,↓

∣∣∣∣∣ (4.41)

Note that, reassuringly, R is invariant with regards to the physically irrelevant ordering
of the orbitals v. Additionally, R is invariant to a global spin flip, consistent with the lack
of dependence of the system’s Hamiltonian on any spin variables. Both properties follow
immediately from the determinant’s invariance under identical permutations of rows and
columns.

It is now straightforward to validate adherence of R to the demands of SO(3)-invariance
and locality. SO(3)-invariance of R follows since in eq. 4.39 equivariant feature vectors are
via scalar products downprojected to SO(3)-invariant scalars. Locality follows from the fact
that, for v and w being spin orbitals belonging to different and non-interacting molecule
composites A1 and A2, h(2)vvww = 0, therefore leading to block-diagonal matrices Ĩα,β. By
reordering the rows and columns we can achieve R(x; { f v}v) to be block-diagonal, where
each of the non-zero blocks corresponds to one of Ai. As the determinant factorizes for
block-diagonal matrices, we can thus conclude that indeed

R(x1x2; { f v}v) = R(x1; { f v}v)R(x2; { f v}v) (4.42)

We visualize the computations in a graph in fig. 4.5.
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Figure 4.5.: The overall computation of ψ(x) via MFCNet denoted as a computational graph.

4.4. The read-out phase II: energy calculation and optimization
procedure

We optimize the free parameters using the standard ADAM optimizer [112]. While in the
context of solid-state neural wave-functions more advanced optimization mechanisms have
been developed [113] which are tailored to the rugged energy landscapes typically seen for
neural wave-functions [114], we nevertheless settle for the vanilla ADAM optimizer as the
recent state-of-the-art architecture in [80] also utilized the ADAM optimizer and thus serves
as more than respectable benchmark already. We furthermore follow [79, 80] by segregating
the way we calculate the energy during the optimization scheme and after the optimization
with the fully trained model. Identically in spirit to [80] we define a core space Vn containing
Nu configurations, and a connected space Cn consisting of all configuration differing by any
configuration in Vn by one excitation. However, we replace the not necessarily variational
loss function from [80]

Ẽθ = ∑
x∈Vn

|ψ(x; θ)|2

∑y∈Vn |ψ(y; θ)|2 Eloc(x) = ∑x∈Vn ⟨ψθ|x⟩ ⟨x|Ĥ|ψθ⟩
∑y∈Vn |⟨y|ψθ⟩|2

(4.43)

which is not necessarily variational, with the variational adaptation

ẼVn

θ =
∑x,z∈Vn ⟨ψθ|x⟩ ⟨x|Ĥ|z⟩ ⟨z|ψθ⟩

∑y∈Vn | ⟨y|ψθ⟩ |2
(4.44)

which corresponds to the energy of the wave-function downprojected to the core space Vn.
This was motivated by our empirical observation that in practice eq. 4.43 proved to be highly
non-variational, contrasting the high correspondence between eq. 4.43 and eq. 4.44 observed
in [79]. This was not the only empirical anomaly arising as we will touch upon in section 6.
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Once the model is trained, we either employ eq. 4.44 or a MCMC-sampling as described
earlier to obtain the wave-function’s energy, based on the use case at hand.

4.5. Finishing touches I: a note on further geometric invariances

Whereas our discussion so far was centered around the proper incorporation of SO(3)-
equivariance, there are further geometric symmetries we want to respect. The trivial sym-
metry is the symmetry with respect to translations of the molecule’s geometry of the form
R⃗ 7→ R⃗ + T⃗, which obviously should not influence the molecule’s energy prediction. We
regard this symmetry as trivial, since spatial information only enters MFCNet in the form
of the translationally invariant HF coefficients and in the form of translationally invariant
relative positions, rendering MFCNet trivially translationally invariant.

O(3)-invariance: We furthermore want to pick up the thread of considering generic rotations
from O(3) rather than only those preserving spatial orientation from SO(3). Since O(3) =
SO(3) × {±13}, the only additional cases we need to consider are rotations that are a
combination of a SO(3)-rotation and an inversion with respect to the origin. Physical
intuition again demands that the energy of a molecule has to be invariant to an inversion of
the molecule’s geometry of the form R⃗ 7→ −R⃗. Indeed, O(3)-invariance has been incorporated
into some PES-NNs [53] by employing O(3)-equivariant feature vectors. This demands to
introduce two separate feature vectors per molecular orbital f o

v and f e
v with odd and even

parity respectively, defined by according respective behaviour under inversion as

R⃗ 7→ −R⃗ =⇒ f o
v 7→ − f o

v; f e
v 7→ f e

v (4.45)

As this would significantly bloat the neural architecture, we circumvent this explicit coverage
of inversion-equivariance. We rather settle on curating the input data in a way such that
we neither have to explicitly incorporate inversion-equivariance nor have to ensure that the
neural net learns to recognize inversion symmetry from raw data. We achieve this by first
defining the handedness hM ∈ {+1,−1} of the molecular geometry R⃗M of a molecule M in
an algorithmic manner. Due to the translational invariance described above, we can w.l.o.g.
assume the molecule to be positioned in space in a way that the averaged position of the N
atoms coincides with the origin.

The case of planar molecules is already covered by the SO(3)-equivariance. Given a planar
molecule which is w.l.o.g. positioned in the xy-plane. For such a molecule, inversion with
respect to the origin is achieved by the transformation ex 7→ −ex, ey 7→ −ey. Such a transfor-
mation is achieved by a π-rotation around the z-axis, which is a SO(3)-rotation itself, implying
that the action of any O(3)-rotation is equivalent to the action of some SO(3)-rotation.
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As we can for all practical purposes assume the input molecular configurations to be samples
drawn from a random distribution [115], the subset of molecular geometries with two atomic
positions having identical norm or two atomic positions being linearly dependent is of
measure zero and will thus occur with probability zero. Choosing then the unique three
atomic positions R1, R2, R3 with largest norm and such that ∥R1∥ > ∥R2∥ > ∥R3∥ > 0 allows
us to define the handedness as

hM :=
⟨R1 × R2, R3⟩
|⟨R1 × R2, R3⟩|

(4.46)

Since R1 × R2 ⊥ R3 with probability zero, h is well-defined. Furthermore, h is equivariant
with respect to inversion. By convention, we only train and evaluate MFCNet on geometric
configurations with handedness +1. This does not reduce MFCNet’s expressiveness, as we
can transform any molecular geometry to one with h = +1 by applying an inversion.

Preprocessing to achieve HF-Z2-invariance? One might at this stage reasonably wonder
why a similar kind of preprocessing is not conducted on the molecular orbital coefficients
C in order to avoid having to explicitly accommodate for HF-Z2-invariance in the neural
architecture. However, due to the Berry phase there are molecular geometries where it is not
possible to realign the sign of the molecular orbital coefficients [116].

4.6. Finishing touches II: on locality

While locality is inherent in a message-passing scheme and, as we laid out in section 4.3 also
preserved in our readout function, we did not explicitly address the issue of locality when
describing the composition of the spin orbital feature vectors in section Ȯne may legitimate
wonder, whether the across-atom aggregation conducted in eq. 4.8 tacitly undermines locality,
as vanilla molecular coefficients are in general delocalized [45]. However, as briefly explored
in section 2.4, unitary localization schemes exist. They modify the molecular coefficients such
that they are overwhelmingly dominated by the contributions of a couple of neighboured
atoms [45]. Even so, the contributions of far-distant atoms will not be strictly zero, though
vanishingly small. In order to prohibit those coefficients from making an entrance in eq. 4.8,
we apply the same logic that is underlying graph neural networks, defining some cutoff
value beyond which nodes do not interact anymore. We define some threshold value ϵc

for coefficient values to be recognized and manually enforce that coefficients with lower
value are irrelevant. We cannot use a standard step-function, as this would induce unwanted
discontinuities. We rather define a differentiable step-function function f : R → R by

fϵc,δc(x) =


0 x ≤ 0(

1 − cos
(

π
(

x−ϵc
δc

)))
ϵc ≤ x ≤ ϵc + δc

1 ϵc + δc ≤ x

(4.47)
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with tunable hyperparameters ϵc, δc. Consider again the SO(3)-equivariant quantity

GχM :=
[
c̃1s∥c̃2s∥c̃2px∥c̃2py∥c̃2pz

]
≡


c̃1s,1 c̃1s,2 c̃1s,M

c̃2s,1 c̃2s,2 c̃2s,M

c̃2px ,1 c̃2px ,2 ... c̃2px ,M

c̃2py,1 c̃2py,2 c̃2py,M

c̃2pz,1 c̃2pz,2 c̃2pz,M

 ∈ R5×M (4.48)

as in eq. 4.8. Right-multiplying gχv
with any M × M-matrix does not interfere with SO(3)-

equivariance. We thus preprocess gχM
as

gχv
7→ gχv

diag( fϵc,δc(C1), ..., fϵc,δc(Cm)) (4.49)

with Cj = ∑nlm c2
nlm,j denoting the column-wise norm of gχv

as in eq. 4.12. This preprocess
filters out negligibly small atomic contributions and thus ensures locality in our initial
embedding aggregation scheme as described in section 4.1.
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We provide a series of numerical experiments to firstly validate the adherence MFCNet to
its proclaimed mathematical desiderata and secondly to probe the accuracy of MFCNet.
Concretely, we demonstrate the Hartree-Fock coefficients to showcase SO(3)-equivariace. We
furthermore underscore the relevance of HF-Z2-invariance by illustrating that Hartree-Fock
precalculations apparently exhibit some ambiguity with respect to the HF-Z2-phase, thus
necessitating MFCNet to be designed in an explicitly HF-Z2-invariant fashion to eradicate that
ambiguity. We then proceed to benchmark the accuracy of MFCNet for two molecules and
discuss potential shortcomings. For the generation of all training data we utilize the Python-
based quantum chemistry framework PySCF [117]. Furthermore, unless otherwise stated, we
settle on using the minimal STO-3G basis for all calculations for reasons of computational
efficiency.

5.1. Characteristics and behaviour of the Hartree-Fock precalculation

As the molecular orbital coefficients obtained by a Hartree-Fock calculation form one of
the centerpieces of MFCNet, we investigate the characteristics of these coefficients for the
exemplary molecule ammonia. We conduct a Hartree-Fock calculation close to ammonia’s
typical bond length of 1.008 Å [118] to obtain some exemplary physically plausible molecular
orbitals. In the STO-3G basis, each of the three hydrogen atoms gets equipped with a single
1s-orbital only, whereas the nitrogen atom gets equipped with a 1s-orbital, a 2s-orbital and a
1p-orbital, yielding in total the atomic orbitals 1s, 2s, 1px, 1py, 1pz.

Figure 5.1.: Heatmaps of the molecular orbital coefficients for the vanilla Hartree-Fock calcu-
lation as well as the Pipek-Mezey localization scheme [47] and the Meta-Löwdin
localization scheme [119].
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The Pipek-Mezey and Meta-Löwdin localization respectively differ significantly in their degree
of their localization. This comes as no surprise, as the Meta-Löwdin localization produces
a set of molecular orbitals that has maximal overlap with the non-orthogonal set of atomic
orbitals, yielding the markedly diagonal coefficient matrix. The Pipek-Mezey localization
does not alter the coefficients as fundamentally as the Meta-Löwdin localization does, which
we attribute to the small size of the molecule.

We furthermore investigate the behaviour of the molecular orbital coefficients C upon rotation
of the molecule’s coordinates R⃗ by some rotation matrix O. We hypothesize the molecular
orbital coefficients to transform equivariantly to the molecular coordinates

R⃗ → OR⃗ =⇒ C → D(O)C with D(O) = D(0)(O)⊕ D(1)(O)⊕
3⊕

i=1

D(0)(O) (5.1)

with the Wigner-D matrices D(l)(O). The structure of the direct sum of D(O) follows from
the ordering of the atomic orbitals as can be seen in fig. 5.7. We thus benchmark the molecular
coefficients calculated for a rotated molecule against the molecular coefficients manually
rotated via D(l)(O).

Figure 5.2.: Molecular coefficients C for a) the original geometry, b) the geometry rotated by
O and c) as obtained by D(l)(O)C.

For almost all molecular orbitals we recognize the coefficients from b) and d) to be in perfect
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agreement with the exception of molecular orbital 7. The divergence for molecular orbital
7 however only results from a global phase difference of -1 between the seventh column in
b) and c), thus underscoring that molecular coefficients as calculated via the Hartree-Fock
method indeed vary by phase factors even for identical physical systems.

5.2. Accuracy of MFCNet

We now proceed to evaluate the accuracy of MFCNet for sufficiently interesting benchmark
molecules. We first showcase the correctness of our implementation as well as the adherence
to one of our main tenants, namely SO(3)-invariance, for the water molecule. Afterwards,
we choose the nitrogen dimer N2 as the main testbed, which has been the focal point of
many investigations of NN-WFs due to its notorious recalcitrance to conventional quantum
chemistry methods [120], and where previous NN-WFs have shined, achieving the most
accurate results ever recorded [7]. Foreshadowing results, which are far from competitive
with the state-of-the-art, we do not test MFCNet on a battery of other molecules but rather
try to elucidate which components of MFCNet seem to be bottlenecks by testing various
truncated versions of MFCNet.

5.2.1. Training specifics

In the spirit of all existing NN-WFs [75, 8, 80] we conduct a pretraining to ensure proper
convergence of the wave-function and to avoid getting stuck in local minima. As in [80] we
choose a configuration-interaction-singles-doubles (CISD) calculation resembling a selected
configuration interaction scheme with only singly and doubly excited determinants,

|Ψ⟩CISD = ∑
x∈X1∪X2

ψ(x) |x⟩ (5.2)

with Xi the set of i-fold excited determinants. Again following [80] we train MFCNet as a
pretraining routine using as loss function the negative logarithm of the fidelity between the
wave-function calculated by MFCNet

|Ψ⟩MFC = ∑
x

MFCNet(x; R⃗M, c) |x⟩ (5.3)

and the CISD wave-function, i.e. the loss Lpre is given by

Lpre(θ) = −ln
| ⟨Ψθ|ΨT⟩ |2

⟨Ψθ|Ψθ⟩ ⟨ΨT|ΨT⟩
(5.4)

We implemented all components in TensorFlow [121]. All molecule-wise operations are
implemented in a parallelized way, enabling to parallelize batch calculations over multiple
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Hyperparameter Value

Pretraining Steps 500
Basis STO-3G

Method CISD
MFCNet F 10

lmax 2
nint 2
k 60

Total parameters 183.630
Optimization Steps 10000

Nu 4096
Optimizer Adam

Learning rate 10e-4
Max grad norm 10

Table 5.1.: The defaul choice of hyperparameters for MFCNet.

processing units. During gradient descent we employ gradient clipping [122] with a maximal
gradient norm of 10. We use the ADAM optimizer [112] with a learning rate of 10e-4. All
experiments are run on AMD Epyc 7402 CPU with 24 cores and a frequency of 2.80GHz.
While training on GPUs was planned, this could not be realized in practice due to technical
difficulties. This did not prove problematic for the small investigated chemical systems, with
modest training times in the order of magnitude of one hour.

All the default values for hyperparameters for the training process as well as all those
characterising MFCNet are displayed in table 5.1.

To test the expressiveness of MFCNet we benchmark it against a self-implemented version of
NNBF [80] which consists of a plain MLPs predicting ψ(x; θ) based on the binary input string
x with a parameter count of 143.128, hence roughly equalling MFCNet in parameter volume.
We did not have access to the original implementation of NNBF as we were unfortunately
unable to contact the authors successfully. We hope to elucidate whether the significant
amount of constraints we impose on the neural architecture compromises its expressiveness
compared to the very general neural architecture of NNBF which does not encode any
domain constraints. The hyperparameters chosen for NNBF are identical to those listed in
the publication [80].

5.2.2. Results for H2O

Characteristics of the data set: We generate a set of H2O geometries using the equilibrium
geometry of water [9] as a starting point, with an angle of ∢ H1OH2 = 101.76◦ and with
bond lengths b = OH1 = OH1 = 0.96 Å. We create an ensemble of geometries with different
bond lengths in the range 0.5b to 2.8b all with the same angle. In the STO-3G basis, the full
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Slater-determinant Hilbert space of H2O consists of 441 determinants. As the molecule is tiny,
we assume all feature vectors to be neighbours to each other.

Results for pointwise training: We first present the results when retraining the model
for every molecular geometry as state-of-the-art 2Q-NN-WFs do. This serves rather as a
sanity check than an actual benchmark, considering that the FCI result is obtained with 441
parameters only. For such a small system, we can furthermore use the full Hilbert space as
core space Vn during the optimization process, cf. section 3.4. Hence, the minimal value
obtained during the training process is the best approximation to the ground-state MFCNet
is able to achieve with the specific choice of hyperparameters. We additionally plot the FCI
energies, as they constitute the best result attainable with any given basis set and thus serve
as ground truth.

Figure 5.3.: Energies calculated by MFCNet in Hartrees for a series of different bond lengths.
For each point a separate model was trained.

While the results of MFCNet seem to pass the test of visual inspection, they dishearteningly
already fail to achieve chemical accuracy even for the primitive system of H2O with 441
Slater-determinants with a mean difference of ∆(EMFC − EFCI) = 2.8mHa, which is signifi-
cantly higher than the threshold of 1.6 mHa for chemical accuracy. We will discuss empirical
shortcomings at a later stage.

Results for training on multiple geometries simultaneously: We additionally train MFCNet
on multiple geometries simultaneously, i.e. one model with one set of parameters is asked to
predict the wave-functions of multiple geometries, hence of multiple Hamiltonians simultane-
ously. To the best of our knowledge, no counterpart in conventional quantum chemistry exists
for such a model [56]. The plethora of existing 2Q-NN-WFs have also hitherto not attempted
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to construct a model with the ability to calculate wave-functions across different geometries.

Figure 5.4.: Energies calculated for various bond lengths when using a single MFCNet model.

While the results still coincide roughly with the FCI energies, numerical inspection reveals
a markedly worsened accuracy, with an average deviation of the FCI energies of ∆(EMFC −
EFCI) = 8.9mHa, or more than five times the threshold for chemical accuracy. In this setup,
alle the bond lengths marked in 5.4 were employed in the training procedure. Ideally we
would also like our model to perform well on similar but different geometries compared to
those in the training set, something we - slighlty inaccurately - refer to as out-of-distribution-
training. While our model is in principle able to predict the wave-functions of unseen
geometries, due to unforeseen technical difficulties we were not able to extract and analyse
the results of out-of-distribution training.

Results for rotated geometries: We train MFCNet on four rotated geometries simultaneously,
expecting identical results for each geometry.
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Figure 5.5.: Energies calculated by MFCNet for four rotated geometries in parallel. As they
align and overlay essentially perfectly, mostly the color corresponding to geometry
3 is visible.

As we can see, the energies coincide almost exactly, serving as strong numerical evidence that
indeed MFCNet calculates rotationally invariant amplitudes. To drive this point home, we
calculate for each step the maximal energetic deviation between two of the four geometries.

Figure 5.6.: Maximal difference between two of the four energies for each training step.

Even for outliers this maximal difference lies well within the range of chemical accuracy. We
thus conclude once more that MFCNet indeed calculates SO(3)-invariant amplitudes.

5.2.3. Results for N2

Characteristics of the data set: We generate a set of geometries with bonds lengths b ∈
[0.5, 2.5] of the nitrogen dimer sampled from its dissociation curve [123], each of which is
characterised by the distance between the two nitrogen atoms. The Hilbert space spanned
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by all Slater-determinants has dimension 14400 for N2 in the STO-3G basis. As for H2O, we
assume all feature vectors to be neighbours to each other.

Results for pointwise training: We again train separate MFCNet models for a series of
geometries with differing bond lengths. As further benchmark, we calculate the same set of
energies with our implementation of NNBF [80].

Figure 5.7.: Energies calculated for a series of differing bond lengths as calculated by MFCNet
and NNBF.

We observe MFCNet to achieve quite poorly, capturing roughly half of the correlation energy
or even less. Even more concerningly, our NNBF implementation also performs dismally,
even though we know NNBF to usually achieve accuracies well in the range of chemical
accuracy [80]. We will return to this observation in the discussion.

Results for training on multiple geometries simultaneously: As for H2O we train MFCNet
for multiple geometries simultaneously.
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Figure 5.8.: Energies calculated for various bond lengths when using a single MFCNet model.

We again observe MFCNet to perform quite poorly and, consistent with the results of H2O,
showcasing a drop in performance when comparing joint training to pointwise training.

5.2.4. Hyperparameter tuning

We tested various choices of hyperparameters to finetune the architecture of MFCNet. As even
training on a single point only turned out to be in no way competitive with state-of-the-art
methods, we decided to some bond length - in our case b = 1.35Å - as a single training point
and try to boost performance for that task.

Figure 5.9.: Energies calculated by MFCNet for various choices of F benchmarked against
the default valued of F = 10. The y-axis is chosen in a way such that ymax =

EHF − EFCI.
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For the number of channels employed, F, we do not observe significant effects on training
success except a small drop at F = 5.

We additionally test varying the number of units k of the MLPs which occur at a variety of
locations in our architecture, cf. section 4.3.

Figure 5.10.: Energies calculated by MFCNet for various choices of k benchmarked against
the default valued of k = 60. The y-axis is chosen in a way such that ymax =

EHF − EFCI.

Again, except a slight decrease in performance for k = 30 we again do not observe significant
effects on training outcome.

Lastly, we explore any possible beneficial effects of utilizing more interaction blocks.

Figure 5.11.: Energies calculated by MFCNet for two and four interactions blocks. The y-axis
is chosen in a way such that ymax = EHF − EFCI.
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In fact however, the opposite seems to be case: utilizing four instead of two interaction blocks
significantly hinders the optimization process while offering many more parameters.

5.2.5. Ablation studies

As our architecture is rather plain, we do not conduct ablation studies in the form of using a
modified architecture. Instead, we conduct ablation studies in the form of ablating inputs
that are thought to be physically informative.

Figure 5.12.: Energies calculated by MFCNet when substituting the respective input quantity
with random values. The CISD variable refers to the CISD-amplitudes employed
for the pretraining. The y-axis is chosen in a way such that ymax = EHF − EFCI.

Disappointingly, there does not seem to be any deleterious effect on MFCNet’s performance
when comparing actual physical inputs to randomly generated noise.

All in all, little empirical support could be garnered for MFCNet in its current setup. With no
significant dependence of hyperparameters or inputs discernible, we did not saw a very clear
avenue to further pursue. We thus refrained from further testing, assuming major overhauls
to the architecture or implementation details necessary to escape the rut.
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In this thesis we proposed the neural architecture for a ground state neural wave-function for
quantum chemical Hamiltonians based on the state-of-the-art and ongoing lines of research.
We aimed to design a neural architecture that recognizes rotated molecular geometries and
treats them indifferently, as physical intuition dictates. We furthermore aimed for a design
that capitalizes on the predominantly local nature of electronic correlation, learning essential
features of electronic correlation rather than fitting to specific geometries. It was hoped
that such a neural net would be able to transfer that knowledge to similar but different
geometries, enabling to calculate the ground state wave-functions for different Hamiltonians
simultaneously by one trained neural network.

We tested our proposed neural wave-function MFCNet on simple systems, firstly to validate
its adherence to the desiderata we defined and secondly to evaluate its performance for
relevant use cases. While indeed MFCNet incorporates geometric information in a way
that enables it to recognize rotational symmetries and to treat rotated geometries on equal
footing, its abysmal accuracy renders it far from competitive with state-of-the-art neural
wave-functions. We tried to elucidate which hyperparameters matter most as determinants
of MFCNet’s accuracy, however to no avail, as we could not identify significant influences
on training accuracy for our choices of hyperparameters. Even more disconcertingly, we
observed MFCNet to perform equally well, regardless whether actual physical parameters or
random values were used as input.

Is there a baby in the bathwater? All the concerns raised in the last paragraph seriously
beg the question whether MFCNet is in fact a doomed neural architecture. Especially the
seemingly complete independence on the quality of the input data strongly insinuates that the
current architecture of MFCNet is not able to develop any grasp on the underlying physics.
It is however possible of course that it was simply the type of physical information that
was included, with the Hartree-Fock coefficients as their centerpiece, that proved to be not
informative enough.

A third option also cannot be ruled out, an option which implies that fatal verdicts on
MFCNet’s core design features may be premature. Along the way there were a series of
numerical anomalies showing up, for many of which we could not get to the bottom of.
For example, significant numerical problems arose during training from plain TensorFlow
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functions such as its determinant function and norm function, prompting us to manually
implement numerically stable versions of said functions. Still, divergent behaviour and
exploding gradients of MFCNet and especially our implementation of NNBF was relatively
frequent. While we cannot rule out similar troubles being existent but undocumented in
published neural wave-functions, we doubt this to be the case. Even more concerningly, we
observed strong deviations from published literature in a couple of regards. Most promi-
nently, our implementation of NNBF was - by the standards of a quantum chemist - orders
of magnitude more imprecise than its official progenitor [80]. Though we tried to meticu-
lously follow the publication for our implementation, lacking access to the original code,
we assume unnoticed bugs to be the culprit for the strongly deviant behaviour of our code.
Similarly, whereas the authors in [79] use an empirically quite faithful approximation to
the exact energy during the optimisation procedure, the same approximation yields wildly
implausible results in our implementation. This again to points to unnoticed bugs in our code.

All in all, issues with the current version of MFCNet seem to be manifold. We are hopeful
that some of the more promising design features, such as the successful implementation
of equivariance as well as the formulation via a graph neural network, enabling at least in
theory the model to be transferable across geometries, are simply overshadowed by the flaws
in the more mechanical aspects inherent in the optimisation procedure. It does not seem too
far-fetched to imagine a polished version of MFCNet perform on par with state-of-the-art
neural wave-functions while still exhibiting our core design tenets of equivariance and locality.
In fact, on paper MFCNet constitutes mostly a collage of best-practices from different lines of
research as they were perceived by us - equivariant message-passing graph neural networks
as proper architecture to exploit spatial symmetries, selected-configuration optimisation
schemes as conducted in state-of-the-art investigations. No overly experimental features with
unknown effects on performance were implemented.

We thus maintain a modest optimism regarding the potential of MFCNet and believe that,
coupled with strong expertise in the training of deep neural networks, the baby that actually
is in the bathwater might one day be nurtured to live out its full potential.
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A. Appendix

A.1. Size-consistency of neural wave-functions in first quantization

We now skim why we deem wave-functions of the form

Ψ(⃗r; θ) = eJ(⃗r;θ)
Ndet

∑
k=1

ck

∣∣∣∣∣∣∣
ϕk

1(r1 ;⃗ r; θ) . . . ϕk
N(r1 ;⃗ r; θ)

...
. . .

...
ϕk

1(rN ;⃗ r; θ) . . . ϕk
N(rN ;⃗ r; θ)

∣∣∣∣∣∣∣ = eJ(⃗r;θ)
Ndet

∑
k=1

ck det[ϕk
mn] (A.1)

not suited for size-consistent wave-functions. Consider two molecules A1 and A2 far apart.
The authors in [11] construct the orbitals in a way such the matrices ϕk are diagonal as

ϕk =

(1ϕk 0
0 2ϕk

)
(A.2)

where 1ϕk denotes the block of orbitals corresponding to A1 and 2ϕk denotes the block of or-
bitals belonging to A2. We denote the positions of the electrons belonging to A as r⃗A, the posi-
tions of the electrons belonging to B as r⃗B and the total wave-function Ψ(⃗rA, r⃗B)AB. For the case
of non-interacting molecules we expect the electronic density ρ(⃗rA, r⃗B)AB = |Ψ(⃗rA, r⃗B)AB|2
to factorize as ρ(⃗rA, r⃗B)AB = ρ(⃗rA)Aρ(⃗rB)B for some ρ(⃗rA)A and ρ(⃗rB)B. However, a wave-
function Ψ(⃗rA, r⃗B)AB of the form eq. A.1 yields a density

|Ψ(⃗rA, r⃗B)AB|2 = e2J(⃗r;θ)
Ndet

∑
k1,k2=1

ρ
(k1)
A (⃗rA)ρ

(k2)
B (⃗rB) (A.3)

which in general for Ndet > 1 does not factorize, though it should. Hence Ψ(⃗rA, r⃗B)AB was
not a proper size-consistent wave-function to begin with.
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