
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Coupling of Tsunami Simulations in
ExaHyPE 2 with the UM-Bridge

Client-Server Model

Emin Mert Sunacoglu

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY -

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Coupling of Tsunami Simulations in
ExaHyPE 2 with the UM-Bridge

Client-Server Model

Author: Emin Mert Sunacoglu
Supervisor: Prof. Dr. Michael Bader
Advisor: Mario Wille
Submission Date: 15.08.2024

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.08.2024 Emin Mert Sunacoglu

Acknowledgments

I want to express my deepest gratitude to my advisor, Mario Wille, for providing
me the opportunity to work on this project and for providing me with timely guidance
and support during the thesis.

I would like to thank Prof. Dr. Michael Bader for supervising my thesis.
I also would like to thank Dr. Anne Reinarz for her clarifications regarding her paper

and its implementations, which were instrumental during the research.
I am also grateful to my family and friends for their constant encouragement and

understanding throughout this journey.

Abstract

Tsunamis as one of the most destructive natural disasters, have driven extensive
research. This thesis focuses on the development of a reliable solver for the shallow
water equations (SWEs) used for describing tsunamis, using the ExaHyPE 2 engine,
and implementing an uncertainty quantification framework for tsunami models.

The primary objectives of this research are to accurately model the 2011 Tōhoku
tsunami and estimate its initial conditions using the measurement data from real-world
buoys. The solver developed in ExaHyPE 2 showed accurate results in modeling the
Tōhoku tsunami. Furthermore, the integration of UM-Bridge allowed the application of
the Metropolis-Hastings Markov Chain Monte Carlo (MHMCMC) algorithm to estimate
the initial displacement data with reasonable precision.

Despite the promising results, some simplifications in the modeling process, such as
using larger computational cells, introduced minor inaccuracies. These inaccuracies,
while not significantly affecting the overall results, are important to note for future
improvements in the model.

This thesis contributes to the field of tsunami modeling by providing a scalable and
accurate model for tsunamis using ExaHyPE 2.

Keywords: Tsunami simulation, ExaHyPE 2, Uncertainty Quantification, UM-Bridge

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Background 2
2.1. Partial Differential Equations . 2
2.2. Shallow Water Equations . 2
2.3. Inverse Problems . 4
2.4. Uncertainty Quantification . 4

3. Related Work 5
3.1. Peano 4 . 5
3.2. ExaHyPE 2 . 6

4. Implementation of the Shallow Water Equations in ExaHyPE 2 7
4.1. Finite Volume Method . 7

4.1.1. Generic Riemann Solver . 8
4.1.2. Custom Riemann Solvers . 8

4.2. ADER-DG . 13
4.3. Limiting . 15
4.4. Particles . 15

5. UM-Bridge in ExaHyPE 2 17
5.1. UM-Bridge . 17
5.2. Monte Carlo Algorithms . 20

5.2.1. Monte Carlo . 20
5.2.2. Markov Chain Monte Carlo . 20
5.2.3. Metropolis Hastings Markov Chain Monte Carlo 20
5.2.4. Multilevel Markov Chain Monte Carlo 21

v

Contents

6. Results 23
6.1. Evaluation of the Solvers . 23

6.1.1. Radial Dam Break Scenario . 23
6.1.2. Tōhoku Tsunami . 33

6.2. UM-Bridge with Metropolis-Hastings Markov Chain Monte Carlo . . . 42

7. Conclusion and Future Work 45

List of Figures 46

List of Tables 48

Code listings 49

Bibliography 50

A. Implementation of SWE in ExaHyPE 2 53

B. Implementation of UM-Bridge in ExaHyPE 2 57

vi

1. Introduction

Tsunamis are among the most destructive natural phenomena, causing extensive dam-
age and loss of life when they strike coastal areas. The 2011 Tōhoku tsunami, despite
not being the largest on record, resulted in a significant nuclear accident, which caused
the tragic loss of over 18,000 lives, highlighting the impact such events can have. There-
fore, the accurate modeling and prediction of tsunamis are important, driving extensive
research in this area.

Partial Differential Equations (PDEs) are fundamental in simulating physical pro-
cesses, providing a robust framework to model the dynamics of systems over time and
space. The shallow water equations (SWEs) describe the water flow. Solving these
equations is essential for accurately modeling and predicting the behavior of a given
tsunami.

However, accurately modeling tsunamis is not without challenges. Uncertainty quan-
tification (UQ) is pivotal in validating the complex models used in these simulations.
UQ helps assess how variations in input parameters influence model outputs or esti-
mate unknown parameters based on observed data, thereby enhancing the reliability
and robustness of the simulations. Because UQ algorithms are broadly applicable
across various domains, it is essential to have a tool to couple these algorithms with
different simulation models.

This thesis leverages the ExaHyPE 2 framework (Exascale Hyperbolic PDE Engine)
to develop a solver for the shallow water equations. This framework, known for its
high-performance computing capabilities, is crucial for accurately modeling tsunami
dynamics. Additionally, the thesis implements a client-server framework for applying
UQ algorithms, focusing on estimating the initial parameters for the 2011 Tōhoku
tsunami using real-world measurements.

Chapter 2 provides the necessary background information relevant to the study.
In Chapter 3, the ExaHyPE 2 framework is introduced. Chapter 4 introduces three
solvers developed using the ExaHyPE 2 framework that is used to model tsunamis, and
Chapter 5 describes the UM-Bridge (uncertainty quantification and modeling bridge)
framework that is implemented to couple our model with UQ algorithms. Chapter 6
evaluates the accuracy of the solvers and evaluates the results of the UQ algorithms
that are implemented in Chapter 5. Finally, Chapter 7 summarized the findings, and
suggests areas of future research and improvement.

1

2. Background

2.1. Partial Differential Equations

Partial Differential Equations (PDEs) are widely used in simulations because they
effectively describe how physical systems change over time and space. Whether
modeling the spread of a tsunami, the flow of heat, or the movement of air, PDEs
capture these processes’ continuous and dynamic nature, making them crucial for
accurate predictions in various scientific and engineering applications.

PDEs involve partial derivatives of an unknown function of two or more parameters
[8]. In general, equations in a k-th order system of partial differential equations where
F is a function over the unknown function u have the form:

F(Dku(x), Dk−1u(x), ..., u(x), x) = 0 (2.1)

Where F is some function with

F : Rnk ×Rnk−1 ××Rn ×R×U → R (2.2)

and D is the derivative of the function u over one of its parameters.

2.2. Shallow Water Equations

The system of PDEs that are used to describe tsunami scenarios is called shallow water
equations. The shallow water equations (SWEs) are derived from more complicated
three-dimensional Navier–Stokes equations [18]. The vertical scale of the domain for a
tsunami simulation is much greater than the horizontal scale; therefore, the domain
and the problem can be reduced to two dimensions, taking the vertical water height
and bathymetry as input, resulting in 2-D SWEs.

Despite the name, SWEs don’t require the fluid to be shallow as they can be used
for describing a tsunami wave in the ocean, where the depth can reach 5 km [12]. The
following chapters use these equations to simulate artificial scenarios and the real-world
2011 Tōhoku tsunami.

SWEs combine the laws of conservation of mass and momentum [12]:

2

2. Background

Mass Conservation:

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= 0

where h is the water depth, and u and v are the depth-averaged velocities in the x-
and y-directions, respectively.

Momentum Conservation:

∂(hu)
∂t

+
∂

∂x

(
hu2 +

1
2

gh2
)
+

∂(huv)
∂y

= −gh
∂b
∂x

∂(hv)
∂t

+
∂(huv)

∂x
+

∂

∂y

(
hv2 +

1
2

gh2
)
= −gh

∂b
∂y

g is the acceleration due to gravity and b is the bathymetry.
To use ExaHyPE 2, shallow water equations need to be rewritten in the following

form [18]:

∂

∂t


h

hu
hv
b

+∇ ·


hu hv
hu2 huv
huv hv2

0 0

+


0

hg ∂(b+h)
∂x

hg ∂(b+h)
∂y

0

 = 0 (2.3)


h

hu
hv
b

 = Q,


hu hv
hu2 huv
huv hv2

0 0

 = F(Q),


0

hg ∂(b+h)
∂x

hg ∂(b+h)
∂y

0

 = B(Q)∇Q

where h is the height of the water, u and v are the velocities in the x- and y-direction,
respectively, and b is the bathymetry and g is the earth’s gravitational acceleration.

The eigenvalues that are used for the timestep calculations in both x- and y-directions
are given by

λx1 = u, λx2 = v +
√

gh, λx3 = v−
√

gh,

λy1 = v, λy2 = v +
√

gh, λy3 = v−
√

gh
(2.4)

3

2. Background

2.3. Inverse Problems

Inverse problems aim to estimate the unknown input parameters of model equations
using observations [27].

When dealing with complex problems, such as shallow water equations, it is not
feasible to invert the problem directly due to complexity and computational difficulties.
This thesis employs the Bayesian approach to solve the inverse problem. The Bayesian
approach attempts to determine the distribution of parameters from available data
instead of inverting it [4].

In our use case, we aim to obtain the location of the seabed displacement leading to
the 2011 Tōhoku tsunami from the data of two available DART buoys near the Japanese
coast 1.

We define our model as a function as a function G of the displacement θ and our
observation of the outcome as y:

y = G(θ, Q) + e, (2.5)

where e is the noise in the observations.
We aim to calculate the initial data from our output function. Since our problem is

too complex to solve analytically, a common approach is to define a cost function that
depends on the error between the solution of the model and the outcome. We treat the
problem as a minimization problem for our cost function. The simplest way to define
our cost function would be:

θ = arg min
θ
||y− G(θ, Q)|| (2.6)

2.4. Uncertainty Quantification

Uncertainty quantification (UQ) is a field dedicated to understanding, characterizing,
and managing the uncertainties present in models. It involves identifying sources
of uncertainty, such as variability in input parameters, model approximations, data
quality, and external factors. UQ quantifies the extent and impact of these uncertainties
using statistical methods to measure how they propagate through models and affect
outcomes.

A common problem in UQ is finding the uncertain input parameters in a given
model from real-world measurements, hence solving an inverse problem.

1The data for DART buoys was obtained from NDBC https://www.ndbc.noaa.gov/.

4

3. Related Work

3.1. Peano 4

ExaHyPE (Exascale Hyperbolic PDE Engine) is part of the Peano project, a framework
for solvers operating on dynamically adaptive Cartesian meshes.

Peano primarily focuses on mesh management, data storage, distribution, and
traversal of the grids, serving as the foundation for various engines and toolboxes
tailored to different application areas. The latest iteration, Peano 4, is the fourth
generation of this framework and is available as open-source software [25].

In computational simulations, the efficiency and accuracy of the numerical solution
often rely on the underlying grid structure and the employed load-balancing mecha-
nisms. Peano provides a robust framework for dynamically adaptive Cartesian meshes,
ensuring optimal performance and scalability.

In ExaHyPE, the grid partition and load balancing are handled by the Peano frame-
work. Peano allows users to increase the accuracy of the simulation in certain areas
by using adaptive mesh refinement (AMR) when necessary [18]. This can improve
performance and accuracy in tsunami simulations as the wave usually only occupies a
small portion of the domain. The rest is typically static but still needs to be calculated
and can be equally computationally intensive [13], even though it results in no net
updates. By refining the cells in the critical domain, we can increase the accuracy of
our simulations while suffering a minimal performance loss.

Grid initialization in Peano 4 involves setting up the initial domain and defining the
refinement criteria. The framework manages grid traversal and updates, ensuring the
mesh evolves appropriately throughout the simulation. Efficient data structures and
algorithms are employed to handle the dynamically changing mesh.

In parallel computing environments, load balancing is crucial for maximizing re-
source utilization and minimizing computational time. An unbalanced load can lead
to some processors being idle while others are overloaded, resulting in inefficiencies.
Peano 4 incorporates several load balancing strategies, like static and dynamic load
balancing, to distribute the computational workload evenly across processors.

5

3. Related Work

3.2. ExaHyPE 2

To be able to work with uncertainty quantification on tsunami simulations, we first
need to implement a method to solve the forward problem and simulate the tsunami
resulting from a given initial condition. The forward problem, in the context of tsunami
simulations, involves predicting the wave’s evolution over time, given the seafloor’s
initial bathymetry and the displacement caused by an earthquake. This requires solving
the equations described in Chapter 2.2, where the solution represents the physical
behavior of the tsunami.

ExaHyPE 2 is an open-source software engine that can solve first-order linear and
non-linear hyperbolic partial differential equations in the following form [18]:

∂

∂t
Q +∇F(Q,∇Q) + B(Q) · ∇Q = S(Q) +

nps

∑
i=1

δi (3.1)

where Q stands for the state vector, F(Q) is the flux tensor, Bi(Q) is the non-conservative
product (often shortened to NCP), S(Q) is the source term of the equation and ∑

nps
i=1 δi

denotes point sources.
PDEs that are derived from conservation laws in physics have a wide range of appli-

cation areas like uncertainty quantification applications [16, 22], and elastodynamics
[18].

Due to the scalability of ExaHyPE 2, these simulations can be run on a regular laptop
or utilize the resources of supercomputers.

While the predecessor of the ExaHyPE 2 also provided a way to solve these equations,
ExaHyPE 2 provides a better framework to utilize resources of the supercomputers
while solving the related PDEs using MPI and OpenMP [19] parallelization, as well as
support for GPU offloading [26, 9, 14].

ExaHyPE 2 and Peano handle the glue code and time and space discretization,
allowing users to develop simulation codes that would take a long time to create from
scratch.

To describe a specific problem, the user needs to specify the flux function F (Q, ∇Q),
the source term S(Q), and any non-conservative products B(Q) · ∇Q, as well as point
sources δi and eigenvalues have to be specified for all methods that use adaptive time
stepping. The user can also redefine the Riemann solver to describe the change of the
source terms [18].

6

4. Implementation of the Shallow Water
Equations in ExaHyPE 2

There are multiple ways to solve the shallow water equations (c.f. Eq. 2.3) in order to
simulate tsunamis. They vary in how the domains are represented and the discretization
of time. In the context of this thesis, we use adaptive time stepping in all of our
simulations, which means that the time steps are calculated on every iteration using
the maximal eigenvalues, thus preventing the waves from skipping cells or overlapping
with another wave. In Sections 4.1 and 4.2, we introduce two separate ways to represent
the cells in the domain and implement solvers for solving the Equation 2.3.

4.1. Finite Volume Method

In finite volume methods, the computational domain is discretized into small, non-
overlapping control volumes or cells. Its cell-averaged value represents the state vector
Q, assuming a uniform distribution within each cell. The partial differential equations
are integrated over each control volume, converting volume integrals containing diver-
gence terms into surface integrals by applying the divergence theorem [3]. Then, the
flows are calculated by solving a series of Riemann problems on the boundary of each
subdomain [7]. SWEs are based on integrating the equation from 2.3. Thus,∫

V

(
∂Q
∂t

+ (∇ · F(Q))T
)

dV =
∫

V
B(Q)dV (4.1)

The flux integral ∇ · F(Q))T is approximated using numerical flux functions at the
cell interfaces. For approximating methods like Rusanov, e.g. 4.1.1, FWaves e.g. 4.1.2 or
HLL fluxes, e.g. 4.1.2 can be used.

The integral for the state vector is then calculated using the Equation 4.1, thus giving
us the formula:

Qn+1
i = Qn

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2) + ∆tSn
i

7

4. Implementation of the Shallow Water Equations in ExaHyPE 2

4.1.1. Generic Riemann Solver

ExaHyPE 2 provides a generic Rusanov FV solver that can solve artificial scenarios
that do not involve dry cells. In Chapter 6.1.1, we will use this solver as a baseline for
testing our other solver implementations. It provides approximate results in simple
scenarios but is insufficient to simulate real-world tsunamis.

4.1.2. Custom Riemann Solvers

The generic Riemann solver is not precise enough and cannot handle cases involving
dry cells. Therefore, we implement a custom Riemann solver by describing the in- and
outgoing fluxes A±∆Q over time.

FWave Solver

In the open ocean, a tsunami has a small wave height compared to the ocean’s depth
and a long wavelength. Because of this, its movement can be considered almost linear,
with variations caused by changes in bathymetry. As a tsunami approaches shore,
however, the amplitude typically increases while the depth of the water decreases, and
nonlinear effects become important [13]. The FWave solver focuses on the open ocean
and ignores the nonlinear effects of the SWEs.

The FWave solver is designed for the one-dimensional shallow water equations. The
initial idea is to solve the Riemann problem in the first dimension and then do an x-
and y-sweep of the domain to extend the solver to two dimensions.

In one space dimension the equation has the form [2]:

∂Q
∂t

+ f (q, x) = 0 (4.2)

Before defining the Riemann solver, we must implement the fluxes defined in Equa-
tion 2.3. We inherit the non-conservative products into the flux function, thus elim-
inating the non-conservative products and defining the fluxes as in the Algorithm
1.

To calculate the time step ∆t, we need to prevent waves from interacting with each
other, meaning they should not cross the cell center xi at any given timestep, ensuring
two incoming waves from opposite directions cannot meet. This condition is satisfied
by using a timestep relaxation factor smaller than 1/2 and calculating the timestep as:

∆t <
1
2
· ∆x

λmax

8

4. Implementation of the Shallow Water Equations in ExaHyPE 2

where λ are the eigenvalues which are defined as in Algorithm 2, and for the timestep
relaxation factor (TSR) TSR = 0.4 < 1

2 is chosen.
Then, we calculate the net updates for left and right going waves, thus implementing

our Riemann solver as in the Algorithm 3.

Algorithm 1 Flux Function
Input: q: state vector with elements h, hu, hv, b

n ∈ {x, y}: normal direction
Output: F: array containing flux in normal direction

1: function flux(q, n)
2: if n = x then

3: F←


hu

h(u2) + 1
2 gh2

huv
0.0


4: else

5: F←


hv

huv
h(v2) + 1

2 gh2

0.0


6: end if
7: return F
8: end function

9

4. Implementation of the Shallow Water Equations in ExaHyPE 2

Algorithm 2 Eigenvalues
Input: q: state vector with elements h, hu, hv, b

n ∈ {x, y}: normal direction
Output: λ: array containing eigenvalues

1: function eigenvalue(q, n)
2: if n = x then
3: un ←

√
2u

h2

4: else
5: un ←

√
2v

h2

6: end if

7: λ←


un +

√
gh

un −
√

gh
un

0.0


8: return λ

9: end function

Algorithm 3 FWave Riemann Solver

1: function Riemann(qL, qR, FL, FR)
2: hRoe ← 1

2 (hl + hr)

3: uRoe ← ul
√

hl+ur
√

hr√
hl+
√

hr

4: λRoe ←
(

uRoe −
√

ghRoe

uRoe +
√

ghRoe

)

5: ∆xΨi−1/2

(
0

−g(br−bl)hRoe

2

)
6: ∆F ← FR− FL− ∆xΨi−1/2
7: A−∆Q ← ∑p:λRoe<0 ∆F
8: A+∆Q ← ∑p:λRoe>0 ∆F
9: return max(λRoe[0], λRoe[1])

10: end function

Disadvantages of the FWave Solver:
As explained at the beginning of the chapter, the FWave solver does not approximate

well enough on the cells with smaller bathymetry due to the smaller water depth.
Due to calculations assuming the water height h is always positive, the FWave solver

does not support wetting and drying scenarios. We work around this problem by
assuming that when a wave moves from a wet region towards the shore; we presume

10

4. Implementation of the Shallow Water Equations in ExaHyPE 2

an infinitely high wall reflecting the wave instead of wetting the dry cells.

HLLEM Solver

The HLLEM solver is an approximate Riemann solver used to compute numerical fluxes
between cells in a computational domain. It is a modified version of the original HLL
(Harten-Lax-van Leer) solver, specifically designed to improve accuracy and stability in
various fluid dynamics simulations and is described in the literature [23, 6].

The core of the HLLEM solver is constructing the intermediate state U∗ based on
right and left states and the eigenvalues of the flux Jacobians. The intermediate state is
then used to calculate the numerical flux ∆F between cells using the formula [23]:

∆F =
SRFL − SLFR + SLSR(UR −UL)

SR − SL
+

SLSR

SR − SL
(UL −UR)

We integrate the fluxes for the HLLEM solver into ExaHyPE 2 as detailed in Algorithm
4.

Accordingly, we implement the Riemann solver in Algorithm 5, which calculates the
right- and left-going waves A±∆Q and we inherit the non-conservative products into
the Riemann solver.

Algorithm 4 Flux Function
Input: q: state vector with elements h, hu, hv, b

n ∈ {x, y}: normal direction
Output: F: array containing flux in normal direction

1: function flux(q, n)
2: if n = x then

3: F←


hu

h · u2

huv
0.0


4: else

5: F←


hv

huv
h · v2

0.0


6: end if
7: return F
8: end function

11

4. Implementation of the Shallow Water Equations in ExaHyPE 2

Algorithm 5 HLLEM Riemann Solver

1: function Riemann(qL, qR, FL, FR, λL, λR)
2: hRoe ← 1

2 (hl + hr)

3: ∆η ← (hr + br)− (hl + br)

4: λmax ← max(λL, λR)
5: ∆F ← FL

2I − 1 · λmax · ∆η

6: A−∆Q ← ∑p:λRoe<0 ∆F
7: A+∆Q ← ∑p:λRoe>0 ∆F
8: if n = x then

9: ∆A+∆Q ← A+∆Q +


0

ghRoe·∆η
2
0
0



10: ∆A−∆Q ← A+∆Q −


0

ghRoe·∆η
2
0
0


11: else

12: ∆A+∆Q ← A+∆Q +


0
0

ghRoe·∆η
2
0



13: ∆A−∆Q ← A+∆Q −


0
0

ghRoe·∆η
2
0


14: end if
15: return λmax

16: end function

Advantages of the HLLEM Solver:
The HLLEM solver enhances accuracy in regions near shorelines and effectively

handles wetting and drying scenarios. It is particularly well-suited for wetting and
drying scenarios, where it maintains a small volume of water in dry cells to prevent
numerical instabilities.

12

4. Implementation of the Shallow Water Equations in ExaHyPE 2

4.2. ADER-DG

Arbitrary Derivative Discontinuous Galerkin (ADER-DG) is a numerical method em-
ployed to solve hyperbolic partial differential equations (PDEs) such as shallow water
equations. The combination of ADER and DG provides arbitrary high-order accuracy
in space and time. The DG method’s ability to handle discontinuities makes it suitable
for complex geometries and problems with sharp gradients.

The Discontinuous Galerkin (DG) methods represent both the source terms and the
fluxes within cells by a (high-order) polynomial [18], unlike the finite volume methods,
which allow discontinuities between cells, making it more suitable for problems with
complex geometries.

The DG method approximates the state vector Q within each cell with [10]:

Q(x, t) =
N

∑
l=1

Ql(t)ϕl(x)

where, ϕl(x) is typically a polynomial with l degrees of freedom.
On the other hand, the single-step ADER approach reduces the computational

overhead compared to traditional multi-step time integration methods by integrating
both space and time derivatives in a unified framework.

For the integration in time, the weak form of the PDE is used as suggested in paper
[17]:

∫ tn+1

tn

∫
T

ΦT(Q(x, t) +∇F(Q)− S(Q))dxydt = 0

For a detailed introduction to ADER-DG methods, the original paper [5] should be
referred to.

In ExaHyPE 2, the ADER-DG approach is defined for SWEs by implementing the flux
calculation using the flux function as detailed in Algorithm 4, the largest eigenvalue as
described in Algorithm 7 to determine the time step size and non-conservative products
(NCPs) using the algorithm described in the Algorithm 6. The generic Riemann solver
in ExaHyPE 2 is used to solve the Riemann problem.

13

4. Implementation of the Shallow Water Equations in ExaHyPE 2

Algorithm 6 Non-Conservative Product
Input: q: state vector with elements h, hu, hv, b

∇q: gradient vector with elements hgrad, hugrad, hvgrad, bgrad
n ∈ {x, y}: normal direction

Output: NCP: array containing non-conservative product in normal direction
1: function ncp(q,∇q, n)
2: if n = x then

3: NCP←


0.0

gh(bgradQ + hgradQ)

0.0
0.0


4: else

5: NCP←


0.0
0.0

gh(bgradQ + hgradQ)

0.0


6: end if
7: return NCP
8: end function

Algorithm 7 Eigenvalues
Input: q: state vector with elements h, hu, hv, b n ∈ {x, y}: normal direction
Output: NCP: the maximal eigenvalue on that timestep for calculating the timestep

1: function maxeigenvalue(q, n)
2: if n = x then
3: u← u
4: else
5: u← v
6: end if
7: return max(u + gh, u− gh)
8: end function

Advantages of ADER-DG Schemes:
The ADER-DG method achieves arbitrary high-order accuracy in both spatial and

temporal discretizations by representing the cells by polynomials and can handle
discontinuous state vectors.

The ADER approach’s single-step time integration reduces computational overhead
compared to traditional multi-step methods. This efficiency makes the ADER-DG

14

4. Implementation of the Shallow Water Equations in ExaHyPE 2

scheme well-suited for large-scale simulations where computational resources and time
are critical.

4.3. Limiting

The unlimited ADER-DG algorithm is prone to numerical oscillations (Gibbs phe-
nomenon) in the presence of steep gradients or shock waves [18]. These oscillations can
lead to instabilities in cells where the ocean depth is shallow. ExaHyPE 2 offers limiting
solvers that partition the domain into two discrete regions and utilize two different
solvers on these domains to address this. This thesis uses the ADER-DG solver for
most of the domain while switching to the HLLEM FV solver on the problematic cells
where the water depth is less than 10 meters, thus resulting in wetting-drying scenarios
near shorelines. Figure 4.1 shows the distribution of cells between two solvers.

4.4. Particles

In ExaHyPE 2, particles track specific points within the computational domain, serving
as tracers for detailed analysis.

In this thesis, we implement two tracers representing DART buoys near the Japanese
coast. The location of the DART buoys was obtained from the National Data Buoy
Center (NDBC) [15]. The data recorded by these tracers are then compared with the
historical data from the 2011 Tōhoku tsunami and the solver from the research [22] to
evaluate the accuracy of the solvers.

15

4. Implementation of the Shallow Water Equations in ExaHyPE 2

Figure 4.1.: The split of the cells for the limiting solver with min depth 4. For the
yellow domain HLLEM FV solver is used, while for the blue domain the
ADER-DG solver is used.

16

5. UM-Bridge in ExaHyPE 2

5.1. UM-Bridge

UM-Bridge (uncertainty quantification and modeling bridge) provides an interface
between the uncertainty quantification methods and the models [20]. One of the most
common applications of uncertainty quantification is quantifying the tsunami source
location [21]. In other areas, it can be used to quantify the material parameters of the
elastic simulation [24].

In most cases, the UQ algorithms treat the forward model as a function y = f (x),
abstracting the implementation details of the simulation model, thus not requiring any
knowledge about f (x) other than its results [20]. UQ is designed to help this abstraction
by physically decoupling the forward model and the uncertainty quantification. It
allows the same UQ algorithms and the forward simulations to be developed in
different languages and even the same UQ algorithm to be used on multiple fields and
simulations.

The general client-server model for a tsunami simulation might look like Figure
5.1, where the application handles all the communication between the server and
the UQ model via an HTTP connection, thus allowing them to run on even different
environments. For example, the computationally heavy simulation can be run on a
supercomputer powered by thousands of processor cores. In contrast, the computa-
tionally less intensive statistical UQ model can be run on a computer with much less
computational power.

Figure 5.1.: The UM-Bridge interface

In this thesis, we plan to focus on the tsunami simulations and quantifying the
source location of the tsunami displacement on the Tōhoku tsunami using the solvers

17

5. UM-Bridge in ExaHyPE 2

we already have implemented in Chapter 4. Therefore, we implement a client-server
UM-Bridge interface to be able to implement the UQ algorithms.

Server
The server is a forward model that solves the forward problem y = f (x). It takes the

proposed displacement (x, y) for the tsunami as an input. It returns the wave’s arrival
time and maximum wave height y = (t0, h0, t1, h1) during the simulation in specific
probe points implemented in Chapter 4.4. The forward model is implemented in the
same fashion as in [21].

The server essentially has three functions. Where get_input_sizes() returns the number
of dimensions in the simulation and get_output_sizes() returns the size of the y tuple. On
the other hand, a call(x) method takes the position of the displacement for the tsunami
simulation and returns the tuple y to the client.

The server is typically run in the local host for testing purposes. We define the
server’s port using UM-Bridge via the following:

model = TsunamiModel()
umbridge.serve_models([model], 4242)

Client
The client is where the UQ algorithms are implemented. In this thesis, we plan to

implement a Bayesian algorithm to solve the inverse problem and quantify the source
location of the given tsunami. Many evaluation-based statistical algorithms can be used
for this purpose. We start by implementing the Metropolis Hastings Markov Chain
Monte Carlo algorithm in Chapter 5.2.3 then extending it to multiple layers using the
Multilevel Markov Chain Monte Carlo algorithm as proposed in Chapter 5.2.4.

The client is first informed on where the server lies using UM-Bridge:

print(umbridge.supported_models("http://0.0.0.0:4242"))
model = umbridge.HTTPModel("http://0.0.0.0:4242", "forward")

The client first queries the server about the input and output specifications and then
calls the call() function from the server via an HTTP connection. It runs the user’s UQ
algorithm and uses the server as a black box implementation for the y = f (x) function.

Figure 5.2 illustrates the communication between various components of the UM-
Bridge implementation of a UQ algorithm.

18

5. UM-Bridge in ExaHyPE 2

Figure 5.2.: The UM-Bridge sequence diagram

19

5. UM-Bridge in ExaHyPE 2

5.2. Monte Carlo Algorithms

5.2.1. Monte Carlo

We will start by defining a simple Monte Carlo method over the tsunami displacement.
Monte Carlo methods rely on repeated random sampling to guess random parameters
or to access the general functions of those parameters [11].

5.2.2. Markov Chain Monte Carlo

The Markov Chain Monte Carlo (MCMC) method is a powerful and simple tool for
solving Bayesian inverse problems. The MCMC method uses the Bayesian probability
theory to calculate a likelihood function and a posteriori distribution for the unknown
parameter θ [1].

5.2.3. Metropolis Hastings Markov Chain Monte Carlo

The Metropolis-Hastings (MH) Markov Chain Monte Carlo (MCMC) algorithm is a
method for sampling from a probability distribution when direct sampling is difficult.

We begin with an initial guess θ0, which represents the initial displacement for the
tsunami. This value is chosen arbitrarily since it is the start of the chain.

We generate a new proposal θ′ for each iteration based on the current state θi. This
generation step works like a random walk in a random direction as the new proposition
can be generated using a normal distribution centered at the current state.

After the proposal, we calculate how likely we are to accept this new state as our
new θ. The acceptance probability α(θ′|θi) is determined by how well the θ′ fits the
target distribution compared to the current θi, calculated using our likelihood function.
If θ′ gives a better fit, we accept the θ′ as the new state for our Markov Chain θi+1, else
we might accept it with a lower probability depending on the likelihood change. This
prevents the function from being stuck on a local minimum state.

This process repeats for many iterations. Over time, the parameters θi will converge
to the target distribution.

The main advantage of this method is its availability since this algorithm uses no
information specific to the model. Instead, it only uses the results from the direct evalu-
ations of the forward model to calculate the likelihood function. Thus, no particular
information for the model as derivatives or fluxes needs to be passed to the client [22],
making this method more universal for other forward models. However, it requires
many iterations for the forward model to be calculated to get a result, and, therefore, it
can be very computationally intensive. In Section 5.2.4, we aim to present an algorithm
to solve this issue by introducing a layered approach to the algorithm.

20

5. UM-Bridge in ExaHyPE 2

Algorithm 8 Metropolis Hastings MCMC

Require: Markov Chain {θi}N
i=0

1: Choose starting parameter θ0 ∈ Rm

2: for i = 0, . . . , N − 1 do
3: Draw proposal θ′ from proposal distribution q(θ′|θi)

4: Compute acceptance probability

α(θ′|θi) = min
(

1,
v(θ′)q(θi|θ′)
v(θi)q(θ′|θi)

)
5: Draw a random number r ∈ [0, 1]
6: if r < α(θ′|θi) then
7: Accept proposal: θi+1 = θ′

8: else
9: Reject proposal: θi+1 = θi

10: end if
11: end for

5.2.4. Multilevel Markov Chain Monte Carlo

To get around the previous model’s computational intensity, the Multilevel (ML) Markov
Chain Monte Carlo (MCMC) defines a hierarchy of models, ranging from cheap to
compute rough approximation to the most accurate full model.

We start with Markov Chains θi
l for each level and run conventional MCMC as

described in Section 5.2.3. For any other level for each sample j at level l we draw a
combined proposal θ

′j
l = (θ

′j
l,C, θ

′j
l,F) where θ

′j
l,C is drawn from a level l − 1 chain with

subsampling rate ρl and θ
′j
l,F is drawn from a proposal density ql(θ

′j
l,F|θ

j
l,F).

Then the acceptance probability α(θ
′j
l,C, θ

′j
l,F) is defined as:

α(θ
′j
l , θ

j
l) = min

1,
vl(θ

′j
l)ql(θ

j
l,F|θ

′j
l,F)

vl(θ
j
l)ql(θ

′j
l,F|θ

j
l,F)

vl−1(θ
j
l,C)

vl−1(θ
′j
l,C)


Then, the proposal is accepted or rejected using the same logic as Section 5.2.3 by

drawing a random number between 0 and 1. The specific algorithm used for this
method is taken from [22] and given as Algorithm 9.

21

5. UM-Bridge in ExaHyPE 2

Algorithm 9 Multilevel MCMC

Require: Markov Chains {θi
l}

Nl
i=0 for all levels l ∈ {0, . . . , L}. On level 0, run a conven-

tional MCMC, delivering samples θi
0.

for level l = 1, . . . , L− 1 do
Choose starting point θ0

l with coarse component from next coarser starting point
θ0

l−1
for sample j = 1, . . . , Nl do

Given θ
j
l , generate proposal θ

′j
l =

{
θ
′j
l,C

θ
′j
l,F

where

• θ
′j
l,C is drawn from a level l − 1 chain with subsampling rate ρl and

• θ
′j
l,F is drawn from a proposal density ql(θ

′j
l,F|θ

j
l,F).

Compute acceptance probability

α(θ
′j
l , θ

j
l) = min

1,
vl(θ

′j
l)ql(θ

j
l,F|θ

′j
l,F)

vl(θ
j
l)ql(θ

′j
l,F|θ

j
l,F)

vl−1(θ
j
l,C)

vl−1(θ
′j
l,C)


Draw a random number r ∈ [0, 1]
if r < α(θ

′j
l , θ

j
l) then

Accept proposal: θ
j+1
l = θ

′j
l

else
Reject proposal: θ

j+1
l = θ

j
l

end if
end for

end for

22

6. Results

6.1. Evaluation of the Solvers

This chapter shows the simulation results using the various solvers implemented in
Chapter 4 to validate the consistency of solvers. The results are displayed using 2D-
surface plots and line plots. We have chosen the radial dam break scenario and the
2011 Tōhoku tsunami to test out solvers.

6.1.1. Radial Dam Break Scenario

The radial dam break scenario is a classic test case in models that are used for fluid
dynamics. It is particularly useful for validating the accuracy and stability of the solvers
with well-defined initial conditions.

In this scenario, the simulation domain is a square domain with length N. The height,
bathymetry and velocity distribution is given by:

h(x, y) =

1.1 m if
√(N

2 − x
)2

+
(N

2 − y
)2 ≤ N

10 ,

1.0 m otherwise.

hu(x, y) = 0.0 m2/s,

hv(x, y) = 0.0 m2/s,

b(x, y) = −1.0 m.

Here, the water height is slightly larger at the center of the domain with a radius
of N/10 meters, representing the initial "dam" of the water. Which then propagates
outwards to the rest of the domain.

For this simulation, we chose N = 10 meters. All methods are simulated using
adaptive time-stepping using the TSR factor of 0.4 and the mesh depth of 5 levels.

23

6. Results

Figure 6.1.: Initial conditions for the dam break scenario

In the following, we show the results for all solvers that are implemented in the
Chapter 4 given the same scenario on a 2D-surface plot over 1 second, as well as the
comparative results for all chapters plotting their height and momentum shifts over
time using line plots.

24

6. Results

Generic Riemann Solver

(a) t = 0.0 s (b) t = 0.1 s

(c) t = 0.5 s (d) t = 1.0 s

Figure 6.2.: 2D-surface plot over time for dam break scenario with the generic Riemann
solver.

25

6. Results

FWave Solver

(a) t = 0.0 s (b) t = 0.1 s

(c) t = 0.5 s (d) t = 1.0 s

Figure 6.3.: 2D-surface plot over time for dam break scenario with the FWave solver.

26

6. Results

HLLEM Solver

(a) t = 0.0 s (b) t = 0.1 s

(c) t = 0.5 s (d) t = 1.0 s

Figure 6.4.: 2D-surface plot over time for dam break scenario with the HLLEM solver.

27

6. Results

ADER-DG Solver

(a) t = 0.0 s (b) t = 0.1 s

(c) t = 0.5 s (d) t = 1.0 s

Figure 6.5.: 2D-surface plot over time for dam break scenario with the ADER-DG solver.

28

6. Results

Comparison

(a) t = 0.0 s

(b) t = 0.1 s

Figure 6.6.: Line plot of the height along the x-axis comparing results from different
solvers in timesteps t = 0 s and t = 0.1 s.

29

6. Results

(a) t = 0.5 s

(b) t = 1.0 s

Figure 6.7.: Line plot of the height along the x-axis comparing results from different
solvers in timesteps t = 0.5 s and t = 1.0 s.

30

6. Results

(a) t = 0.0 s

(b) t = 0.1 s

Figure 6.8.: Line plot of the absolute value of momentum in the x-direction along the
x-axis comparing results from different solvers in timesteps t = 0 s and
t = 0.1 s.

31

6. Results

(a) t = 0.5 s

(b) t = 1.0 s

Figure 6.9.: Line plot of the absolute value of momentum in the x-direction along the
x-axis comparing results from different solvers in timesteps t = 0.5 s and
t = 1.0 s.

32

6. Results

From Figures 6.3 to 6.5, we observe the behavior of the water height over the domain
with different solvers. In all cases, the solvers show symmetrical wave propagation
originating from the center of the domain. As the water in the center collapses, it
generates circular waves that move towards the domain’s boundaries. Notably, the total
water mass within the domains is preserved across all solvers, which shows that the
solvers respect the mass conservation laws.

Figures 6.6 to 6.9 show a side-to-side comparison of different solvers through line
plots that track the water height and momentum, respectively. The results show that all
four solvers have similar wavefront propagation speeds throughout 1 second, which
reflects the rate at which the disturbances travel through the domain. Throughout the
simulations, all solvers reach a maximum wave speed of λ ≈ 0.16 m/s.

However, the solvers disagree on the height of the shock wave produced after timestep
t = 0.5 s; the HLLEM and ADER-DG solvers produce a more pronounced shock wave
than the FWave and generic Riemann solvers. This is likely due to the latter two
solvers’ handling of the shallow water heights. Another notable difference we can
observe is the ADER-DG solver having significant jumps on height and momentum
representations, which are caused by approximating the cells with polynomials while
having a discontinuous initial condition.

6.1.2. Tōhoku Tsunami

We implement a real-world tsunami event to further test the accuracy of solvers
implemented so far. The 2011 Tōhoku tsunami was chosen for this purpose. The
tsunami was simulated using adaptive time-stepping with a TSR factor 0.4 and a mesh
depth of 5. The initial conditions for the tsunami can be found in Figure 6.10.

33

6. Results

Figure 6.10.: Initial conditions of Tōhoku tsunami displaying h + b in logarithmic scale.

FWave

Our initial simulation of the Tōhoku tsunami is conducted using an FWave solver. A
maximum wave speed of

√
gh = 310 m/s is reached during the simulation, which

aligns with theoretical expectations for such events. Even though the results are
promising, the simulation showed that the tsunami waves reached the Soma shoreline
at approximately t ≈ 2160 s. This result is inconsistent with the real-world observations,
where the tsunami arrived at the Soma shore around 9 minutes after the earthquake, or
t ≈ 540 s.

34

6. Results

Figure 6.11.: Tōhoku tsunami approaching Soma at t = 1607 s displaying h + b in
logarithmic scale using the FWave solver with TSR factor of 0.4.

The simulation produces artifacts after the timestep t = 3000 s, as shown in Figure
6.12. These artifacts become more violent over time, increasing the maximum wave
speed and making the simulation unstable, which is fixed by improving the time-
stepping in the following section.

To further investigate the FWave solver’s performance, we compared the simulated
wave heights and arrival times at two available DART buoys, 21418 and 21419, from
the National Data Buoy Center (NDBC) near the Japanese coast with real-world data.
Additionally, we compared the results of our solver to the outputs from the ExaHyPE 1
simulation, which are reported to agree with the real-world data in the literature [22].
This comparison was made using the probes implemented in Chapter 4.4:

• Buoy 1:

– Real-world data: t0 ≈ 30 min = 1800 s, h0 ≈ 2 m

– ExaHyPE 1 output: t0 = 1813.8 s, h0 = 1.85232 m

– Solver output: t0 = 1777.952 s, h0 = 1.58 m

35

6. Results

• Buoy 2:

– Real-world data: t1 ≈ 90 min = 5400 s, h1 ≈ 0.7 m

– ExaHyPE 1 output: t1 = 5278.8 s, h1 = 0.6368 m

– Solver output: t1 = 5221.7 s, h1 = 0.221 m

The results show a reasonable approximation of the tsunami’s arrival time for both
buoys. Still, the FWave solver underestimates the height of the simulated waves on both
buoys, suggesting the FWave solver may dissipate wave energy more than expected as
the tsunami propagates.

Figure 6.12.: Artifacts appearing in the simulation around t = 3000 s using the FWave
solver.

36

6. Results

Timestepping

To calculate the timesteps in finite volume solvers, we use the maximum wave speed of
all the cells in the domain in a given timestep (this is described as the eigenvalue in the
context of our solvers) and multiply this with a TSR factor to make sure no waves can
ever overlap.

Due to how we implemented the applications in ExaHyPE 2, the domain is always
divided into the same number of cells in x- and y-directions. Our domain has a length
of 7000 kilometers in the x-direction and 4000 kilometers in the y-direction, resulting
in rectangular-shaped cells instead of squares. Our timestep calculations described in
Section 4.1.2 only consider the length of the cells in the x-direction when calculating
the timesteps as it assumes the cells are square-shaped. Therefore, overlapping waves
in the y-direction result in the artifacts observed in Figure 6.12.

These artifacts were prevented by adding a safety step after each iteration to fix the
minimum cell size, overriding it with a minimum of the x- or y-direction. Alternatively,
the domain is cut off from the non-critical areas on the east, resulting in a square-shaped
domain and, therefore, solving the issue. Both of these measures were put in place for
the following simulations.

HLLEM

Next, we simulate the initial Tōhoku tsunami using the HLLEM solver described in
Chapter 4.1.2. The tsunami simulation exhibits a maximum wave speed of λmax ≈
310 m/s throughout the simulation, consistent with the FWave solver’s results. However,
the HLLEM solver shows a faster wave propagation, with the tsunami waves reaching
the Soma shoreline at approximately t ≈ 1600 s. This result is closer to the real-world
observation of 9 minutes t ≈ 540 s.

To further investigate the HLLEM solver’s performance, we compared the simulated
wave heights and arrival times at two available DART buoys, 21418 and 21419, from the
National Data Buoy Center (NDBC) near the Japanese coast with real-world data and
the results from the ExaHyPE 1 simulation, which are reported to be accurate in the
literature [22]. This comparison was made using the probes implemented in Chapter
4.4:

• Buoy 1:

– Real-world data: t0 ≈ 30 min = 1800 s, h0 ≈ 2 m

– ExaHyPE 1 output: t0 = 1813.8 s, h0 = 1.85232 m

– Solver output: t0 = 1775.683 s, h0 = 1.52 m

37

6. Results

• Buoy 2:

– Real-world data: t1 ≈ 90 min = 5400 s, h1 ≈ 0.7 m

– ExaHyPE 1 output: t1 = 5278.8 s, h1 = 0.6368 m

– Solver output: t1 = 5135.071 s, h1 = 0.179 m

The HLLEM solver’s results show a reasonable approximation of the tsunami’s
arrival times at both buoys, though the simulated wave heights are lower than those
observed in reality. On both buoys, the HLLEM solver predicts the arrival time very
close to the observed time. However, the wave height is significantly underpredicted,
suggesting that the HLLEM solver may dissipate wave energy more than expected as
the tsunami propagates.

Figure 6.13.: Tōhoku tsunami approaching Soma at t = 1607 s displaying h + b in
logarithmic scale using the HLLEM solver.

38

6. Results

Limiting Solver

Due to the issues with the ADER-DG solver in shallow ocean depths mentioned
in Chapter 4.3, a limiting solver was implemented using the HLLEM solver on the
shoreline where the water depth is less than 10 meters, while the ADER-DG solver is
used in the deeper ocean. The resulting tsunami is shown in Figure 6.14. Throughout
the simulation, the tsunami reaches a maximum wave speed of λmax ≈ 290 m/s.
Although waves appear to dissipate near the shore due to the switch to HLLEM solver
—and because our solver currently does not support the transfer of variables between
solvers— the waves are expected to reach the shore around t = 1000 s, which still is
shorter than the observed time of around t = 540s after the earthquake. However, this
result aligns with the ExaHyPE 1 simulation used in the study [21], where the output
at t = 900 s is shown in Figure 6.15.

In addition to these observations, we analyzed the wave heights and arrival times at
two DART buoys (21418 and 21419) near the Japanese coast from the real-world data
and the ExaHyPE 1 results [22] to further evaluate the performance of the ADER-DG
solver. The comparison shows a higher degree of accuracy than the HLLEM solver:

• Buoy 1:

– Real-world data: t0 ≈ 30 min = 1800 s, h0 ≈ 2 m

– ExaHyPE 1 output: t0 = 1813.8 s, h0 = 1.85232 m

– Solver output: t0 = 1814.062 s, h0 = 2.05 m

• Buoy 2:

– Real-world data: t1 ≈ 90 min = 5400 s, h1 ≈ 0.7 m

– ExaHyPE 1 output: t1 = 5278.8 s, h1 = 0.6368 m

– Solver output: t1 = 5292.048 s, h1 = 0.529 m

The ADER-DG solver closely matches the ExaHyPE 1 simulation’s arrival time at
Buoy 1, with only about 0.26 seconds difference. The simulated wave height is slightly
higher than the observed value, indicating a slight overestimation, but remains within
an acceptable range.

Overall, the limited solver provides results that agree with the real-world data.
The minor discrepancies in the wave height are expected to be caused by not using
a smoothing function over the bathymetry data, as studies like [21] have reported
reduced errors with such smoothing is applied.

39

6. Results

Figure 6.14.: Tōhoku tsunami approaching Soma at t = 900 s displaying h + b in loga-
rithmic scale using the limiting solver.

40

6. Results

Figure 6.15.: Tōhoku tsunami approaching Soma at t = 900 s displaying h + b in loga-
rithmic scale using the limiting solver from ExaHyPE 1 with level 2 having
Gaussian smoothing for the bathymetry data.

41

6. Results

6.2. UM-Bridge with Metropolis-Hastings Markov Chain Monte
Carlo

This section presents the results of the Metropolis-Hastings Markov Chain Monte
Carlo (MHMCMC) algorithm, as implemented in the UM-Bridge interface described
in Chapter 5. As our target function, we use wave heights and arrival times from two
DART buoys (21418 and 21419) provided by the National Data Buoy Center (NDBC)
near the Japanese coast during the 2011 Tōhoku tsunami.

The object is to estimate the tsunami’s initial displacement parameter θ. In each
iteration of the MHMCMC algorithm, a candidate θi is proposed and evaluated using
our forward model to compute the likelihood function. The candidate is accepted or
rejected based on the MHMCMC acceptance criteria, as detailed in Chapter 5.2.4.

Real-world measurements from the two buoys during the 2011 Tōhoku tsunami
define the target distribution. We use a normal distribution N(µ, Σ) for our likelihood
function, where the parameters are given as follows:

µ Σ
h0 1, 85232 0, 1
h1 0, 6368 0, 1
t0 1813, 8 0, 75
t1 5278, 8 0, 75

Table 6.1.: Mean (µ) and variance (Σ) for the normal distribution used in the likelihood
function.

The algorithm, as described in [22] and outlined in Algorithm 8, was executed for
200 iterations, starting from an initial guess of θ0 = (200000 m, 200000 m).

Figure 6.16 shows the progression of the guessed θi points throughout the iterations
of the UQ algorithm. Figure 6.17 depicts the convergence of the MHMCMC algo-
rithm, illustrating how the average of the guessed points approach the actual initial
displacement parameter θ for the tsunami.

The progression of the θi values throughout the MHMCMC iterations is promising.
Figure 8 shows that the guessed θi points gradually converge to values closer to the
initial parameter. The algorithm appears to converge towards a positive displacement
value for θ, rather than the initially reported value from the paper [22].

This deviation is attributed to several factors impacting the accuracy of the output
function y. Specifically, as detailed in Section 6.1.2, issues such as the decreased mesh
depth leading to larger cells, resulting in bigger time steps, and the use of non-smoothed
bathymetry data introduce noise into the simulations. These factors contribute to

42

6. Results

discrepancies between the estimated and the reported values of θ. Despite these
challenges, the results indicate that the MHMCMC method effectively approximates
the initial displacement, though with some variation.

It is also worth noting that the results could improve accuracy if the MHMCMC
algorithm were replaced with the more advanced Markov Chain Monte Carlo method
discussed in Chapter 5.2.4. The MLMCMC approach, with its ability to more efficiently
explore the parameter space, would reduce the computational burden and potentially
provide more accurate estimates with fewer samples, thereby addressing some of the
limitations observed with the current MHMCMC method.

Overall, while the exact value of θ differs from the reported value, the results suggest
that the model can identify a positive displacement parameter that is reasonably close
to the expected initial condition, given the limitations of the current simulation setup.

Figure 6.16.: The locations of θi for MHMCMC using the ADER-DG solver with min-
depth 4 after 300 iterations.

43

6. Results

Fi
gu

re
6.

17
.:

M
H

M
C

M
C

co
nv

er
ge

nc
e

of
th

e
av

er
ag

e
va

lu
es

fo
r

X
an

d
Y

w
he

re
θi

=
(X

,Y
)

ov
er

th
e

30
0

it
er

at
io

ns
.

44

7. Conclusion and Future Work

This thesis sets out to implement a reliable solver for shallow water equations using
ExaHyPE 2 and a framework for uncertainty quantification algorithms (UM-Bridge)
applied to tsunami modeling. The key findings show that the developed solver accu-
rately modeled the Tōhoku tsunami, and the UM-Bridge framework was successfully
coupled with the model, allowing the estimation of the initial conditions for the Tōhoku
tsunami.

The results presented in this thesis contribute significantly to the field of tsunami
modeling by allowing utilization of ExaHyPE 2’s scaling capabilities and ability to
handle large-scale simulations in future models. Integrating UM-Bridge enables easier
development of future uncertainty quantification algorithms using other models within
ExaHyPE 2.

However, the study involved several simplifications in tsunami modeling and the
uncertainty quantification algorithms. These simplifications, such as non-smoothed
bathymetry data, may have caused inaccuracies in the model. Additionally, the com-
putationally intensive Metropolis-Hastings Markov Chain Monte Carlo algorithm was
chosen for its simple implementation, but its resource requirements should be consid-
ered in practical applications.

In addition to improving upon the challenges mentioned above, future research could
further develop the UM-Bridge framework extending its applicability to other scenarios
and models as well as implement alternative algorithms, such as the Multilevel Markov
Chain Monte Carlo algorithm discussed in Chapter 5.2.4, to enhance the results.

In conclusion, this thesis marks a significant step forward in tsunami simulations
and uncertainty quantification within ExaHyPE 2. The successful implementation of
a reliable solver for shallow water equations and the integration of the UM-Bridge
framework for uncertainty quantification in tsunami modeling has the potential to
significantly advance the field, providing more accurate and reliable models for tsunami
events.

45

List of Figures

4.1. The split of the cells for the limiting solver with min depth 4. For the
yellow domain HLLEM FV solver is used, while for the blue domain the
ADER-DG solver is used. 16

5.1. The UM-Bridge interface . 17
5.2. The UM-Bridge sequence diagram . 19

6.1. Initial conditions for the dam break scenario 24
6.2. 2D-surface plot over time for dam break scenario with the generic Rie-

mann solver. 25
6.3. 2D-surface plot over time for dam break scenario with the FWave solver. 26
6.4. 2D-surface plot over time for dam break scenario with the HLLEM solver. 27
6.5. 2D-surface plot over time for dam break scenario with the ADER-DG

solver. 28
6.6. Line plot of the height along the x-axis comparing results from different

solvers in timesteps t = 0 s and t = 0.1 s. 29
6.7. Line plot of the height along the x-axis comparing results from different

solvers in timesteps t = 0.5 s and t = 1.0 s. 30
6.8. Line plot of the absolute value of momentum in the x-direction along the

x-axis comparing results from different solvers in timesteps t = 0 s and
t = 0.1 s. 31

6.9. Line plot of the absolute value of momentum in the x-direction along the
x-axis comparing results from different solvers in timesteps t = 0.5 s and
t = 1.0 s. 32

6.10. Initial conditions of Tōhoku tsunami displaying h + b in logarithmic scale. 34
6.11. Tōhoku tsunami approaching Soma at t = 1607 s displaying h + b in

logarithmic scale using the FWave solver with TSR factor of 0.4. 35
6.12. Artifacts appearing in the simulation around t = 3000 s using the FWave

solver. 36
6.13. Tōhoku tsunami approaching Soma at t = 1607 s displaying h + b in

logarithmic scale using the HLLEM solver. 38
6.14. Tōhoku tsunami approaching Soma at t = 900 s displaying h + b in

logarithmic scale using the limiting solver. 40

46

List of Figures

6.15. Tōhoku tsunami approaching Soma at t = 900 s displaying h + b in
logarithmic scale using the limiting solver from ExaHyPE 1 with level 2
having Gaussian smoothing for the bathymetry data. 41

6.16. The locations of θi for MHMCMC using the ADER-DG solver with
min-depth 4 after 300 iterations. 43

6.17. MHMCMC convergence of the average values for X and Y where θi =

(X, Y) over the 300 iterations. 44

47

List of Tables

6.1. Mean (µ) and variance (Σ) for the normal distribution used in the likeli-
hood function. 42

48

Code listings

A.1. Initial Dambreak Scenario. 53
A.2. Flux for FV and ADER-DG Solvers. 54
A.3. Eigenvalues for FV Solvers. 55
A.4. Max eigenvalue for ADER-DG Solver. 55
A.5. NCPs for ADER-DG Solver . 56

B.1. Server for UM-Bridge . 57
B.2. Client for UM-Bridge . 59

49

Bibliography

[1] J. Adler and S. Kurbiel. “Markov Chain Monte Carlo.” In: WiSt - Wirtschaftswis-
senschaftliches Studium 44.5 (2015), pp. 238–245. issn: 0340-1650.

[2] D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. “A Wave Propaga-
tion Method for Conservation Laws and Balance Laws with Spatially Varying
Flux Functions.” In: SIAM Journal on Scientific Computing 24.3 (2003), pp. 955–
978. doi: 10.1137/S106482750139738X. eprint: https://doi.org/10.1137/
S106482750139738X.

[3] F. Benkhaldoun and M. Seaïd. “A simple finite volume method for the shallow
water equations.” In: Journal of Computational and Applied Mathematics 234.1 (2010),
pp. 58–72. issn: 0377-0427. doi: https://doi.org/10.1016/j.cam.2009.12.005.

[4] M. Dashti and A. M. Stuart. “The Bayesian Approach To Inverse Problems.” In:
(2013).

[5] M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. “A unified framework for
the construction of one-step finite volume and discontinuous Galerkin schemes on
unstructured meshes.” In: Journal of Computational Physics 227.18 (2008), pp. 8209–
8253. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2008.05.025.

[6] B. Einfeldt, C. Munz, P. Roe, and B. Sjögreen. “On Godunov-type methods near
low densities.” In: Journal of Computational Physics 92.2 (1991), pp. 273–295. issn:
0021-9991. doi: https://doi.org/10.1016/0021-9991(91)90211-3.

[7] K. S. Erduran, V. Kutija, and C. J. M. Hewett. “Performance of finite volume
solutions to the shallow water equations with shock-capturing schemes.” In:
International Journal for Numerical Methods in Fluids 40.10 (2002), pp. 1237–1273.
doi: https://doi.org/10.1002/fld.402. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/fld.402.

[8] L. C. Evans. Partial Differential Equations. American Mathematical Society, 1983.

[9] U. Gomez, G. B. Gadeschi, and T. Weinzierl. GPU Offloading in ExaHyPE Through
C++ Standard Algorithms. 2023. arXiv: 2302.09005 [cs.MS].

[10] J. S. Hesthaven and T. Warburton. Nodal Discontinuous Galerkin Methods: Algorithms,
Analysis, and Applications. 1st. Springer Publishing Company, Incorporated, 2007.
isbn: 0387720650.

50

https://doi.org/10.1137/S106482750139738X
https://doi.org/10.1137/S106482750139738X
https://doi.org/10.1137/S106482750139738X
https://doi.org/https://doi.org/10.1016/j.cam.2009.12.005
https://doi.org/https://doi.org/10.1016/j.jcp.2008.05.025
https://doi.org/https://doi.org/10.1016/0021-9991(91)90211-3
https://doi.org/https://doi.org/10.1002/fld.402
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.402
https://onlinelibrary.wiley.com/doi/pdf/10.1002/fld.402
https://arxiv.org/abs/2302.09005

Bibliography

[11] K.-R. Koch. “Monte Carlo methods.” In: GEM - International Journal on Geomathe-
matics 9.1 (2018), pp. 117–143.

[12] C. Kühbacher. Shallow Water Derivation and Applications. 2009. url: https://
wwwold.mathematik.tu-dortmund.de/lsiii/cms/papers/Kuehbacher2009.pdf
(visited on 08/03/2024).

[13] R. J. LeVeque, D. L. George, and M. J. Berger. “Tsunami modelling with adaptively
refined finite volume methods.” In: Acta Numerica 20 (2011), pp. 211–289. doi:
10.1017/S0962492911000043.

[14] C. M. Loi, H. Bockhorst, and T. Weinzierl. SYCL compute kernels for ExaHyPE. 2023.
arXiv: 2306.16731 [cs.MS].

[15] National Data Buoy Center. NDBC: National Data Buoy Center. https://www.ndbc.
noaa.gov/. Accessed: 2024-08-10. 2024.

[16] Z. Niu, A.-A. Gabriel, L. Seelinger, and H. Igel. Modeling and Quantifying Parameter
Uncertainty of Co-seismic Non-classical Nonlinearity in Rocks. 2023. arXiv: 2306.04197
[physics.geo-ph].

[17] L. Rannabauer, M. Dumbser, and M. Bader. “ADER-DG with a-posteriori finite-
volume limiting to simulate tsunamis in a parallel adaptive mesh refinement
framework.” In: Computers Fluids 173 (2018), pp. 299–306. issn: 0045-7930. doi:
https://doi.org/10.1016/j.compfluid.2018.01.031.

[18] A. Reinarz, D. E. Charrier, M. Bader, L. Bovard, M. Dumbser, K. Duru, F. Fambri,
A.-A. Gabriel, J.-M. Gallard, S. Köppel, L. Krenz, L. Rannabauer, L. Rezzolla,
P. Samfass, M. Tavelli, and T. Weinzierl. “ExaHyPE: An engine for parallel dy-
namically adaptive simulations of wave problems.” In: Computer Physics Commu-
nications 254 (2020), p. 107251. issn: 0010-4655. doi: https://doi.org/10.1016/
j.cpc.2020.107251.

[19] H. Schulz, G. B. Gadeschi, O. Rudyy, and T. Weinzierl. “Task inefficiency patterns
for a wave equation solver.” In: CoRR abs/2105.12739 (2021). arXiv: 2105.12739.

[20] L. Seelinger, V. Cheng-Seelinger, A. Davis, M. Parno, and A. Reinarz. “UM-
Bridge: Uncertainty quantification and modeling bridge.” In: Journal of Open
Source Software 8.83 (2023), p. 4748. doi: 10.21105/joss.04748.

[21] L. Seelinger, A. Reinarz, M. B. Lykkegaard, R. Akers, A. M. A. Alghamdi, D.
Aristoff, W. Bangerth, J. Bénézech, M. Diez, K. Frey, J. D. Jakeman, J. S. Jørgensen,
K.-T. Kim, M. Martinelli, M. Parno, R. Pellegrini, N. Petra, N. A. B. Riis, K. Rosen-
feld, A. Serani, L. Tamellini, U. Villa, T. J. Dodwell, and R. Scheichl. Democratizing
Uncertainty Quantification. 2024. arXiv: 2402.13768 [cs.MS].

51

https://wwwold.mathematik.tu-dortmund.de/lsiii/cms/papers/Kuehbacher2009.pdf
https://wwwold.mathematik.tu-dortmund.de/lsiii/cms/papers/Kuehbacher2009.pdf
https://doi.org/10.1017/S0962492911000043
https://arxiv.org/abs/2306.16731
https://www.ndbc.noaa.gov/
https://www.ndbc.noaa.gov/
https://arxiv.org/abs/2306.04197
https://arxiv.org/abs/2306.04197
https://doi.org/https://doi.org/10.1016/j.compfluid.2018.01.031
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107251
https://doi.org/https://doi.org/10.1016/j.cpc.2020.107251
https://arxiv.org/abs/2105.12739
https://doi.org/10.21105/joss.04748
https://arxiv.org/abs/2402.13768

Bibliography

[22] L. Seelinger, A. Reinarz, L. Rannabauer, M. Bader, P. Bastian, and R. Scheichl.
High Performance Uncertainty Quantification with Parallelized Multilevel Markov Chain
Monte Carlo. 2021. arXiv: 2107.14552 [cs.MS].

[23] E. Toro. “Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practi-
cal Introduction.” In: Jan. 2009. doi: 10.1007/b79761.

[24] M.-C. Trinh and T. Mukhopadhyay. “Semi-analytical atomic-level uncertainty
quantification for the elastic properties of 2D materials.” In: Materials Today Nano
15 (2021), p. 100126. issn: 2588-8420. doi: https://doi.org/10.1016/j.mtnano.
2021.100126.

[25] T. Weinzierl. “The Peano software—parallel, automaton-based, dynamically adap-
tive grid traversals.” In: ACM Transactions on Mathematical Software 45.2 (2019),
p. 14.

[26] M. Wille, T. Weinzierl, G. Brito Gadeschi, and M. Bader. “Efficient GPU Offloading
with OpenMP for a Hyperbolic Finite Volume Solver on Dynamically Adaptive
Meshes.” In: High Performance Computing. Ed. by A. Bhatele, J. Hammond, M.
Baboulin, and C. Kruse. Cham: Springer Nature Switzerland, 2023, pp. 65–85.
isbn: 978-3-031-32041-5.

[27] L. Yan and L. Guo. “Stochastic Collocation Algorithms Using l_1-Minimization
for Bayesian Solution of Inverse Problems.” In: SIAM Journal on Scientific Com-
puting 37.3 (2015), A1410–A1435. doi: 10.1137/140965144. eprint: https://doi.
org/10.1137/140965144.

52

https://arxiv.org/abs/2107.14552
https://doi.org/10.1007/b79761
https://doi.org/https://doi.org/10.1016/j.mtnano.2021.100126
https://doi.org/https://doi.org/10.1016/j.mtnano.2021.100126
https://doi.org/10.1137/140965144
https://doi.org/10.1137/140965144
https://doi.org/10.1137/140965144

A. Implementation of SWE in ExaHyPE 2

This appendix details the implementation of the shallow water equations (SWE) appli-
cation in ExaHyPE 2. The SWE application has one main script - swe.py- and various
scenario scripts such as radial-dam-break/radial_dam_break.py in their respective
directories. These scenario scripts modify the configuration settings of swe.py to tailor
the simulations to specific conditions.

Scenario Script:
Each scenario script sets up the initial and boundary conditions defined in their

respective SWE.cpp file. Below is an example of how the initial conditions for a radial
dam break scenario are defined:

Listing A.1: Initial Dambreak Scenario.
1

2 void applications::exahype2::swe::SWE::initialCondition(
3 double* __restrict__ Q,
4 const ::tarch::la::Vector<Dimensions, double>& x,
5 const ::tarch::la::Vector<Dimensions, double>& h,
6 bool gridIsConstructed
7) {
8 for (int i = 0; i < NumberOfUnknowns + NumberOfAuxiliaryVariables; i++) {
9 Q[i] = 0.0;

10 }
11

12 const double domainSizeHalfX = DomainSize[0] / 2.0;
13 const double domainSizeHalfY = DomainSize[1] / 2.0;
14 const double distanceFromOrigin = sqrt(
15 (x[0] - domainSizeHalfX) * (x[0] - domainSizeHalfX)
16 + (x[1] - domainSizeHalfY) * (x[1] - domainSizeHalfY)
17);
18 Q[s::h] = distanceFromOrigin <= DAM_RADIUS
19 ? INITIAL_WATER_HEIGHT_INSIDE_DAM
20 : INITIAL_WATER_HEIGHT_OUTSIDE_DAM;
21 }

This function initializes the water height, momentums and bathymetry of the cells in
the domain.

53

A. Implementation of SWE in ExaHyPE 2

Flux Implementation for the Solvers:
The following code snippets demonstrate how the fluxes are computed for both FV

and ADER-DG solvers.

Listing A.2: Flux for FV and ADER-DG Solvers.
1

2 void applications::exahype2::swe::flux(
3 const double* __restrict__ Q,
4 const tarch::la::Vector<Dimensions, double>& x,
5 const tarch::la::Vector<Dimensions, double>& h,
6 double t,
7 double dt,
8 int normal,
9 double* __restrict__ F

10) {
11 using s = VariableShortcuts
12 double ih = 1.0 / std::max(Q[0], 1e-2);
13

14 F[0] = Q[1 + normal];
15 F[1] = Q[1 + normal] * Q[1] * ih;
16 F[2] = Q[1 + normal] * Q[2] * ih;
17 F[3] = 0.0;
18

19 }
20 }

54

A. Implementation of SWE in ExaHyPE 2

Eigenvalue Implementation for the Solvers:
The following code snippets show how the eigenvalues are calculated for both FV

and ADER-DG solvers:

Listing A.3: Eigenvalues for FV Solvers.
1

2 void applications::exahype2::swe::eigenvalues(
3 const double* __restrict__ Q,
4 const tarch::la::Vector<Dimensions, double>& x,
5 const tarch::la::Vector<Dimensions, double>& h,
6 double t,
7 double dt,
8 int normal,
9 double* __restrict__ L

10) {
11 using s = VariableShortcuts
12 L[0] = u_n + c;
13 L[1] = u_n - c;
14 L[2] = u_n;
15

16 }

Listing A.4: Max eigenvalue for ADER-DG Solver.
1

2 double applications::exahype2::swe::maxEigenvalue(
3 const double* __restrict__ Q,
4 const tarch::la::Vector<Dimensions, double>& x,
5 const tarch::la::Vector<Dimensions, double>& h,
6 double t,
7 double dt,
8 int normal
9) {

10 const double u = Q[1 + normal] / std::max(Q[0], 1e-2);
11 const double c = std::sqrt(grav * std::max(Q[0], 1e-2));
12

13 return std::max(std::abs(u + c), std::abs(u - c));
14 }

55

A. Implementation of SWE in ExaHyPE 2

Non-Conservative Product Implementation for the ADER-DG Solver:
This snippet shows how the non-conservative products for the ADER-DG solver are

calculated:

Listing A.5: NCPs for ADER-DG Solver
1

2

3 void ::applications::exahype2::swe::AbstractaderSolver::nonconservativeProduct(
4 const double*__restrict__ Q,
5 const double*__restrict__ deltaQ,
6 const tarch::la::Vector<Dimensions, double> &faceCentre,
7 const tarch::la::Vector<Dimensions, double> &volumeH,
8 double t,
9 double dt,

10 int normal,
11 double*__restrict__ BTimesDeltaQ)
12 {
13 for (int i = 0; i < NumberOfUnknowns + NumberOfAuxiliaryVariables; i++) {
14 BTimesDeltaQ[i] = 0.0;
15 }
16 BTimesDeltaQ[normal + 1] = grav * std::max(Q[0], 1e-2) * (deltaQ[0] + deltaQ

[3]);
17

18 }

56

B. Implementation of UM-Bridge in
ExaHyPE 2

The UM-Bridge framework is used to couple the SWE solver with uncertainty quantifi-
cation algorithms, enabling the estimation of initial conditions based on observed data.
Below are snippets of the server and client implementations.

Server Implementation:
The server script defines a TsunamiModel that runs the SWE solver and returns the

output y = G(θ) explained in more detail in Chapter 5.

Listing B.1: Server for UM-Bridge
1 class TsunamiModel(umbridge.Model):
2 def __call__(self, parameters, config):
3 application_name = "ExaHyPE2-SWE-LimitingGlobalAdaptive-Release"
4 input_data = "%f\n%f\n%f\n%f" % (parameters[0][0], parameters[0][1],

parameters[0][0], parameters[0][1])
5 run(["./" + application_name], input=input_data.encode(), # Provide

input data as bytes)
6 operating_directory = "./solution"
7 # read values from csv file
8 csv_frame = pd.concat([pd.read_csv(csv_file, skipinitialspace=True,

header=0, names=["n1", "n2", "t", "x1", "x2", "h", "hu", "hv", "b"])
for csv_file in glob("tracers/"+"*.csv")], ignore_index=True)

9 print("Reading finished, now formatting dataframe.")
10 csv_frame[’coordinates’] = csv_frame.apply(lambda row: (row[’x1’], row[’

x2’]), axis=1)
11 csv_frame = csv_frame.drop(["x1", "x2", "n1", "n2"], axis=1)
12 csv_frame = csv_frame.iloc[csv_frame.groupby([’coordinates’])[’h’].

idxmax()]
13 # return output vector
14 output = []
15 for _, row in csv_frame.iterrows():
16 output.append(row[’t’])
17 output.append(row[’h’] + row[’b’])
18 print("Output: " + str(output))
19 return [output]

57

B. Implementation of UM-Bridge in ExaHyPE 2

20 model = TsunamiModel()
21 umbridge.serve_models([model], 4242)

58

B. Implementation of UM-Bridge in ExaHyPE 2

Client Implementation:
The client script connects to the server using HTTP to send input parameters and get

model output.

Listing B.2: Client for UM-Bridge
1 model = umbridge.HTTPModel("http://0.0.0.0:4242", "forward")
2 model.get_input_sizes(config)
3 model.get_output_sizes(config)
4 desired_output = [[1813.8, 1.85232, 5278.8, 0.6368]]
5 print(desired_output)
6 input_x = 200000
7 input_y = 200000
8 output = model([[input_x, input_y]], config)
9 #Implementation of the chosen algorithm

59

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Partial Differential Equations
	Shallow Water Equations
	Inverse Problems
	Uncertainty Quantification

	Related Work
	Peano 4
	ExaHyPE 2

	Implementation of the Shallow Water Equations in ExaHyPE 2
	Finite Volume Method
	Generic Riemann Solver
	Custom Riemann Solvers

	ADER-DG
	Limiting
	Particles

	UM-Bridge in ExaHyPE 2
	UM-Bridge
	Monte Carlo Algorithms
	Monte Carlo
	Markov Chain Monte Carlo
	Metropolis Hastings Markov Chain Monte Carlo
	Multilevel Markov Chain Monte Carlo

	Results
	Evaluation of the Solvers
	Radial Dam Break Scenario
	Tōhoku Tsunami

	UM-Bridge with Metropolis-Hastings Markov Chain Monte Carlo

	Conclusion and Future Work
	List of Figures
	List of Tables
	Code listings
	Bibliography
	Implementation of SWE in ExaHyPE 2
	Implementation of UM-Bridge in ExaHyPE 2

