
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Energy-E�cient Molecular Dynamics

Simulations: Implementing

Hardware-Agnostic Energy Measurement

and Evaluating Runtime-Energy Tradeo↵s

Maximilian Praus

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Energy-E�cient Molecular Dynamics Simulations:

Implementing Hardware-Agnostic Energy

Measurement and Evaluating Runtime-Energy

Tradeo↵s

Energiee�ziente Molekulardynamik-Simulationen:

Implementierung hardwareunabhängiger

Energiemessungen und Bewertung von

Laufzeit-Energie-Tradeo↵s

Author: Maximilian Praus

Supervisor: Univ.-Prof. Dr. Hans-Joachim Bungartz

Advisor: Manish Mishra, M.Sc.

Date: 12.10.2024

I confirm that this bachelor’s thesis is my own work and I have documented all sources and
material used.

Munich, 12.10.2024 Maximilian Praus

Acknowledgements

First of all, I would like to thank my advisor, Manish Mishra, who immensely supported
me throughout this thesis with his excellent knowledge in the field of molecular dynamic
simulations. Talking with him about simulation results and upcoming problems helped me
get a new viewing angle and possible solutions. I can recommend that everyone who is
interested in the field of md-simulations and high performance computing write a thesis
advised by him. Secondly, I would like to thank my wonderful girlfriend, who always
motivated me, especially at the end of writing this thesis. Also, a huge thanks to Martin
Rose, who was so kind as to run simulations on the AMD cluster to compare AMD and
INTEL CPUs.

vii

viii

Abstract

The cost of energy is a substantial part of the overall costs of simulations in high-
performance computing (HPC). Reducing energy consumption leads to reduced costs and
correlates to lower greenhouse emissions. With climate change and increasing costs for
energy as pressing problems right now, many HPC centers and companies strongly emphasize
reducing energy consumption. Those energy optimizations are carried out at di↵erent levels,
like switching to a sustainable energy source for computing and minimizing heat loss.
This study focuses on node-level energy optimization by selecting the most energy-e�cient
algorithm. Achieving this requires integrating a portable energy measurement method
into the molecular dynamics simulation framework. Therefore, we introduce the software
library ”PMT: Power measurement toolkit” and how it can be used in the node-level auto-
tuned particle simulation library AutoPas to ensure an accurate way of measuring energy
consumption on di↵erent hardware platforms. Additionally, we will show that in most cases,
a reduced runtime comes hand in hand with a reduction in energy consumption. Finally,
we present new energy metrics that can be used to compare performance across di↵erent
hardware and highlight a case study between AMD and INTEL-based clusters.

ix

Zusammenfassung

Die Energiekosten machen einen erheblichen Teil der Gesamtkosten von Simulationen im
High-Performance Computing (HPC) aus. Eine Reduzierung des Energieverbrauchs führt
zu einer Senkung der Kosten und korreliert zudem mit geringeren Treibhausgasemissionen.
Angesichts des Klimawandels und steigender Energiekosten als drängende Probleme legen
viele HPC-Zentren und Unternehmen großen Wert auf die Reduzierung des Energiever-
brauchs. Diese Energieoptimierungen werden auf verschiedenen Ebenen durchgeführt, wie
z.B. der Umstellung auf nachhaltige Energiequellen für das Computing oder der Minimierung
von Wärmeverlusten. In dieser Studie konzentrieren wir uns auf die Optimierung des
Energieverbrauchs auf Knotenebene, indem der energiee�zienteste Algorithmus ausgewählt
wird. Dies erfordert die Integration einer portablen Methode zur Energieverbrauchsmessung
in ein Molekulardynamik-Simulationsframework. Daher stellen wir die Softwarebibliothek
”PMT: Power Measurement Toolkit” vor und erläutern, wie sie in die Knotenebene der
auto-tuneden Partikelsimulationsbibliothek AutoPas integriert werden kann, um eine genaue
Messung des Energieverbrauchs auf verschiedenen Hardwareplattformen zu gewährleisten.
Zusätzlich werden wir zeigen, dass in den meisten Fällen eine Reduzierung der Laufzeit mit
einer Verringerung des Energieverbrauchs einhergeht. Abschließend präsentieren wir neue
Energiemetriken, die verwendet werden können, um die Leistung auf verschiedenen Hardware-
plattformen zu vergleichen, und heben eine Fallstudie zwischen AMD- und INTEL-basierten
Clustern hervor.

x

Contents

Acknowledgements vii

Abstract ix

Zusammenfassung x

1 Introduction 1

2 AutoPas 3

2.1 Containers . 3
2.1.1 Linked Cells . 4
2.1.2 Verlet Lists Cells . 4

2.2 Data layouts . 5
2.3 Newton’s Third Law of Motion . 5
2.4 Traversal . 6

2.4.1 Base steps . 6
2.4.2 Linked Cells Traversals . 7
2.4.3 Verlet Lists Cells Traversals . 8

3 PMT: Power measurement toolkit 9

3.1 Structure . 9
3.2 Implementation . 10
3.3 RAPL power measurement backend . 11

3.3.1 RAPL: Running Average Power Limit 11
3.3.2 Implementation in PMT . 12

3.4 Overhead . 13

4 Implementation 14

4.1 Compiling PMT . 14
4.2 Integrating PMT in AutoPas . 14

5 Results 17

5.1 Time to completion . 17
5.1.1 Results before PMT modification . 17
5.1.2 Adapting PMT source code . 18
5.1.3 Results after PMT modification . 19

5.2 Energy consumption measurement . 20
5.3 Comparing tuning configurations . 23
5.4 Recommendations . 24

xi

6 Benchmarks 25

6.1 Tuning configurations . 25
6.1.1 Comparing . 25
6.1.2 Metrics . 28
6.1.3 Energy E�ciency . 32

6.2 Tuning for energy e�ciency . 34
6.3 Performance comparison across di↵erent architecture 37

7 Conclusion 43

7.1 Future scope . 43

8 Appendix 45

8.1 Appendix A: Simulation file for exploding liquid 45

Bibliography 50

1 Introduction

Molecular dynamics simulations are increasingly important in many scientific fields, including
biology, materials science, and chemistry. In particular, for drug discovery and protein
engineering applications, molecular dynamics simulations can ”capture the behavior of
proteins and other biomolecules in full atomic detail and at very fine temporal resolution” [7].
As these simulations typically have time steps in the region of femtoseconds and take place
over nanoseconds or longer with millions of particles, this can become quite computationally
demanding. As the computational power required for these simulations increases, so does
energy consumption.
For instance, high-performance computing centers running these simulations consume vast
energy. To illustrate this further, we calculate the energy costs for the simulations run in
this study. In total, our simulations consumed approximately 151.17MJ. As 3.6MJ are
equal to 1 kWh, we get:

151.17MJ

3.6
⇡ 41.99 kWh

At the current electricity price in Munich of 0.3951€/kWh, the total electricity costs
amount to:

41.99 kWh⇥ 0.3951€/kWh ⇡ 16.59€

Overall, our simulations consumed 464.33 core hours. This is only a fraction of the overall
hours on the LRZ system, which had 452, 417, 767 in 2022 [13]. Setting our simulation time
in relation gives us an idea of how much energy the HPC Center of LRZ consumes per year.
To address the challenge of high energy consumption in molecular dynamics simulations,
this thesis introduces ”PMT: Power Measurement Toolkit”, a C++ library used to measure
energy consumption on various hardware. Integrating PMT in AutoPas provides a new way
of measuring energy consumption without being hardware dependent, like the previously
used implementation [3]. With PMT, molecular dynamics simulations in AutoPas can
be tuned to use the most energy-e�cient configuration, mitigating the increasing energy
consumption of simulations 1.
Chapter 3 will provide a brief overview of PMT and its functionality. In Chapter 4,
we will integrate PMT in AutoPas to measure energy consumption values and tune for
energy e�ciency. After that, in Chapter 5, we will compare the overhead and energy
consumption values between PMT and the previously used implementation. We also
introduce modifications to the PMT implementation for more accurate energy measurement,
as this is critical for our application, where we need measurement at the iteration level, and
any error can accumulate over time.

1Tuning can be quite energy expensive, as shown in [3]. For the present study, we consider tuning to be
advantageous

1

1 Introduction

Finally, in Chapter 6, we will compare di↵erent commonly used simulation configurations for
runtime and energy consumption and calculate some essential energy and runtime metrics.
With these results, we will establish and prove a thesis for the relationship between running
time and energy e�ciency. This will demonstrate how our approach contributes to more
energy-e�cient, sustainable, cost-e↵ective molecular dynamics simulations.

2

2 AutoPas

AutoPas is an open-source C++ node-level performance library that aims to provide a
base for arbitrary N-body simulations. It acts as a black-box data container, providing
interfaces for accessing particles and applying short-range pairwise forces [5]. AutoPas
employs dynamic auto-tuning to select the optimal algorithmic configuration to reduce the
time to solution or energy consumption of molecular dynamic simulations. Therefore, the
library has a broad portfolio of traversal algorithms, data layouts, and containers [4]. In
the following subsections, we will provide a quick overview of crucial molecular dynamic
algorithms that impact the energy consumption of simulations.

2.1 Containers

Containers are managing in which data structures particles are stored and how neighboring
particles are identified. AutoPas provides several container options:

• Direct Sum: Calculating the distance between all particles. Forces are only applied
for particles within a specific range (cuto↵ radius) [5].

• Linked Cells: Dividing domain into cells bigger or equal to the cuto↵ radius. Distance
is only calculated for particles in the same or neighboring cells [5].

• Verlet Lists: Pre-compute distance relations and store all relevant neighboring
particles in Verlet List. These lists must be rebuilt if a particle comes in range or
leaves it [5].

• Var Verlet Lists: Generalization of Verlet Lists container. Provides interface to
easily swap out the implementation of Verlet Lists and their generation [4].

• Verlet Lists Cells: Solving a problem that Verlet Lists are stored without any
information about a spatial locality. This is done by associating the neighbor list with
the cell where the particle is stored in [4].

• Verlet Cluster Lists: Building upon the Verlet Lists approach.A given number of M
particles are combined into a cluster and thus reduces the number of lists by 1

M . This
is because neighboring particles will have very similar Verlet Lists [4].

The choice of used container can significantly impact the energy consumption of a molecular
dynamics simulation. Based on the amount/distribution of particles and the size of the
domain, some containers can achieve a faster runtime or reduce the amount of memory
access, leading to lower energy consumption. In this thesis, we will take a closer look at the
Linked Cells and Verlet Lists Cells container and their impact on energy consumption [4].

3

2 AutoPas

2.1.1 Linked Cells

The Linked Cells container stores uniform cells in a vector. All particles that are part of
the cell are stored in a vector. Figure 2.1 visualizes how neighboring particles are identified
within this structure. The forces currently applied to the red particle are calculated in the
figure. The red circle illustrates the cuto↵ radius, defining the range within which particle
interactions are considered. All particles in the same or neighboring cell are marked with
grey. Distance is calculated for every particle connected by an arrow to the red one. However,
force calculations are only performed for particles shown in blue, which are both in the same
or neighboring cells and within the cuto↵ radius of the red particle.

Figure 2.1: Linked Cells container force calculation [4]

Through this approach, neighboring particles that are close in space end up in the same
cell and are also close in memory, which increases e�ciency in loading neighboring particles.
This allows for an e�cient iteration of cells in the same region and vectorization of particle
computations. A disadvantage is that the Linked Cells container represents the actual
space, not particle relations. Moving particles need to be stored in the correct cell adding a
overhead. Additionally, Linked Cells has a high number of superfluous distance calculations,
caused by poor approximation of the cut-o↵ radius [4].

2.1.2 Verlet Lists Cells

The Verlet Lists Cells approach enhances the traditional Verlet Lists method used for
managing particle interactions in simulations. The traditional Verlet Lists approach generates
a neighbor list for each particle, which contains a reference to all particles within a specified
cuto↵ range. As building this neighbor list can be computationally expensive, the list
should be rebuilt as infrequently as possible. That is why particles slightly outside the
cuto↵ range are stored in the neighbor list as well. This additional range is referred to as
verlet-skin. Figure 2.2 visualizes this approach. Currently, applying forces are calculated
for the red-marked particle. The red circle illustrates the cuto↵ radius in which particle
interactions are considered. The yellow circle marks the verlet-skin added to the cuto↵
radius. Distance is calculated for all particles connected by an arrow with the red one, but
force calculations are only performed for the blue particles inside the cuto↵ radius. The
neighbor list contains all particles within the verlet skin circle.

4

2.2 Data layouts

Figure 2.2: Verlet Lists container [4]

To e�ciently build these neighbor lists, the particles are stored in an instance of Linked
Cells. The neighbor list itself stores the particles in a vector of pointers. All neighbor lists
are then collected in a map of particle pointers, each pointer mapping to a neighbor list.
One disadvantage of the Verlet Lists approach is that no information about the spatial
locality of a neighboring particle is stored. The Verlet Lists Cells tries to improve this by
not saving all lists in a container-wide vector but associating them to the cell, where the
particle is stored [4].

2.2 Data layouts

Data layout defines how particles are stored within a container during molecular dynamic
simulations. There are two major ways to store those particles, which are both supported
by AutoPas:

1. Array of Structures (AoS):
In this data layout, particle information is stored within an encapsulated C++ object
containing all important properties, e.g., velocity, positions, and forces. These objects
are then stored within a std::vector<Particle>

2. Structure of Arrays (SoA):
This data layout does use a std::vector<double> for each property like the y-position.
Each entry represents one particle.

Each of the presented data layouts has di↵erent advantages. When accessing one particle,
the AoS data layout is simpler, as it is only a random access on a vector. In contrast, for
the SoA layout, each piece of information has to be gathered from each vector separately. In
contrast, retrieving successive particle information can be done within one load for the SoA
data layout [4].

2.3 Newton’s Third Law of Motion

One important optimization that is used in molecular dynamics simulations is Newton 3
optimization. Newton’s third law states ”that for every force exerted on a body i by a body
j, there must be a force of equal magnitude but opposing direction on body j” [15]. This is

5

2 AutoPas

of significant interest for molecular dynamics simulations as it holds Fij = �Fji, and we can
reduce the amount of force and distance calculations by half.

2.4 Traversal

The Linked Cells and Verlet Lists Cells containers both provide di↵erent algorithms for the
traversal of the domain. To get a general understanding of how di↵erent algorithms work
and what the benefits and disadvantages are, we need to introduce the base steps supported
by AutoPas and that are used by most of the traversal algorithms.

2.4.1 Base steps

AutoPas currently supports three base steps, which are used for traversing neighboring cells.

1. c01: The c01 base step does calculate the applying forces for each neighboring cell.
This can be seen in Figure 2.3 a. As we calculate the force for each cell individually and
no race conditions have to be taken care of, this base step can be highly parallelized.
One disadvantage is that the Newton 3 optimization, which could otherwise halve the
number of particle interactions (see Figure 2.3 a)) is not utilized for this base step.

2. c18: This base step only computes the interaction with a cell index, which is higher
than the currently iterated cell. As c18 makes use of Newton 3 optimization, as can be
seen in Figure 2.3 and the box of cells increases, in which we update particles, we need
to guard these cells against race conditions. However, as the number of cells that are
needed for one base cell decreases, it is more likely that cells remain in the lower-level
cache for the entire base step.

3. c08: The c08 base step improves the idea of the c18 base step further. This step
replaces the forward diagonal interaction with the forward computation of the next
cell. This idea can be seen in Figure 2.3 c. Here, the interaction between 16 and 12 is
replaced by forward computation for 13 and 17. This increases the level of parallelism
as the box size decreases compared to c08, and it also improves cache reuse e�ciency.

Figure 2.3: Base steps [4]

6

2.4 Traversal

Depending on the various properties of the base steps, the energy consumption also varies.
Important properties are, for example, parallelizability, use of Newton3 optimization, and
box size.

2.4.2 Linked Cells Traversals

In the following subsection, we will introduce di↵erent traversal algorithms for the Linked
Cells container.

1. lc-c18:
The lc-c18 traversal algorithm is based on the c18 base step, described in 2.4.1. This
algorithm takes Newton 3 optimization into account and reduces the interactions that
we need to calculate by 50%.

2. lc-c08:
The lc-c08 traversal algorithm makes use of the c08 base step, as the name suggests.
As described in 2.4.1, this algorithm divides the domain into smaller pieces than lc-c18
and increases the level of parallelism.

3. lc-sliced-balanced:
In contrast to the previously presented algorithms, sliced traversals reduce the schedul-
ing overhead to a minimum. These traversals assign cells statically by dividing the
entire domain into slices of equal size, as seen in Figure 2.4. To spread the compu-
tational load, each slice is assigned to one thread [5]. The sliced-balanced algorithm
creates exactly one slice for each thread. It can use a heuristic to estimate the compu-
tational load of each slice and create slices with equal computational load. To ensure
no data races occur, each thread locks the neighboring cells of the layer it is currently
processing. [3].

4. lc-sliced-c02:
The lc-sliced-c02 traversal does split up the domain just like lc-sliced-balanced. The
main di↵erence between the two algorithms is that lc-sliced-c02 creates as many slices
as possible of the domain and uses dynamic scheduling to spread the computational
load among all threads. Similar to the lc-sliced-balanced algorithm, each thread locks
neighboring cells to prevent data races. [3].

Figure 2.4: Sliced domain [4]

7

2 AutoPas

2.4.3 Verlet Lists Cells Traversals

In the following subsection, we will introduce di↵erent traversal algorithms for the Verlet
Lists Cells container.

1. vlc-c18:
This traversal algorithm processes all neighbor lists of a cell with the c18 base step.
All neighbor lists of the currently iterated cell are processed. When creating the
neighbor list, the vlc-c18 algorithm creates a list of forward-facing neighbors. When
processing particle pair Pi and Pj with i < j, with di↵erent cells i and j, Pj is part of
the neighbour list of Pi but not the other way round [4].

2. vlc-sliced-balanced:
The vlc-sliced-balanced algorithm works the same way as lc-sliced-balanced, for each
thread dividing the domain into equal slices. Neighbour lists are created just like in
the vlc-c18 algorithm [4].

3. vlc-sliced-c02:
This traversal algorithm also works the same way as lc-sliced-c02, creating as many
slices of the domain as possible and dynamically scheduling them among all threads.
Neighbour lists are made just like in the vlc-c18 algorithm [4].

8

3 PMT: Power measurement toolkit

After laying the foundation with some theoretical background in molecular dynamics simula-
tions, we want to introduce the software library ”PMT: Power Measurement Toolkit” and,
in particular, the RAPL backend, which is the sole power measurement backend utilized in
this thesis.
”PMT: Power Measurement Toolkit” is a high-level software library that collects power
consumption measurements on various hardware. The library is written in C++ and is
Linux-only. It provides a common interface to measure the energy consumption of CPUs
and GPUs on di↵erent hardware [19].

3.1 Structure

PMT uses a base class to implement all available functions and attributes to get this common
interface between the di↵erent power measurement backends. All additional subdirectory
classes inherit this base class and implement hardware-specific functions. Additionally, there
is a dummy subdirectory that is used as a fallback in case a sensor with an invalid or not
compiled energy measurement backend is used. This ensures that PMT does not fail during
runtime [18]. Figure 3.1 visualizes the structure of the PMT library. Important to note is
that not all sub-directories are displayed.

Common
(Base class)

Rapl Likwid Dummy Others [19]

Figure 3.1: General structure of the ”PMT: Power Measurement Toolkit” library

Each subdirectory provides functionality to measure the energy consumption on di↵erent
hardware; for example, does the ”Rapl” power measurement backend access energy consump-
tion values on AMD and INTEL hardware. To decide which energy measurement backend
should be included in the current build, PMT defines several CMake options for managing
the build of each subdirectory.

9

3 PMT: Power measurement toolkit

3.2 Implementation

In contrast to the previously used RaplMeter implementation, PMT measures energy
consumption asynchronously. When setting up a new energy sensor, e.g., with std::unique

ptr<pmt::PMT> sensor(pmt::Create("rapl")) a new instance of pmt::PMT is created
with RAPL power measurement backend in this case. To understand the di↵erence between
PMT and RaplMeter implementation, we will examine two methods PMT::Read() and
PMT::StartThread() in the PMT base class pmt::PMT.

PMT::Read()

1 State PMT::Read() {

2 const int measurement_interval = GetMeasurementInterval ();

3 if (! thread_started_) {

4 StartThread ();

5 thread_started_ = true;

6 std:: this_thread :: sleep_for(std:: chrono :: milliseconds(

measurement_interval));

7 }

8 while (seconds(state_previous_ , state_latest_) == 0) {

9 std:: this_thread :: sleep_for(std:: chrono :: milliseconds(

measurement_interval));

10 }

11 state_previous_ = state_latest_;

12 return state_latest_;

13 }

Listing 3.1: PMT::Read() method for retrieving latest energy consumption values

When calling sensor.Read() for the first time, a new thread is created that reads power
consumption values at a specific interval asynchronously. If a thread was already started,
it is tracked with the thread started boolean variable. The actual energy consumption
values are returned within a custom object State, which can be further used to calculate
the energy consumption between two timestamps. Note that calling sensor.Read() twice
in a short time range will cause the thread currently executing the method to sleep for a
specified time interval, based on the energy consumption backend used. This behavior will
be relevant in Section 5.1.

PMT::StartThread()

1 void PMT:: StartThread () {

2 thread_ = std:: thread ([&] {

3 const State start = GetState ();

4 assert(start.nr_measurements_ > 0);

5 State previous = start;

6 state_latest_ = start;

7

8 if (dump_file_) {

9 DumpHeader(start);

10 }

11

12 const int measurement_interval =

10

3.3 RAPL power measurement backend

13 GetMeasurementInterval (); // in milliseconds

14 assert(measurement_interval > 0);

15 const float dumpInterval = GetDumpInterval (); // in seconds

16 assert(dumpInterval > 0);

17

18 while (! thread_stop_) {

19 std:: this_thread :: sleep_for(

20 std:: chrono :: milliseconds(measurement_interval));

21 state_latest_ = GetState ();

22

23 const float duration = seconds(previous , state_latest_);

24 if (dump_file_ && duration > dumpInterval) {

25 Dump(start , previous , state_latest_);

26 previous = state_latest_;

27 }

28 }

29 });

30 }

Listing 3.2: PMT::StartThread() method, spinning up a second thread for power
measurement backend

The PMT::StartThread() method is used to start a new thread for a sensor, which reads
the energy consumption values asynchronously at a specified time interval. This interval is
defined by each power measurement backend. For RAPL, it is, e.g., 100 ms. PMT provides
an additional dump-mode, which writes all measured values within a specified interval to a file.
This part should be ignored because we will use measurement values within AutoPas internal
log iteration. When starting a new thread, the initial state is obtained by GetState(),
and we assure that the start state has at least one measurement. After that, the initial
state is used to set state latest and to create a new copy of the state named previous.
In the next step, we obtain the measurement interval and enter a while loop to measure
energy consumption values continuously. The thread sleeps for the specified time interval
and updates the state.

3.3 RAPL power measurement backend

Since this thesis will exclusively use the RAPL power measurement backend, we will provide
a brief overview of RAPL and its implementation in PMT.

3.3.1 RAPL: Running Average Power Limit

Intel’s Running Average Power Limit (RAPL) was introduced in the Intel Sandy Bridge
Architecture [12]. It allows for measuring energy consumption across di↵erent power
planes with high precision and sampling rate [12]. PMT makes use of this interface in the
similarly named power measurement backend. To obtain the consumed energy for di↵erent
power planes, PMT accesses two files in the RAPL interface, max energy range uj and
energy uj. These files were introduced as part of the powercap interface in the Linux kernel
3.13 release, providing a consistent way of reading energy consumption values. The files
in /sys/class/powercap/intel-rapl/ are organized to reflect the hierarchy of di↵erent

11

3 PMT: Power measurement toolkit

power planes. For each CPU socket, powercap contains a separate sub directory, e.g.,
/sys/class/powercap/intel-rapl/0:intel-rapl for the first CPU socket [22]. Figure
3.2 is an example of the powercap directory on CoolMUC-2, where all simulations for this
study were conducted.

1 __ intel -rapl:0
2 |__ energy_uj
3 |__ intel -rapl :0:0
4 |__ max_energy_range_uj
5 __ intel -rapl:1
6 |__ energy_uj
7 |__ intel -rapl :1:0
8 |__ max_energy_range_uj
9

Figure 3.2: Content of powercap directory on CoolMuc-2

Each of those directories contains its own energy uj and max energy range uj, which is
updated approximately every 1ms and reports the current energy consumption of the power
plane and the maximum energy range that can be captured [2].

3.3.2 Implementation in PMT

PMT makes use of RAPL and the powercap interface by reading energy consumption values
from energy uj and max energy range uj. When creating a new PMT instance, with
RAPL as power measurement backend, the CPU topology is read with GetActiveCPUs()

which returns an std::vector<int> containing all active CPU numbers. After that, the
vector is used to gather the physical package ID for each CPU and iterate over the resulting
std::vector<int> package ids and the subdomains in each package.

1 // Read domain name

2 const std:: string filename_domain = basename + "/name";

3 std:: string domain_name;

4 bool valid = ReadFile(filename_domain , domain_name);

5 if (domain > 0) {

6 domain_name = domain_name + "-" + std:: to_string(

package_id);

7 }

Listing 3.3: Retrieving domain names from powercap interface

For each package and domain, we read the name in the powercap /name file and save it in
the local variable domain name

1 // Read max energy

2 const std:: string filename_max_energy = basename + "/

max_energy_range_uj";

3 size_t max_energy_range_uj = 0;

4 if (valid) {

12

https://doku.lrz.de/coolmuc-2-11484376.html/

3.4 Overhead

5 valid &= ReadFile(filename_max_energy , max_energy_range_uj

);

6 }

Listing 3.4: Reading max energy, that can be stored for each domain

We save the max energy range as well by reading the max energy range uj file and saving
the content in a local variable.

1 // Read energy

2 const std:: string filename_energy = basename + "/energy_uj";

3 if (valid) {

4 size_t energy_uj = 0;

5 valid &= ReadFile(filename_energy , energy_uj);

6 }

Listing 3.5: Reading energy consumption values for each domain

Additionally, we need to save the actual consumed energy by saving the content of
energy uj file.

1 if (valid) {

2 domain_names_.push_back(domain_name);

3 uj_max_.push_back(max_energy_range_uj);

4 file_names_.push_back(filename_energy);

5 }

6 }

7 }

Listing 3.6: Saving domain name, max energy and path to energy file in according vectors

If all these operations were successful, we save the domain name, max energy range, and
path to the energy uj file in the corresponding vector.
To obtain the actual energy consumption values, the RAPL backend does provide State

RaplImpl::GetState(). The method uses the helper function GetMeasurements() to
process all packages and domains. The helper functions iterate over all the previously saved
file names and domain names, reading the energy values from each energy uj file. The
vector is then passed to the actual GetState() method, which calculates the duration and
energy (in Joules) consumed. Lastly, those values are saved in a State and passed to the
caller.
In general, we must note that the asynchronous measurement method occupies two threads.
Especially for molecular dynamics simulation, where the main focus is to exploit all the
available parallelism for computation, this is a disadvantage.

3.4 Overhead

According to ”PMT: Power measurement toolkit”[19], PMT adds an overhead of 1 ms per
iteration in C++. In Section 5.1, we will analyze the overhead that is added by PMT more
accurately and see why PMT, without any code changes, might not be suitable for analyzing
the power consumption of short code paths.

13

4 Implementation

Integrating PMT in AutoPas follows a similar approach to other already included libraries
like spdlog and googletest. The implementation can be divided into two main stages:
compiling PMT and integrating it into AutoPas.

4.1 Compiling PMT

To use PMT: Power Measurement Toolkit, we must compile and link PMT with the existing
AutoPas codebase. This process is managed within the file cmake/modules/autopas_pmt.
cmake and is very oriented towards other files like cmake/modules/autopas spdlog.cmake,
as they aim to include a third-party library as well. Generally speaking, our cmake file first
looks for an already installed PMT version that can be reused. If no installed version is
found, or if the pmt ForceBundled option is enabled, we unpack the compressed PMT archive
(libs/pmt stable 1.0.zip) to make it available for our AutoPas build. The only di↵erence
compared to the other CMake files, including a library, is that we need to mark some CMake
options as advanced predefined by the PMT library. These options control the build of
di↵erent power backends, like Xilinx for Xilinx FPGAs architecture or NVML and rocm-smi

for GPU measurements. Since AutoPas does not use the GPU for computation and focuses
exclusively on CPU energy measurements, we only enable the RAPL and LIKWID backends,
marking other options as advanced to prevent unnecessary configuration.
As PMT is capable of collecting power consumption measurements on di↵erent hardware,
it is not necessary to control its compilation by a cmake option, and the previously used
AUTOPAS ENABLE ENERGY MEASUREMENT can be removed.

4.2 Integrating PMT in AutoPas

After compiling and linking PMT to the AutoPas code base, all the functionality that PMT
provides can be used by including pmt.h.
Similar to previously used RaplMeter implementation [3], we abstract all the functionality
into a newly created class EnergySensor. This has the advantage of running simulations
without any overhead if the energy consumption should not or can not be measured.
Therefore, the EnergySensor class o↵ers several methods to measure the energy consumed
between two states and start and stop energy measurements. An object of this class is stored
in AutoTuner.h to be able to handle the energy consumption measurement before and after
each iteration. To further elucidate the functionality of EnergySensor class, we will now
examine three essential components.

1. Constructor:

14

4.2 Integrating PMT in AutoPas

1 EnergySensor :: EnergySesnor(EnergySensorOption sensor)

: _option(sensor) {

2 if (_option != EnergySensorOption ::none) {

3 _sensor = pmt:: Create(sensor.to_string ());

4 } else {

5 AutoPasLog(WARN , "No sensor for energy consumption

measurement specified.

6 Energy will not be measured);

7 }

8 }

9

Listing 4.1: Constructor of EnergySensor class

The constructor takes as only argument the parsed EnergySensorOption and stores
it in the class variable option. It is used in all EnergySensor functions to determine
whether a valid energy measurement backend for PMT was specified. We initialize a
new sensor with pmt::Create() if it is a valid option. If not, we will display a warning
that no energy consumption measurement will take place as we did not parse a valid
option.

2. Starting measurements:

1 bool EnergySensor :: startMeasurement () {

2 if (_option != EnergySensorOption ::none) {

3 _start = _sensor ->Read();

4 return true;

5 }

6 return false;

7 }

8

Listing 4.2: EnergySensor::startMeasurement() method, called to mark the beginning of a
new measurement

This method is used to start a new measurement. If a valid option was provided
in the constructor, it sets the class variable pmt::State start to the return value
of sensor->Read(). The custom class pmt:State is defined in the pmt library. It
represents the current energy consumption state of the system and is capable of holding
multiple energy values in std::vector<float> joules .
All methods in the EnergySensor class are checked for an valid sensor. If the option
represents a valid backend, we call the encapsulated PMT function; otherwise, we just
return a default value.

3. Reading consumed joules:

1 double EnergySensor :: getJoules () {

2 if (_option != EnergySensorOption ::none) {

3 return _sensor ->joules(_start , _end);

4 }

15

4 Implementation

5 return -1;

6 }

7

Listing 4.3: EnergySensor::getJoules() method, to get consumed Joules between two states

Again, this method encapsulates PMT::joules(). The method uses this function to
return the consumed joules between start and end state. The method additionally
provides a way for handling an invalid or unspecified option. Similarly, we encapsulate
PMT::seconds() and PMT::watts() to get the time for one iteration and the consumed
watts.

Besides the newly created EnergySensor class, we need to adapt some existing files. To
pass the power measurement backend that should be used within PMT, we need to introduce
a new option class EnergySensorOption. This class confirms the style of other already
existing option classes and provides three options:

• EnergySensorOption::none: This option represents that no sensor should be used and
no energy consumption measurement will take place.

• EnergySensorOption::rapl: This option initializes the rapl backend.

• EnergySensorOption::likwid: This option initializes the likwid backend.

Additionally, as we transition from the RaplMeter to EnergySensor class, it is necessary
to update all method calls from the old implementation to the new class.
To select an energy sensor that should be used for a simulation, we extend the md-flexible
code base as well as src/AutoPas/AutoPasDecl.h file to support a new yaml option
energy-sensor. The YAML option should hold exactly one of the three previously defined op-
tions: rapl, likwid, or none. The parsed option is saved in src/AutoPas/AutoTunerInfo.h

and has EnergySensorOption::none as a default value. That has the advantage that if
energy measurement is enabled for a simulation but with no sensor option, the simulation
can still succeed without throwing an error. The user notices the missing energy sensor by a
warning logging message stating that no energy sensor was specified and the energy will not
be measured.

16

5 Results

To ensure that PMT is a valid alternative to the existing RaplMeter implementation, we
must inspect behaviors, regarding energy consumption measurement and time to completion.
To verify that PMT and RaplMeter implementations produce the same results, we run
several simulations with PMT and RaplMeter energy measurement enabled. As simulation,
classic exploding liquid molecular dynamics scenario was used with di↵erent amount of
threads. A copy of the YAML file used in the simulation can be found in 8.1. All simulations
were conducted on the CoolMUC-2 Linux Cluster from the Leibniz-Rechenzentrum (LRZ).
Hardware, Infrastructure, and Software characteristics for CoolMUC-2 can be found at [14].

5.1 Time to completion

First, we compare the time to completion for both energy consumption measurement
implementations. This ensures that using pmt should not lead to degrading performance in
terms of runtime.

5.1.1 Results before PMT modification

Table 5.1 compares the mean iteration time and total time to completion for PMT, using
the rapl power measurement backend, and RaplMeter implementation, without any changes
to the PMT source code.

Metric PMT RaplMeter

Iteration Time (s) 0.100009 0.002162
Total Time (s) 981.285641 25.946005

Table 5.1: Comparison of Iteration Time and Total Time for PMT and RapMeter implemen-
tation.

We can see that the introduced overhead by using PMT is approximately 0.098 seconds,
which is more than stated in Section 3.4. The iteration time for PMT is almost exactly 100ms,
which corresponds to the specified measurement interval in the RAPL power measurement
backend. As explained in Section 3.2, PMT uses asynchronous measurements by starting a
new thread responsible for reading energy values in a specified time interval. For the rapl
power measurement backend, this interval is set to 100ms. The reason for this choice might
be, that RAPL values are not updated exactly every 1ms but have some jitter. Additionally,
high frequency sampling can add some overhead that PMT developers seemed to avoid [11].
AutoPas measures the energy before and after each iteration, as explained in Chapter 4,
which makes measurement at 100ms infeasible as iteration runtime is often much smaller.
Figure 5.1 visualizes this code flow.

17

5 Results

const bool energyMeasurementsPossible = _autoTuner.resetEnergy();

[Performing calculations for iteration] (< 100ms)

const auto [energyWatts, energyJoules, energySeconds, energyTotal] =

_autoTuner.sampleEnergy();

Figure 5.1: Energy measurement process in AutoPas, demonstrating the key steps for calcu-
lating energy usage during iterations.

We assume that the step ”Performing calculations for iteration” takes less than 100ms.
When reading the consumed energy with autoTuner.sampleEnergy(), we call PMT::Read()
a second time. Because of the measurement interval for the rapl backend, we do not have
new energy consumption values, and the called thread wait for the remaining time until a
new measurement is taken. This behavior can be seen in Listing 5.1, which is code, part of
the PMT::Read() method and responsible for the large overhead when using PMT.

1 while (seconds(state_previous_ , state_latest_) == 0) {

2 std:: this_thread :: sleep_for(

3 std:: chrono :: milliseconds(measurement_interval));

4 }

Listing 5.1: Sleep loop in PMT library, responsible for significant overhead

5.1.2 Adapting PMT source code

As a lower bound of 100ms per iteration for molecular dynamics simulations is not acceptable,
the source code of PMT needs to be changed to reduce the introduced overhead as much as
possible.
As described in 5.1.1, the overhead is introduced by the asynchronous measurement of energy
consumption values and the time between two measurements. Our approach is to reduce the
overhead by removing the asynchronous measurement logic and moving PMT to measure
energy values ”on call.” This means that PMT only utilizes one thread, which directly
calls the GetState() method, implemented in the power measurement backend, without
spawning a new thread continuously reading energy values in a specified time interval. This
also enables the code to optimally use all threads for computation and removes measurement
intervals for power backends.

Code changes

To achieve this goal, the PMT source code was adapted and forked to the branch ”pmt-stable”
on github [16].
We completely removed previously used PMT::StartThread() and PMT::StopThread()

methods as well as the two class variables volatile bool thread started and volatile

18

5.1 Time to completion

bool thread stop .
Additionally, we introduced a new class variable volatile bool initialized = false;,
controlling if state previous is initialized. The main changes were done to PMT::Read()

method to call GetState() without using a second thread.

1 State PMT::Read() {

2 if (! initialized_) {

3 // Initialize the first measurement

4 state_previous_ = GetState ();

5 initialized_ = true;

6 }

7

8 // Get the latest measurement

9 state_latest_ = GetState ();

10

11 state_previous_ = state_latest_;

12

13 return state_latest_;

14 }

Listing 5.2: New PMT::Read() method, aiming to reduce overhead

If we did not initialize state previous so far, we set the variable to the current state of
the used power backend, returned by GetState(). Afterward, we set state latest to the
returned value of GetState() as well and return the class variable.

5.1.3 Results after PMT modification

After modifying the PMT source code to use synchronous measurements, we conducted
simulations again to compare the runtime of the PMT and RaplMeter implementation.
In Figure 5.2, we compare the runtime of these simulations for PMT and RaplMeter
implementation.

19

5 Results

Figure 5.2: Time to completion, compared between PMT and RaplMeter

As we can clearly see in Figure 5.2, the time to completion is almost similar to the
previously used RaplMeter implementation, and the updated version of the PMT library
did reduce the introduced overhead.

5.2 Energy consumption measurement

Additionally, we compared the energy consumption between both implementations with
the adapted PMT library. In the following plot, the total energy consumed by PMT and
RaplMeter is compared for the exploding liquid simulation.

Figure 5.3: Energy consumption, compared between PMT and RaplMeter

20

5.2 Energy consumption measurement

We can clearly see in Figure 5.3 that PMT and RaplMeter energy consumption measure-
ments follow the same trend, while RaplMeter constantly measures more energy consumed
than PMT. As stated in Section 3.3.2 makes the rapl power measurement backend use of
the powercap interface to read energy values. In contrast, the previously used RaplMeter
implementation for energy consumption measurement relies on the perf event interface [3].
It provides access to the following perf events [22]:

• power/energy-psys: Providing energy consumption values for whole system

• power/energy-pkg: Providing energy consumption values for whole cpu socket

• power/energy-ram: Providing energy consumption values for ram that is attached

Figure 5.4 visualizes the di↵erent power domains and which components are part of the
domain. It is important to note that the Package domain is part of Psys.

Figure 5.4: Structure of the rapl power domains [12]

RaplMeter relies mainly on the energy-psys perf event to get energy consumption for
the whole system. If this perf event is not accessible, it uses the sum of energy-pkg and

21

5 Results

energy-ram as a fallback value. The Linux CoolMuc-2 Cluster, on which all simulations were
run, uses Haswell-based nodes, for which the energy-psys interface is not available, as can
be seen in Figure 5.5. As we use the sum of energy-pkg and energy-ram as energy value for
simulations on the CoolMuc2-Cluster, it could be, that the two perf events do not represent
a valid alternative to the psys-energy value. To confirm this thesis, the same simulation
was run on an HP EliteBook 850 G3 with Intel Core i7-6500U (Dual core, four threads)
notebook based on the Skylake architecture, which supports the psys domain.

Figure 5.5: Comparison of RAPL power domains, supported by di↵erent Intel Processor
Models [12]

Table 5.2 shows the results of exploding liquid simulation on Skylake architecture compar-
ing the PMT energy values, Psys, and PKG domain. Because DRAM was not accessible
for the simulation, energy per iteration and total is 0. We notice, that the reported PMT
value is drastically higher than the PSys value per iteration and total. Another important
thing that we notice is that the reported value for the PKG domain is greater than the one
for PSys. This does indicate some error in the RaplMeter values as the PKG domain is
part of the PSys domain, as seen in Figure 5.4, and it should always hold that energy-psys
is greater than energy-pkg. To investigate further why PMT does report a lower energy

Metric PMT PSys PKG DRAM

Energy per Iteration [J] 0.03011 0.01363 0.02350 0
Total Energy [J] 361.324 163.583 282.091 0

Table 5.2: Comparison of energy values between PMT and RaplMeter on Intel Skylake
architecture.

consumption than RaplMeter when using energy-pkg and energy-dram as total energy
consumed, we did some extensive research about perf events and how the power domains for
RAPL are built up. The final hint was found in a Firefox Source Docs [1]. Especially the
fact that energy-pkg >= energy-cores + energy-gpu relationship holds is interesting for us,
as it suggests that the energy-pkg domain does also include the GPU energy consumption
and maybe even other uncore components. That would explain the di↵erence between
energy consumption values for PMT and RaplMeter, as PMT only measures the CPU energy
consumption values [19], while RaplMeter also includes other hardware components like
GPU. To confirm this thesis, we adapt the RaplMeter implementation to also measure the
consumed energy for energy-cores and energy-gpu perf events and compare the values to
energy-pkg. When running an exploding liquid simulation utilizing one thread on the same

22

5.3 Comparing tuning configurations

EliteBook 850 G3, we get the values displayed in Table 5.3, which does confirm the thesis

Metric energy-pkg energy-cores energy-gpu

Total Energy [J] 409.079 324.348 16.974

Table 5.3: Results for pkg, cores, and gpu domain for exploding liquid simulation on Intel
Skylake architecture.

from [1], that energy-pkg >= energy-cores + energy-gpu does hold and the pkg domain
includes GPU and other uncore components. As they are not utilized by PMT, they should
be in an IDLE state, consuming a constant amount of energy, which would explain what
seems to be a static value added to the RaplMeter energy consumption values. To further
investigate this, the branch with the adapted RaplMeter version was used for simulations
on the CoolMuc-2 cluster to compare the values for energy-pkg, energy-gpu, energy-cores,
and PMT. After running the simulation, we noticed that the values for energy-cores and
energ-gpu are reported as 0 Joules. The reason for this could be that the corresponding
perf events are not available on CoolMuc-2, or access restricted. We can confirm that the
perf events are available by running perf list and looking for power/energy-cores and
power/energy-gpu. As they should exist, restricted access is probably the cause of the
missing values. Since there is currently no way to confirm our thesis on the CoolMuc-2
cluster, we have to rely on the results obtained from the EliteBook. We suspect that the
energy-pkg domain also includes the GPU and other uncore components, which leads to
a higher report of energy consumption values. In this case, PMT seem to be a better
solution for measuring the energy consumption, as the GPU and other uncore components
are currently not utilized by AutoPas and including them in the consumption measurements
might lead to a falsification of values.

5.3 Comparing tuning configurations

After comparing simulation time and energy consumption values between PMT and Rapl-
Meter implementation, the last thing we need to check are the simulation configurations
used, when tuning for energy. The exploding liquid scenario was used again as molecular
dynamics simulation. As data we use the columns Container, Traversal and Data Layout.
Together they represent the used configuration for one iteration step. As we got 12,000 rows
in the csv file, each containing a simulation configuration, we are using a python script,
analyzing the specified columns and only returning the rows with a di↵erent configuration
for PMT and RaplMeter implementation. Table 5.4 does show these di↵erences. We can see

Range PMT Configuration RaplMeter Configuration

1130 - 7129 VerletListsCells, vlc sliced balanced, AoS VerletListsCells, vlc sliced c02, AoS

Table 5.4: Di↵erences in tuning configurations

that the only di↵erence between both configurations is from Iteration step 1130 to 7129,
where PMT is using the vlc sliced balanced traversal algorithm, while RaplMeter is using

23

5 Results

vlc sliced c02. This might be because both traversal algorithms are very close in terms of
runtime and energy. The AutoTuner picks one over the other as there are slight di↵erences in
relative performance when using RaplMeter or PMT implementation. Additonally, we note
that the container and data layout used by both implementations are the same throughout
the simulation. This does indicate that PMT does report a lower energy consumption for
the vlc sliced balanced traversal algorithm than RaplMeter implementation. A possible
explanation is the di↵erence in energy consumption values, analyzed in Section 5.2, and that
they may have a very similar performance. In Subsection 6.1.1, we will compare di↵erent
tuning configurations, with respect to runtime and energy consumed per iteration, and see
that the AoS - sliced-balanced configuration for Verlet Lists Cells container is performing
better than AoS - sliced-c02 and the tuning for sliced balanced traversal algorithm is correct.

5.4 Recommendations

By removing the asynchronous measurement from the PMT library, explained in Subsection
5.1.2, we can significantly reduce the introduced overhead. It also follows that PMT does not
wait for a new measurement to be taken before returning energy consumption values. This
leads to the problem that for some iterations, PMT might report 0 Joules consumed. An
example can be seen in Table 5.5, showing the iteration logs for exploding liquid simulation
on CoolMUC-2 with tuning for energy enabled.

Iteration iteratePairwiseTotal[ns] energyJoules[J] energySeconds[S]
1314 716742 0.10626 0.0007169
1315 726866 0.06372 0.0007259
1316 712427 0 0.0007119
1317 717689 0 0.0007181
1318 722565 0 0.0007221
1319 743505 0 0.0007438
1320 734244 0.05701 0.0007341
1321 690794 0.05133 0.0006912
1322 671123 0.11127 0.0006719
1323 680869 0.10400 0.0006809
1324 677865 0.05627 0.0006782
1325 681012 0 0.0006809
1326 703227 0 0.0007031

Table 5.5: Energy values for di↵erent iterations on the CoolMUC-2 cluster

We see in Table 5.5 that for several iterations, the reported consumed energy is 0 Joules.
Especially for simulations with a low amount of particles and thus with an iteration time of
< 1ms, PMT does not always obtain a new measurement. Thats why both EnergySensor

class variables start and end contain the same state, resulting in no di↵erence in energy
consumed. Therefore we recommend to set the tuning phase to a number of M iterations
that ensures M ·T > 1ms, where T is the iteration time. This adjustment will help guarantee
that energy values are captured e↵ectively during the tuning phase.

24

6 Benchmarks

After confirming that PMT produces valid energy consumption results and is an alternative
to the previously used RaplMeter implementation, we conduct simulations using di↵erent
data containers, layouts and traversal algorithm. We observe, what impact di↵erent tun-
ing configurations, number of particles and threads have on the energy consumption of
simulations.

6.1 Tuning configurations

As a simulation, we used the Spinodal Decomposition molecular dynamics example. This
simulation can be divided into two steps. In the first step, a cuboid domain is filled with
4, 096, 000 particles and the simulation is run for 100, 000 iterations with a constant high
temperature until an equilibrium state is reached [3]. In the second step, the result of the
first simulation is used as a checkpoint, and the temperature drops for 30, 000 iterations.
This causes the particles to condense into clusters. Figure 6.1 shows the domain before and
after the second step.

Figure 6.1: Particle domain left after equilibrium state reached and on the right after forming
clusters [3].

6.1.1 Comparing

In the first benchmarks, we are using the first step of the Spinodal Decomposition simulation
and comparing the energy consumption and time per iteration between:

• Container: Linked Cells, Verlet Lists Cells

• Data layout: Structure of Arrays (SoA), Array of Structures (AoS)

• Traversal: c08, c18, sliced-balanced, sliced-c02

25

6 Benchmarks

Since the macroscopic state remains unchanged for the equilibrium state, we can use the
data from this simulation to compare the di↵erent traversal algorithms and data layouts
concerning energy consumption and time per iteration [3]. All simulations were run using
28 threads and one node on the CoolMUC-2 using the cm2 tiny cluster.

Figure 6.2: Comparing energy consumption and time per iteration for Spinodal Decomposi-
tion with di↵erent configurations for Linked Cells container

Figure 6.2 plots the mean value for energy usage and time to completion per iteration for
ten iterations, as neighbor lists are rebuilt every ten iterations [3]. Iterations from 99000
to 99080 were used as the underlying data to determine the energy consumption during
the equilibrium state. We can clearly see that the SoA data layout consumes less energy
and is faster than the AoS data layout with the same traversal algorithms for the Linked
Cells container. As stated in Section 2.2, retrieving successive particle information can be
done with one load for the SoA data layout. In contrast, for AoS, the information must
be gathered separately for each particle. Since the memory access is more e�cient for the
SoA data layout, the energy consumption and time for one iteration are lower than for AoS.
Another thing we notice is that sliced traversals are faster and consume less energy than
colored ones. One exception is the AoS - sliced-balanced configuration, which consumes
the most time and energy. As stated in Subsection 2.4.2, the sliced-balanced traversals
algorithms reduce the scheduling overhead to a minimum by statically dividing the domain
into slices of equal size and assigning each slice to one thread. As the particles are distributed
evenly over the domain, as seen in Figure 6.1, and the particles remain in a constant state,
each thread has approximately the same computational load, and the static assignment of

26

6.1 Tuning configurations

cells reduces the overhead.

Figure 6.3: Comparing energy consumption and time per iteration for Spinodal Decomposi-
tion with di↵erent configurations for Verlet Lists Cells container

Figure 6.3 plots the same data for the Verlet Lists Cells container. The simulation for
SoA - sliced-balanced configuration did fail on the CoolMuc2 cluster with a std::bad alloc

error, even after multiple tries, and is not part of the plot. We can see in Figure 6.3 that
in contrast to the Linked Cells simulation, the AoS data layout performs better than SoA.
This can be explained because Verlet Lists Cells rely on neighbor lists, and data can be
better accessed for each particle with the AoS data layout than for the SoA one, where the
entire vector for each cell has to be loaded. Moreover, memory access operations consume
significantly more energy than arithmetic operations. According to recent studies [21] 10-100
times more. Although the SoA layout improves data locality and allows for faster memory
access, the disadvantage is that it takes longer to rebuild the Verlet Lists. This rebuilding
process is more time-consuming than the quicker memory access, leading to the SoA layout
requiring more time and energy overall compared to AoS. When comparing the rebuild time
between both layouts, SoA takes on average 16 s while for AoS the rebuild only takes 5 s.
Additionally, we notice that the iteration time for Verlet Lists Cells is much longer for all
data layouts and traversal algorithms than for Linked Cells. At the same time, the energy
consumption between both is pretty close together. This can be explained as rebuilding
neighbour lists for Verlet Lists Cells container each 10 iteration introduces a overhead and
can take up to 16s.

27

6 Benchmarks

6.1.2 Metrics

After comparing di↵erent tuning configurations for time and energy per iteration, we want
to calculate performance metrics that were part of a study conducted by Thomas Rauber,
Gudula Rünger, and Matthias Stachowski in 2018, focusing on improving energy e�ciency
in high-performance computing [17]. The study defines several performance metrics that we
want to use to study the energy performance of MD simulation. We consider the Spinodal
Decomposition equilibration case as problem for our computing of these metrics. The
iterations were lowered to 1000 as we want to compare the metrics for di↵erent amounts of
threads, and the time to completion would otherwise exceed the time limitation for single
thread runs on the CoolMuc-2 cluster.

Speedup

As the first performance metric, we calculate the Speedup obtained using multiple threads.
The metric is defined as

S(p) =
Tseq

Tpar(p)

where Tseq is the sequential execution time and Tpar(p) is the parallel execution time, when
using p threads [17]. Figure 6.4 shows the Speedup for di↵erent configurations for the Linked
Cells container when running the simulation for 1, 2, 4, 8, 12, 14, and 28 threads.

We can see in Figure 6.4 that the Speedup is increasing for more threads used. This
is expected as the computational load is spread among more threads. It is interesting for
us that the Speedup is not linear. This is probably due to increased scheduling overhead
when assigning more threads to cells. Additionally, sequential parts of the code can not be
parallelized, thus limiting the runtime to a lower bound. We note that the SoA - lc-sliced-
balanced configuration performs best with a maximum speedup of 15.8 for 28 threads. This
conforms with the behavior observed in Figure 6.2 as the configuration performed there the
best. The AoS - lc-sliced-balanced configuration on the opposite is the worst performing.
The maximum Speedup of 8.3 is reached for 12 threads utilized and decreases if we increase
the number of threads used. This also conforms with the behavior observed in Figure 6.2.

Figure 6.5 shows the Speedup for the Verlet Lists Cells container. We can see that the
Speedup obtained by the AoS data layout is significantly larger than for SoA, where we
only achieve a speedup of about 2.3 for 28 threads. We note that the obtained Speedup for
Verlel Lists Cells is much lower than that of the Linked Cells data container. The maximum
Speedup we can achieve for Verlet Lists Cells is 5.8 for the AoS - c18 configuration, while for
Linked Cells, the maximum is 15.8 for the SoA - sliced-balanced configuration. This can be
explained by the fact that the Verlet Lists Cells container requires more careful management
of neighboring particles. As the number of threads increases, managing these lists becomes
more challenging, especially when updating and reading from shared memory.

28

6.1 Tuning configurations

Figure 6.4: Speedup obtained for Linked Cells by using 1, 2, 4, 8, 12, 14, 28 threads for
Spinodal Decomposition equilibration simulation with 1000 iterations

Energy speedup

The energy speedup is defined analogously to the Speedup.

ES(p) =
E(1)

E(p)

where E(p) is the consumed energy using p threads. It expresses the relative energy
consumption di↵erence that occurs using p threads compared to the energy consumed using
one thread [17].
Figure 6.6 shows the energy speedup for di↵erent configurations, using again 1, 2, 4, 8, 12,
14, and 28 threads for the Linked Cells container.

We can see in Figure 6.6 that for all configurations, the energy speedup is greater than
1. This implies that by utilizing more threads, less energy is consumed for the whole
simulation as it must hold E(1) > E(p) for ES(p) > 1. This is quite interesting as we see
that the reduced runtime for the simulation and the energy we save is greater than the
additional energy we consume by utilizing more threads. Except for the AoS - sliced-balanced
configuration, we note that utilizing more threads comes with a lower energy consumption
for the whole simulation.
Like Figure 6.6, Figure 6.7 plots the exact data for the Verlet Lists Cells.

In Figure 6.7, we can see that the AoS data layout performs better than all configurations
with the SoA data layout. Similar to the behavior we observed for Speedup in Figure 6.5.

29

6 Benchmarks

Figure 6.5: Speedup obtained for Verlet Lists Cells by using 1, 2, 4, 8, 12, 14, 28 threads for
Spinodal Decomposition equilibration simulation with 1000 iterations

Interestingly, the energy speedup for the configurations using SoA data layout remains the
same for 4 and 28 threads used and even drops for 8, 12, and 14. This implies that the
energy consumption remains at least the same between 4 and 28 threads, and we do not
increase energy e�ciency by using more than four threads. The energy speedup for the AoS
data layout also drops when using more than four threads. Still, it increases again for 28,
where the maximum energy speedup is reached.
When comparing the Linked Cells and Verlet Lists Cells container, we notice that the
maximum and minimum values for the energy speedup are very close to each other while
the values for Speedup are very far apart. This is probably due to how Linked Cells
and Verlet Lists Cells containers handle memory access and computational e�ciency. As
Verlet Lists Cells uses neighbor lists that store particles, expensive memory accesses are
limited, costing up to 10-100 times more energy than arithmetic operations [21]. However,
rebuilding these neighbor lists requires more computational overhead, reducing the Speedup
for simulations using the Verlet Lists cells container. Linked Cell containers are not used on
lists to identify neighboring particles, reducing the computational overhead and resulting
in a higher speedup. However, each thread does more memory access, limiting the energy
speedup for more threads used.

30

6.1 Tuning configurations

Figure 6.6: Energy Speedup obtained for Linked Cells by using 1, 2, 4, 8, 12, 14, 28 threads
for Spinodal Decomposition Equilibration simulation with only 1000 iterations

Energy delay product

As the last metric, we calculate the energy-delay product for each configuration. It is defined
as

EDP (p) = E(p) ⇤ T (p, 1)

. It combines the e↵ects of execution time and energy consumption and captures the
translation of energy into useful work. It is defined for a given number of threads and does
not compare performance across them, like the energy speedup. For a simulation with a
di↵erent number of threads used, our aim is to select the simulation with the minimum
energy-delay product, as this is similar to minimizing both runtime and energy.
Figure 6.8 plots the energy-delay product (EDP) for the Linked Cells data container.
When analyzing Figure 6.8, we note that the SoA - lc-sliced-balanced configuration has

the lowest EDP and the best energy e�ciency while the AoS - lc-sliced-balanced has the
highest EDP for 28 threads and hence the worst energy e�ciency. This does conform with
the results obtained by calculating (Energy) Speedup. As the EDP combines the execution
time with energy consumption and SoA - lc-sliced-balanced configuration performed best in
both metrics, the EDP is the lowest for this. AoS - lc-sliced-balanced performed worst in
both metrics and has the highest EDP for 28 threads.
Additionally, Figure 6.9 plots the energy-delay product (EDP) for the Verlet Lists Cells
container.

31

6 Benchmarks

Figure 6.7: Energy Speedup obtained for Verlet Lists Cells by using 1, 2, 4, 8, 12, 14, 28
threads for Spinodal Decomposition Equilibration simulation with only 1000
iterations

As already noticed for the Energy Speedup for Verlet Lists Cells container, we can see
in Figure 6.9 that the SoA data layout has a clearly higher EDP than the AoS one. The
selection of data layout has a far greater impact on energy e�ciency than the selection of
a traversal algorithm. Another thing we note is when comparing Linked Cells and Verlet
Lists Cells data containers, the EDP for both, in general, is very similar when only four or
fewer threads are utilized. When using eight or more threads, the EDP for the Linked Cells
container constantly decreases, while for Verlet Lists Cells, the EDP almost remains the
same and only drops for 28 threads used.

6.1.3 Energy E�ciency

As we outlined in Subsection 6.1.2, a faster iteration time is closely related to less energy
consumed. However, when comparing AoS - sliced-c02 and AoS - c18 configurations with
respect to time and energy per iteration, we notice that this thesis does not always hold.
Figure 6.10 compares time and energy per iteration, averaged over Spinodal Decomposition
Equilibration simulation, for the two configurations.

We can clearly see that even if the iteration time for the sliced-c02 is greater than for
the c18 configuration, it consumes less energy. We can conclude from this that the power,
defined by P (Watts) = Energy(J)

T ime(s) , has to be lower for the sliced-c02 configuration than

32

6.1 Tuning configurations

Figure 6.8: Energy delay product (EDP) obtained for Linked Cells by using 1, 2, 4, 8, 12,
14, 28 threads for Spinodal Decomposition equilibration simulation with only
1000 iterations

for the c18 one. To investigate the reason for the higher power draw, we ran a second
simulation with CMAKE option AUTOPAS LOG FLOPS enabled to compare the computational
power of both implementations. Figure 6.11 plots the power and FLOPs compared between
both configurations using Spinodal Decomposition equilibration simulation with 100,000
iterations.

As expected, we can see that the power for the AoS - sliced-c02 configuration, with a mean
value of 144.073 Watts, is constantly lower than for the AoS - lc-18 one, with 172.083 Watts.
The FLOPs per iteration are also higher for the AoS - lc-18 configuration, with a mean value
of 1784.768 MFLOPs per iteration, while the other configuration has only a mean value of
1588.241 MFLOPs per iteration. A possible explanation for this is that sliced-c02 needs
more memory transfer, which limits the computation and results in a lower FLOP count.
However, as sliced-c02 can do the computations over a larger time, it draws less power, as the
frequency is scaled lower than for the lc-c18 configuration automatically, resulting in lower
overall energy. This frequency scaling is done automatically by the Intel® Xeon® Processor
E5-2697 v3 CPU, which is used as the computational CPU on the CoolMuc-2 Linux cluster.
The Intel Turbo Boost technology can scale the CPU between a frequency from 2.60 GHz to
3.60 GHz, based on the current computational load [10] [9]. By lowering the frequency, the
CPU draws less power and consumes less energy, explaining why AoS-sliced-c02 consumes
less energy in more time than AoS-c18 in Figure 6.10.

33

6 Benchmarks

Figure 6.9: Energy delay product (EDP) obtained for Verlet Lists Cells by using 1, 2, 4, 8,
12, 14, 28 threads for Spinodal Decomposition equilibration simulation with only
1000 iterations

6.2 Tuning for energy e�ciency

To further investigate the relationship between runtime and energy e�ciency, we compare
the time to completion and energy consumed between two simulations with the same
configurations: one tuned for energy and the other tuned for time. We use the classic
molecular dynamics case exploding liquid, with all available containers, data layouts, and
traversal algorithms as configurations. With auto-tuning enabled, AutoPas selects the best
suitable simulation configuration during runtime from all available options. We are running
the simulation on 1, 2, 4, 6, 12, 14, 20, 24, and 28 threads for each tuning metric to monitor
any di↵erence in time or energy consumed.
Figure 6.12 shows the time to completion for exploding liquid simulation tuned for energy
and time. For the simulations using six threads, the time to completion of the energy
tuned simulation is lower than the one tuned for time, which might be due to performance
irregularities on the CoolMuc-2 Linux cluster. Overall, we observe that the time to completion
results for both the configurations closely follow each other. This may suggest that even
when tuning for energy, the fastest configuration gets selected by the AutoTuner, as this
seems to be also the most energy-e�cient one. Figure 6.13 shows the energy consumed for
both simulations. When comparing the plot with Figure 6.12, we observe that the time
to completion is related to energy consumed. If we look, e.g., at the simulations using

34

6.2 Tuning for energy e�ciency

Figure 6.10: Comparing time and energy per iteration for AoS - sliced-c02 and AoS - c18,
using Spinodal Decomposition equilibration

one thread where the time to completion is nearly identical, the energy consumed is also
very close together, while for six threads used, the time to completion for the energy-tuned
simulation is remarkably lower than for the one tuning for time. This also results in lower
energy consumption. Another thing we notice is that in some cases, the energy consumed
by simulations tuned for time is lower than that of the ones tuned for energy. In Figure
6.13, we can see that this is the case for 2, 12, and 14 threads used, where the runtime for
energy-tuned simulation is higher as well. To further support our thesis, we compare the
used configurations for each iteration between both simulations, similar to the evaluation in
Section 5.3. Given the complexity of comparing configurations across all nine simulations,
each with 12,000 iterations, we focus on two specific cases: simulations with one thread,
where time to completion is nearly identical, and simulations with six threads, where there
is a notable di↵erence in time to completion. Table 6.1 shows the range of rows where the
simulation configurations selected by the AutoTuner are di↵erent when tuning for energy
and time when using one thread. Table 6.2 shows the same data for six threads used.

Row Range Energy Time

1130 - 7129 VerletListsCells, vlc sliced balanced, AoS VerletListsCells, vlc sliced c02, AoS

Table 6.1: Di↵erences in Configuration Between tuning for energy and time using one thread

In both cases, we can see that the container and data layout are the same throughout
the simulation for energy and time tuning. The only di↵erence is the traversal algorithm
used from iteration 1130 to 7129. For the simulation using one thread and tuned for energy,
the vlc sliced balanced algorithm is used, while the vlc sliced c02 is selected when
tuning for time. The time to completion compared between both traversal alogirthms is

35

6 Benchmarks

Figure 6.11: Comparing Power and FLOPs for AoS - sliced-c02 and AoS - c18, using Spinodal
Decomposition equilibration

0.5% lower for vlc sliced c02 while vlc sliced c02 consumes 1.6% more energy. From
this experiment, we can conclude that using the vlc sliced balanced traversal alogrithm
might be the better choice as time to completion remains nearly identical. At the same
time, energy consumption is reduced compared to the vlc sliced c02 algorithm. For the
simulation using six threads, we can see a remarkable di↵erence for energy consumed in
Figure 6.13 as well as for time to completion in Figure 6.12. This suggests that lc c04 HCP

is faster and more energy e�cient than lc c01 combined SoA.
In this section, we further supported our thesis that a lower runtime strongly correlates with
reduced energy consumption. In most cases, the configuration with the lowest runtime also
resulted in lower energy consumption, suggesting that optimizing for speed often leads to
energy e�ciency. This could be observed in Figure 6.12, where even when tuning for energy,
the AutoTuner selected runtime-wise configurations close to the simulations tuned for time.

36

6.3 Performance comparison across di↵erent architecture

Figure 6.12: Comparing time to completion between tuning for energy and time

Row Range Energy Time

1130 - 7129 LinkedCells, lc c04 HCP, SoA LinkedCells, lc c01 combined SoA, SoA

Table 6.2: Di↵erences in Configuration Between tuning for energy and time using six thread

6.3 Performance comparison across di↵erent architecture

As the last part of this thesis, we want to compare AMD and INTEL CPU architecture and
what di↵erence can be observed between both, regarding energy consumption and runtime.
The Spinodal decomposition equilibration scenario was used as a simulation, reduced to 1000
iterations for 1, 4, 8, and 16 threads. For the INTEL architecture, we used the CoolMuc-2
Linux cluster, which is based on an Intel Xeon E5-2697 v3 14-core Haswell CPU, each having
28 cores and a frequency of 2.6 GHz [8]. For the AMD architecture, the simulation was
run on the HPE Apollo cluster of High-Performance Computing Center Stuttgart. It uses
the CPU type AMD EPYC 7742 with 64 cores per CPU and a frequency of 2.25 GHz [6].
We calculate energy - /runtime-speedup to compare both CPU architectures, introduced
in Subsection 6.1.2. Figure 6.14 plots the speedup we obtain by utilizing multiple threads
using the Linked Cells container. As configurations, the AoS - sliced-balanced, plotted on
the left of Figure 6.14 and SoA - sliced-balance, on the right, were used, as they were the
configurations that performed worst and best in Subsection 6.1.1.

For the AoS - sliced-balanced configuration, AMD is constantly performing better with a
higher speedup than INTEL. This is because the AMD EPYC 7742 CPU has eight memory
channels compared to 4 for the INTEL CPU. This allows AMD CPU to process more data

37

6 Benchmarks

Figure 6.13: Comparing total energy consumed between tuning for energy and time

in parallel, which is particularly important for the Array of Structure data layouts, where
multiple structures must be accessed concurrently. Conversely, for the SoA - sliced-balanced
configuration, we can see that AMD is performing better for 1 and 4 threads, but for 8
and 16, the INTEL architecture is achieving a higher speedup. The AMD CPU achieves
a higher speedup for 1 and 4 threads, as it can leverage the larger L3 cache with 256 MB
compared to 35 MB for the INTEL CPU. Especially for the Structure of Arrays layout,
the arrays, storing particle data, can be directly loaded from the L3 cache. For 8 and
16 threads, the INTEL CPU achieves a higher speedup, as the frequency of 2.6 GHz is
notably higher than for AMD CPU with 2.35 GHz. Especially when utilizing more threads,
the several di↵erences in hardware, like higher frequency and larger L3 cache, might lead
to those observations. Generally, we need to note that for both architectures, the SoA,
sliced-balanced configuration, performs worse with a maximum speedup of 7.2 than the
other configuration with a maximum speedup of 12.7 for 16 threads utilized.
Figure 6.15 compares the speedup of AMD and INTEL for AoS - sliced-balanced and SoA -
c18 configuration using the Verlet Lists Cells container.

For both configurations, AMD achieves a higher speedup for 8 and 16 threads than INTEL.
The AMD CPU has eight memory channels per CPU that can be used for data access.
Especially with increasing thread count, shifting the bottleneck from computational load
per thread to memory access, the increased amount of memory channels and the larger L3
cache provide faster memory access for each thread than the INTEL CPU with only four
memory channels and 35 MB of L3 cache. Generally, we have to note that compared to
the calculated speedup in Figure 6.14, the Linked Cells container is better with a higher
speedup, similar to the results from INTEL simulations. As stated in Subsection 6.1.1 is this

38

6.3 Performance comparison across di↵erent architecture

Figure 6.14: Comparing speedup for Linked Cells container between AMD and INTEL

due to the rebuilding of neighbour lists in every 10th iteration step, consuming remarkably
more time and energy.
Next, we compare the energy speedup metric, introduced in Section 6.1.2, between AMD
and INTEL. Figure 6.16 compares the energy speedup for the Linked Cells container, using
again SoA - sliced-balanced and AoS - sliced-balanced configurations.

The key observation from Figure 6.16 is that AMD does have a higher energy speedup for
both configurations. Even for the SoA - sliced-balanced simulation with 8 or 16 threads,
where the INTEL runtime speedup is higher than the one for AMD, as can be seen in Figure
6.14, the energy speedup for AMD is higher. This suggests that the AMD CPU improves
energy e�ciency for more threads used than the INTEL one for the Linked Cells container.
This could be due to several di↵erences in the design of the AMD EPYC 7742. The CPU is
based on a chiplet design, meaning that the CPU is build up from multiple modular chiplets,
designed for a special purpose. This allows the AMD CPU to allocate energy resources for
each chiplet dynamically. This ensures, that each chiplet operates at the optimal power for
its current workload. The advantages of such a design architecture are optimized power,
performance, and lower manufacturing costs [20]
Figure 6.17 does plot the energy speedup for the Verlet Lists Cells container. In di↵erence to
Figure 6.17, the INTEL CPU has a higher energy speedup for 1 and 4 threads used, which is
because of the higher frequency range of the INTEL CPU from 2.6 GHz to 3.6 GHz, allowing
to do more arithmetic operations in the same time than the AMD one to rebuild the neighbor
lists. For 8 and 16, the AMD CPU has a higher energy speedup again and is constantly
increasing for more threads used. Instead, the INTEL CPU has a drop in energy speedup for
eight threads and slowly increases again for 16. This is because the AMD CPU has a larger
L3 cache with 256 MB, leading to fewer cache misses and expensive memory accesses than
when using the INTEL CPU. This gets important, especially when utilizing more threads,
as the main energy is not spent on arithmetic operations but memory accesses. Important
to note here is that even if the AMD EPYC 7742 has better performance and energy metrics
than the INTEL Xeon E5-2697 v3 14-core Haswell, this does not mean that simulations
on the AMD CPU are using less energy overall than simulations on the Intel CPU. They

39

6 Benchmarks

Figure 6.15: Comparing speedup for Verlet Lists Cells container between AMD and INTEL

only display the performance and energy improvements compared to the simulation using
one thread. Figure 6.18 does plot the total energy consumed by the simulations on AMD
and INTEL CPU when using the Linked Cells container. We can see that the AMD CPU
consumes not less energy overall than the INTEL one. This can be explained by the AMD
CPU having a higher thermal design power (TDP) of 225 Watts than the INTEL CPU with
145 Watts. Thermal design power represents, in this case, the average power the processor
consumes when operating at the base frequency with all active cores. Only for a increasing
number of threads, the AMD CPU does consume similar or less energy, due to several
hardware advantages like the larger L3 cache, increased memory channels and chiplet design.

40

6.3 Performance comparison across di↵erent architecture

Figure 6.16: Comparing energy speedup for Linked Cells container between AMD and INTEL

Figure 6.17: Comparing energy speedup for Verlet Lists Cells container between AMD and
INTEL

41

6 Benchmarks

Figure 6.18: Comparing total energy consumed for Linked Cells container between AMD
and INTEL

42

7 Conclusion

In this thesis, we presented the high-level software library ”PMT: Power measurement
toolkit”, how it is integrated into AutoPas to be able to measure energy consumption on
various hardware. Our objective was to compare di↵erent tuning configurations to get
a relation between runtime and energy e�ciency. Theoretical foundations for molecular
dynamics simulations, including containers, data layouts and traversal algorithms, were
outlined to provide some context for the work. The software library PMT was introduced
and integrated into AutoPas. We compared runtime overhead, energy values and tuning
results between PMT and the previously used RaplMeter implementation and observed
di↵erences in energy measurements between both implementations. It was determined to be
due to the energy-pkg domain capturing the energy consumption values of gpu and other
uncore components, which PMT filters out. This thesis could only be verified on a local
machine but not on CoolMuc-2 Linux cluster, which lacked energy-gpu data, necessary for
verification. This limitation should be considered when interpreting the results. Despite
this, simulations on the CoolMuc-2 cluster allowed us to compare di↵erent simulation
configurations in respect of time and energy consumption per iteration. We concluded that
some data layout, containers and traversal algorithms are performing better speaking of
energy consumption than others and noticed that the simulation configurations with a better
runtime also consume less energy. This led us to the thesis, that tuning for energy e�ciency
is almost the same as tuning for time. To confirm this thesis we ran multiple simulations
with tuning for energy and time and compared the results in respect of energy consumed,
tuning configurations used and time to completion.

7.1 Future scope

Looking ahead, the bachelor thesis opens new possibilities for future research. When
comparing di↵erent simulation configurations we noticed, that simulations using the Verlet
Lists Cells container are consuming more energy and time than Linked Cells simulations.
When calculating time and energy metrics, we also noticed that Linked Cells container can
achieve higher speedups for energy and time for more threads used, than the Verlet Lists
Cells one. This is probably caused by the rebuilding of neighbour lists which can take up
to several seconds for our simulations. With this insight, future researches could focus on
improving the algorithms for rebuilding neighbour lists, to reduce the energy consumption
and runtime for the Verlet Lists Cells container. Future work could also focus on extending
the power measurement backends for PMT. With the modular approach, explained in Section
3.1, PMT can easily be adapted to support new components by implementing new power
measurement backends. One example is to include a subdirectory, for ARM Performance
Monitoring Unit, to measure ARM CPUs’ energy consumption. Another potential direction
for future research could study the e↵ect of frequency, briefly considered in Subsection 6.1.3,
and how frequency scaling could be used for energy e�ciency. Last, future research could

43

https://developer.arm.com/documentation/ka004659/latest/
https://developer.arm.com/documentation/ka004659/latest/

7 Conclusion

explore new metrics, that can be used for energy tuning like the Energy Delay Product
introduced in Subsection 6.1.2 or some energy perfromance metric e.g. Energy

F lops .

44

8 Appendix

8.1 Appendix A: Simulation file for exploding liquid

This yaml file is for single-site molecular simulation. Uncomment the Molecules option to run this experiment using

md-flexible compiled for multi-site molecules.

container : [LinkedCells, VarVerletListsAsBuild, VerletClusterLists, VerletLists, VerletListsCells, PairwiseVerletLists]

traversal : [lc_sliced, lc_sliced_balanced, lc_sliced_c02, lc_c01, lc_c01_combined_SoA, lc_c04, lc_c04_HCP, lc_c04_combined_SoA, lc_c08, lc_c18, vcl_c06, vcl_c01_balanced, vcl_sliced, vcl_sliced_balanced, vcl_sliced_c02, vl_list_iteration, vlc_c01, vlc_c18, vlc_sliced, vlc_sliced_balanced, vlc_sliced_c02, vvl_as_built, vlp_c01, vlp_c18, vlp_sliced, vlp_sliced_balanced, vlp_sliced_c02]

data-layout : [AoS, SoA]

newton3 : [disabled, enabled]

verlet-rebuild-frequency : 10

verlet-skin-radius-per-timestep : 0.02

verlet-cluster-size : 4

selector-strategy : Fastest-Mean-Value

tuning-strategies : [predictive-tuning]

tuning-interval : 6000

tuning-samples : 10

functor : Lennard-Jones-AVX2

cutoff : 2

tuning-metric : energy

energy-sensor : rapl

box-min : [0, 0, 0]

box-max : [15, 60, 15]

cell-size : [1]

deltaT : 0.00182367

iterations : 12000

boundary-type : [periodic, periodic, periodic]

Sites:

0:

epsilon : 1.

sigma : 1.

mass : 1.

Uncomment below to run a multi-site simulation.

#Molecules:

0:

site-types : [0]

relative-site-positions : [[0, 0, 0]]

moment-of-inertia : [1., 1., 1.]

Objects:

CubeClosestPacked:

0:

45

8 Appendix

particle-type-id : 0

box-length : [15, 6, 15]

bottomLeftCorner : [0, 27, 0]

particle-spacing : 1.

velocity : [0, 0, 0]

no-end-config : true

no-progress-bar : false

vtk-filename : explodingLiquid

vtk-write-frequency : 100

46

List of Figures

2.1 Linked Cells container force calculation [4] 4
2.2 Verlet Lists container [4] . 5
2.3 Base steps [4] . 6
2.4 Sliced domain [4] . 7

3.1 General structure of the ”PMT: Power Measurement Toolkit” library 9
3.2 Content of powercap directory on CoolMuc-2 12

5.1 Energy measurement process in AutoPas, demonstrating the key steps for
calculating energy usage during iterations. 18

5.2 Time to completion, compared between PMT and RaplMeter 20
5.3 Energy consumption, compared between PMT and RaplMeter 20
5.4 Structure of the rapl power domains [12] . 21
5.5 Comparison of RAPL power domains, supported by di↵erent Intel Processor

Models [12] . 22

6.1 Particle domain left after equilibrium state reached and on the right after
forming clusters [3]. 25

6.2 Comparing energy consumption and time per iteration for Spinodal Decom-
position with di↵erent configurations for Linked Cells container 26

6.3 Comparing energy consumption and time per iteration for Spinodal Decom-
position with di↵erent configurations for Verlet Lists Cells container 27

6.4 Speedup obtained for Linked Cells by using 1, 2, 4, 8, 12, 14, 28 threads for
Spinodal Decomposition equilibration simulation with 1000 iterations 29

6.5 Speedup obtained for Verlet Lists Cells by using 1, 2, 4, 8, 12, 14, 28 threads
for Spinodal Decomposition equilibration simulation with 1000 iterations . . 30

6.6 Energy Speedup obtained for Linked Cells by using 1, 2, 4, 8, 12, 14, 28
threads for Spinodal Decomposition Equilibration simulation with only 1000
iterations . 31

6.7 Energy Speedup obtained for Verlet Lists Cells by using 1, 2, 4, 8, 12, 14, 28
threads for Spinodal Decomposition Equilibration simulation with only 1000
iterations . 32

6.8 Energy delay product (EDP) obtained for Linked Cells by using 1, 2, 4, 8,
12, 14, 28 threads for Spinodal Decomposition equilibration simulation with
only 1000 iterations . 33

6.9 Energy delay product (EDP) obtained for Verlet Lists Cells by using 1, 2,
4, 8, 12, 14, 28 threads for Spinodal Decomposition equilibration simulation
with only 1000 iterations . 34

47

List of Figures

6.10 Comparing time and energy per iteration for AoS - sliced-c02 and AoS - c18,
using Spinodal Decomposition equilibration 35

6.11 Comparing Power and FLOPs for AoS - sliced-c02 and AoS - c18, using
Spinodal Decomposition equilibration . 36

6.12 Comparing time to completion between tuning for energy and time 37
6.13 Comparing total energy consumed between tuning for energy and time . . . 38
6.14 Comparing speedup for Linked Cells container between AMD and INTEL . 39
6.15 Comparing speedup for Verlet Lists Cells container between AMD and INTEL 40
6.16 Comparing energy speedup for Linked Cells container between AMD and

INTEL . 41
6.17 Comparing energy speedup for Verlet Lists Cells container between AMD

and INTEL . 41
6.18 Comparing total energy consumed for Linked Cells container between AMD

and INTEL . 42

48

List of Tables

5.1 Comparison of Iteration Time and Total Time for PMT and RapMeter
implementation. 17

5.2 Comparison of energy values between PMT and RaplMeter on Intel Skylake
architecture. 22

5.3 Results for pkg, cores, and gpu domain for exploding liquid simulation on
Intel Skylake architecture. 23

5.4 Di↵erences in tuning configurations . 23
5.5 Energy values for di↵erent iterations on the CoolMUC-2 cluster 24

6.1 Di↵erences in Configuration Between tuning for energy and time using one
thread . 35

6.2 Di↵erences in Configuration Between tuning for energy and time using six
thread . 37

49

Bibliography

[1] Mozilla Contributors. Performance optimization. https://firefox-source-docs.

mozilla.org/performance/perf.html, 2024. Accessed: 2024-09-19.

[2] Valerie Luna Dickson and Péter Tamás Sebok. Quantifying the power consumption of
processes on linux using intel rapl. 2023.

[3] Vincent Fischer. Measuring and optimizing the energy e�ciency of molecular dynamics
simulations. Master’s thesis, Technical University of Munich, May 2023.

[4] Fabio Alexander Gratl, Ste↵en Seckler, Hans-Joachim Bungartz, and Philipp Neumann.
N ways to simulate short-range particle systems: Automated algorithm selection with
the node-level library autopas. Computer Physics Communications, 273:108262, 2022.

[5] Fabio Alexander Gratl, Ste↵en Seckler, Nikola Tchipev, Hans-Joachim Bungartz, and
Philipp Neumann. Autopas: Auto-tuning for particle simulations. In 2019 IEEE

International Parallel and Distributed Processing Symposium Workshops (IPDPSW),
pages 748–757, 2019.

[6] Höchstleistungsrechenzentrum Stuttgart (HLRS). Hpe apollo (hawk). https://www.
hlrs.de/de/loesungen/systeme/hpe-apollo-hawk, 2024. Accessed: 2024-09-26.

[7] Scott A. Hollingsworth and Ron O. Dror. Molecular dynamics simulations for all.
Neuron, 100(2):375–390.e8, 2018.

[8] Herbert Huber, Marco Sonnekalb, Rüdiger Geyer, Gerhard Baumeister, and Arndt
Bode. CooLMUC-2: A supercomputing cluster with heat recovery for adsorption
cooling. https://www.researchgate.net/publication/316352834_CooLMUC-2_

A_supercomputing_cluster_with_heat_recovery_for_adsorption_cooling, 2017.
Accessed: 2024-09-26.

[9] Intel Corporation. Intel xeon processor e5-2697 v3. https://www.intel.com/content/
www/us/en/products/sku/81059/intel-xeon-processor-e52697-v3-35m-cache-

2-60-ghz/specifications.html, 2024. Accessed: 2024-09-26.

[10] Intel Corporation. Was ist intel® turbo-boost-technik? https://www.intel.de/

content/www/de/de/gaming/resources/turbo-boost.html, 2024. Accessed: 2024-
09-26.

[11] Kashif Khan, Mikael Hirki, Tapio Niemi, Jukka Nurminen, and Zhonghong Ou. Rapl
in action: Experiences in using rapl for power measurements. ACM Transactions on

Modeling and Performance Evaluation of Computing Systems (TOMPECS), 3, 01 2018.

50

https://firefox-source-docs.mozilla.org/performance/perf.html
https://firefox-source-docs.mozilla.org/performance/perf.html
https://www.hlrs.de/de/loesungen/systeme/hpe-apollo-hawk
https://www.hlrs.de/de/loesungen/systeme/hpe-apollo-hawk
https://www.researchgate.net/publication/316352834_CooLMUC-2_A_supercomputing_cluster_with_heat_recovery_for_adsorption_cooling
https://www.researchgate.net/publication/316352834_CooLMUC-2_A_supercomputing_cluster_with_heat_recovery_for_adsorption_cooling
https://www.intel.com/content/www/us/en/products/sku/81059/intel-xeon-processor-e52697-v3-35m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/81059/intel-xeon-processor-e52697-v3-35m-cache-2-60-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/81059/intel-xeon-processor-e52697-v3-35m-cache-2-60-ghz/specifications.html
https://www.intel.de/content/www/de/de/gaming/resources/turbo-boost.html
https://www.intel.de/content/www/de/de/gaming/resources/turbo-boost.html

Bibliography

[12] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K. Nurminen, and Zhonghong
Ou. Rapl in action : Experiences in using rapl for power measurements. 2018. Accessed:
05.09.2024.

[13] LRZ. Linuxstatistik2022. https://doku.lrz.de/files/11484407/36865276/1/

1689090180770/LinuxStatistik2022.pdf, 2022. Accessed: 2024-09-26.

[14] Leibniz-Rechenzentrum (LRZ). Coolmuc-2. https://doku.lrz.de/coolmuc-2-

11484376.html/, 2023. Accessed: 2024-10-03.

[15] Isaac Newton. Philosophiae Naturalis Principia Mathematica. Prostat apud plures
bibliopolas, 1687.

[16] Maximilian Praus. https://github.com/MaxPraus23/pmt-stable, 2024. Accessed:
12.08.2024.

[17] Thomas Rauber, Gudula Rünger, and Matthias Stachowski. Performance and energy
metrics for multi-threaded applications on dvfs processors. Sustainable Computing:

Informatics and Systems, 17:55–68, 2018.

[18] Emma Tolley Stefano Corda, Bram Veenboer. https://git.astron.nl/RD/pmt, 2022.
Accessed: 01.08.2024.

[19] Emma Tolley Stefano Corda, Bram Veenboer. PMT: Power Measurement Toolkit.
https://doi.org/10.48550/arXiv.2210.03724, 2022. Accessed: 31.7.2024.

[20] Keysight Technologies. What is a chiplet and why should you care?
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-

chiplet-and-why-should-you-care#:~:text=A%20chiplet%20is%20a%20small,

or%20a%20signal%20processing%20unit., February 2024. Accessed: 2024-09-26.

[21] Amirreza Yousefzadeh, Jan Stuijt, Martijn Hijdra, Hsiao-Hsuan Liu, Anteneh Gebregior-
gis, Abhairaj Singh, Said Hamdioui, and Francky Catthoor. Energy-e�cient in-memory
address calculation. ACM Trans. Archit. Code Optim., 19(4), sep 2022.

[22] Zhenkai Zhang, Sisheng Liang, Fan Yao, and Xing Gao. Red alert for power leakage:
Exploiting intel rapl-induced side channels. In Proceedings of the 2021 ACM Asia

Conference on Computer and Communications Security, ASIA CCS ’21, page 162–175,
New York, NY, USA, 2021. Association for Computing Machinery.

51

https://doku.lrz.de/files/11484407/36865276/1/1689090180770/LinuxStatistik2022.pdf
https://doku.lrz.de/files/11484407/36865276/1/1689090180770/LinuxStatistik2022.pdf
https://doku.lrz.de/coolmuc-2-11484376.html/
https://doku.lrz.de/coolmuc-2-11484376.html/
https://github.com/MaxPraus23/pmt-stable
https://git.astron.nl/RD/pmt
https://doi.org/10.48550/arXiv.2210.03724
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care#:~:text=A%20chiplet%20is%20a%20small,or%20a%20signal%20processing%20unit.
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care#:~:text=A%20chiplet%20is%20a%20small,or%20a%20signal%20processing%20unit.
https://www.keysight.com/blogs/en/tech/sim-des/2024/2/8/what-is-a-chiplet-and-why-should-you-care#:~:text=A%20chiplet%20is%20a%20small,or%20a%20signal%20processing%20unit.

	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction
	AutoPas
	Containers
	Linked Cells
	Verlet Lists Cells

	Data layouts
	Newton's Third Law of Motion
	Traversal
	Base steps
	Linked Cells Traversals
	Verlet Lists Cells Traversals

	PMT: Power measurement toolkit
	Structure
	Implementation
	RAPL power measurement backend
	RAPL: Running Average Power Limit
	Implementation in PMT

	Overhead

	Implementation
	Compiling PMT
	Integrating PMT in AutoPas

	Results
	Time to completion
	Results before PMT modification
	Adapting PMT source code
	Results after PMT modification

	Energy consumption measurement
	Comparing tuning configurations
	Recommendations

	Benchmarks
	Tuning configurations
	Comparing
	Metrics
	Energy Efficiency

	Tuning for energy efficiency
	Performance comparison across different architecture

	Conclusion
	Future scope

	Appendix
	Appendix A: Simulation file for exploding liquid

	Bibliography

