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Abstract

This cumulative thesis is devoted to advancing the consistency and efficiency of
the smoothed particle hydrodynamics (SPH) method for multi-physics simulations
and complex engineering applications, addressing issues on numerical consistency,
computational efficiency, and the development of a consistent and efficient scientific
computing library. In particular, a reverse kernel gradient correction (RKGC) formu-
lation is proposed for conservative SPH approximations to achieve high-order con-
sistency in both Lagrangian and Eulerian SPH methods. The splitting SPH method
is employed to solve PDE-constrained optimization problems from an “all-at-once”
perspective, leading to significantly improved optimization efficiency. Additionally,
an automated regression testing method is introduced to ensure consistency in the
development and release of the SPH-based open-source scientific computing library,
supporting efficient development and application of SPH algorithms.

The first part of this thesis addresses the critical challenge of achieving high-
order consistency in SPH while preserving its conservative properties. Traditional
SPH formulations often struggle to balance discrete conservation with consistency,
particularly when applying higher-order corrections such as kernel gradient cor-
rection (KGC). This work introduces the RKGC formulation, a novel approach that
integrates conservation with first-order consistency by relaxing particles based on
the KGC matrix. Extensive numerical tests demonstrate significant improvements
in numerical accuracy for both Lagrangian and Eulerian SPH methods, even with
a notably reduced ratio of smoothing length to particle spacing. Particularly, this
method effectively mitigates long-standing high dissipation issues in simulations of
free-surface flow problems. This advancement not only enhances accuracy but also
provides a foundation for potential extensions to higher-order consistency, opening
up new possibilities for more precise SPH simulations in engineering applications.

The second part of this thesis focuses on applying the SPH method to PDE-
constrained optimization problems, specifically optimizing heat conduction through
the efficient distribution of high thermal conductivity materials, which is crucial
for electronic cooling systems and other thermal management applications. We de-
velop a target-driven, all-at-once optimization method that employs a splitting SPH
technique, breaking the optimization process into several simple, manageable steps.
This approach eliminates the traditional reliance on adjoint state equations and fully
converged state fields in each iteration, significantly accelerating the optimization
process. The proposed framework effectively balances target attainment with mini-
mal computational overhead. Additionally, by incorporating implicit SPH splitting
operators and numerical regularization techniques, we achieve faster information
propagation and improved numerical stability. This method is validated through a
series of representative problems, demonstrating superior computational efficiency
and yielding optimal thermal conductivity distributions that are easier to implement
with available materials, making it highly practical for real-world applications.

The third part of this thesis addresses the growing complexity in developing
and maintaining scientific computing libraries for multi-physics simulations, with
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a focus on methods applicable to SPH-based libraries. This work presents the de-
sign and implementation of an automated regression testing framework for scien-
tific computing libraries, using SPHinXsys, an open-source SPH-based library, as an
illustrative example. The framework generates a comprehensive reference database
for each benchmark test, capturing data from multiple test executions to account
for uncertainties arising from parallel computing, particle relaxation, physical in-
stabilities, and other factors. This reference database enables curve-similarity com-
parisons between new and baseline results following code modifications, providing
a robust assessment of current result validity. The automated regression test sys-
tem runs tests automatically whenever code updates occur, covering a wide range
of multi-physics problems, including fluid dynamics, solid dynamics, thermal and
mass diffusion, and their coupling, to ensure that accuracy and functionality of the
code remain. The flexibility of this framework allows it to be adapted for other sci-
entific computing libraries, promoting consistent and reliable software development
practices in computational science while enhancing development efficiency.

Collectively, these studies significantly advance the consistency and efficiency
of the SPH method, addressing not only its numerical fundamentals and optimiza-
tion applications but also the reliability and efficiency of corresponding software
development. This work provides a comprehensive foundation for enhancing the
performance, reliability, and applicability of the SPH method across a variety of en-
gineering and scientific research domains.
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Chapter 1

Introduction

1.1 Numerical methods in scientific computing

The evolution of computers has elevated scientific computing to an indispensable
tool, playing a pivotal role in solving complex problems across various technologies
and industries. These applications include assessing climate change [1, 2], designing
new energy conductors [3, 4], improving medical treatments and drug delivery sys-
tems in biomedical engineering [5, 6], optimizing aircraft performance and safety
in aerospace [7, 8], and enhancing crash safety and vehicle efficiency in automo-
tive engineering [9, 10], among others. Scientific computing is crucial for model-
ing and predicting systems governed by partial differential equations (PDEs), which
describe various physical phenomena such as fluid flow, heat transfer, and struc-
tural deformations. Through the numerical simulation of these processes, which are
challenging to address using purely analytical or experimental approaches, scientific
computing enhances our ability to predict and comprehend both natural phenom-
ena and engineered systems.

Beyond simulation, scientific computing has also become a key tool for solving
optimization problems, such as those constrained by PDEs [11]. Many engineering
problems involve optimizing certain properties or parameters within a system, sub-
ject to physical laws described by PDEs. For example, efficiently enhancing heat
conduction through the optimized distribution of a limited quantity of high thermal
conductivity material while adhering to the governing equations of heat conduction
is significant for cooling electronic devices and numerous other applications [12, 13,
14]. Similarly, in aerodynamics, optimizing the shape of an aircraft wing requires
solving fluid dynamics equations to minimize drag or maximize lift, which is es-
sential for enhancing aircraft performance and designing new profiles [15, 16, 17].
PDE-constrained optimization allows us to find feasible solutions to these problems
within physical constraints and optimized for performance.

However, modeling, simulating, and optimizing these problems is generally chal-
lenging due to their intrinsic complexity, requiring careful consideration of both
computational consistency and efficiency. Consequently, numerous numerical meth-
ods have been proposed and developed for simulation and optimization, each with
different features, typically categorized into mesh-based and mesh-free methods.
Moreover, many corresponding numerical algorithms have been developed to im-
prove consistency and efficiency, aiming to make these methods broadly applicable
to a wide range of engineering applications with high predictive accuracy. Tradi-
tional mesh-based methods, such as the finite difference method (FDM) [18], finite
element method (FEM) [19], and finite volume method (FVM) [20], have long been
used to discretize and solve PDEs, achieving success in various fields. However, due
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to the limitations of mesh-based methods in handling complex geometries, large de-
formations, and free surfaces, mesh-free methods such as smoothed particle hydro-
dynamics (SPH) [21, 22], the discrete element method (DEM) [23], and the moving
particle semi-implicit method (MPS) [24] have gained traction and played significant
roles in addressing these complex problems in scientific computing.

In addition to numerical methods, optimization techniques also play a vital role
in effectively addressing complex problems. Optimization methods in this field can
be broadly categorized into simulation-based and all-at-once approaches, depend-
ing on how the PDE constraint is managed [25, 26]. In simulation-based optimiza-
tion, the PDE constraint is eliminated by obtaining a converged physical solution us-
ing existing solvers. The optimization process then computes the gradients of state
variables with respect to design variables at the hypersurface of the physical solution
to determine the search direction in each iteration, relying on repeated simulations
to evaluate the performance of different design parameters. While advancements
in high-performance computing and parallelization have made it feasible to tackle
large-scale optimization problems, this approach can still be computationally expen-
sive. In contrast, all-at-once approaches explicitly maintain PDE constraints as part
of the optimization target, treating both the state and design variables equally. By
embedding the PDEs directly into the optimization process, a clear advantage is that
they do not require repeated PDE solutions and solve problems more efficiently be-
cause they satisfy the PDE constraint only upon the termination of the optimization.

Whether in simulation or optimization, developing scientific computing soft-
ware and libraries has been crucial for advancing both the adoption and refine-
ment of these methods. Both commercial and open-source tools have made signifi-
cant contributions across various fields. Commercial software, such as ANSYS [27]
and COMSOL Multiphysics [28], predominantly use mesh-based methods and are
widely adopted in the industry for their comprehensive capabilities in simulating
complex physical phenomena. Similarly, open-source libraries like OpenFOAM [29]
(mesh-based) and SPHinXsys [30] (mesh-free) offer flexible and powerful develop-
ing platforms for researchers and engineers. These libraries not only facilitate the
simulation of complex systems governed by PDEs but also provide a foundation for
integrating optimization algorithms, making them invaluable in both academic re-
search and industrial applications. A key challenge in the continuous evolution of
such libraries is ensuring they consistently produce reliable results while maintain-
ing computational efficiency. Achieving this requires a rigorous process of validation
and verification that is closely integrated with development and usage [31].

1.2 Review on SPH method

Among these numerical methods, SPH has gained increasing attention due to its in-
herent capability to track moving characteristics and handle large deformations. As
the main focus of this thesis, we briefly review the theory and consistency of the SPH
method, its applications, and SPH-based computing libraries; for more comprehen-
sive information, readers may refer to review articles [32, 33, 34].

1.2.1 SPH and its consistency

As a mesh-free method, SPH, initially proposed by Lucy [21] and Gingold & Mon-
aghan [35] for astrophysical applications, has demonstrated significant success across
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a wide range of scientific problems, including fluid dynamics [36, 37, 38], solid dy-
namics [39, 40, 41], and fluid-structure interaction [33, 42, 43], among others. The
SPH method represents the computational domain with a collection of arbitrarily
distributed particles, each possessing individual properties, which inherently de-
fines its mesh-free characteristic. The SPH approximation operates on the princi-
ple of reconstructing the continuous field and its spatial derivatives from this set
of discrete particles through a Gaussian-like smoothing kernel function with com-
pact support [44, 45], as illustrated in Fig. 1.1. The SPH approximation involves

FIGURE 1.1: Particle interaction and the kernel function.

two main parts and generally encounters two types of errors that contribute to the
overall truncation error [46, 47]. The first part is the kernel approximation, where
the field function is expressed in integral form using a smoothing kernel function
within its support domain. This introduces a smoothing error determined by the
kernel function, where the leading moments vanish, and the error arises from dis-
crepancies between the smoothing approximations and the exact values. The second
part is the particle approximation, where the integral in the kernel approximation is
replaced by the summation of the values of adjacent particles within the support
domain. This introduces an integration error characterized by the non-vanishing
leading moments due to the particle approximation.

For typical SPH kernel functions, such as the cubic B-spline [48] and the Wend-
land kernel [49], which have second-order accuracy, only the first moment vanishes,
corresponding to first-order consistency. For a given kernel function, Quinlan et
al. [46] observed that the overall truncation error generally decreases, or shows con-
sistency, with increased resolution only when h/∆x, the ratio between the smooth-
ing length h and the particle spacing ∆x, is large, suggesting a sufficiently small
integration error. However, achieving this condition requires excessive particles
within the kernel’s compact support, resulting in extremely high computational
costs. Thus, various approaches have been proposed to minimize integration error
or improve consistency with a computationally feasible value of h/∆x, typically less
than 1.5 [50]. For the non-conservative form of SPH approximation, where particle-
pair differences are used, higher-order consistency can be attained through various
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methods [51, 52, 53, 54, 55], though this comes at the expense of computational effi-
ciency. However, applying these methods to the discretization of physical conserva-
tion laws still presents the major challenge of non-conservation. Therefore, the con-
servative form, which uses particle-pair averaging, is employed to ensure conserva-
tive discretization with an anti-symmetric formulation between particle pairs. How-
ever, achieving high-order consistency in this conservative formulation remains an
open challenge. Although many correction methods [56, 57, 58, 59, 60, 61] have been
developed and have shown improvements, they have not succeeded in achieving
high-order consistency and have even resulted in the loss of zero-order consistency.

1.2.2 SPH in PDEs-constrained optimization

As a mesh-free numerical method, SPH offers certain advantages in solving PDEs-
constrained optimization problems. A brief review of general methods for address-
ing these problems, particularly in thermal conductivity optimization, is provided.
In PDEs-constrained optimization, typical approaches for computing gradients, ei-
ther explicitly or implicitly in simulation-based methods, include the adjoint tech-
nique [62, 63], automatic differentiation (AD) [64], and artificial neural networks
(ANNs) [65, 66]. In addition, the augmented Lagrangian method [67] and sequential
quadratic programming method [68] have been proposed to address these problems
from an all-at-once perspective.

In thermal conductivity optimization, the goal is to redistribute a fixed amount
of high thermal conductivity material to cool a heat-generating volume within spec-
ified boundaries, aiming to minimize temperature [69]. Simulation-based methods
that address this problem using indirect optimal principles have been proposed and
adopted. These include temperature gradient field homogenization [70, 71, 72], en-
tropy generation minimization (EGM) [73, 74, 75, 76], and entransy dissipation ex-
tremum (EDE) [72, 77, 78, 79, 80]. Additionally, direct optimization targets, such as
achieving the lowest average temperature [81, 63] and minimizing hot spot temper-
ature [66, 82], have recently been employed. Besides these iterative methods based
on deterministic principles, stochastic approaches, including the bionic optimization
(BO) method [83, 84], cellular optimization (CA) method [85, 86], simulated anneal-
ing (SA), and genetic algorithm (GA) methods [87], have also been explored to solve
thermal conductivity optimization problems.

Although these methods can achieve optimal solutions, they often involve a
large number of variables in the spatial discretization of the domain, reducing ef-
ficiency and limiting their suitability for large-scale, reliability-sensitive problems.
Therefore, developing an efficient yet straightforward approach, particularly one
that leverages direct optimization targets and the all-at-once concept, holds great
promise for addressing thermal conductivity optimization problems. SPH offers cer-
tain advantages in enhancing optimization efficiency due to its localized interactions
with neighboring particles.

1.2.3 SPH-based libraries and verification

The SPH method has been implemented in several open-source scientific libraries
with various focuses, including SPHinXsys [30], GPUSPH [88], SPHysics [89], Du-
alSPHysics [90], AQUAgpushp [91], GADGET-2 [92], and GIZMO [93]. As these li-
braries continue to be actively developed, it is essential to ensure that modifications
to the source code, whether for bug fixes or feature additions, do not compromise
previously validated accuracy and functionality. This approach supports reliable
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software development practices in scientific computing and enhances the efficiency
of SPH method development and its applications.

To address these issues, implementing comprehensive testing, including unit
tests, integration tests, regression tests, and system tests, provides concrete valida-
tion and verification procedures. Although these testing methodologies are standard
in IT software development, applying them to scientific computing libraries, espe-
cially open-source ones, poses unique challenges due to the difficulty of establishing
reliable test oracles. Among these testing methods, regression tests are crucial be-
cause they ensure that new changes do not introduce unexpected behavior or reduce
result accuracy, thereby validating the output of scientific computing libraries under
development. However, implementing regression tests within scientific computing
libraries, particularly for meshless methods like SPH, presents significant challenges.
Unlike mesh-based methods, which rely on fixed topologies, the Lagrangian nature
of SPH, with its dynamic and variable particle distributions, complicates the estab-
lishment of standardized testing environments. Consequently, despite the growing
popularity of meshless methods, there remains a noticeable lack of reliable testing
environments specifically designed for them.

1.3 Aims and objectives

The fundamental objective of this thesis is to address the aforementioned issues of
the SPH method to enhance its overall consistency and efficiency. This enhancement
aims to establish SPH as an effective numerical method for both simulation and
optimization, supported by a general and efficient development environment.

Regarding the challenges of achieving high-order consistencies in conservative
SPH formulations, we propose the reverse KGC (RKGC) formulation. This approach
is conservative and can satisfy first-order consistency when particles are relaxed
based on the KGC matrix. Extensive numerical tests demonstrate that the new for-
mulation significantly improves the accuracy of the Lagrangian SPH method. In
particular, it addresses the long-standing issue of excessive dissipation in SPH free-
surface flow simulations. Furthermore, when particles are fully relaxed, the RKGC
formulation enhances the accuracy of the Eulerian SPH method, even when the ra-
tio between the smoothing length and particle spacing is substantially reduced. This
work is detailed in Paper I [94]

• B. Zhang, N. Adams, XY. Hu, Towards high-order consistency and conver-
gence of conservative SPH approximations. Computer Methods in Applied Me-
chanics and Engineering. 433: 11748, 2025

which has been attached in Appendix A.1.
To address the computational challenges of simulation-based optimization, we

introduce a target-driven, all-at-once approach for PDE-constrained optimization
and derive a splitting SPH method for optimizing thermal conductivity distribution
in heat conduction problems. The optimization process is divided into manageable
steps. It begins with a targeting step to enforce the direct target, which may increase
PDE residuals, followed by an evolution step to adjust the design variable and re-
duce these residuals, and conducts with a PDE solution step to further advance the
system before the next iteration. Unlike simulation-based methods, this approach
bypasses the adjoint state equation and the converged state variable field, greatly
simplifying and accelerating the optimization. Additionally, the use of an implicit
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SPH splitting operator and a general regularization formulation improves informa-
tion propagation and numerical stability. Typical examples of heat conduction opti-
mization demonstrate that the current method yields optimal results comparable to
those of previous methods while exhibiting considerable computational efficiency.
This work is detailed in Paper II [95]

• B. Zhang, C. Zhang, XY. Hu, Target-driven splitting SPH optimization of ther-
mal conductivity distribution. International Journal of Heat and Mass Transfer.
227: 125476, 2024

which is attached in Appendix A.2.
To ensure the efficient development of SPH-based open-source scientific comput-

ing libraries, such as SPHinXsys, which forms the foundation of the current work,
this paper introduces a method for establishing and implementing an automatic re-
gression test environment, using SPHinXsys as an example. A reference database
is first generated for each benchmark test based on multiple executions, capturing
the variation range of key metrics through time-averaged, ensemble-averaged, and
dynamic time warping methods. This approach accounts for uncertainties arising
from parallel computing, particle relaxation, and physical instabilities. New results
from source code modifications are then evaluated against this reference through
curve similarity comparisons. Whenever the source code is updated, the regression
test is automatically executed for all test cases, providing a comprehensive assess-
ment of the validity of the current results. This regression test environment has been
successfully implemented in all dynamic test cases within SPHinXsys, ensuring the
validity of daily updates to the source code. This work is detailed in Paper III [96]

• B. Zhang, C. Zhang, XY. Hu, Automated regression test method for scientific
computing libraries: Illustration with SPHinXsys. Journal of Hydrodynamics.
36(3): 466–478, 2024

which is attached in Appendix A.3.

1.4 Outline

The remainder of this thesis is structured as follows: Chapter 2 introduces the the-
ory and fundamentals of the SPH method, the SPH discretization of the conservation
equations for the Lagrangian and Eulerian SPH methods, as well as for the heat con-
duction equation, the consistency correction and its variational consistency analysis,
particle relaxation, and transport-velocity formulation, as well as the splitting SPH
method for optimization. Additionally, methods for regression testing of the SPH-
based open-source scientific library are also discussed. Particularly, as detailed in
Chapter 3, an RKGC conservative SPH formulation based on KGC-based particle
relaxation is proposed to improve numerical consistency. A target-driven splitting
SPH method is introduced for PDE-constrained optimization to greatly enhance op-
timization efficiency, specifically for thermal conductivity optimization in the cur-
rent work. An automated regression test method is presented for the SPH-based
open-source scientific library to support consistency and efficiency development.
Finally, Chapter 4 concludes the key points of the thesis and suggests directions for
future research.
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Chapter 2

Methodology

This chapter provides a concise overview of the governing equations for fluid dy-
namics and heat conduction, along with their SPH discretizations. The theory and
fundamentals of the SPH method are presented, including a discussion on consis-
tency correction and its analysis. Following this, the splitting-SPH method designed
for thermal conductivity optimization is introduced. Finally, the chapter briefly dis-
cusses the general regression testing methodology applicable to open-source scien-
tific computing libraries, with a focus on SPH-based frameworks.

2.1 Governing equations

The governing equations in the Lagrangian framework for viscous flows consist of
the mass and momentum conservation equations, written as

dρ

dt
= −ρ∇ · v

dv
dt

= −1
ρ
∇p + ν∇2v + g

, (2.1)

where ρ represents density, v velocity, p pressure, ν kinematic viscosity, g gravity
and

d(•)
dt

=
∂(•)

∂t
+ v · ∇(•) (2.2)

refers to the material derivative.
The conservation equations for weakly compressible flows in the Eulerian frame-

work are expressed as
∂U
∂t

+∇ · F (U) = 0, (2.3)

where U = (ρ, ρv) denotes the vector of conserved variables, and F (U) represents
the corresponding fluxes.

For heat conduction, the steady-state temperature field within the thermal do-
main can be determined by solving the transient heat conduction governing equa-
tion given by

dT
dt

= ∇ · (k∇T) + Q̇, (2.4)

when the left-hand side (LHS) converges to zero. Here, T represents temperature, k
thermal conductivity, C heat capacity, and Q̇ is the volume rate of the internal heat
source. In addition, the Dirichlet boundary condition is given as

T = Tb, (2.5)
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where the surface temperature Tb is held constant. The Neumann boundary condi-
tion, which maintains a fixed heat flux rate, can be expressed as,

−k∇T · n = qb, (2.6)

where n indicates the surface normal vector pointing outward.

2.2 Theory and fundamentals of the SPH method

In this section, the theory and fundamentals of the SPH method are summarized,
followed by a discussion of SPH consistency correction and its variational analysis.

2.2.1 Integral interpolation and particle approximation

In SPH, to address the issue that the Dirac delta function cannot be used to establish
a discrete model in integral interpolation, Lucy [21] and Gingold and Monaghan [97]
introduced a smoothing kernel function to replace the Dirac delta function and ap-
proximate any smoothed field ψ(r) as

ψ(r) =
∫

Ω
ψ(r∗)W(r − r∗, h)dr∗, (2.7)

where r is the spatial coordinate, and W (r, h) is the kernel function scaled by the
smoothing length h, which determines the effective width of the smoothing kernel.

When the computational domain is discretized into a set of N particles as shown
in Fig. 2.1, the integral in Eq. (2.7) is replaced by a summation over the values of

FIGURE 2.1: Sketch of particle approximation in the SPH method. Here, kh presents the
support length of the smoothing kernel W.

adjacent particles in the support domain and is expressed as

ψ(ri) =
N

∑
j=1

ψ(rj)W(ri − rj, h)dVj. (2.8)

Here, the indexes i and j denote the particle label, and the particle has mass m and
density ρ at position r, with dVj denoting the differential volume element around the
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particle. If we express the differential volume element dVj as mj
ρj

, then the approxi-
mation of ψ(ri) can be written as

ψ(ri) =
N

∑
i=1

mi

ρi
ψ(rj)W(ri − rj, h). (2.9)

This summation is over particles lying within a circle of radius kh centered at particle
i with position ri as shown in Fig. 2.1.

Based on the SPH kernel approximation expressed in Eq. (2.7), the gradient of a
smooth field ψ(r) can also be approximated as

∇ψ(r) =
∫

Ω
∇ψ(r∗)W(r − r∗, h)dr∗. (2.10)

By employing the integration by parts and applying Gauss’s theorem, Eq. (2.10) can
be derived as

∇ψ(r) = −
∫

Ω
ψ(r∗)∇W(r − r∗, h)dr∗. (2.11)

Applying particle approximation, described by Eqs. (2.7- 2.9), Eq. (2.11) can be rewrit-
ten in SPH form as

∇ψ(ri) =
N

∑
j=1

mj

ρj
ψ(rj)∇W(ri − rj, h). (2.12)

where ∇W(ri − rj, h) = ∇Wij =
eij
rij

∂Wij
∂rij

with eij =
ri−rj
|ri−rj| .

Similarly, the SPH approximation of divergence of a vector function F(r) can be
derived as

∇ · F(r) =
∫

Ω
[∇ · F(r∗)]W(r − r∗, h)dr∗ =

N

∑
j=1

mj

ρj
F(rj)∇Wij.

2.2.2 Consistency correction and variational analysis

In SPH discretization of the partial differential equation of fluid dynamics, the ker-
nel approximation for the gradient operator acting on a smooth field ψ (r) can be
expressed through a two-stage approach

∇ψ (r) ≈
∫

Ω
∇ψ (r∗)W (r − r∗, h) dr∗ = −

∫
Ω

ψ (r∗)∇W (r − r∗, h) dr∗. (2.13)

While the first stage introduces smoothing errors by the kernel function, the sec-
ond stage entails integration by parts, assuming the kernel function vanishes at the
boundary of a compact support. Through Taylor expansion, for Eq. (2.13) one can
find that the zero-order consistency condition is∫

Ω
∇W (r − r∗, h) dr∗ = 0, (2.14)

and the first-order consistency condition is

−
∫

Ω
(r∗ − r)⊗∇W (r − r∗, h) dr∗ = I, (2.15)
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where I represents the identity matrix. Zero-order consistency condition allows
rewriting the kernel approximation in two equivalent forms:

∇ψ (r) =
∫

Ω
(ψ (r)− ψ (r∗))∇W (r − r∗, h) dr∗

≡ −
∫

Ω
(ψ (r) + ψ (r∗))∇W (r − r∗, h) dr∗. (2.16)

By introducing particle summation, the first approximation in Eq. (2.16) can be fur-
ther approximated for an SPH particle i as

∇ψi = ∑
j

ψij∇WijVj, (2.17)

where Vj is the volume of the neighbor particles within the support, and the particle-
pair difference is ψij = ψi − ψj. This form is often referred to as a symmetric or
non-conservative form. Similarly, the second approximation in Eq. (2.16) can be also
approximated as

∇ψi = −∑
j

(
ψi + ψj

)
∇WijVj, (2.18)

where the particle-pair sum is employed. This form, known as the anti-symmetric
or conservative form, ensures discrete conservation and is commonly chosen in clas-
sical SPH methods for discretizing physical conservation laws.

For the non-conservative form of Eq. (2.17), zero-order consistency is automat-
ically satisfied as the particle-pair difference is used. To achieve first-order consis-
tency, one requires that the approximation of Eq. (2.15) satisfies

−∑
j

rij ⊗∇WijVj = I. (2.19)

To precisely fulfill the above condition, the KGC approach [51], introducing a cor-
rection matrix Bi to adjust the gradient of the kernel function, can be employed, so
that one has

−∑
j

rij ⊗ Bi∇WijVj = I, Bi =

(
−∑

j
rij ⊗∇WijVj

)−1

. (2.20)

With the KGC, Eq. (2.17) is modified as

∇ψi = ∑
j

ψijBi∇WijVj. (2.21)

Note that, introducing Bi does not affect the zero-order consistency of Eq. (2.21).
Also note that, although the non-conservation form is not desirable for the dis-
cretization of physical conservation laws, Eq. (2.21) is often used when the conser-
vation is not a primary concern because it can reproduce the linear gradient and
achieve second-order accuracy.

In the conservative form of Eq. (2.18), where the particle-pair sum other than the
difference is used, the zero-order consistency condition becomes nontrivial as

∑
j
∇WijVj = 0. (2.22)
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Litvinov et al. [47] proposed a particle relaxation process driven by a constant back-
ground pressure assuming invariant particle volume. After the particles are settled
down or fully relaxed, Eq. (2.22) is satisfied for the zero-order consistency. To achieve
first-order constancy, as a straightforward extension for Eq. (2.18), one may suggest

∇ψi = −∑
j

(
ψiB′

i + ψjB′
j
)
∇WijVj, (2.23)

where B′
i and B′

j are some correction matrices for particles i and j, is able to repro-
duce a linear gradient similar to Eq. (2.21). How to obtain these correction matrices
is not straightforward, and various attempts based on the original KGC matrix for
the non-conservative form have been carried out. One widely used formulation,
introduced by Oger et al. [50], is expressed as,

∇ψi = −∑
j

(
ψiBi + ψjBj

)
∇WijVj, (2.24)

where the KGC matrix is applied for each particle pair separately.
Although it has been shown that the straightforward application of the KGC ma-

trix is able to obtain improved results for some problems [56, 98, 99, 100] compared
to the original conservative formulation in Eq. (2.18), it does not achieve zero- or
first-order consistency for the conservative formulation. Specifically, Eq. (2.24) can
be rewritten as

∇ψi = −ψi ∑
j

(
Bi + Bj

)
∇WijVj + ∑

j
ψijBj∇WijVj. (2.25)

The first term on the right-hand side (RHS), mimicking Eq. (2.22), represents the
zero-order consistency condition for incorporating the KGC, and the second term,
again mimicking Eq. (2.21), represents the first-order consistency. However, the
first term generally does not vanish even after particle relaxation driven by constant
background pressure [47] due to the modification by the KGC matrix. In addition,
the second term is different from the original form as the KGC matrix of neighboring
particles is employed. Consequently, it does not guarantee first-order consistency ei-
ther. These same issues also arise in other corrected formulations [59, 60, 61].

Therefore, we modify Eq. (2.25) by using the KGC matrix of particle i as

∇ψi = −ψi ∑
j

(
Bi + Bj

)
∇WijVj + ∑

j
ψijBi∇WijVj, (2.26)

so that the second term is the same as Eq. (2.21) and achieves first-order consis-
tency. If the first term also vanishes for achieving zero-order consistency, the entire
formulation satisfies both consistencies at the same time. Motivated by employing
constant background pressure for particle relaxation, we can consider Bi and Bj as
“geometric stresses” dependent on the particle locations and use them to drive par-
ticle relaxation. After the particles are settled down or fully relaxed under such a
KGC-driven particle relaxation, the first term vanishes. Note that Eq. (2.26) can be
cast as the following anti-symmetric form

∇ψi = −∑
j

(
ψiBj + ψjBi

)
∇WijVj. (2.27)

Comparing Eq. (2.27) with Eq. (2.24), one can find that the only difference is that,
in the new formulation enabling both zero- and first-order consistencies, the KGC
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matrix is employed in reverse order with respect to particles i and j. Therefore, Eq.
(2.27) is denoted as a reverse KGC (RKGC) formulation.

The Lagrangian variational principle and other similar variational principles have
been employed to analyze the conservation properties of the fluid in SPH method [57,
101, 102], and the principle of virtual work (PVW) has been adopted for the in-
depth analysis of the free-surface simulation under the weakly compressible hy-
pothesis [103]. Follow the PVW analyzing in NKGC [103] and SKGC [100] to ana-
lyze RKGC, where the work done by internal forces in an equilibrium system equals
the work done by external forces due to the virtual displacement field δr. By dis-
regarding the work caused by the motion of solid boundaries and assuming zero
pressure along the free-surface boundary [100], the PVW for the entire system can
be expressed as the conservative form∫∫∫

Ω
∇ · (pδr) dV = 0, (2.28)

and the theoretically equivalent non-conservative form∫∫∫
Ω
∇p · δrdV =

∫∫∫
Ω
−p∇ · δrdV, (2.29)

both indicating that the energy variation induced by the virtual displacement equals
zero for the entire system, ensuring energy, linear- and angular-momentum conser-
vations [57, 104].

By introducing particle approximation, the discrete form of Eq. (2.28) can ex-
pressed as the summation of all discrete particles, we obtain

∑
i
∇ · (pδr)i Vi = 0. (2.30)

Since the RKGC formulation fulfills first-order consistency, the divergence operator
∇ · (pδr) in Eq. (2.30) can be evaluated at each particle i as

∇ · (pδr)i = ∑
j

[
(pδr)i Bj + (pδr)j Bi

]
∇iWijVj, (2.31)

with second-order accuracy. By substituting Eq. (2.31) into the left-hand side (LHS)
of Eq. (2.30) and exploiting the anti-symmetric form of the present conservative dis-
cretization, one has

∑
i
∇ · (pδr)i Vi = ∑

i
Vi ∑

j

[
(pδr)i Bj + (pδr)j Bi

]
∇iWijVj

= ∑
i

∑
j
(pδr)i Bj∇iWijViVj

+ ∑
i

∑
j
(pδr)j Bi∇iWijViVj = 0,

(2.32)

indicating the discrete variational consistency of the RKGC formulation. Actually,
the conservative formulations, such as the standard and many other formulations,
including SKGC featuring the anti-symmetric form, are able to maintain the discrete
variational consistency of Eq. (2.30).
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2.3 SPH discretization

In this section, the SPH method will be applied to hydrodynamics and heat transfer,
and the corresponding discretized forms of the governing equations for fluid flow
and heat conduction will be derived.

2.3.1 Weakly compressible SPH (WCSPH)

For WCSPH, an artificial equation of state (EOS) for weakly compressible flows is
used to close Eq. (2.1) as

p = c0
2 (ρ − ρ0) . (2.33)

Here, ρ0 is the initial density, and c0 denotes the artificial sound speed. Setting c0 =
10Umax, where Umax represents the anticipated maximum fluid speed, fulfills the
weakly compressible assumption where the density variation remains around 1%.

The Riemann-SPH method [38] is employed here to discretize Eq. (2.1). Subse-
quently, the continuity and momentum equations are approximated as

dρi

dt
= 2ρi ∑

j
(vi − v∗) · ∇WijVj

dvi

dt
= − 2

mi
∑

j
P∗∇WijViVj + 2 ∑

j

ν

ρi

vij

rij

∂W
∂rij

Vj + gi

, (2.34)

where ∇Wij =
∂Wij
∂rij

eij, and eij =
rij
rij

is the unit vector. The particle-pair velocity v∗

and pressure P∗, respectively, are solutions obtained from the Riemann problem con-
structed along the interacting line of each pair of particles. Note that the particle-pair
pressure P∗ leads to an anti-symmetric form and hence momentum conservation.
With a linearised Riemann solver, the solutions can be computed as

v∗ = vij +
(
U∗ − Uij

)
eij, U∗ = Uij +

1
2

pij

ρ0c0

P∗ = pij +
1
2

βρ0c0Uij

. (2.35)

Here, (•)ij =
[
(•)i + (•)j

]
/2 represents particle-pair average, Uij = −vij · eij and

Uij = −vij · eij, represent the particle-pair average and difference of the particle ve-
locity along the interaction line, respectively. The low-dissipation limiter is defined
as β = min

(
3 max

(
Uij/c0, 0

)
, 1
)
. Additionally, it should be noted that the particle-

pair pressure P∗ in Eq. (2.35) comprises two main components: a non-dissipative
term denoted by pij, and a dissipative term, which plays the role on satisfying the
second law of thermodynamics for the overall WCSPH discretization, derived from
the differences between particle pairs.

Similar to Refs. [104, 96] to avoid large density (and due to the invariant par-
ticle mass, the corresponding volume) errors in long-physical-time simulations, a
density initialization scheme [105] is adopted to cancel the error accumulated in up-
dating the density using a non-conservative formulation of the continuity equation
Eq. (2.34). At the beginning of each new advection time step, the fluid density field
of free-surface flows is reinitialized by

ρi = max

(
ρ∗, ρ0 ∑ Wij

∑ W0
ij

)
, (2.36)
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where ρ∗ represents the density updated by Eq. (2.34) for the last several acoustic
time steps and the superscript 0 denotes the initial reference value at the start of the
simulation. For flows without the free surface, Eq. (2.36) simplifies to

ρi = ρ0 ∑ Wij

∑ W0
ij

(2.37)

which resets the density using the standard summation formulation [48].

2.3.2 Eulerian SPH (ESPH)

Following the methodology outlined in Refs. [106, 107], the Eulerian SPH discretiza-
tion of Eq. (2.3) can be expressed in the same anti-symmetric or conservative form
for both mass and momentum conservations as

∂

∂t
(ρiVi) + 2 ∑

j
(ρv)∗E,ij · ∇WijViVj = 0

∂

∂t
(ρiviVi) + 2 ∑

j
[(ρv ⊗ v) + pI]∗E,ij · ∇WijViVj = 0

. (2.38)

Here, terms (•)∗E,ij denote numerical fluxes for each particle pair, determined by so-
lutions of the Riemann problem [106]. The HLL Riemann solver [108, 109] incorpo-
rating a low-dissipation limiter [38] is adopted here to solve the Riemann problem.
The solutions as numerical fluxes can be written as

F∗ =
1
2

Fij + β

(
1
2

SR + SL

SR − SL
Fij +

SRSL

SR − SL
Uij

)
. (2.39)

under the assumption of SL ≤ 0 ≤ SR and Sl ̸= SR, which is validated in the low
Mach number regime. Here, SL and SR represent the wave speeds estimated in the
left and right regions of the Riemann problem, respectively, and are determined as{

SL = min {uL − cL, uR − cR}
SR = max {uL + cL, uR + cR}

. (2.40)

The (UL, FL) and (UR, FR) denote conserved variables and fluxes in the left and right
regions, while F∗ signifies the numerical flux determined in the intermediate region.
In addition, β = min (3max ((UL − UR) , 0) , c), where c = (ρLcL + ρRcR) / (ρL + ρR),
represents the low-dissipation limiter introduced to handle intermediate states.

2.3.3 Heat conduction

The heat conduction governing equation in Eq. (2.4) can be discretized at each SPH
particle i located at ri with its neighboring particles j as follows,

dTi

dt
= 2 ∑

j
kij

Tij

rij
∇iWijVj + Q̇i. (2.41)

Here, Tij = Ti − Tj indicates the inter-particle temperature difference, and Vj denotes
the volume of neighboring particles j. The quantity kij = (ki + k j)/2 is the inter-
particle average thermal conductivity.
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Near the domain boundary, several layers of dummy particles are introduced to
enforce different boundary conditions. Implementing the Dirichlet boundary condi-
tion is straightforward and involves imposing the temperatures

Tw = 2Tb − Ti, (2.42)

at dummy particles implied by the wall boundary condition [110]. To implement the
Neumann boundary condition, the discretization of Eq. (2.4) is modified into

dT
dt

= ∇ · (k∇T) + Q̇ + Q̇Γq, (2.43)

following the Ref. [111], where the heat flux in Eq. (2.6) is replaced by a volumetric
term Q̇Γq, which can be discretized as

Q̇Γq
i = −qb ∑

j∈Ωj

(
ni + nj

)
· ∇iWijVj. (2.44)

Here, Ωj represents the boundary domain defined by the dummy particles. The unit
vectors ni and nj are normal to the boundary evaluated at the respective positions of
particle i and j.

2.4 Zero-order consistency satisfaction

In this section, the methods to satisfy zero-order consistency in the Lagrangian and
Eulerian SPH methods are introduced.

2.4.1 KGC-based particle relaxation

The original relaxation method (denoted as P relaxation or PR), as detailed in Ref.
[47, 112], operates by executing particle relaxation driven by a constant background
pressure to achieve the zero-order consistency condition as outlined in Eq. (2.22).
Initially, the particles are arranged in a lattice with the spacing of ∆x. Their posi-
tions are then randomly shifted with a small distance. Subsequently, the method
iteratively adjusts particle positions to rectify zero-order integration errors, with the
correction at each relaxation step determined by

∆ri = α (∆x)2 ∑
j

p0∇WijVj. (2.45)

Here, p0 the constant background pressure, set to the unit for simplicity. The param-
eter α = 0.2 is chosen as the limitation to avoid excessive time-step size to ensure
numerical stability until the consistency error reaches a sufficiently small value. The
selection of the value of α follows the general selection of CFL number in the SPH
method, where 0.25 is adopted [48], and we opt for a slightly smaller value to en-
hance stability. During the relaxation process, the particle volume is invariant, so
the summation of particle volume is equal to the initial volume. Additionally, the
relaxed particle distribution exhibits the partition of unity property [47], meaning
there is neither a gap between nor an overlap of the volumes defined by particles.

To incorporate the proposed RKGC formulation, we introduce the KGC-based
relaxation (denoted as B relaxation or BR), where the particle relaxation is driven by
the “geometric stress” or the KGC matrix to achieve zero-order consistency condi-
tion as suggested by the first term in Eq. (2.26). Similarly to P relaxation, the iterative
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correction on particle positions at each relaxation step is modified as

∆ri = α (∆x)2 ∑
j
(Bi + Bj)∇WijVj. (2.46)

Note that the KGC matrix for each particle is recomputed by Eq. (2.20) before each
iteration step. Similar to P relaxation, B relaxation also results in a uniformly dis-
tributed particle distribution, with body-fitted particles for complex geometries. In
addition, the B relaxation process also does not change the total volume, and the re-
laxed particle distribution still maintains the underlying physics for the simulation.
The KGC-based particle relaxation is used for generating the initial particle distribu-
tion for Eulerian SPH to combine with the KGC formulation. The general threshold
to stop the relaxation is when the maximum zero-order consistency error is smaller
than 10−5, where the average error is generally one-tenth of the maximum error.

2.4.2 KGC-based transport-velocity formulation

In the Lagrangian SPH method, the transport-velocity formulation introduced by
Adami et al. [113] is employed to enhance, rather than precisely achieve, zero-order
consistency, and to prevent particle clustering under conditions of negative pres-
sure. The method involves a single correction step during each time step, where the
transport-velocity, denoted by ṽ, governs the updates of particle positions from one
step to the next according to

dri

dt
= ṽi, (2.47)

and the generation of transport-velocity is associated with the acceleration induced
by the repulsive force or the residual force, as indicated in Eq. (2.45). This residual
force also leads to a self-relaxation mechanism that regularizes the particle distri-
bution, allowing it to approximate a configuration with low consistency error [47].
The KGC-based transport-velocity formulation is proposed similarly, except that the
residual force for the single correction step is associated with “geometry stress” in
Eq. (2.46). Note that both transport-velocity formulations only slightly modify the
positions of the particles without modifying the velocity or the momentum of the en-
tire system. KGC-based transport velocity has been implemented in the Lagrangian
SPH method for internal flow, while it is not employed for the free-surface flow fol-
lowing the general practices of SPH simulations [50, 98, 100].

2.5 Splitting SPH optimization method

2.5.1 Implicit scheme

It is well known that traditional implicit schemes often require large-scale matrix
inversion or iterations across the entire system, which can lead to significant mem-
ory demands and challenges in parallelization. To overcome these challenges, we
employ a splitting operator based implicit scheme to advance Eq. (2.41). The im-
plicit solving step is divided into individual particle-by-particle operations, and each
evolves a small system that is easy to inverse. One commonly used approach for this
purpose is the second-order Strang splitting technique [114], shown as

S(∆t)
i =D( ∆t

2 )
1 ◦ D( ∆t

2 )
2 ◦ · · · ◦ D( ∆t

2 )
i · · · ◦ D( ∆t

2 )
Nt−1 ◦ D( ∆t

2 )
Nt

◦

D( ∆t
2 )

Nt
◦ D( ∆t

2 )
Nt−1 ◦ · · · ◦ D( ∆t

2 )
i · · · ◦ D( ∆t

2 )
2 ◦ D( ∆t

2 )
1 .

(2.48)
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Here, the operator S(∆t)
i represents the complete step for advancing the equation.

Nt refers to the total number of particles, and Di represents the splitting operator
corresponding to particle i. The update of the variable for the entire field involves
a forward sweep of all particles for half a time step, followed by a backward sweep
for another half time step [115].

Within the local implicit formulation, Eq. (2.41) can be rewritten as

dTi

dt
= 2 ∑

j
kij

Tn+1
ij

rij
∇iWijVj + Q̇n+1

i , (2.49)

where Tn+1
ij = Tn

ij + dTi − dTj. The terms dTi and dTj represent the incremental
changes for particle i and its neighboring particles j at each advancing time step. For
brevity, we introduce the coefficient

Bj = 2kij
1
rij
∇iWijVjdt, (2.50)

and the residual of Eq. (2.49), without considering the increment, has the form

Ei = −∑
j

BjTn
ij − Q̇n+1

i dt. (2.51)

The implicit formulation of Eq. (2.49) can be further expressed as

Ei =

(
∑

j
Bj − 1

)
dTi − ∑

j
BjdTj. (2.52)

To determine the incremental changes for temperature, we employ the gradient de-
scent method [116] by reducing the LHS of Eq. (2.51) following its gradient. The
gradient ∇Ei with respect to the variable (dTi, dT1, dT2, · · · , dTN)

T, where N gives
total number of all neighboring particles, can be obtained as

∇Ei =

(
∑

j
Bj − 1,−B1,−B2, · · · ,−BN

)T

. (2.53)

We set
(dTi, dT1, dT2, · · · , dTN)

T = ηi∇Ei, (2.54)

where ηi represents the learning rate [116] for the particle i. Substituting Eqs. (2.53)
and (2.54) into Eq. (2.52), the learning rate can be obtained as

ηi =

(∑
j

Bj − 1

)2

+ ∑
j

(
Bj
)2

−1

Ei. (2.55)
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According to Eqs. (2.53) and (2.54), the incremental change in temperature of particle
i and all its neighbors can be obtained and updated as

Tn+1
i = Tn

i − dTi = Tn
i + ηi

(
∑j Bj − 1

)
Tn+1

1 = Tn
1 − dT1 = Tn

1 − ηiB1

Tn+1
2 = Tn

2 − dT2 = Tn
2 − ηiB2

· · ·
Tn+1

N = Tn
N − dTN = Tn

N − ηiBN

. (2.56)

Note that, Eq. (2.56) involves updating the variables for particle i and its neighbor-
ing particles simultaneously. When a shared-memory parallelization is employed,
conflict may arise when multiple threads attempt to update the values of a single
particle pair simultaneously. To address this issue, we have implemented a splitting
Cell Linked List method [117]. This method effectively prevents conflicts by ensur-
ing that neighboring particles are located in the same cell or in adjacent cells that are
distributed among the same threads. Also note that, for an explicit integration of the
thermal diffusion equation, the maximum allowable time step can be defined as

∆td = 0.5
ρCh2

kmax
. (2.57)

Since the implicit scheme is employed here for obtaining the steady solution of the
Eq. (2.41), the time step size is chosen as a large value of 10∆td without considering
the temporal accuracy.

2.5.2 Evolution of design variable

The residual e∗i for particle i in the PDE is calculated as

e∗i = ∑
j

(
ki + k j

) Tij

rij
∇iWijVj + Q̇i. (2.58)

Once the target is imposed on this particle, the PDE residual deviates from its orig-
inal value and will be recovered by modifying the design variable k on particle i
and its neighboring particles j. This process can be represented by the pseudo-time
evolution of following equation

dki

dτ
= ∑

j

(
Tc

i − Tj
) (

km+1
i + km+1

j

) 1
rij
∇iWijVj + Q̇i + e∗i . (2.59)

Here, km+1
i + km+1

j = km
i + dki + km

j + dk j, where m is the previous time step and dki

and dk j represent increments after the new time step. The implicit splitting opera-
tor introduced in Section 2.5.1 is utilized. Similar to the Eq. (2.54), a linear system
is formed with respect to (dk1, dk2, · · · , dkN−1, dkN)

T. Note that, the pseudo-time
derivative on the LHS is essential for the stable evolution of k. If this term is omit-
ted, the diagonal entries of the matrix for the linear system become(

η1

n

∑
j

B1j, η2

n

∑
j

B2j, · · · , ηN

n

∑
j

BNj

)T

. (2.60)
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It is observed that the magnitudes of diagonal entries in the matrix can be signifi-
cantly smaller than those of non-diagonal entries, potentially leading to numerical
instability [118]. On the contrast, when the pseudo-time derivative term is included,
the linear system transforms into(

η1

n

∑
j

(
B1j − 1

)
, η2

n

∑
j

(
B2j − 1

)
, · · · , ηN

n

∑
j

(
BNj − 1

))T

, (2.61)

whose diagonal entries becomes dominant, and therefore stabilize the evolution of
the design variables. In addition, since k is a material property and should be non-
negative, it is clipped at a lower bound of 0.0001 during each iteration.

2.5.3 Numerical regularization

After the evolution of the design variable, it is necessary to apply numerical regular-
ization, serving two essential purposes. One is that, as previously mentioned in the
Ref. [63], the regularization plays a critical role in maintaining numerical stability
and obtaining a smooth solution. Secondly, it helps prevent over-fitting and avoids
finding trivial local optima only. In this study, we introduce a diffusion analogy
approach for regularizing the distribution of the design variable, i.e. the thermal
conductivity k is treated as the variable again in the pseudo-time SPH discretized
diffusion equation, given as

dki

dτ
= 2 ∑

j
µ

kij

rij
∇iWijVj, (2.62)

where kij = ki − k j and µ is the artificial diffusion coefficient used to control the
rate of regularization. We choose µ to be general in the range 1 ∼ 2 according to
the target strength. The coefficient also undergoes a similar dynamical adjustment
strategy as the target strength because smaller β usually require less regularization
to achieve a smooth field. Note that the pseudo-time derivative term is also used in
Eq. (2.62) to ensure that the diagonal is dominant.

2.6 Regression test method

2.6.1 Time-averaged strategy

In the time-averaged strategy, as the system consistently reaches a steady state through
the relaxation process, metrics such as the time-averaged mean and variance are em-
ployed for comparison and testing purposes.

The generation of the reference database under this strategy involves updating
the time-averaged mean and variance through multiple executions until their varia-
tions converge. For each update (e.g., the nth execution), the mean Mn and variance
σn of the obtained result x from the current execution can be calculated as follows:

Mn =
1

l − k

l

∑
i=k

xn
i

σn =
1

l − k

l

∑
i=k

(xn
i − Mn)2

, (2.63)
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where i is the index of a data point, l is the total number of data points, and k is
the index of the starting point of the steady state. The mean M∗ and variance σ∗

in the regression test metrics are then updated based on the results from the nth
computations. Specifically, M∗ is updated as

M∗ = (Mn + M∗ × (n − 1)) /n. (2.64)

Note that, instead of storing all previous means n times, the summation of the mean
is recursively updated as a decaying average of all previous means for increased
efficiency. Then, σ∗ is updated as

σ∗ = max (σn, σ∗) , (2.65)

indicating that the variance is always updated to the maximum variation range. Af-
ter the relative difference between the newly updated metrics and the previous ones
is smaller than thresholds in several successive executions (usually 4 in practical ap-
plications), the M and σ are stored as the reference database. It is worth noting that
the variation of the metrics in two successive runs being smaller than the thresh-
old is only a hint of convergence. This should happen several times successively to
ensure a real stable convergence. Therefore, once such variation is larger than the
threshold, the count of the converged successive executions will be reset to zero.

For the regression test, the mean value and variance of the new result are com-
pared with the metrics of the reference database. The correctness of the new result
and the compatibility of the modified code with the previous version are determined
based on the following conditions:{

|M − M∗| ≤ αM∗

σ ≤ σ∗ . (2.66)

If these conditions are satisfied, the new result is considered correct, and the modi-
fied code is deemed compatible with the previous version. The parameter α is cho-
sen based on the specific type of dynamics problem. In solid dynamics, α is set to
0.05, while for fluid dynamics, it is set to 0.1.

2.6.2 Ensemble-averaged strategy

In the ensemble-averaged strategy, the result curves obtained from simulation runs
typically exhibit similarities within a certain variation range. This range is defined
by the metrics of ensemble-averaged mean and variance. For the nth execution, the
metrics for each data point i are updated based on the previous values and the new
results. The ensemble-averaged mean M∗

i at a data point i is updated as:

M∗
i =

(
xn

i + Mn−1
i × (n − 1)

)
/n. (2.67)

Here, xn
i represents the newly obtained data point, and Mn−1

i is the previous mean.
Similarly to the time-averaged strategy, the new variance σ∗

i is updated as

σ∗
i = max

(
σ∗

i , σn−1
i ,

(
0.01 ∗

(
M∗

i,max − M∗
i,min

))2
)

, (2.68)

where the last term is a secure value introduced to create a variation range and pre-
vent a zero maximum variance for results from different computations. This secure
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value is determined based on the maximum and minimum values of the local result.
The convergence criteria are the same as those in the time-averaged strategy, requir-
ing successive executions with sufficiently small variations of the updated mean
and variance to terminate the metrics updating. With the metrics of the reference
database available, the regression test following code modification is conducted for
all data points using the following condition:√(

xn
i − Mi

)2 ≤ σi. (2.69)

If there is any data point that does not satisfy this condition, it indicates that the code
modification needs to be reviewed and corrected.

2.6.3 Dynamic time warping (DTW) strategy

The maximum DTW distance is utilized as the regression test metric and is updated
after each execution until its variation converges to a certain threshold. With the
initial value for the first computation set as D0,0 = 0, the maximum distance for the
nth execution is calculated as

D∗ = max (D∗, D0,n, D1,n, . . . , Dn−2,n, Dn−1,n) , (2.70)

where the subscript, e.g., Dn−2,n denotes the distance between the (n − 2)th and nth
computational results. Similar to the other two strategies, after the variation of D∗

converges to a given threshold in successive several executions, the D∗ and several
results (usually 3 ∼ 5 in practical applications) with all data points are stored for
the regression test. For the regression test, if the DTW distances between the new
result after code modification and each result in the reference database satisfy the
condition:

(D1, D2, · · · , Dk) ≤ D∗, k = 3 ∼ 5, (2.71)

the new result is regarded as acceptable. Otherwise, if any distances exceeds the
threshold D∗, it indicates unexpected behavior, and the code should be checked and
corrected.

2.7 Summary

This chapter covers the fundamentals and theoretical aspects of the SPH method,
beginning with integral interpolation and particle approximation. It discusses the
traditional SPH discretization of governing equations for fluid dynamics and heat
conduction. The consistency correction in SPH formulation and its variational anal-
ysis are also explained, addressing the method for the satisfaction of zero-order con-
sistency. The splitting SPH method for optimizing thermal conductivity is summa-
rized, and the implementation of general regression tests for SPH-based open-source
libraries is briefly introduced.
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Chapter 3

Summaries of publications

In this chapter, the relevant publications of this thesis are briefly summarized.

3.1 Towards high-order consistency and convergence of con-
servative SPH approximations

Bo Zhang, Nikolaus Adams, Xiangyu Hu

3.1.1 Summary of the publication

In SPH, for a given kernel function, there are two typical particle approximation
methods that approximate the integral in the kernel approximation by summing
over all particles within the support domain. One method is the non-conservative, or
symmetric, form, which uses the particle pair difference and is expressed in Eq. (2.17).
This form naturally satisfies zero-order consistency, and higher-order consistencies
can be achieved, although at the expense of computational efficiency, by using ker-
nel gradient correction (KGC) [51] or other methods based on similar ideas [119, 120,
121, 122]. However, its applicability for discretizing conservation laws in practical
simulations is limited due to a lack of discrete conservation. The other form is the
conservative, or anti-symmetric, form, which uses the particle pair average and is
expressed as Eq. (2.18). This form preserves the conservation property and is com-
monly used for discretizing momentum equations. While zero-order consistency
can be achieved through particle relaxation, attempts to achieve higher-order con-
sistency through straightforward extensions of the KGC, as proposed by many re-
searchers [56, 57, 58, 99, 100, 98], have shown improved results for certain problems
but have ultimately proven insufficient for satisfying zero- or higher-order consis-
tencies.

In this paper, we propose the reverse KGC (RKGC) formulation, read as (2.27)
and it can be rewritten as Eq. (2.26), where the first term can vanish with particle
relaxation based on the KGC matrix, and the second term achieves first-order con-
sistency, the same as the non-conservative form. After the particles settle or are
fully relaxed through KGC-based particle relaxation, the RKGC formulation satis-
fies both zero- and first-order consistencies simultaneously. When the RKGC for-
mulation is employed in the momentum conservation equation for the Lagrangian
SPH method, as well as in both the mass and momentum conservation equations
for the Eulerian SPH method, numerical examples such as the Taylor Green vor-
tex flow and the lid-driven cavity, all demonstrate improved numerical accuracy.
More importantly, RKGC formulation shows good energy conservation properties,
resolving the long-standing high-dissipation issue for simulating free-surface flows
in SPH. The pressure contour of the oscillating problem at two different instants is
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presented in Fig. 3.1, indicating the robust free-surface profile and smooth pressure
fields achieved by the RKGC formulation. The time evolution of the decay of the

(a) (b)

FIGURE 3.1: Oscillation drop: Snapshots of the free-surface profile and the pressure
contour obtained by the RKGC (∆x = 0.005). (a) t=20.5s; (b) t=22.9s.

normalized mechanical energy in the oscillating drop problem is shown in Fig. 3.2.
It is noted that the RKGC formulation preserves energy quite well, even at low reso-

∆

∆

∆

∆

∆

∆

FIGURE 3.2: Oscillating drop: Time evolution of the decay of the normalized mechanical
energy obtained by different formulations.

lutions,and the energy conservation properties improve with increasing resolution.
Similarly, for other free-surface flows, such as standing waves, progressive wave
propagation, dam-break flow, and three-dimensional oscillating wave surge con-
verters (OWSC), the RKGC formulation all demonstrates good energy conservation
properties and improved numerical accuracy.

3.1.2 Individual contributions of the candidate

This article [123] was published in the international peer-reviewed journal Computer
Methods in Applied Mechanics and Engineering. My contributions to this work include
the development of the method and the corresponding computer code for its imple-
mentation. I conducted simulations, analyzed the results, and wrote the manuscript
for publication.
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3.2 Target-driven splitting SPH optimization of thermal con-
ductivity distribution

Bo Zhang, Chi Zhang, Xiangyu Hu

3.2.1 Summary of the publication

As a general numerical method, SPH can be employed to solve optimization prob-
lems and offers potential advantages due to its interaction only related to the neigh-
boring particles. In this study, a PDE-constrained optimization problem [11] is ad-
dressed using the target-driven splitting SPH approach, focusing on optimizing the
thermal conductivity distribution for two-dimensional heat conduction problems.
The thermal domain, as illustrated in Fig. 3.3, is subject to different boundary con-
ditions and may include internal heat sources. Two typical boundary conditions,

𝛤𝑞,1: −𝑘
𝜕𝑇

𝜕𝑛
= 𝑞𝑏

𝛤𝑞,2: −𝑘
𝜕𝑇

𝜕𝑛
= 𝑞𝑏

𝛤𝑇,2: 𝑇 = 𝑇𝑏

𝛤𝑇,1: 𝑇 = 𝑇𝑏

Ω

ሶ𝑄 𝑥, 𝑦

FIGURE 3.3: Illustration of the 2D heat conduction problem. Ω denotes the thermal
domain; ΓT and Γq represent constant surface temperature and heat flux boundaries,
respectively, and Q̇ indicates the presence of an internal heat source.

Dirichlet and Neumann, are considered. The goal of the optimization is to deter-
mine a thermal conductivity distribution that minimizes the average steady-state
temperature while ensuring that the average thermal conductivity remains constant.

The target-driven method divides the optimization process into several manage-
able steps, with each step only being weakly coupled to the others. This allows both
the design variable (thermal conductivity) and the state variable (temperature) to be
treated as both optimization variables by introducing the residual recovery concept
and achieving "all-at-once" optimization approaches [25, 26], improving the opti-
mization efficiency. Specifically, a targeting step is used to incrementally impose the
direct target, which may increase the PDE residuals. These residuals are then re-
covered through an evolution step of the design variables. Following this, a PDE
solution step further reduces the residuals and prepares for the next iteration. In ad-
dition, the splitting SPH method, an implicit scheme based on a splitting operator, is
employed to solve the temperature and thermal conductivity fields, advancing the
PDE and the design variable evolution. Finally, a diffusion-analogy regularization
approach is developed to ensure numerical stability and avoid local optima.

Typical heat conduction optimization examples have been conducted, demon-
strating that the proposed method yields optimal results comparable to previous
extensive simulation-based approaches [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80]. Fur-
thermore, the method shows significant computational efficiency, requiring only a
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few times of the computational cost of obtaining a steady-state solution to achieve
the optimized results. For example, a square thermal domain measuring 1m on each
side, with four Gaussian heat sources, as depicted in Fig. 3.4(a), is considered. Two
heat sinks, each covering 20% of the side length, are symmetrically positioned at
the center of opposite boundaries, maintaining a constant temperature. The steady

1m

Problem 5

𝑞𝑏 = 0

Gaussian 
Source 1

Gaussian 
Source 2

Gaussian 
Source 3

Gaussian 
Source 4

0
.2
m 𝑇𝑏,1 = 350𝐾

0
.2
m𝑇𝑏,2 = 280𝐾

𝑘0 = 4𝑊/(𝑚 ∙ 𝐾)

(a) (b)

(c) (d)

FIGURE 3.4: The 2/10 sinks with the Gaussian distributed heat source. (a) Problem
setup; (b) Temperature distribution with uniform thermal conductivity; (c) Optimized
temperature distribution; (d) Optimized thermal conductivity distribution.

temperature distribution with uniform thermal conductivity is shown in Fig. 3.4(b),
while the optimized results using the current method are presented in Figs. 3.4(c)
and 3.4(d). These results demonstrate more effective temperature reduction com-
pared to the AA and TGH methods [63], with less than ten times the computational
cost required to achieve a steady-state solution. Other examples, including different
configurations of heat sinks and heat sources, similarly show improved efficiency.

3.2.2 Individual contributions of the candidate

This article [94] was published in the international peer-reviewed journal Interna-
tional Journal of Heat and Mass Transfer. My contributions to this work include the
development of the method and the corresponding computer code for its imple-
mentation. I conducted simulations, analyzed the results, and wrote the manuscript
for publication.
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3.3 Automated regression test method for scientific comput-
ing libraries: Illustration with SPHinXsys

Bo Zhang, Chi Zhang, Xiangyu Hu

3.3.1 Summary of the publication

As a fully Lagrangian meshless method, SPH has been extensively studied and used
to simulate a wide range of scientific problems. SPHinXsys [30], an open-source
multi-physics and multi-resolution scientific computing library based on SPH, pro-
vides an environment for developing SPH algorithms and engineering applications,
including the work introduced in Secs. 3.1 and 3.2. The continuous development
of these algorithms and their applications highlights the necessity for a regression
testing environment [124] to ensure consistency throughout version releases and im-
prove development efficiency.

In this paper, we propose a general method for establishing and implementing
an automated regression testing environment for scientific computing libraries, us-
ing the open-source multi-physics library SPHinXsys as a case study. The underly-
ing principle of the regression test involves comparing the similarity between ver-
ified curves, also referred to as time series results, generated from previously val-
idated executions in the reference database and newly obtained results following
code modifications. As illustrated in Fig. 3.5, a reference database for each bench-

FIGURE 3.5: The flow chart for the regression test. The left part is for generating the
reference database, and the right one is for testing the new result obtained after code
modifications.

mark test is generated from observed data across multiple executions for newly
added test cases. This database encapsulates the maximum variation range of met-
rics for different strategies, including time-averaged, ensemble-averaged, and dy-
namic time warping methods [125, 126] based on different curve classifications. For
instance, in many fluid dynamics problems, data series fluctuate around a constant
value after reaching a steady state, making the time-averaged strategy suitable. In
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solid dynamics, data series exhibit similar variation patterns for each computation,
so the ensemble-averaged strategy is selected. Data series that experience rapid,
scattered variation patterns or large high-frequency fluctuations will utilize the dy-
namic time warp strategy. With the reference database established, new results ob-
tained after source code modifications undergo testing through a curve-similarity
comparison against this database.

This regression test environment has been successfully implemented across all
dynamic test cases within SPHinXsys, covering fluid dynamics [38, 105], solid me-
chanics [127], fluid-solid interaction (FSI) [43], thermal and mass diffusion [128],
reaction and diffusion [128], electromechanics [128], and their multi-physics cou-
plings, demonstrating robust capabilities in testing various problems. Moreover,
the underlying principles are generic and can be easily adapted for use with other
libraries, achieving equal effectiveness.

3.3.2 Individual contributions of the candidate

This article [129] was published in the international peer-reviewed journal Journal
of Hydrodynamics. My contributions to this work include the development of the
method and the corresponding computer code for its implementation. I conducted
simulations, analyzed the results, and wrote the manuscript for publication.
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Chapter 4

Discussion and outlook

The motivation behind this thesis was threefold: to advance the consistency and
convergence of conservative SPH approximations for improved numerical accuracy,
to enhance the efficiency of thermal conductivity optimization in heat transfer prob-
lems using a target-driven splitting SPH method, and to develop an automated re-
gression testing framework for scientific computing libraries like SPHinXsys to en-
sure code reliability and accuracy. These objectives have been successfully achieved
through the application of the proposed methods to various practical cases. In con-
clusion, this section provides a discussion of the current work and remarks on po-
tential directions for future research.

4.1 Discussions

As a mesh-free method, SPH offers distinct advantages for modeling many engi-
neering problems and has evolved into a general numerical approach for simula-
tion and optimization, with advancements in consistency and efficiency. However,
achieving high-order consistency in the conservative SPH formulation remains a sig-
nificant challenge. While zero- and higher-order consistencies can be obtained using
particle-pair differences and kernel gradient correction (KGC) approaches [51] for
SPH gradient approximations, their applicability for discretizing conservation laws
in practical simulations is limited by a lack of discrete conservation. The standard
anti-symmetric SPH approximation achieves conservation and can satisfy or en-
hance zero-order consistency through particle relaxation based on a constant back-
ground pressure [47, 112] or the transport-velocity formulation [113, 96]. Never-
theless, high-order consistency in SPH remains necessary to ensure that truncation
errors decay with increasing particle resolution. To address this, approaches have
been developed to improve numerical accuracy and consistency by integrating KGC
with anti-symmetric formulations [56, 57, 58] and/or particle relaxation [98]. These
include methods such as using the average correction matrix [59, 60, 61] and imple-
menting separate corrections for each particle pair [50, 99]. However, these methods
still fail to achieve high-order consistency and often lose zero-order consistency, even
with particle relaxation.

In Paper I, we introduce the reverse KGC (RKGC) formulation designed for con-
servative SPH approximations. In contrast to prior conservative KGC formulations,
without correction (NKGC) in Eq. (2.18), with the original straightforward KGC
(SKGC), RKGC is able to precisely fulfill both zero- and first-order consistencies
of the gradient operator. The formulation incorporates a particle relaxation driven
by the KGC matrix and is split into two parts: the first part addresses zero-order
consistency and vanishes during particle relaxation, while the second part ensures
first-order consistency and accurately reproduces linear gradients. The formulation
notably improves numerical accuracy in Lagrangian SPH simulations, with evidence
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from both internal and free-surface flow. In particular, it exhibits very good energy
conservation properties and resolves the long-standing high-dissipation issue for the
SPH simulation of free-surface flows. For example, in the standing wave problem,
RKGC formulation is able to preserve the energy very well, suggesting very small
numerical dissipation. However, NKGC exhibits rapid energy decay, even when the
smoothing length is increased to h = 2.0∆x, as shown by Khayyer et al. [130], and the
SKGC formulation even leads to an increase in the energy, as presented in Ref. [98,
100]. Therefore, extra weight with the identity matrix (as WKGC2 in Ref. [98]) is
added to decrease the contribution of the SKGC formulation to eliminate the artifact,
but it still shows considerable energy loss. Similarly, in the progressive wave prop-
agation problem, compared to the result without correction [60], the low-resolution
results obtained by the RKGC formulation already show great alleviation of the de-
cay, and the high-resolution results don’t show apparent decay, aligning with the
theoretical amplitude envelope, indicating good energy conservation. But for the
other attempts presented in Ref. [60], it can achieve similar aims; it requires great
computational cost to obtain the inversion of the correction matrix for each particle
pair at every time step. For the current method, with the adoption of dual-time step-
ping techniques [105], there is only an additional 10% and 15% computational cost
for 2D and 3D, respectively, to calculate KGC matrices, indicating good efficiency.

Apart from the simulation, optimization using the SPH method also holds ex-
cellent advantages. For the PDE-constrained problems, specifically the thermal con-
ductivity optimization considered in the current thesis, many simulated-based meth-
ods, either based on deterministic principles [70, 71, 72, 73, 74, 75, 76, 72, 77, 78, 79,
80] or those stochastic approaches [83, 84, 85, 86], they often deal with a large num-
ber of variables in the spatial discretization of the domain, leading to reduced effi-
ciency and suitability for large-scale and reliability-sensitive problems. However, in
the SPH method, the particle only interacts with its neighbors, allowing it to divide
the whole domain into manageable subdomain systems, potentially improving the
optimization efficiency. In paper II, we introduce a target-driven all-at-once method
for PDE-constrained optimization problems and derive a splitting SPH method for
optimizing the thermal conductivity distribution to minimize the average temper-
ature. The novelty of the method can be summarized in three aspects. Firstly, as
the split steps are only weakly coupled with each other, compared to previous all-
at-once approaches, the present updating of both state and design variables is much
easier to handle. Secondly, by leveraging the splitting-operator SPH method, im-
plicit updating is achieved without the inversion of large-size matrices. Thirdly, a
general formulation of regularization has been proposed to achieve numerical sta-
bility when evolving the design variable. Typical examples of heat conduction opti-
mization demonstrate that the current method yields optimal results comparable to
previous methods and exhibits considerable computational efficiency. Moreover, the
optimal results feature more moderate extreme values, which offers distinct advan-
tages for the easier selection of appropriate material with high thermal conductivity.
For example, regarding a thermal domain with a constant heat source and two heat
sinks, the current method obtains the optimized temperature with the comparable
reduction in temperature to the reference by AD [66], TGH [66], and AA [63] meth-
ods, but the present method is quite efficient, as it only takes a few times the com-
putation cost of obtaining a steady-state solution to achieve the optimized result.
Other examples all demonstrate a similar situation, indicating the greatly improved
efficiency of optimization with the current method.

As the numerical algorithm for simulation and optimization based on the SPH
is always developed in open-source libraries, modifications to the source code by
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bug fixing or new feature development, should not compromise the accuracy and
functionality already validated and verified. Regression test could ensure the out-
put validity of scientific computing libraries under development, and it has been
implemented in some mesh-based open-source libraries [131, 132, 133, 134, 31, 135],
a testing environment for meshless libraries is notably absent, even as the popularity
of meshless computing grows. Compared to the fixed topology of mesh-based meth-
ods, this gap can be attributed to the unique challenges posed by the Lagrangian
property of the meshless methods, where dynamic and varying particle distribu-
tions in each computation make it challenging to establish standardized testing pro-
cedures. Notably, when updating the source code of SPHinXsys [30], an open-source
multi-physics library developed by our group, we encountered instances where cer-
tain test cases passed the CTest (CMake Test) [136], yet unexpectedly resulted in
simulation crashes without any error output. We had initially believed these test
cases to be correct since they passed the testing, only to realize later that they were
faulty. This issue proved troublesome and was the primary motivation for establish-
ing an effective regression test environment. Therefore, in paper III, we introduce
a methodological framework for constructing an automatic regression test environ-
ment in scientific computing libraries, and it has been successful in guaranteeing
the consistent development of the library and improving the efficiency in simulation
and optimization with reliable tools.

4.2 Outlooks

The present work can be further improved in several directions to further advance
the consistency and efficiency of the SPH method, and some key points for further
work are:

• While the RKGC formulation can be straightforwardly extended to even higher-
order consistencies, challenges in achieving converged solutions for particle
relaxation driven by the KGC matrix or correction functions are yet to be elab-
orated, especially for the three-dimensional complex geometries and the solu-
tion employing a h/∆x value smaller than 1.0. Therefore, breaking this lim-
itation will not only further improve the numerical consistency of the SPH
method but also enhance computational efficiency, as fewer neighbors in a re-
duced smoothing length can yield accurate results.

• In addition, the RKGC formulation has already been employed in the mo-
mentum conservation equation for the Lagrangian SPH method and both the
mass and momentum conservation equations for the Eulerian SPH method
and gained improved results. Its application for the Lagrangian continuity
equation, as well as for the SPH solid dynamics still needs to be studied so that
SPH can be developed into an efficient numerical method for general multi-
physics simulations.

• The splitting SPH method is currently adopted to solve the thermal conductiv-
ity optimization problem with a target on the whole domain but minimizing
hot spot temperature, i.e., the local target is also important in electronic cool-
ing. Thus, the corresponding optimization algorithm based on the splitting
SPH still needs further exploration. In addition, the continued distribution
of thermal conductivity is challenging for manufacturing and engineering, so
discrete distribution can also be studied to be practical friendly.
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• The target-driven optimization concept used in the present thesis is not re-
stricted to heat conduction optimization; it may be extended for topology op-
timization or fluid dynamics applications, such as drag reduction and lift max-
imum, to further improve the optimization efficiency in various applications.

• Finally, the current test in the SPHinXsys is limited. As the number of test cases
grows due to the addition of new dynamics features, additional regression test
techniques, such as the selection and reduction of test cases, must be conducted
to make the test process more efficient.
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A B S T R A C T

Smoothed particle hydrodynamics (SPH) offers distinct advantages for modeling many engi-
neering problems, yet achieving high-order consistency in its conservative formulation remains
to be addressed. While zero- and higher-order consistencies can be obtained using particle-pair
differences and kernel gradient correction (KGC) approaches, respectively, for SPH gradient
approximations, their applicability for discretizing conservation laws in practical simulations
is limited due to their lack of discrete conservation. Although the standard anti-symmetric
SPH approximation is able to achieve conservation and zero-order consistency through particle
relaxation, its straightforward extensions with the KGC fail to satisfy zero- or higher-order
consistency. In this paper, we propose the reverse KGC (RKGC) formulation, which is con-
servative and able to satisfy up to first-order consistency when particles are relaxed based
on the KGC matrix. Extensive numerical tests show that the new formulation considerably
improves the accuracy of the Lagrangian SPH method. In particular, it is able to resolve the
long-standing high-dissipation issue for simulating free-surface flows. Furthermore, with fully
relaxed particles, it enhances the accuracy of the Eulerian SPH method even when the ratio
between the smoothing length and the particle spacing is considerably reduced. The reverse
KGC formulation holds the potential for extension to even higher-order consistencies with a
pending challenge in addressing the corresponding particle relaxation problem.

1. Introduction

As a mesh-free method, smoothed particle hydrodynamics (SPH), initially proposed by Lucy [1] and Gingold & Monaghan [2]
for astrophysical applications, has demonstrated significant success across a wide range of scientific problems. These include fluid
dynamics [3–5], solid dynamics [6–8], and fluid–structure interaction [9–11], among others. The SPH approximation operates on the
principle of reconstructing the continuous field and its spatial derivatives from a set of discrete particles, each possessing individual
properties, through a Gaussian-like smoothing kernel function with compact support [12,13]. It generally encounters two different
types of errors that amalgamate to the overall truncation error [14,15]. The first is the smoothing error determined by the kernel
function where the leading moments vanish. This error arises due to the discrepancy between the smoothing approximations and
the exact values. The second is the integration error, characterized by the non-vanishing of leading moments due to the particle
approximation. For typical SPH kernel functions, such as the cubic B-spline [16] and the Wendland kernel [17] that are second-order
accuracy, given that only the first moment vanishes, corresponding to first-order consistency. For a given kernel function, Quinlan
et al. [14] observed that the overall truncation error generally decreases or exhibits consistency with increased resolution only when
ℎ∕𝛥𝑥, i.e., the ratio between the smoothing length ℎ and the particle spacing 𝛥𝑥, is large, suggesting sufficient small integration
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Acronyms

𝐵 𝑅 Correction-matrix based particle relaxation
𝐵 𝑇 Correction-matrix based transport velocity formulation
𝐸 𝑆 𝑃 𝐻 Eulerian SPH
𝐾 𝐺 𝐶 Kernel gradient correction in non-conservative form
𝑁 𝐾 𝐺 𝐶 Without KGC in conservative form
𝑃 𝑅 Pressure based particle relaxation
𝑃 𝑇 Pressure based transport velocity formulation
𝑅𝐾 𝐺 𝐶 Reverse KGC in conservative form
𝑆 𝐾 𝐺 𝐶 Straightforward KGC in conservative form
𝑊 𝐶 𝑆 𝑃 𝐻 Weakly compressible SPH
𝑊 𝐾 𝐺 𝐶1 Weighted KGC in conservative form (only for free-surface)
𝑊 𝐾 𝐺 𝐶2 Weighted KGC in conservative form (for the whole domain)

error. However, achieving this condition leads to an excessive number of particles within the kernel compact support and results in
an extremely high computational cost.

Therefore, different approaches have been proposed to minimize integration error or improve consistency with a computationally
acceptable value of ℎ∕𝛥𝑥, typically less than 1.5 [18]. Besides that zero-order consistency can be easily achieved by using particle-
pair differences for gradient approximations, high-order consistencies can be attained through kernel gradient correction (KGC) [19]
and various similar approaches, such as corrective smoothed particle method (CSPM) [20], reproducing kernel particle method
(RKPM) [21,22], moving least squared (MLS) [23], finite particle method(FPM) [24–29], modified SPH method (MSPH) [30–33],
kernel gradient free (KGF) [34,35], and many others [36–38]. While these approaches are able to achieve consistencies for the SPH
approximation of the gradient and/or Laplacian operators and improve accuracy, their application to the discretization of physical
conservation laws still faces the significant challenge of non-conservation. Specifically, conservative discretization necessitates an
anti-symmetric form between particle pairs, a condition that these methods cannot appropriately satisfy.

The first approach to achieve both zero-order consistency and conservation involves implementing particle relaxation based
on a constant background pressure [15,39] before applying anti-symmetric SPH approximations. Since particle relaxation is
computationally expensive for the Lagrangian SPH method, an alternative one-step consistency correction, such as the transport-
velocity formulation [40,41], based on the same principle, has also been proposed to enhance the consistency. Although conservation
properties always hold a high priority [18], there is still a need for high-order consistency in SPH to ensure truncation-errors
decay with increase particle resolution. To address this issue, approaches have been developed to enhance numerical accuracy and
consistency by integrating KGC with anti-symmetric formulations [42–44] and/or particle relaxation [45]. These methods include
utilizing the average correction matrix [46–48] and implementing separate corrections for each particle pair [18,49], etc. For some
problems, while these conservative KGC formulations have demonstrated improved results compared to standard SPH methods
without KGC, as will be shown later, they not only fail to achieve high-order consistency but also lose zero-order consistency, even
with particle relaxation.

In this study, we introduce the reverse KGC (RKGC) formulation designed for conservative SPH approximations. In contrast
to prior conservative KGC formulations, RKGC is able to precisely fulfill both zero- and first-order consistencies of the gradient
operator. The formulation incorporates a particle relaxation driven by the KGC matrix and is split into two parts: the first part
addresses zero-order consistency and vanishes during particle relaxation, while the second part ensures first-order consistency and
accurately reproduces linear gradients. The formulation notably improves numerical accuracy in Lagrangian SPH simulations. In
particular, it exhibits very good energy conservation properties and resolves the long-standing high-dissipation issue for the SPH
simulation of free-surface flows. Moreover, since these consistencies can be strictly imposed in the Eulerian SPH method, even when
employing a reduced smoothing length, the formulation still has the potential to yield results with improved accuracy.

In the following, Section 2 presents the approximation of gradients in the SPH method and its application in discretizing
governing equations. Section 3 introduces the RKGC formulation, detailing the KGC-based particle relaxation and the transport-
velocity formulation, and then the variational consistency analysis. Section 4 conducts corresponding error and convergence
analyses. Section 5 presents extensive numerical examples that highlight the benefits gained from the proposed method. In Section 6,
we extend the RKGC formulation to second-order consistency, with a yet-to-be-addressed condition on particle relaxation. Finally,
Section 7 summarizes the key findings and outlines of future research.

2. Preliminary

2.1. Gradient approximation

In SPH discretization of the partial differential equation of fluid dynamics, the kernel approximation for the gradient operator
acting on a smooth field 𝜓 (𝐫) can be expressed through a two-stage approach

∇𝜓 (𝐫) ≈ ∫𝛺 ∇𝜓
(
𝐫∗
)
𝑊

(
𝐫 − 𝐫∗, ℎ) 𝑑𝐫∗ = −∫𝛺 𝜓

(
𝐫∗
)
∇𝑊

(
𝐫 − 𝐫∗, ℎ) 𝑑𝐫∗, (1)
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where 𝑊 (𝐫, ℎ) is the kernel function scaled by the smoothing length ℎ. While the first stage introduces smoothing errors by the
kernel function, the second stage entails integration by parts, assuming the kernel function vanishes at the boundary of a compact
support. Through Taylor expansion, for Eq. (1) one can find that the zero-order consistency condition is

∫𝛺 ∇𝑊
(
𝐫 − 𝐫∗, ℎ) 𝑑𝐫∗ = 0, (2)

and the first-order consistency condition is
−∫𝛺

(
𝐫∗ − 𝐫

)
⊗ ∇𝑊

(
𝐫 − 𝐫∗, ℎ) 𝑑𝐫∗ = 𝐈, (3)

where 𝐈 represents the identity matrix. Zero-order consistency condition allows rewriting the kernel approximation in two equivalent
forms:

∇𝜓 (𝐫) = ∫𝛺
(
𝜓 (𝐫) − 𝜓

(
𝐫∗
))

∇𝑊
(
𝐫 − 𝐫∗, ℎ) 𝑑𝐫∗

≡ −∫𝛺
(
𝜓 (𝐫) + 𝜓

(
𝐫∗
))

∇𝑊
(
𝐫 − 𝐫∗, ℎ) 𝑑𝐫∗. (4)

By introducing particle summation, the first approximation in Eq. (4) can be further approximated for an SPH particle 𝑖 as

∇𝜓𝑖 =
∑
𝑗
𝜓𝑖𝑗∇𝑊𝑖𝑗𝑉𝑗 , (5)

where 𝑉𝑗 is the volume of the neighbor particles within the support, and the particle-pair difference is 𝜓𝑖𝑗 = 𝜓𝑖 − 𝜓𝑗 . This form is
often referred to as a symmetric or non-conservative form. Similarly, the second approximation in Eq. (4) can be also approximated
as

∇𝜓𝑖 = −
∑
𝑗

(
𝜓𝑖 + 𝜓𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 , (6)

where the particle-pair sum is employed. This form, known as the anti-symmetric or conservative form, ensures discrete conservation
and is commonly chosen in classical SPH methods for discretizing physical conservation laws.

For the non-conservative form of Eq. (5), zero-order consistency is automatically satisfied as the particle-pair difference is used.
To achieve first-order consistency, one requires that the approximation of Eq. (3) satisfies

−
∑
𝑗
𝐫𝑖𝑗 ⊗ ∇𝑊𝑖𝑗𝑉𝑗 = 𝐈. (7)

To precisely fulfill the above condition, the KGC approach [19], introducing a correction matrix 𝐁𝑖 to adjust the gradient of the
kernel function, can be employed, so that one has

−
∑
𝑗
𝐫𝑖𝑗 ⊗ 𝐁𝑖∇𝑊𝑖𝑗𝑉𝑗 = 𝐈, 𝐁𝑖 =

(
−
∑
𝑗
𝐫𝑖𝑗 ⊗ ∇𝑊𝑖𝑗𝑉𝑗

)−1

. (8)

With the KGC, Eq. (5) is modified as

∇𝜓𝑖 =
∑
𝑗
𝜓𝑖𝑗𝐁𝑖∇𝑊𝑖𝑗𝑉𝑗 . (9)

Note that, introducing 𝐁𝑖 does not affect the zero-order consistency of Eq. (9). Also note that, although the non-conservation form
is not desirable for the discretization of physical conservation laws, Eq. (9) is often used when the conservation is not a primary
concern because it can reproduce the linear gradient and achieve second-order accuracy.

In the conservative form of Eq. (6), where the particle-pair sum other than the difference is used, the zero-order consistency
condition becomes nontrivial as

∑
𝑗
∇𝑊𝑖𝑗𝑉𝑗 = 0. (10)

Litvinov et al. [15] proposed a particle relaxation process driven by a constant background pressure assuming invariant particle
volume. After the particles are settled down or fully relaxed, Eq. (10) is satisfied for the zero-order consistency. To achieve first-order
constancy, as a straightforward extension for Eq. (6), one may suggest

∇𝜓𝑖 = −
∑
𝑗

(
𝜓𝑖𝐁′

𝑖 + 𝜓𝑗𝐁
′
𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 , (11)

where 𝐁′
𝑖 and 𝐁′

𝑗 are some correction matrices for particles 𝑖 and 𝑗, is able to reproduce a linear gradient similar to Eq. (9).
How to obtain these correction matrices is not straightforward, and various attempts based on the original KGC matrix for the
non-conservative form have been carried out. One widely used formulation, introduced by Oger et al. [18], is expressed as,

∇𝜓𝑖 = −
∑
𝑗

(
𝜓𝑖𝐁𝑖 + 𝜓𝑗𝐁𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 , (12)

where the KGC matrix is applied for each particle pair separately.
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2.2. Weakly compressible SPH (WCSPH)

The governing equations in the Lagrangian framework for viscous flows consist of the mass and momentum conservation
equations, written as

⎧⎪⎨⎪⎩

d𝜌
d𝑡 = −𝜌∇ ⋅ 𝐯

d𝐯
d𝑡 = −1

𝜌
∇𝑝 + 𝜈∇2𝐯 + 𝐠,

(13)

where 𝜌 represents density, 𝐯 velocity, 𝑝 pressure, 𝜈 kinematic viscosity, 𝐠 gravity and d(∙)∕d𝑡 = 𝜕(∙)∕𝜕 𝑡+𝐯 ⋅∇(∙) refers to the material
derivative. An artificial equation of state (EOS) for weakly compressible flows is used to close Eq. (13) as

𝑝 = 𝑐0
2 (𝜌 − 𝜌0

)
. (14)

Here, 𝜌0 is the initial density, and 𝑐0 denotes the artificial sound speed. Setting 𝑐0 = 10𝑈𝑚𝑎𝑥, where 𝑈𝑚𝑎𝑥 represents the anticipated
maximum fluid speed, fulfills the weakly compressible assumption where the density variation remains around 1%.

The Riemann-SPH method [5] is employed here to discretize Eq. (13). Subsequently, the continuity and momentum equations
are approximated as

⎧
⎪⎪⎨⎪⎪⎩

d𝜌𝑖
d𝑡 = 2𝜌𝑖

∑
𝑗

(
𝐯𝑖 − 𝐯∗

)
⋅ ∇𝑊𝑖𝑗𝑉𝑗

d𝐯𝐢
d𝑡 = − 2

𝑚𝑖

∑
𝑗
𝑃 ∗∇𝑊𝑖𝑗𝑉𝑖𝑉𝑗 + 2

∑
𝑗

𝜈
𝜌𝑖

𝐯𝑖𝑗
𝑟𝑖𝑗

𝜕 𝑊
𝜕 𝑟𝑖𝑗

𝑉𝑗 + 𝐠𝑖,
(15)

where ∇𝑊𝑖𝑗 = 𝜕 𝑊𝑖𝑗
𝜕 𝑟𝑖𝑗 𝐞𝑖𝑗 , and 𝐞𝑖𝑗 = 𝐫𝑖𝑗

r𝑖𝑗
is the unit vector. The particle-pair velocity 𝐯∗ and pressure 𝑃 ∗, respectively, are solutions

obtained from the Riemann problem constructed along the interacting line of each pair of particles. Note that the particle-pair
pressure 𝑃 ∗ leads to an anti-symmetric form and hence momentum conservation. With a linearized Riemann solver, the solutions
can be computed as

⎧⎪⎨⎪⎩

𝐯∗ = 𝐯𝑖𝑗 +
(
𝑈∗ − 𝑈 𝑖𝑗

)
𝐞𝑖𝑗 , 𝑈∗ = 𝑈 𝑖𝑗 +

1
2
𝑝𝑖𝑗
𝜌0𝑐0

𝑃 ∗ = 𝑝𝑖𝑗 +
1
2
𝛽 𝜌0𝑐0𝑈𝑖𝑗

. (16)

Here, (∙)𝑖𝑗 =
[
(∙)𝑖 + (∙)𝑗

]
∕2 represents particle-pair average, 𝑈 𝑖𝑗 = −𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗 and 𝑈𝑖𝑗 = −𝐯𝑖𝑗 ⋅ 𝐞𝑖𝑗 , represent the particle-pair

average and difference of the particle velocity along the interaction line, respectively. The low-dissipation limiter is defined as
𝛽 = min

(
3 max

(
𝑈𝑖𝑗∕𝑐0, 0

)
, 1
)
. Additionally, it should be noted that the particle-pair pressure 𝑃 ∗ in Eq. (16) comprises two main

components: a non-dissipative term denoted by 𝑝𝑖𝑗 , and a dissipative term, which plays the role on satisfying the second law of
thermodynamics for the overall WCSPH discretization, derived from the differences between particle pairs.

Similar to Refs. [41,50] to avoid large density (and due to the invariant particle mass, the corresponding volume) errors in
long-physical-time simulations, a density initialization scheme [51] is adopted to cancel the error accumulated in updating the
density using a non-conservative formulation of the continuity equation Eq. (15). At the beginning of each new advection time
step, the fluid density field of free-surface flows is reinitialized by

𝜌𝑖 = max

(
𝜌∗, 𝜌0

∑
𝑊𝑖𝑗∑
𝑊 0
𝑖𝑗

)
, (17)

where 𝜌∗ represents the density updated by Eq. (15) for the last several acoustic time steps and the superscript 0 denotes the initial
reference value at the start of the simulation. For flows without the free surface, Eq. (17) simplifies to

𝜌𝑖 = 𝜌0
∑
𝑊𝑖𝑗∑
𝑊 0
𝑖𝑗

(18)

which resets the density using the standard summation formulation [16].

2.3. Eulerian SPH (ESPH)

The conservation equations for weakly compressible flows in the Eulerian framework are expressed as
𝜕𝐔
𝜕 𝑡 + ∇ ⋅ 𝐅 (𝐔) = 0, (19)

where 𝐔 = (𝜌, 𝜌𝐯) denotes the vector of conserved variables, and 𝐅 (𝐔) represents the corresponding fluxes. Following the
methodology outlined in Refs. [52,53], the Eulerian SPH discretization of Eq. (19) can be expressed in the same anti-symmetric
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or conservative form for both mass and momentum conservations as
⎧
⎪⎪⎨⎪⎪⎩

𝜕
𝜕 𝑡

(
𝜌𝑖𝑉𝑖

)
+ 2

∑
𝑗
(𝜌𝐯)∗𝐸 ,𝑖𝑗 ⋅ ∇𝑊𝑖𝑗𝑉𝑖𝑉𝑗 = 0

𝜕
𝜕 𝑡

(
𝜌𝑖𝐯𝑖𝑉𝑖

)
+ 2

∑
𝑗
[(𝜌𝐯⊗ 𝐯) + 𝑝𝐈]∗𝐸 ,𝑖𝑗 ⋅ ∇𝑊𝑖𝑗𝑉𝑖𝑉𝑗 = 0.

(20)

Here, terms (∙)∗𝐸 ,𝑖𝑗 denote numerical fluxes for each particle pair, determined by solutions of the Riemann problem [52]. The HLL
Riemann solver [54,55] incorporating a low-dissipation limiter [5] is adopted here to solve the Riemann problem. The solutions as
numerical fluxes can be written as

𝐅∗ = 1
2
𝐅𝑖𝑗 + 𝛽

(
1
2
𝑆𝑅 + 𝑆𝐿
𝑆𝑅 − 𝑆𝐿

𝐅𝑖𝑗 +
𝑆𝑅𝑆𝐿
𝑆𝑅 − 𝑆𝐿

𝐔𝑖𝑗
)
. (21)

Here, 𝑆𝐿 and 𝑆𝑅 represent the wave speeds estimated in the left and right regions of the Riemann problem (see Ref. [54] for more
details), respectively, satisfying the assumption of 𝑆𝐿 ≤ 0 ≤ 𝑆𝑅 and 𝑆𝑙 ≠ 𝑆𝑅, which is validated for weakly compressible flows.
The same low-dissipation limiter 𝛽 as in Eq. (16) is utilized to handle the dissipative component of the numerical fluxes. Again, the
non-dissipative component in Eq. (21) is given by the particle-pair average of the physical fluxes.

3. Reverse KGC formulation

3.1. Consistent correction method

Although it has been shown that the straightforward application of the KGC matrix, as outlined in Eq. (12), is able to obtain
improved results for some problems [42,45,49,56] compared to the original conservative formulation in Eq. (6), it does not achieve
zero- or first-order consistency for the conservative formulation. Specifically, Eq. (12) can be rewritten as

∇𝜓𝑖 = −𝜓𝑖
∑
𝑗

(
𝐁𝑖 + 𝐁𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 +

∑
𝑗
𝜓𝑖𝑗𝐁𝑗∇𝑊𝑖𝑗𝑉𝑗 . (22)

The first term on the right-hand side (RHS), mimicking Eq. (10), represents the zero-order consistency condition for incorporating
the KGC, and the second term, again mimicking Eq. (9), represents the first-order consistency. However, the first term generally does
not vanish even after particle relaxation driven by constant background pressure [15] due to the modification by the KGC matrix. In
addition, the second term is different from the original form as the KGC matrix of neighboring particles is employed. Consequently,
it does not guarantee first-order consistency either. These same issues also arise in other corrected formulations [46–48].

Therefore, we modify Eq. (22) by using the KGC matrix of particle 𝑖 as

∇𝜓𝑖 = −𝜓𝑖
∑
𝑗

(
𝐁𝑖 + 𝐁𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 +

∑
𝑗
𝜓𝑖𝑗𝐁𝑖∇𝑊𝑖𝑗𝑉𝑗 , (23)

so that the second term is the same as Eq. (9) and achieves first-order consistency. If the first term also vanishes for achieving zero-
order consistency, the entire formulation satisfies both consistencies at the same time. Motivated by employing constant background
pressure for particle relaxation, we can consider 𝐁𝑖 and 𝐁𝑗 as ‘‘geometric stresses’’ dependent on the particle locations and use them
to drive particle relaxation. After the particles are settled down or fully relaxed under such a KGC-driven particle relaxation, the
first term vanishes. Note that Eq. (23) can be cast as the following anti-symmetric form

∇𝜓𝑖 = −
∑
𝑗

(
𝜓𝑖𝐁𝑗 + 𝜓𝑗𝐁𝑖

)
∇𝑊𝑖𝑗𝑉𝑗 . (24)

Comparing Eq. (24) with Eq. (12), one can find that the only difference is that, in the new formulation enabling both zero- and
first-order consistencies, the KGC matrix is employed in reverse order with respect to particles 𝑖 and 𝑗. Therefore, Eq. (24) is denoted
as a reverse KGC (RKGC) formulation.

In this work, the RKGC formulation is employed in the momentum conservation equation for the Lagrangian SPH method and
both the mass and momentum conservation equations for the Eulerian SPH method by replacing the original particle-pair average for
the non-dissipative terms in the Riemann solutions as the form of (∙𝐁)𝑖𝑗 =

[
(∙)𝑖𝐁𝑗 + (∙)𝑗𝐁𝑖

]
∕2. Specifically, the particle-pair average

pressure in Eq. (16) and average fluxes in Eq. (21) are replaced as

𝑝𝑖𝑗 ⇒ (𝑝𝐁)𝑖𝑗 =
1
2
(
𝑝𝑖𝐁𝑗 + 𝑝𝑗𝐁𝑖

)
, (25)

and

𝐅𝑖𝑗 ⇒ (𝐅𝐁)𝑖𝑗 =
1
2
(
𝐅𝑖𝐁𝑗 + 𝐅𝑗𝐁𝑖

)
, (26)

respectively. Note that, since the dissipative terms are kept unchanged, the overall properties on satisfying the second law of
thermodynamics are preserved. Also note that our present numerical experiments indicate no obvious difference in simulations
when the KGC is employed in the continuity equation for the Lagrangian SPH method. Therefore, we simply keep the original
discretization, and resort to further study of the KGC correction on density evolution in future work.
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3.2. KGC-based particle relaxation and transport-velocity formulation

The original relaxation method (denoted as P relaxation or PR), as detailed in Ref. [15,39], operates by executing particle
relaxation driven by a constant background pressure to achieve the zero-order consistency condition as outlined in Eq. (10). It
iteratively adjusts particle positions to rectify zero-order integration errors, with the correction at each relaxation step determined
by

𝛥𝐫𝑖 = 𝛼 (𝛥𝑥)2
∑
𝑗
∇𝑊𝑖𝑗𝑉𝑗 . (27)

During the relaxation process, the particle volume is invariant, and no other underlying physics quantities are involved. The general
effective choice of parameter 𝛼 = 0.2 follows the selection of CFL number in the SPH method [16] to ensure time-stepping stability.

To incorporate the proposed RKGC formulation, we introduce the KGC-based relaxation (denoted as B relaxation or BR), where
the particle relaxation is driven by the ‘‘geometric stress’’ or the KGC matrix to achieve zero-order consistency condition as suggested
by the first term in Eq. (23). Similarly to P relaxation, the iterative correction on particle positions at each relaxation step is modified
as

𝛥𝐫𝑖 = 𝛼 (𝛥𝑥)2
∑
𝑗
(𝐁𝑖 + 𝐁𝑗 )∇𝑊𝑖𝑗𝑉𝑗 . (28)

Note that the KGC matrix for each particle is recomputed by Eq. (8) before each iteration step. Similar to P relaxation, B relaxation
also results in a uniformly distributed particle distribution, with body-fitted particles for complex geometries. In the current study,
the KGC-based particle relaxation is used for generating the initial particle distribution for Eulerian SPH to combine with the
proposed RKGC formulation. The threshold to stop the relaxation is when the maximum zero-order consistency error is smaller
than 10−5. Our numerical experiments find that, generally, the average error is about one-tenth of the maximum error.

In the Lagrangian SPH method, the original transport-velocity formulation introduced by Adami et al. [40] is employed to
enhance, rather than precisely achieve, zero-order consistency, and to prevent particle clustering under conditions of negative
pressure. The method involves a single correction step during each time step, where the transport-velocity, denoted by 𝐯, governs
the updates of particle positions from one step to the next according to

d𝐫𝑖
d𝑡 = 𝐯𝑖. (29)

The transport-velocity formulation is numerically equivalent to applying a one-step correction of particle position at each advection
time step according to Eq. (27) to achieve less consistency error [15].

In the current approach, the KGC-based transport-velocity formulation is proposed similarly, except that the single correction
step is associated with ‘‘geometry stress’’ as in Eq. (28). Note that both transport-velocity formulations only slightly modify the
positions of the particles without modifying the velocity or the momentum of the entire system. KGC-based transport velocity has
been implemented in the Lagrangian SPH method for internal flow, as noted in Section 5, but is not applied for free-surface flow
due to the complexity of handling free surface and the general practices of SPH simulations [18,45,56].

3.3. Variational consistency analysis

The Lagrangian variational principle and other similar variational principles have been employed to analyze the conservation
properties of the fluid in SPH method [43,57,58], and the principle of virtual work (PVW) has been adopted for the in-depth
analysis of the free-surface simulation under the weakly compressible hypothesis [59]. Follow the PVW analyzing in NKGC [59]
and SKGC [56] to analyze RKGC, where the work done by internal forces in an equilibrium system equals the work done by external
forces due to the virtual displacement field 𝛿𝐫. By disregarding the work caused by the motion of solid boundaries and assuming
zero pressure along the free-surface boundary [56], the PVW for the entire system can be expressed as the conservative form

∭𝛺
∇ ⋅ (𝑝𝛿𝐫) 𝑑 𝑉 = 0, (30)

and the theoretically equivalent non-conservative form

∭𝛺
∇𝑝 ⋅ 𝛿𝐫𝑑 𝑉 = ∭𝛺

−𝑝∇ ⋅ 𝛿𝐫𝑑 𝑉 , (31)

both indicating that the energy variation induced by the virtual displacement equals zero for the entire system, ensuring energy,
linear- and angular-momentum conservations [43,50].

By introducing particle approximation, the discrete form of Eq. (30) can be expressed as the summation of all discrete particles,
we obtain

∑
𝑖
∇ ⋅ (𝑝𝛿𝐫)𝑖 𝑉𝑖 = 0. (32)

Since the RKGC formulation fulfills first-order consistency, the divergence operator ∇ ⋅ (𝑝𝛿𝐫) in Eq. (32) can be evaluated at each
particle 𝑖 as

∇ ⋅ (𝑝𝛿𝐫)𝑖 =
∑
𝑗

[
(𝑝𝛿𝐫)𝑖 𝐁𝑗 + (𝑝𝛿𝐫)𝑗 𝐁𝑖

]
∇𝑖𝑊𝑖𝑗𝑉𝑗 , (33)
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with second-order accuracy. By substituting Eq. (33) into the left-hand side (LHS) of Eq. (32) and exploiting the anti-symmetric
form of the present conservative discretization, one has∑

𝑖
∇ ⋅ (𝑝𝛿𝐫)𝑖 𝑉𝑖 =

∑
𝑖
𝑉𝑖

∑
𝑗

[
(𝑝𝛿𝐫)𝑖 𝐁𝑗 + (𝑝𝛿𝐫)𝑗 𝐁𝑖

]
∇𝑖𝑊𝑖𝑗𝑉𝑗

=
∑
𝑖

∑
𝑗
(𝑝𝛿𝐫)𝑖 𝐁𝑗∇𝑖𝑊𝑖𝑗𝑉𝑖𝑉𝑗

+
∑
𝑖

∑
𝑗
(𝑝𝛿𝐫)𝑗 𝐁𝑖∇𝑖𝑊𝑖𝑗𝑉𝑖𝑉𝑗 = 0,

(34)

indicating the discrete variational consistency of the RKGC formulation. Actually, the conservative formulations, such as the standard
and many other (including SKGC) formulations featuring the anti-symmetric form, are able to maintain the discrete variational
consistency of Eq. (32).

Note that, in the present derivation, we obtain the discrete form directly from the original conservation form of Eq. (30)
since the first-order consistency provided by RKGC leads to a sound approximation. This is different from previous analysis for
a SKGC formulation [56], in which the discrete variational consistency is obtained from the non-conservative form of Eq. (31)
(see their Eq. (26)). Also note that while the above-mentioned discrete variational consistencies indicate favorable numerical
properties, they are not equivalent to the theoretical forms and, therefore, may not conserve system energy and linear- and angular
momentum exactly due to the discretization errors. For example, while the exact linear momentum conservation can be ensured
by the anti-symmetric form (ensuring discrete variational consistency), the exact angular-momentum conservation requires the
resultant particle-pair forces acting along their central line [60,61], which is obviously not the case for either SKGC or RKGC
formulations. Another example is that, as observed in Refs. [45,56] and will also be discussed in Section 5.3, even the theoretical
variational consistency imposes a physically consistent boundary condition at free-surface, the SKGC formulations satisfying discrete
variational consistency still suffers from unbounded increase (or instability) of total energy if the KGC is not switched off near the
free surface. Still, another issue is that the present variational consistency analysis does not cover the density evolution equation,
whose discretization very often leads to volume conservation issues as discussed in Section 2.2. Therefore, the strict prediction of
the overall consistency properties, such as the validity of the second law of thermodynamics, of the present method, similar to many
other SPH methods, remains an open problem.

4. Error and convergence analyses

The accuracy and convergence of the SPH gradient operators in conservative form without correction (NKGC) in Eq. (6), with
the original straightforward KGC (SKGC) in Eq. (12), and with the reverse KGC (RKGC) in Eq. (24), are investigated. A circle domain
with the radius 𝑅 = 1.0 is considered, and a scalar field is initialized within the domain by the function

𝜓 (𝑥) = 𝑒−10𝑥
2
. (35)

As in Ref. [14,33,42], the error is measured with 𝐿2 norm and defined as

𝜖 𝐿2 =

√√√√ 1
𝑁𝑡

(∑
𝑖
|∇𝜓𝐴𝑁 𝐴

𝑖 − ∇𝜓𝑆 𝑃 𝐻𝑖 |2
)
, (36)

where ∇𝜓𝐴𝑁 𝐴
𝑖 and ∇𝜓𝑆 𝑃 𝐻𝑖 represent the analytical and numerical solutions for the gradient of the scalar field, and 𝑁𝑡 is the total

number of particles within the domain of interest (sufficiently far from the boundary). The C2 Wendland kernel is utilized to conduct
tests on lattice-distributed (without body-fitted particles at the boundary) and relaxed particle distributions using both P and B
relaxations. The convergence criterion for relaxation is set at a maximum zero-order consistency residual of 10−5. The particle
spacing 𝛥𝑥 ranges from 0.2 to 0.0125, while the smoothing lengths ℎ of 1.3𝛥𝑥, 1.15𝛥𝑥, and 0.8𝛥𝑥 are used to study the convergence
with decreasing ℎ∕𝛥𝑥.

Fig. 1 presents the convergences behavior with increasing resolutions at ℎ = 1.3𝛥𝑥. For lattice-distributed particles, as illustrated
in Fig. 1(a), both corrected formulations achieve second-order convergence compared to the typical second-order-to-saturation
behavior of NKGC. For particles after P relaxation, as depicted in Fig. 1(b), all formulations exhibit the second-order-to-saturation
behavior, as the integration errors are dominant at high-resolution, independently of the kernel corrections. For particles after the B
relaxation, as shown in Fig. 1(c) only RKGC maintains 2nd-order convergence as expected from the analysis in Section 3.1. At high
resolutions, SKGC degrades to first-order as it fails to reproduce the linear gradient, and NKGC even exhibits from error increase.

Furthermore, as depicted in Fig. 2, it is observed that for RKGC, reducing ℎ∕𝛥𝑥 does not affect the convergence rate as long as
the B relaxation is applied. This is not unexpected since Eq. (23) does not explicitly depend on the smoothing length. In contrast,
SKGC and NKGC suffer from serious degeneration or even increased error at high resolution, no matter whether P or B relaxation
is applied. Note that data at 𝛥𝑥 = 0.0125 for ℎ = 0.8𝛥𝑥 are missing for B relaxation as shown in Fig. 2(b). This is because, with the
present simple relaxation stepping as given in Section 3.2, relaxation is not able to reach the zero-order residual criterion. Note that,
this issue has already exhibited in Fig. 1(c) with the slight degeneration of the second-order convergence at the highest resolution
due to the finite particle relaxation error threshold of 10−5. The difficulty of achieving sufficiently small particle relaxation error
indicates an implicit limitation of the RKGC formulation. Also note that, such limitation, especially at small smoothing length, is
generic and more demanding for high-order consistencies as shown latter in Section 6, as a sufficient overlap between the kernel
supports of neighboring particles is required [62].
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Fig. 1. Convergence study of conservative approximations of the gradient at the ℎ = 1.3𝛥𝑥. (a) Lattice distribution; (b) P relaxation; (c) B relaxation.
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Fig. 2. Convergence study of conservative approximations of the gradient at the reduced ℎ∕𝛥𝑥 values. (a) ℎ = 1.15𝛥𝑥; (b) ℎ = 0.8𝛥𝑥.

5. Numerical examples

In this section, the proposed RKGC formulation is applied to WCSPH and ESPH with fully relaxed particles for the latter. Again,
the C2 Wendland kernel is utilized, with the smoothing length set to be ℎ = 1.3𝛥𝑥 if not stated otherwise.

5.1. Taylor–Green vortex flow at Re = 100

The incompressible Navier–Stokes equation offers an analytical time-dependent solution for this periodic array of vortices in a
unit square domain as{

𝑢 (𝑥, 𝑦, 𝑡) = −𝑈 𝑒𝑏𝑡 cos (2𝜋 𝑥) sin (2𝜋 𝑦)
𝑣 (𝑥, 𝑦, 𝑡) = 𝑈 𝑒𝑏𝑡 sin (2𝜋 𝑥) cos (2𝜋 𝑦) . (37)

This solution serves as the initial velocity distribution at 𝑡 = 0 and acts as a benchmark to assess the simulation accuracy. The decay
rate of the velocity field is determined by 𝑏 = −8𝜋2∕𝑅𝑒, where 𝑅𝑒 = 𝜌𝑈 𝐿∕𝜂 represents the Reynolds number derived from the fluid
density 𝜌, the maximum initial velocity 𝑈 , the domain size 𝐿, and the viscosity 𝜂. In the current simulations, a domain size of 𝐿 = 1
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Fig. 3. Taylor–Green Vortex: WCSPH results obtained with the transport-velocity formulations. (a) Decay of kinetic energy; (b) Relative error of the maximum
velocity (BT-RKGC).

is employed, with periodic boundary conditions applied in both coordinate directions. The maximum initial flow speed is set at
𝑈 = 1, and the Reynolds number is 𝑅𝑒 = 100.

5.1.1. WCSPH results
The Taylor–Green vortex problem is first investigated using the WCSPH method, with particle spacing 𝛥𝑥 = 0.02 (50 × 50

particles), 𝛥𝑥 = 0.01 (100 × 100 particles), and 𝛥𝑥 = 0.005 (200 × 200 particles). The initial particle distribution follows a lattice
arrangement. Fig. 3 shows the results obtained by employing the transport-velocity formulation in each advection time step. Here,
PT and BT denote the original and KGC-based transport-velocity formulations, respectively, and NKGC denotes the original SPH
method without KGC applied. The relative error of the maximum velocity 𝐿v

∞ is defined as

𝐿v
∞ =

|||||
max(𝐯𝐢(𝑡)) − 𝑈 𝑒𝑏𝑡

𝑈 𝑒𝑏𝑡
|||||
. (38)

Fig. 3(a) shows that the corrected formulations deliver superior results compared to PT-NKGC, where no correction is employed.
Specifically, BT-RKGC yields the most favorable outcomes, indicating improved accuracy. Moreover, as the resolution increases, the
kinetic energy obtained by BT-RKGC converges towards the analytical solutions. Such convergence is also demonstrated in Fig. 3(b)
through the relative error of the maximum velocity.

5.1.2. ESPH results
In the ESPH simulations, the particle distributions are initialized through relaxation, ensuring that the zero-order consistency

residue diminishes to less than 10−5 for P and B relaxations in SKGC and RKGC, respectively. The initial particle spacing is varied
as 𝛥𝑥 = 0.04 (25 × 25 particles), 𝛥𝑥 = 0.02 (50 × 50 particles), and 𝛥𝑥 = 0.01 (100 × 100 particles) to analyze the influence of the
resolution. Fig. 4 presents the decay of the kinetic energy 𝐸kin and its relative error 𝐿𝐸∞ defined by

𝐿𝐸∞ =
|||||
𝐸kin(𝑡) − 𝐸𝑎kin(𝑡)

𝐸𝑎kin(𝑡)

|||||
, (39)

where 𝐸𝑎kin represents the analytical kinetic energy with a decay rate of −16𝜋2∕𝑅𝑒. Both SKGC and RKGC produce results converging
to the analytical solution, while RKGC achieves lower kinetic energy error across all resolutions and exhibits improved accuracy
compared to that of SKGC.

5.2. Lid-driven cavity at Re = 1000

The lid-driven cavity problem serves as a well-known and challenging test case for the SPH method. In this scenario, a wall-
bounded unit square cavity is presented, with its top wall moving at a constant speed of 𝑈wall = 1. For the flow at a Reynolds
number of 𝑅𝑒 = 1000, we refer to the high-resolution multi-grid results of Ghia et al. [63], who utilized the finite difference method
on a 257 × 257 mesh.
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Fig. 4. Taylor–Green Vortex: ESPH results obtained with the relaxed particles. (a) Decay of kinetic energy; (b) Relative error of kinetic energy.

Fig. 5. Lid-driven cavity: WCSPH results obtained with the transport-velocity formulations. (a) Velocity profiles along the horizontal and vertical central lines;
(b) Velocity fields (visualized by the magnitude ranging from 0 to 1) with vectors obtained by BT-RKGC at the 𝛥𝑥 = 0.01.

5.2.1. WCSPH results
The results obtained by the WCSPH method are presented in Fig. 5. Comparisons of velocity profiles with the reference results,

depicted in Fig. 5(a), reveals that corrected formulations yield results more closely aligned with the reference than PT-NKGC.
Furthermore, BT-RKGC outperforms PT-SKGC. As resolution increases, results obtained by BT-RKGC demonstrate convergence and
good agreement with the reference. The magnitude of the velocity and the velocity vectors of the flow field shown in Fig. 5(b) exhibit
a smooth profile and typical vortical structures, such as those induced by the shear force of the moving wall and the single-core
vortex located at the center of the cavity, consistent with findings presented in Refs. [40,63,64].

5.2.2. ESPH results
Again, the ESPH results are obtained on fully relaxed initial particle distributions at smoothing lengths of ℎ = 1.3𝛥𝑥 and

ℎ = 1.15𝛥𝑥, as illustrated in Fig. 6. It is observed that the BR-RKGC produces results closer to the reference than the PR-SKGC
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Fig. 6. Lid-driven cavity: ESPH method results for velocity profiles along the horizontal and vertical central lines at different smoothing lengths. (a) ℎ = 1.3𝛥𝑥;
(b) ℎ = 1.15𝛥𝑥.

at the low resolutions, i.e., 𝛥𝑥 = 0.04 and 𝛥𝑥 = 0.02, indicating less integration errors. With the resolution increased, both methods
could yield converged results, and the error difference is small due to the sufficient smoothing length.

Fig. 7 presents the obtained velocity fields with vectors when the smoothing length is decrease to ℎ = 0.8𝛥𝑥. As discussed in
Section 4, the RKGC formulation combined with the B relaxation achieves the first-order consistency, not explicitly relying on the
smoothing length, while the SKGC one suffers serious degeneration. Therefore, as presented in Fig. 7(a), the BR-RKGC is still able to
generate the smooth velocity distribution and captures the key flow characteristics, aligning with the reference results [63,65] and
the one displayed in Fig. 5(b) obtained by the WCSPH method. Moreover, the secondary vortices in the lower and upper corners are
still well-identified. However, the PR-SKGC, as presented in Fig. 7(b), fails to yield a reasonable smooth velocity distribution, with
velocity oscillation and noise, especially at the upper-left corner vortex and around the single-core vortex. The velocity vectors at
the lower corners also failed to capture the secondary vortices. The proposed RKGC formulation and B relaxation can still achieve
improved accuracy and good convergence, even with a reduced ℎ∕𝛥𝑥 value. Note that in practical viscous flow simulations, while
the RKGC aims to achieve first-order consistency for gradient and divergence operators, the numerical results do not necessarily
always maintain it because the Laplacian operator in SPH approximations does not precisely satisfy first-order consistency yet, and
the adoption of the Riemann solver may also influence the overall consistency as the RKGC is only applied on the non-dissipative
terms.

5.3. Standing wave

The standing wave problem serves as a typical benchmark for evaluating the accuracy of the SPH method in addressing free-
surface problems. In this section, a two-dimensional standing wave problem is investigated using the WCSPH method. The initial
configuration, as depicted in Fig. 8, defines the initial free surface according to

𝜂0 = 𝐴 cos(𝑘(𝑥 + 𝜆)∕2). (40)

Here, the parameters are set as follows: the wave amplitude 𝐴 = 0.1𝐻 , with an average water depth of 𝐻 = 1.0; the wave number
𝑘 = 2𝜋∕𝜆, and the wavelength 𝜆 = 2.0. The initial velocity of the particles is set to be zero. The study evaluates the free-surface
elevation at the central position, and compare it against the second-order analytical solution proposed by Wu et al. [66]. In order
to maintain numerical stability, the KGC matrix near the free surface is weighted by the identity matrix (WKGC1), as suggested in
Ref. [45], with the constant parameter 𝛼 = 0.5 for all free-surface flow problems in the current study.

The snapshots of the density distribution obtained from Eq. (17) and velocity divergence distribution from the continue equation
are shown in Fig. 9, respectively, indicating good volume conservation property of the present method. In addition, the pressure
contours with 𝛥𝑥 = 0.005 at two typical instants are illustrated in Fig. 10, showing the robust free-surface profile and smooth pressure
fields generated by the RKGC formulation. Assuming a rigid body (particle) system, in this problem, the total mechanical energy is
defined as the sum of potential energy and kinetic energy [67–69], and the mechanical energy decay is defined as

𝛥𝐸 =
𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡 − 𝐸0

𝑝𝑜𝑡

𝐸0
𝑝𝑜𝑡 − 𝐸

∞
𝑝𝑜𝑡

, (41)
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Fig. 7. Lid-driven cavity: ESPH method results for velocity fields (visualized by the magnitude ranging from 0 to 1) with vectors at ℎ = 0.8𝛥𝑥 and 𝛥𝑥 = 0.01.
(a) BR-RKGC; (b) PR-SKGC.

Fig. 8. Standing wave: Initial configuration of the simulation.

where 𝐸0
𝑝𝑜𝑡 and 𝐸∞

𝑝𝑜𝑡 are the initial and the final potential (also total) energies of the system, respectively. Note that such an
assumption neglects the pressure and the deformation (or elastic) contributions to the mechanical energy, and may lead to noticeable
discrepancies, as shown in the following discussion, to that of the weakly compressible fluid simulation here. Fig. 11 illustrates
the decay of the normalized mechanical energy across different formulations and compares them with the analytical and reference
results. It is observed that the RKGC formulation is able to preserve the energy very well, suggesting very small numerical dissipation.
Note that the slight but noticeable decay and recovering of the mechanical energy at early stage may attribute to the suddenly
change of pressure and elastic energies which are neglected in Eq. (41) given by the rigid-body system. However, NKGC exhibits
rapid energy decay, even when the smoothing length is increased to ℎ = 2.0𝛥𝑥, as shown by Khayyer et al. [68]. It is also noted
that the SKGC formulation leads to an increase in the energy, consistent with findings from Ref. [45,56]. Therefore, extra weight
with the identity matrix (as WKGC2 in Ref. [45]) is added to decrease the contribution of the SKGC formulation to eliminate the
artifact but, as illustrated in Fig. 11, it still shows considerable energy loss.

Fig. 12 illustrates the wave heights across different methods as well as the convergence analysis of the RKGC formulation.
The comparisons of the wave height depicted in Fig. 12(a) indicate that while the results obtained with both SKGC and RKGC
achieve notable improvement compared to NKGC, RKGC further improves accuracy considerably and generates results closer to
the analytical solution. As displayed in Fig. 12(b), RKGC demonstrates good convergence with increasing resolution. The observed
frequency discrepancy from the analytical solution at a late time is not unexpected since only a 2nd-order approximation is employed
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Fig. 9. Standing wave: Snapshots of (a) the density field and (b) the velocity divergence field.

Fig. 10. Standing wave: Snapshots of the free-surface profile and the pressure contour obtained by the RKGC (𝛥𝑥 = 0.005). (a) t = 23.5 s; (b) t = 25.2 s.

to obtain the analytical solution [66]. Note that similar discrepancies have also been exhibited in previous numerical results at high
resolutions (see Figs. 15 and 6 in Refs. [45,68], respectively.) Regarding the computational costs, RKGC and SKGC exhibit about the
same costs as given in Ref. [45]. With the adoption of dual-time stepping techniques [51], there is an additional 10% computational
cost for calculating KGC matrices.

5.4. Oscillating drop

The two-dimensional oscillating drop was also investigated to evaluate the energy conservation properties of the proposed
method. This problem, as outlined in Ref. [70] and depicted in Fig. 13, involves a drop with a radius of 𝑅 = 1 immersed in an
assumed inviscid fluid. This drop experiences a central conservative force 𝐹 = −𝛺2𝑅 and is initialized with a velocity profile
defined by{

𝑢0 = 𝐴0𝑥
𝑣0 = −𝐴0𝑦,

(42)

where 𝐴0 = 1.0 and 𝐴0∕𝛺 = 1.0. The analytical solution reported in Ref. [71] is referenced for quantitative comparison and
validation.

The pressure contour with 𝛥𝑥 = 0.005 at two different instants are presented in Fig. 14, indicating the robust free-surface profile
and smooth pressure fields obtained by the RKGC formulation. Furthermore, Fig. 15 illustrates pressure observations at the center
of the domain obtained by the RKGC for different resolutions. It shows that the RKGC has good numerical stability and accuracy.
As the resolutions increase, they converge and indicate a good convergence property.

Fig. 16 presents the time evolution of the decay of normalized mechanical energy across different formulations and compares
them with the analytical and reference results. Aligning with the observation in Fig. 11, the RKGC formulation is able to preserve
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Fig. 11. Standing wave: Time evolution of the decay of the normalized mechanical energy obtained by different formulations (𝛥𝑥 = 0.01).

the energy quite well, even at a low resolution, and the energy conservation properties are improved with the resolution increase.
It indicates there is no evident energy decay at the resolution of 𝛥𝑥 = 0.005. However, at this high resolution, NKGC still exhibits a
considerable energy decay rate. While the corrected formulations introduced by Ren et al. [45] and Huang et al. [49] achieve notable
reduction of the energy decay, they still suffer more energy loss than that obtained by RKGC at a lower resolution. The separate
comparisons of kinetic and potential energies are depicted in Fig. 17. The corrected formulations all show improved agreement with
the analytical solution compared to the NKGC for both kinetic and potential energies. Moreover, RKGC exhibits a closer agreement
with the analytical solution than those reported in Ref. [45] where a corrected formulation is also adopted. The separate kinetic and
potential energies obtained by RKGC at different resolutions are presented in Fig. 18 as further evidence. The figure demonstrates
that RKGC maintains good energy conservation across different resolutions. As the resolution increases, the results converge, and
no evident energy decay is observed at high resolution, agreeing with the observation in Fig. 16, and the analytical solution shows
a slight energy increase over time, indicating some error against the exact energy conservation.

5.5. Progressive wave propagation

The two-dimensional numerical wave tank (NWT) has been used to simulate the progressive gravity wave. Following the
configuration in Ref. [47], as shown in Fig. 19, the tank has a flat region of length 𝑙𝑓 = 50 m with a still water depth of 𝑑 =
1 m, and it terminates with a 10 m long sloping section, where the slope is 10%, to reduce the wave reflection from the end. The
simulated waves are generated using a piston-type wavemaker, producing waves with a height 𝐻 = 0.08 m (from peak to trough)
and a wavelength of 𝜆 = 1.5 m. The particle spacing is set at 𝛥𝑥 = 1∕64 m and 𝛥𝑥 = 1∕128 m, respectively, and the simulation is run
up to a time that is necessary for the wave train to reach the end of the flat region.

Fig. 20 illustrates the water surface elevation within the NWT relative to the mean water level, and a distance corresponding to
30 wavelengths is presented. Compared to the result without correction (see Fig. 11 in Ref. [47]), the low-resolution results obtained
by the RKGC formulation already show great alleviation of the decay, and the high-resolution results do not show apparent decay,
aligning with the theoretical amplitude envelope, indicating good energy conservation. Note that, while the present results are in
good agreement with those reported in Ref. [47] (their Fig. 11) obtained by the CCSPH (Conservative Corrected SPH) method at
the same resolution, the present computational cost is expected to considerably lower, as CCSPH method requires the inversion of
correction matrix for each particle pair at every time step and an elaborative free-surface treatment. Moreover, some irregularities
in the surface elevation, similar to those in Ref. [47], have been noted. These irregularities may be attributed to spurious waves in
the tank, which are related to nonlinearities generated by the wavemaker and startup-related seiching phenomena [72].

5.6. Dam-break flow

The dam-break flow, extensively explored both experimentally [73–76] and numerically [5,51,77,78], is a challenging benchmark
to validate the SPH method. Fig. 21 presents the initial configuration for the simulation, aligning with the experimental setup
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Fig. 12. Standing wave: Time evolution of the free-surface elevation at the center of the tank. (a) Comparison across different formulations (𝛥𝑥 = 0.005); (b)
Convergence study of the RKGC formulation.
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Fig. 13. Oscillating drop: Schematic illustration of the benchmark test.

Fig. 14. Oscillation drop: Snapshots of the free-surface profile and the pressure contour obtained by the RKGC (𝛥𝑥 = 0.005). (a) t = 20.5 s; (b) t = 22.9 s.

outlined by Lobovsky et al. [76]. Three measurement points (W1, W2, and W3) are assigned to record the free surface height,
and three probes (P1, P2, and P3) are employed to capture the pressure signals. We consider an inviscid flow with a density of
𝜌0 = 1000 k g∕m3 and a gravitational constant of 𝑔 = 9.8 m∕s2. According to the shallow water theory [79], the maximum velocity
is estimated as 2

√
𝑔 𝐻 to determine the speed of sound, where 𝐻 represents the initial water depth.

Fig. 22 shows several typical snapshots of the time evolution of the free surface obtained by the RKGC formulation. The obtained
results demonstrate smooth pressure distributions and robust free-surface profiles and align well with experimental observations
[76] and previously reported simulation results [5,45,51]. RKGC could appropriately capture key flow characteristics, including
high roll-up along the downstream wall, a prominently reflected jet, and free surface disruption caused by the arrival of the
secondary wave. Fig. 23 shows the predicted propagation of the surge-wave front, along with comparisons to data measured in
various experiments [73,74,76] and the analytical solution derived from the shallow-water equation [79]. It is observed that the
present results show good convergence and agree well with the experiments before 𝑡

√
𝑔 𝐻 < 1, aligning closely with the analytical

solution afterwards, but overestimate the front speed obtained from the experiments, which was also observed in other simulations
[5,77,80].

The comparisons of the water levels recorded at W1, W2, and W3 with experimental observations obtained from Ref. [76]
are presented in Fig. 24 and Table 1 provides the corresponding root mean square error (RMSE). The wave height exhibits good
agreement with the experimental data. Nonetheless, we observe discrepancies in higher run-up waves (W1) and marginally faster
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Fig. 15. Oscillating drop: Time history of the pressure at the drop center obtained by the RKGC with different particle resolutions.

Fig. 16. Oscillating drop: Time evolution of the decay of the normalized mechanical energy obtained by different formulations.

wavefront (W2 and W3) in the current results. Similar observations were also reported in previous numerical studies [5,45,77],
potentially attributed to the adoption of inviscid flow in the current study, leading to violent wave breaking up and splashing. In
addition, the water level obtained at later stages shows some discrepancies due to particle splashing and accompanying the second
wave to the wave breaking and re-entry, and high-resolution recognizes the small splashing structure, possibly leading to increased
discrepancies, which has also been observed in Refs. [5,45,51].

The history of pressure signals recorded at P1, P2, and P3 is presented in Fig. 25. The current results have good agreement
with the experimental observations [76], except for observed pressure fluctuations in the current study resulting from the weakly
compressible assumption, which tend to decrease with increasing spatial resolutions. Discrepancies in pressure magnitudes at P2
and P3 were also reported in other studies [51,78] where different WCSPH methods were employed. The overestimated pressure
peak at P2 by the current method is potentially due to the weakly compressible model. In addition, the air cushion effect in the
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Fig. 17. Oscillating drop: Time history of the energy obtained by different formulations (𝛥𝑥 = 0.01). (a) Kinetic energy; (b) Potential energy.
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Fig. 18. Oscillating drop: Time history of the energy obtained by RKGC at different resolutions. (a) Kinetic energy; (b) Potential energy.
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Fig. 19. Progressive wave propagation: Configuration of the NWT where waves with a height of 𝐻 = 0.08 m and a wavelength of 𝜆 = 1.5 m are generated in a
depth of 1 m. (a) Overall view of the NWT; (b) Zoom-in view at the beginning and the end.

Fig. 20. Progressive wave propagation: Water surface elevation in the NWT with respect to the mean water level.

Table 1
Dam-break flow: RMSE of numerical results against experimental observations for water levels.

𝐻∕𝛥𝑥 = 40 𝐻∕𝛥𝑥 = 60 𝐻∕𝛥𝑥 = 80
W1 0.05623 0.04445 0.06169
W2 0.14055 0.12691 0.14346
W3 0.21604 0.15134 0.14590

Computer Methods in Applied Mechanics and Engineering 433 (2025) 117484 

21 



B. Zhang et al.

Fig. 21. Dam-break flow: Initial configuration of the simulation.

Fig. 22. Dam-break flow: Snapshots of particles and pressure distributions during the time evolution with 𝐻∕𝛥𝑥 = 60.
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Fig. 23. Dam-break flow: Time evolution of the surge-wave front.

Table 2
OWSC: Pressure sensor positions on the front flap along the z-axis from the device’s center, with 𝑦 = 0 representing the mean
water level.
No. y-axis (m) z-axis (m) No. y-axis (m) z-axis (m)

P01 −0.046 0.468 P09 −0.117 0.156
P03 0.050 0.364 P11 0.025 0.052
P05 −0.300 0.364 P13 −0.239 0.052

experiment may also decrease its pressure peak [76]. The occurrence time of the pressure observation at P3 aligns with 𝑡
√
𝑔∕𝐻 ≈ 2.7

very well, though the peak value is underestimated.
The dissipation of total mechanical energy is given as [81]

𝛥𝐸 =
𝐸 − 𝐸0
𝐸0 − 𝐸∞

, (43)

where 𝐸 the total mechanical energy, 𝐸0 is the initial mechanical energy, and 𝐸∞ is the mechanical energy after reaching the
equilibrium state. Fig. 26 displays the evolution of the mechanical energy of RKGC, and compares it with SKGC and different
references. Fig. 26(a) shows that with increased resolutions, the numerical dissipation decreases rapidly. It is observed in Fig. 26(b)
that RKGC has lower energy decay compared to other numerical results [5,81,82], where no correction was employed. SKGC results
in energy increasing before the splashing (𝑡√𝑔 𝐻 < 6), and involving the extra weighting of the KGC employed by Ren et al. [45]
could alleviate this issue, but it still leads to an energy increase before the roll-up wave (𝑡√𝑔 𝐻 < 2.3). However, RKGC could
maintain the energy before the splashing and leads to a slightly lower energy decay rate afterwards compared to SKGC and the
results in Ref. [45], except for the energy-increasing artifacts observed for the latter.

5.7. Three-dimensional oscillating wave surge converter (OWSC)

As a forefront wave energy converter, the oscillating wave surge converter (OWSC) has shown remarkable energy absorption
capabilities and hydrodynamic performance, and it has been widely studied with numerical and experimental methods [83–86].
In this section, the three-dimensional OWSC is investigated with the RKGC formulation. Fig. 27 illustrates the configurations of
the wave tank and the OWSC model, which are identical to the experimental setup detailed in Ref. [84]. The wave tank measures
18.42 m in length, 4.58 m in width, and 1.0 m in height. The OWSC device is simplified as a flap with dimensions of 0.48 m in
height, 1.04 m in width, and 0.12 m in thickness, and is hinged to a base with a height of 0.16 m. The flap has a mass of 33 kg,
and its angular inertia is 1.84 k g∕m2. To measure the wave elevation and impact pressure on the flap, three wave gauges, as shown
in Fig. 27, and six pressure sensors, whose positions are listed in Table 2, are employed. Note that the present model is 1:25 scaled
to that in the Ref. [84], and all the results present in this work have been converted to the full scale accordingly.

Considering the regular wave with a height 𝐻 = 5 m and a period 𝑇 = 10 s at full scale, a piston-type wave maker is employed
to generate regular waves, adopting an ensemble of dummy particles whose motion follows the linear wavemaker theory [72],
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Fig. 24. Three-dimensional dam-break: water levels recorded at W1, W2, and W3. Convergence study and comparison against experimental results presented
by Lobovsky et al. [76].
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Fig. 25. Three-dimensional dam-break: history of pressure signals recorded at probes P1, P2 and P3. Convergence study and comparison against experimental
results presented by Lobovsky et al. [76].
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Fig. 26. Dam-break flow: evolution of mechanical energy. (a) Global evolution; (b) Zoom in on the initial evolution and compare with references (𝐻∕𝛥𝑥 = 80).

where the particle displacement in 𝑥-direction 𝑥𝑎 is determined by

𝑥𝑎 = 𝑆 sin(𝑓 𝑡 + 𝜙), (44)

with 𝑆 the wave stroke, 𝑓 the wave frequency, and 𝜙 the initial phase. The wave stroke is further defined as

𝑆 =
𝐻 sinh(2𝑘ℎ0) + 2𝑘ℎ0
sinh(2𝑘ℎ0) t anh(𝑘ℎ0)

, (45)

where ℎ0 is the water depth, and 𝑘 is the wave number. To minimize wave reflective effects on the pressure, wave energy, flap
movements, etc., a damping zone [87,88] as illustrated in Fig. 27, is established at the end of the wave tank to absorb energy from
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Fig. 27. OWSC: Schematic depiction of the wave tank and the OWSC model.

waves reaching its boundary and reduce the amplitude of reflected waves. Within this damping zone, the particle velocity undergoes
decay according to

𝐯 = 𝐯𝟎
(
1.0 − 𝛥𝑡𝜃

( 𝐫 − 𝐫𝟎
𝐫𝟏 − 𝐫𝟎

))
. (46)

Here, 𝐯𝟎 the initial velocity of the fluid particle at the entry of the damping zone, 𝐯 the velocity after damping, 𝛥𝑡 the time step,
and 𝐫𝟎 and 𝐫𝟏 are the initial and final positions of the damping zone, respectively. The reduction coefficient 𝜃 = 5.0 governs the
modifications on the velocity at each time step in the current simulation. The entire system is discretized with a particle spacing of
0.03 m, resulting in 1.542 million fluid particles and 0.628 million solid particles. The present numerical results have been compared
with both experimental observations and numerical investigations reported in Ref. [84].

Fig. 28 displays snapshots of the free-surface profile colored by the normalized pressure 28(a) and velocity magnitude 28(b),
respectively. The results clearly demonstrate that the current method effectively captures the dynamic free-surface elevation,
including wave reflection and breaking around the flap. Additionally, the outcomes exhibit smooth pressure and velocity fields,
even during the intensive wave interactions around the flap, where wave reflection and breaking are observed. Furthermore, the
cross-sectional slices along the middle line provide insights into the rotational state of the flap. These observations are consistent
with those reported in the Refs. [84,86], as evidenced by the wave height and flap rotation angle history presented below.

The observed wave evaluations are depicted in Fig. 29, offering a comparison with the reference results [45,84]. The RKGC
formulation demonstrates good agreement with the results obtained from experiments, particularly at locations W04 and W05,
which are in the seaward direction from the flap. However, discrepancies, especially the overestimation of wave crest height, are
noticeable at location W12, positioned behind the flap. These differences may arise from wave reflection and breaking around
the flap. Additionally, though the reference numerical results [84] utilize a turbulence model to introduce additional numerical
dissipation, it is reasonable not to introduce the turbulence model, as investigated by He et al. [89]. Another possible reason for the
discrepancies may be attributed to the single-phase flow simulation in the current study. The results from multi-phase flow, where
the air phase is also considered by He et al. [89,90] can be closer to the actual case, and they conclude the gas plays a vital role
in attenuating wave height during wave propagation. Compared to the results in Ref. [45] where WKGC2 is adopted, RKGC shows
better alignment with experimental, particularly predicting more accurate wave heights at W04 and W05 positions and wave falls
at all three positions.

Fig. 30 presents the rotation angle of the flap, providing a comparison with the experimental observations and other numerical
predictions. The comparison underscores the good agreement with the experimental and Fluent results [84]. While predictions
obtained by standard SPH formulations without corrections, such as those reported in Ref. [83,85], often underestimate the extreme
rotation angle of the flap compared to experimental results, the prediction gained with the RKGC formulation and WKGC2 [45]
notably overcomes this limitation. They provide more accurate predictions for flap rotating angles, aligning more closely with the
experimental observations. The RKGC formulation in this study is applied only in the fluid domain rather than the fluid–structure
interaction, thus, it gives slightly closer predictions to experiments than that in Ref. [45].

The pressure evolution over time at each probe on the flap is illustrated and compared in Fig. 31. The results obtained using
the RKGC formulation align well with the experimental data, predicting reasonable slamming pressures despite some pressure
oscillations due to the weakly compressible assumption. In addition, the observed large pressure peaks and drops at P01, P03, P09,
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Fig. 28. OWSC: Snapshots of free surfaces and the flap motion during time evolution. (a) Fluid particles are colored by the normalized pressure; (b) Fluid
particles are colored by the velocity magnitude. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

and P11 can be attributed to the fact that air cushion effects are not captured in the current single-fluid simulation. Compared to
the pressure results in Ref. [45,86] based on the SPH method, the current observed pressure shows fluctuations due to the density
reinitialization method employed in Ref. [91], which has been proven more suitable for free-surface problems. The capturing of
double pressure peaks at P01, P03, and P15, as well as the pressure drops at P05 and P13, show better agreement than those
obtained using Fluent, although the small fluctuations are observed due to the weakly compressible model. However, discrepancies
still exist, which may be attributed to air entrainment in the splash passing the flap, a factor not considered in the current work.
Also, note that the pressure sensor P11 gives an apparent small non-zero reading before the wavefront arrives. This is because the
sensor is quite close to the initial water level (0.025 m higher) within a particle spacing 𝛥𝑥 = 0.03 m and the cutoff radius for data
sampling. The initial particle rearrangement at the early stage of the simulation can produce such small magnitude but erroneous
signals. Later, these signals are replaced with more significant and physically meaningful values. This observation has also been
reported in previous work [45].

In terms of computational cost for RKGC formulation, a comprehensive comparison of SKGC detailed in previous work [45] can
be referred to. With the adoption of dual-time stepping techniques, there are around 15% additional computational costs for the 3D
problem to calculate the KGC matrix and implement the corrected formulation.

6. Extension

The concept of the reverse KGC formulation can be readily extended to accommodate second- or even higher-order consistency
conditions of the SPH gradient approximation. This extension uses the correction function for RKPM proposed by Liu et al. [21,22],
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Fig. 29. OWSC: Comparison of free surface elevations for wave height 𝐻 = 5.0 m and period 𝑇 = 10.0 s against results of Wei et al. [84] and Ren et al. [45].
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Fig. 30. OWSC: Comparison of the time evolution of the flap rotation.

provided that the corresponding particle relaxation is employed. The SPH gradient approximation in non-conservative form can be
expressed similarly to Eq. (9) as

∇𝜓𝑖 =
∑
𝑗
𝜓𝑖𝑗𝑪 𝒊

(
𝐫𝑖, 𝐫𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 , (47)

where 𝑪 𝒊
(
𝐫𝑖, 𝐫𝑗

)
= 𝐶0

(
𝐫𝑖
)
+ 𝑪𝟏

(
𝐫𝑖
) (

𝐫𝑗 − 𝐫𝑖
)

represents the correction function (see Refs. [21,22] for more definitions). Following
Taylor expansion of 𝜓𝑗 and substituting it into (47), one can obtain

∇𝜓𝑖 = −
∑
𝑗

(
∇𝜓𝑖 ⋅ 𝐫𝑖𝑗 +

1
2
∇ ⋅ ∇𝜓𝑖 ∶ 𝐫𝑖𝑗 ⊗ 𝐫𝑖𝑗

)
𝑪 𝒊

(
𝐫𝑖, 𝐫𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 . (48)

For vanishing leading moments and for ensuring second-order consistency, the following conditions are to be satisfied simultaneously
as

⎧⎪⎨⎪⎩

∑
𝑗
−𝐫𝑖𝑗 ⊗ 𝑪 𝒊

(
𝐫𝑖, 𝐫𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 = 𝐈

∑
𝑗
𝐫𝑖𝑗 ⊗ 𝐫𝑖𝑗 ⋅ 𝑪 𝒊

(
𝐫𝑖, 𝐫𝑗

)
∇𝑊𝑖𝑗𝑉𝑗 = 𝟎.

(49)

Subsequently, 𝐶0 and 𝑪𝟏 can be obtained by solving Eq. (49). Consequently, the reverse-corrected conservative formulation with
second-order consistency can be written similarly to Eq. (24) as

∇𝜓𝑖 = −
∑
𝑗

(
𝜓𝑖𝑪𝒋 + 𝜓𝑗𝑪 𝒊

)
∇𝑊𝑖𝑗𝑉𝑗 , (50)

which can be further rewritten as

∇𝜓𝑖 = −𝜓𝑖
∑
𝑗

(
𝑪 𝒊 + 𝑪𝒋

)
∇𝑊𝑖𝑗𝑉𝑗 +

∑
𝑗
𝜓𝑖𝑗𝑪 𝒊∇𝑊𝑖𝑗𝑉𝑗 . (51)

The first term on the RHS can also be made to vanish by particle relaxation based on the correction function, while the second term
accurately reproduces the gradient as indicated in Eq. (47). Therefore, the reverse-corrected conservative formulation in Eq. (50)
exhibits second-order consistency, and it also satisfies the discrete variational consistency and the linear momentum conservation,
as we have discussed in Section 3.3. However, obtaining the corresponding correction function and achieving convergence in the
particle relaxation driven by the correction function are still open issues.

7. Conclusion

This paper introduces the reverse KGC (RKGC) formulation, which is conservative and, integrating the particle relaxation based on
the KGC matrix, ensures the zero- and first-order consistencies without explicit dependence on the smoothing length. Implementation
in typical SPH methods, including Lagrangian SPH and Eulerian SPH, exhibits considerably improved accuracy, especially good
energy conservation properties in general free-surface problems. While resulting the straightforward extension of the scheme to even
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Fig. 31. OWSC: Comparison of pressure on the flap for 𝐻 = 5.0 m and 𝑇 = 10.0 s against the results of Wei et al. [84].
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Fig. 31. (continued).
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higher order consistency, challenges in achieving converged solutions for particle relaxation driven by the KGC matrix and high-
order correction function are yet to be elaborated, especially for three-dimensional complex geometries and the situation employing
a ℎ∕𝛥𝑥 value smaller than 1.0. Additionally, extending RKGC for SPH solid dynamics and to a similar idea for Laplacian operators
is subjected to future work.
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Efficiently enhancing heat conduction through optimized distribution of a limited quantity of high thermal 
conductivity material is paramount in cooling electronic devices and numerous other applications. This 
paper introduces a target-driven all-at-once approach for PDE-constrained optimization and derives a splitting 
smoothed particle hydrodynamics (SPH) method for optimizing the distribution of thermal conductivity in heat 
conduction problems. In this method, the optimization iteration of the system is split into several easily addressed 
steps. A targeting step is employed to progressively enforce the direct target, which potentially leads to increased 
PDE residuals. Then, these residuals are recovered through an evolution step of the design variable. After this, 
a PDE solution step is carried out to further decrease the PDE residuals, and the system is ready for the next 
iteration. Unlike the simulation-based approaches, the present method does not rely on the adjoint state equation 
and converged state variable field in each iteration, and the optimization process is significantly simplified and 
accelerated. With the utilization of an implicit SPH splitting operator and a general numerical regularization 
formulation, the information propagation is further accelerated and the numerical stability is greatly enhanced. 
Typical examples of heat conduction optimization demonstrate that the current method yields optimal results 
comparable to previous methods and exhibits considerable computational efficiency. Moreover, the optimal 
results feature more moderate extreme values, which offers distinct advantages for the easier selection of 
appropriate material with high thermal conductivity.

1. Introduction

Electronic devices find wide-ranging applications in various indus-

tries, including aerospace, transportation, network communication, pro-

cessing, and manufacturing. The evolution of microelectronics has fa-

cilitated the miniaturization of electronic devices, but this reduction 
in device size drastically increases power density and presents consid-

erable challenges for effective cooling [1]. To guarantee the expected 
performance and lifespan, multiple design ideas have been explored 
to dissipate the generated heat and lower the operating temperatures 
[2–7]. Among these ideas, inserting high thermal conductivity mate-

rial [2,3] has garnered extensive attention due to its effectiveness and 
simplicity of implementation. The rapid innovation in additive man-

ufacturing, specifically in metal 3D printing, has also opened up new 
possibilities for implementing this cooling concept [8,9].

Thus, the primary design challenge lies in finding the optimal distri-

butions of high thermal conductivity materials to meet specific cooling 

* Corresponding author.

E-mail addresses: bo.zhang.aer@tum.de (B. Zhang), c.zhang@tum.de (C. Zhang), xiangyu.hu@tum.de (X. Hu).

targets. This optimization is also known as the volume-to-point (VP) 
problem [10]. It involves redistributing a fixed amount (constraint) of 
material with high thermal conductivity (design variable) to cool a heat-

generating volume within specified boundaries, with the objective of 
minimizing the temperature (state variable) in the given domain. The 
VP problem is a typical example of PDE-constrained optimization, char-

acterized by the constraint of physical principles expressed as partial 
differential equations (PDEs) [11].

The methods for PDE-constrained optimization can be categorized 
into simulation-based and all-at-once approaches, depending on how 
the PDE constraint is handled [12,13]. In simulation-based methods, it 
is eliminated by obtaining a converged physical solution using exist-

ing solvers. Therefore, the optimization process computes the gradients 
of state variables with respect to the design ones at the hypersurface 
of the physical solution to determine the searching direction in each 
iteration. Typical approaches for computing gradients, whether done 
explicitly or implicitly, include the adjoint technique [14,15], auto-

https://doi.org/10.1016/j.ijheatmasstransfer.2024.125476
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matic differentiation (AD) [16] and artificial neural network (ANN) 
[17,18]. Although the simulation-based methods are conceptually ap-

pealing and widely used in solving VP problems [19–21], they require 
repeated and costly solutions of the PDEs, even in the initial stages when 
the design variables are still far from their optimal values. All-at-once 
methods, which explicitly maintain the PDE constraint as another opti-

mal target and treat both the state and design variables equally. A clear 
advantage is that they do not require repeated PDE solutions but sat-

isfy the PDE constraint only at the termination of optimization. Some 
all-at-once methods, such as the augmented Lagrangian method [22]

and sequential quadratic programming method [23], have been pro-

posed for addressing general PDE-constrained optimization problems. 
However, these methods are rare in solving VP problems due to their 
inherent complexity and high computational costs.

In early works on simulation-based methods for tackling the VP 
problem, some indirect global optimal principles, such as tempera-

ture gradient field homogenization [24–26], entropy generation min-

imization (EGM) [27–30], and entransy dissipation extremum (EDE) 
[26,31–34], have been proposed and adopted. Although these princi-

ples were expected to be equivalent to the direct target of the lowest 
average temperature, it has been argued that they are not equivalent 
and directly utilizing these principles for different targets or boundaries 
may lead to sub-optimal or even detrimental solutions [32]. Therefore, 
direct optimization targets, including the lowest average [35,15] and 
minimizing hot spot temperature [18,36], have also been employed re-

cently.

In addition to the aforementioned iterative methods based on de-

terministic principles, some stochastic approaches, such as the bionic 
optimization (BO) method [37,38], cellular optimization (CA) method 
[39,40], simulated annealing (SA) and genetic algorithm (GA) method 
[41], have been explored to address VP problems. Topology optimiza-

tion [42], for example the asymptotes algorithm (MMA) [43] and 
density-based method [44], has also gained attention for optimal heat 
conduction problems. While these stochastic methods offer novel av-

enues for achieving optimal solutions, they often deal with a large 
number of variables in the spatial discretization of the domain, lead-

ing to reduced efficiency and suitability for large-scale and reliability-

sensitive problems. Therefore, developing an efficient yet straightfor-

ward method, particularly leveraging the direct optimization target and 
the all-at-once concept, holds great promise for addressing heat conduc-

tion optimization problems.

With these in mind, this paper introduces a target-driven all-at-

once method for PDE-constrained optimization problems and derives 
a smoothed particle hydrodynamics (SPH) method for optimizing the 
thermal conductivity distribution to minimize the average tempera-

ture. In this method, the optimization iteration is divided into several 
easily handled steps. A targeting step is adopted to progressively im-

pose the direct target, potentially resulting in increased PDE residuals. 
Then, through an evolution step of the design variables, these residuals 
are subsequently recovered. Following this, a PDE solution step is per-

formed to further decrease the PDE residual and prepare for the next 
iteration. The novelty of this work can be summarized in three aspects. 
Firstly, as the split steps are only weakly coupled with each other, com-

pared to previous all-at-once approaches, the present updating of both 
state and design variables is much easier to handle. Secondly, by lever-

aging the splitting-operator SPH method, implicit updating is achieved 
without the inversion of large-size matrices. Thirdly, a general formula-

tion of regularization has been proposed to achieve numerical stability 
when evolving the design variable.

In the following sections, Section 2 provides a brief problem de-

scription; Section 3 introduces the SPH method and the numerical 
scheme; Section 4 elucidates the proposed optimization method, and 
Section 5 demonstrates typical examples to validate the effectiveness of 
the method. Finally, Section 6 concludes the key findings and outlooks 
the future work.

Fig. 1. Illustration of the 2D heat conduction problem. Ω denotes the thermal 
domain; 𝛤𝑇 and 𝛤𝑞 represent constant surface temperature and heat flux bound-

aries, respectively, and �̇� indicates the presence of an internal heat source.

2. Problem description

We consider the optimization of thermal conductivity distribution 
for two-dimensional heat conduction problems, specifically addressing 
typical VP problems. As illustrated in Fig. 1, the thermal domain under 
consideration, denoted as Ω, is subject to different boundary conditions 
and may contain internal heat sources. The steady-state temperature 
field within the thermal domain can be determined by solving the tran-

sient heat conduction governing equation given by

d𝑇
d𝑡

=∇ ⋅ (𝑘∇𝑇 ) + �̇� in Ω, (1)

when the left-hand side (LHS) converges to zero. Here, 𝑇 represents 
temperature, 𝑘 denotes thermal conductivity, and �̇� is the volume rate 
of the internal heat source. Note that, for the sake of simplified analy-

sis, Eq. (1) is reduced from the general heat conduction equation with 
𝜌𝐶 = 1, where 𝜌 and 𝐶 represent density and heat capacity, respec-

tively.

Two typical boundary conditions are considered here, as shown in 
Fig. 1. The Dirichlet boundary condition is given as

𝑇 = 𝑇𝑏 on 𝛤𝑇 , (2)

where the surface temperature 𝑇𝑏 is held constant. The Neumann 
boundary condition, which maintains a fixed heat flux rate, can be ex-

pressed as,

−𝑘∇𝑇 ⋅ 𝒏 = 𝑞𝑏 on 𝛤𝑞, (3)

where 𝒏 indicates the surface normal vector pointing outward.

The objective of the optimization is to obtain a distribution of ther-

mal conductivity in Ω by minimizing the average steady temperature 𝑇
defined as

𝑇 = 1
𝑉 ∫

𝑉

𝑇 𝑑𝑉 , (4)

where 𝑉 is the total volume of the thermal domain. Additionally, the 
average thermal conductivity is constrained to remain constant by

∫
𝑉

𝑘𝑑𝑉 = 𝑘0𝑉 , (5)

where 𝑘0 is a reference value throughout the optimization process.
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3. Numerical scheme

3.1. SPH formulation

In this study, the SPH method is employed to solve the tempera-

ture and thermal conductivity fields. SPH is a fully Lagrangian parti-

cle method that was initially proposed for astrophysical applications 
[45,46]. Since its introduction, SPH has demonstrated significant suc-

cess in simulating a wide range of scientific problems, including heat 
transfer problems [47,48].

In the SPH scheme, the heat conduction governing equation in Eq. 
(1) can be discretized at each SPH particle 𝑖 located at 𝒓𝑖 with its neigh-

boring particles 𝑗 as follows,

d𝑇𝑖
d𝑡

= 2
∑
𝑗
𝑘𝑖𝑗

𝑇𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗 + �̇�𝑖. (6)

Here, ∇𝑖𝑊𝑖𝑗 = ∇𝑖𝑊
(|||𝒓𝑖𝑗

||| , ℎ
)
= 𝜕𝑊𝑖𝑗

𝜕𝑟𝑖𝑗
𝒆𝑖𝑗 , where 𝒓𝑖𝑗 = 𝒓𝑖 − 𝒓𝑗 , ℎ is the 

smoothing length and the unit vector 𝒆𝑖𝑗 =
𝒓𝑖𝑗
𝑟𝑖𝑗

, represents the derivative 
of the kernel function. 𝑇𝑖𝑗 = 𝑇𝑖 − 𝑇𝑗 indicates the inter-particle temper-

ature difference, and 𝑉𝑗 denotes the volume of neighboring particles 𝑗. 
The expression 𝑘𝑖𝑗 = (𝑘𝑖 + 𝑘𝑗 )∕2 denotes the inter-particle average ther-

mal conductivity in the context of a continuous thermal conductivity 
distribution.

Near the domain boundary, we introduce several layers of dummy 
particles (typically four layers, considering the currently selected 
smoothing length of 1.15) to enforce different boundary conditions. 
Implementing the Dirichlet boundary condition is straightforward and 
involves imposing the temperatures

𝑇𝑤 = 2𝑇𝑏 − 𝑇𝑖, (7)

at dummy particles implied by the wall boundary condition [49]. To 
implement the Neumann boundary condition, the discretization of Eq. 
(1) is modified into

d𝑇
d𝑡

=∇ ⋅ (𝑘∇𝑇 ) + �̇�+ �̇�𝛤𝑞 in Ω, (8)

following the Ref. [50], where the heat flux in Eq. (3) is replaced by a 
volumetric term �̇�𝛤𝑞 , which can be discretized as

�̇�𝛤𝑞
𝑖 = −𝑞𝑏

∑
𝑗∈Ω𝑗

(
𝒏𝑖 + 𝒏𝑗

)
⋅∇𝑖𝑊𝑖𝑗𝑉𝑗 . (9)

Here, Ω𝑗 represents the boundary domain defined by the dummy parti-

cles. The unit vectors 𝒏𝑖 and 𝒏𝑗 are normal to the boundary evaluated 
at the respective positions of particle 𝑖 and 𝑗.

3.2. Splitting operator based implicit scheme

It is well known that traditional implicit schemes often require large-

scale matrix inversion or iterations across the entire system, which can 
lead to significant memory demands and challenges in parallelization. 
To overcome these challenges, we employ a splitting operator based 
implicit scheme to advance Eq. (6). The implicit solving step is divided 
into individual particle-by-particle operations, and each evolves a small 
system that is easy to inverse. One commonly used approach for this 
purpose is the second-order Strang splitting technique [51], shown as

𝑆(Δ𝑡)
𝑖 =𝐷

( Δ𝑡2 )
1 ◦𝐷

( Δ𝑡2 )
2 ◦…◦𝐷

( Δ𝑡2 )
𝑖 …◦𝐷

( Δ𝑡2 )
𝑁𝑡−1

◦𝐷
( Δ𝑡2 )
𝑁𝑡

◦

𝐷
( Δ𝑡2 )
𝑁𝑡

◦𝐷
( Δ𝑡2 )
𝑁𝑡−1

◦…◦𝐷
( Δ𝑡2 )
𝑖 …◦𝐷

( Δ𝑡2 )
2 ◦𝐷

( Δ𝑡2 )
1 .

(10)

Here, the operator 𝑆(Δ𝑡)
𝑖 represents the complete step for advancing the 

equation. 𝑁𝑡 refers to the total number of particles, and 𝐷𝑖 represents 
the splitting operator corresponding to particle 𝑖. The update of the 
variable for the entire field involves a forward sweep of all particles for 

half a time step, followed by a backward sweep for another half time 
step [52].

Within the local implicit formulation, Eq. (6) can be rewritten as

d𝑇𝑖
d𝑡

= 2
∑
𝑗
𝑘𝑖𝑗

𝑇 𝑛+1
𝑖𝑗

𝑟𝑖𝑗
∇𝑖𝑊𝑖𝑗𝑉𝑗 + �̇�𝑛+1

𝑖 , (11)

where 𝑇 𝑛+1
𝑖𝑗 = 𝑇 𝑛

𝑖𝑗 + d𝑇𝑖 − d𝑇𝑗 . The terms d𝑇𝑖 and d𝑇𝑗 represent the 
incremental changes for particle 𝑖 and its neighboring particles 𝑗 at 
each advancing time step. For brevity, we introduce the coefficient

𝐵𝑗 = 2𝑘𝑖𝑗
1
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗d𝑡, (12)

and the residual of Eq. (11), without considering the increment, has the 
form

𝐸𝑖 = −
∑
𝑗
𝐵𝑗𝑇

𝑛
𝑖𝑗 − �̇�𝑛+1

𝑖 d𝑡. (13)

The implicit formulation of Eq. (11) can be further expressed as

𝐸𝑖 =

(∑
𝑗
𝐵𝑗 − 1

)
d𝑇𝑖 −

∑
𝑗
𝐵𝑗d𝑇𝑗 . (14)

To determine the incremental changes for temperature, we employ 
the gradient descent method [53] by reducing the LHS of Eq. (13)

following its gradient. The gradient ∇𝐸𝑖 with respect to the variable (
d𝑇𝑖,d𝑇1,d𝑇2,⋯ ,d𝑇𝑁

)𝑇
, where 𝑁 gives total number of all neighbor-

ing particles, can be obtained as

∇𝐸𝑖 =

(∑
𝑗
𝐵𝑗 − 1,−𝐵1,−𝐵2,⋯ ,−𝐵𝑁

)𝑇

. (15)

We set

(
d𝑇𝑖,d𝑇1,d𝑇2,⋯ ,d𝑇𝑁

)𝑇 = 𝜂𝑖∇𝐸𝑖, (16)

where 𝜂𝑖 represents the learning rate [53] for the particle 𝑖. Substituting 
Eqs. (15) and (16) into Eq. (14), the learning rate can be obtained as

𝜂𝑖 =
⎛⎜⎜⎝

(∑
𝑗
𝐵𝑗 − 1

)2

+
∑
𝑗

(
𝐵𝑗

)2⎞⎟⎟⎠

−1

𝐸𝑖. (17)

According to Eqs. (15) and (16), the incremental change in temperature 
of particle 𝑖 and all its neighbors can be obtained and updated as

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑇 𝑛+1
𝑖 = 𝑇 𝑛

𝑖 − d𝑇𝑖 = 𝑇 𝑛
𝑖 + 𝜂𝑖

(∑
𝑗 𝐵𝑗 − 1

)

𝑇 𝑛+1
1 = 𝑇 𝑛

1 − d𝑇1 = 𝑇 𝑛
1 − 𝜂𝑖𝐵1

𝑇 𝑛+1
2 = 𝑇 𝑛

2 − d𝑇2 = 𝑇 𝑛
2 − 𝜂𝑖𝐵2

⋯

𝑇 𝑛+1
𝑁 = 𝑇 𝑛

𝑁 − d𝑇𝑁 = 𝑇 𝑛
𝑁 − 𝜂𝑖𝐵𝑁

. (18)

Note that, Eq. (18) involves updating the variables for particle 𝑖 and 
its neighboring particles simultaneously. When a shared-memory paral-

lelization is employed, conflict may arise when multiple threads attempt 
to update the values of a single particle pair simultaneously. To address 
this issue, we have implemented a splitting Cell Linked List method 
[54]. This method effectively prevents conflicts by ensuring that neigh-

boring particles are located in the same cell or in adjacent cells that are 
distributed among the same threads. Also note that, for an explicit inte-

gration of the thermal diffusion equation, the maximum allowable time 
step can be defined as

Δ𝑡𝑑 = 0.5𝜌𝐶ℎ
2

𝑘𝑚𝑎𝑥
. (19)
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Fig. 2. The flowchart of the target-driven optimization procedure.

Since the implicit scheme is employed here for obtaining the steady 
solution of the Eq. (6), the time step size is chosen as a large value of 
10Δ𝑡𝑑 without considering the temporal accuracy.

4. Target-driven optimization

4.1. Method overview

The target-driven PDE-constrained optimization method proposed 
here is based on the principle of residual recovery. The primary ob-

jective is to solve the PDEs while progressively imposing the target 
function directly defined by the state variable. As the latter part can 
potentially lead to modifications or even an increase in the PDE resid-

uals, to address this issue, the design variable undergoes an evolution 
to recover the original residual, before the PDE solving continues. This 
process is repeated iteratively until the fields of both state and design 
variables converge and reach steady states. At that point, the optimal 
distribution of the design variable is obtained while satisfying both the 
target function and PDE constraints. Note that, the residual recovery 
approach is a typical all-at-once method since the residual of PDE only 
converges upon completing the optimization process.

Although the approach proposed above can theoretically be applied 
to general PDE-constrained optimization problems, here we apply it to 

address heat-conduction based optimizations The flowchart of the pro-

posed method is illustrated in Fig. 2 and the detailed steps are given as 
follows.

Initialization:

• The thermal domain is populated with inner and dummy particles 
for implementing the SPH method. The thermal conductivity is ini-

tialized as a uniform distribution with 𝑘0. The initial temperature 
is randomly assigned, and then, the average initial temperature 𝑇
is calculated.

• The PDE residual 𝑒∗𝑖 , i.e. the LHS of Eq. (6), is calculated for each 
particle within the thermal domain. The overall maximum and av-

erage residuals, denoted as 𝑒∗𝑚𝑎𝑥, and 𝑒∗𝑎𝑣𝑒, respectively, are then 
determined.

Step 1: Imposing target.

• The target is locally imposed on each particle with a strength 𝛽. In 
this case, it can be expressed as 𝑇 𝑐

𝑖 = 𝑇 ∗
𝑖 − 𝛽 based on the Eq. (4). 

The modified PDE residual 𝑒𝑐𝑖 on each particle is then updated with 
the imposed temperature 𝑇 𝑐

𝑖 .
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Step 2: Design variables evolution.

• The thermal conductivity 𝑘𝑖 on each particle and its neighboring 
particles 𝑘𝑗 are evolved with the aim of recovering the residual 𝑒∗𝑖
from 𝑒𝑐𝑖 , as detailed in Section 4.2.

• Re-normalize the thermal conductivity 𝑘𝑖 on each particle to fulfill 
the constraint presented in Eq. (5).

• The thermal conductivity distribution is regularized with the coef-

ficient 𝜇, employing the diffusion analogy numerical regularization 
method, as explained in detail in Section 4.3. The maximum ther-

mal conductivity variation, denoted as 𝑘𝑐𝑚𝑎𝑥, is determined by Eq. 
(24).

Step 3: PDE solution solving.

• The PDE solving advances using the updated thermal conductivity 
values to obtain the intermediate temperature field. Meanwhile, 
the average temperature for the current state, represented as 𝑇

𝑐
, 

is calculated. The maximum and average residual, 𝑒𝑐𝑚𝑎𝑥 and 𝑒𝑐𝑎𝑣𝑒
respectively, are also updated accordingly.

• The PDE solving stops advancing when the current maximum resid-

ual 𝑒𝑐𝑚𝑎𝑥 and average residual 𝑒𝑐𝑎𝑣𝑒 are both smaller than their 
respective values obtained at the last iteration, satisfying the con-

ditions 𝑒𝑐𝑚𝑎𝑥 < 𝑒∗𝑚𝑎𝑥 and 𝑒𝑐𝑎𝑣𝑒 < 𝑒∗𝑎𝑣𝑒.

Iterations and termination. After updating the new 𝑒∗𝑚𝑎𝑥 and 𝑒∗𝑎𝑣𝑒, 
the optimization process repeats from Steps 1 to 3 until the maximum 
residual reaches the specified threshold (1 ×10−5), and the variations of 
temperature and thermal conductivity become smaller than the thresh-

olds (1 × 10−3). Once these criteria are met, the optimization process 
is considered complete, and the resulting distribution of 𝑘 is deemed 
optimal.

Note that the present method divides the optimization process into 
small, easily manageable steps, which simplifies and expedites the op-

timization process. The magnitude of target strength 𝛽 is chosen as a 
small fraction of the average initial temperature, within the range of 
0.5 ∼ 1 in the present study. In addition, the 𝛽 is adjusted dynamically, 
increasing by a factor of 1.05 when the average temperature is lower 
than in the previous optimize iteration and decreasing with a decayed 
factor of 0.8 when the temperature exceeds that of the previous itera-

tion. Actually, decreasing 𝛽 is quite important for effective convergence 
in the late stages of the optimization. Furthermore, since the convex-

ity of these optimization problems are not able to be established, the 
current method, similar to other general optimization approaches, does 
not guarantee the global optimal solution.

4.2. Evolution of design variable

In Step 3, the residual 𝑒∗𝑖 for particle 𝑖 in the PDE is calculated as

𝑒∗𝑖 =
∑
𝑗

(
𝑘𝑖 + 𝑘𝑗

) 𝑇𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗 + �̇�𝑖. (20)

Once the target is imposed on this particle, the PDE residual deviates 
from its original value and will be recovered by modifying the design 
variable 𝑘 on particle 𝑖 and its neighboring particles 𝑗. This process can 
be represented by the pseudo-time evolution of following equation

d𝑘𝑖
d𝜏

=
∑
𝑗

(
𝑇 𝑐
𝑖 − 𝑇𝑗

)(
𝑘𝑚+1𝑖 + 𝑘𝑚+1𝑗

) 1
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗 + �̇�𝑖 + 𝑒∗𝑖 . (21)

Here, 𝑘𝑚+1𝑖 + 𝑘𝑚+1𝑗 = 𝑘𝑚𝑖 + d𝑘𝑖 + 𝑘𝑚𝑗 + d𝑘𝑗 , where 𝑚 is the previous 
time step and d𝑘𝑖 and d𝑘𝑗 represent increments after the new time 
step. The implicit splitting operator introduced in Section 3.2 is uti-

lized. Similar to the Eq. (16), a linear system is formed with respect to (
d𝑘1,d𝑘2,⋯ ,d𝑘𝑁−1,d𝑘𝑁

)𝑇
. Note that, the pseudo-time derivative on 

the LHS is essential for the stable evolution of 𝑘. If this term is omitted, 
the diagonal entries of the matrix for the linear system become

(
𝜂1

𝑛∑
𝑗
𝐵1𝑗 , 𝜂2

𝑛∑
𝑗
𝐵2𝑗 ,⋯ , 𝜂𝑁

𝑛∑
𝑗
𝐵𝑁𝑗

)𝑇

. (22)

It is observed that the magnitudes of diagonal entries in the matrix can 
be significantly smaller than those of non-diagonal entries, potentially 
leading to numerical instability [55]. On the contrast, when the pseudo-

time derivative term is included, the linear system transforms into

(
𝜂1

𝑛∑
𝑗

(
𝐵1𝑗 − 1

)
, 𝜂2

𝑛∑
𝑗

(
𝐵2𝑗 − 1

)
,⋯ , 𝜂𝑁

𝑛∑
𝑗

(
𝐵𝑁𝑗 − 1

))𝑇

, (23)

whose diagonal entries becomes dominant, and therefore stabilize the 
evolution of the design variables. In addition, since 𝑘 is a material prop-

erty and should be non-negative, it is clipped at a lower bound of 0.0001
during each iteration.

4.3. Numerical regularization

After the evolution of the design variable, it is necessary to apply 
numerical regularization, serving two essential purposes. One is that, as 
previously mentioned in the Ref. [15], the regularization plays a critical 
role in maintaining numerical stability and obtaining a smooth solution. 
Secondly, it helps prevent over-fitting and avoids finding trivial local 
optima only. In this study, we introduce a diffusion analogy approach 
for regularizing the distribution of the design variable, i.e. the thermal 
conductivity 𝑘 is treated as the variable again in the pseudo-time SPH 
discretized diffusion equation, given as

d𝑘𝑖
d𝜏

= 2
∑
𝑗
𝜇
𝑘𝑖𝑗
𝑟𝑖𝑗

∇𝑖𝑊𝑖𝑗𝑉𝑗 , (24)

where 𝑘𝑖𝑗 = 𝑘𝑖 − 𝑘𝑗 and 𝜇 is the artificial diffusion coefficient used to 
control the rate of regularization. We choose 𝜇 to be general in the 
range 1 ∼ 2 according to the target strength. The coefficient also under-

goes a similar dynamical adjustment strategy as the target strength be-

cause smaller 𝛽 usually require less regularization to achieve a smooth 
field. Note that the pseudo-time derivative term is also used in Eq. (24)

to ensure that the diagonal is dominant.

5. Results and discussion

In this section, we present a set of example problems to validate 
the effectiveness of the proposed target-driven PDE-constrained opti-

mization method (referred to as the TD) for optimizing the thermal 
conductivity distribution within a heat conduction domain.

5.1. The 2/10 heat sinks with uniform internal heat source

The first set of problems involves a square thermal domain measur-

ing 1m on each side, with a uniform internal heat source. Two heat 
sinks, each covering 20% of the side length, are symmetrically posi-

tioned at the center of opposite boundaries, maintaining the constant 
temperature. The remaining boundaries are set as adiabatic. Various 
scenarios are considered, including different heat source intensities, 
initial thermal conductivity values, and cases with either identical or 
non-identical sink temperatures. As shown in Fig. 3, the detailed setups 
for these problems are illustrated as follows:

• Problems 1 and 2 feature a uniform heat source with an intensity 
of 1000W∕m3, while Problems 3 and 4 have a uniform heat source 
with an intensity of 2000W∕m3.

• The initial thermal conductivity, denoted as 𝑘0, is 1W/(m⋅K) for 
Problems 1 and 2, while it is 4W/(m⋅K) for Problems 3 and 4.
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Fig. 3. Illustration of the problem setups. (a) Problem 1: Identical heat sinks; (b) Problem 2: Non-identical heat sinks; (c) Problem 3: Identical heat sinks with higher 
𝑘0; (d) Problem 4: Non-identical heat sinks with higher 𝑘0 .

• Problems 1 and 3 have identical heat sink temperatures, set at 300K 
and 280K, respectively. Problems 2 and 4 involve non-identical 
heat sink temperatures, with one of the heat sinks reaching a higher 
temperature of 350K.

The thermal domain is discretized with 100 particles on each side, re-

sulting in a total of 10,000 particles. Additionally, four layers of dummy 
particles are used to enforce boundary conditions. Note that the prob-

lems discussed in the following sections share the same configuration 
for the SPH implementation. Reference solutions for Problems 1 and 
2 were obtained using automatic differentiation (AD) and the tem-

perature gradient homogenization (TGH) method, and can be found 
in Ref. [18]. Reference solutions for Problems 3 and 4 were achieved 
through adjoint analysis (AA) and the TGH method, and are available 
in Ref. [15].

The steady temperature distributions with uniform thermal conduc-

tivity are presented in Fig. 4. All the obtained distributions are in good 
agreement with the reference results (see Figs. 4 and 10 of Ref. [18]). In 
these cases, heat generated by the internal source is conducted through-

out the domain and subsequently dissipated at the heat sinks. A more 
pronounced temperature gradient is observed near the heat sinks, indi-

cating a concentration of heat flux and resulting in higher temperature 
within the domain. The average temperatures obtained are slightly 
higher than that in the reference, which may be attributed to varia-

tions in resolution and discretization employed.

For these problems, the optimization results obtained by the present 
method are displayed in Figs. 5 to 8, and the comparisons with previous 
work are summarized in Tables 1 and 2. Problems 1 and 3, featuring 
identical heat sinks, result in a symmetrical pattern in the optimized 
results that align with the reference results. In cases where the heat 
sinks are identical, the problem becomes self-adjoint, making the TGH 

Table 1

Summary of result comparisons for problems with identical sinks.

Problem Method Original 𝑇 (𝐾) Optimized 𝑇 (𝐾) Reduced (%)

1

TD 584.30 413.88 29.17
AD [18] 582.04 412.73 29.09
TGH [18] 582.04 413.45 28.97

3

TD method 417.59 339.12 18.79
AA [15] 414.36 336.98 18.67
TGH [15] 414.36 336.99 18.67

Table 2

Summary of result comparisons for problems with non-identical sinks.

Problem Method Original 𝑇 (𝐾) Optimized 𝑇 (𝐾) Reduced (%)

2

TD 609.30 438.79 27.98
AD [18] 607.04 436.96 28.02
TGH [18] 607.04 438.20 27.81

4

TD 452.73 371.66 17.91
AA [15] 449.36 368.61 17.97
TGH [15] 449.36 371.55 17.32

method equivalent to the AA method when the target is to minimize 
the global temperature [56]. Therefore, all methods adopt the direct 
target and exhibit similar optimal performance, although the reference 
result for the Problem 1 suggests slightly superior outcome using the 
AD method. Notably, the present method tends to yield a higher reduc-

tion in temperature for these two problems. The optimization process 
homogenized the temperature gradient to balance heat flux through 
the domain. Optimized temperature distributions in Figs. 5(a) and 7(a) 
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Fig. 4. Temperature distributions with uniform thermal conductivity for different scenarios. (a) Problem 1; (b) Problem 2; (c) Problem 3; (d) Problem 4. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

reveal an overall even temperature gradient, matching with the refer-

ence results obtained by other methods (see Fig. 5(b) of Ref. [18] and 
Fig. 6(a) of Ref. [15]). Furthermore, the optimization process results in 
a significant increase in thermal conductivity near the heat sinks. The 
distribution of optimized thermal conductivity in Figs. 5(b) and 7(b) ex-

hibits four distinct peaks prominently located at the edges of the heat 
sinks, closely matching the reference (see Fig. 5(a) of Ref. [18] and Fig. 
6(b) of Ref. [15]). These peaks effectively interact with other bound-

aries, enhancing the efficient dissipation of generated heat. It’s worth 
noting, however, that the peak thermal conductivity obtained by the 
present method approximates 14 W/(m⋅K) and 40 W/(m⋅K) for Prob-

lems 1 and 3, respectively, which are considerable less than the values 
in the reference (beyond 20 W/(m⋅K) and 50 W/(m⋅K)).

The differences in heat sink configurations in Problems 2 and 4 high-

light that the AA and TGH methods are no longer equivalent. The TGH 
method transitions into an indirect target approach, while the direct 
target methods, TD, AD, and AA, consistently outperform the TGH. 
The present method exhibits a slightly lower temperature reduction 
ratio compared to the other two direct target methods. Interestingly, 
when we decrease the artificial regularization coefficient (𝜇), it tends 

to yield a lower temperature, albeit within certain limits. However, this 
adjustment results in significantly higher peak values of the thermal 
conductivity. Therefore, we have chosen the current coefficient value 
for a balance between optimization performance and the peak value 
of thermal conductivity. This choice provides greater flexibility in se-

lecting high thermally conductive but electrically isolated materials for 
cooling electronic devices without sacrificing optimal performance. The 
optimized temperature distributions in Figs. 6(a) and 8(a) exhibit a gen-

erally even gradient, matching with the reference (see Fig. 11(b) of 
Ref. [18] and Fig. 7(a) of Ref. [15]). Similarly, the optimized thermal 
conductivity distributions in Figs. 6(b) and 8(b) still feature four peaks 
around the sinks. However, the heights of opposite peaks are no longer 
equal due to temperature discrepancies, with larger heights observed 
near the colder sinks. These features closely align with the reference re-

sults (see Fig. 11(a) of Ref. [18] and Fig. 7(b) of Ref. [15]), and notably, 
the present method is always characterized with lower peaks.

All simulations and optimizations were performed on a computer 
equipped with 2 Intel(R) Xeon(R) CPU E5-2680 v4 processors. For Prob-

lems 1 to 4, it takes approximately 100 seconds to obtain a steady-state 
temperature field, and detailed information regarding the optimization 
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Fig. 5. Present optimized results of the Problem 1. (a) Temperature; (b) Thermal conductivity.

Fig. 6. Present optimized results of the Problem 2. (a) Temperature; (b) Thermal conductivity.

Table 3

Summary of the optimization process for Problems 1 to 4.

Problem Steady time (s)
Optimized iteration

Ratio

Loop Sub-step Time (s)

1 102.8 108 160549 264.3 2.6
2 100.6 94 160541 265.4 2.6
3 110.2 106 210906 341.1 3.1
4 122.1 104 169990 279.5 2.3

duration is presented in Table 3. Note that, with the same convergence 
criterion, although the actual optimization time for each run may vary 
and depend on the selected parameters, the shown results suggest that 
the present method is quite efficient, as it only takes a few times the 
computation cost of obtaining a converged non-optimized solution to 
achieve the optimized result. However, simulation-based methods, such 
as AD, AA, and TGH, need to obtain the converged solution in each it-
eration to provide information for updating the design variables, which 

makes it hard to achieve optimized results with just several iterations, 
increasing the computation cost for optimization.

5.2. The 2/10 sinks with Gaussian distributed heat source

Problem 5 closely resembles Problem 4; however, it introduces 
a non-uniform distribution of the heat source. Four Gaussian heat 
sources are symmetrically placed within the domain at four coordinates: 
(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and (0.75, 0.75), as depicted in 
Fig. 9(a). The heat sources �̇�𝑖 are determined by

�̇�𝑖 = 𝐶𝑖𝑒𝑥𝑝
[
−10

((
𝑥− 𝑥𝑖

)2 + (
𝑦− 𝑦𝑖

)2)] . (25)

Here 
(
𝑥𝑖, 𝑦𝑖

)
represents the center point of each heat source, and 

𝐶𝑖= 3000W∕m3 denotes the intensity. Fig. 9(b) illustrates the cumula-

tive heat source intensity across the entire domain. Reference solutions 
obtained by the AA and TGH methods are also available in Ref. [15]. 
The steady temperature distribution with uniform thermal conductivity 
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Fig. 7. Present optimized results of the Problem 3. (a) Temperature; (b) Thermal conductivity.

Fig. 8. Present optimized results of the Problem 4. (a) Temperature; (b) Thermal conductivity.

Table 4

Summary of result comparisons for Problem 5.

Problem Method Original 𝑇 (𝐾) Optimized 𝑇 (𝐾) Reduced (%)

5

TD 518.55 400.33 22.80
AA [15] 517.61 417.35 19.37
TGH [15] 517.61 422.85 18.31

is shown in Fig. 9(c), and the obtained average temperature is 518.55K, 
which agrees well with the reference.

The current optimization results are presented in Fig. 10, and sum-

marizes the result comparisons in Table 4. Due to the non-identical heat 
sink configuration, it’s evident that the TGH method is no longer equiv-

alent to the AA method, and the reference results demonstrate that AA 
still outperforms the latter. By employing a direct target, the present 
method further explores the optimal results and yields more tempera-

ture reduction, being aligned with the performance of the AA method, 
as it is also based on the direct target. The optimized temperature con-

tour shown in Fig. 10(a) reveals a notably lower values, particularly 

on the colder heat sink side, indicating an enhanced cooling capacity. 
The temperature gradient is more evenly distributed, aligning with the 
reference results (their Fig. 10(a)). Additionally, the optimized distri-

bution in Fig. 10(b) continues to feature the characteristic four peaks 
similar to the reference (their Fig. 10(b)). However, the present ther-

mal conductivity increases continuously around the heat sink region, as 
opposed to being concentrated at isolated spots as in the reference. In 
addition, the simulation time for a steady solution is 112.4 seconds for 
this case, while the optimization time is 980.7 seconds, again indicating 
quite good efficiency.

5.3. The 1/10 heat sinks with uniform internal heat source

Problem 6 pertains to the utilization of smaller, non-identical heat 
sinks. As illustrated in Fig. 11(a), two heat sinks, each occupying 10%
of the side length, are positioned at the center of the top (350K) and the 
bottom (300K) boundaries. Reference solutions obtained by the AA and 
TGH methods are available in Ref. [35]. The temperature distribution 
under uniform thermal conductivity as shown in Fig. 11(b), is consis-
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Fig. 9. Problem 5. (a) Schematic depiction of the problem setup; (b) Overall heat source intensity; (c) Temperature distribution under uniform thermal conductivity.

Fig. 10. Present optimized results of the Problem 5. (a) Temperature; (b) Thermal conductivity.
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Fig. 11. Problem 6. (a) Schematic depiction of the problem setup. (b) Temperature distribution under uniform thermal conductivity.

Fig. 12. Present optimized results of the Problem 6. (a) Temperature; (b) Thermal conductivity.

Table 5

Summary of results comparison for Problem 6.

Problem Method Original 𝑇 (𝐾) Optimized 𝑇 (𝐾) Reduced (%)

6

TD 365.1 333.0 8.79
AA [35] 363.3 331.0 8.89
TGH [35] 363.3 331.9 8.64

tent with the reference results (their Fig. 6(d)) and the present average 
temperature (365.1K) matches that of the reference (363.3K) also.

The present optimization results are depicted in Fig. 12, and Table 5

provides a summary of comparisons. It is observed that the present 
temperature reduction ratio is higher than that achieved by the TGH 
method, although slightly lower than the result obtained using the AA 
method. As shown in Fig. 12(a), the present optimized temperature dis-

tribution presents a smoother profile compared to that of the reference 
(their Fig. 6(b)), especially in the vicinity of the high-temperature sink. 
From the present thermal conductivity distribution in Fig. 12(a), the 
most notable feature is the single peak, in contrast to four peaks ob-

tained in the reference result (their Fig. 7(b)), which refines the mesh 

around the small heat sinks. Note that, due to the introduction of reg-

ularization, the present highest value of thermal conductivity is only 
about 20W/(m⋅K), which is significantly lower than the reference re-

sult of about 200W/(m⋅K). Moreover, the computation time for a steady 
solution is 137.9 seconds, while the time required for the entire opti-

mization is 890.8 seconds, again showing quite good efficiency.

5.4. The 1/10 sinks with the heat flux heater

Problem 7 explores a thermal domain that features two heat sinks on 
one side with different operating temperatures, along with a heat flux 
heater situated on the opposite side. As depicted in Fig. 13(a). A heat 
flux heater with a magnitude of 2000W∕m2 is positioned at the cen-

tral of the upper boundary, covering 10% of the side length, and two 
heat sinks maintained at 300K and 350K, respectively, with the same 
size are located along the lower boundary. Reference solutions with the 
target of minimizing temperature on the flux boundary can be found 
in Ref. [35]. The temperature distribution with uniform thermal con-

ductivity is depicted in Fig. 13(b), and shows good agreement with the 
reference (their Fig. 10(d)), although the average temperature on the 
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Fig. 13. Problem 7. (a) Schematic depiction of the problem setup. (b) Temperature distribution under uniform thermal conductivity.

Fig. 14. Present optimized results of the Problem 7. (a) Temperature; (b) Thermal conductivity.

Table 6

Summary of results comparison for Problem 7.

Problem Method Original 𝑇 (𝐾) Optimized 𝑇 (𝐾) Reduced (%)

7

TD1 470.7 415.3 11.77
TD2 689.5 519.5 24.66
AA [35] 693.2 501.6 27.64

1 The average temperature across the entire thermal domain.
2 The average temperature along the heat flux boundary.

flux boundary is slightly lower than that in the reference, possibly due 
to the mesh refinement near the flux heater in the latter.

The present results, with the objective of minimizing the average 
temperature of the domain, are shown in Fig. 14, and the comparison 
of results is summarized in Table 6. The optimized thermal conduc-

tivity contributes to an overall reduction in temperature. Note that, 
even though the present objective is different from that of the reference, 
the pattern of the optimized thermal conductivity in Fig. 14(b) closely 
resembles that of the reference (their Fig. 11(b)). It forms a bridge 

with high thermal conductivity between the flux heater and the colder 
sink. Compared to the reference results (their Fig. 10(b)), the present 
optimized temperature distribution also exhibits a uniform gradient per-

pendicular to the line connecting the heater and the colder sink, proving 
the enhanced cooling capacity of the colder sink. However, due to the 
different objectives, the present result shows a higher averaged tem-

perature on the flux boundary compared to the reference. Again, the 
computation time for the steady solution is 197.9 seconds, whereas the 
optimization requires 970.8, still suggesting good efficiency.

6. Conclusion and remark

In this paper, a target-driven all-at-once approach for PDE-cons-

trained optimization is introduced, and it is applied to optimize thermal 
conduction problems. By splitting the optimization iteration into small, 
easily managed steps and treating both state and design variables in 
the same way, the need for deriving complex adjoint equations and 
obtaining converged state solutions at each optimization iteration is 
eliminated. In addition, the mesh-free, splitting-operator based implicit 
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SPH method is employed as the underlying numerical method, and a 
diffusion-analogy regularization approach is developed to ensure the 
numerical stability. Typical examples of thermal conduction problems 
demonstrate that the present method is able to achieve quite efficient 
optimization with the computational cost generally on the same order 
as obtaining a single converged PDE solution. Furthermore, the present 
optimal results are comparable to those from the previous work, but 
with the industrially relevant advantage of lower extreme values. Note 
that, as the target-driven concept used in the present method is not re-

stricted to specific optimization targets, it may be extended for, such 
as those on the domain boundary, topology, or other thermal and fluid 
dynamics applications, which are also our future work focus.
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Abstract: Scientific computing libraries, whether in-house or open-source, have witnessed enormous progress in both engineering 
and scientific research. Therefore, it is important to ensure that modifications to the source code, prompted by bug fixing or new 
feature development, do not compromise the accuracy and functionality that have been already validated and verified. This paper 
introduces a method for establishing and implementing an automatic regression test environment, using the open-source 
multi-physics library SPHinXsys as an illustrative example. Initially, a reference database for each benchmark test is generated from 
observed data across multiple executions. This comprehensive database encapsulates the maximum variation range of metrics for 
different strategies, including the time-averaged, ensemble-averaged, and dynamic time warping methods. It accounts for 
uncertainties arising from parallel computing, particle relaxation, physical instabilities, and more. Subsequently, new results obtained 
after source code modifications undergo testing based on a curve-similarity comparison against the reference database. Whenever the 
source code is updated, the regression test is automatically executed for all test cases, providing a comprehensive assessment of the 
validity of the current results. This regression test environment has been successfully implemented in all dynamic test cases within 
SPHinXsys, including fluid dynamics, solid mechanics, fluid-structure interaction, thermal and mass diffusion, reaction-diffusion, 
and their multi-physics couplings, and demonstrates robust capabilities in testing different problems. It is noted that while the current 
test environment is built and implemented for a particular scientific computing library, its underlying principles are generic and can 
be easily adapted for use with other libraries, achieving equal effectiveness. 
  
Key words: Scientific computing, open-source library, verification and validation, regression test, automatic test environment, curve 
similarity comparison, smoothed particle hydrodynamics 
 
0. Introduction  

The evolution of the computer has elevated 
scientific computing to an indispensable position 
across many technologies and industries, ranging from 
assessing climate changes[1], designing new energy 
conductors[2], and enhancing our ability to predict and 
comprehend natural phenomena and engineering 
systems. Following William’s definition of validation 
and verification in scientific computing[3], it is crucial 
that scientific computing consistently and accurately 
represents both the conceptual model and the real 
world. However, this is a great challenge due to the 
complex mathematical models and calculations 
involved, which often necessitate changes to distinct 
parts of the library and consequently, increase the 
likelihood of mistakes. Furthermore, developing a 
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scientific computing library is a continuous process, 
marked by frequent changes driven by varying requi- 
rements and the introduction of new features. It is 
essential for libraries to consistently yield trustworthy 
results throughout their continuous evolution, and 
achieving this requires a robust validation and 
verification process conducted in tandem with the 
development and usage of the library[4]. 

Implementing testing, encompassing unit tests, 
integration tests, regression tests, system tests, etc., 
offers concrete validation and verification procedures. 
While this practice has gained widespread acceptance 
in IT software, it faces challenges when endeavoring 
to conduct tests directly using conventional techniques 
within scientific computing libraries, particularly for 
certain open-source libraries. One significant chall- 
enge arises from the inherent features of scientific 
computing libraries, making it challenging to establish 
a reliable test oracle–A mechanism or criterion used to 
determine whether the program produces the expected 
output during test case execution[5-6]. The elusive 
nature of defining precise expected outcomes in 
scientific contexts adds complexity to the validation 
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process. Additionally, another noticeable challenge 
arises from cultural differences between scientists and 
the software engineering community[5]. Scientific 
computing libraries are often developed by small 
groups of scientists who may not be very familiar with 
established software engineering practices and have 
not extensively delved into the development process 
of their developed libraries[7] and, therefore, overlook 
the potential impacts of changes. 

Regression testing stands as a crucial method to 
ensure the output validity of scientific computing 
libraries under development. This re-testing activity 
involves executing a test suite with specified inputs 
and comparing the output with previously stored 
reference results, especially when modifications occur 
or new features are added. Through regression testing, 
developers can ascertain that their changes do not 
introduce unexpected side effects and that previous 
functionalities remain verified[6]. Given the time- 
consuming and tedious nature of performing regre- 
ssion tests for all test cases, especially in large-scale 
software, many automatic regression test techniques 
have been developed and successfully implemented to 
address this challenge, including selection[8-9], minimi- 
zation[10-11], prioritization[12-13], and optimization of 
test cases within the test suite. 

Concerning the implementation of the regression 
test in scientific computing libraries, the focus is often 
on achieving rigorous validation and verification for 
confidence in computational results. To achieve this, 
different strategies are employed, and these processes 
should be automated and continuous[4]. Lin et al.[14-15] 
leveraged historical data with multiple inputs and their 
relationships to define a test oracle, conducting the 
metamorphic tests. Peng et al.[16-17] provided insights 
into their analysis of released unit tests and regression 
tests for SWMM, a stormwater management model 
developed by the U.S. Environmental Protection 
Agency. Their focus was on test coverage, revealing a 
novel pattern to address oracle problems. Farrell et 
al.[4] established an automated verification test envi- 
ronment for Fluidity-ICOM, an adaptive-mesh fluid 
dynamics simulation package. Liu et al.[18] developed 
a web-based automated testing environment to 
validate computational fluid dynamics (CFD) cases 
related to high-speed aero-propulsive flows. Happ[19] 
devised a set of Linux C-Shell testing scripts for 
SHAMRC, a 2-D and 3-D finite difference CFD code 
addressing airblast problems, running regression tests 
daily. 

Despite the aforementioned efforts to implement 
testing in mesh-based scientific libraries, a testing 
environment for meshless libraries is notably absent, 
even as the popularity of meshless computing grows. 
Compared with mesh-based methods which have 
fixed topology, this gap can be attributed to the unique 

challenges posed by the Lagrangian property of the 
meshless methods, where dynamic and varying 
particle distributions in each computation make it 
difficult to establish standardized testing procedures. 
Notably, when the source code of SPHinXsys[20], an 
open-source multi-physics library developed by our 
team, is updated, we have encountered instances 
where certain test cases passed the CTest (CMake 
Test)[21], yet unexpectedly resulted in simulation 
crashes without any error output. We had initially 
believed these test cases to be correct since they 
passed the testing, only to realize later that they were 
faulty. This issue proved to be troublesome and was 
the primary motivation for establishing an effective 
regression test environment. 

In this paper, we introduce a methodological 
framework for constructing an automatic regression 
test environment in scientific computing libraries. 
Initially, a verified reference database for each test 
case is generated by adopting different types of 
observing data and stored as the reference. Sub- 
sequently, the results obtained from the new version 
of the code undergo testing against the reference 
database using a curve-similarity-based comparison. 
The process of updating the source code automatically 
activates the regression test for each test case and 
reports the validation of the results. This regression 
test method has been implemented for all test cases 
released in SPHinXsys, covering different dynamic 
features. To the best knowledge of the authors, this 
work represents pioneering efforts in regression 
testing for open-source scientific computing libraries 
based on the meshless method. The work may also 
attract attention from the broader scientific computing 
communities, emphasizing the importance of testing, 
because if the software is meant to do something, then 
that can and should be tested[22]. It is worth noting that 
the principles presented in this work are versatile and 
can be easily adopted in other scientific computing 
libraries. 
 
 
1. Background 

In this section, we briefly introduce the features 
of the SPHinXsys library and then explain the method 
for obtaining different tested data. 
 
1.1 SPHinXsys 

As a fully Lagrangian meshless method, smoothed 
particle hydrodynamics was proposed for astrophysical 
applications[23-24] and has since found extensive use in 
simulating a wide range of scientific problems. 
SPHinXsys is an open-source multi-physics and 
multi-resolution scientific computing library[20] based 
on SPH, designed to address complex industrial and 
scientific applications. The currently released version 
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incorporates several key features, including dual- 
criteria time-stepping, spatio-temporal discretization, 
position-based Verlet time-stepping scheme, and 
multi-resolution, etc. This library efficiently models 
and solves complex systems, encompassing fluid 
dynamics[25-26], solid mechanics[27], fluid-solid inter- 
action (FSI)[28], thermal and mass diffusion[29], 
reaction diffusion[29], electromechanics[29], and many 
others. For quantitative validation, SPHinXsys 
includes over 100 test cases with available analytical 
solutions, experimental data, or numerical results from 
the literature for comparison. Several other open-source 
scientific libraries based on the SPH method have also 
been developed and released for public use, contribu- 
ting significantly to the SPH community. Examples 
include GPUSPH[30], SPHysics[31], DualSPHysics[32], 
AQUAgpushp[33], GADGET-2[34], and GIZMO[35], etc. 
Many of these applications/libraries, including the 
SPHinXsys, are still under intensive development. 
Given the ongoing development in this field, it 
becomes essential to introduce a regression test 
environment to ensure consistent development and 
releases. 
 
1.2 Obtain tested data 

For most scientific computing problems, the 
rarity of acquiring a comprehensive database for the 
whole computational domain is primarily attributed to 
the sheer magnitude of data involved, posing 
challenges in computational resources, storage, and 
processing. However, observing variables of interest 
at specific, representative locations is often sufficient 
to establish a reliable reference. These variables of 
interest, commonly referred to as variation points, 
exhibit different values in various executions, known 
as variants[6]. As an illustrative example, in CFD 
simulations, the pressure probed at a fixed position 
serves as a variation point. The values it takes at a 
specific physical time in different executions represent 
variants. By incorporating variation points, variants, 
and their associated constraints, a variability model 
can be generated from a series of computing results. 
This model then can serve as a valuable reference for 
regression testing in scientific computing. 

In SPHinXsys, the observing data, referred to as 
the variation point, is categorized into two types. The 
first type encompasses observed quantities at probes 
positioned within the computational domain. This 
includes variables like density, pressure, velocity, etc., 
in fluid problems, and deformation, stress, displace- 
ment, etc., in solids, along with other related variables 
of interest. The second type involves reduced quanti- 
ties, representing overall variables of interest in the 
computational domain. Examples include summation, 
maximum, and minimum values of a variable, such as 
the total mechanical energy of the field. It is important 

to note that both types of quantities not only serve as 
the data source for regression testing but also play a 
crucial role in visualization. 
 
 
2. Method 

In this section, we begin by presenting an 
overview of the regression test procedure, followed by 
detailed explanations of the individual steps and 
algorithms for three testing strategies. 
 
2.1 Overview of the regression test 
    The underlying principle of the regression test 
involves comparing the similarity between verified 
curves, also referred to as time series results, 
generated from previously validated executions in the 
reference database, and newly obtained results after 
the modification of code. A verified curve typically 
incorporates a tolerance range to account for uncert- 
ainties introduced during different executions. For 
instance, in shared memory parallel programming 
libraries like the threading building blocks (TBB), the 
concurrent vector is commonly used to create a 
sequence container capable of concurrent growth and 
access. However, results from multiple executions 
with the same model may not be identical, displaying 
noticeable or considerable differences, particularly in 
highly non-linear problems such as fluid dynamics. In 
addition, the Lagrangian property of the meshless 
method results in different particle distributions for 
multiple executions, leading to discrepancies in the 
results. 
    In general, the regression test, illustrated by the 
flow chart in Fig. 1, comprises two main parts: (1) 
Generating a reference database for each test case. (2) 
Automatically verifying the new result obtained after 
code modification using specific strategies. 
    For a newly added test case, the following steps 
can be followed to generate a reference database: 
    Step 1: Execute the test case and verify the 
current result with experimental, numerical, or analy- 
tical data from the literature. 
    Step 2: Select one or more variables of interest 
and define their corresponding thresholds. 
    Step 3: Set up the testing environment by ins- 
tantiating objects, and introducing methods for the 
regression test. 
    Step 4: Choose and initialize metrics from differ- 
ent strategies according to the type of generated 
curves or observed time series results. Three differ- 
ent strategies, as explained in the following Sections 
2.3-2.5, are applied in this work. 
    Step 5: Execute the test case multiple times and 
update metrics with different strategies. 
    Step 6: Continue the iterations until the variations 
of all metrics converge under the given threshold, at  
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Fig. 1 (Color online) The flow chart for the regression test. The left part is for generating the reference database, and the right one is 

for testing the new result obtained after code modifications 

 

 
 
Fig. 2 (Color online) Different types of curves were obtained from time series results and used for the regression test, (a) Type 1: 

Total viscous force of the flow around a cylinder[28], (b) Type 2: Free end displacement of an oscillating elastic beam[36], (c) 
Type 3: Flow-induced free end displacement of an elastic beam attached to a cylinder[28], (d) Type 3: Solid wall impacting 
pressure in dambreak flow[25-26] 
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which point the metrics will be stored as the reference 
database. 
    With the reference database in hand, the modi- 
fied code can be tested using the following steps: 
    Step 1: Run test cases using CMake Test or other 
similar testing packages. 
    Step 2: Compare the newly obtained result with 
the previously stored one in the reference database 
based on curve-similarity measures. 
    Step 3: Check whether the similarity measure is 
within the given threshold. If it is, the modified code 
is considered acceptable. Otherwise, investigate the 
source code for modifications or bugs, and then rerun 
the testing until the similarity measure is deemed 
acceptable. 
 
2.2 Curve classification and testing strategies 

Different strategies should be employed to com- 
pare curve similarity based on the types of curves 
under consideration. For the typical dynamic problems 
involved in this work, time series data curves can be 
broadly classified into three types, each corresponding 
to a distinct comparison strategy. 

The first type, associated with the time-averaged 
strategy, represents data series that fluctuate around a 
constant value after reaching a steady state. This type 
of curve is prevalent in many fluid dynamics problems, 
such as the observed total viscous force for a fluid- 
structure interaction (FSI) problem, as illustrated in 
Fig. 2(a). The second type, aligned with the ensemble- 
averaged strategy, represents data series exhibiting 
similar variation patterns for each computation. Such 
curves are often generated from simple solid dynamics 
problems, such as the displacement of a given point 
from the oscillating beam presented in Fig. 2(b). The 
last type, corresponding to the dynamic time warping 
strategy, represents data series that may experience 
rapid and scattered variation patterns or large high- 
frequency fluctuations. These curves are generally 
produced in simulations characterized by high non- 
linear dynamics. Figure 2(c) shows an observed 
position from an FSI simulation, and Fig. 2(d) shows 
observing pressure for a dambreak flow, both of 
which exhibit apparent variations in each execution. 
 
2.3 Time-averaged strategy 

In the time-averaged strategy, as the system con- 
sistently reaches a steady state through the relaxation 
process, metrics such as the time-averaged mean and 
variance are employed for comparison and testing 
purposes. 
 
2.3.1 Metrics generation and updating 

The generation of the reference database under 
this strategy involves updating time-averaged mean 
and variance through multiple executions until their 

variations converge. For each updating (e.g., the thn  

execution), the mean nM  and variance  n
 of the 

obtained result x  from the current execution can be 
calculated as follows: 
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where i  is the index of a data point, l  is the total 
number of data points and k  is the index of the 

starting point of the steady state. The mean M   and 

variance    in the regression test metrics are then 
updated based on the results from the thn  computa- 

tions. Specifically, M   is updated as 
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Note that, instead of storing all previous means n  
times, the summation of the mean is recursively 
updated as a decaying average of all previous means 

for increased efficiency. Then,    is updated as 
 

= max( , )   n

                                                        

(3) 
 
indicating that the variance is always updated to the 
maximum variation range. After the relative diffe- 
rence between the newly updated metrics and the 
previous ones is smaller than thresholds in several 
successive executions (usually 4 in practical applica- 

tions), the M   and  
 are stored as the reference 

database. It is worth noting that the variation of the 
metrics in two successive runs being smaller than the 
threshold is only a hint of convergence. This should 
happen several times successively to ensure a real 
stable convergence. Therefore, once such variation is 
larger than the threshold, the count of the converged 
successive executions will be reset to zero. 
 
2.3.2 Start point searching 

As the large oscillatory results in the early stage 
are nonphysical and cannot accurately reflect the true 
physical state of interest, it is imperative to exclude 
this portion of the data. To address this concern, a 
searching technique is proposed to locate the starting 
point of the steady state, ensuring a reliable calcula- 
tion of mean value and variance. Specifically, the 
search begins from the end of the time series, as the 
simulation time is always set to be sufficiently long to 
ensure a steady state. To achieve this, n  pieces with 
the same time interval are sampled from the entire 
date set. Starting from the end, two successive pieces 
are averaged separately and compared. As shown in 
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Fig. 3, the comparison will proceed until the differ- 
ence between two averages is larger than the given 
threshold. The earliest pieces will be considered the 
starting point of the steady state. The detailed 
procedure is explained in Algorithm 1. 
Algorithm 1: Search start point 
  Input: The current result Array and its length l  

  Output: The index of the start point: k  
  Number of data points in each piece: = / 20n l , 
  for = 1i L , 3 i n ,   i  do 

     1 = 0M , 2 = 0M , 

     for =j i ,  j i n ,   j  do 

       1+ = [ ] /M Array j n , 

       2 + = [ 2 ] / M Array j n n , 

     end 
     if 1 2 1 2( ) / ( + ) Threshold M M M M  then 

       = max( , )k k i n , 

            break,  
     end 
  end 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 (Color online) Schematic illustration of the start point 

searching technique 
 
2.3.3 Regression test 

For the regression test, the mean value and 
variance of the new result are compared with the 
metrics of the reference database. The correctness of 
the new result and the compatibility of the modified 
code with the previous version are determined based 
on the following conditions: 
 

  M M M ,   
                                         

(4) 

 
If these conditions are satisfied, the new result is 
considered correct, and the modified code is deemed 
compatible with the previous version. The parameter 
  is chosen based on the specific type of dynamics 
problem. In solid dynamics,   is set to 0.05, while 
for fluid dynamics, it is set to 0.1. 
 
2.4 Ensemble-averaged strategy 

In the ensemble-averaged strategy, the result 

curves obtained from simulation runs typically exhibit 
similarities within a certain variation range. This 
range is defined by the metrics of ensemble-averaged 
mean and variance. 
 
2.4.1 Metrics generation and updating 

For the thn  execution, the metrics for each data 
point i  are updated based on the previous values and 

the new results. The ensemble-averaged mean iM   at 

a data point i  is updated as 
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where n
ix  is the newly obtained data point, 1n

iM   is 
the previous mean. Similarly to the time averaged 
strategy, the new variance i

  is updated as 
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where the last term is a secure value introduced to 
create a variation range and prevent a zero maximum 
variance for results from different computations. This 
secure value is determined based on the maximum and 
minimum values of the local result. The convergence 
criteria are the same as those in the time-averaged 
strategy, requiring successive executions with suffici- 
ently small variations of the updated mean and 
variance to terminate the metrics updating. 
 
2.4.2 Extreme value filter 

In some physical issues, there are cases where 
otherwise smooth and regular results may contain 
apparent extreme values. These values are often 
obtained from fast events with insufficient sampling 
frequency, such as wave-impacting events within 
generally continuous FSI problems. They may 
negatively impact the accuracy of the metrics. To 
address this issue, an extreme value filter is introduced 
and adopted in some test cases. 

As presented in Algorithm 2, the entire dataset is 
divided into n  segments, each encompassing a tested 
data point along with its adjacent data points. Within 
each data segment, the standard variance of the 
neighboring data points is compared with the variance 
between the tested data point and its neighbors. If the 
latter is four times greater than the former, the tested 
data point is identified as an extreme value and is 
subsequently adjusted to the mean of its neighboring 
data points. Figure 4 presents the filtering process 
applied to the pressure at a fixed position and the total 
kinetic energy from an oscillating wave surge con- 
verter case[37], which is an ocean engineering application 
case. 
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Algorithm 2: Extreme value filter 
  Input: The current result Array and its length l  

  Output: The smoothed result Filtered  
  Length of each data segment: = / 200n l , 
  for = 0i , i l , + + i  do 
     [ ] = [ ]Filtered i Array i , = 0nbhM , = 0nhb , test = 0  
     For = max( ,0)j i n , min( + , )j i n l , + + j

 
do 

        calculate neighboring points mean nhbM , 

     end 
     for = max( ,0)j i n , min( + , )j i n l , + + j

 
do 

        calculate neighboring points variance  nhb , 

     end 

     calculate tested point variance 2= ( [ ] )t nbhArray i M  , 

     if > 4 t nhb  then 

        [ ] = nhbFiltered i M , 

     end 
  end 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 (Color online) Extreme filtering in the problem oscilla- 

ting wave surge converter[37] 
 
2.4.3 Regression test 

With the metrics of the reference database 
available, the regression test following code modifi- 
cation is conducted for all data points using the 
following condition 
 

2( )  n
i i ix M

                                                         

(7) 

 
If there is any data point that does not satisfy this 

condition, it indicates that the code modification needs 
to be reviewed and corrected. 
 
2.5 Dynamic time warping (DTW) strategy 

DTW, originally proposed for spoken word 
recognition[38-39], is a dynamic programming algori- 
thm used to measure the similarity between two 
sequences with temporal variation by computing the 
DTW distance. In comparison to the Euclidean 
distance, DTW distance is more accurate and can 
handle non-linear distortions, shifts, and scaling in the 
time dimension. It has found widespread application 
in various research areas such as sign language 
recognition[40] and time-series clustering[41], among 
others. Moreover, this algorithm is extensively used in 
engineering fields involving time-series comparison, 
including applications in health monitoring and fault 
diagnosis[42]. Due to its generic properties, the DTW 
strategy may also be employed for curve types that are 
not classified in Section 2.2. 
 
2.5.1 Calculation of DTW distance  

Suppose we have two time series 
 

:P  1 2 1, , , , , ,i m mp p p p p  ,  

 
:Q  1 2 1, , , , , ,j n nq q q q q 

                                       

(8) 

 
where m  and n  indicate the length of time series 
P  and Q , while i  and j  are data point indices in 

the time series. The DTW algorithm divides the 
problem into multiple sub-problems, and each one 
contributes to the cumulative calculation of the 
distance[43]. The first step is to construct a local 
distance matrix d  consisting of m n  elements, 
where each element represents the Euclidean distance 
between two data points in the time series. Then, the 
warping matrix D , seen in Fig. 5, is filled based on 
the recurrence relation: 
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D i j d i j D i j
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Finally, DTW reports the optimal warping path 

and the DTW distance. The warping path consists of a 
set of adjacent matrix elements that identify the 
mapping between two sequences, representing the 
path that minimizes the overall distance between P  
and Q . Each warping path should follow certain 

rules[38, 44-45]: Each index from the first sequence must 
be matched with one or more indices from the other 
sequence, and such mapping must be monotonically 
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increasing. Note that the first index and the last index 
from the first sequence must be matched with their 
counterparts from the other sequence correspondingly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 (Color online) Illustration of the DTW (Labeled cells 

represent the optimal warping path) 
 

However, DTW can be computationally expensive 
when searching for global matches, and as a result, 
many algorithms have been proposed to reduce futile 
computation[38, 45-48]. One effective and simple method 
for speeding up DTW is to set a warping window 
(ww)[38]. The warping window adds a local constraint 
that forces the warping path to lie within a band 
around the diagonal, as shown in Fig. 6, restricting the 
searching window to a fixed size w . In the current 
work, we adopt the window size w  as 
 

= max( ,5)w m n
                                                   

(10) 

 
After imposing the constraint, the warping will only 
occur within the diagonal green areas, and if the 
optimal path crosses the band, the distance will not be 
the optimal one. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 (Color online) The warping scope is limited by the war- 

ping window 
 
2.5.2 Metrics generation and updating 

The maximum DTW distance is utilized as the 
regression test metric and is updated after each execu- 
tion until its variation converges to a certain threshold. 
With the initial value for the first computation set as 

0,0 = 0D , the maximum distance for the thn execu- 

tion is calculated as 
 

0, 1, 2, 1,= max( , , , , , ) 
 n n n n n nD D D D D D

               

(11) 

 
where the subscript, e.g., 2,n nD  denotes the distance 

between the ( 2)thn  and thn  computational results. 

Similar to the other two strategies, after the variation 
D  converges to a given threshold in successive 
several executions, D  and several results (usually 
3-5 in practical applications) with all data points are 
stored for the regression test. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7 Observing methods in SPHinXsys 
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Fig. 8 (Color online) Relationship of classes related to the re- 

gression test in SPHinXsys 
 
2.5.3 Regression testing 

For the regression test, if the DTW distances 
between the new result after code modification and 
each result in the reference database satisfy the 
condition 
 

1 2( , , , )  kD D D D ,
 

= 3 - 5k
                               

(12) 

 
the new result is regarded as acceptable. Otherwise, if 
any distance exceeds the threshold D , it indicates 
unexpected behavior, and the code should be checked 
and corrected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. Regression test environment 
In this section, the process of building an auto- 

matic regression test environment is explained, taking 
SPHinXsys as an example. The test interface is 
integrated into an SPHinXsys applicationʼs case code 
based on the data observing module. In SPHinXsys, 
the observing module includes two classes, as depict- 
ed in Fig. 7. The observed quantities at probes are 
generated from ObservedQuantityRecording, and the 
BodyReducedQuantityRecording could generate the 
reduced quantities. The above two methods are 
implemented with the template, allowing the flexible 
handling of different data types and providing rich 
data sources for the regression test.  

Figure 8 presents the relationship among diffe- 
rent regression test methods. RegressionTestBase, the 
class template, defining commonly used methods in 
regression tests, inherits from the above observation 
class. Then, three derived template classes are defined 
to implement specialized methods, i.e., RegressionT 
estTimeAveraged, RegressionTestEnsembleAveraged, 
as well as RegressionTestDynamicTimeWarping. 
Note that the present structure provides a very flexible 
combination of test strategies for different variables of 
interest. 

To set up a regression test for a specific test case,  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 9 (Color online) Example of the Python script for generating test metrics for a 2d dambreak flow case in SPHinXsys, with two 

variables of interest 
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Fig. 10 (Color online) Illustration of the reference database and 

results for the 2-D dambreak case 
 

it only needs to replace the existing observing class 
with the regression test class based on the type of 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

curve that is being observed. Afterward, call the 
interface generateDataBase() to generate a reference 
database or testNewResult() to perform a regression 
test at the end of the case file.  

It is noted that the current method does not 
disturb the existing code structure. In the SPHinXsys 
package, a Python script, as exampled in Fig. 9, is 
employed to execute a test case multiple times 
automatically for generating the reference database. 
This is an automatic process as long as the script is 
made for the test case, and it is also easy to regenerate 
the reference database when it is necessary. In 
SPHinXsys, the regression test is set up for all test 
cases that simulate real-world problems with the SPH 
method. Together with Google Test[49] for unit test, all 
tests are integrated using the CTest[21]. When merging 
branches occur, all tests can be triggered automa- 
tically. 
 
 

4. Applications and examples 
The reference database obtained for several test 

cases will be presented here to demonstrate the func- 
tionality of the current regression test method. 
 

4.1 Dambreak 
The first example involves dambreak flows in 

both two and three dimensions. The total mechanical 
energy of the entire domain and pressure at fixed 
probes have been recorded and validated[25, 36]. 
Therefore, these two observing variables have been  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

Fig. 11 (color online) Illustration of reference database and results for the 3-D dambreak case 
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utilized for the regression test.  

According to the classification of curves, the 
ensemble-averaged strategy is employed for the curve 
of total mechanical energy, while the DTW strategy is 
applied to the pressure curve. It is observed that the 
kinetic energies obtained after code modification, see 
Figs. 10(a), 11(a), fall within the range of the 
reference database. The collection of multiple pressure 
results is given in Figs. 10(b), 11(b)-11(d), where the 
3-D case has three pressure monitoring points. After 
continuously updating the maximum DTW distances 
for each pair of results, the variation of distances 
converges, and the final distance is stored, as listed in 
Table 1. Notably, not all computational results but 
only several randomly chosen ones are shown here 
and have been preserved in the reference database. 
Table 1 indicates that the distance between the newly 
obtained results and the ones stored in the database are 
all smaller than the reference distances. Therefore, 
after performing the regression test on these two 
variables, new results obtained after code modification 
are deemed correct, and the new code is considered to 
be compatible with the old version for the dambreak 
flow case. 
 
4.2 Oscillating-beam 

The second example involves the free-end 
oscillating elastic beam problem. The detailed setup 
and validation can be referred to in our previous 
work[36]. The displacement of the beam tip has been 
recorded and used for the regression test. This variable 
has two components representing different directions, 
and it has slight differences for each computation. 
Therefore, the ensemble-averaged method is adopted 
for generating the reference database and new result 
testing. Figure 12 demonstrates the reference database 
for this case. It is found that the new result of this case 
(not shown here due to very small, not noticeable 
visually, differences) after code modifications lies 
within the range given by the reference database for 
each data point. 
 
4.3 Fluid-solid interaction 

The last example involves a fluid-solid interac- 
tion problem on flow-induced vibration. More infor- 
mation and validations can be found in earlier work[26, 28]. 
The total viscous force from the fluid acting on the 
solid structure was recorded, and it fluctuated around 
the constant value when the dynamics entered a 
periodic oscillation state. Thus, the time-averaged  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12 (Color online) Illustration of the reference database and 

results for the 2-D oscillating beam case. Displacement 
along different directions. The red lines represent the 
ensemble-averaged mean for each data point, and the 
gray ones give the range of maximum variation 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 (Color online) Illustration of the reference database and 

the tested result for the FSI problem. The gray dashed 
lines represent multiple results used for generating the 
database, and the red line is a new result after code 
modification. The green line shows the time-averaged 
mean of multiple results, and the blue ones indicate the 
variation range constrained by the variance 

 

Table 1 DTW distance in the reference database and for the new results
DTW distance 2-D 3-D: Probe a 3-D: Probe b 3-D: Probe c 

Database 1.234 0.651 1.273 1.034 
Testing 1 0.368 0.180 0.229 0.231 
Testing 2 0.535 0.177 0.153 0.144 
Testing 3 0.522 0.015 0.084 0.111 
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method is used to perform the regression test for this 
variable. Since the force in the -y direction is rela- 

tively small, only the -x direction force was consi- 
dered. Figure 13 displays the reference database and 
one tested new result for this case. Table 2 shows the 
converged metric values in the database as well as the 
ones from the new result. It indicates the new mean is 
quite close to the converged one, and the new variance 
is also smaller than the reference one. Therefore, the 
new result of the FSI problem after code modification 
is still considered correct. 

In general, each test case should have at least one 
variable of interest used for the regression test, and the 
testing strategy is not fixed. This regression test envi- 
ronment provides flexible combinations of variables 
and strategies, but each variable should always have 
the best option to check itself. 
 

Table 2 Mean and variance in the reference database and 
for the new result 

Metric Database New result 
Mean 0.45570 0.45490 

Variance 0.00173 0.00157 
 
 

5. Conclusion 
This paper introduces a method for developing 

an automatic regression test environment for open- 
source scientific computing libraries, with SPHinXsys 
as an illustration to demonstrate its functionality. In 
the context of scientific computing libraries under- 
going centralized development, ensuring the accuracy 
of simulation results is crucial, and the regression test 
serves as a key procedure in achieving this. The 
reference database for each benchmark test is gene- 
rated using different strategies, and the new result 
after code modifications can be automatically tested 
against them upon source code updates. This regres- 
sion test environment has been successfully imple- 
mented in all test cases released in SPHinXsys, 
showcasing its effectiveness in validating new results 
obtained after code modifications. The initiative aims 
to raise awareness within the general scientific 
computing communities regarding the importance of 
software performance during development. The pro- 
posed regression test principle is universal and can be 
applied and extended to other libraries and appli- 
cations. Future work will involve the implementation 
of additional regression test methods, and as the 
number of test cases grows due to the addition of new 
dynamics features, the selection and reduction of test 
cases will be considered. 
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