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Abstract

The viability of modern human civilization is incumbent on our ability to harness energy to fulfill
various needs. Breaking away from millennia of reliance on carbonaceous energy sources is crucial
to avoid anthropogenic global warming. Decarbonization is a gradual transition to renewable energy
sources, which are essentially emissions-free in their operation phase. The intermittency of power
generation from renewable energy sources inevitably requires flexibility in the energy system - especially
in the electricity grid. Energy storage is an indispensable flexibility measure to achieve high renewable
energy penetration and its effective integration. Electricity is the most versatile energy vector, making
electrical energy storage an important part of the solution. Lithium-ion Battery Energy Storage
System (BESS) technology is the forerunner among commercialized energy storage technologies. It
is imperative that the carbon footprint of this technology and its decarbonization potential across
all its lifecycle phases be quantifiable and known. In this thesis, a comprehensive and consistent
mathematical framework to quantify the carbon footprint of energy storage applications is developed.
Open-source python-based simulation programs Energy System Network (ESN) and Simulation of
Stationary Energy Storage Systems (SimSES) have been developed and co-developed in this thesis
to implement this framework. This framework enables the quantification of the carbon footprint of
energy storage applications, the efficient allocation of energy storage capacity, and its emissions-optimal
operation, among other functions. This is demonstrated through the case studies performed in this
thesis.

Kurzfassung

Die Lebensfähigkeit der modernen Zivilisation hängt von unserer Fähigkeit ab, Energie zu nutzen. Um
die anthropogene globale Erwärmung zu vermeiden, ist es entscheidend, von kohlenstoffhaltigen En-
ergiequellen abzurücken. Der Übergang zu erneuerbaren, emissionsfreien Energiequellen ist ein schrit-
tweiser Prozess. Aufgrund der Unregelmäßigkeit der erneuerbaren Stromerzeugung ist Flexibilität im
Energiesystem, insbesondere im Stromnetz, notwendig. Energiespeicherung ist entscheidend für die
Integration und Nutzung erneuerbarer Energien. Die elektrische Energiespeicherung, insbesondere die
Lithium-Ionen-Batteriesysteme (BESS), spielt eine zentrale Rolle. Es ist wichtig, den CO2-Fußabdruck
dieser Technologie und ihr Dekarbonisierungspotenzial zu kennen. Diese Arbeit entwickelt ein math-
ematisches Rahmenwerk zur Quantifizierung des CO2-Fußabdrucks von Energiespeicheranwendungen.
Die Open-Source-Simulationsprogramme Energy System Network (ESN) und Simulation of Station-
ary Energy Storage Systems (SimSES) wurden hierfür entwickelt. Dieses Rahmenwerk ermöglicht die
Quantifizierung des CO2-Fußabdrucks, die effiziente Allokation von Speicherkapazitäten und deren
emissionsoptimierten Betrieb, wie die Fallstudien in dieser Arbeit zeigen.
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1 Introduction

1.1 Motivation

Energy is the basis of modern human civilization, enabling humans to alter their environments to
suit their needs and counter adversity. The ever-increasing sophistication and efficiency in harnessing
energy from an increasingly complex variety of sources have all tightened human control over energy
flow. Human civilization has progressed from being limited by the capabilities of human and animal
muscle effort to unleashing chemical energy locked up in carbonaceous energy sources. The mainstay
of the energy supply system remains chemical energy from carbonaceous fossil fuels. Energy modeling
studies conducted by the International Energy Agency forecast peak fossil fuel consumption in 2030
[1]. Combustion of carbonaceous fuels releases reaction products such as Carbon Dioxide (CO2) and
acidic oxides of sulfur and nitrogen into the atmosphere. Grave environmental problems, such as global
warming, sea level rise, extreme weather events, and acidification, are attributed to the presence of
these substances in the atmosphere [2]. The 2015 Paris Agreement reached at the United Nations
Climate Change Conference held in Paris, France, stipulates stringent action from member states of
the UN to mitigate and sharply cut down on greenhouse gas (GHG) emissions to limit the average
global temperature rise to 2°C relative to pre-industrial times by the turn of the century in 2100 [3].
Global GHG emissions growth has slowed in the last decade despite a higher rate of global economic
growth. The remaining carbon budget for anthropogenic CO2 emissions to limit global warming to
1.5, 1.7, and 2 °C is estimated to be around 275, 625, and 1150 gigatons, respectively [4].

Electricity is the most versatile energy vector of the energy system. The 21st century has witnessed
an ever-accelerating global transition to renewable energy sources, with each year in the last 22 years
setting a new record in annual renewable capacity additions. In 2023, renewable capacity additions
jumped nearly 50% to 510 GW [5]. At the Climate Change Conference 2023 held in Dubai, United
Arab Emirates, more than 130 national governments agreed to collaborate to triple the global installed
renewable energy capacity to over 11 000 GW by 2030 [6]. With the advent of cost-competitive elec-
tricity produced by fluctuating renewable energy sources such as Photovoltaic Solar (PV) solar and
wind turbines, the economic hurdles in the way of large-scale adoption of these technologies are set
to gradually disappear [7–9]. Renewable energy sources can directly decarbonize the electricity sec-
tor, reducing the reliance on fossil-fuel-based conventional electricity generation. The electrification of
other sectors of the energy system promises to extend the decarbonization of the electricity sector to
other applications, resulting in a major shift of the energy demand from other sectors to the electricity
grid. Furthermore, there is an increasing strain on electricity transmission systems worldwide due to
an ever-increasing number of consumers with a rising per capita consumption [10].

As power generation from renewable energy sources such as PV solar and wind turbines is intermittent
and often difficult to predict with a high degree of accuracy, the power fluctuations introduce further
instability into the grid [11, 12]. A very large proportion of the nameplate capacity, represented by PV
solar generators, goes offline after sunset, leaving the deficit to be fulfilled by wind turbines, conven-
tional generators, and other grid participants. Often, a substantial amount of energy is curtailed, i.e.,
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1 Introduction

not supplied to the grid to prevent oversupply [5]. Hence, mere en-masse replacement of conventional
generators with renewable generators is not the solution, as power is not available on tap and is sub-
ject to meteorological conditions. This compels energy system operators to continue relying on reserve
conventional generation capacity to smooth out the fluctuations and supply energy in periods of lull
and ensure that the delicate balance between power generation and demand is maintained at all in-
stants of time [10]. A variety of low-carbon flexibility options are required to smooth out the mismatch
between load and demand at all times. Effective and interconnected transmission networks with suffi-
cient capacity, limited bottlenecks, and smart networking technologies to enable efficient energy flows
are also a part of the solution. Demand-side measures to incentivize consumers to react to the power
generation rather than vice-versa also contribute to greater flexibility. Modern power plants running
on carbon-neutral carbonaceous fuels and hydrogen also have a role to play. High ramp rates, good
part-load efficiencies, and low response times are necessary to complement renewable energy sources.
Signs of inflexibility in the power system are amply visible today - these include difficulty in balanc-
ing the demand and supply, higher than necessary curtailments of renewable energy generation, price
volatility in the energy markets, and negative market prices [13]. Energy storage is an indispensable
flexibility measure and is slated to play a pivotal role in stabilizing the grid in the upcoming times
[14].

Electricity is an energy form without an inherent storage possibility. Storing electrical energy relies on
several broad categories of energy conversion and storage technologies, such as thermal, mechanical,
chemical, electrochemical, electrostatic, and electromagnetic systems. With the right set of converters,
electrical energy can be converted and stored in one of the forms of energy that can be stored. Storing
electrical energy in an electrochemical system is relatively straightforward and efficient as it requires
few auxiliary systems. In addition, these systems are also relatively good at retaining the stored energy
in a standby state under standard operating conditions [15]. Lithium-ion battery technology is the
leading electrochemical storage technology today owing to its relatively high round-trip efficiency, high
energy and power densities, as well as superior lifetime performance [16, 17]. Stationary lithium-ion
BESSs are a reliable solution in integrating renewable energy sources in the electricity grid and provide
greater flexibility to maintain grid stability [18, 19]. Stationary BESSs can provide a number of vital
ancillary services to the electricity supply system, such as - frequency control, voltage control, load
balancing, and peak shaving, among others [16, 20, 21]. These advantages mean that battery storage
was the fastest-growing energy technology in the power sector in 2023. With nearly 42 GW of added
capacity globally, a 100% growth in deployed volumes year-on-year was observed in 2023. To achieve
the lofty target of tripling renewable capacity by 2030, as agreed at the Climate Change Conference
2023, stationary BESS capacity must increase roughly sevenfold in the same period [22].

Owing to the same set of advantages that makes lithium-ion battery technology a forerunner for
stationary BESSs, the technology is also a forerunner in the decarbonization and electrification of the
mobility sector [22]. All types of Electric Vehicles (EVs) on the electrification spectrum, ranging from
plug-in hybrids to fully electric EVs, rely on high-performance lithium-ion batteries as a/the source of
motive energy. Global stocks of EVs crossed 40 million in 2023, with 14 million added in 2023 alone,
representing a 35% year-on-year increase and a sixfold increase over 2018 sales volumes. This represents
nearly one out of five new cars sold globally in 2023 [23]. The impending electrification of the mobility
sector as part of the energy transition also introduces its own challenges. The first one pertains to the
shifting of energy demand from the oil and gas sector to the electricity grid. At the same time, the
second is related to the handling of the expected volumes of decommissioned EV traction batteries [24,
25]. Li-ion batteries undergo degradation over time and usage. This manifests itself in the form of two

2



1.2 Thesis scope and outline

visible phenomena at the system level - capacity fade, which refers to the permanent loss in charge
capacity of electric vehicle batteries, and power fade, which refers to the decrease in generated output
power due to an increase in cell internal resistance [26]. However, these battery packs can still be
utilized for less-demanding ’second-life’ stationary energy storage applications, where subpar energy
and power densities are not the central design considerations [27, 28]. A bibliometric study of highly
cited research publications on the topic of grid-connected lithium-ion BESSs found that the most
consequential directions for future research included performance improvements, cost optimization,
mitigation of grid instability, and the investigation of End-of-Life (EOL) scenarios [29].

A key implication of the preceding discussion is that it is crucial to quantify and ascertain the extent
to which energy storage systems aid in the decarbonization process of the energy system, enabling us
to stay within the remaining carbon budget. This need embodies the central motivation for this work.
This work studies the lifecycle carbon footprint of lithium-ion BESSs as the pre-eminent energy storage
technology. A systematic mathematical framework has been developed due to a paucity of coherent
and consistent methodologies to quantify the lifetime carbon footprint of energy storage systems in
general. Through a diverse set of case studies on stationary BESS applications, the capabilities and
significance of this methodology are demonstrated. The developed framework and associated metrics
can just as well be applied to other energy storage technologies.

1.2 Thesis scope and outline

This publication-based thesis comprises nine chapters, which touch upon various aspects of the mod-
eling and evaluation of the carbon footprint of stationary lithium-ion BESSs. In total, six research
articles have been included in this thesis, of which five are part of the main body of the manuscript,
while one is placed in the appendix for ready reference. Figure 1.1 graphically depicts the structure of
this thesis while indicating the main topics dealt with in each of the chapters.

Chapter 2 presents the fundamental theoretical concepts that the later chapters build upon. This
includes a general description of lithium-ion BESSs and the evaluation methodologies used to describe
their performance. Furthermore, the chapter discusses the idea of second-life batteries and looks at
typical stationary BESS applications. Chapter 3 discusses some aspects of the methodology employed
in this work to model battery systems (section 3.1) and energy systems (section 3.2). It also introduces
the two main simulation programs (SimSES and ESN) used in the creation of the case studies presented
in this thesis.

Chapter 4 presents the research article titled Topology and Efficiency Analysis of Utility-Scale Battery
Energy Storage Systems. This chapter presents the findings of simulative investigations on the factors
that influence the efficiency of utility-scale BESSs. These factors include the application, i.e., the load
profile, the power electronics topology, and the battery parameters. The BESS applications illustrated
here are industrial peak shaving and frequency regulation.

Chapter 5 makes up the central aspect of this thesis and encompasses the research article titled
Quantifying the carbon footprint of energy storage applications with an energy system simulation
framework - Energy System Network. This article introduces ESN, the open-source energy system
simulation program that has been instrumental in conducting the studies discussed in this thesis. Two
accompanying case studies demonstrate the procedure to obtain the carbon footprints for the chosen
applications - energy arbitrage and home energy systems.
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Chapter 6 comprises the research article titled The carbon footprint of island grids with lithium-ion
battery systems: An analysis based on levelized emissions of energy supply. This chapter presents a
methodology to ascertain the effect of and the effectiveness of energy storage integration on the carbon
footprint of isolated energy systems. To this end, two novel new metrics are introduced, Levelized
Emissions of Energy Supply (LEES), and R - the reduction in emissions per additional unit of energy
storage.

Chapter 7 consists of the research article High-power electric vehicle charging: Low-carbon grid inte-
gration pathways with stationary lithium-ion battery systems and renewable generation. This article
explores the carbon footprint of battery-assisted high-power charging stations for EVs. A practical
new state variable for BESSs, the State of Carbon Intensity (SOCI), is introduced in this chapter.
The role of the energy management strategy in reducing the carbon footprint of the localized energy
system is also explored.

Chapter 8 comprises the research article titled The Lifetime Carbon Footprint of Lithium-Ion Battery
Systems in Exemplary Applications. This article unearths the major factors influencing the carbon
footprints for three potential lifecycle pathways for lithium-ion batteries - stationary BESS, EV bat-
teries, and second-life batteries. The carbon footprint of repurposed batteries is also examined in this
article.

Chapter 9 sums up the findings of this thesis and concludes with a discussion on a wide array of
connected potential research directions that could build upon and branch off from the work presented
in this thesis.

Battery Energy Storage System (BESS): Components and Lifecycle
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Figure 1.1: Outline of this thesis. Chapters 2 and 3 (on the left) provide context and theoretical
background for the publication-based chapters (on the right).
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2 Theoretical background

This chapter introduces the fundamentals of BESSs and the prevalent performance evaluation method-
ologies. Section 2.1 presents a general description of BESSs, which includes a discussion of the major
components in a BESS and battery degradation. This is followed by a discussion on some useful
technical quantities relevant to the contents of the subsequent sections and chapters. Section 2.2 dis-
cusses techno-economic and techno-environmental performance evaluation methodologies for BESSs.
The topic of discussion moves on to battery repurposing and second-life batteries (SLBs). The salient
aspects of this battery usage concept are discussed in section 2.3. Section 2.4 provides the reader with
an overview of typical stationary BESS applications.

2.1 Battery energy storage systems

Lithium-ion batteries offer high energy and power densities, thus enabling a wide variety of energy stor-
age applications wherein volume and weight are the predominant constraints [30]. These applications
include EVs and portable electronic devices, and now increasingly stationary BESSs [31]. Lithium-ion
batteries generally have a longer cycle life relative to other rechargeable battery technologies, enabling
them to undergo a large number of charge-discharge cycles before experiencing significant capacity
degradation [32]. These batteries also exhibit very low self-discharge rates, leading to excellent charge
retention over longer periods when not in use [33]. Lithium-ion battery cells operate at higher voltage
ranges as compared to rechargeable batteries with aqueous electrolytes. Higher voltage ranges are ad-
vantageous for certain applications where energy density, power density, and efficiency are crucial [34].
This technology is also highly energetically efficient, with relatively low energy losses during charge
and discharge cycles. Lithium-ion batteries can be charged and discharged at high current rates. This
rate capability is essential for applications requiring fast charging or discharging, such as in EVs and
certain consumer electronics [32, 35]. Lithium-ion batteries are completely maintenance-free over their
lifespan. Safety is critical to lithium-ion battery technology, and manufacturers implement various
safety features to prevent issues such as thermal runaway or short-circuit [36].

A cell is the smallest possible indivisible unit of a battery. The cell represents a redox system that
generates a voltage across its terminals due to the redox reaction taking place within it [37]. Batteries
can be classified as primary or secondary, depending on whether the dominant redox reaction can be
reversed by passing an external electrical current in the opposite direction. The redox reaction in a
secondary cell can be reversed; these cells are therefore termed rechargeable cells. Some prominent
examples of secondary cells include lead-acid, nickel-cadmium, nickel metal hydride, and lithium-ion
batteries [38]. A lithium-ion cell is a special type of secondary cell wherein no chemical conversion of the
materials participating in the redox reaction occurs. The redox reaction taking place, in this case, is an
intercalation mechanism that shuttles lithium ions between the lattice structures of an anode material
and a cathode material [36]. Common anode materials include graphite, silicon, or a blend of both [39].
Cathode materials used today are primarily inorganic mixed metal oxides or phosphates of lithium with
transition metals [40]. Depending on the exact anode and cathode materials, several lithium-ion battery
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chemistries have been successfully commercialized in the three decades since the invention of this
battery type. The three most commercially successful cathode materials are lithium nickel manganese
cobalt oxides (LiNixMnyCo1−x−yO2), lithium nickel cobalt aluminium oxides (LiNixCoyAlzO2, with
x + y + z = 1), and lithium metal phosphates (LiMPO4, where M is commonly iron (Fe), manganese
(Mn), or a blend of these metals) [40, 41]. The most common geometrical cell formats are cylindrical,
pouch, and hard-case prismatic. Each of these three cell form factors offers various advantages and
some accompanying disadvantages. System designers must identify a suitable cell format that can
meet their requirements [42].

The case studies presented in this study work primarily with Lithium Iron Phosphate (LFP) batteries
due to their wide range of advantages and suitability for stationary applications [43, 44].

2.1.1 Components of a Battery Energy Storage System (BESS)

BESSs used in stationary applications consist of a number of sub-systems [45, 46]. The exact form
and capabilities of the various components vary to some extent based on the specific characteristics
and requirements of the application. The following subsystems are typically installed in a BESS, and
the functions of these sub-systems are described in the subsequent paragraphs. Figure 2.1 exhibits the
typical components of a BESS.

• Battery (racks, modules, cells)
• Power electronics
• Energy management system
• Battery management system
• Thermal management system including Heating, Ventilation, Air Conditioning (HVAC)
• Enclosure/Housing

EMS

Rack BMS
HVAC

Module

Cell

Rack

Enclosure/Housing

AC/DC Converters

DC/DC Converters

Transformers
Grid

Figure 2.1: Schematic diagram of a stationary BESS depicting its components.
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Battery: The battery in a BESS comprises multiple racks connected in series and/or parallel. Each
rack consists of several modules connected in series and/or parallel. Each module, in turn, comprises
many individual cells connected in series/parallel. The actual connection architecture of each module
and rack depends on the target voltage level and power capability, among other considerations. Each
rack also houses the Battery Management System (BMS), cabling, cooling, and venting required for
the modules [47, 48]. A fresh battery pack inevitably suffers from intrinsic cell-to-cell parameter
variations. Consequently, module-to-module parameter variations originate from deviations in the
cell fabrication and assembly processes [49–51]. Such variations are further aggravated due to several
extrinsic operational factors such as local temperature gradients inside a battery pack, deviations in
current distribution, cycle depths, and contact resistances, which cause a further heterogeneous non-
uniform degradation [49, 52]. In this thesis, the topology of the battery is inferred within the simulation
models from the system requirements to enable an improved emulation of the battery characteristics.
For simplicity and due to simulation constraints, the cell-to-cell parameter variations are disregarded
in this work. All cells are assumed to behave identically throughout their service lives.

Power electronics: The power conversion system, which includes the power electronics, serves as
the bidirectional interface between the grid and the battery and is indispensable in managing the
flow of electrical energy between the battery and the grid. The power electronics convert the Direct
Current (DC) from the battery into Alternating Current (AC) for the grid and vice versa. On the
Alternating Current (AC) side, they maintain the voltage and frequency the grid requires. On the
Direct Current (DC) side, they adapt to the battery voltage across its voltage range [53]. The exact
topology to achieve the requisite power conversion in a specific application is determined with a suitable
combination of AC/DC and DC/DC converters. The design process considers the load characteristics
and other requirements of the application to arrive at an efficient and cost-effective configuration [54,
55].

Energy management system: The Energy Management System (EMS) is a top-level controller acting
as the information interface between the BESS and the energy system. An EMS monitors and manages
the operation of the BESS while tracking its energy content and determines when the battery charges
or discharges. The EMS relies on specific algorithms to determine the scheduling of the BESS for a
particular application. These algorithms often use forecasts and real-time data for generation and load
power. This data is often augmented with other data streams, such as energy prices and grid frequency,
if required for decision-making. These algorithms use rule-based or optimization-based strategies to
determine power targets and operation schedules for BESSs. Irrespective of the type of strategy used,
the EMS operation is guided by the realization of either financial, technical, or other hybrid targets
[56, 57].

Battery management system: The BMS is one of the key enablers of the widespread adoption of
lithium-ion battery technology. The BMS ensures safe battery operation by enforcing safety limits on
voltage, current, and temperature values. It measures and, where necessary, computes or estimates
battery parameters such as the current, voltage, temperature, the State of Charge (SOC), and the
State of Health (SOH). The BMS is responsible for data acquisition and data logging. An indispensable
function is balancing the sub-units within each module or each pack/rack in the system to prevent the
parameters from drifting apart and affecting system performance [58–60].
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Thermal management: Thermal management of lithium-ion battery systems during operation is
crucial for both safety and overall performance. Lithium-ion batteries must be maintained within their
optimal temperature ranges to achieve a longer lifespan. The cooling/heating system aims to keep the
batteries within the specified safe operation temperature ranges. Excessive heating of the batteries
can lead to accelerated capacity and power fade and, at worst, thermal runaway and fires/explosions.
Cooling systems are used to cool the components in warm climates and to counteract the heat evolution
in the components during operation. On the other hand, operation at very low temperatures, especially
during charging, can cause lithium plating within the batteries. Heating systems are, therefore, also
required to maintain the systems within the optimal temperature range. The Thermal Management
System (TMS) controls the operation of the cooling system in accordance with inputs from the BMS
and the EMS. Both passive and active thermal management systems are used in commercial systems
today. Primary examples of passive thermal management methods include passive convection and
phase-change materials. Examples of active thermal management methods include forced air convection
and liquid-based systems [61–64]. In the present work, air-cooling is employed to bring about convective
heat transfer, with a simplified model used to emulate the functioning of the HVAC.

Enclosure/Housing: The housing shields the sensitive components in the BESS, including the battery
racks, power electronics, and other electronic components, from adverse environmental conditions. The
standard shipping container is a widespread housing option and ensures efficient and safe operation for
large-scale BESSs. These containers are weather-resistant and equipped with heating/cooling systems
to ensure climate control and protect the batteries and other components from snow, rain, and extreme
temperatures. Additionally, the containers are modular, highly scalable, and suitable for marine, rail,
and road transport, often making this type of housing the preferred option to house BESS components
[47, 65–67]. In the present work, the standard 20 ft. and 40 ft. shipping containers are used as the
enclosure for the BESS.

All the aforementioned BESS components are modeled and simulated with the software program
Simulation of Stationary Energy Storage Systems (SimSES), which has been discussed in greater
detail in chapter 3.

2.1.2 Battery degradation and lifetime

Lithium-ion batteries experience a deterioration in their functionality over their service lifetimes due to
a number of side reactions and degradation mechanisms. Some of these side reactions and degradation
mechanisms are active at all times, including during rest periods, while others occur during cell opera-
tion (charging or discharging). The degradation mechanisms are largely classified into two degradation
modes, based on the impact they have on the cell - Loss of Lithium Inventory (LLI) and Loss of Active
Material (LAM) [68]. Degradation mechanisms that cause LLI lead to the consumption of lithium ions
in parasitic reactions, rendering them incapable of participating in the primary intercalation process.
These include Solid Electrolyte Interphase (SEI) layer growth, lithium plating, and electrode particle
cracking with electrical isolation. Degradation mechanisms that lead to LAM include particle cracking
with loss of electrical contact, surface film formation, and loss of lithium intercalation sites due to
other structural disordering. These degradation modes cause a discernible capacity and power fade,
with LLI primarily responsible for capacity fade and LAM contributing to both capacity and power
fade [26].

Lithium-ion battery degradation is a crucial factor in lifetime estimation, which is a central aspect of
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techno-economic and techno-environmental analyses of BESSs. Several types of degradation models
are available in the literature spanning all battery modeling scales - from the material/electrode level
to the pack/system level [69]. At the material/electrode level, the so-called pseudo-2D (p2D) models
and the single particle models (SPM) are often used to model cell degradation [68]. These models are
computationally intensive and not suitable for simulating battery systems consisting of hundreds or
thousands of individual cells spanning large time horizons [70]. Cell-level degradation models employ
an Equivalent Circuit Model (ECM) approach with time-variant elements. These models shift their
gaze from the electrochemical phenomena taking place inside the cells to the measurable electrical
quantities such as voltage, impedance, and current at the cell terminals [69].

Semi-empirical cell degradation models are typically parameterized with extensive cell capacity and
resistance measurements gathered from extensive degradation experiments. In most models, the total
degradation is categorized into calendric and cyclic degradation. Underpinning these models is the
assumption that the contributions of the calendric and cyclic components are path-independent and
that their superposition yields the total degradation [71–75]. Some studies investigating the validity of
this assumption find that a path dependence on the order of the stress factors indeed exists, thereby
indicating that the superposition assumption is not perfect [76, 77]. A large discrepancy is, however,
not expected. In this work, semi-empirical cell degradation models developed by Naumann et al. for the
LFP lithium-ion cell chemistry have been used in the various case studies [72, 73]. The superposition
of calendric and cyclic aging is considered a valid assumption, and the degradation is considered to
be path-independent. Figure 2.2 depicts the two overarching degradation mechanisms and the stress
factors contributing to each.

Calendric Cyclic

Degradation

Elapsed
Time

Average
SOC

Temperature Number of
Cycles

Current
Rate

Cycle
Depth

Figure 2.2: Overview of the most prominent operating conditions and factors influencing the rate of
cell degradation - both calendric and cyclic.
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2.1.3 Technical quantities

This subsection presents the relevant technical quantities required to model and evaluate the perfor-
mance of BESSs. Some of these quantities are related to the battery system configuration and are fixed
at the outset. Other quantities describe the state of the system during operation and are dynamic in
nature.

Rated power: The rated power (Pr) of a lithium-ion BESS is the value of power that can be drawn
continuously from the battery without leading to any unexpected degradation or failure. This is
computed as the product of the rated current capability (Ir) and the nominal voltage (Vn) of the
battery (eq. 2.1) [78].

Pr = Ir · Vn (2.1)

Energy capacity: The nominal or rated energy capacity (En) of the battery system at the Beginning-
of-Life (BOL) is the amount of energy that can be drawn out of the battery under standard operating
conditions. This is given by the product of the nominal charge capacity (Qn) of the battery at BOL
and the nominal voltage, Vn (eq. 2.2). The actual energy capacity of the battery at time t, Et

n,
decreases with the actual charge capacity (Qt

n) due to degradation [78].

En = Vn ·Qn (2.2)

Energy-to-power ratio: The Energy-to-Power Ratio (EPR) is the ratio of the nominal energy capacity
(En) to the rated power, Pr. This quantity essentially indicates the discharge duration at rated power.
System configurations with larger Energy-to-Power Ratio (EPR) values are chosen if longer discharge
durations are necessary to fulfill the requirements of an application. In some cases, the reciprocal of
the EPR, termed as the Power-to-Energy Ratio (PER), is also used to convey information about the
charge/discharge characteristics of the BESS (eq. 2.3) [79, 80].

EPR =
1

PER
=

En

Pr
(2.3)

Normalized values of rated power and the energy capacity with respect to the system mass are termed
the specific power and specific energy or the gravimetric power and energy densities, respectively.
If the normalization of the rated power and the energy capacity is carried out with respect to the
system volume, the resulting quantities are referred to as the volumetric energy and volumetric power
densities, respectively [81]. Considering these quantities is especially crucial in automotive and other
mobile and portable applications, as mass and volume constraints influence the design process to a
greater extent than in stationary applications.

C-rate: The C-rate is the ratio of the current (I) at which a battery is charged or discharged to its
charge capacity, Qt

n (eq. 2.4) [35]. The E-rate is an analogous concept to the C-rate and describes the
rate at which energy is transferred to or from a battery system relative to its energy capacity. The
E-rate is the ratio of the power at which a battery is charged or discharged (P ) to its energy capacity,
Et

n (eq. 2.5) [82]. During the service period, the effective values of these quantities increase due to

10



2.1 Battery energy storage systems

capacity degradation.

C − rate =
I

Qt
n

(2.4)

E − rate =
P

Et
n

(2.5)

Equivalent Full Cycle (EFC): The ratio of the charge throughput in the discharge process to the
charge capacity of the battery represents the number of Equivalent Full Cycles (EFCs). In cases where
the total charge throughput, including both the charge and discharge processes of a cycle, is considered,
twice the charge capacity is used as the denominator in this ratio [83]. EFCs can also be determined in
terms of the energy throughput (eq. 2.6) [82], as a ratio of the discharged energy (Edch) to the energy
capacity, Et

n.

EFC =
Edch

Et
n

(2.6)

Energy efficiencies: The charging and discharging efficiencies for a BESS are based on an expanded
scope to include all the other components present in a BESS. The charging efficiency of a BESS, ηch,
is defined as the ratio of the actual energy stored in the batteries (Est) to the total charging energy
supplied at the system interface, Ech as measured from a given initial state. This value is dynamic
and depends on the individual efficiencies of all components and their part-load characteristics. This
considers energy conversion losses encountered in the batteries themselves, the power electronics, and
the energy consumption of the auxiliary components (eq. 2.7). [84, 85]

ηch =
Est

Ech
(2.7)

The discharging efficiency of a BESS, ηdch, is defined as the ratio of the discharged energy available at
the system interface (Edch) to the actual energy stored in the batteries, Est as measured from a given
initial state. This value is also dynamic and depends on the individual efficiencies of all components
and their part-load characteristics (eq. 2.8). [84, 85]

ηdch =
Edch

Est
(2.8)

The roundtrip efficiency of a BESS, ηrt, is a measure of how efficiently the system can store and retrieve
energy over a complete cycle, i.e. the system has identical initial and final states. It is mathematically
expressed as the ratio of the energy output during discharge (Edch) to the energy input during charging,
Ech (eq. 2.9). [84, 85]

ηrt =
Edch

Ech
= ηch · ηdch (2.9)

Self-discharge rate and Coulombic efficiency: The time rate of reversible natural loss of charge in a
lithium-ion battery as a function of the SOC and temperature is termed as the battery self-discharge
rate. This rate is influenced by various parasitic side reactions that all lead to a loss of stored charge in
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the battery [86]. The self-discharge rates for lithium-ion batteries are generally low [33]. The battery
self-discharge rate is expressed as a percentage of the nominal charge capacity lost per unit of time.
In this thesis, the self-discharge of batteries is assumed to be zero as a simplification. The Coulombic
efficiency indicates the extent of charge conservation within a lithium-ion battery [87]. It is the ratio
of the discharged charge capacity to the charged charge capacity of the battery [88, 89]. In this thesis,
as a simplification, the Coulombic efficiency is considered equal to 1, as lithium-ion batteries exhibit
very high Coulombic efficiencies after the initial formation cycles [90].

The next set of quantities to discuss are the state variables. State variables assume values that vary
with time and describe the state of the system at each point in time. They convey important operation
information about the battery system.

State of Charge (SOC): The SOC of a lithium-ion battery is the ratio of the charge content of the
battery at the present time, Qt, to the present charge capacity of the battery, Qt

n. It is expressed as a
percentage or a ratio (eq. 2.10) [91, 92]. The State of Energy (SOE) for a battery is the ratio of the
energy content of the battery at the present time, Et, to the present energy capacity of the battery,
Et

n. The State of Energy (SOE) is expressed as a percentage or a ratio (eq. 2.11). Since a lithium-
ion battery does not exhibit a constant voltage across its voltage range, equal charge throughput at
different SOC levels does not correspond to an equal energy throughput. Hence, the value of the SOE
is often slightly different from the SOC [91, 92]. Although not identical, the two terms are often used
interchangeably, especially at the system level. In the present work, the SOC indicates the available
fraction of the energy storage capacity at any given time.

SOCt =
Qt

Qt
n

(2.10)

SOEt =
Et

Et
n

(2.11)

Depth of Discharge (DOD): The Depth of Discharge (DOD) for a battery is the ratio of the charge
discharged (Qdch) to the charge capacity of the battery at the present time, Qt

n. It describes the extent
to which a battery has been discharged. While the DOD is often used to describe the state of a battery
at a given point in time, the Depth of Cycle (DOC) is used to describe the cycle depth of the cycles a
BESS is subjected to during operation (eqs. 2.12, 2.13) [82, 83, 93].

DODt =
Qdch

Qt
n

(2.12)

DODt = 1− SOCt (2.13)

State of Health (SOH): The SOH is an indicator of the overall level of degradation witnessed by
the battery leading up to the present time. The most common definition of SOH is based on the ratio
of the charge capacity of the battery at the present time (Qt

n) to the nominal charge capacity at BOL,
Qn. The rise in internal resistance is also used in some definitions of the SOH (eq. 2.14) [91, 92]. This
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thesis uses the capacity-related definition of the SOH in the subsequent chapters.

SOH =
Qt

n

Qn
(2.14)

Other state variables are found in the literature but are not used within the context of this thesis. The
State of Power (SOP) is an indicator of the maximum value of power that the battery can safely charge
or discharge at the present time. It is usually expressed as the product of the voltage at the present
time and the corresponding maximum permissible current under consideration of constraints such as
SOC and temperature [91]. The State of Function (SOF) is a binary quantity that expresses the ability
of the battery to fulfill a particular power request in its current state [94]. The State of Safety (SOS)
is a safety-related state variable that quantifies the safety of a BESS as inversely proportional to the
concept of abuse [95]. In chapter 7, a new state variable, the State of Carbon Intensity (SOCI), is
introduced.

2.2 Battery performance evaluation and metrics

Performance metrics are crucial indicators of the performance of any technology, either for comparison
with other technologies or to assess the extent of fulfillment of core system objectives. Evaluating and
estimating system performance is one of the central objectives behind the modeling and simulation of
battery systems. Furthermore, performance metrics enable system engineers to improve design and
optimize certain aspects. Performance metrics are also valuable tools for identifying future research
direction. The performance evaluation of energy storage systems, which are a part of the larger energy
system, can be carried out on lines similar to the performance evaluation of energy systems [96].

Energy storage systems, like all engineering systems, are expected to perform satisfactorily on three
major heads:

1. Technical
2. Economic
3. Environmental

The ideal aim of technology development is tangible positive developments on all three heads and not
solely technical and economic viability. Until now, an improved environmental footprint has only been
viewed as an optionality, not an obligation - making a worse environmental footprint possible if the
economics were favorable.

Techno-economic is the most prevalent form of performance evaluation for BESSs. Depending on the
nature of the metric, it may also be of interest for system designers to consider not just the absolute
values of some metrics but also the values of these metrics relative to other conditions and system
configurations. While performing performance evaluation studies, it is also important to consider the
influence of the choice of system boundaries for the evaluation [97]. Performance indicators and metrics
are usually highly dependent on the system configuration and on the specific application. In the fol-
lowing subsections, techno-economic and techno-environmental performance evaluation methodologies
are discussed. This work focuses on the techno-environmental performance evaluation of BESSs.
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2.2.1 Techno-economic evaluation

Techno-economic evaluation is crucial in the project-planning phase of a BESSs, as the business case
for a BESS hinges on a favorable assessment of the technical and economic performance in the consid-
ered use case. Conducting techno-economic evaluations for various competing solutions helps in the
decision-making process to arrive at a suitable system technology and configuration. Techno-economic
performance evaluation metrics for BESSs encompass a wide range of indicators. Some of these are
discussed in the following paragraphs.

The Net Present Value (NPV) is the difference between the present values of all cash inflows and
cash outflows over the service life of the BESS. This metric is useful in determining the profitability
of a BESS. A positive value indicates the profitability for the project [98]. The Internal Rate of
Return (IRR) is the value of the interest rate that makes the NPV of the project exactly equal to
zero. This criterion is useful in conducting feasibility studies for projects and determining the extent
of their economic viability [98]. The Return on Investment (ROI) is the ratio of the net return,
which includes the revenue, avoided costs, energy costs, and maintenance costs, to the total capital
expenditure, which includes the initial investment and the capital requirements for replacements over
the operation period. [99] The Levelized Cost of Storage (LCOS) is a concise metric based on the
Levelized Cost of Energy (LCOE) metric used to study the techno-economic characteristics of power
generation components. The metric represents the per-unit cost of energy storage over the entire
lifetime of the technology, considering all capital costs, operation and maintenance costs, and residual
value at EOL [100]. Alternatively, the LCOS can be defined as the fictitious average electricity price
fetched by each unit of discharged energy over the lifetime of the storage system to break even financially
[101].

Other techno-economic evaluation metrics have also been used in the published literature to ascertain
the economic viability of energy storage projects operating in various applications. These include the
payback period, the discounted payback period, the net present cost (NPC), the equivalent annual cost
(EAC), and the levelized cost of energy (LCOE) [98]. The LCOE metric has also been extended to
include storage in addition to the generation technology [102]. The levelized cost of delivery (LCOD)
is a variant of LCOE, which is also closely related to the LCOS [103].

2.2.2 Techno-environmental evaluation

The techno-environmental performance evaluation of lithium-ion BESSs involves assessing the technical
and environmental aspects of these systems throughout their life cycle. This evaluation is key to un-
derstanding the overall environmental impact, carbon footprint, and resource efficiency of lithium-ion
battery technology [104]. Techno-environmental evaluation is not as widespread as its techno-economic
counterpart. Studies spanning across the entire value chain are necessary for informed decision-making,
but there is a growing discussion in the scientific community about the carbon footprint of battery
systems over their entire lifecycle [105]. Life Cycle Analysis (LCA) provides a holistic view of the
environmental footprint of lithium-ion batteries and helps identify areas for improvement in terms of
emissions reduction and resource efficiency. Understanding the energy intensity of production helps
identify opportunities for efficiency improvements and the use of renewable energy sources in manu-
facturing. Efficiency improvements determine how effectively the battery can store and release energy,
impacting its overall effectiveness in real-world applications [106, 107]. Proper EOL management is
essential for minimizing the environmental impact and maximizing the recovery of valuable materials
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for reuse [108]. The environmental impacts across all stages of the battery life cycle, including raw
material extraction, production, use, and EOL should be considered [108]. Transportation-related
emissions also contribute to the overall environmental footprint of lithium-ion batteries. In this work,
the scope of the techno-environmental performance evaluation is restricted to one impact category -
the Global Warming Potential (GWP) footprint or the carbon footprint.

Battery production

The battery production process is a complex chain of sub-processes, which includes the extraction
of raw materials, synthesis of active materials, cell manufacturing, and pack assembly. Cell manu-
facturing encompasses a further set of sub-processes, such as electrode production, cell production,
and cell conditioning. Electrode production includes the mixing of active materials with conductive
carbon, binders, additives, and various aqueous/non-aqueous solvents. Mixing is followed by coating
the active materials on their respective current collectors, before drying to vaporize the solvents. The
coated current collector sheets are then calendered, slit, and subjected to a final drying process. Cell
production takes place in a highly controlled atmosphere in a dry room. It consists of electrode cut-
ting, stacking with separators, adding contacts, enclosing in a sturdy material, and filling cells with
an electrolyte. The produced cell is subsequently subjected to conditioning in which cell formation,
aging, and requisite quality control occur. Cell manufacturing is followed by pack assembly, wherein
cells are connected in modules and packs with a BMS to monitor cell operation and safety. [109] As
all the sub-processes involved in battery production are highly energy-intensive processes, a certain
embodied energy is associated with the battery being produced. The carbon footprint of the embodied
energy attributed to the production phase can, therefore, be attributed to the production phase of the
battery.

Battery operation

The operation phase of a battery system is the longest phase in the lifecycle of a battery. No direct
environmental impacts are anticipated during the battery operation phase. This phase is nonetheless
relevant for determining the carbon footprint or the GWP of the entire lifecycle. The presence of
a battery system in the energy system introduces additional energy losses during energy conversion.
The carbon footprint associated with the lost energy is attributed to the operation phase of the
battery. Battery characteristics influence this evaluation to a large extent. These characteristics
include charging/discharging efficiencies and cyclic/calendric degradation rate. The source of the
charging energy and, by implication, its carbon intensity both influence the carbon footprint of the
operation phase. [110–112]

Battery EOL

The final phase of the battery lifecycle also plays a role in the lifecycle carbon footprint. Three
recycling processes for lithium-ion batteries are currently widely discussed in the literature. These
are pyrometallurgy, hydrometallurgy, and direct recycling. Depending on the exact process, some
pretreatment is always required. The batteries are deep discharged to prevent uncontrolled energy
release due to short-circuiting during crushing or shredding. The black mass is separated from other
components in the shredded mix. Pyrometallurgy is the most technically mature process, albeit with
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low aluminum and lithium recovery rates. Hydrometallurgy and direct recycling can recover aluminum
and lithium from the battery mass, although the technology readiness level is still not as high for these
processes. If the purity level of the recovered material is comparable to that of the virgin material,
a closed-loop circular process approach can be employed in the production process. In this case, an
environmental credit is associated with recycling, as the recycled product effectively replaces fresh raw
material extraction and other associated processes. This essentially reduces the carbon footprint of
the production process. [109]

Thus, the lifetime GWP or carbon footprint of a battery across its lifecycle comprises the GWP
footprints of each of the individual lifecycle phases.

System boundaries and functional unit

The system boundaries dictate which physical components, processes, and lifecycle phases are included
within the scope of the evaluation. Cradle-to-gate evaluations in reviewed studies include the environ-
mental impacts associated with the cells/battery systems from the extraction of raw materials (cradle)
to the point when it leaves the factory gate [112]. This analysis considers all stages of production,
including raw material extraction, transportation, manufacturing, and packaging, but excludes the
product use phase and EOL disposal. In contrast, several studies also perform cradle-to-grave eval-
uations to evaluate the environmental impacts associated with cells/battery systems throughout the
entire lifecycle, from raw material extraction (cradle) to disposal or EOL (grave) [106, 111]. This
evaluation considers all lifecycle stages, including raw material acquisition, manufacturing, distribu-
tion, use, and EOL. If closed-loop recycling is the EOL process of choices, the recovered material can
be reintroduced back into the production phase (cradle). This essentially closes the loop, enabling
an evaluation possibility for circular product lifecycle approaches [113]. The term ’cradle-to-cradle’
evaluation has gained popularity in cases where closed-loop recycling is evaluated [114]. Some studies
perform evaluations that leave out certain lifecycle phases - such as the use phase or the EOL phase,
focusing on the manufacturing and other phases [107, 109, 115]. This thesis considers cradle-to-grave
evaluations, with recycling credits, wherever applicable, to consider circularity. The importance of
selecting a suitable functional unit for conducting techno-environmental evaluations and its impact on
the results is recognized in the community [116]. Diverse effects and influencing factors can be captured
and subsequently normalized down the unit of service or product represented by the functional unit.
This step enhances the comparability of alternatives possible by boiling down the information to the
functional unit. Selecting a functional unit for a service, product, or device intrinsically depends on
the system boundaries and the temporal boundaries of the evaluation [117].

The environmental impact per usable/nominal storage capacity is a functional unit that captures
the performance of the batteries in terms of specific energy and the environmental footprints of the
manufacturing and recycling processes [109, 110, 112]. The environmental impact per unit of lifetime
energy delivered/stored/output is a more comprehensive metric, as it conveys the effect of the calendar
and cycle lives, as well as the efficiency of the battery [106, 107, 111, 112]. The Energy Stored on Energy
Invested (ESOI) is defined as the ratio of electrical energy stored by the storage device over its lifetime
to the amount of primary embodied energy (cradle-to-gate) required to produce the device. This metric
is useful in determining which storage technologies are the most durable and energetically cheapest to
manufacture. The Levelized Embodied Energy is defined as the ratio of the cradle-to-gate embodied
energy to the total energy stored by the system during a pre-defined levelization period at a set capacity
factor. This quantity is also equal to the reciprocal of the ESOI [118]. The Lifecycle Emissions (LCE)
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denotes the amount of lifecycle emissions to store 1 kWh of electricity in battery systems. The LCE
consists of two contributions - emissions due to the manufacturing of the battery systems and emissions
due to the losses during charging and discharging [107]. The Energy Payback Time (EPBT) is defined
as the time in years during which the energy storage system will have discharged energy equal to the
embodied energy required to produce it [119].

Other metrics include an extended variant of the Energy Returned on Energy Invested (EROI) frame-
work, which includes energy storage systems in the calculations [120]. Thus, identifying the carbon
footprint of batteries is crucial for understanding their contribution to global warming and for making
informed decisions about the environmental impact of energy storage solutions. Evaluating the role
of lithium-ion batteries in the overall energy system helps optimize their deployment and maximize
benefits for grid stability and renewable energy integration.

The state-of-the-art reveals that GWP footprint analyses and evaluations for energy systems lack gran-
ularity on both temporal and component aspects across all lifecycle phases. The operation phase of
the energy storage system, in particular, is analyzed using imprecise lumped parameters. The tempo-
ral variations in the operating conditions, such as the carbon intensity of the electricity grid and the
variations in efficiency, are often not considered. There is also a dearth of quantities and metrics to
describe and capture all relevant information, thereby hindering more detailed and rigorous analyses.
This thesis develops a detailed analytical and mathematical framework for calculating the GWP foot-
prints of all components of an energy system across all lifecycle phases, with a detailed breakdown of
the emissions into several emissions categories (Chapter 5). To this end, some useful quantities and
metrics are introduced, which enhance the informational content of an emissions analysis by assigning
meaning and names to involved quantities. In Chapter 6, a techno-environmental evaluation metric,
Levelized Emissions of Energy Supply (LEES), is introduced. In Chapter 7, a new state variable,
the State of Carbon Intensity (SOCI), is introduced and defined. This new state variable is key to
quantifying the carbon footprint of the stored energy, and in calculating the carbon footprint of the
battery operation phase.

2.3 Second-life batteries

EV traction batteries gradually degrade with time and use in service and may no longer meet the
performance requirements for powering an EV due to capacity fade and power capability fade [121].
A fading capacity leads to a reduced operational range of the vehicle, causing range anxiety for the
owner [122, 123]. A decreasing power capability directly affects the acceleration/regenerative braking
capability of the vehicle [122–124]. Such batteries are widely deemed inadequate for automotive service
and are taken out of service once their capacities have degraded below a specified threshold (typically
70 - 80% of the original value) [17, 45, 122, 125]. Automotive battery repurposing refers to giving
a second life to used batteries originally designed for automotive applications [126]. Repurposing
decommissioned automotive batteries helps prolong the use phase of the battery lifecycle before needing
to be recycled. These batteries are especially attractive for stationary energy storage applications where
the reduced specific energy and power values are not as critical to the operation [127].

An optimal reuse of automotive batteries in stationary applications requires repurposing of the de-
commissioned battery packs. The packs are then installed in the stationary application either as-is or
after disassembly, sorting, and reassembling at the module or cell level [128]. Theoretically, the full
potential of repurposing/remanufacturing can be tapped if batteries are disassembled to single cells
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and regrouped into battery packs after sorting, based on their current SOH and electrical properties
[129]. This is practically challenging due to the construction methods used and the testing effort
required. Specific sub-systems such as the power electronics, the EMS, the cooling system, and the
housing would most likely need to be replaced to make the automotive batteries suitable for service in
a stationary application. Remanufacturing is another term used in the literature, which is distinctly
different from repurposing [128]. In remanufacturing, only the units limiting the pack performance are
replaced with new or similarly aged units to enhance pack performance to acceptable standard levels
[130].

Installation of second-life batteries in stationary applications is strongly dependent on the battery price
and the duration of operation over which revenue can be generated for these services. As the costs of
new lithium-ion cells have been falling owing to rising volumes, questions have arisen regarding the
economic viability of second-life batteries vis-á-vis new batteries. Studies have shown that these de-
velopments notwithstanding, the economic viability for second-life batteries can be realized in suitable
applications with the help of correct sizing methodologies [27, 45]. Figure 2.3 presents a schematic
depiction of the entire lifecycle of a battery with three application pathways. The repurposing process
for decommissioned automotive batteries used in second-life applications is also depicted.

Battery Production

Automotive Battery
Lifecyle Pathway

Battery Repurposing

Automotive Application

Battery Recycling

Testing Sorting Dis-/ Reassembly

Stationary Application

Additional Components

Cell Module Pack

Stationary Battery
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Second-Life Battery
Lifecyle Pathway

S
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rt

Figure 2.3: Lifecyle of a battery and the three prevalent application pathways - stationary application,
automotive application, and the cascaded second-life pathway.

In chapter 8, the carbon footprint of second-life batteries is investigated compared to solely automotive
or stationary usage.

2.4 Stationary applications

Battery storage applications today include transportation, consumer electronics, stationary systems,
and portable tools, which are highly varied and broad [131–133]. The scope of this thesis restricts itself
primarily to grid-connected and off-grid stationary battery applications. Grid-connected applications
can further be classified as Front-of-the-meter (FTM) or as Behind-the-meter (BTM) applications [134].
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In FTM applications, energy storage systems are typically deployed at the utility or grid level rather
than behind the meter at individual homes or businesses. These systems are integrated into the larger
electricity grid infrastructure and are often used for grid stabilization, peak shaving, renewable energy
integration, and other grid support services [135]. FTM systems are also typically larger than BTM
systems. BTM refers to energy systems or technologies located on the customer’s side of the utility
meter. These systems are installed at residential, commercial, or industrial sites [136, 137]. Stationary
BESSs are also suited to provide grid services at all voltage levels in the electricity grid [138]. In the
following subsections, some of these applications are discussed, and the subsequent chapters related to
each of these applications are indicated.

Peak shaving

Demand peak shaving is an increasingly prevalent BTM service that a BESS is extremely well-placed to
provide due to favorable attributes, such as fast response times, high energy efficiency, and durability
[139–141]. Industrial and commercial electricity consumers with very high intermittent load peaks are
required to pay not just for the amount of energy consumed but also for the maximum power demand
at their sites in their annual or monthly billing cycles [142]. The peak shaving operation is performed
with BESS by discharging stored energy during periods of peak demand in parallel with the grid power,
essentially lowering the power drawn from the grid. The BESS is then charged during idle periods
with relatively low overall site power demands [143]. The operator of the peak shaving BESS can thus
save costs related to the maximum power demand and must only pay for the energy extracted from
the grid at lower values of power [144]. While the motivation for peak shaving is often financial, such
systems can also be used to strengthen grid infrastructure at locations with disproportionately high
intermittent loads, such as electric vehicle (EV) fast-charging stations, or to provide relief to a strained
local distribution grid. This is essentially akin to deferral of investments for grid reinforcement. All
such systems reduce the peak instantaneous power demand that the grid has to fulfill and spread it
over a larger period of time [145].

In chapter 4, the efficiency of a utility-scale BESS providing a peak shaving service at an industrial
site is investigated.

Frequency regulation

Frequency regulation is an ancillary service in the electricity grid that is critical to system stability.
Within the European context, the Frequency Containment Reserve (FCR) is designed to address
sudden and unexpected imbalances between electricity generation and consumption, which can lead to
deviations in the grid frequency. Such imbalances can be caused by unforeseen events such as sudden
changes in demand, unexpected power plant outages, or fluctuations in renewable energy generation.
FCR requires low response times to react to grid frequency deviations but provides participants with
certain degrees of freedom [146, 147]. The full activation power must be attained within 30 seconds
to prevent further disruptions and to maintain grid operation within an acceptable frequency range
[148]. Upward reserves are activated when there is an unexpected increase in demand or a decrease
in generation, leading to a frequency drop. Downward reserves are activated when there is a sudden
decrease in demand or an increase in generation, causing a frequency rise. While adhering to the
operation guidelines, FCR services can be provided by a variety of resources, including conventional
power plants, energy storage systems, demand response programs, and other flexible grid participants.
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The FCR product operates dynamically, with frequent activation and deactivation of reserves as the
grid experiences fluctuations in supply and demand [149]. BESSs offer low response times, typically
in the milliseconds to seconds range. The provision of frequency containment reserve with BESSs is
an integral part of grid management today and helps mitigate the increasingly intermittent nature
of power generation [150, 151]. A minimum permissible energy capacity to power (E/P) ratio is
prescribed to ensure system availability to provide a minimum duration of reserves in both directions,
as prescribed by the ENTSO-E (European Network of Transmission System Operators for Electricity)
[152].

In chapter 4, the efficiency of a utility-scale BESS providing frequency regulation services is inves-
tigated. In chapter 8, the provision of FCR is chosen as an exemplary stationary application to
investigate the carbon footprints of the three possible BESS lifecycle pathways.

Energy arbitrage

Energy arbitrage refers to the practice of buying and storing energy when prices are low and selling it
when prices are high, thereby taking advantage of price differentials [153]. This strategy is commonly
employed with energy storage systems, such as a BESS, due to their relatively high round-trip efficien-
cies and excellent ramp-rate capabilities. Depending on the regulatory environment, energy storage
systems can participate in energy markets, including wholesale and ancillary service markets, to en-
hance revenue through arbitrage. Energy arbitrage relies on identifying and capitalizing on variations
in electricity prices between low-demand (off-peak) and high-demand (peak) periods and determining
an optimal schedule for the BESS, thus making price and demand forecasting capabilities of paramount
importance [154]. The business case for the energy arbitrage application rests largely on favorable en-
ergy efficiency and battery degradation characteristics for the chosen BESS [155]. It is important to
note that any profit earned in every transaction (consisting of buy and sell) is greater than the total
marginal costs incurred during the transaction. These marginal costs cover the energy losses and the
battery cyclic degradation. Incurred costs due to battery calendric degradation and auxiliary system
consumption can be considered fixed costs, as they are present at all times, irrespective of the energy
transactions [156].

In chapter 5, one of the two case studies presented investigates the carbon footprints of two different
variants of energy arbitrage with a BESS.

Residential storage

Residential BESSs and rooftop solar installations are becoming increasingly popular as homeowners
seek to reduce their reliance on traditional grid power, lower energy costs, and contribute to environ-
mental sustainability [157]. The downward price trends for rooftop solar PV systems and lithium-ion
BESSs, coupled with imminent future advancements in battery technology and regulatory support,
are expected to increasingly favor the case for this application [158, 159]. Battery storage enhances
the ability to store excess energy for later use. Proper sizing ensures that the system meets the house-
hold’s energy needs and may allow for excess energy generation that can be stored or fed back to
the grid [160]. Suitable EMS strategies coordinate solar generation, battery storage, and household
consumption to meet the required energy demand while simultaneously maximizing self-consumption
and minimizing battery degradation and the levelized cost of energy (LCOE) [161]. Excess electricity
generated by rooftop solar panels or drawn from the grid during off-peak hours is stored in the battery
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system. Most residential BESS are equipped with power inverters that convert DC electricity from
solar panels or the stored energy in the battery (also DC) into AC electricity, which most homes use.
Smart management systems regulate when the battery charges and discharges based on several factors,
including energy demand, energy prices, and battery health. Systems are often automated to optimize
energy savings and battery life [162]. Storing excess energy generated during peak solar production
times and using it during peak demand to avoid high electricity costs. This allows homeowners with
solar panels to maximize the use of the energy they generate rather than selling it back to the grid
at a lower price than what they would pay to buy it back later. This mechanism makes the value
proposition for residential storage even more attractive, and in the long-term, policy incentives may
become less relevant [163]. Although economically profitable, the environmental benefit with respect
to the carbon footprint warrants a closer look [164].

In chapter 5, one of the two case studies presented investigates the carbon footprints of four distinct
home energy system configurations with and without PV solar generation and battery storage.

Island grid

Island grids are isolated or autonomous energy systems operating independently from larger inter-
connected power systems. They are typically found in remote or off-grid locations without direct
connection to a larger electricity grid. BESSs can fulfill a crucial role in the resilience, stability, and
efficiency of island grids [165, 166]. Island grids rely on local resources for power generation, often
incorporating renewable energy sources such as solar or wind. Energy storage helps balance the inter-
mittent nature of renewables, storing excess energy when generation exceeds demand and supplying
stored energy during periods of low generation. Island grids must maintain stable frequency and volt-
age levels, which can be challenging due to variations in renewable energy output and load fluctuations
[167]. BESSs can offer fast response capabilities for frequency regulation and voltage control, helping
to stabilize the grid during sudden changes in demand or generation. Island grids often face peak
demand periods, and meeting these peaks can be challenging with limited generation capacity [168].
BESSs can be used for peak shaving and discharging stored energy during periods of high demand to
reduce the need for additional generation capacity. BESSs can provide flexibility and controllability,
allowing operators to optimize energy storage strategies based on real-time conditions, load forecasts,
and economic considerations. Proper sizing and configuration of the battery system are essential to
ensure optimal performance, considering the island’s energy demand, renewable generation capacity,
and desired storage duration [169].

In chapter 6, a new techno-environmental performance evaluation methodology is presented based on
the BESS application of the island grid. A new metric Levelized Emissions of Energy Supply (LEES)
is introduced, and the carbon footprint of such systems is discussed.

Battery-assisted electric vehicle charging

A successful ramp-up of the energy transition in the road transport sector hinges not only on the
extent of public charging infrastructure coverage but also on reducing charging times. The availability
of public charging infrastructure within a certain radius from any point is crucial to alleviate range
anxiety, as not all EV users have access to home charging [170]. Low charging times ensure that
longer trips can be completed within their planned schedules. While advances in lithium-ion battery
technology now permit fast charging with high current rates, leading to reduced charging times, this
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solves only the EV side of the puzzle. Several challenges are expected in order to realize broad charging
infrastructure coverage and fast charging with the present electricity grid. The current grid design does
not account for large electric loads in the form of EVs connecting to and disconnecting from the grid at
multiple locations without a pre-notified schedule [171]. As a consequence, not all locations connected
to the electricity grid are designed to handle large fluctuating electric loads [172]. Also, in the absence
of high utilization factors for these locations, grid operators might need to levy large sums in the form
of peak demand charges, making it economically unattractive for charging operators to set up new
installations [173].

A possible solution is battery-assisted high-power charging. Also known as a buffer-storage, this BTM
application involves a stationary BESS installed on-site next to the charging infrastructure [174]. The
BESS is discharged in times of peak EV charging power demand to augment the power capacity of
the grid connection. The BESS is charged in periods of low charging demand when grid capacity is
available in addition to the charging power demand. The BESS is able to successfully meet large peak
loads while avoiding hefty demand charges and deferring grid investments until higher grid utilization
rates can be achieved at that location [175]. The BESS is sized to be able to cover peak charging
power demand with sufficient energy capacity to sustain the requisite discharging power over periods
of peak demand [176].

In chapter 7, the carbon footprint of battery-assisted high-power charging is investigated. The modeling
and simulation of this application are discussed in detail. A novel state variable - the State of Carbon
Intensity (SOCI) is introduced, and the influence of various EMS strategies on the LEES value of the
charging energy supplied to EVs is studied.
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This chapter discusses the modeling techniques and simulation methodologies used to simulate lithium-
ion battery systems within the broader context of energy systems. Section 3.1 presents a short discus-
sion on battery modeling before proceeding on to the specifics of battery simulation with SimSES, an
open-source simulation program for modeling lithium-ion battery systems. The simulation procedure
for lithium-ion battery systems, including modeling second-life batteries with SimSES, is outlined. As
a BESS does not operate in isolation but rather as a part of energy systems, modeling energy systems
is an indispensable step in conducting system-level evaluations. Section 3.2 discusses the central fea-
tures of energy system modeling, followed by a deeper discussion on the modeling procedure in ESN,
an open-source simulation program to model energy systems. This section also presents the compo-
nents of an energy system, followed by a discussion on the simulation procedure and the programmatic
coupling between SimSES and ESN.

3.1 Modeling lithium-ion battery systems

In the domain of battery system simulation, the depth of simulation detail varies significantly based on
the intended application, ranging from extremely detailed electrochemical models to highly simplified
economic analyses. MATLAB, Simulink, Python, OpenModelica, and even spreadsheeting software
offer highly customizable development environments to create battery models that cater to a broad
range of requirements. Some well-known tools discussed in the reviewed literature include Homer,
StorageVET, BLAST, SAM, and PermodAC, which are available to assess various aspects of battery
systems operating in stationary applications. A wide spectrum of modeling approaches points to
diverse simulation requirements, ranging from detailed performance simulations to broader system-
level and economic evaluations. And yet, while these tools individually offer useful capabilities, none
offers a comprehensive and flexible suite of simulation capabilities [177]. The need for a holistic
simulation framework like SimSES and the shortcomings of the prevalent tools are discussed in detail
in the appendix. Section 3.1.1 presents some salient features of the battery system modeling procedure
with SimSES. Section 3.1.2 discusses the simulation setup process, while section 3.1.3 discusses the
simulation of second-life batteries with SimSES.

3.1.1 Battery modeling with Simulation of Stationary Energy Storage Systems
(SimSES)

This section discusses the modeling procedure for a lithium-ion battery system with the open-source
simulation program SimSES1. SimSES offers a holistic energy storage system modeling approach,
which covers all the major components of a BESS described in section 2.1.1. The stationary BESS
applications discussed in section 2.4 are simulated with a SimSES instance running within ESN - an

1 Link to the SimSES Gitlab code repository hosted by LRZ.
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energy system simulation tool (described in section 3.2.1). The following paragraphs discuss specific
aspects of the modeling approach employed within SimSES. A detailed publication introducing SimSES
and its features is presented in the appendix.

Battery model: A parameterized ECM is deployed in SimSES to emulate the electrical-thermal be-
havior of an individual lithium-ion cell. The model consists of a voltage source and a series-connected
internal resistance. The voltage source is based on an Open Circuit Voltage (OCV) curve, which links
the cell voltage to its SOC. The OCV curve and the internal resistance values can be obtained from
detailed characterization tests for each cell type. Physical properties such as the mass, specific heat
capacity, and the surface convection coefficient are obtained from the cell datasheet and literature
sources. Depending on data availability, the OCV and the internal resistance of a cell can be modeled
as functions of temperature, SOC, or other factors such as the SOH. This data is accessed by SimSES
through multidimensional lookup tables, with linear interpolation to obtain the necessary values. The
parallel and series connection topology necessary for the BESS is obtained based on the application
boundary conditions, the individual cell charge capacity, and the nominal voltage. The battery is
modeled on a big-cell modeling approach to avoid the computational complexity and effort of simulta-
neously simulating thousands of cells. The electrical and thermal properties of an individual cell are
scaled up to reflect those of the connected topology. The cell-to-cell variations discussed in section
2.1.1 are not considered further in this thesis, and all cells are considered to be identical. The terminal
voltage at time t, Vt is given by eq. 3.1. V OC represents the OCV. It and Rt represent the current
(signed) and internal resistance values at time t respectively.

Vt = V OC − It ·Rt (3.1)

Power electronics model: AC/DC converters enable the conversion of AC power on the grid side
to DC power on the battery side, and vice-versa. On the other hand, DC/DC converters facilitate
energy conversion between dissimilar DC voltage levels. The power electronics components in SimSES
are modeled with the help of efficiency curves that specify the converter efficiency values at the corre-
sponding load values. This data is obtained from literature sources and manufacturers’ datasheets. By
accounting for the efficiency of power conversion processes, SimSES can estimate the system efficiency
and thermal behavior. Although SimSES offers the possibility of including both AC/DC and DC/DC
converters in a BESS simulation, only AC/DC converters are used for BESS configurations simulated
in this thesis. Eq. 3.2 represents the power calculation at the output (P out

PE ) with respect to the input
(P in

PE) terminals of the power electronics device. ηPE represents the power conversion efficiency as a
function of the load fraction fL.

P out
PE = P in

PE · ηPE(fL) (3.2)

BMS model: The BMS model within SimSES monitors cell operation and if required, enforces limits
on the permissible current. The model operates in conjunction with the ECM and continuously moni-
tors critical cell parameters, ensuring the limits on the allowed charging and discharging C-rate values,
operating temperatures, and available energy are complied with. This functionality is indispensable
for the safe operation and normal degradation of lithium-ion batteries.
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EMS model: The EMS model in SimSES generates power targets for the BESS, based on the require-
ments for the chosen BESS application. SimSES can also receive externally-determined power targets
and operate the BESS in accordance with these. The EMS determines how the storage interacts with
the grid, responds to demand, and optimizes its performance for various applications. SimSES can
implement various operation strategies designed for specific applications or objectives. These strate-
gies can range from basic power following, where the storage system aims to match a predefined power
profile, to more complex strategies like peak shaving, frequency regulation, or optimizing for profit,
such as energy arbitrage. The parameters and rules governing the operation strategy can be tailored
to specific research questions or project requirements.

Housing model: The housing model in SimSES emulates the physical enclosure in which the battery
and associated components are installed. External environmental conditions, such as the ambient
temperature and solar irradiation, significantly influence the efficiency and degradation of the BESS. A
standard shipping container is often used for utility-scale and commercial BESSs due to the associated
advantages such as modularity, scalability, and transportability. The container model in SimSES
includes the insulation properties of the container wall, and its impact on the heat transfer to/from
the ambient environment can also be observed. The housing model allows the simulation results to
reflect seasonal variations and geographical differences in climate, which are critical for designing and
operating a BESS. SimSES offers two container options for utility-scale BESSs - the 20 ft. container
and the 40 ft. container. The physical and thermal characteristics of the container, including its wall
layers and insulation properties, can be customized to reflect different types of enclosures.

Electro-thermal system model: The thermal behavior of the BESS model can also be investigated
with SimSES. The correct system thermal model and housing type combination is coupled with the
electrical simulation based on the simulated scenario. In the basic configuration, the operation of the
BESS can be simulated with an invariable constant battery temperature and no thermal interactions
with the surroundings. Simulating the BESS operation with passive convective heat exchange with
a constant temperature environment is also possible. The components are not subjected to solar
irradiation or other environmental effects. The third configuration enables the simulation of a BESS
installed in one of the two standard shipping container housing types. The container can be subjected
to location-dependent ambient temperature and solar irradiation profiles. The system thermal model
integrates all other thermal components to simulate the heat transfer dynamics within the BESS. This
model solves a system of differential equations to predict the temperatures of the storage technologies,
internal air, and other components after each simulation timestep. It accounts for heat generation
due to losses in energy conversion, heat exchange between components and the environment, and the
HVAC system.

In eq. 3.3, Tbatt is the temperature of the battery unit. mbatt refers to the mass of the battery units,
and cbattp represents its specific heat capacity. P batt

loss is the rate of heat dissipation within the battery
due to losses in the energy conversion process, whereas P batt−ia

conv is the rate of convective heat transfer
from the battery unit to the internal air in the enclosure.

mbatt · cbattp · dTbatt

dt
= P batt

loss − P batt−ia
conv (3.3)
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In eq. 3.4, Tia is the temperature of the internal air in the enclosure. mia refers to the mass of the
internal air, and ciap represents its specific heat capacity. P batt−ia

conv is the convective heat transfer rate
from the battery unit to the internal air in the enclosure, Phvac is the thermal power of the HVAC
system, and P ia−il

conv is the convective heat transfer rate from the internal air to the inner layer of the
housing wall.

mia · ciap · dTia

dt
=

∑
P batt−ia
conv − Phvac − P ia−il

conv (3.4)

The detailed mathematical framework can be found in the appendix, which presents the central pub-
lication introducing SimSES.

3.1.2 Simulating a BESS with SimSES

Setting up a simulation within the SimSES environment begins with the definition of the duration
of the simulation, the timestep, the BESS configuration, the simulation parameters, and the input
data. The config files (.ini) in the project folder serve as the interface to the program. The BESS
configuration includes the type of lithium-ion cell, the power electronics model for AC/DC conversion,
the thermal management system, and other system components. This modular setup allows for a wide
range of possible BESS configurations. The EMS operation strategy plays a pivotal role in dictating
how the storage system interacts with the grid and responds to energy demands. These strategies
can range from built-in strategies within SimSES to custom approaches designed by the user to create
the charge-discharge schedule. The requisite time-series profiles, such as those for the load demand,
renewable generation, and energy prices, can be specified for use in the simulated scenario. After
the configuration step, the simulation can be run. SimSES calculates and stores the various system
states at each simulation step. After the simulation is completed, SimSES runs an analysis of the
simulation results to generate the technical performance evaluations, which provide insights into the
system efficiency and degradation over time, among other metrics.

3.1.3 Modelling second-life batteries with SimSES

Second-life batteries can be simulated in stationary applications with SimSES. The relevant information
pertaining to the state of the second-life batteries can be specified in the config file. One of the
parameters to be specified is the start SOH, which is typically expressed as a fraction and is a measure
of the residual capacity of the battery as it begins its second life. The share of calendric and cyclic
degradation in the already degraded capacity must also be specified to enable the initialization of
the degradation functions. The next important parameter to specify is the increase in the internal
resistance of the battery at the start of its second life compared to its original value. A higher internal
resistance affects the efficiency and heat generation of the battery during operation as compared to
a new battery. The simulation can be started after specifying the system configuration and other
simulation parameters as in any other simulation.
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3.2 Modeling energy systems

As a BESS operates within the confines of an energy system, modeling the energy system is inevitable.
Energy system modeling and simulation is a central aspect of energy engineering that enables decision-
makers to simulate and investigate the dynamics behind the consumption and generation of energy.
Top-down energy system models are top-level and deal with the aggregated aspects of the energy
sectors - energy demand, energy supply, and their relation to macroeconomic aspects of the economy.
Bottom-up energy system models, in contrast, exhibit a high degree of technological detail and do not
consider macroeconomic aspects [178]. The general trend in energy system model development points
to an unmistakable preference for bottom-up optimization-based models, with flexibility in all modeling
aspects - time horizon, temporal, and spatial resolution, being highly sought after [179]. While the
questions energy system modeling attempts to answer have not changed, large energy system models
covering the entire energy system ought to give way to leaner frameworks consisting of agile models
that enable specific questions relating to the changing requirements of today to be answered [180].

Energy system models involve energetic components such as demand, generation, transmission, and
storage. These components are intercoupled through a mathematical framework of governing equations
and constraints to investigate relevant aspects of system behavior through scenario generation and
simulations. The immediate context provided by the energy system in which a BESS operates is crucial
for determining its carbon footprint. Although many energy system modeling tools and simulation
programs exist today, none of them offer detailed modeling and high-resolution capabilities to quantify
the carbon footprint of BESS operating in energy systems. Thus, the necessity for an agile bottom-up
model with flexible modeling aspects was identified to enable specific questions relating to the carbon
footprint of energy storage systems to be addressed [181]. To address this necessity, Energy System
Network (ESN) was developed to enable many research aspects in this thesis to be answered. Chapter 5
presents a detailed literature review on available energy system modeling tools and a deeper discussion
on the rationale for a new energy system simulation program focusing on energy storage.

3.2.1 Energy system modeling with Energy System Network (ESN)

This section discusses the modeling procedure for an energy system with the open-source simulation
program ESN2. Within ESN, an energy system is modeled as an interconnected framework that in-
tegrates various energy system components to simulate and analyze the behavior and performance of
localized energy systems. A particular focus is on their carbon footprint. ESN employs a modular
approach, inspired by the programming approach of SimSES, that allows the simulation of several
energy system configurations.

Energy system: An energy system within ESN is defined as a self-contained simulation unit rep-
resenting a single node that fulfills an energy balance. This conceptualization of an energy system
includes a combination of energy system components, including generation, storage, grid connection,
and load components. These components operate in tandem to ensure the energy supply meets the
specific demands of a particular application or scenario. The energy flows between the components
are managed by an EMS to achieve specific objectives as defined in the operation strategy. Figure 3.1
provides an overview of the energy system components and the EMS.

2 Link to the ESN Gitlab code repository hosted by LRZ.
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Energy System

Generation components Grid components

Storage components

Load components

Energy management

Information

Energy

Figure 3.1: Schematic overview of an energy system with the energy system components and the Energy
Management System (EMS) presiding over their operation. The energy system components
are connected to one another at a common node in the energy system, and an energy balance
must be fulfilled at this node.
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Figure 3.2: Schematic diagram of the Energy Management System (EMS) and its operation principle.
Based on the operation strategy, the EMS generates power targets for all energy system
components.
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Figure 3.3: Schematic diagram of an energy system component, i.e., a generation, grid, storage, or a
load component. Each energy system component receives a power target from the EMS
and attempts to fulfill it within the bounds of its physical limits and other constraints.
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Energy system components: In an energy system, generation components play a central role - pro-
ducing the power to meet the energy demand of a load. Generation technologies include conventional
generators and non-conventional or renewable energy generators. Conventional generators include
thermal power generation technologies such as coal, natural gas, nuclear power plants, and diesel gen-
erators. Renewable sources of power generation include solar, wind, and hydropower plants. Within
ESN, generation components simulate power generation systems, including renewable sources like so-
lar PV and wind turbines. Grid components play a critical role in energy system simulation models
by representing the infrastructure and elements that facilitate the transmission and distribution of
electricity within a power system. Within ESN, grid components represent grid connections or grid
sections that facilitate the import and export of power to and from the larger grid. Storage components
are an integral part of the energy system simulation model, providing the capability to store excess
energy for later use, balance supply and demand, and enhance the overall flexibility and reliability of
the system. Storage components model the characteristics of energy storage systems, such as a BESS.
Load components in ESN represent the electricity demand from various sectors. Load components
approximate power consumers within the energy system, including residential, commercial, or indus-
trial loads, and EV charging demands. They capture the consumption patterns through load profiles.
Figure 3.3 depicts the schematic structure of an energy system component, whereas figure 3.2 depicts
the schematic structure of the EMS.

Detailed handling of the carbon footprints of generation, grid, storage, and load components is a
key feature of ESN. The total carbon footprint attributable to each component over the simulation
period is the sum of the carbon footprints of individual lifecycle phases such as production, operation,
and EOL. The following expressions give the carbon footprint for a generation component over the
simulation period (assuming this is also equal to its service lifetime). εgen is the total carbon footprint
of the generation component over the simulation period. This comprises of the carbon footprints of the
production phase, εgen,prod, the operation phase, εgen,op, and the EOL phase, εgen,EOL. The carbon
footprint attributable to the exported energy (εgen,exp) is subtracted from the total carbon footprint
of the component and allocated to external actors (eq. 3.5).

εgen = εgen,prod + εgen,op + εgen,EOL − εgen,exp (3.5)

The total operation phase emissions, εgen,op, can be calculated as shown in eq. 3.6. Here, CIgent refers
to the carbon intensity of the generated energy before losses at time t and is equal to the combustion
emissions per kWh of electricity for conventional generation components. For generation components
such as the PV solar system and wind turbines, CIgent is zero. P gen,loss

t is the loss power at time t.
∆t is the chosen simulation timestep.

εgen,op =

end∑
t=start

(
CIgent · P gen,loss

t

)
·∆t (3.6)

The following expressions describe the carbon footprint for a grid component over the simulation period
(assuming this is also equal to its service lifetime). The total emissions for the grid component, εgr,
are calculated as the sum of the production phase emissions, εgr,prod, the operation phase emissions,
εgr,op, and the end-of-life emissions, εgr,EOL, minus the emissions attributable to the exported energy,
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εgr,exp (eq. 3.7).

εgr = εgr,prod + εgr,op + εgr,EOL − εgr,exp (3.7)

The operation phase emissions, εgr,op, can be calculated as shown in eq. 3.8. Here, CIgrt refers to the
carbon intensity of the grid energy at time t. P gr,loss

t is the loss power at time t. ∆t is the chosen
simulation timestep.

εgr,op =

end∑
t=start

(
CIgrt · P gr,loss

t

)
·∆t (3.8)

The following expressions give the carbon footprint for a storage component over the simulation period
(assuming this is also equal to its service lifetime). Similar to the calculations presented earlier for
the other components, the total emissions for the storage component, εst, are calculated as the sum
of the production phase emissions, εst,prod, the operation phase emissions, εst,op, and the end-of-life
emissions, εst,EOL, minus the emissions attributable to the exported energy, εst,exp (eq. 3.9).

εst = εst,prod + εst,op + εst,EOL − εst,exp (3.9)

The operation phase emissions, εst,op, can be calculated as shown in eq. 3.10. Here, CIcht refers to the
carbon intensity of the charging energy at time t, which is often equal to the effective carbon intensity
of the energy available in the energy system, CIES

t (eq. 3.11). The State of Carbon Intensity (SOCI) is
a novel state variable introduced specifically to quantify the carbon footprint of the energy stored in a
storage component (eq. 3.12) and is also useful in calculating the value of εst,op. A detailed treatment
of SOCI can be found in chapter 7. P ch,loss

t and P dch,loss
t are the loss powers during the charging and

discharging processes, respectively, at time t. ∆t is the chosen simulation timestep.

εst,op =

end∑
t=start

(
CIcht · P ch,loss

t + SOCIt · P dch,loss
t

)
·∆t (3.10)

CIES
t =

∑m
i=1 P

gen,i
t · CIgen,i

t + CIgrt · P gr
t∑m

i=1 P
gen,i
t + P gr

t

(3.11)

SOCIt+1 =
SOCIt · SOCt +∆SOC · CIcht

SOCt+1
(3.12)

The following expressions give the carbon footprint for a load component over the simulation period.
In contrast to the energy system components presented thus far, the total emissions for the load
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component, εload, are calculated as the sum of the Load Energy Consumption (LEC) emissions, εLEC

and the operation phase emissions, εload,op (eq. 3.13). P load
t is the gross power supplied to the load

component at time t. It comprises the actual power consumed by the load component, P load,c
t , and

the loss power of the load component, P load,loss
t (eq. 3.14).

εload = εLEC + εload,op =

end∑
t=start

(
P load
t · CIES

t

)
·∆t (3.13)

P load
t = P load,c

t + P load,loss
t (3.14)

εLEC and εload,op are calculated as follows with the help of P load,c
t , P load,loss

t , and CIES
t as given in

eq. 3.15 and eq. 3.16. The LEC emissions are those emissions associated with the energy consumed
by the load component.

εLEC =

end∑
t=start

(
P load,c
t · CIES

t

)
·∆t (3.15)

εload,op =

end∑
t=start

(
P load,loss
t · CIES

t

)
·∆t (3.16)

An energy balance among all the components must be satisfied within each energy system at each
timestep. This ensures that the total energy is conserved and accounted for (eq. 3.17). On the left-
hand side of eq. 3.17, P gen,i

t represents the power generated by the ith generation component at time
t, P st,dch,j

t represents the power discharged by the jth storage component at time t, and P gr,imp
t is the

power imported from the grid component at time t. On the right-hand side, P load,k
t represents the

power consumed by the kth load component at time t, P st,ch,j
t represents the charging power of the

jth storage component at time t, and P gr,exp
t is the power exported to the grid component at time t.

l∑
i=1

P gen,i
t +

m∑
j=1

P st,dch,j
t + P gr,imp

t =

n∑
k=1

P load,k
t +

m∑
j=1

P st,ch,j
t + P gr,exp

t (3.17)

Similarly, a CO2 emissions balance also applies to each energy system while considering the correct
system and temporal boundaries for each component. Consequently, CO2 emissions can be allocated to
each component under the respective emissions categories (eq. 3.18). On the left-hand side of eq. 3.18,
CIgrt represents the carbon intensity of the grid component at time t, CIgen,i

t represents the carbon
intensity of the ith generation component at time t, while ηgen,i

t is the efficiency of this generation
component. On the right-hand side, εgr,op

t represents the operation emissions of the grid component at
time t, εgen,op,i

t represents the operation emissions of the ith generation component. εst,op,j
t represents

the operation emissions of the jth storage component, while εLEC,k
t and εload,op,k

t represent the LEC
emissions and the operation emissions respectively of the kth load component.
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P gr,imp
t ·CIgrt +

l∑
i=1

P gen,i
t

ηgen,i
t

CIgen,i
t = εgr,op

t +

l∑
i=1

εgen,op,i
t +

m∑
j=1

εst,op,j
t +

n∑
k=1

(εLEC,k
t +εload,op,k

t ) (3.18)

3.2.2 Simulating an energy system with ESN

Modeling an energy system within the ESN environment is achieved by specifying the desired sim-
ulation configuration through the config files (.ini) in the project folder. The first step is specifying
the general simulation data, including the simulation duration and timestep. Configuring the EMS is
the next step, along with defining several parameters related to the chosen operation strategy. The
user chooses whether to use rule-based or optimization-based strategies for energy management. Rule-
based strategies operate based on predefined rules under certain conditions, while optimization-based
strategies use mathematical optimization to determine power targets for all components. Examples of
rule-based strategies available in ESN include SimpleDeficitCoverage (prioritizes energy system com-
ponents to meet load demand) and SimplePeakShaving (manages peak power demands using storage
components). Examples of optimization-based strategies in ESN include RHOptimization (employs
a rolling horizon optimization problem to minimize emissions) and ArbitrageOptimization (optimizes
the dispatch schedule of BESS for energy arbitrage). The next step is specifying the energy system
components and their parameters within the energy system. Attributes such as the peak generation
power, energy capacity, and peak demand power for all the components are defined in this step. The
next step involves specifying the time-series profiles for generation, load demands, and other variable
attributes like grid carbon intensity. The lifecycle emissions data for each component is configured to
enable comprehensive carbon footprint analysis across the production, operation, and EOL phases.

Subsequently, the simulation can be executed using the specified energy system configuration, energy
management strategy, and simulation setup. ESN simulates and stores the resulting system states at
each timestep. The program analyzes the simulation results once the simulation has concluded. The
system performance can be analyzed using various performance indicators computed by the program.
For detailed user documentation on ESN, readers are urged to check the repository website3, which
includes configured examples with extensive descriptions of the config files. Chapter 5 presents a de-
tailed description of the mathematical framework underpinning ESN and the methodology to quantify
the carbon footprint of all energy system components.

3.2.3 Coupling ESN and SimSES

The integration of the simulation program SimSES (discussed earlier in section 3.1.1) with ESN en-
hances the capability to simulate and analyze the BESS performance within localized energy systems.
The coupling of these two programs leverages the strengths of each to provide a comprehensive sim-
ulation program for the simulation, evaluation, and optimization of energy storage systems and their
interactions with the broader energy system. The coupling allows for the simulation of various scenar-
ios, assessing how different configurations of energy storage systems can meet energy demands, support
renewable energy integration, and minimize carbon emissions in localized energy systems.

SimSES provides an in-depth technical simulation of energy storage systems, primarily lithium-ion
BESSs. Its modular design allows for the flexible configuration of BESSs for a wide range of ap-
3 Link to the ESN Gitlab code repository hosted by LRZ.
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Figure 3.4: Graphical depiction of the integration of ESN and SimSES. ESN interacts and exchanges
information with SimSES via multiple program interfaces. Configuration information,
state information, and results are shared between the programs at each timestep or at
the start/end of a simulation run.

plications. This capability is crucial for understanding the performance, efficiency, and degradation
patterns of the BESS under various operational conditions. SimSES can thus emulate the behavior and
performance of storage systems to a high degree of detail by simulating these technical aspects. ESN
complements SimSES by focusing on the carbon footprint and environmental impact of energy storage
and other components within localized energy systems. It takes a comprehensive view, considering
the operational phase and the production and EOL stages of system components. The detailed CO2

emissions analysis in ESN helps identify strategies to minimize the environmental footprint of energy
storage systems. Figure 3.4 depicts the integration of SimSES and ESN through the program interfaces
that allow the exchange of information.
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systems

A significant portion of the energy losses in a BESS is attributed to conversion losses within the power
electronics and the battery system. There is a need for a deeper understanding of these components.
Some major factors that influence the efficiency include the characteristics of the application in which
these systems are operated, the topology of power electronics, and the specific parameters of the bat-
teries themselves. This study discusses several performance indicators to aid the analysis, such as
system efficiency, temporal and active charge-based utilization ratios, and system availability. These
metrics serve as essential tools for assessing the operational efficiency and behavior of a BESS across
different scenarios. The analysis of two specific grid-related applications — peak shaving and primary
control reserve (PCR) — highlights how the efficiency and performance of a BESS can vary signif-
icantly based on their operation. Peak shaving, characterized by infrequent but high-power energy
requests, contrasts with the frequent, low-power energy demands of PCR. This distinction underlines
the necessity of tailoring the BESS design and operation to suit specific application needs, emphasizing
that a one-size-fits-all approach is insufficient.

The highlights of this article include:

• Application characteristics and their impact on the efficiency of lithium-ion BESSs
• The influence of power electronics topologies and load distribution strategies on the efficiency of

BESSs
• The effect of battery parameters, such as State of Health (SOH) and internal resistance, on the

efficiency and operation of a BESS

It is found that the choice of the power electronics topology and load distribution strategy can sub-
stantially affect the conversion efficiency of BESS, especially in applications characterized by low active
charge-based and high temporal utilization ratios. The findings suggest that the operational strategy
for BESSs must be carefully considered to improve efficiency, especially when incorporating aged bat-
teries, which pose additional challenges due to capacity fade and increased resistance. A pressing need
for holistic system models that can comprehensively account for all components of a BESS is identified.
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Abstract—Energy storage is an important flexibility measure
to stabilize and secure the electrical energy supply system.
Lithium-ion battery energy systems (BESS) are, owing to their
characteristics, uniquely poised to support and augment the
functioning of the energy supply system. It is crucial to identify
and analyze the factors which play a role in their efficient
and effective operation. This paper identifies and analyses three
such major factors - application scenarios, power electronics
with power distribution strategies, and battery parameters which
influence the efficiency of a BESS. The applications analyzed
are primary control reserve and peak shaving. Two Power
electronics topologies and their load distribution strategies are
presented, with their influence on the conversion efficiency being
evaluated subsequently. Two commercial lithium-ion technologies
- a Lithium Iron Phosphate cathode/Graphite anode cell and
a Lithium Nickel Manganese Cobalt Oxide cathode/Graphite
anode cell are also simulated for two states of health (SOH).
The aged cells are considered to possess a capacity equal to 80%
of original nominal capacity and a cell resistance twice that of
the new cells. It is found that the system conversion efficiency
can be greatly improved in applications with low active charge-
based and high temporal utilization ratios by deploying a suitable
power electronics topology and load distribution strategy. For
applications with high active charge-based and low temporal
utilization ratios, the battery resistance and the serial-parallel
combination play an important role.

Index Terms—energy storage, lithium-ion battery, efficiency,
battery energy storage system

I. INTRODUCTION

With the global advent of cost-competitive electricity pro-
duced by fluctuating renewable energy sources such as photo-
voltaic solar and wind turbines [1]–[3], the economic hurdles
in the way of large-scale adoption of these technologies are
set to gradually disappear. At the same time, increasing grid-
penetration ratios pose significant challenges to the mainte-
nance of grid stability and power quality [4], [5]. A variety of
flexibility options will have to be pressed into service to be
able to smooth out the mismatch between load and demand
at all times [6]. Energy storage, being one such flexibility
measure, is slated to play a pivotal role in the stabilization
of the grid in the upcoming times [7].

Stationary Lithium-ion battery energy storage systems
(BESS) are increasingly being seen as a reliable solution to
the challenge posed by the acute requirement of flexibility
measures aiding the grid to maintain its stability. Stationary
BESS can provide a number of vital ancillary services to the
electricity supply system such as - frequency control, voltage

control, load balancing, peak shaving, among others [8]–[11].
Lithium-ion BESS technology is the leading battery energy
storage technology in current times owing to its relatively high
round-trip efficiency, high energy and power density as well
as superior lifetime performance [10], [12].

This paper aims to highlight some of the factors influencing
the efficiency of a stationary BESS. Section II discusses the
components of a modern stationary BESS and the influence of
components on the efficiency of the system. This is followed
by section III, in which definitions of performance indicators
employed in this paper are presented. Section IV-A discusses
the dependence of the efficiency on the kind of service being
provided by a BESS, with a further focus on two grid-related
applications. The section IV-B discusses the influence of the
cells used on the system efficiency, whereas the subsequent
section IV-C investigates the influence of the power electronics
components on the efficiency of the system.

II. STATE-OF-ART

A typical stationary BESS, depicted in fig. 1, generally
comprises of the following sub-components [9], [13]:

1) Battery system:
a) Cell
b) Module
c) Rack

2) Power Electronics
a) DC/DC converter(s)
b) AC/DC converter(s)

3) Auxiliary components
a) Energy Management System (EMS)
b) Battery Management System (BMS)
c) Thermal Management System (TMS)

The individual lithium ion cells are combined in series to form
strings, two or more of which are combined in parallel to
form modules. These modules are further combined as per
requirements to yield racks or packs at the desired voltage
level. The power electronics come into the picture at this
stage, where a DC/DC converter can used to further step
up the DC terminal voltage of the rack/pack before being
connected to an AC/DC converter that then interfaces with
the grid, depending on the voltage level, either directly, or
with a transformer in between. The DC/DC converter is often
optional, but when used it enables the battery system to be
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used across a wider range of its voltage curve, as lower
terminal voltages can also be stepped up to match those
required by the AC/DC converter. This greater usable range
comes at the cost of efficiency losses across the DC/DC
converter, which, depending on the particular system, might be
acceptable in light of the wider operating voltage range. The
DC/DC converter and transformer are not considered further
in this work. The energy conversion processes that enable the

System coupling

Applications

EMS

PE

TMS
BMS

PE

Battery

Fig. 1: Schematic diagram of a typical stationary battery
energy storage system (BESS). Greyed-out sub-components
and applications are beyond the scope of this work.

storage of electrical energy in the form of chemical energy
take place within the power electronics and the battery system.
The energy management, battery management, and thermal
management systems can be termed as auxiliary components,
and are responsible for controlling and ensuring the safe
operation of the BESS. The large portion of losses in the
first two components are the conversion losses. The remaining
losses such as the standby losses and consumption by other
components constitute the system losses. Schimpe et al [14]
present a further breakdown of the conversion losses and
system losses into detailed individual loss mechanisms within
each sub-system. They list a total of 18 loss mechanisms, and
present a detailed analysis with the help of an electro-thermal
modeling framework. It is found that the conversion losses in
the power electronics and the battery system are significant.
The framework is based on the results of a container BESS
named Energy Neighbor [15], developed at the Technical Uni-
versity of Munich as part of a research project EEBatt. Patsios
et al [16] also confirm that the conversion losses in the battery
system and power electronics) are significant and warrant a
closer look. Not only does the the choice of size, layout and

operating strategy of sub-components play an important role
in application in determining the overall round-trip efficiency
of the system, but also the service being rendered by a BESS
[17]. This paper highlights the relation between the conversion
losses and aspects such as the application scenario and system
configuration. Evaluation of system losses (such as standby
losses, power consumption by auxiliary components) is not a
part of this work.

III. DEFINITIONS OF PERFORMANCE INDICATORS

In this section, definitions of performance indicators used
in the subsequent sections of this paper are presented.

A. Efficiency

The efficiency (ηsystem) of a battery energy storage system
is defined as the ratio of the time integral of the discharging
power to the time integral of the charging power over a
complete cycle such that the initial and final states of charge
(SOCs) are identical [14]. The system necessarily encounters
dissipative losses at all times in all the components, and
especially during the charge and discharge processes. The
value of ηsystem therefore, lies between 0 and 1, as the
discharged energy is always less than the charging energy.

ηsystem =

t1∫
0

Pdischarge(t) · dt

t2∫
t1

Pcharge(t) · dt

∣∣∣∣
SOC0=SOCt2

(1a)

=
Edischarged

Echarged

∣∣∣∣
SOC0=SOCt2

(1b)

Echarged = Edischarged + Eloss,total

∣∣∣∣
SOC0=SOCt2

(1c)

Eloss,total =

n∑
i=1

Eloss,c,i +

n∑
i=1

Eloss,s,i

∣∣∣∣
SOC0=SOCt2

(1d)

where:
.. ηsystem is the system efficiency
.. Edischarged, Echarged represent the energy discharged and
charged respectively
.. Eloss,c/s,i represents the energy lost in the ith component
due to conversion (c) and system (s) losses respectively
.. n is the total number of components for which the losses
are evaluated
For the purpose of this work, only the conversion losses are
considered, i.e. it is assumed that the sum of system losses
ΣEloss,s,i is effectively zero. This assumption implies that
the efficiency definition applied in this paper refers to the
conversion efficiency of the system.

B. Temporal utilization ratio

The temporal utilization ratio τt is defined in [14] as the
ratio of the sum total of the time during which the BESS is
in operation to the total time of the simulation. This indicator
is particularly useful to compare load profiles against each
other with respect to the degree of activity seen by a BESS.
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The quantity τt can therefore assume values between 0 and 1,
depending on how often the system is summoned into service.

τt =
toperation
tsimulation

(2a)

where:
.. τt is the temporal utilization ratio
.. toperation is the total time of operation of the BESS
.. tsimulation is the duration of simulation

C. Active charge-based utilization ratio

The active charge-based utilization ratio τQ,a is defined as
the ratio of sum of absolute values of charge throughput of the
BESS in charge and discharge directions during the non-idle
time periods to the sum of the absolute charge throughout in
the two directions at a C-rate of 1 C within the same periods.
A C-rate of 1 is that value of current which can completely
charge/discharge a battery in a duration of 1 hour. The quantity
τQ,a provides an indication of how demanding a particular
load profile is with respect to the battery capacity. In contrast
to the temporal utilization ratio τt, the active charge-based
utilization ratio τQ,a is useful to compare load profiles against
each other with respect to the intensity of activity demanded
of a BESS. From the definition, it is then clear that τQ,a

may assume a value between 0 and the sum of maximum
permissible charge and discharge C-rates. Schimpe et al [14],
on the other hand, present a related performance indicator
which compares the actual battery charge throughput to that
due to cycling the battery continuously at 1C throughout the
duration of simulation.

τQ,a =
Qthroughput

Q̃throughput,1C

(3a)

where:
.. τQ,a is the active charge-based utilization ratio
.. Qthroughput is the total absolute charge throughput of the
BESS
.. Q̃throughput,1C is the theoretical total absolute charge
throughput of the BESS at 1C

D. System availability

In the discipline of systems engineering, the system avail-
ability and reliability are measures to quantify the likeliness
of the system operating as expected under the given service
conditions in a time frame of interest. It quantifies the actual
performance of the system vis-a-vis its expected performance.
The BESS may fail to perform as expected in cases wherein
the C-rates, SOC values or temperatures tend to step out of
the permissible range. The system may also reject requests
in the case of failure/degradation of components resulting in
impaired or zero capabilities [18]. Here we define two sub-
indicators under this category:

1) Qualitative system availability: The qualitative system
availability squalitative is defined as the ratio of the number
of successfully completed energy requests (charge, discharge,
or both) to the total number of requests made to the BESS
within the time frame of interest. This quantity can assume
values between 0 and 1.

squalitative =
nfulfilled
nrequested

(4a)

where:
.. squalitative is the qualitative system availability factor
.. nfulfilled is the number of energy service requests (charge,
discharge or both) successfully fulfilled by the system
.. ndemanded is the total number of energy service requests
(charge, discharge, or both) received by the BESS

2) Quantitative system availability: The quantitative sys-
tem availability factor is defined as the ratio of the actual
quantity of energy exchanged (charge/discharge, or both) with
the energy supply system to the quantity of energy exchange
requested within the time frame under consideration. This ratio
can assume values between 0 and 1, implying complete inca-
pability and total fulfillment respectively. Values in between
point to partial fulfillment.

squantitative =
Efulfilled

Erequested
(5a)

where:
.. squantitative is the quantitative system availability factor
.. Efulfilled is the actual energy service (charge, discharge or
both) fulfilled by the system
.. Edemanded is energy service (charge, discharge, or both)
requested of the BESS
For grid applications such as peak shaving, the request to
discharge is of prime interest, and the system availability
of a BESS providing such a service would be based on
the number of discharge requests successfully honored. For
other applications such as primary control reserve (PCR), the
requests to both charge as well as discharge the system in
response to frequency fluctuations are of interest, and the
system would be mandated to fulfill all requests with a system
availability of 1, in order to stay within the regulatory bounds.

IV. FACTORS INFLUENCING EFFICIENCY

To illustrate the dependence of the conversion efficiency
on the system configuration and the application scenario
in which the system is operated, simulations are run with
the stationary battery energy storage system simulation tool
SimSES [19], which has been developed at the Technical
University of Munich. The definition of efficiency presented
in the section III, and especially the conversion efficiency is
used in evaluations presented in the subsequent sections.

A. Application scenario

Two applications of large-scale stationary BESS in the
electrical energy supply system are considered to highlight
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the dependence of conversion losses on the characteristics of
the application. The applications considered are:

1) Peak Shaving (PS)
2) Primary Control Reserve (PCR)

The peak shaving (PS) application is known to subject the
BESS to infrequent bursts of high-intensity energy requests,
whereas the primary control reserve (PCR) application is the
opposite in the sense that it subjects the BESS to frequent
low-intensity energy requests throughout the time frame of
consideration. In summary, the PS application exhibits a low
τt and a high τQ,a value, while on the contrary, the PCR
application exhibits a high value of τt and a low value of τQ,a.
In applications that exhibit high τQ,a values, the conversion
losses in the batteries tend to be higher, whereas applications
with simultaneously high τt and low τQ,a tend to suffer dispro-
portionately high conversion losses in the power electronics,
which fare sub-optimally under part-load conditions.

Two base case systems are defined to simulate BESS
operation in the peak shaving and primary control reserve
applications. The system configuration considered for each
case is listed in table I. The voltage at the battery system
terminals is 650 V in each case. The battery system is then
connected to a bi-directional AC/DC converter whose DC
operating range is 600-750 V. The system is then interfaced to
the 400 V AC distribution grid. The system layout is described
as ns mp, implying n cells in series, and m such combinations
of n cells connected in parallel. This layout scheme is depicted
in figure 2. The two applications chosen serve to underline

TABLE I: BESS system parameters

Scenario

Peak Shaving Primary Control Reserve

Energy capacity 350 kWh 2.8 MWh

Power rating 700 kW 1.4 MW (qualified)

Power Electronics AC/DC bidirectional AC/DC bidirectional

Cell chemistry LFP/C LFP/C

Form factor Cylindrical 26650 Cylindrical 26650

System layout 204s 179p 204s 1430p

Cell state New New

the influence of the application on the individual components
of the system conversion efficiency. A one size fits all design
ideology is, hence not suitable for the deployment of stationary
BESS in grid applications. The following sections depict how
each application requires a BESS system design which is
sensitive towards the unique demands of the application.

1) Peak Shaving: Deployment of battery energy storage
systems to provide the so-called peak shaving service is fast
gaining ground. Industrial and other commercial users with
very high intermittent load peaks are required to not just
pay for the amount of energy consumed, but also for the
maximum power demand at their sites in their annual or
monthly billing cycles. In order to avoid high power-related
costs, peak shaving is a frequently implemented solution [20].

OCV

OCV

OCV

OCV

OCV

OCV

OCV OCVOCV

Rint

1s 2s

1p

mp

Rint Rint

Rint Rint Rint

Rint Rint Rint

2p

ns

VBatt

Fig. 2: System layout with n cells in series and m such strings
in parallel (ns mp). OCV stands for open circuit voltage and
Rint stands for internal resistance. Each cell is modelled as a
voltage source with a series resistance.

Mature fossil-based technologies such as diesel generators
and gas turbines installed on-site (captive power plants) are
being replaced by BESS, owing to their precise and accurate
response to demand, low response times, suitable ramp rates
and relatively high efficiencies [10], [12]. These demand peaks
are shaved off by the BESS at relatively higher C-rates than
those normally witnessed in the PCR application. The BESS
then charges in idle periods with relatively low C-rates. The
operator of the peak shaving BESS can thus save costs related
to the maximum power demand, and must only pay for the
energy extracted from the grid at lower values of power [21].
While the motivation for peak shaving is often economic in
nature, such systems can be also be used for strengthening
of grid infrastructure at locations with disproportionately high
intermittent loads such as at electric vehicle (EV) fast-charging
stations, or to provide relief to a strained local distribution grid.
All such systems reduce the peak instantaneous power demand
that the grid has to fulfill, and spreads it over a larger period
of time [22], [23].

For the purpose of this work, a synthetic load profile based
on that of an industrial client is created with a high number
of sharp peaks per day. The operation of the system described
in table I is simulated for one year with a sample rate of 5
minutes in the exemplary peak shaving application. The peak
load is 1.31 MW, while the minimum load is 95 kW. The
average load during the simulated period is 211.69 kW. The
temporal utilization ratio of this profile is 0.1930, meaning
that the system is active for 19.30% of the simulated period.
The grid connection to this load center, owing to specific
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constraints, can only supply a maximum power of 630 kW.
The BESS is operated in this scenario such that it caters to
the residual demand over and above what the grid connection
can supply. This limit, 630 kW in this case is termed as
the peak shaving limit. The system operates within a C-rate
range of 1 C for charging and 1.8867 C for discharging.
The simulation results also reveal that the system is able to
shave the peaks off by supplying the demanded power with
a qualitative and quantitative system availability of 1 (i.e.
100%). An evaluation of the active charge-based utilization
ratio reveals that the system operates with a τQ,a of 0.6961,
which is relatively high. The conversion losses of the system
over the simulated duration of one year are depicted on the
right side in figure 4. It is clear that the conversion losses in
the battery are significant and make up the largest proportion
of losses in this application. While the conversion losses in
the power electronics are comparable, there is not much room
for improvement as the system operates near its rated capacity
for a large portion of the operating time as shown on the left
side of figure 3.

2) Primary Control Reserve: Operation of stationary BESS
in provision of primary control reserve with consideration
of its unique requirements has been investigated in scientific
circles [24]–[28]. To simulate the operation of a stationary
BESS in the PCR application, certain regulatory conditions
have to be fulfilled. The minimum permissible energy capacity
to power (E/P) ratio is governed by the regulatory framework
to ensure guaranteed system readiness to provide a minimum
prescribed duration of positive and negative reserves. A theo-
retical minimum ratio of 1 is required to fulfill the 30-minute
criterion prescribed by the ENTSO-E (European Network of
Transmission System Operators for Electricity) [29], but this
ratio is not practically viable, as the storage system cannot
charge or discharge energy at this ratio. An E/P ratio of
2 is therefore chosen to simulate the operation of a BESS
in the PCR application. For such a system, the permissible
SOC range in which the BESS may operate is then 25 -
75 %. Based on the grid frequency time series for the year
2017, the stationary BESS demand power profile is developed
(see fig. 3). This profile has a temporal utilization ratio τt
of 0.7999, which implies that the system remains in active
operation for nearly 80% of the considered time period. In
comparison to the temporal utilization ratio of around 19% for
the PS application, the system is used much more frequently
in the PCR application.As the grid frequency signal does not
show any strong patterns, the BESS operation is simulated
for the 15th of each month of 2017, based on the frequency
fluctuations and requested system response. The sample rate
of these simulations is 1 second. The conversion efficiencies
for the system described in table I are evaluated for the 12
sample days.

Figure 5 depicts the conversion losses in the power elec-
tronics and the battery system for the simulated days in
2017. Two cases are picked from these results for further
discussion - the simulated sample days with the best and worst
power electronics conversion efficiencies. The best conversion

efficiency among the 12 sample days is observed on the 15th

of November, and the worst is observed on the 15th of July,
with the average value lying between them. From the C-rate
distributions depicted in figure 5 for the 15th of November
(bottom right) and the 15th of July (bottom left), it can be
inferred that the BESS undergoes cycling under very gentle
conditions in the PCR application. With a temporal utilization
ratio τt of 0.8528 and active charge-based utilization ratio
τQ,a of 0.0319, the simulation for the 15th of November sees
conversion losses of around 19% in the power electronics. On
the other hand, with a τt of 0.7104 and a τQ,a of 0.0206,
the conversion losses in the power electronics are nearly 29%
on the 15th of July. The system is operated under part-load
conditions in both the cases for most of the time. Part-load
operation at low C-rates while leading to low conversion
losses in the battery system due to low currents flowing
through the internal resistance, also implies higher losses in the
power electronics components, which exhibit best conversion
efficiencies at their nominal power ratings. The above results
can also be explained from the C-rate distributions of the sim-
ulation for the 15th of November, which has a higher average
C-rate as compared to the simulation for the 15th of July,
which exhibits a lower average C-rate in the simulated time
period. The two system availability ratios remain at 1 (100%)
in all the sample days, indicating satisfactory performance of
the system. It can thus be inferred that the power electronics
conversion efficiency improves with rising values of τQ,a. This
was also apparent from the section on peak shaving, in which
the system exhibited a very high value of active charge-based
utilization ratio.

B. Battery system

From the results presented in subsection IV-A1 on the appli-
cability of batteries in the peak shaving application, it is clear
that the conversion losses in the battery play an important role
in applications with relatively higher C-rates. To investigate
the dependence of these losses on the cell parameters such as
resistance and the cell capacity, three additional scenarios are
simulated. In addition to the LFP/C 26650 cell, a commercial
NMC/C 18650 cell is also simulated. Both the cell types are
simulated twice - once considering the cells as ’new’ - i.e.
with 100% capacity and low internal resistance, the second
set of simulations treats the cells as ’old’ with only 80% of
capacity and twice the internal resistance as compared to the
new cells. For around 20% capacity loss, the resistance rise
for the LFP/C cells is around 70% [30], while the resistance
rise for the NMC/C cells is around 85% [31]. The assumption
of 100% rise considered here is taken as a worst case scenario.
Based on the objectives of the investigation, the use of various
battery models such as empirical models, physico-chemical
models and equivalent circuit models is prevalent [33]–[36] in
scientific circles. Physico-chemical models are the closest to
the underlying electrochemical processes taking place within
the cell, whereas the equivalent circuit models, although quite
popular in their usage, present a higher degree of abstrac-
tion, employing electrical circuit analogies to approximate
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Fig. 3: Power profiles for the peak shaving (left) and primary control reserve (right) and applications (normalized with respect
to the respective system power ratings).
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Fig. 4: Conversion losses in peak shaving (left) and primary control reserve (right) applications.

the physical processes. The empirical and data-based models
are the farthest away from physical reality and are purely
mathematical in nature.

1) Equivalent circuit model: As the dynamic response of
the cell under load is not of prime interest in these analyses,
the so-called Rint [36], [37] equivalent circuit model is deemed
sufficient to assess the losses in the cells. The Rint model visu-
alizes the battery as a series combination of a resistance with
a voltage source (which represents the open circuit voltage).
The values of the open circuit voltage are read out from a

look-up table depending on the state of charge. The values of
the internal resistance are also read out from look-up tables
depending on the direction of power flow, the temperature and
the state of charge. The open circuit voltage curves for both
the cells and the Rint model (inset) are depicted in figure
6. The cell model (open circuit voltage and resistances) is
scaled up to the module and rack level with the help of
scaling factors. A number of commercial lithium-ion cells have
been characterized and tested in the scientific community to
model their electro-thermal and aging behavior with sufficient
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Fig. 5: Conversion losses during operation in PCR application (top). Distribution of system C-rates on 15 July (bottom left).
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accuracy [38]–[41]. The simulations carried out in this paper
use two Rint equivalent circuit battery models (ECM) based
on full cell characterizations of the LFP 26650 [19], [42],
[43], and the NMC 18650 [31] cells. The dependence of the
resistance of the LFP cells on the temperature and state of
charge in the process of charging and discharging is depicted
in figure 6. The dependence of the NMC cell resistance on the
state of charge is also depicted in figure 6.

2) 0D lumped parameter thermal model: In conjunction
with the Rint ECM model, the thermal behavior of the system
is modeled as a 0D lumped parameter model at the cell level,
and scaled up to the system level. The heat transfer processes
considered include the internal heat generation on account of
the dissipative losses in the internal resistance, and the heat
exchange with the ambient air. The reversible heat exchanges
due to the chemical reactions is not taken into account. The
heat exchange with the ambient air is modeled as natural
convection. The rise in temperature can be obtained from the
energy balance equation for these two processes:

∆T = (Q̇loss +A · h · (Tamb − T1))/(m · cp) (6a)
T2 = T1 + ∆T (6b)

For the NMC/C cells in the peak shaving operation, the system
configuration is 181s 276p for the same system energy and
power ratings as the base case system. The number of cells
in series is lower than in the LFP/C based system due to the
higher open circuit voltage of the NMC/C cells. Due to the
lower capacity of the NMC/C cells, it is imperative that a
greater number of strings be connected in parallel as com-
pared to the LFP/C case. Although the NMC/C cells exhibit
resistance values which are higher, due to the difference in
the system layout - 204s 179p for LFP/C vs. 181s 276p for
NMC, the simulations reveal that the system with NMC/C cells
sees a lower proportion of conversion losses in the battery
system due to lower equivalent resistance values. It is seen
from fig. 7 that the aged cells with lower capacities and higher
resistances show a higher proportion of conversion losses in
the battery. The self-discharge in proportion is negligible over
the simulated period, as lithium-ion batteries in general exhibit
favorable self-discharge characteristics. The conversion losses
take the form of heat dissipation, and entail additional efforts
to expel the heat out of the vicinity of the battery in order
to keep it within its recommended temperature limits. The
heating effect also causes faster aging of the cells, which
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TABLE II: Cell parameters. ’n’ stands for new, and ’a’ stands for aged. (∗ approximate values from literature, further
investigation necessary [32].)

Cells

LFP-n LFP-a NMC-n NMC-a

Charge capacity (As) 10800 8640 7020 5616

Max. continuous
charge current (A)

3 3 1.95 1.95

Max. continuous
discharge current (A)

20 20 3.9 3.9

Max. charge
voltage (V)

3.6 3.6 4.2 4.2

Min. discharge
voltage (V)

2 2 3 3

Mean internal
resistance at 25°C (mΩ)

47.5 95 67.1 134.2

State of health (SOH) 100% 80% 100% 80%

Mass of cell (g) 85 85 47.5 47.5

Surface area (m2) 0.0064 0.0064 0.0037 0.0037

Heat transfer
coefficient (W/m2K)

15 15 15 15

Specific heat capacity
coefficient (J/kgK)

925.52 925.52 823∗ 823∗

Form factor 26650 26650 18650 18650
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Fig. 6: Open circuit voltage curves (left) for the the LFP/C and NMC/C cells, with a schematic of the Rint cell model (inset).
Dependence of ohmic resistance on state of charge and temperature (right). The symbols in brackets c and d stand for charging
and discharging respectively.

further lead to a rise in resistance and capacity degradation.
This forms a vicious cycle that causes the battery to age at
increasingly faster rates. The temperature evolution over the
simulation period of one year for the 4 batteries is depicted

in fig. 7. It is seen that the batteries reach significantly
high intermittent temperatures during the operation, which is
attributed to the lack of a cooling system in the simulation.
In a real-world situation, active cooling measures would be
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Fig. 7: Conversion losses with new (n) and aged (a) LFP and NMC cells in the peak shaving application (left). Temperature
(in K) of simulated cells over duration of simulation in the absence of cooling measures (right).

undertaken by the thermal management system (TMS) to
keep the cells within their normal temperature ranges. For
the NMC/C cells, the high intermittent temperatures are also
attributed to the low specific heat capacity of the cells, which
needs further investigation.

With aged batteries, it is of particular interest to investigate
if the system availability is maintained despite the faded
capacity and higher resistance. As the chosen application
does not exhibit very wide peaks which need to be shaved,
the battery system does not undergo high depth-of-discharge
(DOD) cycles. As a result, the lower capacity of the batteries
does not impede the system availability. The lower terminal
voltage due to the increased resistance also does not affect the
system availability, as the batteries are able to supply power at
higher currents to meet the power request at a lower terminal
voltage. This results in even higher battery conversion losses,
which is apparent from figure 7.

C. Power electronics

Several power electronics topologies are used to interface
the battery system to the grid. The most common among these,
depending on whether there is a DC/DC voltage conversion
stage between the batteries and the AC/DC conversion, are
termed as single-stage and the two-stage topologies [17], [44].
Load distribution strategies also play an important role in
the final choice of the power electronics components used
and their interconnection. While some systems rely on load
distribution strategies which do not introduce large SOC
deviations among strings, some [45] rely on strategies that

actively balance the widely divergent SOCs by distributing
the power dynamically among the strings.

The inverter/rectifier model used for simulations in this
work is based on a full characterization of a commercially
available bi-directional converter such that the losses in both
directions at various load levels are modeled in the form of a
look-up table [14]. Scaling factors are used to adjust the model
to the power rating of simulated system. The PE topology used
to simulate the BESS operation in section IV-A is depicted in
fig. 8. In this topology, each battery string is connected to a
separate bidirectional AC/DC converter. The load distribution
strategy operates the individual converters such that the power
demand at the system coupling point is uniformly fulfilled by
all the strings. For this topology the following relations hold
true:

Pnominal,sys = n ∗ Pnominal,converter (7a)
Pt,sys = x ∗ n ∗ Pnominal,converter (7b)

0 ≤ x ≤ 1 (7c)

where:
.. Pnominal,sys is the rated power of the system
.. Pnominal,converter is the rated power of each individual
converter
.. n is the total number of converters in the topology
.. x is the load factor at time t

To illustrate the effect of the power electronics topology on
the system conversion efficiency, the 15th of July (depicted
in fig. 5), representing the worst case among the 12 days

Atlantis Highlights in Engineering, volume 4

127

4 The efficiency of Li-ion battery energy storage systems

45



Fig. 8: Dedicated string converter topology operating with the
uniform load distribution strategy.

simulated, is considered as a base case. It has been discussed
that these high conversion losses are caused due to prolonged
part-load operation. A second converter topology, in which
all the battery strings are connected in parallel to the array of
AC/DC bidirectional converters is now considered. The strings
no longer possess dedicated converters in this topology, but
there are now several converters which can be sequentially
brought online to match the power demand. This topology is
depicted in figure 9. For this topology, the following relations
for the system power hold true:

Pnominal,sys = n ∗ Pnominal,converter (8a)
Pt,sys = m ∗ Pnominal,converter + x ∗ Pnominal,converter

(8b)
0 ≤ m ≤ n (8c)
0 ≤ x ≤ 1 (8d)

where:
.. m is the number of converters being operated at the
specified upper threshold
.. x is the load factor of the (m+ 1)th converter at time t

It is important to state here that the relations presented in
equations (7) and (8) are valid if all the individual converters
are identical. For the case with dissimilar converters, the
equations can still be used with some minor adjustments.

Schimpe et al [17] have evaluated the relative losses arising
due to the operation of the grid coupling components namely
the DC/DC bidirectional converter, AC/DC bidirectional con-
verter and the transformer. Two-stage and single stage topolo-
gies are also evaluated, with the incremental topology inves-
tigated in connection to a prototype system. A simulation
framework has been developed to investigate the effect of such
an incremental inverter topology on the system conversion
efficiency with a variable number of converters. The chosen
base case is now simulated with the topology depicted in fig. 9,

Fig. 9: Converter topology with common DC bus operating
with the incremental load distribution strategy.

with the number of inverters n being varied from 2 to 10. For
the base case simulated earlier, n = 1. As can be seen in figure
11, the additional benefit of each extra inverter diminishes
with the number of inverters, while the mean conversion
efficiency across the power range (shown on the secondary
y-axis) eventually flattens out. While these results may make
it seem like it is in the system designer’s interest to keep
increasing the number of converters indefinitely to obtain even
better mean efficiencies, caution is advised due to the likeliness
of the economic and environmental costs per kW of rated
capacity making such an implementation prohibitive. Which
implies monetary and energetic gains in efficiency, could be
nullified due to higher investment costs of BOS components. A
comprehensive and focused analysis of these questions needs
to be carried out in order to arrive at a clearer conclusion. The
conversion efficiency curve for the topology depicted in figure
9, operating under the incremental load distribution strategy is
calculated across the entire load range. Efficiency curves for
topologies consisting of 1 to 10 converters are depicted in
figure 10. The efficiency values for all cases converge towards
the end of the power range as then all converters are operating
at rated power. The deployment of such a topology yields the
best results during operation at low relative power values.

V. CONCLUSION AND OUTLOOK

Rising electricity production from variable renewable en-
ergy sources such as solar and wind energy, while making the
energy from the world’s most versatile energy vector greener,
has also brought unique challenges into the picture which,
if not addressed in a timely fashion, threaten the quality and
security of power supply across the world. Lithium-ion battery
energy storage systems, the technology which is expected
to provide relief to the systems need to be designed and
analyzed comprehensively to equip them better to tackle the
challenges efficiently and effectively. It has been shown how
the conversion efficiencies of the major components of a BESS
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Fig. 10: Efficiency curves for the topology with incremental load distribution strategy (for topologies with number of converters
n = 1 to n = 10). The inset image depicts the second and third converters C2 and C3 respectively coming online for a topology
with 10 converters.
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- the power electronics and the batteries play a major role in
the overall round trip efficiency of the system. It is also clear
that the system losses need to be studied and modeled further
in a holistic manner in order to be able to evaluate and quantify
these losses for stationary BESS with minimal effort. Power
electronics topologies, the type of coupling with the batteries,
and their load distribution strategies are instrumental in certain
applications with lower average C-rates, while being of lesser
significance in others with higher average C-rates. It has also
been shown how the possible usage of second-life batteries
can affect the system efficiency and availability in particularly
demanding applications such as peak shaving. It is imperative

to mention here that aged batteries are not always able to
shave off some of the highest and widest peaks completely
due to the rise in resistance and degradation in capacity over
time. A thorough investigation into the sizing methodologies
for second-life batteries in existing applications in order to
ensure maximum possible system availability is also necessary.

Based on the area of interest and the properties to be
investigated, there are a variety of models in use today
which simulate the electrochemical, thermal, mechanical and
energetic performance [46]. System level stationary BESS
models with varying levels of details have been proposed
in the literature [47], which aim to address the scaling up
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of the system from a single cell model to a module and
rack level model. These models focus primarily on the core
component of the BESS, which is the battery system and the
battery management system (BMS). The power electronics
and the auxiliary components such as the energy management
system (EMS), the thermal management system (TMS) are not
coupled to the core battery system, consequently the influence
thereof is not immediately apparent. Other models [14] which
include the auxiliary components do not address the complex-
ities encountered in the scaling process to keep the computa-
tional effort within acceptable bounds. A holistic system model
framework is needed to provide a rigorous treatment to each
aspect of the stationary BESS. Such a framework will not only
enable faster design and development of Lithium-ion battery
energy storage systems, but also the analysis of the influence
of variation in application scenarios, individual sub-system
configurations and attributes on the overall system efficiency.
The economic and environmental appeal of stationary energy
storage systems as a viable technology to support further
integration of renewable energy sources into the energy system
can be enhanced with such evaluations. The authors intend to
take a closer look at the aforementioned areas of research in
subsequent works.
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5 Techno-environmental modeling and evaluation of
energy systems with ESN

This article presents a systematic methodology to assess the carbon footprint of energy storage systems,
with a particular focus on BESSs within localized energy systems. The core of this work is the
development and deployment of Energy System Network (ESN), a simulation program designed to
model and analyze the carbon footprint across various configurations of energy systems. The program
employs a comprehensive approach that combines energy system modeling with streamlined LCA
techniques. ESN is available as open-source software hosted on a public GitLab repository4. This
accessibility encourages transparency and collaboration among researchers and other users, allowing
for modifications and extensions to suit specific research needs or policy analyses.

ESN is designed as a holistic simulation program for energy systems, capable of modeling interactions
between multiple energy system components. These components include generation, grid connections,
storage, and load. The primary aim is to assess the carbon footprint of these systems, offering detailed,
component-wise, and time-resolved emissions modeling. Each energy system is treated as a node with
its own energy balance, managed through an Energy Management System (EMS). The EMS uses
algorithms to regulate energy flows based on predefined rules or optimization strategies. The framework
uses a combination of physical models, time-series data, and environmental metrics to simulate the
operation and impacts of each component. This includes detailed emissions modeling throughout the
life cycle phases—production, operation, and end-of-life of the components. The underlying rationale
behind the creation of ESN is an earnest attempt to achieve the following:

• A coherent and unambiguous carbon emissions modeling framework for localized energy systems
with energy storage

• Consistent and reproducible comparisons of the carbon footprints of energy storage systems
operating in localized energy system configurations

Two illustrative case studies are presented to demonstrate the application and capabilities of the ESN
framework. The first explores energy arbitrage strategies using lithium-ion batteries, examining their
effects on carbon emissions. The second case study assesses the carbon footprint of home energy
systems, comparing scenarios with varying levels of integration of solar PV and battery storage. The
case studies attempt to answer the following:

• Can the battery application energy arbitrage support grid decarbonization, and how can this be
quantified?

• How can the decarbonization impact of residential battery storage systems and rooftop solar
generation in home energy systems be quantified?

The findings from the case studies highlight the potential of energy storage systems, particularly when
integrated with renewable energy sources, to support the decarbonization of energy systems. The ESN
framework aids in identifying optimal configurations and strategies that minimize the carbon footprint
4 Link to the ESN Gitlab code repository hosted by LRZ.
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of localized energy systems.

The open-source nature of ESN is a significant contribution to enhancing transparency, comparability,
and reproducibility in the assessment of the carbon footprint of energy storage applications. Some
reflections on the limitations of the current study and prospective avenues for future research are
discussed at the end of the article. A deeper dive into life cycle analyses with better primary data
and a closer examination of the evolving grid carbon intensity could be of special relevance to the
community.
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A B S T R A C T

Energy storage is a crucial flexibility measure to temporally decouple power generation from power demand
and is touted as the missing link in realizing a decarbonized energy system based on renewable energy. Energy
storage capacity buildup at all levels of the global energy system is expected to accelerate the decarbonization
process. To this end, a coherent mathematical framework to ascertain the carbon footprint of localized energy
systems with energy storage is indispensable. This article presents an open-source energy system simulation
program — Energy System Network (ESN). A variety of energy system configurations can be simulated with
the Python program, which incorporates key energy system components such as generation, grid, storage, and
loads. ESN features an integrated bottom-up approach that combines energy system modeling with streamlined
life cycle assessment techniques to quantify the carbon footprint of all components in a localized energy system.
The lifecycle phases of each component, including production, operation, and end-of-life treatment, can be
considered. Carbon footprint values are obtained for two demonstrative case studies with lithium-ion battery
applications: energy arbitrage and home energy systems. The metric Levelized Emissions of Energy Supply
(LEES) has been used to evaluate the carbon footprint of each application. An unconventional energy arbitrage
strategy designed to exploit the grid carbon intensity spreads instead of the energy price spreads manages to
achieve a LEES value about 17% lower than the conventional variant. The influence of rooftop solar generation,
battery energy storage system, and the energy management strategy on the LEES values for a home energy
system is explored. A maximum LEES reduction of over 37% vis-á-vis the base scenario was observed with
optimal energy management for the solar generation and the battery system. The open-source availability
of ESN can contribute to transparency, comparability, and reproducibility in carbon footprint assessments of
localized energy systems with energy storage.

1. Introduction

The rapid expansion of renewable energy sources is a central fea-
ture of the transition toward a decarbonized energy landscape [1].
Energy system simulation models allow for analyzing system behavior
and performance under different scenarios, considering factors such as
energy sources, grid characteristics, system configurations, and energy
management strategies. Energy system models are indispensable for
understanding and analyzing complex energy systems. Through sce-
nario analyses, policymakers, energy planners, and other stakeholders
can obtain detailed insights into system behavior for optimal resource
allocation [2]. A localized energy system comprises a combination of
actors, which can be grouped into generation, storage, grid connection,

∗ Corresponding author.
E-mail addresses: anupam.parlikar@tum.de (A. Parlikar), benedikt.tepe@tum.de (B. Tepe), marc.moeller@tum.de (M. Möller), holger.hesse@tum.de

(H. Hesse), andreas.jossen@tum.de (A. Jossen).

and load components. These components operate in tandem to ensure
energy supply and meet the specific needs of a particular application.

Energy storage is becoming increasingly crucial in integrating inter-
mittent renewables, meeting peak electricity demand, and maintaining
grid stability. Stationary lithium-ion BESSs are the leading technol-
ogy due to their high energy density, efficiency, service life, and
scalability [3,4]. With a favorable downward cost trend that further
accentuates their attractiveness, the capacity buildup and deployment
of these systems both continue to grow [5,6]. It is imperative to under-
stand and quantify their environmental impact, particularly in terms
of their carbon footprint. The carbon footprint of an energy storage
system comprises the total greenhouse gas emissions associated with
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Abbreviations

BESS Battery Energy Storage System
CO2 Carbon Dioxide Equivalent
CO2𝑒𝑞 Carbon Dioxide Equivalent
DEC Discharge Energy Consumption
DOC Depth of Cycle
EFC Equivalent Full Cycle
EMS Energy Management System
EOL End-of-Life
ESN Energy System Network
EV Electric Vehicle
GEC Grid Energy Consumption
GENEC Generation Energy Consumption
GWP Global Warming Potential
HES Home Energy System
LCA Life Cycle Assessment
LEC Load Energy Consumption
LEES Levelized Emissions of Energy Supply
PV Photovoltaic Solar
SimSES Simulation of Stationary Energy Storage Sys-

tems
SOC State of Charge
SOCI State of Carbon Intensity
SOH State of Health

Parameters

CFgen Capacity Factor of generation component
CIgen,exp,f ix Fixed component of the carbon intensity of the

exported energy from a generation component
CIgr,exp,f ix Fixed component of the carbon intensity of the

exported energy with a grid component
CIst,exp,f ix Fixed component of the carbon intensity of

the exported energy discharged from a storage
component

CIcht Carbon intensity of charging energy for BESS
at time t

CIst,expt Carbon intensity of exported discharge energy
from the storage at time t

CIES,expt Carbon intensity of the export energy at time
t

CIESt Carbon intensity of the energy at the central
node of the energy system at time t

CIgen,expt Carbon intensity of the energy exported from
the generation component at time t

CIgent Carbon intensity of the generation component
at time t

CIgr,expt Carbon intensity of the energy exported with
the grid component at time t

CIgrt Effective carbon intensity of the grid mix at
time t

Es,EV Energy supplied to the EV over the simulation
period

Es,H Energy supplied to the household over the
simulation period

Est,dch
l Total energy discharged by the storage tech-

nology over its service life

all its life cycle phases, which include production, operation, and end-
of-life treatment. Calculating the carbon footprint requires accounting
for numerous factors, including the energy mix used for charging the

Est
t Energy content of the storage component at

time t
Pgen,rated Rated peak power of generation component
Pgr,peak Peak power of the grid component
Pgen,can−runt Total power generation of all can-run genera-

tion components at the time t
Pgen,expt Exported generation power from generation

component at time t
Pgen,load,it Directly consumed power generated by gener-

ation component i at the time t
Pgen,losst Loss power of generation component at time t
Pgen,must−run
t Total power generation of all must-run gener-

ation components at the time t
Pgent Generation power of generation component at

time t
Pgr,expt Grid component export power at time t
Pgr,loadt Grid power directly supplied to the load at

time t
Pgr,losst Power lost in the grid section during transmis-

sion at time t
Pgrt Total grid power entering the system bound-

aries at time t
Pload,ct Power consumed by end-application in a load

component at time t
Pload,losst Load loss power at time t
Ploadt Load demand power at time t
Presidualt Residual power after factoring in total must-

run generation power at the time t
Pst,cht Storage component charging power at time t
Pst,dch,load,it Directly consumed power discharged from

storage component i at the time t
Pst,dcht Storage component discharging power at time

t
SOCIt State of Carbon Intensity (SOCI) at time t
SOCt SOC at time t
𝛥t Simulation timestep
𝜂gent Generation component efficiency at time t
𝜂grt Grid component energy efficiency at time t
𝜂st,cht Storage component charging efficiency at time

t
𝜂st,ch Storage component average charging effi-

ciency
𝜂st,dcht Storage component discharging efficiency at

time t
DOC Mean DOC over simulation period
SOCI Mean SOCI over simulation period
SOC Mean SOC over simulation period
𝜀BESS Total emissions of the BESS over simulation

period
𝜀DEC Total Discharge Energy Consumption (DEC)

emissions for the load over simulation period
𝜀GENEC Total Generation Energy Consumption

(GENEC) emissions for the load over
simulation period

storage systems, energy losses during charge and discharge processes,
storage degradation over time, and energy consumed for the production
and recycling processes [7].

Estimating the carbon footprint is essential to informed decision-
making in terms of the deployment of battery systems. A rigorous and
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𝜀LEC Total Load Energy Consumption (LEC) emis-
sions over simulation period

𝜀gen,EOL End-of-Life (EOL) phase emissions of the
generation component

𝜀gen,en Total energy emissions for energy from on-site
generation components

𝜀gen,exp Export emissions of the generation component
𝜀gen,op Operation phase emissions of the generation

component
𝜀gen,prod Production phase emissions of the generation

component
𝜀gr Total attributable emissions for the grid sec-

tion over simulation period
𝜀load,op Operation phase emissions attributable to the

load over the entire simulation period
𝜀load Total emissions attributable to the load over

the entire simulation period
𝜀st,EOL EOL phase emissions of the storage component
𝜀st,exp Total export emissions of energy discharged

from a storage component over simulation
period

𝜀st,op Total operation phase emissions for the storage
component

𝜀st,prod Production phase emissions of the storage
component

𝜀st Total emissions of the storage component over
simulation period

bstt Binary variable to prevent simultaneous charg-
ing and discharging of the storage component
at time t

cIDMt Energy price on the Intraday Market at time t
h Optimization time horizon h
m Number of generation components in the

energy system
n Number of storage components in the energy

system
p Number of load components in the energy

system
t Time t
𝑙𝑔𝑒𝑛 Expected service lifetime of generation compo-

nent in years

comprehensive analysis that captures the unique characteristics and ap-
plication scenarios is indispensable. Various simulation models exist for
modeling different aspects of the energy system with varying amounts
of focus on battery systems, some of which have been published in
open-source form. The following paragraphs briefly discuss the features
of some existing energy system modeling tools.

Python for Power System Analysis (PyPSA) is an open-source tool-
box developed in Python that provides functionalities for modeling,
simulating, and optimizing power systems using power flow calcula-
tions and multi-period optimization. It is mainly used to create mod-
els of power networks, which include generators, power lines, and
rudimentary storage systems. PyPSA can define and impose global
constraints on Carbon Dioxide (CO2) emissions during the optimization
process. CO2 emissions limits for different generation units can be
specified by considering emissions factors associated with specific tech-
nologies [8]. EnergyPLAN is an open-source energy system modeling
tool that facilitates the analysis and optimization of energy systems —
from localized to national energy systems. Its main features include
scenario analysis, renewable energy integration, energy system opti-
mization, and multi-sectoral modeling. It also enables the specification

of CO2 emission factors for different energy generation technologies
and sectors. The tool uses generic energy storage models. Carbon
capture and storage can also be considered [9,10].

Calliope is an energy simulation Python tool designed to model
and simulate national and urban scale energy systems designed to
work with a variety of supply, transmission, storage, and demand
technologies. The focus of performance evaluation is economic in na-
ture. The program always solves an optimization problem to obtain
the schedule for the energy system, and there is no possibility to
run user-defined operation strategies. Time-resolved handling of the
CO2 emissions calculation for all components, especially for storage,
is not supported [11,12]. Tools for Energy Model Optimization and
Analysis (TEMOA) is another open-source modeling framework for
performing energy system analyses and optimizations [13,14]. Temoa
is a linear optimization problem that minimizes the costs of energy
supply through the use of energy technologies and raw materials, such
as coal or biomass, over defined time horizons. Quantification of C02
emissions from energy sources is also possible, albeit component-wise,
and bottom-up time-resolved handling of the CO2 emissions, especially
for storage technologies, does not seem possible. The emissions can be
limited via constraints of the linear optimization problem. TEMOA is an
energy system optimization tool, i.e., it does not let users define their
own energy management strategies [13,14].

urbs is a Python-based generator for linear energy system optimiza-
tion models. The tool does not support user-defined energy manage-
ment strategies, and the modeling capabilities for energy storage are
elementary. The tool also does not support a very extensive CO2 emis-
sions calculation, especially for energy storage [15,16]. Oemof.solph is
another open-source tool that can model and optimize energy systems
as a Python package. In the optimization, a minimization of emissions
can be defined as a constraint. According to the developers, the higher-
level oemof (open energy modeling framework) can also minimize
CO2 emissions from biomass power plants [17,18]. The Framework for
Integrated Energy System Assessment (FINE) is another Python-based
open-source framework that enables the analysis and optimization of
integrated energy systems. FINE can simulate energy systems ranging
from localized to international. Entire electricity and natural gas grids
can also be simulated. In addition, FINE models storage systems to
a somewhat greater extent of detail than PyPSA and EnergyPLAN.
Users can define CO2 emission factors for different energy generation
technologies, and in addition to economic optimization, they can also
minimize CO2 emissions [19,20].

GridLAB-D is a C++-based open-source power distribution system
simulation and analysis tool that enables the simulation of electri-
cal distribution networks, including storage and distributed energy
resources. The tool does not provide built-in features dedicated to emis-
sions modeling, although limited analyses to analyze certain scenarios
are possible [21,22]. HOMER (Hybrid Optimization of Multiple Energy
Resources) is a tool for analyzing and optimizing hybrid renewable
energy systems. Its central capabilities include system optimization to
determine cost-effective configurations, modeling renewable resources
and loads, simulation and optimization of energy storage options,
economic analysis, and the ability to conduct sensitivity analysis and
explore different scenarios. Multiple commercial variants that deal with
specialized aspects of energy system modeling are available: HOMER
Pro, HOMER Grid, and HOMER Front. Homer Pro enables the calcu-
lation of CO2 emissions based on specific emissions of the individual
energy sources [23–25]. The System Advisor Model (SAM) is a tool
that can be used to model renewable energy systems. SAM includes
models for PV systems, storage systems of different types, and industrial
processes. The models can be used directly in the desktop application
and via application programming interfaces (APIs). CO2 emissions can
only be calculated in SAM in the Biomass Power model. Beyond that,
no CO2 calculations are carried out [26,27].

Distributed Energy Resource Value Estimation Tool (DER-VETTM)
is another option for the simulation and optimal design of microgrids,
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storage systems, and distributed energy resources (DERs). The open-
source tool is based on the StorageVET® tool, which can simulate
storage systems in particular. CO2 emissions are currently not modeled
by DER-VET. However, integration of emissions modeling into the DER-
VET optimization problem is planned, according to the developers [28].
Component-Oriented Modeling AND Optimization (COMANDO) is a
framework for the design and operation of energy systems. Within
COMANDO, an energy system is defined as a collection of different
connected components. The tool solves optimization problems for the
design and operation of energy systems. In contrast to other open-
source tools, COMANDO does not rely solely on a linearization of the
optimization problem but can also include dynamics and non-linear ex-
pressions. COMANDO does not allow user-defined energy management
or customized energy system components. There is also no provision
for a detailed CO2 emissions calculation for components and for energy
storage [29,30]. The Performance Simulation Model for Photovoltaic
Solar (PV)-Battery Systems (PerMod), an open-source project, allows
comparison of the energy efficiency of different grid-connected PV
battery systems. This MATLAB-based tool can map different loss mech-
anisms of grid-connected PV storage systems. Accordingly, it enables
a detailed simulation of households with home PV storage systems.
Emissions modeling is not a part of the program [31].

A further Python-based optimization model for capacity expansion
and unit commitment is ficus. This model focuses on determining the
optimal size of system components, including energy storage, and their
optimal operation scheduling. There is no provision to add user-defined
operation strategies. The storage model used is generic. There is no
known functionality to calculate the CO2 emissions [32,33]. DRAF,
short for Demand Response Analysis Framework, is an open-source
tool for local multi-energy systems focusing on demand response, as
the name suggests. DRAF is an optimization tool that employs linear
and mixed-integer linear programming techniques. User-defined energy
management strategies that rely on other optimization techniques or
strategies that are rule-based cannot be implemented in DRAF. DRAF
also includes elmada, a tool that can generate the grid carbon inten-
sity profiles for European countries. The tool also relies on generic
battery models which do not consider degradation. From the surveyed
literature, the degree of detail in modeling the component-wise CO2
emissions, especially for energy storage, could not be ascertained [34,
35].

Two storage-centric simulation programs were also studied. The
Battery Lifetime Analysis and Simulation Tool (BLAST) is a software
tool specifically for analyzing and simulating battery systems. With
BLAST, users can perform electrical and thermal simulations to assess
the performance and lifetime of batteries. For example, BLAST-Lite is
open-source and used in SAM to model storage systems. BLAST does not
include a calculation of CO2 emissions [36]. Simulation of Stationary
Energy Storage Systems (SimSES) is a Python-based open-source tool
that can simulate storage systems in various applications. SimSES does
not offer emissions modeling capabilities. SimSES is used to model
storage systems in ESN through a programmatic integration [37].

The reviewed energy system modeling tools are, for the most part,
optimization tools that solve a particular form of sizing or scheduling
problem. Applications and use cases that require very specific con-
straints and rules are difficult to simulate, thus restricting flexibility.
The battery models employed in most tools are also generic in nature
and not detailed enough. None of the tools reviewed offer specific ca-
pabilities to quantify and simulate the CO2 emissions of energy storage
systems operating in localized energy systems in a component-wise and
time-resolved fashion. The specialized battery simulation tools, such as
BLAST, SAM, and SimSES are well suited for modeling the electrical
and thermal behavior of battery cells and storage systems but are
limited in their ability to model the CO2 emissions. These findings are
corroborated by multiple review papers studying energy system models
used in the scientific community [38–41]. Detailed tabular compar-
isons of the features of various energy system models were found in

the reviewed literature, and the reader is referred to these excellent
studies [34,38,39,41]. Studying the time-resolved carbon footprint of
specific BESS applications in localized energy systems with detailed
models is not possible with the reviewed energy system and energy
storage models alone. This article presents Energy System Network
(ESN),1 a program to simulate localized energy systems with inherent
bottom-up time-resolved capabilities to calculate the CO2 emissions
footprints of energy system components. ESN provides a platform to
enable custom energy management strategies and specialized energy
system components for any application as time series simulations. With
seamless SimSES2 integration allowing for detailed battery system mod-
eling, ESN offers advanced simulation capabilities to simulate energy
storage applications within localized energy systems. A reviewed study
provides five modeling recommendations for the carbon footprint of
energy storage systems [42]. ESN coupled with SimSES can aid users
with four of the five recommendations pertaining to the inclusion of
life cycle phases, energy management, and system components in such
studies. The program is distributed as open-source code hosted on a
Gitlab repository and is built with an object-oriented programming
approach in Python.

Scope and outline

This article presents the simulation framework underpinning ESN,
while attempting to shed light on the following research questions:

1. How can a coherent and unambiguous carbon emissions model-
ing framework for localized energy systems with energy storage
be implemented such that the results are component-wise and
time-resolved?

2. How can the carbon footprints of such localized energy system
configurations providing a given service be compared consis-
tently and reproducibly?

The use of this framework is demonstrated through case studies. An
attempt is made to address the following research questions through the
simulation of two battery storage system applications, energy arbitrage,
and home energy systems:

1. Can the battery application energy arbitrage directly support
grid decarbonization, and how can this be quantified?

2. How can the decarbonization impact of residential battery stor-
age systems and rooftop solar generation in home energy sys-
tems be quantified?

The contents of this article are structured as follows. Section 2
presents the simulation framework behind ESN with the emissions
modeling methods for all energy system component classes. The two
case studies are presented in Section 3, accompanied by a discussion on
the simulation setup and the simulation results. In Section 4, a summary
of the current and possible future capabilities of ESN is presented along
with the key findings and limitations of the case studies.

2. Simulation framework

This section presents the simulation framework behind ESN and
the mathematical framework underpinning it. The simulation program
is, in principle, designed to model multiple energy systems interacting
with one another, i.e. an energy system comprised of multiple smaller
energy systems. In its current state, ESN supports scenarios that can be
modeled as a single energy system.

1 https://gitlab.lrz.de/open-ees-ses/energy_system_network
2 https://gitlab.lrz.de/open-ees-ses/simses
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Fig. 1. Schematic representation of an Energy System, its constituent Energy System
Components, and the Energy Management System (EMS) that regulates the power flows
among them.

2.1. Energy system

An Energy System is a self-sufficient simulation unit representing
a single node subjected to an energy balance. Each Energy System
essentially represents a group of energy system components connected
at the same node that directly satisfy the energy and power balance
constraints at that node. Each energy system must consist of two or
more Energy System Components, which belong to either of the four
component classes:

1. Generation components
2. Grid components
3. Storage components
4. Load components

A grid component is a grid section that connects the node within the
system boundaries to the larger energy system that lies beyond the
boundaries. The operation and the energy flows among these compo-
nents are regulated by algorithms in the Energy Management System
(EMS), an instance of which is contained in each energy system. Fig. 1
depicts an energy system with its constituents.

The energy system components and their attributes are described in
the following section. Models belonging to each component class emu-
late the central characteristics of each component class — generation,
transmission, storage, or load. Each energy system component has a
common structure: the physical model, time-series profiles, state, en-
vironmental data, and other additional component data. At the core of
each component model lies the physical system of governing equations.
This model enables the response of the component to be simulated.
The components require user-defined or default profiles to model time-
variant quantities such as generation, consumption, availability, and
time-dependent carbon intensity. The environmental data pertains to
its lifecycle emissions in all phases, including production, operation,
power generation, and EOL processes. At each timestep, the EMS
determines target powers for all components based on its algorithm. All
quantities of interest are stored in the State of the EMS. Each energy
system component receives the power target and runs it through the
physical model to obtain the actual power. All parameters of interest
are subsequently stored in the State of each component, which acts as a
data logger. The contents of the state are analyzed and evaluated after
each simulation run to obtain consolidated results for all components
and the energy system.

The emissions calculation methodology for each component class is
presented and discussed in the following sections. Documentation on
installation, configuration, and exemplary simulations are found in the
open-source code repository for the project. As this work focuses on the
emissions modeling of localized energy systems, the following sections
focus primarily on those aspects.

Table 1
Class attributes of energy system component classes.

Energy system components

Generation Grid Storage Load

Energy form applicable x x x x
Peak power x x x x
Energy capacity – – x –
State x x x x
Profile(s) Generation Carbon-Intensity – Load
Flag(s) Must-run Feed-in enabled Must-fulfill

– Discrete load
Capacity factor x – – –
Production phase emissions x x x –
End-of-life emissions x x x –

2.2. Generation components

Generation components emulate the functioning of power gener-
ation systems. Each generation component exhibits class attributes
tabulated in Table 1. Renewable energy sources such as PV solar
and wind turbines are modeled using generation profiles for specified
locations, whereas a diesel generator is modeled using an efficiency
curve to model power output with respect to fuel consumption. For
a generation component, the total emissions across its entire service
life, 𝜀gen, are given by Eq. (1), where 𝜀gen,prod, 𝜀gen,op, and 𝜀gen,EOL refer
to the production phase, operation phase, and EOL phase emissions
respectively. Export emissions, 𝜀gen,exp, are associated with the exported
energy. This is discussed towards the end of this sub-section. Fig. 2
depicts the power flows and emissions associated with a generation
component within the system boundaries.

𝜀𝑔𝑒𝑛 = 𝜀𝑔𝑒𝑛,𝑝𝑟𝑜𝑑 + 𝜀𝑔𝑒𝑛,𝑜𝑝 + 𝜀𝑔𝑒𝑛,𝐸𝑂𝐿 − 𝜀𝑔𝑒𝑛,𝑒𝑥𝑝 (1)

The total operation phase emissions, 𝜀gen,op, can be calculated as
shown in Eq. (2). Here, CIgent refers to the carbon intensity of the
generated energy before losses at time t and is equal to the combustion
emissions per kWh of electricity for conventional generation compo-
nents. For generation components such as the PV solar system and
wind turbines, CIgent is zero. Pgen,losst is the loss power associated with
an effective power generation Pgent at time t. Pgent does not include the
exported power. 𝛥t is the chosen simulation timestep. With this line of
thought, the operation phase emissions for PV solar system and wind
turbines are essentially zero.

𝜀𝑔𝑒𝑛,𝑜𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝐶𝐼𝑔𝑒𝑛𝑡 ⋅ 𝑃 𝑔𝑒𝑛,𝑙𝑜𝑠𝑠

𝑡 ) ⋅ 𝛥𝑡 (2)

The power generation emissions, 𝜀gen,en, are allocated to all compo-
nents either consuming or losing some of this generated energy during
transmission or storage of this energy (Eq. (3)). For non-combusting
generation components, 𝜀gen,en equals zero.

𝜀𝑔𝑒𝑛,𝑒𝑛 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝐶𝐼𝑔𝑒𝑛𝑡 ⋅ 𝑃 𝑔𝑒𝑛

𝑡 ) ⋅ 𝛥𝑡 (3)

The surplus energy produced by a generation component can also be
exported to actors outside the system boundaries. The export emissions,
𝜀gen,exp, are then obtained as follows (Eq. (4)), where Pgen,expt is the
exported generation power at time t. Here, CIgen,exp,f ix refers to the
fixed component of the emissions per unit of energy generated. These
emissions are deducted from the total emissions of the generation
component.

𝜀𝑔𝑒𝑛,𝑒𝑥𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡

(

𝐶𝐼𝑔𝑒𝑛,𝑒𝑥𝑝,𝑓 𝑖𝑥 ⋅ 𝑃 𝑔𝑒𝑛,𝑒𝑥𝑝
𝑡

)

𝛥𝑡 (4)

CIgen,exp,f ix is defined as in Eq. (5). CFgen is the expected capacity
factor for the generator at the specified location, Pgen,rated is the rated
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Fig. 2. Block diagram of a generation component depicting the power flows, emissions
categories, and carbon intensities.

peak power, and 𝑙𝑔𝑒𝑛 is the expected service lifetime of the generation
component.

𝐶𝐼𝑔𝑒𝑛,𝑒𝑥𝑝,𝑓 𝑖𝑥 = 𝜀𝑔𝑒𝑛,𝑝𝑟𝑜𝑑 + 𝜀𝑔𝑒𝑛,𝐸𝑂𝐿

𝐶𝐹 𝑔𝑒𝑛 ⋅ 𝑃 𝑔𝑒𝑛,𝑟𝑎𝑡𝑒𝑑 ⋅ 𝑙𝑔𝑒𝑛
(5)

The exported energy has a carbon intensity, CIgen,expt , given by
Eq. (6). The second term indicates the operation emissions associated
with the generation of each unit of energy, where 𝜂gent is the efficiency
of the generation component at time t. These operation emissions are
also reallocated to actors beyond the system boundaries. This second
term is zero in the case of PV systems and wind turbines. Only the
fixed component is considered.

𝐶𝐼𝑔𝑒𝑛,𝑒𝑥𝑝𝑡 = 𝐶𝐼𝑔𝑒𝑛,𝑒𝑥𝑝,𝑓 𝑖𝑥 +
𝐶𝐼𝑔𝑒𝑛𝑡

𝜂𝑔𝑒𝑛𝑡
(6)

ESN currently supports the calculation of export emissions for re-
newable generation components.

2.3. Grid components

Grid components emulate the functioning of grid connections or
limited grid sections. Each grid component exhibits the attributes listed
in Table 1. If the grid component is included in the system boundaries,
the lifecycle emissions associated with it, 𝜀gr , are given by Eq. (7),
where 𝜀gr,prod, 𝜀gr,op, and 𝜀gr,EOL, are the production, operation, and
EOL phase emissions respectively. If a grid component is to be mod-
eled purely as a grid connection, it is considered outside the system
boundaries, with the connection itself enabling the import and export
of power from the larger grid. In this case, no production and EOL
emissions are associated with the grid component. If the grid com-
ponent is excluded from the system boundary, 𝜀gr is merely equal to
𝜀gr,op. Export emissions, 𝜀gr,exp, are associated with the exported energy.
This is discussed towards the end of this sub-section. Fig. 3 depicts the
power flows and emissions associated with a grid component within
and outside the system boundaries.

𝜀𝑔𝑟 = 𝜀𝑔𝑟,𝑝𝑟𝑜𝑑 + 𝜀𝑔𝑟,𝑜𝑝 + 𝜀𝑔𝑟,𝐸𝑂𝐿 − 𝜀𝑔𝑟,𝑒𝑥𝑝 (7)

The total operation phase emissions, 𝜀gr,op, are calculated as follows,
where CIgrt is the carbon intensity of the energy transported by the
grid component. Pgr,losst is the loss power associated with the effective
imported grid power, Pgrt , at time t.

𝜀𝑔𝑟,𝑜𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝐶𝐼𝑔𝑟𝑡 ⋅ 𝑃 𝑔𝑟,𝑙𝑜𝑠𝑠

𝑡 ) ⋅ 𝛥𝑡 (8)

The grid energy import emissions, 𝜀gr,en, are allocated to all compo-
nents either consuming or losing some of this imported energy during
storage (Eq. (9)).

𝜀𝑔𝑟,𝑒𝑛 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝐶𝐼𝑔𝑟𝑡 ⋅ 𝑃 𝑔𝑟

𝑡 ) ⋅ 𝛥𝑡 (9)

Fig. 3. Block diagram of a grid component depicting the power flows, emissions
categories, and carbon intensities.

The export emissions to be deducted from the total emissions of the
grid component are given by Eq. (10). CIgr,exp,f ix is the fixed component
of the export emissions, and Pgr,expt represents the export power. A
scheme to determine this fixed component, considering grid component
production and EOL emissions, could also be devised, similar to the
generation components. Given the high durability, correspondingly
long service lifetimes, and ubiquitousness of grid components, this
value is estimated to be negligible and is hence not considered further.
Moreover, for grid components treated as mere grid connections, the
value of CIgr,exp,f ix would be zero, in any case, as the production and
EOL phase emissions are also zero.

𝜀𝑔𝑟,𝑒𝑥𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡

(

𝐶𝐼𝑔𝑟,𝑒𝑥𝑝,𝑓 𝑖𝑥 ⋅ 𝑃 𝑔𝑟,𝑒𝑥𝑝
𝑡

)

𝛥𝑡 (10)

Depending on the sources of the exported energy, the carbon in-
tensity of the exported energy, CIES,expt , is calculated below (Eq. (11)),
where m is the number of generation components, and n is the number
of storage components.

𝐶𝐼𝐸𝑆,𝑒𝑥𝑝
𝑡 =

∑𝑚
𝑖=1 𝑃

𝑔𝑒𝑛,𝑒𝑥𝑝,𝑖
𝑡 ⋅ 𝐶𝐼𝑔𝑒𝑛,𝑒𝑥𝑝,𝑖𝑡 +

∑𝑛
𝑗=1 𝑃

𝑠𝑡,𝑑𝑐ℎ,𝑒𝑥𝑝,𝑗
𝑡 ⋅ 𝐶𝐼𝑠𝑡,𝑒𝑥𝑝,𝑗𝑡

∑𝑚
𝑖=1 𝑃

𝑔𝑒𝑛,𝑒𝑥𝑝,𝑖
𝑡 +

∑𝑛
𝑗=1 𝑃

𝑠𝑡,𝑑𝑐ℎ,𝑒𝑥𝑝,𝑗
𝑡

(11)

The carbon intensity of the exported energy through the grid com-
ponent, CIgr,expt , taking into account the additional emissions due to the
operation losses in the grid section, is calculated as in Eq. (12), where
𝜂grt is the efficiency of the grid component at time t.

𝐶𝐼𝑔𝑟,𝑒𝑥𝑝𝑡 = 𝐶𝐼𝑔𝑟,𝑒𝑥𝑝,𝑓 𝑖𝑥 +
𝐶𝐼𝐸𝑆,𝑒𝑥𝑝

𝑡

𝜂𝑔𝑟𝑡
(12)

As it is cumbersome and infeasible to track the portion of ex-
ported energy first imported, Eq. (12) contains only a single efficiency
term, corresponding to the losses in the export process, instead of
two efficiency terms, as in the case of storage components. ESN does
not currently support the calculation of export emissions for the grid
components.

2.4. Storage components

Storage components model the characteristics of an energy storage
system. The attributes of these components are listed in Table 1. The
total emissions across the lifetime of a storage component, 𝜀st , consist
of the production, operation, and EOL phases (Eq. (13)), represented
by 𝜀st,prod, 𝜀st,op, and 𝜀st,EOL respectively. If a portion of the discharged
energy is exported outside the system boundaries, a corresponding
amount of emissions 𝜀st,exp is deducted from 𝜀st . This is discussed
towards the end of this sub-section. Fig. 4 depicts the power flows
and emissions associated with a storage component within the system
boundaries.

𝜀𝑠𝑡 = 𝜀𝑠𝑡,𝑝𝑟𝑜𝑑 + 𝜀𝑠𝑡,𝑜𝑝 + 𝜀𝑠𝑡,𝐸𝑂𝐿 − 𝜀𝑠𝑡,𝑒𝑥𝑝 (13)
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Fig. 4. Block diagram of a storage component, depicting the power flows, emissions
categories, and carbon intensities.

The operations emissions of the charging process are proportional
to the charging losses, Pch,losst , of the storage component and the carbon
intensity of the charging energy CIcht . In the simplest case, CIcht could
be equal to the carbon intensity of the central energy system node
CIESt (Eq. (14)). In other cases, the storage might only be charged from
energy sourced solely from one or more sources, in which case, CIcht
might need to be determined separately.

𝐶𝐼𝐸𝑆
𝑡 =

∑𝑚
𝑖=1 𝑃

𝑔𝑒𝑛,𝑖
𝑡 ⋅ 𝐶𝐼𝑔𝑒𝑛,𝑖𝑡 + 𝐶𝐼𝑔𝑟𝑡 ⋅ 𝑃 𝑔𝑟

𝑡
∑𝑚

𝑖=1 𝑃
𝑔𝑒𝑛,𝑖
𝑡 + 𝑃 𝑔𝑟

𝑡

(14)

The operation phase emissions during discharge are proportional
to discharge losses, Pdch,losst , and the SOCI, a new state variable, first
introduced in a previous study [43]. The SOCI is defined as follows in
Eq. (15), where SOCIt and SOCt are the values of the SOCI and SOC
variables at time t.

𝑆𝑂𝐶𝐼𝑡+1 =
𝑆𝑂𝐶𝐼𝑡 ⋅ 𝑆𝑂𝐶𝑡 + 𝛥𝑆𝑂𝐶 ⋅ 𝐶𝐼𝑐ℎ𝑡

𝑆𝑂𝐶𝑡+1
(15)

The total operation emissions 𝜀st,op for the storage component con-
sist of the operation emissions in the charging and the discharging
processes. 𝜀st,op is then obtained as the sum of emissions in the charging
and discharging processes.

𝜀𝑠𝑡,𝑜𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝐶𝐼𝑐ℎ𝑡 ⋅ 𝑃 𝑐ℎ,𝑙𝑜𝑠𝑠

𝑡 + 𝑆𝑂𝐶𝐼𝑡 ⋅ 𝑃
𝑑𝑐ℎ,𝑙𝑜𝑠𝑠
𝑡 ) ⋅ 𝛥𝑡 (16)

The export emissions to be deducted from the total emissions of
the storage component are given by Eq. (17). The first term in the
sum, CIst,exp,f ix, represents a reallocation of the fixed component of the
storage component emissions, whereas the second term indicates the re-
allocation of the operation emissions associated with the charging and
discharging of the exported energy. It is assumed that the discharged
exported energy was charged with a carbon intensity equal to SOCIt ,
with an efficiency equal to the average charging efficiency 𝜂st,ch. 𝜂st,dcht
refers to the instantaneous discharging efficiency, and Pst,dch,expt refers
to the exported discharge power at time t.

𝜀𝑠𝑡,𝑒𝑥𝑝 =
∑𝑒𝑛𝑑

𝑡=𝑠𝑡𝑎𝑟𝑡

[(

𝐶𝐼𝑠𝑡,𝑒𝑥𝑝,𝑓 𝑖𝑥 + 𝑆𝑂𝐶𝐼𝑡 ⋅
(

1
𝜂𝑠𝑡,𝑐ℎ𝜂𝑠𝑡,𝑑𝑐ℎ𝑡

− 1
))

⋅ 𝑃 𝑠𝑡,𝑑𝑐ℎ,𝑒𝑥𝑝
𝑡

]

𝛥𝑡

(17)

CIst,exp,f ix is defined as in Eq. (18), where Est,dch
l is the total energy

discharged by the storage technology over its service life. An estimate
of this quantity can be obtained through prior simulations based on ac-
curately parameterized battery degradation models or approximations

Fig. 5. Block diagram of a load component depicting the power flows, emissions
categories, and carbon intensities.

based on values provided in datasheets. The carbon intensity of the
exported energy, CIst,expt , can then be simplified and written as follows
(Eq. (19)).

𝐶𝐼𝑠𝑡,𝑒𝑥𝑝,𝑓 𝑖𝑥 = 𝜀𝑠𝑡,𝑝𝑟𝑜𝑑 + 𝜀𝑠𝑡,𝐸𝑂𝐿

𝐸𝑠𝑡,𝑑𝑐ℎ
𝑙

(18)

𝐶𝐼𝑠𝑡,𝑒𝑥𝑝𝑡 = 𝐶𝐼𝑠𝑡,𝑒𝑥𝑝,𝑓 𝑖𝑥 +
𝑆𝑂𝐶𝐼𝑡

𝜂𝑠𝑡,𝑐ℎ ⋅ 𝜂𝑠𝑡,𝑑𝑐ℎ𝑡

(19)

ESN does not currently support the calculation of export emissions
for the storage components.

2.5. Load components

Load components approximate the functioning of power consumers.
Each load component exhibits the attributes listed in Table 1. The
load power, Ploadt , supplied to the load can be divided into the actual
power consumed by the end application, Pload,ct , and the power lost to
conversion processes, Pload,losst , for example in the charger of an EV (eq,
(20)) (see Fig. 5).

𝑃 𝑙𝑜𝑎𝑑
𝑡 = 𝑃 𝑙𝑜𝑎𝑑,𝑐

𝑡 + 𝑃 𝑙𝑜𝑎𝑑,𝑙𝑜𝑠𝑠
𝑡 (20)

Over the simulated period, the total emissions allocated to a load
component, 𝜀load, are given by Eq. (21), where 𝜀LEC are the Load Energy
Consumption (LEC) emissions, and 𝜀load,op are the operation emissions
assigned to the load (if required). The carbon intensity of the energy at
the central node, CIESt , is calculated as in Eq. (14). The total operation
phase emissions of the load component are calculated as the sum of the
products of the load loss power Pload,losst and the carbon intensity of the
energy consumed by the load, CIESt (Eq. (23)).

𝜀𝑙𝑜𝑎𝑑 = 𝜀𝐿𝐸𝐶 + 𝜀𝑙𝑜𝑎𝑑,𝑜𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝑃 𝑙𝑜𝑎𝑑

𝑡 ⋅ 𝐶𝐼𝐸𝑆
𝑡 ) ⋅ 𝛥𝑡 (21)

𝜀𝐿𝐸𝐶 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝑃 𝑙𝑜𝑎𝑑,𝑐

𝑡 ⋅ 𝐶𝐼𝐸𝑆
𝑡 ) ⋅ 𝛥𝑡 (22)

𝜀𝑙𝑜𝑎𝑑,𝑜𝑝 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝑃 𝑙𝑜𝑎𝑑,𝑙𝑜𝑠𝑠

𝑡 ⋅ 𝐶𝐼𝐸𝑆
𝑡 ) ⋅ 𝛥𝑡 (23)

The LEC emissions, 𝜀LEC, are obtained as a sum of the GENEC, the
Grid Energy Consumption (GEC), and the DEC emissions (Eq. (24)).
The Generation Energy Consumption (GENEC) emissions, 𝜀GENEC, are
the sum of emissions on account of direct consumption of energy
produced by the generators (Eq. (25)). The Grid Energy Consumption
(GEC) emissions, 𝜀GEC, are the sum of emissions on account of di-
rect consumption of energy imported from the grid (Eq. (26)). The
Discharge Energy Consumption (DEC) emissions, 𝜀DEC are the sum
of emissions on account of direct consumption of energy discharged
from the storage components (Eq. (27)). Pgen,load,it refers to the direct
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consumption of power from generation component i at time t. Pgr,loadt
represents the direct consumption of grid power at time t. Similarly,
Pst,dch,load,it signifies the direct consumption of power discharged by
storage component i at time t. By definition, the GENEC emissions for
power generated by PV solar systems and wind turbines are zero.

𝜀𝐿𝐸𝐶 = 𝜀𝐺𝐸𝑁𝐸𝐶 + 𝜀𝐺𝐸𝐶 + 𝜀𝐷𝐸𝐶 (24)

𝜀𝐺𝐸𝑁𝐸𝐶 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡

𝑚
∑

𝑖=1
(𝐶𝐼𝑔𝑒𝑛,𝑖𝑡 ⋅ 𝑃 𝑔𝑒𝑛,𝑙𝑜𝑎𝑑,𝑖

𝑡 ) ⋅ 𝛥𝑡 (25)

𝜀𝐺𝐸𝐶 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
(𝐶𝐼𝑔𝑟𝑡 ⋅ 𝑃 𝑔𝑟,𝑙𝑜𝑎𝑑

𝑡 ) ⋅ 𝛥𝑡 (26)

𝜀𝐷𝐸𝐶 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡

𝑛
∑

𝑗=1
(𝑆𝑂𝐶𝐼 𝑗𝑡 ⋅ 𝑃

𝑠𝑡,𝑑𝑐ℎ,𝑙𝑜𝑎𝑑,𝑗
𝑡 ) ⋅ 𝛥𝑡 (27)

2.6. Emissions balance and general discussion

With the quantities introduced and defined in the previous sections,
an emissions balance for the energy system within the specified system
boundaries can be obtained. This balance excludes the exported energy
and only considers the actual energy quantities consumed or lost within
the system boundaries (Eq. (28)), where p is the number of load
components in the energy system.

𝑃 𝑔𝑟,𝑖𝑚𝑝
𝑡 ⋅ 𝐶𝐼𝑔𝑟𝑡 +

𝑚
∑

𝑖=1

𝑃 𝑔𝑒𝑛,𝑖
𝑡

𝜂𝑔𝑒𝑛,𝑖𝑡

𝐶𝐼𝑔𝑒𝑛,𝑖𝑡

= 𝜀𝑔𝑟,𝑜𝑝𝑡 +
𝑚
∑

𝑖=1
𝜀𝑔𝑒𝑛,𝑜𝑝,𝑖𝑡 +

𝑛
∑

𝑗=1
𝜀𝑠𝑡,𝑜𝑝,𝑗𝑡 +

𝑝
∑

𝑘=1
(𝜀𝐿𝐸𝐶,𝑘

𝑡 + 𝜀𝑙𝑜𝑎𝑑,𝑜𝑝,𝑘𝑡 ) (28)

From the presented mathematical framework, from an allocation
perspective, emissions during the operation phase can:

1. originate within the system boundaries (e.g., from a combustion-
based generator)

2. enter the system boundaries from a source beyond the system
boundaries (e.g., through a grid connection)

3. terminate at one or more components within the system bound-
aries (e.g., operation and energy consumption emissions)

4. exit the system boundaries and terminate at components outside
the system boundaries (via exported energy)

Production phase and EOL phase emissions of all components within
the system boundaries are allocated to the energy system. Some emis-
sions are deducted from each component due to the exported energy.
The choice of system boundaries depends on the purpose of a simula-
tion. If the sole purpose of a simulation is to compare two competing
system configurations, all common fixed elements may be disregarded,
as these merely introduce a fixed offset in both analyses. In this case,
the LEES values of the two competing configurations do not reflect
absolute values but help determine the delta in this case. If some energy
system components have a service lifetime longer than the simulated
duration and are expected to still possess a so-called Remaining Useful
Life (RUL), specific adjustments can be made to deduct a suitably
determined quantity of emissions. The same applies to components that
need to be replaced during the simulated duration and do not reach
their EOL by the end of the simulated period. Table 2 lists the emissions
categories applicable to each class of energy system components.

2.7. Energy management

Each energy system possesses an Energy Management System
(EMS). The EMS regulates the energy flows among the various
components in an energy system by generating reference powers
for all components while considering the specified constraints. Each
EMS consists of two blocks: an operation strategy, which defines the

Table 2
Emissions categories applicable to each energy system component class.

Emissions categories

Generation Grid Storage Load

Static
Production x x x –
End-of-life x x x –

Time-dependent

Operation x x x –
Export x x x –
Generation energy consumption – – – x
Grid energy consumption – – – x
Discharge energy consumption – – – x

logic/algorithm to govern energy flows, and a State, where values of
all parameters are logged at each time t. The state enables subsequent
analyses to be conducted after each simulation run. Two types of
strategies regulate the energy flows with the EMS: rule-based and
optimization-based strategies. The modular nature of ESN allows for
the incorporation of new tailor-made rule-based and optimization-
based strategies to suit the specific requirement of the user and the
use case to be simulated.

2.7.1. Rule-based strategies
Rule-based strategies regulate the energy flows among components

of the energy system based on a set of sequential commands or rules
that depend on certain conditions being met. Three available rule-based
strategies in ESN are discussed in the following sub-sections.

SimpleDeficitCoverage. The EMS strategy SimpleDeficitCoverage relies on
a specified priority list of energy system components to meet the load
power demand. The power generation of the must-run generation com-
ponents (generation from PV solar and wind is also classified as such
in many jurisdictions) is factored in first at every timestep (Eq. (29)).
Presidualt refers to the residual power after factoring in the must-run
generation, whereas Pgen,must−run

t refers to the total generation power
of all must-run generation components. Users can then specify which
energy system component is to be used first, second, or third to meet
the residual demand. The default priority list is as follows:

(I) Storage components
(II) Grid components

(III) Can-run generation components

With the default specification, the strategy attempts to meet the
residual load first with discharged energy from the storage components.
If available, the power is drawn from the grid components next. If
further power is required, can-run generation components (such as the
diesel generator) are run to deliver the demanded power (Eq. (30)).
Here Pgen,can−runt refers to the total can-run generation power requested.

𝑃 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑡 = 𝑃 𝑙𝑜𝑎𝑑

𝑡 − 𝑃 𝑔𝑒𝑛,𝑚𝑢𝑠𝑡−𝑟𝑢𝑛
𝑡 (29)

(𝑃 𝑠𝑡,𝑑𝑐ℎ
𝑡 )𝐼 + (𝑃 𝑔𝑟

𝑡 )𝐼𝐼 + (𝑃 𝑔𝑒𝑛,𝑐𝑎𝑛−𝑟𝑢𝑛
𝑡 )𝐼𝐼𝐼 = 𝑃 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑡 (30)

The same priority is used to regulate the order of absorption of
surplus generation from the must-run generation components. In the
default setting, surplus generation is used to charge the storage com-
ponents before being fed back into the grid. This strategy has been
successfully demonstrated to control the energy system components
operating in an island grid [44].

SimplePeakShaving. The EMS strategy SimplePeakShaving controls
power flows in energy systems with constrained grid connections.
Peak shaving is performed with a storage component that discharges
additional power in parallel to meet the peak power demand. Must-
run generation components can also be included. If the load power
exceeds the rated power rating of the grid connection (and possibly
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power generated by the must-run components), the residual load is
met by discharging energy from the storage component. The storage
component is recharged at maximum available power as soon as the
load power goes below the rated grid power, and grid capacity is
available to recharge the storage component (Eq. (31)).

𝑃 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑡 = 𝑃 𝑙𝑜𝑎𝑑

𝑡 − 𝑃 𝑔𝑟
𝑡 (31)

This strategy has been successfully demonstrated in the provision of
peak shaving service for EV high-power charging stations [43].

SimSESExternalStrategy. The EMS strategy SimSESExternalStrategy is
used to operate the BESS based on power targets directly generated
by EMS strategies available in SimSES. This EMS strategy currently
supports the SimSES strategy FcrIdmRechargeStacked, which has been
presented in a previous publication [37]. This strategy generates power
targets for the BESS that react to the frequency fluctuations, allow-
ing participation in the grid frequency regulation market. Further
information on this strategy can be found in the SimSES project git
repository.

2.7.2. Optimization-based strategies
Optimization-based strategies rely on mathematical optimization,

rather than a set of rules, to determine the power targets for all en-
ergy system components. A suitably chosen objective function governs
the optimum power values at each timestep. All optimization-based
strategies in ESN currently rely on linear and mixed integer linear
optimization to obtain the optimal energy flows. Two such strategies
are discussed in the following subsections.

RHOptimization. The strategy RHOptimization regulates energy flows
by solving a Rolling Horizon (RH) optimization problem to generate
power targets for all components. The users can set the time span of
the optimization horizon (h) and the frequency of re-optimization based
on their requirements. This is a general-purpose strategy designed to
handle multiple components with the sole aim of meeting load de-
mand with the available energy system components while minimizing
the emissions over each optimization horizon. The objective function
deployed in this strategy attempts to minimize the emissions in each
optimization horizon (Eq. (32)).

min
𝑡+ℎ
∑

𝑡=𝑡

[

𝑃 𝑔𝑟
𝑡 ⋅ 𝐶𝐼𝑔𝑟𝑡 +

𝑚
∑

𝑖=1
(𝑃 𝑔𝑒𝑛,𝑖

𝑡 ⋅ 𝐶𝐼𝑔𝑒𝑛,𝑖𝑡 )

]

(32)

The following peak power constraint applies to each generation and
grid component in the energy system to formulate the optimization
problem. Pgen,peakt and Pgr,peak refer to the peak power generation ca-
pability of the generation component and the peak power capability of
the grid component, respectively, at time t (Eq. (33),(34)).

𝑃 𝑔𝑒𝑛
𝑡 ≤ 𝑃 𝑔𝑒𝑛,𝑝𝑒𝑎𝑘

𝑡 (33)

𝑃 𝑔𝑟
𝑡 ≤ 𝑃 𝑔𝑟,𝑝𝑒𝑎𝑘 (34)

The following set of constraints applies to each storage component
in the energy system and during the optimization problem formulation.
Where Pst,cht and Pst,dcht refer to the charging and discharging powers,
respectively, of the storage component at time t. Pst,peak refers to the
storage peak power, while bstt represents the binary variable used to
prevent simultaneous charging and discharging of the storage compo-
nent at time t. 𝜂st,cht refers to the charging efficiency of the storage
component at time t. Est

t represents the energy content of the storage
component at time t.

𝑃 𝑠𝑡,𝑐ℎ
𝑡 − 𝑏𝑠𝑡𝑡 ⋅ 𝑃 𝑠𝑡

𝑝𝑒𝑎𝑘 ≤ 0 (35)

𝑃 𝑠𝑡,𝑑𝑐ℎ
𝑡 + (𝑏𝑠𝑡𝑡 − 1) ⋅ 𝑃 𝑠𝑡

𝑝𝑒𝑎𝑘 ≤ 0 (36)

0 ≤ 𝑆𝑂𝐶𝑡 ≤ 1 (37)

𝑆𝑂𝐶𝑡−1 ⋅ 𝐸
𝑠𝑡
𝑡 + (𝑃 𝑠𝑡,𝑐ℎ

𝑡 ⋅ 𝜂𝑠𝑡,𝑐ℎ𝑡 −
𝑃 𝑠𝑡,𝑑𝑐ℎ
𝑡

𝜂𝑠𝑡,𝑑𝑐ℎ𝑡

) ⋅ 𝛥𝑡 = 𝑆𝑂𝐶𝑡 ⋅ 𝐸
𝑠𝑡
𝑡 (38)

𝑃 𝑠𝑡,𝑐ℎ
𝑡 ⋅ 𝜂𝑠𝑡,𝑐ℎ𝑡 ⋅ 𝛥𝑡 ≤

(

1 − 𝑆𝑂𝐶𝑡−1
)

⋅ 𝐸𝑠𝑡
𝑡 (39)

𝑃 𝑠𝑡,𝑑𝑐ℎ
𝑡

𝜂𝑠𝑡,𝑑𝑐ℎ𝑡

⋅ 𝛥𝑡 ≤ 𝑆𝑂𝐶𝑡−1 ⋅ 𝐸
𝑠𝑡
𝑡 (40)

The following energy balance constraint applies to the energy sys-
tem, ensuring that the sum of all component powers and allocations
equals zero (Eq. (41)).

𝑃 𝑔𝑟
𝑡 +

∑

𝑃 𝑠𝑡,𝑑𝑐ℎ
𝑡 +

∑

𝑃 𝑔𝑒𝑛
𝑡 = 𝑃 𝑙𝑜𝑎𝑑

𝑡 +
∑

𝑃 𝑠𝑡,𝑐ℎ
𝑡 (41)

A previous study successfully demonstrated this strategy on battery-
assisted high-power charging for EVs [43].

ArbitrageOptimization. The ArbitrageOptimization strategy determines
the scheduling of a grid-connected storage component such as BESS
participating in energy arbitrage to buy and sell power on the intraday
market. The strategy has been designed to optimize one of two objec-
tive functions — one that maximizes monetary profit and another that
maximizes the difference between the product of grid carbon inten-
sity and storage power during charging and discharging. The second
objective essentially directs the storage to charge at low grid carbon
intensity values and discharge at times of high grid carbon intensity
values. The objective functions used in the economic and emissions-
drive optimization are given in Eqs. (42) and (43) respectively. cIDMt
represents the energy price on the intraday market at time t.

max
𝑡+ℎ
∑

𝑡=𝑡

[

(𝑃 𝑠𝑡,𝑐ℎ
𝑡 + 𝑃 𝑠𝑡,𝑑𝑐ℎ

𝑡 ) ⋅ 𝑐𝐼𝐷𝑀
𝑡

]

⋅ 𝛥𝑡 (42)

max
𝑡+ℎ
∑

𝑡=𝑡

[

(𝑃 𝑠𝑡,𝑐ℎ
𝑡 + 𝑃 𝑠𝑡,𝑑𝑐ℎ

𝑡 ) ⋅ 𝐶𝐼𝑔𝑟𝑡
]

⋅ 𝛥𝑡 (43)

The storage component constraints (Eq. (35) to (40)) described
under RHOptimization are also applicable to the optimization problem
in this strategy. Further documentation and simulation examples can
be found on the project git repository.

3. Case studies with typical applications

Simulation results of selected case studies to demonstrate the quan-
tification of the total emissions over the lifecycle of an energy system
are presented and discussed in this section. As the leading energy stor-
age technology, we focus on lithium-ion Battery Energy Storage System
(BESS) technology. In Section 3.1, a typical grid-connected application
for BESSs is simulated — Energy Arbitrage. In Section 3.2, four typical
Home Energy System (HES) scenarios with electromobility, rooftop
solar, and home storage systems are simulated and discussed from the
emissions perspective. In addition to the case studies presented here,
this framework has already been successfully applied to applications
such as island grids and EV high-power charging [43,44].

3.1. Energy arbitrage

Several energy markets exist to ensure a balanced grid at all times.
BESSs can participate in these markets and provide services conve-
niently owing to their attributes. In these applications, the BESS inter-
acts solely with the grid, charging and discharging energy from and
to the grid. Typical system boundaries, power flows, and emissions
categories are depicted in Fig. 6A. As the BESS is charged solely with
power imported from the grid, the carbon intensity of the charging
energy (𝐶𝐼𝑐ℎ𝑡 ) is equal to the carbon intensity of power imported from
the grid (𝐶𝐼𝑔𝑟𝑡 ). The total emissions of the BESS across all phases is
given by 𝜀BESS.

𝜀𝐵𝐸𝑆𝑆 = 𝜀𝐵𝐸𝑆𝑆,𝑝𝑟𝑜𝑑 + 𝜀𝐵𝐸𝑆𝑆,𝑜𝑝 + 𝜀𝐵𝐸𝑆𝑆,𝐸𝑂𝐿 (44)
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Fig. 6. C: Power flows and emissions categories for a typical grid-connected storage application. B: Depiction of the monthly energy price spreads on the Intraday Market over
one year. C: Monthly variation in the Grid carbon intensity (CIgrt ) over the selected year. Data for Germany for the year 2019.

Fig. 7. A, B: Distributions of SOC and DOC values respectively in scenarios A1 and A2 over the simulated period. C: Distribution of the State of Carbon Intensity (SOCI) values
in scenarios A1 and A2 over the simulated period. D: Change in the battery SOH over the simulated period and shares of calendric and cyclic aging in scenarios A1 and A2.
E: Cumulative emissions for the two scenarios over the simulated period. F: Evolution of the Levelized Emissions of Energy Supply (LEES) value for the two scenarios over the
simulated period. G: Breakdown of LEES values for the two scenarios into the constituent emissions categories at the end of the simulation period.

As a simplification, the grid can be considered a load, which con-
sumes energy discharged by the BESS. The LEC emissions for this
hypothetical load are solely made up of the DEC emissions (Eq. (45)).
Levelized Emissions of Energy Supply (LEES) is a useful metric to obtain
the carbon footprint of the energy supplied to a load [44]. The LEES
value for the application enables us to look at the BESS as a grid-
connected generator with a carbon intensity equal to LEES. This is akin
to a retrospective calculation of the carbon intensity of the exported
energy CIst,expt for the BESS (Eq. (46)).

𝜀𝐷𝐸𝐶 =
𝑒𝑛𝑑
∑

𝑡=𝑠𝑡𝑎𝑟𝑡
𝑆𝑂𝐶𝐼𝑡 ⋅ 𝑃

𝑠𝑡,𝑑𝑐ℎ
𝑡 ⋅ 𝛥𝑡 (45)

𝐿𝐸𝐸𝑆 = 𝜀𝐵𝐸𝑆𝑆 + 𝜀𝐷𝐸𝐶

𝐸𝑑𝑐ℎ (46)

The price spreads on various energy markets, such as the Intra-
day and Day-Ahead markets, present energy arbitrage opportunities.
Figs. 6B,C depict the spreads in the average 15-minute prices on the
Intraday-Continuous (IDC) market and the spreads in the grid carbon
intensity for the year 2019 in Germany. The price profile used has

been generated from data obtained from the energy-charts3 project [45].
The grid carbon intensity profile is also based on data from the same
database combined with other data [43]. A conventional energy ar-
bitrage scenario (A1) to maximize economic profit is simulated in
this section alongside a novel emissions-arbitrage scenario (A2). The
scenarios demonstrate the effect of the EMS strategy on the LEES values
of the arbitrage application. The ArbitrageOptimization EMS strategy
presented earlier (Section 2.7) is used in this application. An identical
BESS system configuration is deployed in both scenarios to enable a fair
comparison (see Table 3). Table 4 presents the streamlined LCA for the
BESS system.

In scenario A1, the EMS strategy is set to generate the economically
optimal BESS dispatch schedule. The SOC values are spread across the
entire range from 0 to 1, with peaks around both 0 and 1 (depicted in
Fig. 7A). As the spread in prices is relatively narrow, with a significant
number of outliers, the BESS operates with a lot of shallow half-cycles
with a DOC peak around 0.25 (depicted in Fig. 7B). Since the strategy
responds to the spread in the energy prices, the distribution of the SOCI

3 https://energy-charts.info/
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Table 3
Battery Energy Storage System (BESS) configuration for participating in
energy arbitrage.

Energy arbitrage

Parameter Value

Cell type Lithium Iron Phosphate (LFP)
Cell format Cylindrical, 26650
Rated energy capacity (MWh) 1.6
Rated power (MW) 1.6
Initial State of Health (SOH) 100%
Battery model R-int Equivalent Circuit Model (ECM)

(based on [46,47])
Battery degradation model Semi-empirical calendric and cyclic

(based on [48,49])
Power electronics AC/DC Converter, 8 units

(based on [50–52])
Housing type 40 ft.

standard shipping container
HVAC thermal power (kW) 50
Ambient conditions Berlin
Grid section efficiency 95% (assumed)

Table 4
Streamlined LCA for a utility-scale grid-connected Battery Energy Storage System (BESS)
(based on [44]).

Battery Energy Storage System (BESS) streamlined LCA

Component Production End-of-Life (EOL) Source
(kgCO2eq) (kgCO2eq)

Cells 257592.79 −18719.48 [53,54]
Power Electronics 61535.83 −15124.78 [55–58]
Miscellaneous Electronics 25235.73 −3656.66 [55,58]
Housing 28810.92 0.00 [55]
HVAC 426.12 0.00 [59]

Sum 373601.39 −37500.91

Total 336100.48

Table 5
Simulation results for the two energy arbitrage scenarios.

Simulation results energy arbitrage

Scenario

Parameter A1 A2 𝛥%

Application

Energy bought (GWh) 14.91 7.11 −52.29
Energy sold (GWh) 11.11 5.29 −52.35
Energy costs (ke) 383.94 172.43 −55.09
Revenue (ke) 548.75 293.51 −46.51
Profit (ke) 164.81 121.08 −26.53
Cumulative emissions (tCO2) 6664.47 2630.39 −60.53
System temporal utilization (%) 86.00 31.00 −63.95
Fulfillment ratio (%) 87.86 99.60 13.36
LEES (kgCO2eq/kWh) 0.5997 0.4968 −17.15

BESS

Lifetime (y) 9 20 122.22
Round-Trip Efficiency (%) 74.53 74.43 −0.13
Remaining Capacity (%) 60 63.6 6.00
SOC (%) 43.51 37.67 −13.42
DOC (%) 46.43 90.44 94.79
Equivalent Full Cycles (EFCs) 8506.6 4063 −52.24
Mean C-rate (ch) (1/h) 0.79 0.75 −5.06
Mean C-rate (dch) (1/h) 0.84 0.77 −8.33
SOCI (gCO2eq/kWh) 388.27 284.73 −26.67

values (Fig. 7C) are observed to tend towards the distribution of the
grid carbon intensity (Fig. 8A) without any preference. The BESS is
subjected to over 8500 EFCs in this application, and the EOL criterion
(SOH = 0.6) is reached in around nine years of operation. The BESS

Fig. 8. A, B: Depictions of distributions of CIcht , CIgrt during charging and CIgrt during
discharging in scenarios A1 and A2, respectively. C and D: Distributions of energy price
values during charging and discharging in scenarios A1 and A2, respectively.

loses 40% of its initial energy storage capacity within the operation
period, with over 49% of this capacity loss occurring due to cyclic
degradation mechanisms (Fig. 7D). Fig. 8A depicts the grid carbon
intensity, CIgrt during charging and discharging. As the strategy does not
take CIgrt into account, no pattern is discernible in the two distributions
during charging and discharging can be observed. Fig. 8C depicts the
energy prices during charging and discharging. It can be seen that the
EMS strategy charges and discharges the BESS at a wide range of prices.
A round-trip efficiency value of 77% is considered in the optimization
algorithm. Corresponding to this value, a minimum price difference of
around 29% between the buy and sell prices is required for the BESS
to enter into energy arbitrage.

In scenario A2, the EMS strategy is set to determine the optimal
BESS dispatch schedule to shift energy from periods of low CIgrt to
periods of high CIgrt . A BESS operating in this mode can essentially be
considered as supporting the firming of renewable energy generation.
The SOC values are skewed much stronger to the extremes with a
sparser distribution over the intervening values (Fig. 7A). The BESS
is cycled much less (over 4063 EFCs), albeit with higher DOC values
(Fig. 7B). The distribution of the SOCI values is shifted leftwards, as
the BESS specifically charges when CIgrt is low (Fig. 7C). The BESS is
cycled gentler and reaches an SOH value of around 63% at the end
of 20 years. The contribution of cyclic degradation to this capacity
loss is over 39% (Fig. 7D). Fig. 8B depicts the distributions of the
values of CIgrt during charging and discharging. A clear separation in
the two distributions can be seen, with a preference to charge when CIgrt
assumes relatively lower values and discharging at times that coincide
with higher CIgrt values. A distinct separation in the distributions of the
energy prices during charging and discharging can also be observed
here (Fig. 8D). This can be explained by the observation that the energy
prices positively correlate to the grid carbon intensity values with a
correlation coefficient of 0.6132 for 2019. With a round-trip efficiency
of around 77%, a minimum 𝛥CIgrt of around 29% is required for the
BESS to enter into the energy arbitrage.

In Fig. 7E, the cumulative emissions in scenarios A1 and A2 are
depicted. As the energy throughput in scenario A1 is higher than in
scenario A2, the variable emissions categories (DEC emissions, BESS
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Fig. 9. Power flows and emissions categories for a typical Home Energy System (HES). The four scenarios H0, H1, H2, H3 are depicted here.

operation emissions, and the grid operation emissions) rise faster than
in scenario A2. Fig. 7F depicts the evolution of the LEES values over
the simulated period. Although a lower LEES value is exhibited in
scenario A1 in the first five years, due to the higher energy throughput,
from the fifth year onward, scenario A2 exhibits a consistently lower
LEES value until the end of the simulation period. Fig. 7G depicts a
snapshot of the emissions category-wise breakdown of the LEES value
at the end of the simulated period in each scenario. Scenario A1 has
a LEES value of 0.5997 kgCO2/kWh, whereas A2 exhibits a LEES value
of 0.4968 kgCO2/kWh, which is over 17% lower than that of scenario
A1. This trend is also supported by the movement in the mean SOCI
values, which in scenario A2 is over 26% lower than in A1. Table 5
summarizes the salient numerical results of each scenario. Despite
52% lower volumes of energy sold, the profit in scenario A2 is only
about 26% lower, whereas the cumulative emissions are over 60%
lower. Figs. A.1 A,D in the appendix depict the grid carbon intensity
and the energy prices during exemplary winter and summer weeks,
respectively. Figs. A.1 and A.2 in the appendix also depict the evolution
of other parameters of interest.

3.2. Home Energy System (HES)

HESs are gaining in popularity as the prices of PV installations and
residential BESSs continue on their downward trend [63]. An additional
factor underpinning the popularity of such systems is the rise of elec-
tromobility and potential synergies. Studies in the reviewed literature
present some form of rules-based emissions-aware EMS strategies to
operate a PV-coupled BESS to increase the emissions saving [64]. This
section illustrates the modeling and simulation of four HES scenarios
(H0, H1, H2, H3) to obtain their Global Warming Potential (GWP)
footprints over an operation period of 20 years. A grid-connected
household with an EV is considered in this case study (Fig. 9). The
annual household load profile is based on a standard profile published
by the authors in a previous work [65]. This standard profile is based
on a published collection of 74 household load profiles [66]. The profile

Table 6
Battery Energy Storage System (BESS) configuration for the Home Energy System (HES).

Battery Energy Storage System (BESS) for HES

Parameter Value

Cell type Lithium Iron Phosphate (LFP)
Cell format Cylindrical, 26650
Rated energy capacity (kWh) 5
Rated power (kW) 5
Initial State of Health (SOH) 100%
Battery model R-int Equivalent Circuit Model (ECM)

(based on [46,47])
Battery degradation model Semi-empirical calendric and cyclic

(based on [48,49])
Power electronics AC/DC Converter

(based on [50])
Ambient conditions Constant temperature, no solar irradiation
Grid section efficiency 95% (assumed)

has an annual household energy consumption of around 4360 kWh. The
EV charging load profile is based on simulated data for a Volkswagen
ID.3, which is generated with data obtained from the emobpy tool and
simulated separately with SimSES. This profile has an annual energy
consumption of over 1927 kWh [67]. In general, the LEES values for
these scenarios are calculated as in Eq. (47). Es,H and Es,EV represent
the total energy supplied to the household and to the EV respectively.
Table 7 presents the streamlined LCA for the BESS and the rooftop solar
system.

𝐿𝐸𝐸𝑆 =
𝜀𝐿𝐸𝐶,𝐻 + 𝜀𝐿𝐸𝐶,𝐸𝑉 + 𝜀𝑔𝑟 + (𝜀𝑃𝑉 ) + [𝜀𝐵𝐸𝑆𝑆 ]

𝐸𝑠,𝐻 + 𝐸𝑠,𝐸𝑉 (47)

In the baseline scenario H0, we consider that the household electric
loads and the EV charging load are met entirely with power drawn from
the grid. In this case, the energy system consists of one grid component
and two load components — the household load and the EV. The
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Table 7
Streamlined LCA for the Battery Energy Storage System (BESS) and Photovoltaic Solar
(PV) solar system in the Home Energy System (HES) (based on [43,44]).

Home Energy System (HES) Streamlined LCA

Component Production End-of-Life (EOL) Source
(kgCO2eq) (kgCO2eq)

BESS

Cells 803.71 −58.41 [53,54]
Power Electronics 399.43 −47.26 [55–58]
Miscellaneous Electronics 90.56 −13.12 [55,58]

Sum 1293.70 −118.79

Total (BESS) 1174.91

Photovoltaic Solar System

Panels 5500.00 37.00 [60–62]
Power Electronics 489.80 −47.26 [55–58]

Sum 5989.80 −10.26

Total (PV system) 5979.54

EV is treated as a load component; consequently, only unidirectional
charging is permitted. Fig. 9 also depicts the baseline scenario. As there
are no storage components in this configuration, the LEC emissions
of both loads are composed solely of the GEC emissions. Another
emissions category in this configuration is the grid operation emissions
for the grid section within the system boundaries. This configuration
is simulated for 20 years, and all emissions categories are tracked. In
the numerator of Eq. (47), the bracketed quantities are not applicable
to H0. The salient numerical results for this scenario are listed in
Table 8. Cumulative emissions for H0 amount to around 59 t Carbon
Dioxide Equivalent (CO2𝑒𝑞), accompanied by a LEES value of 0.4758 kg
CO2𝑒𝑞/kWh at the end of 20 years. Fig. 10E depicts the cumulative
emissions of the energy system over the simulated period. In Fig. 10F,
the evolution of the LEES value over the simulation period is depicted.
The LEES value remains largely constant over the simulation period
in this scenario. The primary assumption of constant grid carbon in-
tensity over the 20-year period may be considered as the worst-case
scenario. The grid carbon intensity is expected to reduce year-over-year
with increasing renewable generation capacity. Fig. 10G depicts the
breakdown of this value and the contributions of the three emissions
categories.

In scenario H1, the configuration from H0 is augmented by adding
a rooftop PV solar system (Fig. 9). The installed PV solar system has a
peak power rating of 5 kWp. A standard annual PV solar power gener-
ation profile based on measured data for Munich, Germany, is used to
obtain the generated power at each simulation timestep [65,68]. The
EMS strategy SimpleDeficitCoverage regulates the power flows in this
scenario. The energy system now consists of a generation component
– the rooftop solar installation – and the components from H0. The
lifetime emissions for such a system are described in Section 2.2. The
energy generation emissions for a PV solar system are zero. Conse-
quently, the GENEC emissions for both loads are also zero. The LEC
emissions for both loads are still solely comprised of the GEC emissions.
In the numerator of Eq. (47), the quantities in the square brackets do
not apply to H1. Table 8 summarizes the important results for this
scenario. The cumulative emissions drop to over 48 t. The LEES value
drops to 0.3930 kg CO2𝑒𝑞/kWh. The drop in cumulative emissions and
the LEES value corresponds to over 17% as compared to scenario H0.
Fig. 10E depicts the cumulative emissions of the energy system over
the simulation period. Fig. 10F illustrates the trend of the LEES value
over the simulation period. The LEES value starts from a high value and
crosses the value for scenario H0 during the seventh year of operation
and maintains this downward trend till the end of the simulated period,
essentially implying that the system breaks even from an emissions
perspective at this point. Fig. 10G presents the breakdown of the LEES

Table 8
Simulation results for the four Home Energy System (HES) scenarios.

Simulation results home energy system

Scenario

Parameter H0 H1 H2 H3

Application

Energy consumed (H) (MWh) 87.38 87.38 87.38 87.38
Energy consumed (EV) (MWh) 37.40 37.40 37.40 37.40
Energy import (grid) (MWh) 124.8 95.9 74.01 81.54
𝛥% (rel. to H0) −23.18 −40.69 −34.65
PV energy (MWh) – 90.19 90.19 90.19
Energy discharged (MWh) – – 21.84 14.69
𝛥% (rel. to H2) – – −32.75
Energy export (grid) (MWh) – 61.27 34.8 43.7
𝛥% (rel. to H1) – – −43.25 −28.67
Cumulative emissions (tCO2) 58.91 48.59 40.96 36.87
𝛥% (rel. to H0) – −17.52 −30.47 −37.41
LEES (kgCO2eq/kWh) 0.4758 0.3930 0.3319 0.2991
𝛥% (rel. to H0) – −17.39 −30.24 −37.13

BESS

Lifetime (y) – – 20 20
Round-Trip Efficiency (%) – – 82.43 81.87
Remaining Capacity (%) – – 73.22 71.33
SOC (%) – – 24.82 49.41
DOC (%) – – 22.62 20.94
Equivalent Full Cycles (EFCs) – – 4952.53 3329.29
Mean C-rate (ch) (1/h) – – 0.16 0.12
Mean C-rate (dch) (1/h) – – 0.14 0.11
SOCI (gCO2eq/kWh) – – 0 0

value at the end of 20 years. The power generated by the rooftop solar
system displaces some of the grid energy, causing the GEC emissions to
be lower. The additional emissions due to the rooftop PV solar system
are offset by the drop in GEC emissions,

Scenario H2 builds upon H1 by adding a residential BESS, i.e., a
storage component is introduced in this scenario. Table 6 lists the
relevant battery parameters. The lifetime emissions for the BESS are
described in Section 2.4. For this scenario, we continue using the EMS
strategy SimpleDeficitCoverage to control the energy flows. As the BESS
is never charged with energy from the grid, the SOCI remains zero. As
a result, no operation phase emissions are associated with the BESS,
and no DEC emissions are associated with the two load components.
At the end of 20 years, the cumulative emissions add up to around 41 t
CO2𝑒𝑞. In this case, all terms in Eq. (47) are applicable, and the LEES
value is 0.3319 kg CO2𝑒𝑞/kWh. These values represent a drop of over
30% vis-a-vis H0. From Fig. 10E, it can be seen that the emissions start
at a higher value as compared to H1 due to the additional production
and EOL emissions of the BESS. After the second year of operation, the
cumulative emissions are already lower than in H1. During the fifth
year, the cumulative emissions fall below those in H0 and remain lower
till the end of the simulated period. Fig. 10F depicts the evolution of the
LEES value, and the same trend is also observed here. From Fig. 10G,
it can be seen that the additional emissions due to the production of
the BESS are more than offset by a more substantial reduction in the
GEC emissions. During the simulation period, the BESS is subjected to
over 4950 EFCs with a mean DOC of over 22%. The mean SOC during
this period is around 25%, and the SOH reaches a value of around 73%
(Figs. 10A, B, D). Fig. 10C depicts the total energy supplied to the load
and the total energy discharged from the BESS.

Scenario H3 is physically identical to H2 but is run with the RHOpti-
mization EMS strategy. Although not explicitly prohibited, the strategy
never chooses to charge the BESS with grid energy. Consequently, the
SOCI remains zero, as in H2. The operation emissions for the BESS and
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Fig. 10. A, B: Distributions of SOC and DOC values respectively in scenarios H2 and H3 over the simulated period. C: Depiction of the cumulative supplied energy for the four
Home Energy System (HES) scenarios and energy discharged in scenarios H2 nd H3 over the simulated period. D: Change in the battery SOH over the simulated period and shares
of calendric and cyclic aging in scenarios H2 and H3. E: Cumulative emissions for the four HES scenarios over the simulated period. F: Evolution of the Levelized Emissions of
Energy Supply (LEES) value for the HES scenarios over the simulated period. G: Breakdown of LEES values for the HES scenarios into the constituent emissions categories at the
end of the simulation period.

Fig. 11. Energy consumption emissions for EVs in the four HES configurations for the
three energy economy levels considered relative to the four indicative fuel economy
levels for internal combustion vehicles.

the DEC emissions for both loads are also zero. At the end of 20 years,
the cumulative emissions, in this case, add up to over 36 t, and these
are associated with a LEES of 0.2991 kg CO2𝑒𝑞/kWh. This represents
a drop of over 37% vis-a-vis H0. From Fig. 10E, it can be seen that
the emissions start at the same value as H2 but remain lower from the
get-go, reaching the lowest value among all scenarios by the end of
the simulation. The LEES trend depicted in Fig. 10F exhibits the same
behavior, with H3 attaining the lowest LEES among all scenarios. 10G
depicts a snapshot of the emissions category-wise breakdown of the

LEES value at the end of the simulated period. The lower LEES can be
attributed to the optimal scheduling of the BESS to discharge energy at
times with the highest grid carbon intensity values. This effectively re-
duces the GEC emissions of the household while marginally increasing
the GEC emissions for the EV. The net reduction, however, manages
to offset the production and EOL emissions of the PV solar system and
the BESS. Figs. B.1–B.3 in the appendix depict the evolution of some
more parameters of interest. In this scenario, the BESS is subjected to
around 3330 EFCs with a mean DOC of around 21%. The mean SOC
during this period is over 49%, and the SOH reaches a value of just
over 71% (Figs. 10A, B, D). Despite the lower number of EFCs and the
lower mean DOC than in H2, the total degradation is greater in H3,
with a larger proportion of calendric degradation. This is attributed to
the higher mean SOC, which leads to dominant calendric degradation
for this cell type. Fig. 10C depicts the total energy supplied to the load
and the total energy discharged from the BESS.

Fig. 11 depicts the energy consumption emissions of the EV for
three energy economy scenarios with each of the four scenarios per
100 km driven. The three EV energy economy scenarios considered
here are — 10 kWh/100 km, 20 kWh/100 km, and 30 kWh/100 km. The
CO2 emissions for four reference fuel-economy values for vehicles with
petrol engines are also indicated on the plot — 2 l/100 km, 4 l/100 km,
6 l/100 km, and 8 l/100 km [69,70]. These values also reflect the fuel’s
well-to-wheel emissions without considering other emissions associated
with the distribution infrastructure. It can be seen that there is barely
any difference in the values for scenarios H0 and H1. This can be
explained by the fact that the installed power of the PV system is
much lower than the peak charging power, and a substantial number
of charging events occur after sunset. There is a reduction in the EV
emissions for scenario H2, as this strategy discharges the BESS right
after it is charged, which possibly overlaps more frequently with the
EV charging events. The higher EV emissions in scenario H3 imply
that the EMS strategy optimizes for both loads taken together and is
unable to selectively supply the EV with low carbon PV solar energy

5 Techno-environmental modeling and evaluation of energy systems with ESN

67



Energy Conversion and Management 304 (2024) 118208

15

A. Parlikar et al.

while reducing the combined footprint of both the loads. Significantly,
this analysis indicates that the energy consumption emissions for a
moderately efficient EV are much lower than those for a vehicle with
a very efficient petrol engine (4 l/100 km).

4. Conclusion and outlook

This article introduces Energy System Network (ESN) — an open-
source energy system simulation program written in Python. The sup-
porting mathematical framework to enable a time-resolved, component-
wise, bottom-up calculation of the various emissions categories is
described comprehensively. Two case studies to demonstrate the us-
age of this program have also been presented. The first case study
investigates a grid-connected BESS application — energy arbitrage.
The second case study looks at a home energy system with an electric
vehicle.

An unconventional energy arbitrage strategy to shift energy from
periods of low grid carbon intensities to periods of high grid carbon
intensities has been explored in addition to the conventional profit-
driven variant. The emissions-reducing strategy attains a LEES value
over 17% lower while sacrificing 26% of the profits as compared to
the conventional energy arbitrage. This shows that while emissions-
driven energy arbitrage differs from the profit-driven variant, it is not
entirely contrary to it. These results also Future market design studies
to develop compensation mechanisms and revenue streams to incen-
tivize such energy arbitrage strategies monetarily, which could spark
exciting developments in this area. The Home Energy System (HES)
simulations show that solely drawing power from the grid entails a
lower carbon footprint in the first few years of operation while resulting
in the highest emissions over the 20-year period. Integrating a rooftop
PV solar system alone leads to a LEES reduction of over 17% and lower
emissions from the seventh year of operation. Integrating a rooftop
PV solar system coupled with a BESS home storage results in a LEES
reduction of over 30% compared to the base case and lower operation
emissions from just before the sixth year of operation. An emissions-
reducing optimal EMS strategy can unlock a further LEES reduction of
7% points vis-á-vis the base scenario, which results in lower emissions
from the fifth year of operation. For the EV in the base scenario,
the energy consumption emissions for a moderate energy economy of
20 kWh/100 km are slightly higher than the emissions attributable to an
internal combustion vehicle with an unrealistically low fuel economy
of 3 L/100 km. All other scenarios fare better than the base scenario,
if not comparably. This indicates that for the energy consumed for
mobility, the present grid energy mix already fares better than fossil
fuel combustion. This analysis does not consider the carbon footprint
of the production and EOL phases of the vehicles,

The results of the two presented case studies must be interpreted
with their limitations in mind. For both studies, perfect foresight has
been assumed for all forward-looking time series data. Real-world
forward-looking time series data will inevitably suffer from forecasting
and prediction errors. The grid carbon intensity time series profile is
assumed to remain static over the entire duration of the simulation. As
historical data reveals an enduring downward trend in the grid carbon
intensity, our assumption represents a worst-case scenario. Modeling an
evolving grid carbon intensity profile is not a trivial matter of scaling
down the entire profile by an arbitrary amount, as future values for grid
carbon intensities are highly dependent on the shares and scheduling
of participating generation technologies and the prevalent market and
policy mechanisms.

The code base of this program is open-source, enabling the sci-
entific community to use it for their own studies and possibly even
contribute to further development of features. Complementary features
from other energy system tools could also be coupled with ESN to
enhance the scope of studies possible. For instance, the grid car-
bon intensity calculation functionality available in the tool elmada
is a valuable feature [35]. The focus of this article has been limited

to single energy systems primarily centered around a single energy
form — electricity. Future functionality to support interconnected net-
works comprising multi-vector energy systems can enable studies on
multi-modal energy systems and sector coupling. Other future func-
tionalities, including sizing calculations for energy system components
and demand-side management, will enhance the program’s ability to
estimate the carbon footprint of energy systems. An economic eval-
uation suite is also conceivable for integration with the program to
complement the carbon footprint analysis.
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Appendix A. Additional plots (grid-connected applications)

See Figs. A.1 and A.2.

Appendix B. Additional plots (HES)

See Figs. B.1–B.3.
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Fig. A.1. A, D: Energy prices and grid carbon intensity evolution with respect to time for an exemplary winter and summer week, respectively. B, C: State of Charge (SOC) and
State of Carbon Intensity (SOCI) evolution with respect to time for an exemplary winter week for scenarios A1 and A2, respectively. E, F: State of Charge (SOC) and State of
Carbon Intensity (SOCI) evolution with respect to time for an exemplary summer week for scenarios A1 and A2, respectively.

Fig. A.2. A: Energy discharged from the BESS in scenarios A1 and A2. B, C: Category-wise cumulative emissions in scenarios A1 and A2, respectively.
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Fig. B.1. A, C: Power flows among energy system components for an exemplary winter week for scenarios H0 and H1, respectively. B, D: Power flows among energy system
components for an exemplary summer week for scenarios H0 and H1, respectively.

Fig. B.2. A, E: Power flows among energy system components for an exemplary winter week for scenarios H2 and H3, respectively. B, F: State of Charge (SOC) evolution with
respect to time for the exemplary winter week for scenarios H2 and H3, respectively. C, G: Power flows among energy system components for an exemplary summer week for
scenarios H2 and H3, respectively. D, H: State of Charge (SOC) evolution with respect to time for the exemplary summer week for scenarios H2 and H3, respectively.
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Fig. B.3. A, B, C, D: Category-wise cumulative emissions in scenarios H0, H1, H2, H3 respectively.

References

[1] International Renewable Energy Agency. Renewable capacity statistics
2023. Abu Dhabi: International Renewable Energy Agency; 2023, URL
https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-
/media/Files/IRENA/Agency/Publication/2023/Mar/IRENA_RE_Capacity_
Statistics_2023.pdf?rev=d2949151ee6a4625b65c82881403c2a7.

[2] DeCarolis J, Daly H, Dodds P, Keppo I, Li F, McDowall W, et al. Formal-
izing best practice for energy system optimization modelling. Appl Energy
2017;194:184–98.

[3] Hesse H, Schimpe M, Kucevic D, Jossen A. Lithium-ion battery storage for
the grid—A review of stationary battery storage system design tailored for
applications in modern power grids. Energies 2017;10(12):2107.

[4] Kebede AA, Coosemans T, Messagie M, Jemal T, Behabtu HA, van Mierlo J, et
al. Techno-economic analysis of lithium-ion and lead-acid batteries in stationary
energy storage application. J Energy Storage 2021;40:102748.

[5] International Energy Agency. Global EV outlook 2023. Paris: International Energy
Agency; 2023, URL https://www.iea.org/reports/global-ev-outlook-2023.

[6] Figgener J, Hecht C, Haberschusz D, Bors J, Spreuer KG, Kairies K-P, et al. The
development of battery storage systems in Germany: A market review (status
2023). 2023, URL http://arxiv.org/pdf/2203.06762v3.

[7] Gutsch M, Leker J. Global warming potential of lithium-ion battery energy
storage systems: A review. J Energy Storage 2022;52:105030.

[8] Brown T, Hörsch J, Schlachtberger D. PyPSA: Python for power system analysis.
J Open Res Softw 2018;6(1):4.

[9] Lund H, Thellufsen JZ, Østergaard PA, Sorknæs P, Skov IR, Mathiesen BV.
EnergyPLAN – advanced analysis of smart energy systems. Smart Energy
2021;1:100007.

[10] Lund H, Thellufsen JZ. EnergyPLAN - advanced energy systems analysis
computer model: documentation version 16.2. Aalborg: Zenodo, Sustainable
Energy Planning Research Group, Aalborg University, Denmark; 2022, http://
dx.doi.org/10.5281/zenodo.6602938, URL https://www.energyplan.eu/training/
documentation/.

[11] Pfenninger S, Pickering B. Calliope: A multi-scale energy systems modelling
framework. J Open Source Softw 2018;3(29):825.

[12] Calliope contributors listed in AUTHORS. Calliope: A multi-scale energy systems
modelling framework: Documentation. 2024, URL https://calliope.readthedocs.
io/en/stable/index.html.

[13] Eshraghi H, de Queiroz AR, DeCarolis JF. US energy-related greenhouse gas
emissions in the absence of federal climate policy. Environ Sci Technol
2018;52(17):9595–604.

[14] TEMOA Developer Team. Temoa project documentation. 2024, URL https://
temoacloud.com/temoaproject/Documentation.html.

[15] Dorfner J. Urbs: A linear optimisation model for distributed energy systems:
Documentation. 2014, URL https://urbs.readthedocs.io/en/latest/index.html.

[16] Dorfner J. Open source modelling and optimisation of energy infrastructure
at urban scale [Ph.D. thesis], Munich, Germany: Fakultät für Elektrotechnik
und Informationstechnik, Technical University of Munich; 2016, URL https:
//mediatum.ub.tum.de/1285570.

[17] Krien U, Schönfeldt P, Launer J, Hilpert S, Kaldemeyer C, Pleßmann G.
Oemof.solph—A model generator for linear and mixed-integer linear optimisation
of energy systems. Softw Impacts 2020;6:100028.

[18] Hilpert S, Kaldemeyer C, Krien U, Günther S, Wingenbach C, Plessmann G. The
open energy modelling framework (oemof) - a new approach to facilitate open
science in energy system modelling. Energy Strategy Rev 2018;22:16–25.

[19] Welder L, Ryberg D, Kotzur L, Grube T, Robinius M, Stolten D. Spatio-temporal
optimization of a future energy system for power-to-hydrogen applications in
Germany. Energy 2018;158:1130–49.

[20] FINE Developer Team. FINE - a framework for integrated energy system
assessment: Documentation. 2023, URL https://vsa-fine.readthedocs.io/en/latest/
index.html.

[21] US Department of Energy. GridLAB-D: A unique tool to design the smart grid.
2023, URL https://www.gridlabd.org/index.stm.

[22] Schneider KP, Fuller J, Tuffner F, Chen Y. Modern grid strategy: En-
hanced gridlab-d capabilities: Final report. 2009, https://www.pnnl.gov/main/
publications/external/technical_reports/PNNL-18864.pdf.

[23] Bahramara S, Moghaddam MP, Haghifam MR. Optimal planning of hybrid
renewable energy systems using HOMER: A review. Renew Sustain Energy Rev
2016;62:609–20.

[24] UL Solutions. HOMER software. 2023, URL https://www.homerenergy.com/
index.html.

[25] UL Solutions. HOMER pro 3.15: Documentation. 2023, URL https:
//www.homerenergy.com/products/pro/docs/3.15/how_homer_calculates_
emissions.html.

[26] Freeman J. Recent and planned improvements to the system advisor model
(SAM). Albuquerque, New Mexico, USA: NREL; 2019, URL https://www.nrel.
gov/docs/fy22osti/74214.pdf.

[27] Blair N, DiOrio N, Freeman J, Gilman P, Janzou S, Neises T, et al. System
advisor model (sam) general description (version 2017.9.5). 2018, https://www.
nrel.gov/docs/fy18osti/70414.pdf.

[28] Electric Power Research Institute. DER VET user guide. EPRI; 2022, URL https:
//storagewiki.epri.com/index.php/DER_VET_User_Guide.

[29] Langiu M. COMANDO documentation. 2020, URL https://comando.readthedocs.
io/en/latest/index.html.

[30] Langiu M, Shu DY, Baader FJ, Hering D, Bau U, Xhonneux A, et al. COMANDO: A
next-generation open-source framework for energy systems optimization. Comput
Chem Eng 2021;152:107366.

[31] Weniger J, Tjaden T, Orth N, Maier S. Performance simulation model for PV-
battery systems (PerMod): Documentation. Version 2.1. Research group Solar
Storage Systems, University of Applied Sciences Berlin; 2020, URL https://solar.
htw-berlin.de/wp-content/uploads/HTW-PerMod-Dokumentation.pdf.

[32] Atabay D. An open-source model for optimal design and operation of industrial
energy systems. Energy 2017;121:803–21.

[33] Atabay D. Ficus: A (mixed integer) linear optimisation model for local energy
systems: Documentation. 2015, URL https://ficus.readthedocs.io/en/latest/.

[34] Fleschutz M, Bohlayer M, Braun M, Murphy MD. Demand response analysis
framework (DRAF): An open-source multi-objective decision support tool for
decarbonizing local multi-energy systems. Sustainability 2022;14(13):8025.

[35] Fleschutz M, Murphy M. Elmada: Dynamic electricity carbon emission factors
and prices for europe. J Open Source Softw 2021;6(66):3625.

[36] Smith K, Gasper P. BLAST: Battery lifetime analysis and simulation tool suite.
NREL; 2023, URL https://www.nrel.gov/transportation/blast.html.

[37] Möller M, Kucevic D, Collath N, Parlikar A, Dotzauer P, Tepe B, et al. SimSES:
A holistic simulation framework for modeling and analyzing stationary energy
storage systems. J Energy Storage 2022;49:103743.

[38] Hall LM, Buckley AR. A review of energy systems models in the UK: Prevalent
usage and categorisation. Appl Energy 2016;169:607–28.

[39] Lopion P, Markewitz P, Robinius M, Stolten D. A review of current challenges and
trends in energy systems modeling. Renew Sustain Energy Rev 2018;96:156–66.

[40] Pfenninger S, Hawkes A, Keirstead J. Energy systems modeling for twenty-first
century energy challenges. Renew Sustain Energy Rev 2014;33:74–86.

[41] Prina MG, Manzolini G, Moser D, Nastasi B, Sparber W. Classification and
challenges of bottom-up energy system models - a review. Renew Sustain Energy
Rev 2020;129:109917.

[42] Pellow MA, Ambrose H, Mulvaney D, Betita R, Shaw S. Research gaps in
environmental life cycle assessments of lithium ion batteries for grid-scale
stationary energy storage systems: End-of-life options and other issues. Sustain
Mater Technol 2020;23:e00120, URL http://www.sciencedirect.com/science/
article/pii/S2214993718302318.

[43] Parlikar A, Schott M, Godse K, Kucevic D, Jossen A, Hesse H. High-power
electric vehicle charging: Low-carbon grid integration pathways with sta-
tionary lithium-ion battery systems and renewable generation. Appl Energy
2023;333:120541.

[44] Parlikar A, Truong CN, Jossen A, Hesse H. The carbon footprint of island grids
with lithium-ion battery systems: An analysis based on levelized emissions of
energy supply. Renew Sustain Energy Rev 2021;149:111353.

5 Techno-environmental modeling and evaluation of energy systems with ESN

71



Energy Conversion and Management 304 (2024) 118208

19

A. Parlikar et al.

[45] Fraunhofer Institute for Solar Energy Systems ISE. In: Burger B, editor. Electricity
generation in Germany 2019. Freiburg, Germany: Fraunhofer Institute for Solar
Energy Systems ISE; 2019, URL https://energy-charts.info/charts/power/chart.
htm?l=en&c=DE&stacking=stacked_absolute_area&year=2019&interval=year.

[46] Schimpe M, von Kuepach ME, Naumann M, Hesse HC, Smith K, Jossen A.
Comprehensive modeling of temperature-dependent degradation mechanisms in
lithium iron phosphate batteries. J Electrochem Soc 2018;165(2):A181–93.

[47] Schimpe M, Becker N, Lahlou T, Hesse HC, Herzog H-G, Jossen A. Energy
efficiency evaluation of grid connection scenarios for stationary battery energy
storage systems. Energy Procedia 2018;155:77–101.

[48] Naumann M, Schimpe M, Keil P, Hesse HC, Jossen A. Analysis and modeling
of calendar aging of a commercial LiFePO4/graphite cell. J Energy Storage
2018;17:153–69.

[49] Naumann M, Spingler FB, Jossen A. Analysis and modeling of cycle aging of a
commercial LiFePO4/graphite cell. J Power Sources 2020;451:227666.

[50] Notton G, Lazarov V, Stoyanov L. Optimal sizing of a grid-connected PV
system for various PV module technologies and inclinations, inverter efficiency
characteristics and locations. Renew Energy 2010;35(2):541–54.

[51] Schimpe M, Naumann M, Truong N, Hesse HC, Santhanagopalan S, Saxon A,
et al. Energy efficiency evaluation of a stationary lithium-ion battery container
storage system via electro-thermal modeling and detailed component analysis.
Appl Energy 2018;210:211–29.

[52] Parlikar A, Hesse H, Jossen A. Topology and efficiency analysis of utility-
scale battery energy storage systems. In: Proceedings of the 13th international
renewable energy storage conference 2019. IRES 2019, 2019, URL https://www.
atlantis-press.com/proceedings/ires-19/125923324.

[53] Baumann M, Peters JF, Weil M, Grunwald A. CO 2 footprint and life-cycle costs
of electrochemical energy storage for stationary grid applications. Energy Technol
2017;5(7):1071–83.

[54] Mohr M, Peters JF, Baumann M, Weil M. Toward a cell–chemistry specific
life cycle assessment of lithium–ion battery recycling processes. J Ind Ecol
2020;24(6):1310–22.

[55] Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B. The
ecoinvent database version 3 (part i): Overview and methodology. Int J Life
Cycle Assess 2016;21(9):1218–30.

[56] Hu A, Huang L, Lou S, Kuo C-H, Huang C-Y, Chian K-J, et al. Assessment of the
carbon footprint, social benefit of carbon reduction, and energy payback time of
a high-concentration photovoltaic system. Sustainability 2017;9(1):27.

[57] de Simón Martín M, Díez-Mediavilla M, Alonso-Tristán C. Real energy payback
time and carbon footprint of a GCPVS. AIMS Energy 2017;5(1):77–95.

[58] Bulach W, Schüler D, Sellin G, Elwert T, Schmid D, Goldmann D, et al. Electric
vehicle recycling 2020: Key component power electronics. Waste Manag Res : J
Int Solid Wastes Public Clean Assoc ISWA 2018;36(4):311–20.

[59] Ylmén P, Peñaloza D, Mjörnell K. Life cycle assessment of an office building
based on site-specific data. Energies 2019;12(13):2588.

[60] Reich NH, Alsema EA, van Sark W, Turkenburg WC, Sinke WC. Greenhouse
gas emissions associated with photovoltaic electricity from crystalline sili-
con modules under various energy supply options. Prog Photovolt, Res Appl
2011;19(5):603–13.

[61] Latunussa CE, Ardente F, Blengini GA, Mancini L. Life cycle assessment of
an innovative recycling process for crystalline silicon photovoltaic panels. Sol
Energy Mater Sol Cells 2016;156:101–11.

[62] Reese MO, Glynn S, Kempe MD, McGott DL, Dabney MS, Barnes TM, et
al. Increasing markets and decreasing package weight for high-specific-power
photovoltaics. Nat Energy 2018;3(11):1002–12.

[63] Figgener J, Hecht C, Haberschusz D, Bors J, Spreuer KG, Kairies K-P, et al. The
development of battery storage systems in Germany: A market review (status
2023). 2022, arXiv.

[64] Sun S, Crossland A, Chipperfield A, Wills R. An emissions arbitrage algorithm
to improve the environmental performance of domestic PV-battery systems.
Energies 2019;12(3):560.

[65] Kucevic D, Tepe B, Englberger S, Parlikar A, Mühlbauer M, Bohlen O, et al.
Standard battery energy storage system profiles: Analysis of various applications
for stationary energy storage systems using a holistic simulation framework. J
Energy Storage 2020;28:101077.

[66] Tjaden T, Bergner J, Weniger J, Quaschning V. Repräsentative elektrische
Lastprofile für Wohngebäude in Deutschland auf 1-sekündiger Datenbasis.
Berlin, Germany: HTW Berlin - University of Applied Sciences; 2015,
URL https://solar.htw-berlin.de/wp-content/uploads/HTW-Repraesentative-
elektrische-Lastprofile-fuer-Wohngebaeude.pdf.

[67] Gaete-Morales C, Kramer H, Schill W-P, Zerrahn A. An open tool for creating
battery-electric vehicle time series from empirical data, emobpy. Sci Data
2021;8(1):152.

[68] Zeh A, Witzmann R. Operational strategies for battery storage systems in low-
voltage distribution grids to limit the feed-in power of roof-mounted solar power
systems. Energy Procedia 2014;46:114–23.

[69] The ERM International Group Limited. Bp target neutral: Global online
travel calculator: Method for calculating greenhouse gas emissions.
2021, https://www.bp.com/bptargetneutralnavapp/consumer/bpTN_Online%
20Travel%20GHG%20Emissions%20Calculator_Updated%20Methodology%
20Statement_01July2021.961acd71.pdf.

[70] Prussi M, Yugo M, De Prada L, Padella M, Edwards R. JEC well-to-wheels
report v5: Anticipation and foresight, technical guidance. In: KJ-NA-30284-EN-N
(online). Luxembourg (Luxembourg): Publications Office of the European Union;
2020.

5 Techno-environmental modeling and evaluation of energy systems with ESN

72



6 The carbon footprint of Li-ion BESSs operating in
island grids

This study evaluates the carbon footprint of integrating lithium-ion BESSs within isolated island grid
energy systems. This evaluation is particularly relevant to the current times, given the global tran-
sition towards renewable energy sources, which, while sustainable, introduce intermittency challenges
that a BESS is particularly well-suited to address. This study makes use of both the SimSES and
ESN modeling frameworks described in the earlier chapters to simulate the BESS and energy system,
respectively. The core of the research introduces two innovative metrics: Levelized Emissions of En-
ergy Supply (LEES) and the reduction in emissions per additional unit of energy storage capacity (R).
These metrics serve as tools for quantifying the carbon footprint reduction achievable through the
strategic deployment of BESS, offering a nuanced understanding of the environmental implications of
such integrations.

The methodology of this study encompasses a simplified LCA of a utility-scale lithium-ion BESS,
spanning production, operation, and end-of-life phases within the context of an island grid system.
The island grid model simulated includes renewable energy sources (photovoltaic and wind turbines), a
diesel generator for backup, and varied configurations of BESS. These simulations evaluate the impact
of different BESS configurations on the system’s carbon footprint, providing insights into the optimal
setups for maximizing environmental benefits. The highlights of this study are:

• The carbon footprints for producing, operating, and decommissioning lithium-ion BESS in island
grids

• Effectiveness of lithium-ion BESS at reducing the net GHG emissions of island grid energy
systems

• A methodology to accurately ascertain the effect of BESS integration on the carbon footprint of
island grids

• Energy storage capacities to be installed to maximize emissions reduction and justify the re-
sources invested

• Identification of isolated energy systems to be prioritized for the incorporation of additional
energy storage capacity based on their potential for emission reduction

The findings from the simulations underscore a consistent theme: integrating BESS into island grids
invariably leads to a reduction in the GHG emissions, with certain configurations enabling nearly a 50%
reduction compared to scenarios devoid of energy storage. The LEES and R metrics prove instrumental
in this analysis, highlighting the variation in effectiveness across different BESS configurations. This
approach not only facilitates a clearer understanding of the environmental impact of BESS but also
aids in identifying configurations that offer the greatest emissions reduction for the resources invested.
While energy storage generally leads to lower emissions, the extent of emission reduction depends
significantly on the capacity and configuration of the storage system. The results suggest a diminishing
return on emission reductions as the storage capacity increases beyond a certain threshold, indicating
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an optimal range for BESS capacity.

In conclusion, this work helps to establish a methodological framework for assessing the carbon foot-
print reduction afforded by BESS in island grid energy systems. The limitations of the current study
include the scope of the life cycle analysis and the geographic and system-specific assumptions that
may not generalize across all island grids. The authors suggest that future research could expand the
environmental assessment to include more comprehensive life cycle analyses and explore the impact
of other renewable and storage technologies. Future research could further refine these methodologies
and build upon them.
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A B S T R A C T

Electrical energy storage systems are key to the integration of intermittent renewable energy technologies such
as photovoltaic solar systems and wind turbines. As installed battery energy storage system capacities rise, it
is crucial that the environmental impacts of these systems are also positive. In this work, a methodology to
ascertain the effect and effectiveness of integration of energy storage on the carbon footprint of isolated island
grid energy systems and its reduction is presented. Two metrics are introduced — the Levelized Emissions of
Energy Supply (LEES), and the reduction in emissions per additional unit of energy storage (R). The proposed
methodology is applied to an island grid scenario to ascertain the variation in the LEES value with the peak
power and energy storage capacity of the BESS. A simplified LCA of a utility-scale Lithium-ion BESS is also
carried out for this purpose. It is found that for the considered scenarios, incorporation of battery systems is
always effective in reducing emissions, with a maximum possible reduction of nearly 50% compared to no
storage. With the help of the metric R, the proposed methodology is also useful in identifying isolated energy
systems which should be prioritized for incorporation of additional energy storage capacity.

1. Introduction

The global shift from fossil-based energy sources toward clean
energy produced by renewable energy sources is now well underway
with installed renewable generation capacity worldwide, having more
than doubled in the last decade of 2010–19, standing at an impressive
2, 532, 866 MW at the end of 2019 [1]. As the share of installed capaci-
ties of intermittent power generators such as PV and WTs in the global
energy system rises, provisioning of measures to ensure quality and
security of energy supply at a larger scale becomes inevitable. These
measures include time-shifting of renewable energy generation — en-
suring supply in times of generation shortfalls, mitigating excessive
power flows in places with weak grid infrastructure, and containing
the frequency and voltage fluctuations in the electricity grid to within
the stipulated tolerances [2].

The energy sector, as a whole, is the single largest emitter of GHG
in the world [3]. In isolated island grid energy systems, conventional
power generation technologies, such as DGs and gas turbines are the
major source of GHG emissions [4]. The environmental impact of
techno-economically feasible energy storage technologies, which have
the potential for large-scale adoption, should be diligently investigated.
Electrochemical energy storage systems, such as Battery Energy Storage

∗ Corresponding author.
E-mail addresses: anupam.parlikar@tum.de (A. Parlikar), nam.truong@stabl.com (C.N. Truong), andreas.jossen@tum.de (A. Jossen), holger.hesse@tum.de

(H. Hesse).

Systems (BESSs), are already the leading energy storage technology
class in terms of the number of projects installed worldwide [5]. It is
worth noting that there exists economic potential for the deployment
of electrical energy storage systems to provide services in several
applications [6]. A thorough analysis of these systems should hence
be carried out in order to ensure that the base rationale behind the
system installation — which is to enable the energy system to operate
at lower emission levels, is not inadvertently defeated. Most prevalent
performance assessment methodologies focus on techno-economic eval-
uation of energy storage systems, and the environmental aspects thereof
do not play a central role in the decision process. This observation is
corroborated by Pellow et al. [7]. The probable factors which explain
this tendency have been identified — the complexity associated with
the meticulous tracing of material, energy, and emissions streams while
carrying out a Life Cycle Analysis (LCA), and the availability of reliable
and sufficiently detailed Life Cycle Analysis (LCA) data (particularly
primary data) in the public domain. Few et al. report that experts
themselves express low confidence in carrying out environmental and
energetic analyses of the processes for battery production and decom-
missioning. They also identify this area as one in need of greater focus
within the scientific community [8].
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Abbreviations

BESS Battery Energy Storage System.
CO2eq Carbon Dioxide equivalent.
DG Diesel Generator.
DOD Depth of Discharge.
ECM Equivalent Circuit Model.
EFC Equivalent Full Cycles.
EMS Energy Management System.
EOL End-of-Life.
EPR Energy-to-Power Ratio.
ESN Energy System Network (Simulation Tool).
FU Functional Unit.
GHG Greenhouse Gases.
GWP Global Warming Potential.
HVAC Heating, Ventilation, Air Conditioning.
LCA Life Cycle Analysis.
LEES Levelized Emissions of Energy Supply.
LFP Lithium Iron Phosphate.
OCV Open Circuit Voltage.
PV Photovoltaic Solar.
SimSES Simulation of Stationary Energy Storage

Systems (Simulation Tool).
SOC State of Charge.
SOH State of Health.
VRFB Vanadium Redox Flow Batteries.
WT Wind Turbine.

Parameters

Cn Installed Energy Storage Capacity in Energy
System Configuration 𝑛.

EBESS Rated BESS Energy Capacity.
Eload center,a Total Useful Energy at Load Center 𝑎 years.
PPV Photovoltaic Solar Power Generation.
PWT Wind Turbine Power Generation.
PBESS Rated BESS Peak Power.
Pload Load Power.
Presidual Residual Power.
Runit storage
n,n−1 Reduction in System Emissions per Addi-

tional Unit of Energy Storage Capacity.
𝜖EOL End-of-Life Phase Emissions.
𝜖op,a Operation Phase Emissions 𝑎 years
𝜖prod Production Phase Emissions.

A review of existing literature in this area has been conducted to ex-
amine the existing metrics and environmental performance evaluation
methodologies in the context of decarbonization. Some of the findings
are discussed in the following paragraphs.

The time to ecological amortization of an energy storage technology
is the time required for a cumulative energy equal to its embodied
energy footprint to be discharged from it [9]. The Energy Stored on
Energy Invested (ESOI) is defined as the ratio of the amount of energy
stored over the lifetime of an energy storage technology and the energy
required to produce it [10]. The Energy Return on Energy Invested (EROI)
metric from the Net Energy Analysis concept can also be modified to
incorporate the analysis of energy storage [11]. The Life Cycle Green-
house Gas Emissions, which is the emissions analog of the Levelized Cost
of Energy Storage (LCOS), can be used to quantify the GHG emissions
per kWh of energy stored by the system, calculated over its entire
lifetime [12]. These metrics are applicable to the energy storage system

level, and are ideal to compare two competing technologies, but do not
capture the effect of the energy storage technology on the net energy
system emissions. Metrics and evaluation methodologies applicable at
the energy system level are required to study decarbonization of energy
systems.

Energy storage technologies such as BESSs, when deployed to pro-
vide grid-services in grids with large conventional generation capacities
(i.e. high carbon intensities), lead to higher energy input and net energy
systems emissions as compared to existing solutions due to the ener-
getic losses [13]. Energy storage technologies, when used to replace
conventional generation technologies for the provision of a grid-related
service, may in some cases lower the net energy system emissions [14],
especially if the grid carbon intensity is low, indicating high shares
of renewable generation capacities and curtailment [15,16]. These
outcomes are also highly dependent on the round-trip efficiency of the
energy storage technology and its lifetime in addition to the factors
mentioned earlier [17]. The boundaries for analysis also ostensibly
influence this inference. Charging the energy storage directly instead
of feeding-back the energy into the grid is detrimental to the reduction
in net energy system emissions, as a greater amount of energy is lost
due to losses. Charging on energy which could otherwise be curtailed
is the most beneficial [18,19].

This work restricts itself to the evaluation of the environmental
performance of lithium-ion BESSs providing renewable time-shifting
services in isolated island grid energy systems. Time-shifting of renew-
able energy generation in large grids with energy storage is subject to
the inferences discussed above. Renewable time-shifting is particularly
crucial in isolated island grid energy systems. Incorporation of energy
storage in isolated island grid with high shares of renewable generation
capacities and conventional backup power generation always results in
a reduction in the net energy system emissions by partially displacing
the conventional power generation from the energy mix. This finding
holds true for Vanadium Redox Flow Batteries (VRFB) [20], as well
as for lithium-ion BESSs [4]. The present work builds upon existing
literature in this area by presenting a holistic evaluation methodology,
which enables the comparison of the effectiveness of various energy
storage configurations in reducing the net emissions in island grid
energy systems. This work is also able to confirm results presented in
the reviewed literature sources.

The prominent questions which arise in the context of carrying out
such evaluations are:

1. How large are the GHG emission footprints for the production,
operation, and decommissioning of lithium-ion BESSs?

2. How effective are lithium-ion BESSs at reducing the net GHG
emissions of the island grid energy system?

3. What energy storage capacities ought to be installed to maximize
the reduction in emissions, and to justify the resources invested?

Addressing the first question is an indispensable step, and is specific
to the scenario and energy storage technology under consideration.
presents a simplified LCA for a utility-scale lithium-ion BESS. The
impact category Global Warming Potential (GWP) is used throughout
this work to quantify the carbon footprint of technologies and the entire
energy system. The results from this analysis are used in the simulative
analyses carried out in the subsequent sections. To answer the second
question, a performance evaluation methodology is presented in Sec-
tion 2.1. The proposed methodology introduces two metrics — the first
metric Levelized Emissions of Energy Supply (LEES) fixes an emissions
value for every unit of useful energy supplied by the energy system
to its load center. The second metric Runit storage

n,n−1 denotes the reduc-
tion in energy system emissions per additional unit of energy storage
capacity. These metrics enable the third question to be addressed in
a quantifiable manner. As the research questions raised are relevant
to a wide range of scenarios and energy storage technologies, the
methodology is also correspondingly general enough. The methodology
is demonstrated through simulative analyses in the context of provision
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of renewable energy time-shifting services in isolated island grid energy
systems with lithium-ion BESSs. The simulation results are discussed in
Section 3. The emissions of the island grid energy system, the energetic
behavior of the energy system, the effect on the BESS, and the influence
of other parameters on the LEES are examined. Section 4 summarizes
the major conclusions and achievements of this work. The limitations
and the future outlook of this work are also touched upon.

2. Methods

Section 2.1 describes the proposed methodology and the two met-
rics, which are key features of this performance evaluation method-
ology. Section 2.2 discusses the modeling procedure for the island
grid, the Lithium-ion BESS, and the power generation components. The
calculation procedure for the indirect and direct GHG emissions for the
components in the island grid energy system is presented in Section 2.3.

2.1. Proposed methodology for evaluation of impact of energy storage on
system emissions

BESSs, like PV panels and WTs, belong to a class of technologies
which cause almost no direct emissions during operation, but whose
production and decommissioning at the end of life can cause substantial
emissions. The GWP footprint of generated energy consists of two
components, one – a fixed component dependent on the production and
decommissioning processes for the components in the energy system,
and the other – an operation-dependent component. A carbon inten-
sity calculation based solely on the operation-dependent emissions,
as is currently the case [21], risks completely overlooking the emis-
sions impact of PV and WT installations on power generation, as the
operation-dependent component is negligible in this case. Incorporation
of a BESS into the system leads to a further uncertainty in accounting
of emissions, as this is neither a power generation technology, nor is
it directly responsible for emissions during operation. In cases wherein
the input energy to a BESS has an operation-dependent component in
its footprint, additional emissions can be attributed to the BESS on
account of energy lost in the conversion processes. For an island grid
system without a conventional grid connection, once the production
and decommissioning emissions for PV panels, WTs, and BESS, which
is charged by surplus renewable energy, is taken into account, the
operation-dependent emissions emanate from the DG alone, that steps
in every now and then to cover load which the renewable generators
and the BESS are unable to cover.

For energy systems with predominantly renewable power genera-
tion, such as solar PV and WTs with fluctuating power generation,
not all power produced can be put to use at all instants of time. The
generators can also not be relied upon to be able to supply sufficient
power at all instants. This leads us to the concept of useful energy
which is actually supplied to the load centers. This section outlines a
modified methodology to obtain the resultant carbon intensity for the
energy supplied by an energy system with a high share of renewable
energy generators, energy storage and some conventional generation as
backup. Production of PV panels, WTs, and BESS components is highly
energy-intensive, resulting in substantial emissions, which makes the
inclusion of this phase highly relevant. The process for determination
of electrical energy storage system capacity ranges with the highest
impact on emissions reduction is also explained briefly. The steps
outlined in this methodology can be applied to any energy storage
technology providing a similar service in a comparable use-case.

2.1.1. Levelized Emissions of Energy Supply (LEES) : A modified carbon
intensity measure for energy systems

The Levelized Emissions of Energy Supply (LEES) is formulated and
defined in this section for use in the proposed methodology. The LEES
metric takes into account direct and indirect emissions within an energy
supply system. Additionally, this metric is based on the useful energy

supplied by the power generators plus supporting components such as
energy storage (if present) to the load centers rather than the energy
generated (see Fig. 1). In an isolated energy system with predominantly
renewable generators, the losses due to energy conversion in the BESS
do not result in any additional emissions in the operations phase, as
the BESS is charged with renewable energy sources exclusively, and
the emissions in the production and decommissioning phase for the
renewable generators are explicitly factored in. This metric, LEES, fixes
an emission value (in kg CO2eq) to each unit (kWh) of useful energy
supplied by the energy system to its load center over a pre-defined
period of time. It is mathematically defined in Eq. (1).

𝐿𝐸𝐸𝑆 =
𝛴𝜀𝑝𝑟𝑜𝑑 + 𝛴𝜀𝑜𝑝,𝑎 + 𝛴𝜀𝐸𝑂𝐿

𝐸𝑙𝑜𝑎𝑑 𝑐𝑒𝑛𝑡𝑒𝑟,𝑎
(1)

where:
𝛴𝜖prod denotes the sum total of the emissions entailed on account of

production of all components included in the energy system
𝛴𝜖op,a denotes the emissions entailed on account of operating all

the components making up the energy system during the considered
simulation period of a years

𝛴𝜖EOL denotes the sum total of the emissions entailed on account of
EOL treatments for all the components making up the energy system

Eload center,a denotes the total useful energy supplied by the system
to the load center over the simulation period of a years

The values of 𝜀𝑝𝑟𝑜𝑑 and 𝜀𝐸𝑂𝐿 for each component are a fraction
of the total production and EOL emissions if the component does not
reach the end of its estimated/projected service life at the end of
the simulation period. The value of the fraction is obtained from ag-
ing/degradation models or from lifetime estimates, and is equal to the
ratio of the utilized service capacity/metric to the estimated/projected
service capacity/metric. In the case of lithium-ion BESSs, this fraction
can be conveniently based on the State of Health (SOH) metric. Other
ways of assigning emissions to the simulation period may also be
possible.

Some key features of the Levelized Emissions of Energy Supply
(LEES) metric:

• Zero load-shedding condition: The metric is calculated under the
constraint of zero load-shedding — i.e. power supplied by the
generation and storage equipment together must, at least, be
equal to the demand at all instants of time

• Internalization of losses: All energetic losses in the energy sys-
tem, such as curtailment, generation and transmission losses, and
losses on account of energy storage operation are lumped together
and internalized in the metric. The useful energy, which is con-
sidered for the calculation is directly affected by any changes
in these loss mechanisms. These losses are directly reflected in
the LEES value, with higher losses reflecting in a higher value of
LEES, and vice-versa

• Identification of sub-optimal sizing: Sub-optimally sized systems can
also be identified, if a change in system sizing is found to fulfill
the zero load-shedding condition at a lower LEES value

Once the value of LEES for a particular system configuration is
obtained, the manner of its variation with system configuration can be
examined. We are primarily interested in the impact of energy storage
capacities on our stated goal of emissions reduction. The steps involved
in such an analysis are depicted in Fig. 2. In the backdrop of limited
resources, a method to be able to quantify this impact for every unit of
monetary and material investment made is an absolute necessity.

2.1.2. Reduction in system emissions per additional unit of energy storage
capacity

The Reduction in system emissions per additional unit of energy storage
capacity Runit storage

n,n−1 is defined as the ratio of reduction in the LEES value
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Fig. 1. Depiction of the lumped losses, and the useful energy supplied to the load center.

per additional unit of energy storage with respect to that of a previous
configuration. It is mathematically defined as:

𝑅𝑢𝑛𝑖𝑡 𝑠𝑡𝑜𝑟𝑎𝑔𝑒
𝑛,𝑛−1 =

𝛥𝐿𝐸𝐸𝑆𝑛,𝑛−1

(𝐶𝑛 − 𝐶𝑛−1)
(2)

where:
𝛥LEES𝑛,𝑛−1 denotes difference in LEES values of system configura-

tions n and n-1, wherein configuration n has a larger energy storage
capacity.

Cn denotes the energy storage capacity for system configuration n,
𝐶𝑛 > 𝐶𝑛−1.

The reciprocal of Runit storage
n,n−1 is the Energy Storage Capacity per Unit

Reduction in System Emissions, which is defined as the ratio of the addi-
tional energy storage capacity required to bring about a unit reduction
in the LEES value with respect to that of a previous configuration.

Identification of capacity ranges exhibiting the highest environ-
mental benefits is possible using the metric Runit storage

n,n−1 . Large negative
values signify high emissions reduction potential, whereas positive
values indicate a worse configuration with respect to the previous
configuration. This metric is thus, a complementary metric to the LEES
in analyses of total emissions in island grid energy systems, and can
aid in obtaining the best return in terms of emissions reduction for the
invested resources.

2.2. Modeling: island grid energy system and components

The modeling and simulation of the system is carried out with two
python-based simulation tools - Energy System Network (Simulation Tool)
(ESN), and Simulation of Stationary Energy Storage Systems (Simulation
Tool) (SimSES)1 [22]. Both the tools have been developed in-house.
The tool Energy System Network (Simulation Tool) (ESN) is capable of
modeling and simulating several user-defined energy system configura-
tions and scenarios. In scenarios which include energy storage systems,
ESN operates in conjunction with the tool Simulation of Stationary
Energy Storage Systems (Simulation Tool) (SimSES), which can model
and simulate the electro-thermal behavior of BESSs in a very detailed

1 SimSES open-source code repository: https://gitlab.lrz.de/open-ees-
ses/simses

Table 1
Island grid system simulation parameters.

Parameter Value

Simulation Sample time (s) 900
Duration of simulation (years) 20

Load

Annual load (MWh) 10 000
Peak load (MW) 1.59
Minimum load (MW) 0.72
Mean load (MW) 1.14
Peak residual load (MW) 1.59

Wind Installed capacity Wind Turbines (WTs) (MW𝑝) 3.25
Capacity factor (%) 26.62

Photovoltaic Solar (PV) Installed capacity Photovoltaic Solar (PV) (MW𝑝) 2.00
Capacity factor (%) 22.65

Diesel Generator (DG) Rated power (MW) 1.60

fashion. The degradation of the Lithium-ion cells under operation in
the given load scenario is also considered.

The energy system considered consists of Wind Turbine (WT) and
Photovoltaic Solar (PV) generators as the sources of primary energy. A
Diesel Generator (DG) picks up the slack when renewable generation
is inadequate. Excess generation from the renewable power generators
is simply curtailed. This configuration represents the base case. The
load and renewable energy generation curves are based on those of
Tenerife, the largest of the Canary islands, situated off the northwest
coast of Africa in the Atlantic ocean. The annual load and renewable
energy generation time series have been normalized and used for this
study. The profiles are available on the website of the utility company
serving these areas [23]. Values for the year 2016 are used in this
study. The hypothetical island system differs from the original energy
supply system of Tenerife in several respects. Firstly, the system is
largely down-scaled, and secondly, the proportions and types of various
generators in the system have been altered. The configuration of this
hypothetical energy system is presented in Table 1.

The influence of integration of a BESS into this hypothetical island
grid is then investigated. The island grid can be understood to consist of
the components depicted in Fig. 1. The methodology for the calculation
of the LEES metric, which was presented earlier in Section 2.1.1, is
applied to a hypothetical island grid system in this section.
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Fig. 2. Process flowchart outlining the steps involved in conducting a Levelized Emissions of Energy Supply (LEES) analysis for an isolated energy system. +ve stands for positive,
and -ve stands for negative. The choice of a ‘reasonable’ Battery Energy Storage System (BESS) configuration is arrived at by conducting a sizing exercise based on the application
requirements for performance indicators, such as the fulfillment ratio.

2.2.1. Energy management
A simple rule-based operating strategy implemented in ESN, termed

’Simple Deficit Coverage’, is utilized to simulate the interplay between
the operations of the BESS and the DG. The residual load at each
instant of time is defined as the difference between the sum of power
generation from the renewable generators and the load. The residual

load at each time-step is then represented as:

𝑃𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 = (𝑃𝑃𝑉 + 𝑃𝑊 𝑇 ) − 𝑃𝑙𝑜𝑎𝑑 (3)

where:
Presidual denotes the residual power, at each time-step
PPV denotes the generation from the PV installation
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Fig. 3. Rule-based operating strategy for the Battery Energy Storage System (BESS) and the Diesel Generator (DG) operating in tandem to cover the load in the absence of sufficient
renewable power generation.

PWT denotes the generation from the WT installation
Pload denotes the load power
This rule-based Energy Management System (EMS) deploys the

BESS as frequently as possible to cover the residual load (Eq. (3)),
which the PV and WT generators are unable to cover. In the event that
the BESS is incapable of covering the residual load, owing to power or
energy constraints, the DG is brought online to cover the deficit. The
BESS is charged exclusively with surplus generation from the PV and
WT installations. This rule-based decision-making algorithm is depicted
in Fig. 3.

2.2.2. Component models
The power generation, storage, and load components present in

the energy system are simulated based on models found in literature.
The models for the PV and WT generators are relatively simple, and
the values of power generation are directly based on their generation
profiles. Similarly, the load is also modeled as a demand profile. The
models for the BESS and the DG are modeled to a much greater level
of detail. These are described in the following subsections.

Battery Energy Storage System (BESS)
The BESS model is based on a ’R-int’, or internal resistance Equiv-

alent Circuit Model (ECM), which consists of a voltage source in series
with an ohmic resistance. The values of both the voltage of the source
and the ohmic resistance at any instant of time are dependent on the

State of Charge (SOC) at any particular instant. The model has been
parameterized based on experimental data from a commercial ‘new’
Lithium Iron Phosphate (LFP) cylindrical 26650 cell (see Fig. 4) [24,
25]. The State of Health (SOH) is defined as the ratio of the cell’s charge
capacity in ‘new’ condition to its charge capacity at any later point
in time. At an SOH value of 80%, the cell is said to have reached its
End-of-Life (EOL). As the sample time and simulation duration of the
time series analysis simulations is 15 min and 20 years respectively,
the R-int ECM representation of the battery is adequate in light of sim-
ulation speed and desired detail of simulation results. The degradation
model for the Lithium Iron Phosphate (LFP) cells is semi-empirical in
nature, and is based on extensive aging tests for calendric and cyclic
degradation carried out in-house [26,27]. The models for the BESS sub-
components, such as for the battery, power electronics, are all modeled
in SimSES. The model for the AC/DC converter efficiency is based on a
model found in literature [28]. The BESS is assumed to operate under
a constant ambient temperature of 298.15K, and the thermal behavior
thereof is not considered in this paper (see Table 2).

Diesel Generator (DG)
The model of the DG is based on a model found in published

literature [29]. This model estimates part-load DG efficiencies for a
range of power values below its rated peak power. Based on the electric-
ity generated, this model permits the calculation of fuel consumption
and the corresponding emissions on account of fuel combustion for
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Table 2
Battery Energy Storage System (BESS) parameters for the R-int Equivalent Circuit Model (ECM) model used.

Parameter Value

BESS

Battery type Lithium Iron Phosphate (LFP)
Battery format Cylindrical, 26 650
Rated energy capacity (MWh) 0.1 - 192
Rated power (MW) 0.1 - 1.6
Initial State of Charge (SOC) 0%
Initial State of Health (SOH) 100%
End-of-Life (EOL) SOH criterion 80%
Battery model R-int ECM

(based on [24,25])
Aging model Semi-empirical

calendric and cyclic
(based on [26,27])

Fig. 4. Open Circuit Voltage (OCV) curve vs. State of Charge (SOC) for the considered Lithium Iron Phosphate (LFP) cell (left), and the R-int Equivalent Circuit Model (ECM)
(inset, left). Values of the charging (ch) and discharging (dch) internal resistance versus the SOC for the considered cell type (right).

Fig. 5. Efficiency curve with respect to the normalized power for the Diesel Generator
(DG) model .
Source: Based on [29].

each time step. The efficiency curve for the DG with respect to the
normalized power is depicted in Fig. 5.

2.3. Modeling of Greenhouse Gases (GHG) emissions

Indirect emissions associated with the major components relevant
for this study — the BESS and its sub-components, the PV and WT

installations, and the DG, have been determined from various literature
sources , which were reviewed during the course of this study. The only
source of direct emissions is the DG, which emits GHGs as a by-product
of the combustion process. Except for the PV panels, whose production
emissions can be scaled up linearly with power owing to the visibly
modular nature of the technology, the values for WTs and the DG are
non-linear. A more rigorous treatment with regards to this feature of
the data is beyond the scope of this work, and the values taken here
are representative, and are not applicable to WTs and DGs of all sizes, as
the specific production emissions (in kg CO2eq∕kW) for large systems
are not identical to those for small systems. The reader is requested
to bear in mind that the presented analysis can be thought of as a
simplified LCA at best, as it is neither based on primary data, nor is
it as comprehensive as a full-fledged LCA can be expected to be as per
the ISO standards 14040, 14041, 14042, and 14043. But, it is deemed
to be sufficient for the purpose of this work, wherein the focus lies on
the LEES methodology presented, and not on the LCA itself.

Battery Energy Storage System (BESS)
An in-house experimental container BESS is studied, and a simpli-

fied LCA has been carried out based on this system as a reference
point [30]. The production and EOL phase emissions for its components
have been obtained from published literature sources. An overview of
the lifecycle phases for a utility-scale container BESS is depicted in
Fig. 6.

For the considered LFP cell technology, the GHG emissions in the
production phase for the Functional Unit (FU) kWh of energy stor-
age capacity, amount to around 161 kg CO2eq∕kWh on average [31].
The GWP impact of the EOL phase for the processing of each kWh
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Fig. 6. Overview of lifecycle phases of a container utility-scale Battery Energy Storage System (BESS). The impact factor category Global Warming Potential (GWP) is considered.

of LFP cells varies from 0.45 kg of additional emissions for the py-
rometallurgical process to −11.70 kg of reduction in emissions for the
advanced hydrometallurgical process [32]. We consider the advanced
hydrometallurgical process in the current analysis , which represents
an optimistic scenario.

The carbon footprint of the production phase for each Functional
Unit (FU) (kW of power conversion capability) of the power electronics
is non-linearly dependent on the power rating, as the power density
of these devices increases non-linearly with the power. Based on mul-
tiple literature sources, including the Ecoinvent database, a function
to determine the GWP footprint for a functional unit of 1 kW has
been obtained [33–35]. The EOL phase for electronics components, for
optimal recycling, results in a reduction in the overall emissions to
the tune of −9.45 kg CO2eq∕kW assuming an average power density of
1000W∕kg for the power electronics [36].

For the peripheral electronic components such as circuit breakers,
relays, monitoring equipment, and other circuitry in the considered
experimental BESS, based on values from the Ecoinvent database,it
can be expected that these components make up around 7% of total
production emissions [33]. The EOL phase is understood to result
in reduced emissions overall on account of effective recycling. The
resultant emissions reductions, for lack of better data, are assumed to
be comparable to those for the power electronics at around −14.49%
of production emissions [36].

For utility-scale BESSs, a standard shipping container is generally
used to house all the components. Production of a 20 ft steel container
with a mass of around 2400 kg is estimated to emit around 15 720 kg
CO2eq [33]. With the understanding that shipping containers are con-
structed from abundant materials such as steel, and other metals, which
are already largely recycled, no additional emissions or emissions
reductions are allocated to the EOL phase. With a preliminary estimate
that 20% of a container’s volume may be occupied by the cells, around
1600 kWh of LFP cells with a specific volumetric density of 278 kWh∕m3

may be installed in one such container [2].
The production of the

Heating, Ventilation, Air Conditioning (HVAC) system is estimated to
cause around 426.16 kg CO2eq of emissions for the floor area of the

Table 3
Production and End-of-Life (EOL) phase emissions for a container Battery Energy
Storage System (BESS) with a rating of 1MW/1MWh in kg CO2eq.

Component Production EOL Net

Cells 161 000 −11 700 149 300
Power Electronics 28 170 −9450 18 720
Housing (20 ft. Container) 15 720 0 15 720
Misc. Electronics 15 454 −2239 13 215
Heating, Ventilation, Air
Conditioning (HVAC)

426 0 426

Total (kg CO2eq) 220 770 −23 389 197381

20 ft standard shipping container [37]. Similar to the Housing, the
EOL phase for the HVAC components is assumed to cause no additional
emissions, due to the ubiquitous materials used therein.

Based on the values presented in this section, the net emissions of
a BESS for any given rating for the two lifecycle phases of production
and EOL may be roughly estimated. As an example, the emissions of
a system with a power/energy rating of 1MW/1MWh is presented
in Table 3. One 20 ft container is used to house all the components,
including the LFP cells. The power electronics consist of two inverters
of 500 kW each.

Photovoltaic Solar (PV)
For the production of PV panels, assuming an average grid carbon

intensity of 500 g CO2eq∕kWh for each kWh of electrical energy con-
sumed in the production processes, an average emissions value of 1100 g
CO2eq per Functional Unit (FU) (kW𝑝 (peak power)) of PV generation
capacity is obtained for crystalline Silicon modules, averaged over
multiple energy efficiencies [38]. The EOL treatment of PV panels is
understood to cause net emissions of 7.40 kg CO2eq∕kW𝑝. This value is
calculated by combining the GWP value for the recycling process from
a published research article [39] with the value of power density for
PV panels obtained from another literature source [40]. This analysis,
for the sake of simplicity, solely considers the PV panels themselves,
and not other auxiliary components such as the power electronics.
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Table 4
Indirect and direct emissions for other island grid energy system components for the production and EOL
lifecycle phases.

Parameter Value

Photovoltaic Solar (PV) Panels Production emissions (kg CO2eq/kW𝑝) 1100.00 [38]
EOL emissions (kg CO2eq/kW𝑝) 7.40 [39]

Wind Turbine (WT) Production emissions (kg CO2eq/kW) 683.70 [41]
EOL emissions (kg CO2eq/kW) −227.90 [41]

Diesel Generator (DG)
Production emissions (kg CO2eq/kW) 47.84 [42]
Diesel combustion emissions (kg CO2/liter) 2.63 [43]
Diesel upstream emissions (kg CO2eq/liter) 0.53 [43]
EOL emissions (kg CO2eq/kW) 0

Wind Turbine (WT)
Owing to the non-linear behavior of the power scaling with respect

to the materials used in a WT, the production emissions per FU (kW
of power generation capacity) are strictly valid only in the neighbor-
hood of the original data point. For the considered WT power rating
of 3.25MW, this value is determined from a publicly available LCA
report for a WT of a comparable power rating [41]. The production
GWP footprint for the WT in the current analysis is estimated to be
around 683.70 kg CO2eq∕kW. The recycling and EOL treatments cause a
reduction of 227.90 kg CO2eq∕kW, thereby improving the lifetime GWP
of the technology.

Diesel Generator (DG)
The production emissions for an exemplary DG are obtained from

the Ecoinvent database, and similar to the WT, are not as readily scal-
able [33]. A value of 47.84 kg CO2eq per FU (kW of power generation
capacity) is determined and used in this study. The GWP impact of
the EOL process for the DG, which largely contains abundant metals
such as Iron and Aluminum, is assumed to be negligibly low, and is
subsequently not considered. The direct emissions due to combustion
of diesel are obtained for each time step with the help of theDG model
explained in .

The values of the indirect and direct emissions for all components
used in the simulations are tabulated in Table 4.

3. Simulation and discussion of results

The island grid energy system is simulated for a variety of scenarios
with variations in the BESS parameters. A parameter sweep is carried
out by varying the rated energy capacity and peak power of the BESS
to investigate the influence of the integration of energy storage into the
energy system. The system operation and the energy flows are governed
by the operating strategy discussed earlier (Fig. 3). Transmission losses
and energy conversion losses in the PV and WT installations, which are
not modeled in the current work, are disregarded. If modeled, however,
additional loss mechanisms could easily be incorporated within the
analysis, and will be reflected in a higher value of the LEES metric. The
power generation components such as the PV panels, the WT, and the
DG are considered to have a service lifetime of 20 years, after which
they are decommissioned [44,45]. The base case does not include a
BESS. The LEES value of the base case (without energy storage) over
a period of 20 years is 0.5450 kg CO2eq∕kWh. The energy flows in the
base case are depicted in Fig. 7.

To concisely capture the information contained in the parameter
variation, we make use of the term Energy-to-Power Ratio (EPR). The
EPR is defined as the ratio of the rated energy capacity (EBESS to the
rated peak power (PBESS).

𝐸𝑃𝑅 =
𝐸𝐵𝐸𝑆𝑆
𝑃𝐵𝐸𝑆𝑆

(4)

Table 5 lists the peak power–energy capacity ratings of the BESS
in the simulated scenarios. The scenarios can be grouped into six
categories - the base case (with EPR = 0, i.e. no storage), EPR = 0.5,

Table 5
Simulation matrix: Variation in parameters of the BESS, grouping of the 52 simulated
scenarios into six categories based on the EPR of the BESS.

EPR Parameter Value # Simulations

0 Power (MW) 0 1
(base case) Energy capacity (MWh) 0

0.5 Power (MW) 0.2 - 1.6 5
Energy capacity (MWh) 0.1 - 0.8

1.0 Power (MW) 0.1 - 1.6 9
Energy capacity (MWh) 0.1 - 1.6

2.0 Power (MW) 0.2 - 1.6 10
Energy capacity (MWh) 0.4 - 3.2

4.0 - 100.0 Power (MW) 1.6 25
Energy capacity (MWh) 6.4 - 160

120 Power (MW) 1.6 1
(extreme case) Energy capacity (MWh) 192

EPR = 1.0, EPR = 2.0, EPR > 2.0, and the extreme case (with EPR
= 120). The peak power rating of the BESS in all the simulations is
varied from 0.1MW - 1.6MW. The rated peak power is not increased
beyond 1.6MW, as this is the value of the maximum power deficit that
either the DG or the BESS are expected to cover (even in the case of
zero renewable generation) at any given point in time. Between EPR
= 4 to 100, the energy capacity of the BESS is increased in steps of
6.4MWh, with the peak power remaining constant. The extreme case
of EPR = 120 (EBESS = 192MWh) is simulated to see if any of the
parameters change in unexpected ways. Each system configuration is
simulated for 20 years. The results are grouped into the aforementioned
six categories, and each of the categories are represented as a separate
series in the graphical results.

3.1. Effect on the emissions of the island grid energy system

The LEES parameter is calculated for the entire island grid energy
system over the simulation period for each scenario from Table 5. Fig. 9
plots the LEES values versus the corresponding BESS energy storage
capacity (EBESS) for each of the scenarios. For each of the simulated
scenarios, excluding the base case, it can be seen that 𝛥𝐿𝐸𝐸𝑆𝑛,0 < 0
- where 𝑛 varies from 1 to 50. This implies that the incorporation of
energy storage capacity in the energy system results in a reduction of
the total energy system emissions with respect to the base case (without
energy storage). The value of LEES decreases monotonically as the peak
power (PBESS) and energy capacity (EBESS) of the BESS increase.

It is also worth noting that the values of reduction in system
emissions per additional unit of energy storage capacity (Runit storage

n,n−1 )
decrease monotonically when evaluated for any two scenarios as the
energy storage capacity rises. The value of its reciprocal (1/Runit storage

n,n−1 ),
the energy storage capacity per unit reduction in system emissions
increases monotonically. Alternatively, the magnitude of the slope of
the LEES vs. EBESS curve, which represents the quantity Runit storage

n,n−1 ,

6 The carbon footprint of Li-ion BESSs operating in island grids

84



Renewable and Sustainable Energy Reviews 149 (2021) 111353

10

A. Parlikar et al.

Fig. 7. Energy flows among the various energy system components in the base case without energy storage (top). Component-wise distribution of net emissions for the island
grid energy system in the base case with its calculated Levelized Emissions of Energy Supply (LEES) value (bottom).

Fig. 8. Energy flows among the various energy system components in the island grid energy system for the extreme case with a 1.6 MW/192 MWh Lithium-ion Battery Energy
Storage System (BESS) (top). Component-wise distribution of net emissions attributable to the island grid energy system in the extreme case with its calculated Levelized Emissions
of Energy Supply (LEES) value (bottom).

decreases monotonically. The highest values of Runit storage
n,n−1 are observed

in the energy capacity range of 0.1MWh - 1MWh. As the energy
capacity is further increased, values of Runit storage

n,n−1 are modest up to
roughly 10MWh of energy storage capacity, after which the slope of
the curve becomes increasingly gentle. The slope of the LEES vs. EBESS
curve, Runit storage

n,n−1 , eventually touches zero at a capacity of 51.2MWh
and a power rating of 1.6MW (EPR = 32). This implies that it takes
impractically large amounts of additional energy storage capacity to
achieve a further 1 kg reduction in system emissions. Any further

increase in the energy storage capacity slowly results in a reversal of
the sign of the slope from negative to positive - i.e. a further installation
of energy storage capacity in the energy system results in a rise in the
LEES value with respect to the lowest possible value attained at EPR =
32. As a consequence, beyond this lowest attainable LEES value, every
additional unit of energy storage capacity increases the LEES value of
the system, and is sub-optimal. The diminishing energetic benefit of
additional energy storage capacity is overshadowed by its increasing
GWP footprint.
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Fig. 9. Evolution of the value of Levelized Emissions of Energy Supply (LEES) for the island grid energy system with varying energy storage capacities. The magnitude of the slope
of the curve Runit storage

n,n−1 gradually decreases, underlining the falling effectiveness of each additional unit of energy storage capacity in reducing emissions. The slope is eventually
zero at the minimum LEES, then changes sign and rises again, leading to a counter-productive increase in the LEES. The annotations for the three highlighted scenarios also depict
the quantity of diesel consumed in each case (in Megalitres).

3.2. Effect on the energetic behavior of the island grid energy system

The energy flows in the extreme case (EBESS = 192MWh, EPR =
120) are graphically depicted in Fig. 8. It can be observed that despite
the presence of an extremely high energy storage capacity within the
energy system, curtailment cannot be avoided completely, and that the
DG must run for some periods. This finding is particularly significant
when considered in conjunction with Figs. 10A and 10B. The extent
of curtailment in the system reduces incessantly with each additional
MWh of energy storage system capacity, albeit at an increasingly
gentler rate. An identical trend is also observed in the case of energy
supplied by the DG. Within the range of values assumed by EBESS (0 -
192MWh), which are covered by the simulated scenarios, the curtailed
energy, as well as the energy supplied by the DG both continue to drop.

This observation can be explained by the fact that more of the
energy which would have otherwise been curtailed, is absorbed by the
BESS in times of surplus generation, and is discharged to the load center
in times of generation deficits. This results in more such instances
wherein the BESS is able to supply the required energy, and the
system’s reliance on the DG drops correspondingly, while maintaining
the no load-shedding condition. In the absence of Fig. 9, an isolated
assessment of Fig. 10A could be misinterpreted to mean that increasing
EBESS in an unbounded fashion is environmentally beneficial, given that
the curtailed energy and the operating hours of the DG keep reducing.
A quick glance at Fig. 9 shows that the LEES value is nearly equal for
systems with EBESS = 25.6MWh and 89.6MWh. The only difference
in the two scenarios is the lower curtailment and diesel generation
values in the latter. The additional 64MWh of energy storage capacity
is then difficult to justify from the perspective of resource and material
utilization, in the absence of any tangible benefit in terms of reduction
in emissions.

Fig. 10B highlights the diminishing efficacy of the BESS as a tool
to reduce curtailment. The energy throughput of the BESS gradually
stagnates despite the larger EBESS value and the prevalence of en-
ergy curtailment. This finding agrees well with the findings of Palmer
et al. [11].

3.3. Effect on the Battery Energy Storage System (BESS)

Fig. 11A depicts the number of Equivalent Full Cycles (EFC) wit-
nessed by the BESS at the given average Depth of Discharge (DOD) in
each of the simulated scenarios. Evidently, for scenarios with higher
values of EBESS, the number of Equivalent Full Cycless (EFCs) over
the 20 year period decreases at a diminishing rate. With the falling
number of EFCs witnessed by the BESS, the stress induced by these
cycles (represented by the mean depth of discharge, 𝐷𝑂𝐷), also drops
simultaneously. The share of cyclic aging in the total aging witnessed
falls, and calendric aging becomes the dominant aging category. The
total shares of the two dominant aging categories — calendric and
cyclic, are depicted in Fig. 11B. Calendric aging, which in the scenario
with the lowest EBESS = 100 kWh, contributes just less than 50% to
the total aging, is observed to be the dominant aging category for
energy system scenarios with large energy storage capacities. The aging
model used in this work superimposes calendric and cyclic aging to
obtain the total aging. Among the simulated scenarios, the shortest
lifespan observed for the LFP battery is for the scenario with EBESS =
100 kWh and PBESS = 200 kW (EPR = 0.5). In this scenario, the cells last
for about 7.75 years, during which they endure 3046 EFCs at 𝐷𝑂𝐷
= 63.84%. the share of calendric aging in the total aging at EOL is
41.78%. The longest lifespan of 19.5 years is observed in the scenario
with EBESS = 153.6MWh and PBESS = 1.6MW (EPR > 2). During this
period, the cells endure 283 EFCs with 𝐷𝑂𝐷 = 2.5%. The share of
calendric aging at the EOL = 99.47%. Given that at least one, or more
replacements of the batteries are necessary during the simulated period
of 20 years, there remains some residual useful service life at the end of
each simulation. The GWP footprint of the BESS is adjusted to account
for this remaining capacity, so that the LEES metric only reflects the
capacity that has been lost to degradation. This adjustment is necessary
to ensure comparability of the scenarios. As all the other components
are considered to have reached the end of their service lives after
20 years, no adjustments have to be made to their values of production
and EOL phase GWP footprints.
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Fig. 10. Surplus renewable energy generation and energy generation from the Diesel Generator (DG) drop continuously with respect to energy storage capacity (A). Limited
effectiveness of energy storage at completely eliminating curtailment, despite extremely large energy storage capacities, stagnating BESS energy throughput (B).

3.4. Effect of variation in other parameters: a short discussion

The present work introduces the metric LEES, and investigates the
effect of BESS peak power and energy storage capacity on the value of
LEES for the island grid energy system. Incorporation of energy storage
is clearly not the only path to attaining a lower value of LEES vis-a-vis
the base case. As an example, an alternative energy system with twice
the renewable generation capacity as the base case and the same diesel
generation capacity is also simulated - i.e. 6.5MW of WT capacity,
and 4MW𝑝 of PV generation capacity. The values of LEES for this
energy system with EBESS = 200 kWh and PBESS = 200 kW is 0.4558 kg
CO2eq∕kWh, as compared to 0.5037 kg CO2eq∕kWh for the original
energy system. The LEES value with a BESS of 1.6MW / 1.6MWh
rating is 0.3101 kg CO2eq∕kWh, as compared to 0.4076 kg CO2eq∕kWh

for the same EBESS in the original energy system. This oversized system
has much higher levels of curtailment, but the curtailed energy, as
already discussed, should not be the sole yardstick of comparison. This
finding agrees well with results obtained by Arbabzadeh et al. who
suggest that over-building WT capacity is a more effective method of
reducing net energy system emissions [20]. Some other possible ways
to achieve a reduction in the LEES value may be deduced directly
from the expression for the LEES metric, and are not simulated in the
current work. These are: higher lifetimes for all components, higher
component efficiencies, cleaner production processes with lower carbon
footprints, a greater degree of recycling, right-sizing of the installed
capacities of renewable energy generators and the BESS. These remarks
are comparable to those presented by Jones et al. [17].
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Fig. 11. Equivalent Full Cycles (EFC) and average Depth of Discharge (DOD) seen by each BESS configuration over the simulation period (A). Total calendric and cyclic aging
experienced by the BESS with replacements (B).

The stochastic variations in the power outputs of the renewable
energy sources could also add to the uncertainty and variability in the
calculations. This work assumes perfect foresight for the calculation of
the LEES for an energy system. The accuracy of forecasts may, however,
affect the planned operation patterns of the various energy system
components, and further aggravate the problem of mismatch between
generation and demand [46]. In the worst case, curtailment and the
operation hours of the DG may increase, and the energy throughput of
the BESS may decrease. Occurrence of these effects together can lead to
a higher value of LEES. Low response times and large permissible ramp-
rates of the DGs can also counteract negative impacts of inaccurate
renewable generation forecasts.

The LEES metric can prove to be useful when used in conjunction
with other metrics for performance comparisons. A more detailed

investigation into the variation of other parameters is not presented
in the current work, but will be addressed in subsequent works. This
concluding section serves to prove the utility of the LEES metric as a
holistic evaluation parameter for island grid energy systems.

4. Conclusion and outlook

This work presents an environmental performance evaluation
methodology to assess the reduction in the total GHG emissions of an
island grid energy system. Two metrics — the LEES and Runit storage

n,n−1 are
introduced to better describe and discuss the incorporation of energy
storage in such island grid energy systems. A simplified LCA of a
Lithium-ion BESS is carried out to demonstrate the methodology. The
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methodology and the results from the simplified LCA are applied to an
island grid energy system.

It was shown that for the considered conditions, the inclusion of a
BESS in an isolated island grid energy system always leads to lower
overall emissions than in the base case. It is found that the maximum
achievable reduction in total emissions through the incorporation of
energy storage capacity in an island grid energy system is bounded by a
value which is a function of the characteristics of the energy system and
all its components. Focusing solely on minimizing the curtailed energy,
or the power generation from the DG through incorporation of energy
storage capacity does not necessarily lead to lower total emissions.

The prudent selection of nameplate energy storage capacities can
be achieved by considering the value and sign of Runit storage

n,n−1 - large
negative values indicate higher reductions in emissions, positive val-
ues indicate a sub-optimal configuration. From a global perspective,
for a given amount of material and monetary investment, a higher
total global reduction in emissions can be expected if energy storage
capacities are installed in energy systems exhibiting a high Runit storage

n,n−1
value, rather than building-up large energy storage capacities in energy
systems with substantial pre-existing energy storage capacities, and
which exhibit a low Runit storage

n,n−1 value.
There exists scope for future works to build upon and further refine

the results of this work. Improving the level of detail of the LCA
could help enhance the accuracy of the calculation. The current work
uses simple energy flow models for the island grid energy system and
its components, which do not consider the variations in voltages and
frequencies. Transmission losses are entirely disregarded, and the loss
mechanisms in the PV, WT, and DG are not modeled. The challenge
of obtaining a minimum possible LEES value by varying all possible
energy system parameters to yield an optimal system configuration
could be formulated as an optimization problem. Uncertainties stem-
ming from the forecasts of renewable energy generation could also
potentially be incorporated in future works, and confidence-bounds for
the LEES value may be obtained.
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7 Low carbon pathways for high-power EV charging
with Li-ion BESSs

The transition to EVs is rapidly increasing the demand for electricity, causing a shift in the energy
demand from the oil and gas sector to the electricity grid. This shift is leading to increased demand
for High-Power Charging (HPC) stations, which could cause bottlenecks and overloading in vulnera-
ble sections of the electricity grid. This article explores Battery-Assisted (BA)-HPC as a competing
measure to Grid Reinforcement (GR) strategies for integration of HPC stations into the grid. This in-
volves using stationary BESSs to provide additional peak power in parallel to grid power. A significant
aspect of the study is the calculation and comparison of the carbon footprints for HPC stations with
BA and GR. The study develops a comprehensive mathematical framework for this analysis, including
the extension of the LEES methodology introduced in the previous chapters and the introduction of
the State of Carbon Intensity (SOCI) to calculate the operation phase carbon footprint of the BESS.

The study further presents case studies consisting of various scenarios that investigate the LEES
values for both BA-HPC and GR. The effect of integrating local PV generation into energy flows is
investigated. The study also explores how the choice of EMS strategy affects BESS performance and
examines the impact of on-site renewable energy generation on carbon footprints. The highlights of
this article include:

• The quantification of the carbon footprint for BA-HPC
• The influence of the choice of the EMS strategy on the performance of the BESS operating at

BA-HPC stations
• The role of the integration of on-site renewable energy generation on the carbon footprints of

the scenarios
• The carbon footprint of a comparable configuration with GR

The study finds that the integration of on-site PV generation consistently lowers the LEES in all
scenarios compared to similar scenarios without local PV generation. The decarbonization potential
of local PV generation is higher in locations with greater annual sunshine hours and solar irradiation.
The choice of the EMS strategy significantly affects the LEES values. Both the baseline rule-based
greedy charging strategy and the optimizer-based strategy can meet the requirements of peak-shaving
service for BA-HPC, but the optimal strategy can further reduce the LEES, especially when combined
with local PV generation. These values are compared with the carbon footprint of configurations
with GR. In scenarios combining BA with on-site PV generation, a reduction of 24% in LEES values
was achieved compared to the baseline strategy. The study also indicates that with an optimized
EMS strategy to minimize emissions and integrate local PV generation, BA can potentially charge
EVs with a lower carbon footprint compared to GR. The study compares various grid integration
pathways and concludes that deploying a BESS at HPC stations can significantly reduce emissions
if an optimal EMS strategy is used. BA-HPC combined with local renewable power generation can
achieve significantly high emissions savings while charging EVs. The study notes that these findings
are subject to the specific location, its electricity grid, and the charging load profile. Future studies
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should consider location-specific data, and the potential reduction in LEES with enabling feed-in of
curtailed power generation should be further explored. As the grid penetration of renewable generation
and grid-connected energy storage increases, the carbon intensity of the grid is expected to decrease,
potentially reducing the local LEES reduction achievable using BA-HPC.
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The energy transition in the mobility sector is well underway. The electrification of road transport is resulting
in a shift of the energy demand from the oil and gas sector to the electricity grid. Increasingly aggressive
targets for low charging times for Electric Vehicles (EVs) are slated to raise the demand for High-Power

∗ Corresponding author.
E-mail addresses: anupam.parlikar@tum.de (A. Parlikar), maxi.schott@tum.de (M. Schott), ketaki.godse@tum.de (K. Godse), daniel.kucevic@tum.de

(D. Kucevic), andreas.jossen@tum.de (A. Jossen), holger.hesse@tum.de (H. Hesse).

https://doi.org/10.1016/j.apenergy.2022.120541
Received 22 August 2022; Received in revised form 14 December 2022; Accepted 18 December 2022

7 Low carbon pathways for high-power EV charging with Li-ion BESSs

94



Applied Energy 333 (2023) 120541

2

A. Parlikar et al.

Charging station
Carbon dioxide emissions
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Battery energy storage system
Energy management
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Levelized Emissions of Energy Supply
State of Carbon Intensity
LEES
SOCI

Charging (HPC). This is likely to lead to bottlenecks and overloading in vulnerable sections of the electricity
grid. Battery Assistance (BA) is a promising grid integration measure for High-Power Charging (HPC) to
mitigate these problems. As decarbonization is the primary objective of the energy transition, the determination
and comparison of the Global Warming Potential (GWP) footprints for HPC stations with BA is crucial. A
comprehensive mathematical framework for the modelling and quantification of GWP footprints for HPC
has been developed. The Levelized Emissions of Energy Supply (LEES) methodology has been extended and
generalized to handle energy from the grid. A new state variable for the Battery Energy Storage System (BESS)
— the State of Carbon Intensity (SOCI) has been introduced to calculate the operation phase GWP footprint of
the BESS. The energy consumption GWP footprint for the load is also described by a new quantity — the Load
Energy Consumption (LEC) emissions. The effect of incorporation of local Photovoltaic Solar (PV) generation
in the energy flows is also investigated. An optimized Energy Management System (EMS) strategy with rolling
horizon optimization to minimize emissions has been implemented to regulate energy flows in scenarios with
BA and local PV generation. The Levelized Emissions of Energy Supply (LEES) values are obtained for all
simulated scenarios and compared against a baseline rule-based EMS strategy. In combination with on-site PV
generation, BA could achieve a reduction of 24% in the LEES vis-á-vis the baseline strategy. For reference,
two scenarios with Grid Reinforcement (GR) for the grid section with and without local PV generation have
also been simulated. With Grid Reinforcement (GR), a reduction of over 2% can be achieved with respect to
the baseline EMS strategy for BA. Grid Reinforcement (GR) in conjunction with local PV generation can bring
about a further reduction of about 6% with respect to the baseline EMS strategy for BA.

1. Introduction

Decarbonization is the central objective driving the energy transi-
tion in the mobility sector. A wide range of vehicle segments, such as
two-wheelers, passenger cars, and electric buses, are being electrified.
During the period 2015–2020, EV sales volumes rose by 600% over
2015 levels. Sales volumes in the current decade are projected to rise
between twelve and twenty times as compared to 2020. Cumulative in-
stalled charging power is expected to sharply rise by 1600% compared
to 2020 values in some scenarios [1]. Direct Current (DC) charging
can attain higher power values as compared to Alternating Current
(AC) charging owing to the external on-site installation of the bulky
power electronics [2,3]. Drastically reduced charging times can be
achieved as a result, provided the automotive battery pack can handle
the large currents [4]. The scope of the current work is restricted to DC
High-Power Charging (HPC).

CSs are comprised of multiple DC high-power chargers — each of
which can charge an EV at a time. The automaker Tesla for instance
has an average of ten chargers per CS in its Supercharger Charging
Network [5]. These high-power DC chargers usually operate at an
AC voltage rating of around 400V and are linked to the Medium
Voltage (MV) grid via a step-up transformer. Chargers can now attain
peak power ratings of around 350 kW [6,7]. DC HPC is expected to
introduce an additional large and variable power demand on electricity
grids worldwide, which are grappling with the variability of renewable
generation. The demand for DC HPC is predicted to increase, especially
in dense urban areas without access to home-charging. Instances of grid
overloading and bottlenecks may become frequent in such areas, and
Grid Reinforcement (GR) may become necessary to augment the power
transmission capacity of the affected grid sections [8]. Effective grid
integration of EV HPC is key to the success of electromobility.

Lithium-ion BESS technology is well-suited to the provision of a
wide array of grid-related services [9,10]. Battery Assistance (BA) can
be used to improve grid integration of HPC stations, by reducing the
peak power demand [11,12]. The stationary BESS provides additional
peak power in parallel to the grid power. BA lowers the instantaneous
power demand, while increasing the utilization factor of the grid. This
allows the grid to operate within the bounds of the existing infras-
tructure at low peak power values, without requiring any additional
GR. A wide range of system architectures and topologies are available
in the implementation of this concept at CSs [13]. The sizing of the
various hardware components is a widely studied topic in the technical
community, and the subject of several publications [14]. This solution
is also appealing as the installation is relatively non-disruptive.

The study of the combination of BA with renewable generation such
as PV solar and wind turbines is also of significant interest in the energy

community [15,16]. The determination of optimal sizing parameters is
a keenly studied aspect of these systems [17,18]. Optimal operation of
the stationary BESS is a topic of intense research. A common criterion
to determine the optimal operation is the economic performance over
the project lifetime [19]. Several studies include the time-of-use (TOU)
effect on the prices of electricity in the optimization [16,20]. Some
studies also investigate the economic performance of BA with the provi-
sion of additional grid-related services, such as energy arbitrage [21].
BA is also seen as a resilience measure to ensure energy security for
EVs during grid outages. An optimal charging strategy for the BA-HPC
stations to ensure resilience while providing the core peak shaving
functionality has also been found in the reviewed literature [22].
Incorporation of the carbon (GWP) footprint as a criterion to deter-
mine optimal operation is relatively rare. Studies incorporating the
GWP footprint in their analyses, often treat it as a secondary aspect
and do not consider the temporal variation of the carbon intensity
of the energy drawn from the grid [16]. One detailed study was
found, which considered the time-variant grid carbon intensity for the
Netherlands [23].

The state-of-the-art in the analysis of energy storage systems oper-
ating in various energy systems was found lacking in its resolution of
the GWP footprint at a component level and over its various lifecycle
phases. In most studies, the operation phase of the energy storage
system, in particular, is analysed using lumped parameters, and the
temporal variations in the operating conditions, such as the carbon
intensity of the electricity grid, and the variations in efficiency are often
not considered. The calculation of the GWP footprint attributable to
the energy storage system is often not precise. There is a dearth of
quantities and metrics to describe and capture all relevant information,
thereby preventing its inclusion in the analysis. As decarbonization
is the stated goal for the transition to electromobility, any decision-
making process concerning EV HPC infrastructure should incorporate
the GWP footprint of the solution into the analysis. This work en-
deavours to bridge some of this gap by first introducing some useful
quantities, which enhance the informational content of an emissions
analysis. A detailed analytical and mathematical framework for the
calculation of the GWP footprints of all components of a CS across
all lifecycle phases, with a detailed breakdown of the emissions into
several emissions categories.

Scope and outline

The contents of this paper are structured as follows. In Section 2 a
detailed techno-environmental model of the grid integration measure
BA (and GR) has been developed. A comprehensive mathematical
framework for the quantification and analysis of the GWP footprint of
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Abbreviations

AC Alternating Current
BA Battery Assistance
BESS Battery Energy Storage System
CO2𝑒𝑞 Carbon Dioxide Equivalent
CS Charging Station
DC Direct Current
DEC Discharge Energy Consumption
DOC Depth of Cycle
EFC Equivalent Full Cycle
EMS Energy Management System
EOL End-of-Life
ESN Energy System Network (Simulation Tool)
EV Electric Vehicle
GCS Greedy Charging Strategy
GEC Grid Energy Consumption
GR Grid Reinforcement
GWP Global Warming Potential
HPC High-Power Charging
HVAC Heating, Ventilation, Air Conditioning
LCA Life Cycle Analysis
LEC Load Energy Consumption
LEES Levelized Emissions of Energy Supply
LV Low Voltage
MV Medium Voltage
OCS Optimal Charging Strategy
PE Power Electronics
PV Photovoltaic Solar
SimSES Simulation of Stationary Energy Storage Systems

(Simulation Tool)
SOC State of Charge
SOCI State of Carbon Intensity
SOH State of Health

Parameters

CIcht Carbon intensity of charging power for BESS at
time t

CIPVt Carbon intensity of the on-site PV system at time
t

CIgen,gr,jt Carbon intensity of the grid-connected generation
technology j in the grid mix at time t

CIgrt Effective carbon intensity of the grid mix at time
t

CImix
t Carbon intensity of the energy in the grid mix at

time t
Es Energy supplied to the load over simulation

period in kWh
Pch,losst Charging loss power for BESS
Pch,stt Stored charging power for BESS
Pdch,losst Discharging loss power for BESS
Pgrpeak Peak grid power
PPVt,peak Peak generation power of on-site PV system at

time t
PPV,cht Power from on-site PV system used to charge the

BESS at time t

PPV,loadt Power from on-site generation technology j
directly supplied to the load at time t

PPVt Generation power of on-site PV system at time t
Pcht Charging power of the BESS at time t
Pdch,loadt BESS discharge power supplied to the load at time

t
Pdcht Discharging power of the BESS at time t
Pgen,gr,jt Generation power of grid-connected generation

technology j in the grid-mix at time t
Pgr,cht Grid power directly supplied to the BESS for

charging at time t
Pgr,loadt Grid power directly supplied to the load at time t
Pgr,losst Power lost in the grid section during transmission

at time t
Pgrt Total grid power entering the system boundaries

at time t
Ploadt Load demand power at time t
SOCIt SOCI at time t
SOCt SOC at time t
𝛥t Simulation time t
𝜂gr Average grid transmission energy efficiency
DOC Mean DOC over simulation period
SOCI Mean SOCI over simulation period
SOC Mean SOC over simulation period
𝜀BESS,EOL EOL phase emissions for BESS
𝜀BESS,op Total operation phase emissions for BESS
𝜀BESS,prod Production phase emissions for BESS
𝜀BESS Total emissions of the BESS over simulation

period
𝜀DEC Total Discharge Energy Consumption (DEC) emis-

sions for the load over simulation period
𝜀GEC Total Grid Energy Consumption (GEC) emissions

for the load over simulation period
𝜀HVAC,EOL EOL phase emissions for Heating, Ventilation, Air

Conditioning (HVAC) system
𝜀HVAC,prod Production phase emissions for HVAC system
𝜀LECt LEC emissions for the load at time t
𝜀LEC Total LEC emissions over simulation period
𝜀PE,EOL EOL phase emissions for Power Electronics (PE)
𝜀PE,prod Production phase emissions for PE
𝜀PV,EOL EOL phase emissions of on-site generation tech-

nology
𝜀PV,prod Production phase emissions of on-site generation

technology
𝜀PV Total emissions on-site PV system over simulation

period
𝜀c,EOL EOL phase emissions for the cables in the grid

section
𝜀c,prod Production phase emissions for the cables in the

grid section
𝜀cell,EOL EOL phase emissions for cells
𝜀cell,prod Production phase emissions for cells
𝜀ch,op Total operation phase emissions charging for

BESS
𝜀dch,op Total operation phase emissions discharging for

BESS
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𝜀el,EOL EOL phase emissions for miscellaneous electron-
ics

𝜀el,prod Production phase emissions for miscellaneous
electronics

𝜀gr,EOL EOL phase emissions for the grid section
𝜀gr,op Operation phase emissions for the grid section

over simulation period
𝜀gr,prod Production phase emissions for the grid section
𝜀gr Total attributable emissions for the grid section

over simulation period
𝜀hsg,EOL EOL phase emissions for the housing
𝜀hsg,prod Production phase emissions for the housing
𝜀load Total emissions attributable to the load over the

entire simulation period
𝜀panel,EOL EOL phase emissions of PV panels
𝜀panel,prod Production phase emissions of PV panels
𝜀tr,EOL EOL phase emissions for the transformers in the

grid section
𝜀tr,prod Production phase emissions for the transformers

in the grid section
𝜀tDEC DEC emissions for the load at time t
𝜀tGEC GEC emissions for the load at time t
𝜀tch,op Operation phase emissions charging for BESS
𝜀tdch,op Operation phase emissions discharging for BESS
𝜀tgr,op Operation phase emissions for the grid section at

time t
bBESSt Binary variable b to preclude simultaneous BESS

charging and discharging at time t
h Optimization time horizon h
t Time t

this measure with a streamlined Life Cycle Analysis (LCA) is presented.
The existing LEES methodology is extended and generalized to include
grid energy [24]. To this end, a new state variable for energy storage
— the SOCI is introduced, along with emission categories Discharge
Energy Consumption (DEC), Grid Energy Consumption (GEC), and the
Load Energy Consumption (LEC) emissions. In Section 3, long-term
simulations over a period of 20 years are run with the developed models
to obtain the GWP footprints of the scenarios, enabling the following
research questions to be addressed:

1. How can the GWP footprint for HPC with BA be quantified?
2. To what extent does the choice of the EMS strategy alter the

performance of the BESS providing BA to HPC stations?
3. How does the integration of on-site renewable energy generation

influence the GWP footprints of the scenarios?
4. What is the GWP footprint of a comparable configuration with

GR?

The ‘carbon-quality’ of the energy dispensed by the CS in the consid-
ered scenarios is quantified with the LEES metric [24]. The implications
of the value of LEES of the dispensed energy on the emissions per
100 km driven with an EV with three different energy economy values
is also estimated. This GWP footprint of the energy consumption of EVs
is compared with typical values for well-to-wheel emissions per 100 km
for gasoline-powered internal combustion engine vehicles. In Section 4
a brief summary of the key findings is presented, with some potential
topics for future follow-up studies.

2. Methods

The modelling and subsequent analyses in this study are carried out
with the help of python-based simulation programs. These programs

Table 1
Charging station parameters in the baseline configuration.

Charging station baseline configuration parameters

Parameter Value

Location Berlin
Location type Urban
Grid coupling Medium Voltage (MV) 10 kV
Grid section installation Underground (UG)
Grid section effective peak power (MW) 2.5
Charger connection Low Voltage (LV) 0.4 kV
Max. charger power (MW) 0.35
Number of chargers 10

offer specialized capabilities to model and simulate the components of
an energy system. The central program used to model and simulate
the site of the CS is Energy System Network (Simulation Tool) (ESN).
This program has been developed by the authors of the present work.
Simulation programs for specific components are embedded within
ESN. The program SimSES is used to model the BESS [25]. Techno-
environmental time-series simulations spanning over a duration of 20
years are run for the CS with several system configurations.

2.1. Modelling: EV HPC station

This work considers CSs at urban locations. Each charger is mod-
elled with AC/DC and DC/DC converters. Efficiency curves are used
to model the losses in the AC/DC and DC/DC converters. Additional
losses due to the cooling system for the charger are not modelled in
this analysis, as their inclusion does not fundamentally alter the results.
The chosen parameters for such an exemplary setup are described in
Table 1. At any time t, the power demand of the chargers (load), Ploadt ,
is met by power from the grid, Pgr,loadt , power discharged by the BESS,
Pdch,loadt , and power generation by the PV system (if present), PPV,loadt
(Eq. (1)). Augmentation of the power capacity is necessary to enable
parallel operation of all chargers at rated power.

𝑃 𝑙𝑜𝑎𝑑
𝑡 = 𝑃 𝑔𝑟,𝑙𝑜𝑎𝑑

𝑡 + 𝑃 𝑑𝑐ℎ,𝑙𝑜𝑎𝑑
𝑡 + (𝑃 𝑃𝑉 ,𝑙𝑜𝑎𝑑

𝑡 ) (1)

A synthetic load profile for the CS has been generated using pub-
lished data from a CS in Italy. Based on log data of over three years, a
representative day capturing hourly charge events, and a representative
week capturing daily charge events have been prepared by Soldan
et al. [26]. Based on this data, a synthetic load profile has been created
for the representative week. This procedure has been explained in
appendix Appendix A. This representative profile is concatenated back-
to-back to obtain the load profile for an entire year. The annual energy
demand with this load profile is around 3.29GWh. Seasonal variations
are assumed to not lead to major changes in consumer behaviour. This
assumption can be justified, as the analysis presented in the current
work is exemplary in nature and serves to demonstrate the application
of the developed analytical framework. The authors also note that
irrespective of the load profile chosen, sufficient generality can seldom
be attained, and the finer results of any analysis are inevitably specific
to that analysis.

2.2. Modelling: Battery Energy Storage System (BESS)

The BESS is modelled as a utility-scale system. An in-depth de-
scription of the modelling and simulation procedure in SimSES can be
found in a previous publication [25]. The parameters used to model
the BESS are listed in Table 2. A BESS rating of 1.5MW / 1.5MWh
is chosen to ensure a maximum energy-rate (E-rate) of under 1 for the
discharge power demand. Ambient environmental conditions for Berlin,
Germany are used for the simulations. Under these conditions, system
simulations for the BESS are run. These simulations also compute the
cell degradation over the simulation period.
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Table 2
Model parameters and values for the BESS simulation in SimSES.

Battery Energy Storage System (BESS)

Parameter Value

Cell type Lithium Iron Phosphate (LFP)
Cell format Cylindrical, 26650
Rated energy capacity (MWh) 1.5
Rated power (MW) 1.5
Initial state of health (SOH) 100%
Battery model R-int Equivalent Circuit Model (ECM)

(based on [27,28])
Battery degradation model Semi-empirical calendric and cyclic

(based on [29,30])
Power electronics AC/DC Converter, 300 kW X 5 units

(based on [31–33])
Housing type 20 ft. standard shipping container
HVAC power (kW) 30

Table 3
Grid section parameters in the baseline configuration.
Grid section baseline configuration parameters

Parameter Value

MV section voltage 10 kV
Installation Underground
Line length 1.6 km
Conductor cross-section 70 mm2

Transformer MV/LV 0.63 MVA 10 kV/0.4 kV
# Parallel units 6

LV section voltage 0.4 kV
Installation Underground
Line length scenarios B: 0.05 km
Conductor cross-section 10800 mm2

2.3. Modelling: Local Photovoltaic Solar (PV)generation

The PV system is modelled with power generation curves for the PV
panels and efficiency curves for the power electronics. Power genera-
tion curves for Berlin, Germany with a capacity factor of 0.1142 are
used. The power generation curves for Berlin are generated using the
tool greenius [34]. A peak power rating of 1MW𝑝 is chosen. Such an
installation corresponds to a surface-area footprint of around 10 000m2,
and can either be present on-site, or on neighbouring rooftops [35]. The
power generation, PPVt , at time t by the on-site PV system is split into
the power supplied to the load, PPV,loadt , the power used to charge the
BESS, PPV,cht , and the curtailment (Eq. (2)).

𝑃 𝑃𝑉
𝑡 = 𝑃 𝑃𝑉 ,𝑙𝑜𝑎𝑑

𝑡 + 𝑃 𝑃𝑉 ,𝑐ℎ
𝑡 + 𝑃 𝑃𝑉 ,𝑐𝑢𝑟𝑡

𝑡 (2)

2.4. Modelling: Grid components and Grid Reinforcement (GR)

The grid section is modelled with an MV section, a bank of step-
down transformers, and an Low Voltage (LV) section. The python
package Pandapower is used to run the power flow calculations within
the simulation framework [36]. Bus voltages, component loadings,
energy losses, and the power delivery of the considered grid section can
be obtained from power flow calculations [37]. The CS is connected
to the nearest MV substation with an underground grid section as
described in Table 3. For the 10 kV MV grid in Germany, most lines
are around 1.6 km in length [38].

2.5. Streamlined Life Cycle Analysis (LCA)

In the following subsections, the emissions attributable to each
component are described.

2.5.1. German grid carbon intensity
The power transmitted by the electricity grid is sourced from a

wide variety of power generation technologies. At time t, the effective
carbon intensity of the grid energy, CIgrt , can be computed from the
power, Pgen,gr,jt , and the carbon intensities of the participating power
generation technologies, CIgen,gr,jt . Values for CIgen,gr,jt have been ob-
tained from literature sources and from the Ecoinvent database [39,40].
Technology-wise power generation data for the German grid for the
year 2019 has been obtained from the Energy-Charts1 platform [41].
This data represents pre-pandemic power generation. The combination
of this data with the carbon intensities of the power generation tech-
nologies yields a time-dependent carbon intensity profile for the grid
mix with a 15-minutes resolution (Fig. 1). The carbon intensity of the
grid mix CImix

t is given by Eq. (3).

𝐶𝐼𝑚𝑖𝑥𝑡 =

∑𝑛
𝑗=1

(

𝐶𝐼𝑔𝑒𝑛,𝑔𝑟,𝑗𝑡 × 𝑃 𝑔𝑒𝑛,𝑔𝑟,𝑗
𝑡

)

∑𝑛
𝑗=1 𝑃

𝑔𝑒𝑛,𝑔𝑟,𝑗
𝑡

(3)

where n refers to the number of technologies participating in the energy
mix. With a lumped transmission efficiency (including transmission and
distribution grid) value of 𝜂gr = 95% for the German grid [42], CIgrt is
obtained as:

𝐶𝐼𝑔𝑟𝑡 =
𝐶𝐼𝑚𝑖𝑥𝑡
𝜂𝑔𝑟

(4)

2.5.2. Grid section components
The GWP footprints for the production and EOL phases 𝜀gr,prod and

𝜀gr,EOL for the grid section are a sum of the emissions in the respective
phases for the transformers and cables. The production phase emissions
for the cables, 𝜀c,prod, include emissions caused by the production itself,
the creation of supporting infrastructure such as ditches, and the instal-
lation. The production emissions for the transformers, 𝜀tr,prod, include
the emissions of the production process and the creation of supporting
infrastructure. For the EOL phase emissions, negative values were found
in the reviewed literature sources for 𝜀tr,EOL and 𝜀c,EOL. Negative values
indicate offsetting of emissions in subsequent production phases on the
reintroduction of the recovered materials after recycling [43].

𝜀𝑔𝑟,𝑝𝑟𝑜𝑑 = 𝜀𝑡𝑟,𝑝𝑟𝑜𝑑 + 𝜀𝑐,𝑝𝑟𝑜𝑑 (5)

𝜀𝑔𝑟,𝐸𝑂𝐿 = 𝜀𝑡𝑟,𝐸𝑂𝐿 + 𝜀𝑐,𝐸𝑂𝐿 (6)

The grid power entering the system boundaries at time t, Pgrt , is
split into the actual power supplied to the load, Pgr,loadt , the power
used to charge the BESS, Pgr,cht , and the power lost in transmission,
Pgr,losst . This lost energy must be generated in addition to the energy
that is transported by the grid section for consumption at the load. The
emissions attributable to the generation of this lost energy at time t are
allocated to the grid section as the operation phase emissions, 𝜀tgr,op .

𝑃 𝑔𝑟
𝑡 = 𝑃 𝑔𝑟,𝑙𝑜𝑎𝑑

𝑡 + 𝑃 𝑔𝑟,𝑐ℎ
𝑡 + 𝑃 𝑔𝑟,𝑙𝑜𝑠𝑠

𝑡 (7)

𝜀tgr,op is calculated using Eq. (8), where 𝛥t is the length of a single
timestep. The total emissions attributable to the operation phase of the
grid section, 𝜀gr,op, are obtained by integrating Eq. (8) with respect to
time over the entire simulation period.

𝜀𝑔𝑟,𝑜𝑝𝑡 = 𝐶𝐼𝑔𝑟𝑡 × 𝑃 𝑔𝑟,𝑙𝑜𝑠𝑠
𝑡 × 𝛥𝑡 (8)

The total emissions, 𝜀gr , attributable to the grid section within the
system boundaries over the simulation period is then given by Eq. (9).
The total emissions for the grid section include the production emis-
sions, 𝜀gr,prod, the operation emissions, 𝜀gr,op, and the EOL emissions,
𝜀gr,EOL.

𝜀𝑔𝑟 = 𝜀𝑔𝑟,𝑝𝑟𝑜𝑑 + 𝜀𝑔𝑟,𝑜𝑝 + 𝜀𝑔𝑟,𝐸𝑂𝐿 (9)

1 Energy Charts (https://energy-charts.info/) — online energy and power
data platform for Germany created and maintained by the Fraunhofer Institute
of Solar Energy (ISE), Freiburg, Germany.
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Fig. 1. Calculation procedure to obtain the annual grid carbon intensity (CIgrt ) time-series profile. Depicted here is the carbon intensity profile for the German electricity grid,
based on data for the last pre-pandemic year 2019.

Table 4
Streamlined Life Cycle Analysis (LCA) of the Battery Energy Storage System (BESS)
(power/energy rating of 1.5MW/1.5MWh.

Battery Energy Storage System (BESS) streamlined LCA

Component Production End-of-Life (EOL) Source
(kgCO2eq) (kgCO2eq)

Cells 241500.00 −17550.00 [44,45]
Power electronics 50859.78 −14179.48 [39,46–48]
Miscellaneous electronics 23220.87 −3364.70 [39,48]
Housing 31440.00 0.00 [39]
HVAC 426.12 0.00 [49]

Sum 347446.78 −35094.18

Total 312352.60

2.5.3. Charging Station (CS)
The production and EOL phase emissions for the chargers are ex-

cluded from the system boundaries as these remain invariable across
scenarios. For the CS, the total lifecycle emissions within the system
boundaries are equal to the total Load Energy Consumption (LEC)
emissions described in Section 2.6 (Eq. (10)).

𝜀𝑙𝑜𝑎𝑑 = 𝜀𝐿𝐸𝐶 (10)

2.5.4. Battery Energy Storage System (BESS)
A streamlined LCA for a utility-scale BESS with Lithium Iron Phos-

phate (LFP) cell technology has already been conducted and described
in a previous publication [24].

Production and End-of-Life (EOL) phase. The total emissions of the
production and EOL phases of the BESS, 𝜀BESS,prod and 𝜀BESS,EOL, can
be calculated as the sum of production and EOL phase emissions of
its components. These include the GWP footprints of the batteries
(𝜀cell,prod, 𝜀cell,EOL) the GWP footprints of the other components: Power
Electronics (PE) (𝜀PE,prod, 𝜀PE,EOL), the housing (𝜀hsg,prod, 𝜀hsg,EOL), the
miscellaneous electronics components (𝜀el,prod, 𝜀el,EOL), and the HVAC
system (𝜀HVAC,prod, 𝜀HVAC,EOL).

𝜀𝐵𝐸𝑆𝑆,𝑝𝑟𝑜𝑑 = 𝜀𝑐𝑒𝑙𝑙,𝑝𝑟𝑜𝑑 + 𝜀𝑃𝐸,𝑝𝑟𝑜𝑑 + 𝜀ℎ𝑠𝑔,𝑝𝑟𝑜𝑑 + 𝜀𝑒𝑙,𝑝𝑟𝑜𝑑 + 𝜀𝐻𝑉 𝐴𝐶,𝑝𝑟𝑜𝑑 (11)

𝜀𝐵𝐸𝑆𝑆,𝐸𝑂𝐿 = 𝜀𝑐𝑒𝑙𝑙,𝐸𝑂𝐿 + 𝜀𝑃𝐸,𝐸𝑂𝐿 + 𝜀ℎ𝑠𝑔,𝐸𝑂𝐿 + 𝜀𝑒𝑙,𝐸𝑂𝐿 + 𝜀𝐻𝑉 𝐴𝐶,𝐸𝑂𝐿 (12)

In the present study, the streamlined LCA is adapted to the BESS
configuration presented in Table 2. The GWP footprint of the BESS
is calculated to be around 312 352.60 kg Carbon Dioxide Equivalent
(CO2𝑒𝑞) ( Table 4).

Operation phase. The operation emissions, 𝜀BESS,op, for a BESS are a
direct function of the carbon intensity of the energy used for charging,
CIcht . The direct emissions of generation of the energy lost in the
charging and discharging processes are allocated to the BESS. The
charging power at time t, Pcht , is the sum of charging powers from
the grid, Pgr,cht , and from the local PV generation, PPV,cht , if present.
Charging loss power, Pch,losst , is lost, while the rest, Pch,stt , is stored. With
the values of Pch,losst and CIcht , the emissions due to the charging losses,
𝜀tch,op , are obtained (Eq. (15), (16)). The total emissions attributable
to the charging phase, 𝜀ch,op, are the sum of all 𝜀tch,op values over the
simulation period.

𝑃 𝑐ℎ
𝑡 = (𝑃 𝑃𝑉 ,𝑐ℎ

𝑡 ) + 𝑃 𝑔𝑟,𝑐ℎ
𝑡 (13)

𝑃 𝑐ℎ
𝑡 = 𝑃 𝑐ℎ,𝑠𝑡

𝑡 + 𝑃 𝑐ℎ,𝑙𝑜𝑠𝑠
𝑡 (14)

𝐶𝐼𝑐ℎ𝑡 =

[

(𝐶𝐼𝑃𝑉𝑡 × 𝑃 𝑃𝑉 ,𝑐ℎ
𝑡 ) + 𝐶𝐼𝑔𝑟𝑡 × 𝑃 𝑔𝑟,𝑐ℎ

𝑡

]

𝑃 𝑐ℎ
𝑡

(15)

𝜀𝑐ℎ,𝑜𝑝𝑡 = 𝐶𝐼𝑐ℎ𝑡 × 𝑃 𝑐ℎ,𝑙𝑜𝑠𝑠
𝑡 × 𝛥𝑡 (16)

A new state variable — the State of Carbon Intensity (SOCI) is
introduced to quantify the emissions of the discharge phase. The SOCI
at time t is defined as the carbon intensity of the energy stored within
the BESS. When SOC = 0, the SOCI = 0. On charging, the values of
CIcht lead to a change in the value of SOCI (Eq. (17)). The SOCI does
not change on partially discharging the BESS. The units for SOCI are
gCO2𝑒𝑞kWh−1. SOCt is the SOC of the BESS (see Fig. 2).

𝑆𝑂𝐶𝐼𝑡+1 =
𝑆𝑂𝐶𝐼𝑡 × 𝑆𝑂𝐶𝑡 + 𝛥𝑆𝑂𝐶 × 𝐶𝐼𝑐ℎ𝑡

𝑆𝑂𝐶𝑡+1
(17)

A portion of the discharging power, Pdch,losst , is lost to the energy
conversion processes in the BESS. The remaining power, Pdch,loadt , is
supplied to the load (see Eq. (18)). The operation emissions in the
discharge phase, 𝜀tdch,op , are dependent on the discharge loss power,
Pdch,losst , and the SOCIt (Eq. (19)). The total emissions attributable to
the discharging phase, 𝜀dch,op, is obtained by integrating Eq. (19) with
respect to time over the entire simulation period. 𝜀BESS,op is the sum of
𝜀ch,op and 𝜀dch,op (Eq. (20)).

𝑃 𝑑𝑐ℎ
𝑡 = 𝑃 𝑑𝑐ℎ,𝑙𝑜𝑎𝑑

𝑡 + 𝑃 𝑑𝑐ℎ,𝑙𝑜𝑠𝑠
𝑡 (18)

𝜀𝑑𝑐ℎ,𝑜𝑝𝑡 = 𝑆𝑂𝐶𝐼𝑡 × 𝑃 𝑑𝑐ℎ,𝑙𝑜𝑠𝑠
𝑡 × 𝛥𝑡 (19)

𝜀𝐵𝐸𝑆𝑆,𝑜𝑝 = 𝜀𝑐ℎ,𝑜𝑝 + 𝜀𝑑𝑐ℎ,𝑜𝑝 (20)

The total emissions, 𝜀BESS, attributable to the BESS over the simu-
lation period are then given by Eq. (21).

𝜀𝐵𝐸𝑆𝑆 = 𝜀𝐵𝐸𝑆𝑆,𝑝𝑟𝑜𝑑 + 𝜀𝐵𝐸𝑆𝑆,𝑜𝑝 + 𝜀𝐵𝐸𝑆𝑆,𝐸𝑂𝐿 (21)
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Fig. 2. The BESS state variable State of Carbon Intensity (SOCI) changes after each
charging operation, but remains constant after discharging.

Table 5
Streamlined LCA for the PV system.

Photovoltaic (PV) system streamlined LCA

Component Production End-of-Life (EOL) Source
(kgCO2eq) (kgCO2eq)

Panels 1100000.00 7400.00 [50–52]
Power electronics 38459.90 −9452.99 [39,46–48]

Sum 1138459.90 −2052.99

Total 1136406.91

2.5.5. On-site PV system
The GWP footprints of the production 𝜀PV,prod and EOL 𝜀PV,EOL

phases of the PV system are considered to be equal to the sums of
the production and EOL footprints of just the functional energetic com-
ponents — the panels (𝜀panel,prod and 𝜀panel,EOL) and power electronics
(𝜀PE,prod and 𝜀PE,EOL). A streamlined LCA for the 1MWp PV system is
presented in Table 5. Other components are not considered in this
analysis.

𝜀𝑃𝑉 ,𝑝𝑟𝑜𝑑 = 𝜀𝑝𝑎𝑛𝑒𝑙,𝑝𝑟𝑜𝑑 + 𝜀𝑃𝐸,𝑝𝑟𝑜𝑑 (22)

𝜀𝑃𝑉 ,𝐸𝑂𝐿 = 𝜀𝑝𝑎𝑛𝑒𝑙,𝐸𝑂𝐿 + 𝜀𝑃𝐸,𝐸𝑂𝐿 (23)

There are no direct emissions attributable to the PV system during
its operation phase, thus 𝜀𝑃𝑉 ,𝑜𝑝 = 0. The total emissions 𝜀PV attributable
to the PV system over the simulation period are then given by Eq. (24).

𝜀𝑃𝑉 = 𝜀𝑃𝑉 ,𝑝𝑟𝑜𝑑 + 𝜀𝑃𝑉 ,𝐸𝑂𝐿 (24)

2.6. Levelized Emissions of Energy Supply (LEES): Extension and general-
ization

The quantity LEES is defined as the ratio of the sum of all at-
tributable lifecycle emissions of components contained within the sys-
tem boundaries to the amount of energy supplied to the load, Es,
over the same period [24]. This metric enables a comparison of GWP
footprints of the energy supplied from differing system configurations.
To apply this methodology to a CS, a generalization of this methodology
is carried out, which includes the grid connection. Some useful inter-
mediate quantities are introduced to capture the additional complexity
of a time-variant carbon intensity of the grid energy.

Grid Energy Consumption (GEC) emissions. The Grid Energy Consump-
tion (GEC) emissions are defined as the emissions attributable to the
load for the end-use consumption of grid energy. The GEC emissions
at time t, 𝜀tGEC , are calculated as the product of CIgrt , Pgr,loadt , and 𝛥t
(Eq. (25)). The total GEC emissions, 𝜀GEC, are obtained by integrating
Eq. (25) with respect to time over the entire simulation period.

𝜀𝐺𝐸𝐶
𝑡 = 𝐶𝐼𝑔𝑟𝑡 × 𝑃 𝑔𝑟,𝑙𝑜𝑎𝑑

𝑡 × 𝛥𝑡 (25)

Discharge Energy Consumption (DEC) emissions. The DEC emissions are
defined as the emissions attributable to the load for the end-use con-
sumption of energy discharged from the BESS. The DEC emissions at
time t, 𝜀tDEC , are calculated as the product of the SOCI, Pdcht , and 𝛥t
(Eq. (26)). The total DEC emissions, 𝜀DEC, are obtained by integrating
Eq. (26) with respect to time over the entire simulation period.

𝜀𝐷𝐸𝐶
𝑡 = 𝑆𝑂𝐶𝐼𝑡 × 𝑃 𝑑𝑐ℎ,𝑙𝑜𝑎𝑑

𝑡 × 𝛥𝑡 (26)

Load Energy Consumption (LEC) emissions. The Load Energy Consump-
tion (LEC) emissions for the load at time t, 𝜀LECt , are defined as the
sum of the emissions attributable to the end-use consumption of energy
originating from the grid section, the BESS, and other local generators
(see Eq. (27)). CIPVt is zero at all times, as the production and EOL phase
emissions are fully included in the system boundaries. The total LEC
emissions for the load over the entire simulation period, 𝜀LEC, are the
sum of the total GEC and the DEC emissions.

𝜀𝐿𝐸𝐶
𝑡 = 𝜀𝐺𝐸𝐶

𝑡 + 𝜀𝐷𝐸𝐶
𝑡 (27)

With the help of the above quantities, 𝜀load, can be obtained. The
quantity LEES is calculated as follows (Eq. (28)).

𝐿𝐸𝐸𝑆 = 𝜀𝑙𝑜𝑎𝑑 + 𝜀𝐵𝐸𝑆𝑆 + 𝜀𝑃𝑉 + 𝜀𝑔𝑟

𝐸𝑠
(28)

2.7. Emissions balance within system boundaries

At time t, an emissions balance for the CS is formulated (Eq. (29)).
The left-hand side represents the physical emissions attributable to
energy drawn from the grid. The emissions listed on the right-hand side
are the grid section and BESS operation phase emissions and the LEC
emissions. This emissions balance is depicted in Fig. 3.

𝑃 𝑔𝑟
𝑡 𝐶𝐼𝑔𝑟𝑡 𝛥𝑡 = 𝜀𝑔𝑟,𝑜𝑝𝑡 + 𝜀𝑐ℎ,𝑜𝑝𝑡 + 𝜀𝑑𝑐ℎ,𝑜𝑝𝑡 + 𝜀𝐺𝐸𝐶

𝑡 + 𝜀𝐷𝐸𝐶
𝑡 (29)

2.8. Energy management

The Energy Management System (EMS) regulates the energy flows
among all the components present at the CS site by continuously
calculating power targets for each component. The energy flows at
the CS location are simulated with two EMS strategies. A baseline
rule-based strategy is compared with an advanced strategy deploying
rolling-horizon optimization to minimize operation phase emissions.
These strategies are discussed in this section.

GCS. This rule-based operation strategy draws power from the grid to
meet the power demand of the load. On reaching grid capacity, residual
load, if any, is met by power discharged from the BESS (Eq. (30)). The
BESS is charged with its maximum rated power as soon as grid capacity
is available (Eq. (31)). The strategy attempts to maintain the BESS in a
fully-charged state (SOC = 1). No other factors are taken into account in
the decision to charge or discharge. The GCS strategy can also prioritize
direct consumption of local PV power generation in scenarios with local
PV generation. Surplus PV power generation is used to charge the BESS,
while the rest is curtailed. Power is discharged from the BESS to meet
demand when grid capacity is reached.

(𝑃 𝑃𝑉 ,𝑙𝑜𝑎𝑑
𝑡 ) + 𝑃 𝑔𝑟,𝑙𝑜𝑎𝑑

𝑡 + 𝑃 𝑑𝑐ℎ,𝑙𝑜𝑎𝑑
𝑡 = 𝑃 𝑙𝑜𝑎𝑑

𝑡 (30)

𝑃 𝑐ℎ
𝑡 = (𝑃 𝑃𝑉 ,𝑐ℎ

𝑡 ) + 𝑃 𝑔𝑟,𝑐ℎ
𝑡 (31)

The power flows among the CS, the grid, and the BESS with the
GCS strategy for an exemplary summer week without and with local
PV generation are depicted in Fig. 4.
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Fig. 3. Emissions balance across the system boundaries for the charging station in the most general case.

Fig. 4. Regulation of power flow among the Charging Station (CS), grid, and the BESS with the Greedy Charging Strategy (GCS) operation strategy without (left), and with local
PV generation (right) for an exemplary summer week. (-) power for the BESS represents discharging, and vice-versa.

Optimal Charging Strategy (OCS). This operation strategy implements
a rolling horizon linear optimization approach to minimize the oper-
ation emissions of the system setup over each optimization horizon.
This optimization approach to achieve energy management has been
effectively used in previous studies in this area [53]. A necessary
constraint is the mandatory zero load-loss condition — i.e. the power
demand at the CS must be met at all instants of time. With forecasts
for CIgrt , Ploadt , and PPVt (if available) over each optimization horizon, the
strategy generates a series of power targets for each of the components.
For each horizon h, a linear programming optimization problem with
an objective function to minimize the left-hand side of the emissions
balance is solved (Eq. (32)). The optimal power targets are passed to
the detailed component models, and the state variables such as the
SOC, SOH from the previous run are updated in the optimizer. The
optimization is then rerun for the next horizon, until the end of the
simulation period is reached.

min
𝑡+ℎ
∑

𝑡=𝑡

[

𝑃 𝑔𝑟
𝑡 𝐶𝐼𝑔𝑟𝑡

]

(32)

The optimization is subject to the following constraints in each h. The
power drawn from the grid (Pgrt ) and the power supplied by the local PV
generation, PPVt , may not exceed their peak power (Pgrpeak) and present
peak generation (PPVt,peak) respectively.

𝑃 𝑔𝑟
𝑡 ≤ 𝑃 𝑔𝑟

𝑝𝑒𝑎𝑘 (33)

(𝑃 𝑃𝑉
𝑡 ≤ 𝑃 𝑃𝑉

𝑡,𝑝𝑒𝑎𝑘) (34)

𝑃 𝑔𝑟
𝑡 + 𝑃 𝑑𝑐ℎ

𝑡 + (𝑃 𝑃𝑉
𝑡 ) = 𝑃 𝑙𝑜𝑎𝑑

𝑡 + 𝑃 𝑐ℎ
𝑡 (35)

Owing to its relative simplicity and low computational effort, a so-
called bucket model or the Energy Reservoir Model is used to model the
BESS and its constraints [54]. bBESSt is a binary variable used to permit
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Fig. 5. Regulation of power flow among the Charging Station (CS), grid, and the BESS with the Optimal Charging Strategy (OCS) operation strategy without (left), and with local
PV generation (right) for the exemplary summer week. (-) power for the BESS represents discharging, and vice-versa.

either charging (= 1), or discharging (= 0) at time t, and not both
simultaneously.

𝑃 𝑐ℎ
𝑡 − 𝑏𝐵𝐸𝑆𝑆

𝑡 × 𝑃𝐵𝐸𝑆𝑆
𝑝𝑒𝑎𝑘 ≤ 0 (36)

𝑃 𝑑𝑐ℎ
𝑡 + (𝑏𝐵𝐸𝑆𝑆

𝑡 − 1) × 𝑃𝐵𝐸𝑆𝑆
𝑝𝑒𝑎𝑘 ≤ 0 (37)

0 ≤ 𝑆𝑂𝐶𝑡 ≤ 1 (38)

𝑆𝑂𝐶𝑡−1 × 𝐸𝐵𝐸𝑆𝑆
𝑡 + (𝑃 𝑐ℎ

𝑡 × 𝜂𝑐ℎ −
𝑃 𝑑𝑐ℎ
𝑡
𝜂𝑑𝑐ℎ

) × 𝛥𝑡 = 𝑆𝑂𝐶𝑡 × 𝐸𝐵𝐸𝑆𝑆
𝑡 (39)

𝑃 𝑐ℎ
𝑡 × 𝜂𝑐ℎ × 𝛥𝑡 ≤

(

1 − 𝑆𝑂𝐶𝑡−1
)

× 𝐸𝐵𝐸𝑆𝑆
𝑡 (40)

𝑃 𝑑𝑐ℎ
𝑡
𝜂𝑑𝑐ℎ

× 𝛥𝑡 ≤ 𝑆𝑂𝐶𝑡−1 × 𝐸𝐵𝐸𝑆𝑆
𝑡 (41)

Power flows among the CS, the grid, and the BESS with the OCS
strategy for an exemplary summer week without and with local PV
generation are depicted in Fig. 5.

3. Simulation setup and discussion of results

The operation of the CS is simulated over a period of 20 years in
four scenarios with BA. The energy flows and the emissions attributable
to all components over the simulation period are calculated. The LEES
value for the energy supplied by the energy system to the load in each
scenario is obtained from the simulation results. For reference, two
scenarios with GR are also simulated, and are discussed towards the
end of this section. The summarized results for all scenarios have been
tabulated in Table 10.

3.1. Battery Assistance (BA) and local renewable generation

Four system scenarios with BA have been simulated, corresponding
to the two EMS strategies, each simulated with and without local PV
generation ( Table 6). The choice of the EMS strategy influences the
LEES of the energy supplied by the energy system to the chargers. The
results are summarized in Table 7 and graphically depicted in Fig. 10
A.

In scenario 1, the solution BA is simulated at the CS location with
the GCS strategy. The evolution of the values of the SOC, the SOCI,
and the CIgrt for an exemplary winter and summer week each are
depicted in Fig. 6 A and B. Energy is supplied to the chargers with a
LEES of 0.4702 kgCO2𝑒𝑞kWh−1. The most significant contributor to this
value is 𝜀GEC. The second largest contribution is 𝜀DEC. The operation
phase emissions of the grid section, 𝜀gr,op, contribute the third largest

Table 6
Simulation matrix and list of scenarios for the BA concept.

Simulation matrix BA

Scenario Operation On-site Scenario
ID strategy PV generation name

1 GCS No BA GCS
2 OCS No BA OCS
3 GCS Yes BA GCS PV
4 OCS Yes BA OCS PV

share. While the BESS operation phase emissions, 𝜀BESS,op, account for
the second lowest contribution, the BESS production phase emissions,
𝜀BESS,prod, are responsible for the smallest contribution to the LEES. The
BESS is cycled for over 3635 EFCs with DOC = 0.11 and SOC = 0.99.
Over the simulation period, this leads predominantly to calendric aging
of the cells, with a small share of cyclic aging. The cells are estimated
to still possess over 69% of the original capacity (Fig. 8).

In scenario 3, local PV generation is combined with scenario 1.
Values of SOC, SOCI, and CIgrt for the exemplary winter and summer
weeks are depicted in Fig. 6 C and D. Incorporation of PV generation
leads to a lower LEES of 0.4336 kgCO2𝑒𝑞kWh−1. 𝜀GEC makes up the
largest portion of the LEES value. There is a marked reduction in 𝜀GEC

due to the direct consumption of PV power generation. 𝜀gr,op is the
second largest contributing category. These emissions are higher than
those in scenario 1 despite the lower amount of energy drawn from
the grid. This can be attributed to the shift in the time of charging of
the BESS. The production phase emissions of the PV system come in
at third, followed by 𝜀DEC in the fourth place. The BESS production
phase emissions make up the fifth largest contribution to the LEES,
with 𝜀BESS,op making the least impact. The drastic drop in both 𝜀DEC

and 𝜀BESS,op is anticipated as PV power is also used to charge the BESS.
The SOCI decreases from 422.59 g CO2𝑒𝑞kWh−1 in scenario 1 to 328.46 g
CO2𝑒𝑞∕kWh−1 in scenario 3, which corroborates this finding. Despite
the additional production phase emissions of the PV system, and the
increase in 𝜀gr,op, lower values of 𝜀GEC, 𝜀DEC, and 𝜀BESS,op drive a net re-
duction in the LEES value. If grid feed-in of the curtailed PV generation
were to be permitted, 11.99GWh of energy can be exported to the grid
over the simulation period of 20 years. Based on the capacity factor for
the location, and an estimated lifetime of 20 years for the PV system, PV
power generation has a carbon intensity of 56.81 gCO2𝑒𝑞kWh−1 based
on the calculated production and EOL phase footprints. The feed-in
of surplus power can result in a further reduction of emissions to the
tune of 681.18 tCO2𝑒𝑞. These emissions can potentially be excluded from
the system boundaries and be allocated to grid consumers elsewhere.
This can reduce the value of LEES by a further 0.0104 kgCO2𝑒𝑞kWh−1.
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Fig. 6. A, B: State of Charge (SOC) and State of Carbon Intensity (SOCI) evolution with respect to time for the Greedy Charging Strategy (GCS) operation strategy (scenario 1)
for an exemplary winter and summer week respectively. C, D: State of Charge (SOC) and State of Carbon Intensity (SOCI) evolution with respect to time for the GCS strategy with
local PV generation (scenario 3) for an exemplary winter and summer week respectively.

Due to the availability of the additional PV power generation, the
instances of grid capacity being reached are fewer, and consequently,
the number of EFCs experienced by the BESS are also lower at 2310,
as compared to 3635 in scenario 1. The degradation of the BESS in
this scenario is primarily calendric in nature. A high SOC = 0.99 with
gentler cyclization (DOC = 0.03) and a lower number of cycles explains
a comparably high calendric aging as scenario 1, coupled with lower
cyclic aging (Fig. 8).

In scenario 2, the BA solution is simulated with the OCS strategy.
Fig. 7 A and B present the values of SOC, SOCI, and CIgrt over exemplary
winter and summer weeks respectively. The LEES of the supplied
energy in this case is 0.4581 kg CO2𝑒𝑞kWh−1, which is over 2.5% lower
than that of scenario 1. The value of 𝜀GEC, while still being the largest
contributing category, is lower than in scenario 1, as the OCS strategy
actively charges the BESS with low-CIgrt grid energy, and avoids draw-
ing energy from the grid when CIgrt is high. This is in contrast to the GCS
strategy, which focuses solely on function fulfilment (see Fig. 9 A, B).
Consequently, a greater amount of grid energy is routed to the load over
the BESS, and leads to a larger 𝜀DEC value, which is the second biggest
contributor. The larger BESS energy throughput of nearly 51% does
not cause a correspondingly large increase in 𝜀DEC as SOCI is lowered
from 422.59 g CO2𝑒𝑞kWh−1 to 345.81 g CO2𝑒𝑞kWh−1 (Fig. 9 E, G). The
raised energy throughput of the BESS leads to a slightly higher value of
𝜀gr,op and 𝜀BESS,op, which contribute the third and fourth largest shares
respectively. 𝜀BESS,prod is the category with the least impact. Higher
values of 𝜀DEC, 𝜀gr,op, and 𝜀BESS,op are offset by a lower 𝜀GEC. The BESS

cyclization is higher in scenario 2 with nearly 5642 EFCs as compared
to over 3635 EFCs in scenario 1. Higher cyclization leads to stronger
cyclic aging in scenario 2, but to a milder calendric aging, as the lower
SOC value of 0.46, as compared to nearly 0.99 in scenario, 1 decelerates
the rate of calendric degradation (Fig. 8).

In scenario 4, scenario 2 is augmented with local PV generation.
Fig. 7 C and D illustrate the values of SOC, SOCI, and CIgrt over the ex-
emplary winter and summer week respectively. With this configuration,
a low value of LEES = 0.3571 kgCO2𝑒𝑞kWh−1 is achieved, corresponding
to a reduction of over 22% with respect to scenario 2. The biggest
contributing category is 𝜀GEC, which is lower than in scenarios 1, 2, and
3. This is attributed to over 93% lower curtailment of PV generation
than in scenario 3. The energy discharged by the BESS is over 141%
higher than in scenario 1. The second largest emissions category is
𝜀PV,prod. 𝜀gr,op makes up for the third largest emissions category. 𝜀DEC,
𝜀BESS,prod, and 𝜀BESS,op make for the three lowest contributions to the
LEES. As the BESS is charged optimally with both low-CIgrt grid energy
and PV power generation, a reduction in 𝜀DEC is observed with respect
to scenarios 1, 2, 3. The drop in 𝜀DEC and 𝜀BESS,op can also be discussed
in relation to the value of SOCI, which decreases to a low value of
80.64 gCO2𝑒𝑞kWh−1 (see Figs. 9 D and 9 F, H). In case of feed-in of
the curtailed PV generation, 0.77GWh of energy can be exported to
the grid, resulting in an emissions reduction of 43.75 tCO2𝑒𝑞, which
corresponds to a LEES reduction of 0.0006 kgCO2𝑒𝑞kWh−1. The BESS
cyclization is much more intense as compared to all other scenarios.
With over 9020 EFCs at DOC= 12.58%, the amount of capacity lost
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Fig. 7. A, B: State of Charge (SOC) and State of Carbon Intensity (SOCI) evolution with respect to time for the Optimal Charging Strategy (OCS) operation strategy (scenario 2)
for an exemplary winter and summer week respectively. C, D: State of Charge (SOC) and State of Carbon Intensity (SOCI) evolution with respect to time for the OCS strategy with
local PV generation (scenario 4) for an exemplary winter and summer week respectively.

Fig. 8. A: Change in SOH and shares of calendric and cyclic aging in the four BA scenarios. B: EFCs faced by the BESS in each BA scenario. C and D: Distributions of SOC in
scenarios 1,2 and 3,4 respectively. E and F: Distributions of DOC in scenarios 1,2 and 3,4 respectively.
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Fig. 9. A, B, C, D: Depictions of distributions of CIcht , CIgrt during charging and CIgrt during discharging in each of the BA scenarios 1, 2, 3, and 4 respectively. E, F: Distributions
of State of Carbon Intensity (SOCI) in scenarios 1, 2, and in scenarios 3, 4 respectively. G and H: Distributions of SOCI during discharging in scenarios 1, 2, and in scenarios 3, 4
respectively.

to cyclic aging is higher than in scenarios 1 and 2. However as SOC
remains low at over 0.46, calendric aging is much milder than in
scenarios 1 and 3, leading to a lower total capacity loss (Fig. 8).

To investigate the sensitivity of the effect of energy storage capacity
of the BESS, a variant of scenario 2 with 2.5MWh of storage capacity
is simulated. The LEES reduces marginally vis-á-vis scenario 2 by over
1% to 0.4529 kgCO2𝑒𝑞kWh−1. Two variants (i and ii) of scenario 4 are
also simulated to determine the sensitivity of energy storage capacity
and peak PV power respectively. Scenario 4i is simulated with 2.5MWh
of storage capacity, everything else remaining constant, whereas sce-
nario 4ii is simulated with 2MW𝑝 of peak PV power, with all other
parameters remaining unchanged. The LEES values for these addi-
tional scenarios are 0.3476 kgCO2𝑒𝑞kWh−1 and 0.3103 kgCO2𝑒𝑞kWh−1

respectively. Relative to scenario 2, this corresponds to a further re-
duction of over 2% and 10% respectively on top of the reduction
observed in scenario 4. If feed-in of the surplus power generation
were to be considered, further reductions of 0.0003 kgCO2𝑒𝑞kWh−1 and
0.0085 kgCO2𝑒𝑞kWh−1 in the respective LEES values can be expected.
These results point to a diminishing ability of additional capacities of
both the BESS and the PV system at reducing the LEES.

3.2. Comparison with Grid Reinforcement (GR)

For context, two scenarios with GR have been simulated (see Ta-
ble 8). The values for LEES for each of the simulated scenarios are
summarized in Table 9 and visually depicted in Fig. 10 B. Additional
lines and transformers are installed in parallel to augment power trans-
mission capacity [55,56]. The original power transmission capability
of the grid section is 2.5MW at the CS location, excluding losses.
Additional line capacities are installed in the MV and LV sections,
doubling the cross-section in the MV section, and increasing the LV
cross-section by 50%. Two additional transformers are also installed to
handle the increased power demand. Maximum line and transformer
loadings of 80% and line voltage drops of 5% are permitted for deter-
mining additional capacities for GR. Values for 𝜀gr,prod and 𝜀gr,EOL for
the reinforced grid section are listed in the appendix ( Tables 11 and
12). As 𝜀gr,prod and 𝜀gr,op are functions of the grid section length, these
can generally be expected to rise with the length of the grid section.

Table 7
Simulation results for Battery Assistance (BA) scenarios.

Simulation results BA

Parameter Scenario

1 2 3 4

Charging station

Grid energy (GWh) 69.58 70.29 61.07 51.51
𝛥% (rel. to 1) – 1.0 −12.2 −26.0
Discharged energy (GWh) 4.98 7.51 3.18 12.02
𝛥% (rel. to 1) – 50.8 −36.2 141.4
PV Energy (GWh) – – 20.00 20.00
Curtailment (GWh) – – 11.99 0.77
𝛥% (rel. to 3) – – – −93.6
LEES (kgCO2eq/kWh) 0.4702 0.4581 0.4338 0.3571
𝛥% (rel. to 1) – −2.6 −7.7 −24.1

BESS

Round-trip efficiency (%) 85.33 82.85 85.56 83.15
Remaining capacity (%) 69.52 77.06 69.69 76.82
SOC 0.99 0.46 0.99 0.46
DOC 0.11 0.22 0.03 0.13
EFCs 3635 5642 2310 9020
SOCI (gCO2eq/kWh) 422.59 345.81 328.46 80.65

Table 8
Simulation matrix and list of scenarios for the Grid Reinforcement (GR) concept.

Simulation matrix GR

Scenario Operation On-site Scenario
ID strategy PV generation name

I None No GR
II PV priority Yes GR PV

In scenario I, the CS is augmented with GR on the grid section
connecting to the nearest point of sufficient power transmission ca-
pacity. 𝜀GEC is the largest contributing category to the LEES value of
0.4615 kgCO2𝑒𝑞kWh−1. The second largest contributor is 𝜀gr,op. 𝜀gr,prod

contributes the smallest share.
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Fig. 10. A: Breakdown of Levelized Emissions of Energy Supply (LEES) values for Battery Assistance (BA) scenarios 1–4 into the constituent emissions categories. B: Breakdown
of Levelized Emissions of Energy Supply (LEES) values for Grid Reinforcement (GR) scenarios I and II into the constituent emissions categories. C: Energy consumption emissions
for EVs for energy from the six CS configurations with respect to three energy-consumption levels.

Table 9
Simulation results for Grid Reinforcement (GR) scenarios.
Simulation results GR

Parameter Scenario

I II

Charging station

Grid energy (GWh) 68.62 61.11
𝛥% (rel. to I) – −10.95
PV Energy (GWh) – 20.00
Curtailment (GWh) – 12.67
LEES (kgCO2eq/kWh) 0.4599 0.4317
𝛥% (rel. to I) – −6.13

In scenario II, local PV power generation is combined with scenario
I. The EMS prioritizes the consumption of PV power generation and
the residual load is covered with grid power. The LEES in this case
reduces to 0.4317 kgCO2𝑒𝑞kWh−1 (reduction of over 6.4%). 𝜀GEC retains
its position as the largest contributor to the LEES value. 𝜀GEC is lower
than in scenario I, as the PV power generation is able to offset some
of the energy drawn from the grid. The energy drawn from the grid
is around 11% lower. The second largest contributor is 𝜀gr,op. 𝜀PV,prod
makes up the third largest category. 𝜀gr,prod has the lowest impact on the
LEES. The introduction of 𝜀PV,prod is offset by a lower 𝜀GEC, leading to a
net reduction in the LEES. If grid feed-in of the curtailed PV generation
were to be permitted, 12.67GWh of energy can be exported to the grid.
This can result in a further reduction of 719.66 tCO2𝑒𝑞 of emissions,
leading to a potential LEES reduction of 0.0109 kgCO2𝑒𝑞kWh−1.

To investigate the sensitivity of the peak PV power on the LEES,
a variant of scenario II with 2MW𝑝 is simulated. The LEES reduces to
0.4170 kgCO2𝑒𝑞kWh−1 (further reduction of nearly 1.5% on top of that
achieved in scenario II). A further reduction of 0.0237 kgCO2𝑒𝑞kWh−1

can be achieved if the surplus energy were to be fed into the grid.

3.3. Effect on EV energy consumption emissions

The results presented so far can be translated into real terms by
associating them to the energy consumption emissions of EVs. A portion
of the energy supplied to the high-power chargers is lost in the power
electronics and other auxiliary systems. For the sake of simplicity, only

the losses in the power electronics units of the chargers have been
estimated. These losses amount to over 8% of the total energy supplied
to the chargers. The LEES value of the energy flowing to the EV battery
packs from the chargers can be further adjusted to internalize these
losses. We define three EV energy economy scenarios:

1. High: 10 kWh/100 km
2. Moderate: 20 kWh/100 km
3. Low: 30 kWh/100 km

With energy from each of the six simulated CS configurations, the
emissions per 100 km for each of the three EV scenarios have been
calculated. These eighteen values are depicted in Fig. 10 C. For refer-
ence, well-to-wheel emissions per 100 km for petrol/gasoline-powered
internal combustion engine vehicles are also calculated [57,58]. These
values are calculated for fuel economy values of 2–8 l/100 km. An EV
with Low energy economy, and charged with energy from scenario 1,
would cause the highest emissions among these eighteen cases. This
value is nevertheless lower than the emissions per 100 km for a ‘fuel-
efficient’ petrol-powered vehicle with a fuel economy of 6 l/100 km.
In contrast, the emissions per 100 km for the same EV, charged with
energy from scenario 4, are less than those caused by an ultra-efficient
petrol-powered vehicle with a fuel economy of 4 l/100 km.

These analyses do not consider the entire life cycle of the EV and
of the internal combustion engine vehicle, and pertain solely to the
GWP footprints of the energy consumed per 100 km driven. These values
are only indicative, as they do not include the GWP footprints of
the chargers and the existing grid infrastructure. The well-to-wheel
values also do not include the entire distribution infrastructure and
equipment.

4. Conclusion and outlook

A mathematical model to compute the GWP footprint for Electric
Vehicle (EV) High-Power Charging (HPC) with Battery Assistance (BA)
has been presented in this work. A necessary expansion and general-
ization of the LEES methodology has been undertaken to include the
grid connection. Some useful quantities have been defined to aid this
extended methodology. These quantities are the Grid Energy Consump-
tion (GEC), Discharge Energy Consumption (DEC), and the Load Energy
Consumption (LEC) emissions. A new state variable for the BESS — the

7 Low carbon pathways for high-power EV charging with Li-ion BESSs

106



Applied Energy 333 (2023) 120541

14

A. Parlikar et al.

Table 10
Category-wise breakdown of Levelized Emissions of Energy Supply (LEES) values for energy from Charging Station (CS) configurations in the
six considered scenarios.
Levelized Emissions of Energy Supply (LEES)

Scenario

1 2 3 4 I II

LEES (kgCO2𝑒𝑞kWh−1) 0.4702 0.4581 0.4338 0.3571 0.4599 0.4317
Emissions (tCO2𝑒𝑞) 30931 30135 28536 23487 30253 28400

Emissions category Category-wise Breakdown (%)

Grid Energy Consumption 86.65 84.51 86.13 85.78 95.69 91.65
Discharge Energy Consumption 6.94 8.45 3.83 2.71 0.00 0.00
Grid Operation 4.21 4.33 4.33 4.77 4.19 4.22
BESS Operation 1.19 1.68 0.64 0.57 0.00 0.00
BESS Production 1.12 1.15 1.22 1.48 0.00 0.00
Grid Production 0 0 0 0 0.19 0.20
PV Production 0 0 3.99 4.85 0.00 4.01
BESS EOL −0.11 −0.12 −0.12 −0.15 0.00 0.00
Grid EOL 0 0 0 0 −0.06 −0.07
PV EOL 0 0 −0.01 −0.01 0.00 −0.01

Total 100 100 100 100 100 100

State of Carbon Intensity (SOCI), has been introduced. This metric acts
as an indicator of the carbon intensity of the charging energy since the
last fully-discharged state. A lower value of the SOCI translates to lower
𝜀BESS,op and 𝜀DEC values. It can be loosely construed as representing
the ‘carbon-quality’ of the charging energy — the lower the value, the
higher the ‘carbon-quality’.

Integration of on-site PV generation lowers the LEES of the supplied
energy in all cases with respect to a comparable scenario without local
PV generation. The decarbonization potential of local PV generation
will be greater in locations with a higher number of hours of sunshine
and solar irradiation, as compared to Berlin, Germany. The choice of
the EMS strategy strongly influences the LEES. While it is possible to
successfully meet the requirements of the peak-shaving service in BA
with the baseline rule-based GCS strategy, the optimizer-based OCS
strategy can drive down the LEES, both with and without local PV
generation. BA offers several apparent advantages, such as speedy and
non-disruptive installation.

This study further indicates that with an optimized EMS strategy to
minimize emissions and integrate local PV generation, BA can poten-
tially charge EVs with a lower GWP footprint, as compared to GR. A
comparison of BA with GR has also been carried out. Under the stated
assumptions of this study, over the simulation period of 20 years, the
grid integration pathways can be ordered as follows (increasing LEES):

1. BA with OCS and on-site PV generation
2. BA with GCS and on-site PV generation
3. GR with on-site PV generation
4. BA with OCS
5. GR
6. BA with GCS

Thus, deploying a BESS to provide BA for EV HPC can provide
some significant benefit in terms of emissions reduction, if and only
if an optimal EMS strategy is used. Effective energy management can
fully leverage the flexibility offered by energy storage in the form
of temporal offsetting of the consumption of low-carbon energy. BA
coupled with local renewable power generation can unlock significantly
higher savings in emissions while charging EVs. An important caveat
pertaining to this order of grid pathways is that it is subject to the
chosen location, its electricity grid, and the charging load profile. To
conduct future studies, the steps laid out in the present work must be
carried out with location-specific data. With increasing grid penetration
of renewable generation and grid-connected energy storage, the carbon
intensity of the grid is expected to sink further. The potential to bring
about a local reduction in LEES of the CS site using BA will reduce,
as this role will increasingly be filled-in by grid-connected storage
systems. As demonstrated in a previous work, the decarbonization

potentials of energy storage and renewable generation diminish with
each additional unit of installed capacity [33].

Follow-up studies in this area could build upon the methods and
findings of the present study. The CIgrt profile is assumed to be invari-
able over the simulation period of 20 years. Scenarios with projections
for installed capacities of participating technologies in the German
energy mix could be developed to update this profile. Carbon intensity
profiles for electricity grids of other nations and regions with their
own generation technology mixes can also be developed and used
to conduct further analyses. Enabling feed-in of curtailed power can
potentially further reduce the LEES values, the extent of this reduction
has been discussed in Section 3. Reinforcement of grid sections with
overhead cables has lower production and installation footprints. But,
as 𝜀gr,prod makes up for a small portion of the LEES value for each
scenario, no substantial movement in the results is anticipated. The
simulation duration of 20 years is assumed to be equal to the lifetimes
of all components. A proportionate reduction in the production and
EOL phase footprints for the components might be a valid solution to
account for longer lifetimes, but these actions do not change the nature
of the results, and will lead to a slight adjustment in the LEES values.
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Fig. 11. Hourly charging events on each day at the charging station over the
representative week.
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Appendix A. Charging station synthetic load profile

A synthetic load profile for the charging station has been created
based on published data for an EV charging station in Italy [26].
Based on log data spanning over three years, the distributions of hourly
charge events for a representative day and total daily charge events for
each day of a representative week are presented in this work. By su-
perposing the distribution of charge events from the representative day
to each day of the representative week, an hourly charger occupancy
profile spanning over a week has been developed. This occupancy has
then been adapted to the charging station configuration considered in
the present work. Each day of this superposed profile is depicted in
Fig. 11.

For each charging event, in order to obtain the power drawn from
the chargers by the batteries, two quantities are required — the energy
capacity of the incoming EV battery, and the battery SOC on arrival.
The battery energy capacity is selected from a normal distribution,

Fig. 12. Left: Distribution of incoming EV battery energy capacities. Right: Distribution
of incoming EV battery SOCs on arrival.

Fig. 13. Cumulative charging station load profile for the representative week
considering individual charger occupancies.

Table 11
Streamlined Life Cycle Analysis (LCA) of grid section components. Based on data
from [43,59,60].

Grid components streamlined LCA

Component Production End-of-Life (EOL)
(kgCO2eq) (kgCO2eq)

Cables MV (per km) 9902.07 −906.81
Transformer MV/LV (per kVA) 22.70 −9.42
Cables LV (per km) 28761.70 −14015.88

whereas the SOC value on arrival is selected from a Weibull distri-
bution. The distribution of EV battery energy capacities is depicted
in Fig. 12 (left), while the distribution of battery SOCs on arrival is
depicted in Fig. 12 (right). The values for the battery energy capacity
lie between 50 kWh and 97 kWh. The SOC values are in the range of
0.05–0.89. Based on these two values, the duration of each charging
event is determined. Each charging event is assumed to have been
completed when the SOC of the battery reaches 1.0. The power drawn
by each charger is summed up at each timestep to yield a cumulative
load profile. The resultant synthetic load profile for a week is depicted
in Fig. 13.

Appendix B. Grid components streamlined Life Cycle Analysis
(LCA): production and EOL phases

The following tables present a streamlined LCA for the grid compo-
nents. Table 11 presents the GWP footprints of several grid components
corresponding to their production and end-of-life phases. Based on
the values presented in Table 11, component-wise GWP footprints
corresponding to the production and end-of-life phases of the reinforced
grid section can be obtained. These values are tabulated in Table 12.
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Table 12
Component-wise streamlined Life Cycle Analysis (LCA) for Grid Reinforcement (GR) configuration.
Grid Reinforcement streamlined LCA

Component Parallel Quantity Unit Production End-of-Life (EOL)
units # Reinforcement (kgCO2eq) (kgCO2eq)

Grid coupling power (MW)
Baseline: 2.60
Reinforced: 3.98

Cables MV 1 1.6 km 15843.31 −1450.90
Transformer MV/LV 0.63 kVA 2 1260 kVA 28607.47 −11875.45
Cables LV 9 0.45 km 12942.77 −6307.14

Sum 57393.55 −19633.49

Total 37760.06
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8 Evaluating the carbon footprint of Li-ion battery
lifecycle pathways

Lithium-ion battery technology is central to both EVs and stationary BESSs. While lithium-ion batter-
ies themselves do not generate direct emissions, their carbon footprint encompasses indirect emissions
from production, operation, repurposing, and EOL phases. This article explores the environmental
impact of lithium-ion batteries across different stages of their lifecycle. The study analyzes the carbon
footprint of lithium-ion batteries in three distinct pathways: in automotive applications (A), in sta-
tionary applications (S), and in a sequential use (second-life) first in automotive, then in stationary
storage applications (AS), following the initial automotive use phase.

The open-source simulation programs — ESN and SimSES — are used to simulate these pathways to
quantitatively assess their carbon footprints. Using LEES as a comparative metric, the study seeks
to investigate the impact of each pathway, providing insights into the lifecycle emissions of lithium-
ion battery systems. The study examines the impact of battery second life through repurposing
decommissioned automotive batteries for stationary applications on the overall carbon footprint. The
article evaluates the carbon footprints of lithium-ion batteries across different lifecycle pathways. The
highlights of this article include:

• The lifetime carbon footprints of lithium-ion batteries operating in three distinct pathways
• Evaluation of the LEES for these pathways under the considered assumptions and simulation

conditions
• Impact of repurposing decommissioned automotive batteries for ’second-life’ stationary applica-

tions on the overall carbon footprint of these batteries compared to their use solely in automotive
or stationary applications

The carbon footprint of lithium-ion batteries in an exemplary automotive application (pathway A) is
determined using a specific drive-power profile. Pathway S is demonstrated with a lithium-ion BESS
operating in a typical stationary application - the provision of Frequency Control Reserve (FCR).
Pathway AS combines both automotive and stationary applications, with batteries repurposed for
stationary use after reaching a certain SOH in the automotive phase. The study aims to determine
the most environmentally efficient lifecycle pathways for lithium-ion battery systems, contributing
valuable insights towards optimizing battery usage for decarbonization and resource efficiency in the
energy sector.

The investigation reveals that the stationary application pathway (S) is the most environmentally
favorable option, exhibiting the lowest LEES value among the considered pathways, while the auto-
motive pathway (A) has the highest. This finding is attributable to the higher BESS utilization in the
stationary application, leading to better resource efficiency. The combined pathway (AS) shows that
repurposing batteries for second-life applications can improve the carbon footprint compared to the
automotive pathway. From a carbon footprint perspective, deploying batteries in stationary applica-
tions, with or without a prior automotive phase, is more desirable than solely automotive applications.
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8 Evaluating the carbon footprint of Li-ion battery lifecycle pathways

The results suggest that the choice of EOL criterion can significantly affect the LEES value. Follow-on
analyses with better primary data and further investigations into different applications are required to
improve the accuracy and comprehensiveness of these analyses. The degradation model used in this
study may not perfectly capture the real-world degradation patterns, especially the rapid capacity loss
after the onset of the knee point. Future studies could explore alternative degradation models and
their impact on the LEES values.
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ABSTRACT 
Energy storage plays a crucial role in the energy 

transition. Lithium-ion cell technology is the leading 
energy storage technology today across both the major 
pillars of the energy sector: mobility and electricity. 
Lithium-ion batteries are deployed in electric vehicles 
spanning all segments, and in stationary battery energy 
storage systems to provide a variety of both grid-
connected and off-grid services. While there are no 
direct emissions due to the use of this technology, the 
carbon footprint of a Lithium-ion battery comprises of 
indirect emissions in its production, its operation, and 
recycling phases.  Repurposing of decommissioned 
automotive batteries in ‘second-life’ stationary 
applications is a widely discussed concept to 
meaningfully extend the battery lifecycle before 
recycling. In this work, the lifecycle carbon footprint of 
Lithium-ion batteries operating in three overarching 
pathways is quantified simulatively with open-source 
python-based energy system and battery system 
simulation programs. These pathways are – i) 
automotive application (A), ii) stationary application (S), 
and iii) automotive application followed by a second-life 
stationary application (AS). From the dual perspective of 
decarbonization and resource efficiency, it is essential to 
identify the most effective lifecycle pathways for battery 
system applications. The metric ‘Levelized Emissions of 
Energy Supply’, LEES, is used to compare the scenarios. It 
is found that under the considered assumptions and 
simulation conditions, the S pathway performs the best, 
followed by the cascaded AS pathway. The automotive 
pathway A has the highest LEES value. 
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repurp Repurposing 
trans Transport 

 

1. INTRODUCTION 
Lithium-ion battery technology is the primary 

enabler of the recent advances in electromobility and the 
driving force behind its adoption globally. The global 
Electric Vehicle (EV) stock was 26 million in 2022, which 
is five times the number of EVs on the road in 2018 [1].  
EV volumes are only expected to rise in all major global 
regions due to favorable policy incentives and 
technology improvements. Lithium-ion Battery Energy 
Storage Systems (BESSs) are also now a mature energy 
storage technology for the provision of grid-related 
services [2]. The demand for BESSs in grid applications 
has risen manifold over the recent past and is also 
expected to rise further [3]. Typical stationary BESS 
applications include residential self-consumption 
increase, provision of Frequency Containment Reserve 
(FCR), and peak load shaving [4]. 

Due to a multitude of cell-internal aging 
mechanisms, lithium-ion batteries are subject to 
degradation, which among others leads to a decrease in 
cell capacity and an increase of the cell’s internal 
resistance [5]. In the case of automotive battery packs, 
these gradually become unfit for service due to capacity 
and power fade. This leads to reduced range and 
acceleration/regenerative braking capabilities. The 
extent of degradation depends on the operating 
conditions (state-of-charge, charge/discharge-rate, etc.), 
and multiple modelling approaches exist to quantify 
battery degradation as a functions of a battery’s 
operating conditions, which can be classified into 
empirical, semi-empirical and physicochemical models 
[6]. A common assumption is that after a certain extent 
of aging, for example at a remaining capacity, or State of 
Health (SOH) of 70 % or 80 %, the battery reaches its end-
of-life upon which it can no further be used, since battery 
cells often show significantly accelerated aging behavior 
past this point [7,8]. Furthermore, the reduced capacity 
and increased resistance negatively affect the economic 
[9] benefit gained from operating a BESS in the 
respective application.  

Decommissioned automotive battery packs can be 
redeployed in stationary applications where the reduced 
energy and power densities are not as critical. The 
battery packs are collected at vehicle dealerships and 
other locations and are sent to battery repurposing 
centers for testing and integration in stationary BESSs 
[10]. Fig. 1 depicts the typical lifecycle of a Lithium-ion 

battery. Three possible lifecycle pathways for Lithium-
ion batteries are discussed in this work. The first 
pathway, A, considers the use of batteries in an 
automotive application, followed by recycling on 
reaching the End-of-Life (EOL) criterion. The second 
pathway, S, consists of the use of these batteries in an 
exemplary stationary application (such as the provision 
of frequency Containment Reserve (FCR)), followed by 
recycling on reaching the EOL criterion. The third 
pathway, AS, is the so-called cascaded lifecycle pathway, 
which consists of a first-use phase in the automotive 
application, repurposing for use in the chosen second-
life stationary application, and finally recycling. The 
present work investigates these three pathways from a 
carbon footprint/emissions perspective. The three 
pathways are simulated to obtain and compare their 
lifetime carbon footprints. Section 2 describes the 
simulation programs and the modeling procedure to 
compute the lifetime emissions. Section 3 describes the 
simulation setup, scenarios, and discusses the results. 
Section 4 briefly concludes with a summary of the results 
and provides a short outlook. 
 

 
Figure 1: Qualitative depiction of the lifecycle of Lithium-
ion battery systems, and the associated carbon footprint. 

2. METHODS 
This section describes the simulation tools used to 

model the localized energy system and the battery 
system in both automotive and stationary applications. 
The calculation methodology for the emissions in each 
lifecycle phase is also briefly described here. 

2.1 Simulation Tool: Energy System Network (ESN) 

The energy system simulation program Energy 
System Network (ESN) is used to model the scenarios 
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considered in this work. ESN is capable of modelling 
localized energy systems, consisting of generation, 
storage, grid, and load components. The program 
captures the energy flows and lifetime emissions 
associated with each component included within the 
specified system boundaries. This program is used to 
model energy system scenarios within which the battery 
lifecycle pathways are embedded. ESN 1  is already 
available to the wider scientific community as an open-
source program, while the associated publication is 
currently under review [11]. 

2.2 Simulation Tool: Simulation of Stationary Energy 
Storage Systems (SimSES) 

Battery system modelling in ESN is achieved through 
seamless coupling with the open-source python 
program, Simulation of Stationary Energy Storage 
Systems (SimSES) 2 . SimSES is capable of modelling a 
battery system from the cell-level up to the ambient 
environment in which it is placed. [12] 

2.3 Modelling an automotive application 

The modeling procedure of an automotive battery 
application is presented in this section. Fig. 2 depicts the 
automotive battery system installed in an EV. The chosen 
system boundaries include the EV battery (EVB) system 
itself, but not the external power electronics in the 
charging infrastructure. 
 

 
Figure 2: Modelling an automotive application and its 
system boundaries. The EVB includes power electronics 
and other peripheral components. 

The GWP footprint of the automotive application, 
i.e., of the system contained within the system 
boundaries, as depicted in fig. 2 comprises of the 
production phase, the operation phase, and the EOL 
phase emissions of all included components. In addition, 
the Load Energy Consumption (LEC) emissions associated 

 
1 ESN code repository: https://gitlab.lrz.de/open-ees-ses/energy_system_network 

  

with the consumption of energy are also considered [13]. 
We use a versatile metric, the Levelized Emissions of 
Energy Supply (LEES) to capture the effect of all these 
quantities on the carbon footprint of the energy system 
contained within the system boundaries (eq. 1) [14]. 

 

𝐿𝐸𝐸𝑆𝐴 =
𝜀𝐴
𝐸𝑉𝐵,𝑝𝑟𝑜𝑑

+ 𝜀𝐴
𝐸𝑉𝐵,𝑜𝑝

+ 𝜀𝐴
𝐸𝑉𝐵,𝐸𝑂𝐿 + 𝜀𝐴

𝐿𝐸𝐶

𝐸𝐴
𝑑𝑐ℎ  

(1) 

2.4 Modelling a stationary application 

In this section, the modeling procedure for a 
stationary battery application is presented. Fig. 3 depicts 
the battery installed in a grid-connected stationary 
application. The chosen system boundaries include the 
BESS itself, but not its coupling with the grid, which may 
also include a transformer. Analogous to the automotive 
application discussed earlier, the GWP footprint of the 
system contained within the system boundaries includes 
the production phase, operation phase, and EOL phase 
emissions of all components. Additionally, the LEC 
emissions on account of energy consumption are also 
calculated. 
 

 
 

Figure 3: Modelling a stationary application and its 
system boundaries. The BESS includes the power 
electronics and other peripheral components, except the 
grid coupling. 

These quantities can be captured in the LEES metric 
(eq. 2). As there is no explicit energy consuming load in a 
purely grid-connected battery application, the energy 
discharged back to the grid is treated as the consumed 
energy. 

 

𝐿𝐸𝐸𝑆𝑆 =
𝜀𝑠
𝐵𝐸𝑆𝑆,𝑝𝑟𝑜𝑑

+ 𝜀𝑠
𝐵𝐸𝑆𝑆,𝑜𝑝

+ 𝜀𝑆
𝐵𝐸𝑆𝑆,𝐸𝑂𝐿 + 𝜀𝑆

𝐿𝐸𝐶

𝐸𝑆
𝑑𝑐ℎ  

(2) 

2 SimSES code repository: https://gitlab.lrz.de/open-ees-ses/simses  
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2.5 Production phase 

The production phase of a Lithium-ion BESS is energy 
intensive and is responsible for GHG emissions. These 
emissions are due to the production of Lithium-ion cells, 
power electronics modules, and other components. 
These emissions are assigned to the lifecycle of the BESS. 
The exact BESS configuration and the energy mix 
available at the production location both play an 
important role in the determination of these emissions. 
A literature-based streamlined LCA study of a BESS with 
cells of the Lithium Irion Phosphate (LFP) chemistry has 
been compiled in a previous study, and is deemed 
sufficient for the purpose of this work [14]. The 
production phase footprint for each of the chosen 
configurations in this study is discussed in section 3. 

2.6 Operation phase 

The operation phase emissions of battery systems are 
calculated from the energy conversion losses during the 
charge and discharge processes. These emissions are 
indirect emissions, which occur during the generation of 
the lost energy. As these emissions are caused due to the 
presence of the battery system in the energy system, 
they are allocated to the operation phase of the battery. 
The operation emissions in the charge process at each 
instant are given by the product of the carbon intensity 
of the charging energy, the charging loss power, 𝑃𝑡

𝑐ℎ,𝑙𝑜𝑠𝑠, 

and the simulation timestep, Δ𝑡. The carbon intensity of 
the charging energy is equal to the grid carbon intensity, 
𝐶𝐼𝑡

𝑔𝑟
, in the current study, as no other power generation 

sources are present in the chosen configurations. The 
operation emissions at each instant during the discharge 
process are equal to the product of the State of Carbon 
Intensity (SOCI) at time t, 𝑆𝑂𝐶𝐼𝑡 , the discharge loss 
power, 𝑃𝑡

𝑑𝑐ℎ,𝑙𝑜𝑠𝑠 , and the simulation timestep, Δ𝑡 . The 
state variable SOCI has been introduced and extensively 
discussed in a previous work [13]. The emissions over the 
entire simulation period are obtained by summing up the 
emissions over all timesteps (eq. 3). The operation phase 
emissions are a function of the carbon intensity of the 
grid energy, and the energy losses during charging and 
discharging. 

𝜀𝑏𝑎𝑡𝑡,𝑜𝑝 = Σ(𝐶𝐼𝑡
𝑔𝑟

⋅ 𝑃𝑡
𝑐ℎ,𝑙𝑜𝑠𝑠 + 𝑆𝑂𝐶𝐼𝑡 ⋅ 𝑃𝑡

𝑑𝑐ℎ,𝑙𝑜𝑠𝑠)Δ𝑡 (3) 

 

2.7 End-of-Life (EOL) phase 

The battery reaches End-of-Life (EOL) due to either 
having reached a preset EOL criterion, such as a set value 
of the remaining capacity, beyond which a battery is not 
expected to perform reliably or safely, or if the required 

performance is not being met. Such batteries are sent to 
recycling facilities to recover metals and to suitably 
process other materials. Representative EOL phase 
emissions values have also been determined in a 
previous study as part of the literature-based 
streamlined LCA [14]. The EOL phase emissions are 
negative if materials are recovered and can be reused in 
the production process. This leads to emissions savings, 
which are ‘credited’ as negative emissions values. The 
EOL phase emissions for the configurations chosen in this 
study are discussed in section 3. 

2.8 Repurposing of automotive batteries 

In automotive applications, the battery witnesses a 
gradual fading of the capacity and power capability due 
to degradation processes occurring in the cells, as 
discussed in section 1. These batteries can be repurposed 
for operation in stationary applications. Additional 
components are installed to create a stationary BESS. 
Based on the studied literature, the carbon footprint of 
the repurposing process, excluding any disassembly and 
reassembly is found to be around 7.72 kgCO2eq/kWh of 
nominal battery energy capacity [15]. Two additional 
transport phases to and from the repurposing are also to 
be considered in the carbon footprint of the repurposing 
phase. For the LFP batteries, this amounts to an 
additional 0.2 kgCO2eq/kWh of nominal battery capacity 
assuming two transport phases of 200 km in each 
direction to and from the battery repurposing center 
[16,17]. 

3. SIMULATION RESULTS AND DISCUSSION 
In this section, the three possible overarching 

lifecycle pathways for Lithium-ion batteries discussed in 
section 1 are presented. Exemplary simulations for these 
three pathways are run using ESN and SimSES. The 
results of these simulations are presented and discussed 
in this section. 

The three overarching lifecycle pathways for 
Lithium-Ion batteries are (also depicted in Fig. 4): 

1. A: Deployment in automotive application 
followed by recycling on reaching of EOL 
criterion corresponding to SOH = 60% 

2. S: Deployment in stationary application followed 
by recycling on reaching EOL criterion of SOH = 
60% 

3. AS: Deployment in automotive application until 
SOH = 80% is reached followed by repurposing 
for deployment in a stationary application, and 
recycling on reaching SOH = 60% 
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In the following subsections, the simulation setup and 
the influencing factors in each of the pathways are 
discussed. 

 

 

Figure 4: The three possible battery lifecycle pathways: A 
(Automotive), S (Stationary), and AS (Automotive 
application followed by a stationary second-life 
application). 

3.1 Pathway A 

In pathway A, the carbon footprint of a Lithium-ion 
battery pack deployed in an automotive application over 
its entire lifetime is determined. The metric LEES is 
obtained for the application within the system 
boundaries as described in section 2. The automotive 
application is modeled using an EV drive-power profile. 
This profile has been generated based on driver vehicle 
utilization behavior using the tool emobpy [18]. The 
application is simulated with a timestep of 900 seconds. 
This dataset and its attributes have been extensively 
described in a previous study. The profile and EV battery 
pack configuration used in this work is based on the drive 
profile expected for an EV from a leading vehicle 
manufacturer. [19] 

The battery pack configuration is described in Table 
1. Table 2 presents the calculated production and EOL 
phase emissions for the specified battery configuration. 
The Lithium Iron Phosphate (LFP) cell chemistry is used 
for the simulations. A parametrized cell model for this 
chemistry is available in SimSES. In this pathway, cells 
with SOH = 100% at the Beginning-of-Life (BOL), i.e. new 
cells, are considered. The EOL criterion signifies the SOH 
value at which the end of service life is assumed. This 
criterion is set at SOH = 60% in this pathway. The Lithium-

ion cells are recycled at the end of the assumed 
operation period of 20 years, or on reaching the EOL 
criterion, whichever is earlier. 
 
Table 1: Automotive application battery pack 
configuration. 

Parameter Value 
Cell type Lithium Iron Phosphate 

(LFP) 
Cell format Cylindrical, 26650 
Rated energy capacity (kWh) 45 
Rated power (kW) 100 
Initial State of Health (SOH) 100% 
Battery model R-int Equivalent Circuit 

Model (ECM) 
(based on [20,21]) 

Battery degradation model Semi-empirical calendric 
and cyclic 

(based on [22,23]) 
Power electronics AC/DC converter, 5 units 

(based on [24–26]) 
Housing type No Housing assumed 
Cooling system Passive cooling in 

constant temperature 
Ambient conditions Constant temperature 

 
Table 2: Production and EOL emissions (in kgCO2eq) for 
the automotive battery pack described in Table 1. 

 
The simulation results and emissions categories in 

each phase of the battery lifecycle are determined (Table 
6). The value of LEES is obtained from the values of the 
emissions categories presented in the simulation results. 
The LEES value for the automotive application comes out 
to 0.7457 kgCO2eq/kWh. The largest contributor to this 
value are the DEC emissions, followed by the BESS 
production phase emissions. The BESS operation phase 
emissions and the grid section operation phase 
emissions are the third and fourth largest emissions 
categories. The EOL phase emissions for the BESS are 
negative due to the carbon credits on account of material 
recovered from the recycling process. If the EVB were to 
be decommissioned on reaching SOH = 80%, the LEES 
value rises to 1.1124 kgCO2eq/kWh. In this case, it takes 

       
          

           
           

           
           

       
           

       
         

  

  

       
         

       
         

                                    

Component Production End-of-Life Source 

Cells 7,245 -527 [27,28] 

Power Electronics 980 -104 [29,30] 

Electronics 619 -90 [29,30] 

Total 8,844 -720  
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around 7 years for the EVB to reach the EOL criterion 
operating with the simulated load profile. 50% of the 
production and EOL phase emissions associated with the 
power electronics are associated with the battery. This is 
under the assumption that the power electronics can be 
used in the EV with a battery replacement. The choice of 
the EOL criterion also affects the LEES value for the 
pathway. 

3.2 Pathway S 

In pathway S, the carbon footprint of a Lithium-ion 
BESS deployed in the chosen stationary grid-connected 
application – provision of Frequency Control Reserve 
(FCR) is determined over its entire lifecycle. 
 
Table 3: Stationary application BESS configuration. 

Parameter Value 

Cell chemistry Lithium Iron Phosphate 
(LFP) 

Cell format Cylindrical, 26650 

Rated energy capacity (MWh) 1.62 

Rated power (MW) 1.6 

Initial State of Health (SOH) 100% 

Battery model R-int Equivalent Circuit 
Model (ECM) 

(based on [20,21]) 

Battery degradation model Semi-empirical calendric 
and cyclic 

(based on [22,23]) 

Power electronics AC/DC Converter, 8 units 
(based on [24–26]) 

Housing type 20 ft. standard shipping 
container 

HVAC thermal power (kW) 30 

Ambient conditions Berlin 

 
Table 4: Production and End-of-Life emissions (in 
kgCO2eq) for the stationary BESS described in Table 3. 

 
In this application, grid frequency data is used to 

generate the power target for the BESS based on the grid 
frequency at the current timestep. This energy 

management strategy is explained in greater detail in 
previous publications [4,12]. Grid frequency data of the 
German grid for the year 2019 is used in this analysis. 
This data has been obtained from information made 
available in the public domain by the transmission 
system operator, TransNetBW [32]. Any potential 
deviations from the stipulated BESS SOC limits required 
to provide symmetrical reserves in both the positive and 
negative directions are corrected by buying/selling 
energy on the intraday energy markets. The BESS 
configuration is described in Table 3. Table 4 presents the 
calculated production and EOL phase emissions for the 
specified battery configuration. 

This application is simulated for a period of 20 years 
with a downsampled time resolution of 15 minutes (900 
seconds), which reduces the number of data points to 
35,040 per year, instead of over 31.5 million per year 
with a time resolution of 1 second [33]. Although this is 
less accurate than simulating the operation with a time 
resolution of 1 second, a significant reduction in both the 
simulation time and the data volumes is achieved. 

The LEES value for the application is obtained from 
the calculated emissions categories in Table 6. The LEES 
value for the application is 0.5938 kgCO2eq/kWh. The 
largest contributing category to this value are the DEC 
emissions, followed by the BESS operation phase 
emissions, and the BESS production emissions. The grid 
operation phase emissions constitute the smallest 
emissions category. The BESS EOL phase emissions are 
again negative, reflecting the emissions credits on 
recycling recovered materials. 

3.3 Pathway AS 

In pathway AS, the carbon footprint of the Lithium-
ion battery pack over its lifetime with an automotive 
‘first-life’ application, and a stationary ‘second-life’ 
application is calculated. The battery pack is first 
deployed in an automotive application. After attaining an 
SOH value of 80%, the battery pack is repurposed for use 
in a stationary application. The battery is operated in the 
stationary application until it either reaches the second 
EOL criterion of 60%, or until a total service duration of 
20 years is reached. It is then sent to the recycling facility 
to recover the metals and other materials used in its 
construction. 

The simulated automotive application is identical to 
pathway A, with the exception of the EOL criterion, 
which is set to 80%, and not 60%. Repurposing is carried 
out between the automotive and stationary applications. 
It is assumed that the power electronics of the EV remain 
fit for service with a battery pack replacement, until the 

Component Production End-of-Life Source 

Cells 260,805 -18,953 [27,28] 

Power Electronics 61,536 -15,125 [29,30] 

Electronics 25,477 -3692 [29,30] 

Housing 15,720 0 [30] 

HVAC 426 0 [31] 

Total 363,964 -37,769  
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vehicle is scrapped. As the EV could potentially operate 
two battery packs during its lifetime, 50% of the 
production and EOL emissions for the power electronics 
are then allocated to the first life battery application. The 
stationary application is identical to pathway S, and is 
simulated until an SOH value of 60% is reached, or when 
the battery completes a total 20 year operation period. 
Additional components such as the power electronics, 
container housing, and air conditioning systems are 
installed with the repurposed battery packs. In the 
stationary application, 45 repurposed automotive packs 
are installed. These 45 packs together possess an 
effective energy capacity of 1.62 MWh (at SOH = 80%) 
with an original nominal energy capacity of 2.025 MWh. 

Table 5: Battery parameters (simulation results) 

Quantity A S  A|S 

Start SOH 100% 100% 100% 80% 

Mean SOC 97.61% 47.58% 97.87% 47.28% 

Mean DOC 18.95% 4.22% 16.85% 3.72% 

Total EFCs 945.43 3,953.27 327.53 2,489 

Mean SOCI 
(gCO2eq/kWh) 

458.36 444.94 459.20 442.19 

End SOH 65% 76% 80% 72% 

Resistance 
increase 

17.44% 46.23% 6.02% 28.81% 

Operation 
duration 
(years) 

20 20 7 13 

 

The LEES value for this cascaded lifecycle pathway is 
calculated as in eq. 6. Eqs. 4 and 5 present the emissions 
associated with the battery in automotive and stationary 
applications. 𝑓𝐴  and 𝑓𝑆  are factors to determine the 
share of the production and EOL phase emissions for the 
peripheral components which are allocated to the 
automotive and stationary applications respectively. This 
includes the power electronics (PE), the container 
housing, and the Heating, Ventilation, Air Conditioning 

(HVAC) system. In this case, 𝑓𝐴 is set to 0.5, as discussed 
earlier in this section. As the repurposed BESS can be 
operated in the stationary application for 13 years, 𝑓𝑆 is 
set to 0.65. These factors control the allocation of the 
emissions for the peripheral components. 

𝜀𝐴
𝐸𝑉𝐵 = 𝜀𝑐𝑒𝑙𝑙𝑠,𝑝𝑟𝑜𝑑 + 𝜀𝐴

𝑒𝑙 + 𝑓𝐴 ⋅ (𝜀𝐴
𝑃𝐸) + 𝜀𝐴

𝐸𝑉𝐵,𝑜𝑝
+ 𝜀𝐴

𝐿𝐸𝐶  (4) 

𝜀𝑆
𝐵𝐸𝑆𝑆 = 𝑓𝑆 ⋅ (𝜀𝑆

𝑃𝐸 + 𝜀𝑆
𝑒𝑙 + 𝜀𝑆

ℎ𝑠𝑔
+ 𝜀𝑆

𝐻𝑉𝐴𝐶) + 𝜀𝑆
𝐵𝐸𝑆𝑆,𝑜𝑝

+ 𝜀𝑆
𝐿𝐸𝐶 + 𝜀𝑐𝑒𝑙𝑙𝑠,𝐸𝑂𝐿  

(5) 

𝐿𝐸𝐸𝑆 =
𝜀𝐴
𝐸𝑉𝐵 + 𝜀𝑡𝑟𝑎𝑛𝑠 + 𝜀𝑟𝑒𝑝𝑢𝑟𝑝 + 𝜀𝑆

𝐵𝐸𝑆𝑆

𝐸𝐴
𝑑𝑐ℎ + 𝐸𝑆

𝑑𝑐ℎ
 (6) 

The LEES value for this pathway is calculated to be 
0.6285 kgCO2/kWh. The category-wise emissions results 
are tabulated in Table 6. In the automotive application, it 
takes 7 years under the simulated load conditions to 
reach the EOL criterion of SOH = 80%. In the stationary 
application, the battery system is in operation for 13 
years, and loses a further 8% of capacity. The EOL 
criterion of SOH = 60% is not reached within this time 
period. 

From the simulated scenarios, it is observed that the 
LEES value for pathway A is the highest. This is due to the 
low utilization of the BESS in the automotive application, 
which sees just over 945 EFCs over the 20-year 
simulation period (Table 5). The SOH of the battery 
gradually drops to 65% in this period. In contrast, the 
LEES value for pathway S is the lowest over the 20-year 
period. This is attributable to the higher utilization (3953 
EFCs) of the BESS over the 20-year simulated duration, 
despite which the battery reaches SOH = 76%. The 
evaluation of the pathway AS is more nuanced. The LEES 
value is lower than that of pathway A, but higher than 
that of pathway S. In the first phase, i.e., the A phase of 
the pathway, the BESS is subjected to over 327 EFCs, 
while in the second phase (S), the BESS is subjected to a 
further 2489 EFCs. At the end of the second-use phase, 
the SOH of the battery is 72%. 

Table 6: Simulation results with each emissions category (in kgCO2eq), the discharged energy, and LEES values. 

Emissions Category A S A|S 

Production phase (BESS) 8,844.26 363,963.98 8,354.18 (x 45) 54,905.71 

Operation phase (BESS) 2,865.12 418,102.75 982.44 (x 45) 255,708.11 

Operation phase (grid section) 409.42 63,995.52 142.24 (x 45) 40,157.15 

Repurposing 0 0 0 15,633 

Transport 0 0 0 406.22 

DEC emissions  17,180.82 2,717,493.62 5,964.88 (x 45) 1,711,802.73 

EOL phase (BESS) -720.19 -37,769.34 -668.20 (x 45) -10,470.47 

Energy discharged (kWh) 38,324.60 593,7712.52 13,282.33 (x 45) 3,751,143.71 

LEES (kgCO2eq/kWh) 0.7457 0.5938 0.6285 
 

8 Evaluating the carbon footprint of Li-ion battery lifecycle pathways

120



8 

In comparison to pathway A, the SOH drop in the 
pathways S and AS is lower, due to the degradation 
characteristics of cell, and the load characteristics of the 
application. The considered LFP cell is especially 
susceptible to high calendric degradation at higher SOC 
values. In pathway A, the EVB remains at high SOC values 
to maintain drive-readiness. In the pathways S and AS, 
the chosen stationary application – provision of FCR is 
peculiar as it maintains the BESS in a mid-SOC range, 
deviating around SOC = 50% as it provides power to 
counter the grid frequency deviations. As the chosen cell 
is also especially stable under intense cyclization, the S 
and AS pathways do not lead to a correspondingly high 
cyclic degradation, despite the high EFCs it is subjected 
to. Despite the high total number of EFCs (over 2816) in 
the automotive and stationary applications, the LEES for 
the AS pathway remains higher than that for the S 
pathway. Fig. 5 depicts the LEES values for the three 
pathways and the contributions of each emissions 
category to the value. 

 

 

Figure 5: LEES values for the three pathways: A, S, AS. 
Also depicted are the relative contributions of each 
emissions category to the LEES value. 

4. CONCLUSION AND OUTLOOK  

This study investigates the emissions footprint of 
three possible Lithium-ion battery lifecycle pathways. It 
is found that for the chosen automotive drive profile and 
stationary application, the S pathway exhibits the lowest 

LEES value. The AS cascaded lifecycle pathway fares 
better than the A pathway. This implies that a cascaded 
lifecycle pathway (AS) is desirable from the carbon 
footprint perspective, as compared to the automotive 
(A) pathway. This also implies that dedicated BESS 
installations for stationary applications are 
indispensable, but stationary energy storage can be 
augmented with repurposed batteries from automotive 
applications, as the batteries have already been 
produced, and may as well be deployed in stationary 
applications to improve their lifetime LEES values. The 
choice of the EOL criterion in the automotive application 
is also found to influence the LEES value for the pathway. 

The goal of this study is to illustrate the analytical 
methodology to compare the three possible Lithium-ion 
battery lifecycle pathways. This study relies on a 
streamlined LCA based on data published in scientific 
literature. Primary data is difficult to obtain and remains 
the biggest hurdle to conducting extremely detailed and 
precise LCA studies. Access to better data would ensure 
that this analysis can be updated at a later time. Although 
the LFP cell model used in this study is known to be 
especially durable, the cell degradation model used has 
a square root dependency on time and charge 
throughput. Consequently, it exhibits slowing 
degradation with time and charge throughput. The cell 
can be expected to suffer stronger degradation towards 
the end of its service life under real-world conditions, 
which would affect the LEES values. Follow-on analyses 
to check the sensitivity of cell degradation, the effect of 
the chosen stationary application on the LEES values are 
planned. An investigation into the LEES values of a 
Vehicle-to-Home, or Vehicle-to-X configuration wherein 
the automotive and stationary applications are serviced 
within the same timeframe, rather than sequentially as 
in pathway AS would also be of particular interest. The 
carbon intensity profile for the German grid in 2019 is 
used to represent each year in the simulation. This can 
be thought of as the worst-case scenario since the grid 
carbon intensity is expected to go down with time as the 
penetration of renewable energy sources in the energy 
mix rises. 
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9 Conclusion and Outlook

9.1 Conclusion

The decarbonization of the energy system is the project of the century; it represents an inflection
point in the history of human civilization, capping a period of centuries and even millennia of reliance
on carbonaceous fuels. Future generations will look back at the 21st century through the lens of the
energy transition that we bear witness to and contribute to today. Energy storage enables the energy
transition to go the last mile in the effective integration of renewable power generation. This being
said, integrating energy storage systems in the energy system is not automatically beneficial to the
overarching goal of decarbonization. This thesis presents a comprehensive mathematical framework to
quantify the carbon footprint of energy storage systems operating in a wide variety of applications, with
a focus on the leading technology of today - lithium-ion Battery Energy Storage Systems (BESSs). The
application of the developed methodology to some widespread energy storage applications is illustrated
through case studies.

The lifetime carbon footprint of a BESS is the sum of the individual carbon footprints of each phase
lifecycle phase. The carbon footprints of the production and EOL phases are largely determined
by the sizing, the material composition, the efficiency and energy intensity of the manufacturing
and recycling processes, and the carbon intensity of the energy mix at the production and recycling
locations. Additionally, the carbon footprint of the EOL phase depends on the material recovery rate
or recycling efficiency. There is often little that can be done from the perspective of energy engineering
to influence the magnitude of the carbon footprints of these lifecycle phases. The carbon footprint of
the operation phase falls within the ambit of energy engineering, which can be influenced by sizing and
operating energy storage systems in an efficient manner. Chapter 4 discusses the factors that play a
role in the efficient operation of BESSs. The characteristics of the application influence the efficiency of
a BESS, i.e., the layout and topology of a BESS must be customized to match the characteristics of the
load profile. Furthermore, the system efficiency depends on battery parameters such as the capacity,
internal resistance, and operating voltage range. The topology and power distribution strategies of the
power electronics and other auxiliary components also influence the efficiency.

With the insights gained in chapter 4 on the centrality of the system efficiency to the analysis of the
operation phase, an effort to formalize the methodology for the quantification of the carbon footprint
of the operation phase is made in chapter 5. A systematic and coherent mathematical framework
is presented to obtain the carbon footprint of energy storage systems operating in localized energy
systems. This simulation program, christened Energy System Network (ESN), has been created in
the open-source scientific programming language Python. Two case studies dealing with the popular
BESS applications energy arbitrage and home energy systems are presented. An unconventional energy
arbitrage strategy designed to exploit spreads in the grid carbon intensity, rather than the energy price
spreads on the spot markets, is presented and explored here. Similarly, an optimization-based EMS
strategy for the home energy system manages to achieve the lowest carbon footprint in combination
with rooftop solar generation and a residential BESS. ESN is the common thread running through all
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the subsequent chapters from chapter 5 onwards and has been employed to create and simulate the
case studies presented therein.

Chapter 6 investigates the carbon footprint of isolated island grid energy systems. This chapter in-
troduces two new quantities - the Levelized Emissions of Energy Supply (LEES) and the reduction in
emissions per additional unit of energy storage, R. It is found that the incorporation of energy storage
always results in a reduction in the carbon footprint for all reasonable values of energy storage capacity,
but the value of the maximum reduction possible is a characteristic of the system configuration, and
does not incessantly correlate positively with increasing energy storage capacity. The reduction in the
carbon footprint correlates negatively with the energy capacity for higher values beyond the charac-
teristic value. The metric R aids decision-makers with efficiently allocating resources by identifying
isolated energy systems that should be prioritized for incorporating additional energy storage capacity.

Chapter 7 investigates the carbon footprint of battery-assisted high-power charging stations for EVs,
while comparing it to the alternative of grid reinforcement at the charging station locations. The
chapter also introduces a novel state variable for BESSs - the State of Carbon Intensity (SOCI). The
SOCI is an attempt to usher in transparency in the carbon footprint of the BESSs operation. This
is also important for the operators of BESSs, who would be able to see the effects of their EMS
strategies on the SOCI of the stored energy. This chapter also looks at the optimal operation of the
charging station in tandem with the BESS and the on-site PV generation to reduce the LEES of the
energy used to charge the EVs. An implication of this technology is that the carbon footprint of EVs
being charged with energy from an optimally operated charging station would also be lower than a
comparable charging station, which does not consider this aspect of the charging energy.

Chapter 8 investigates the carbon footprints of three lithium-ion battery lifecycle pathways, which are
automotive (A), stationary (S), and a cascaded pathway (AS) consisting of an automotive application
followed by a second-life stationary application. The evaluation of these three pathways reveals that
for the considered application load profiles, the S pathway exhibited the lowest LEES value. This was
followed by the AS pathway, which had a lower LEES than the A pathway. The findings suggest that
the LEES values of a battery improve with higher utilization factors. The installation of stationary
BESSs is indispensable if we are to accelerate the energy transition. However, the finding that used
automotive batteries can be installed in second-life stationary applications to improve the LEES of an
already manufactured automotive battery is particularly interesting.

9.2 Outlook on future research directions

The work presented in this thesis is multi-faceted and multi-pronged, enabling future research that
builds on top of this work to branch out in several directions.

The availability of reliable and detailed primary LCA data is one of the biggest challenges in this
area of research. This work attempts to establish a systematic and comprehensive foundation for the
quantification of the carbon footprint of BESSs and other energy storage systems. This methodology
can be used in conjunction with better data to evaluate the techno-environmental performance of
existing and upcoming technologies with greater consistency and comparability.

The EMS strategies employed in this thesis rely on the principle of perfect foresight to obtain power
targets for the various components in an energy system. The incorporation of forecast uncertainty
into the EMS could bring the simulation results closer to real-world operation. Confidence intervals
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for the evaluations attributed to the uncertainties in the most significant input quantities could also
be calculated. Operating the BESS in a degradation-aware manner while minimizing the overall
carbon footprint is an interesting avenue for future works. The optimization-based EMS strategies
illustrated in this thesis work with Mixed-Inter Linear Programming (MILP). This includes linearizing
the battery degradation functions. This necessitates a linearization of all possible non-linear equations
in the original problem formulation, including the degradation functions. Non-linear optimization
approaches and meta-heuristics could also be used to extend the problem formulation to include the
SOCI. The investigation of the carbon footprint of BESSs operating with multi-use EMS strategies,
wherein multiple energy storage applications are serviced within the same timeframe, is an interesting
topic for follow-up studies.

This work investigates the carbon footprints of the battery system in stationary, automotive, and a
cascaded lifecycle pathway with sequential automotive and stationary use phases. The evaluation of
the carbon footprint of vehicle-to-X scenarios with bidirectional charging can yield interesting insights,
especially considering that the stationary and automotive use phases are serviced during the same
period. Vehicle-to-X coupled with residential BESSs represents a multi-storage setup wherein more
than one storage system can be operated in an optimal fashion to service the selected applications. A
multi-storage setup also includes the concept of battery swapping stations. Battery swapping stations
can also be used to service various stationary applications in addition to their primary function of
charging and keeping swappable EV batteries in a ready state to be swapped.
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Appendix

Modeling battery energy storage systems with SimSES

This chapter presents the article ”SimSES: A holistic simulation framework for modeling and analyzing
stationary energy storage systems” and introduces SimSES as an advanced simulation framework
designed to meet the growing need for comprehensive analysis tools in the realm of stationary energy
storage systems. SimSES is a critical tool offering both technical and economic evaluations of various
energy storage technologies and their integration into energy systems.

SimSES stands out due to its modular design, allowing for the simulation of diverse storage technologies,
including lithium-ion batteries, redox flow batteries, and hydrogen energy chains. This modularity
extends to system components and topologies, empowering users to tailor the framework to specific
analysis needs. The framework encapsulates the complexity of stationary energy storage systems,
incorporating models for EMS, power electronics, and thermal management, which are essential for
realistic simulations of energy storage deployment and operation. One of the key strengths of SimSES
is its capability to perform detailed technical and economic evaluations. Through a range of key
performance indicators (KPIs), SimSES offers insights into the performance, efficiency, degradation,
and economic viability of energy storage solutions under various scenarios. Integrating detailed physical
models with comprehensive economic analysis interests a broad spectrum of stakeholders, including
researchers, industry practitioners, and policymakers. This is showcased through case studies, such as
peak shaving and frequency containment reserve applications with different storage configurations and
operational strategies.

The highlights of this article include:

• A unified simulation framework to accurately model and analyze various energy storage tech-
nologies, such as lithium-ion batteries, redox flow batteries, and hydrogen energy chains

• The impacts of different EMS and operation strategies on the performance and efficiency of
energy storage systems

• Evaluation of the technical performance and economic viability of stationary energy storage
systems

• The benefits and challenges of integrating hybrid energy storage systems, combining multiple
storage technologies, into the power grid

In summary, SimSES is a powerful simulation framework that not only enhances understanding of
the technical and economic aspects of stationary energy storage systems but also supports informed
decision-making in deploying and optimizing these systems. It contributes to integrating renewable en-
ergy sources and the transition towards more sustainable and resilient energy systems. The article also
highlights potential expansions of SimSES to include new storage technologies, complex system topolo-
gies, and sophisticated operational strategies, underscoring its ongoing relevance and adaptability to
the evolving landscape of energy storage integration.
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A B S T R A C T

The increasing feed-in of intermittent renewable energy sources into the electricity grids worldwide is currently
leading to technical challenges. Stationary energy storage systems provide a cost-effective and efficient
solution in order to facilitate the growing penetration of renewable energy sources. Major technical and
economical challenges for energy storage systems are related to lifetime, efficiency, and monetary returns.
Holistic simulation tools are needed in order to address these challenges before investing in energy storage
systems. One of these tools is SimSES, a holistic simulation framework specialized in evaluating energy storage
technologies technically and economically. With a modular approach, SimSES covers various topologies, system
components, and storage technologies embedded in an energy storage application. This contribution shows
the capabilities and benefits of SimSES by providing in-depth knowledge of the implementations and models.
Selected functionalities are demonstrated, with two use cases showing the easy-to-use simulation framework
while providing detailed technical analysis for expert users. Hybrid energy storage systems consisting of
lithium-ion and redox-flow batteries are investigated in a peak shaving application, while various system
topologies are analyzed in a frequency containment reserve application. The results for the peak shaving
case study show a benefit in favor of the hybrid system in terms of overall cost and degradation behavior
in applications that have a comparatively low energy throughput during lifetime. In terms of system topology,
a cascaded converter approach shows significant improvements in efficiency for the frequency containment
reserve application.

1. Introduction

In former decades, the worldwide energy transition was predomi-
nantly driven by introducing more Renewable Energy Sources (RES)
capacity to existing power networks, a process strongly supported by
both globally declining cost for wind and solar power generation as well
as through local legislation support, including subsidy schemes [1,2].
Following these early stage developments, the energy transition in
various regions has now started to face new constraints and technical
challenges, which demand other and often more site-specific solution
approaches. Coupling of the power grid to both heating and electrified
transport is certainly a key strategy to increase RES penetration on a
global and nationwide level within the power system itself. At the same
time, increasing the intermittence of supply that relies more on variable
sources like solar and wind generation brings incorporation of grid-tied
energy storage into discussion as a technically mature and potentially
cost-competitive measure addressing volatility issues [3].

∗ Corresponding author.
E-mail address: marc.moeller@tum.de (M. Möller).

In order to categorize storage integration in power grids we may
distinguish among Front-The-Meter (FTM) and Behind-the-Meter (BTM)
applications [4]. FTM includes applications such as storage-assisted
renewable energy time shift [5], wholesale energy arbitrage [6,7],
and Frequency Containment Reserve (FCR) provision [8]. A more dis-
tributed and locally coordinated power supply is discussed in the
context of BTM applications, e.g., Peak Shaving (PS) for industrial sites
or at electric vehicle charging stations [9], or bill-saving at residential
sites through Self-Consumption Increase (SCI) with local photovoltaic
generation (residential battery storage) [10]. However, before taking
a solid investment decision, it is crucial to analyze and optimize the
technical parameters, storage dispatch control, as well as cost/revenue
streams over the course of the entire project lifetime. Simulation and
modeling tools in conjunction with sensitivity analyzes and optimiza-
tion routines are commonly used to support these crucial steps in the
planning and operational phase of grid-integrated storage projects.

https://doi.org/10.1016/j.est.2021.103743
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The Simulation Tool for Stationary Energy Storage Systems (SimSES)
was developed to assist through the aforementioned tasks of storage
system planning and operation. Through combining user-defined in-
puts with pre-parameterized component building blocks, as well as
calculation methods and result analysis functions, a reserve is built
for research, industry, and policy makers in equal measure to support
deployment and enrollment of storage integration to the grid. The
approach of SimSES is presented within this contribution.

In Section 2, comparable existing tools are reviewed and evaluated
before the structure of SimSES is elaborated further in Section 3 as
well as its detail models for storage technologies (Section 4) and its
periphery (Section 5). Afterwards, in Section 6 two case studies are
presented to show the capabilities of SimSES and concludes with a
summary and outlook of further investigations in Section 7.

2. Literature review

Various authors have analyzed sizing and (economically) optimal
operation of a specifically chosen storage system in a dedicated appli-
cation setting, e.g., the usage of redox flow battery (RFB) for industrial
PS applications [9] or the usage of lithium-ion battery (LIB) for SCI [11,
12]. Fewer studies exist comparing the suitability of different storage
options for a given use case, e.g., refer to Toledo et al. [13] for a
suitability comparison of different storage types for conducting residen-
tial self-consumption increase. Also, the profitability attainable across
different applications was analyzed with a given technology to start
off with, e.g., LIB in a wide range of application settings [14]. There
is consensus that no uniform ideal candidate to meet all application-
specific requirements exists within the storage technologies available to
date [15]. In order to predict internal states of a storage system such as
the State of Health (SOH) or the storage internal losses, it may become
necessary to parameterize and simulate an adequately complex model
of a storage system. Furthermore, simulations need to be fed with
an operational concept that complies with the application constrains,
and may deliver the compatibility of a given configuration as well as
provide state predictions for the storage system. From an investor’s per-
spective and ultimately for the most cost-effective integration of storage
system to power grids with a high share of Variable Renewable Energy
Sources (vRES), it is detrimental to conduct in-depth sensitivity and
optimization studies relying on a full spectrum techno-economic model
before subsequent tasks of project acquisition, realization, operation,
and ultimately disposal are to be considered.

In the following, an overview of a selection of depicted tools for the
techno-economic modeling of stationary storage in grid applications is
provided. While Table 1 summarizes some of the main characteristics of
these tools, it should be noted that this paper does not claim to provide
a complete overview of all tools that may be relevant in the context
matter.

GridLab-D,1 developed and distributed via Pacific Northwest Na-
tional Laboratory (PNNL), is a universal tool that allows modeling
and analyzing multi-component power system networks. Its strength
lies in the ability to simulate physical properties of various compo-
nents through setting up and solving multiple differential equations,
describing all sub-components in the modeling region. While the tool
is certainly strong in modeling an entire micro-grid with its numerous
grid states, it lacks detailed performance models for energy storage
systems as well as application-specific parameterization and is therefore
not applicable for detailed techno-economic analysis and optimization
of storage project as it is focused in this work.

Other tools like NAS Battery Simulator,2 PNNL Flow Battery Cal-
culator,3 and H2FAST,4 are tools dedicated to specific storage types be-
ing sodium sulfur battery (NaS) redox flow, and electrolysis/hydrogen

1 https://www.gridlabd.org/
2 https://www.ngk-insulators.com/en/product/nas/simulator/
3 https://github.com/PNNL-OE-Redox-Flow-Battery-Cost-Tool/PNNL-OE-

Redox-Flow-Battery-Cost-Tool
4 https://www.nrel.gov/hydrogen/h2fast.html

storage, respectively. These tools are developed for conducting rapid
cost-revenue calculations for the specific technology of choice and offer
limited user-specific input in terms of system parameterization and
choice of application use case. Nevertheless, the aforementioned tools
are confined to a dedicated storage system technology, rendering them
less suitable for cross-technology comparisons. Furthermore, most tools
of this kind are distributed as a proprietary code, matching only a
dedicated commercial product well, and are not suitable for conducting
sensitivity analyzes and adaption to envisioned new storage system
control and operation.

More tailored simulations can be conducted using the tool Per-
ModAC developed at htw Berlin [16]. Using this open-source software
tool, performance and efficiency modeling of PV-coupled residential
battery storage systems can be conducted. While the tool is extraor-
dinarily strong in conducting battery storage product-specific perfor-
mance and efficiency modeling, the model lacks the capabilities to
analyze battery degradation. More importantly, the current version of
this open-source tool is strictly confined to a specific residential BTM
use case and cannot be used directly for cross-application assessments,
as is desired for an investor’s decision support.

Homer Pro and Homer Grid are more versatile modeling tools
when it comes to comparing and optimizing the techno-economic
performance of storage systems in (micro-)grids. The tools support
various storage specific libraries and application-specific modeling ca-
pabilities, e.g., storage-supported renewable energy time shift in island
grids as well as peak-shaving and solar-plus storage calculations in
the current professional versions, and has been used in various sci-
entific publications [17,18]. The software was developed by National
Renewable Energy Laboratory (NREL), but the license for these tools
are distributed solely via Homerenergy as a commercial product and
cannot be extended/adapted according to the users’ desire to address
new application scenarios, specific personal needs, or local regulation
frameworks. E.g., applications like the provision of frequency contain-
ment reserve and arbitrage marketing scenarios are not covered in the
current version of the software tools.

Two other tools developed by NREL and Sandia National Laborato-
ries (SNL) are worth looking at in more detail: BLAST5 (Battery Lifetime
Analysis and Simulation Tool) is a powerful software suite programmed
using MATLAB® and it is distributed for both vehicle and stationary
BTM applications. BLAST-BTM-Lite has powerful modeling capabilities
for battery performance and lifetime calculations in stationary BTM
applications and it includes both optimization and basic economic
calculations. While it is highly recommended that this tool to be looked
at closer by users interested in PV self-consumption and PS application,
applications (only BTM) and storage systems to be analyzed (only con-
ventional electro-chemical batteries) are clearly limited and confined.
Furthermore, its original code structure lies hidden behind a graphical
user interface and a proprietary executable file, making it unfeasible for
the end-user to adapt parameters, e.g., sample time for peak shaving
control.

The System Advisor Model6 (SAM) tool builds up on a PV modeling
framework originally set up by SNL and is now distributed via NREL.
In its current version it allows coupling of battery storage with PV
systems and incorporates financial models, e.g., for Power Purchase
Agreement (PPA) calculations. More importantly, the user interface has
been re-factored and is now distributed as an open-source software
development kit for the Python programming language, allowing others
to contribute with their individual extensions and developments. Nev-
ertheless, on the technology side of its current version only batteries
are supported and implemented (no other storage media).

5 https://www.nrel.gov/transportation/blast-btm-lite.html
6 https://sam.nrel.gov/about-sam.html
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Table 1
Overview of technical and economic modeling tools for energy storage in stationary applications.

Tool name License type Developer (primary) Focus

GridLab-D BSD open license PNNL Multi-domain state modeling for power distribution system
simulation

NAS Battery Simulator commercial NGK-insulators NGK product-tailored NaS battery simulation in peak shaving
application

Flow Battery Calculator open source PNNL Estimation tool of cost for redox flow batteries
H2FAST open source (Excel sheet) NREL Economic assessment of hydrogen fuel stations
PerModAC open source htw Performance and efficiency modeling of PV coupled residential

battery storage systems
Homer Pro commercial Homerenergy (UL.com) Residential/Microgrid modeling—multiple storage systems, multiple

application scenarios
BLAST-BTM-Lite commercial freeware (lite version) NREL Analysis and modeling of battery degradation
StorageVET open source EPRI Optimization of size and financial evaluation of energy storage
SAM — System Advisor Model BSD-3-clause NREL Modeling and analysis software for renewable energy projects
SimSES BSD-3-clause TUM Physically motivated energy storage component, system and

application behavior model

The storage value estimation tool7 (StorageVET) developed mainly
by the Electric Power Research Institute (EPRI) comes with a documen-
tation, tutorial videos, and a user feedback forum. Since the release
of version 2.0 the tool has been available as a Python package and
most functional parts are licensed as 3-clause BSD open source. The
tools allow conducting cost–benefit analysis and includes various ap-
plication services like voltage support, retail demand charge reduction,
frequency regulation, and even value stacking via aggregating multiple
services to be served by one storage system. While the interface to
the generation and storage technologies allows multiple options, at
present only a very limited number of choices is available (PV/Internal
Combustion Engine (ICE) and Battery/Compressed Air Energy Stor-
age (CAES)). Furthermore, performance and degradation modeling is
very limited, as it is based on an energy bucket model rather than
analyzing the voltage and current specific phenomena of real world
electro-chemical devices. Also, there is no thermal model included
in the calculations, limiting the value of simulations for temperature
sensible parameters like storage system efficiency (including Heating
Ventilation Air Conditioning (HVAC) consumption) and storage aging.

Unlike the aforementioned tools, SimSES aims to bring together the
model precision of tools like SAM and PermodAC and combine it with
an interface to various applications and energy market scenarios. To
do so, the model is distributed as open-source code on Gitlab8 and
Python Package Index9 and builds up on a object-oriented approach
programmed in Python language. Several modules are interlinked and
interchangeable, and configuration files are used to select the setting
of choice for typical time-series evaluations. The program as a whole,
or parts of it, can also be integrated into simulation toolchains and
modeling environments, making it feasible to be used in sensitivity
and optimization studies and at the interface to a super-ordinate multi-
instance controlling unit, as is further described in one of the case
scenarios (Section 6.1). In order to allow the Energy Storage Systems
(ESS) to react directly to states in a distribution grid, SimSES can be
coupled to grid models, thus making it possible to have a power flow
analysis and a detailed simulation of an ESS at the same time. SimSES
stands out against above-mentionded tools, e.g., Homer Pro or SAM,
by providing various detailed energy storage systems including vali-
dated and literature-based degradation models. Furthermore, a plethora
of predefined storage-specific application Energy Management System
(EMS) like ancillary services and energy trading are implemented and
combined with suitable economic parameters, so that end-users are able
to test a system of choice for a selected application use case. At the same
time, the existent code framework is open-source accessible and open
for future contributions from other developers worldwide.

7 https://www.storagevet.com/
8 https://gitlab.lrz.de/open-ees-ses/simses
9 https://pypi.org/project/simses/

3. Simulation framework for stationary energy storage systems

Stationary ESS may become a key component for future energy
systems and incorporating various FTM and BTM applications sup-
porting the electricity grid. Simulation tools are needed in order to
provide advice for investment decisions and to analyze the impact
of a stationary ESS. These tools should be able to model impact of
applications on the health status of the ESS and its implications for
prospective revenues.

While SimSES aims to allow for techno-economic cross-application
and cross-technology comparisons, the tool is designed in a modular
fashion and incorporates all technical components necessary for the
grid connection of energy storage. Hence, SimSES does not only model
various technologies, but also their thermal behavior, the correspond-
ing power electronics, as well as the impact of different operating
strategies. An integration into other energy simulation frameworks can
be easily applied, as shown in project openBEA.10

The main task of SimSES is to determine the effects of the target
power provided by the EMS regarding efficiency, temperature, and
degradation of the ESS when applied to the storage system. Each imple-
mented component is responsible for modeling its relevant principles.
SimSES is divided into a simulation part for modeling the physical
representation of the ESS and an evaluation part that provides technical
and economic results as shown in Fig. 1. The figure also shows the
basic working principle of SimSES: the time-series based simulation
allocates an AC power target provided by the selected EMS to the
storage system. After updating all models of the storage system, the
current state regarding important variables such as SOC, temperature,
SOH, and delivered power is transferred back to the operating strategy
on which a new target power is calculated for the next time step.

In order to represent a storage system as a whole, various compo-
nents need to be taken into account for a storage simulation. Besides
the storage technology, power electronics is an important element. For
instance, a simple Battery Energy Storage System (BESS) configuration
consists of an Alternating Current to Direct Current (ACDC) converter
connected to the grid and a battery. Additionally, stationary ESS are
usually covered by a housing. These housings need to be thermally
controlled in order to keep the ESS within its safety ranges. SimSES
covers these possibilities with various configurable components and
topologies.

More complex topologies can also include Direct Current to Direct
Current (DCDC) converter or parallel connected ACDC converters, each
connected to an ESS. Various ESS topologies are built with an AC
connection to the grid or site location by connecting an ACDC con-
verter to the storage system. However, in recent years Direct Current
(DC)-coupled ESS has gained importance, especially in the residential

10 https://openbeaproject.wordpress.com/
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Fig. 1. Graphical overview of SimSES showing its simulation and analysis models,
including the Energy Management System (EMS), storage system setup, technical and
economical evaluation, and its necessary inputs. The state of a storage system includes
the most important variables of the storage models, e.g., State of Charge (SOC),
temperature, and State of Health (SOH).

Fig. 2. Main component classes in SimSES: Interconnection of electrical and thermal
models for ESS including the abstract AC and DC storage systems. Multiple model
implementations exist for each component. Possible parallel connections of various AC
and DC storage systems are indicated.

sector [19]. Hence, a state-of-the-art storage simulation framework
needs to take varying topologies into account. SimSES considers these
topologies by defining two abstract systems: AC and DC storage sys-
tems, which can also be combined in order to meet versatile topology
configurations. Every AC storage system consists at least of an ACDC
converter and a DC storage system. On the one hand, this allows the
connection of several storage systems to the grid in parallel; on the
other hand, this allows multiple DC-connected ESS within one storage
system. Furthermore, the main ESS model is located inside the DC
storage system behind a DCDC converter. These models are depicted
in Fig. 2.

In the following sections, each of the SimSES packages as well as
the underlying models and implementations are described in detail and
shown in Fig. 3. Storage Technology and System provides models to
represent physical models of storage system components while Analysis
focuses on examining the simulation results regarding the technical
and economical behavior of the simulated storage systems. All control
algorithms and power flow management are handled within the Logic
package.

Additional packages like Commons, Simulation, and Data deliver
supportive functions for SimSES. Config is tasked to deliver function-
ality for the mentioned modular configuration of the ESS. In this
package, software design patterns like the factory pattern are used to
provide a wide range of configurable components [20]. Additionally,
the structure allows the use of sensitivity analysis, e.g., by varying
either different components or their dimensions. Simulation is another
package that supports sensitivity analysis by allowing running multiple

Fig. 3. Structure of SimSES: Packages are divided into Storage Technology, System,
Commons, Logic, Analysis, Simulation, and Data. Within Storage Technology, the physical
representation of each technology, namely LIB, RFB, and Hydrogen, is located. The
Commons package delivers general functions for configuration and common features.
The periphery is handled in the System package. Control algorithm and management
is dealt with in the Logic package. Analysis focuses on the technical and economical
evaluation of the simulation results. Simulation provides functions for simultaneous
simulations, whereas Data stores all necessary information.

SimSES instances in parallel, therefore increasing simulation speed.
For this purpose, Python’s multiprocessing library is used. Further time
series functions are implemented, like handling of profiles for power
or price time series. These functions are used throughout SimSES, for
example, by providing power profiles for the EMS. These supportive
functions are covered within Commons, providing general functionality
for time-series based simulations.

4. Storage technology models

Energy storage models represent the core of SimSES. In-depth mod-
els of various storage technologies are implemented, namely for LIB,
RFB, and a hydrogen energy chain represented by electrolyzer, fuel
cell and hydrogen storage. Each of these storage technologies have
specific implementations regarding their physics and behavior. Due to
the modularity of SimSES, further technologies can be implemented in
future work.

4.1. Lithium-ion battery

ESSs based on LIB have evolved rapidly with a wide range of cell
technologies and falling costs in recent years [11,21]. In SimSES LIBs
are implemented as a distinct storage technology. The target power
for this technology Pst depends on the storage structure and the power
distributor as described in Section 5.

Four subcomponents are implemented in SimSES for behavior mod-
eling of LIB. The Equivalent Circuit Model (ECM) is used to describe
the electrical behavior of a specific cell type providing terminal voltage
according to operational input data. The Battery Management System
(BMS) monitors the cell operation conditions and updates values for
the current. The electrical characteristics of LIBs in SimSES differ with
chemistry and composition of constituent materials and may be fed
with predefined manufacturer-specific datasets. Furthermore, various
cell-specific degradation models can be selected in SimSES. The aging
calculation is based on the cycle detector selected (e.g., half-cycle
detector). These four main components are schematically illustrated in
Fig. 4, and explained in detail in the following subsections.

4.1.1. Equivalent circuit model
To describe the electrical behavior, in SimSES the battery is im-

plemented as a single-cell ECM. The currently implemented model
includes an Open Circuit Voltage (OCV) and an internal resistance Ri,
which is depicted in Fig. 4. According to Eq. (1), the terminal voltage
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Fig. 4. Package structure of a lithium-ion battery. The battery package in SimSES
includes four main components: a battery management system, a cell type including a
equivalent circuit model, a degradation model, and a cycle detector.

UT of each cell is calculated from the OCV and the voltage drop ΔU
across Ri, due to the cell current I.

The OCVs of all currently implemented cell types are only de-
pendent on the SOC but could be extended with further parameters
like temperature and SOH. The internal resistance Ri of all currently
implemented cell types takes the cell temperature Tcell, I, and the SOC
into consideration. For both the SOC as well as Ri, the required data for
different cell types are stored as look-up tables in SimSES. In between
the available data points a linear interpolation is executed. Hence,
the result quality relies on the number of data points. To improve
performance, the interpolation of the SOC data was replaced by a fitted
mathematical function, which is explained in Appendix A.

UT = UOCV − 𝛥U = UOCV (SOC) − I ⋅ Ri
(

SOC, I,Tcell
)

(1)

4.1.2. Battery management system
The BMS is linked to the ECM and is responsible for maintaining

critical cell parameters within their permissible ranges. In addition to
the target power Ptarget , voltage UT, temperature Tcell, SOC, and current
I are further input parameter for the BMS. According to the cell-specific
parameters (e.g., maximum temperature), the BMS checks the input
parameters and indicates whether they are within their limits. If limit
violations occur, the current is restricted and returned to the ECM. The
other parameters are recalculated accordingly and passed on to the
aging models. The fulfillment factor indicates the share of the output
power to the target power and will become sub-unity for simulations
with boundary violations.

As seen in Eq. (1), the current I and the terminal voltage UT are in-
terdependent. Differential equations are necessary for calculating these
values in the discrete time domain. To avoid these computationally in-
tensive differential equations, an iteration loop is integrated in SimSES:
the updated current I and terminal voltage UT are iteratively derived
through repetitive numerical approximation. This loop terminates after
a predefined maximum number of iterations or as soon as the change
in the current I or the terminal voltage UT falls below a preset limit.

4.1.3. Lithium-ion battery cell types
The LIB cell forms the core of the BESS, and is essential for under-

standing the electrical and thermal characteristics of an entire system.
For a more detailed discussion the reader is referred to [22,23] and
for a description of current and future materials for LIBs as well as
beyond lithium-based anode materials the reader is referred to [24]. In
SimSES, three state-of-the-art technologies based on a Carbon-Graphite
(C) anode and various cathode materials are currently implemented:
two cells with a Nickel-Manganese-Cobalt-Oxide (NMC) cathode and
one cell, each with a Lithium-Iron-Phosphate (LFP) and Nickel-Cobalt-
Aluminum-Oxide (NCA) cathode, respectively. In addition, a generic

cell with linear OCV is implemented in order to run simulations in-
dependent of the cell chemistry. Table 2 gives an overview of these
cells, including their electrical attributes. The thermal parameters are
summarized in Appendix B.

4.1.4. Lithium-ion battery degradation models
LIBs are subject to degradation due to multiple cell-internal aging

processes, which can have significant impact on the economics of a
BESS project [30]. In SimSES, degradation is modeled following a
semi-empirical superposition approach of cyclic and calendar aging, as
shown in Eqs. (2) and (3).

Ctotal
loss = Ccal

loss + Ccyc
loss (2)

Rtotal
inc = Rcal

inc + Rcyc
inc (3)

The resulting capacity loss Ctotal
loss and resistance increase Rtotal

inc are
calculated through the addition of the respective calendar aging (Ccal

loss,
Rcal
inc) and cyclic-aging components (Ccyc

loss, Rcyc
inc ). Table 3 provides an

overview of the primary LIB degradation models that are available in
SimSES and their dependencies, as well as the sources on which these
models are based. Here, t, SOC, Tcell, and UT refer to the simulation
time, state of charge, cell terminal voltage, and cell temperature,
respectively. ΔDOD, EFC, Q, and UT refer to the delta in depth of
discharge for a cycle, the number of equivalent full cycles, the charge
throughput, and the average cell terminal voltage over one equivalent
cycle. The delta in depth of discharge (ΔDOD), as it is implemented
here, is also referenced as depth of cycle or cycle depth in literature by
some authors.

While calendar aging is computed once every simulation step, the
model routine to calculate increase in cyclic aging is only triggered fol-
lowing the detection of half an equivalent cycle of charge throughput.
This decreases the calculation time and allows determining the C-rate
as well as DOC for that half equivalent cycle.

4.2. Redox flow battery

Large-scale storage systems are purportedly to be of rising concern
in order to ease the growing penetration of RES. Hence, RFBs are of
particular interest for multiple hour- and large-scale stationary ESSs
because they can be easily and efficiently scaled according to the needs
and become cost competitive at an energy range of multiple MWh [31].
To analyze their potential in different applications from small-scale
(e.g., residential storage) to large-scale applications (e.g., industrial
storage), they are integrated into SimSES as an additional storage
technology. In an RFB, the liquid storage medium (electrolyte) is stored
in external tanks. To charge and discharge the RFB, the electrolyte
is pumped through a stack where the electrochemical reactions take
place. The electrolyte divided in anolyte and catholyte solutions are
separated by an ion-exchange membrane through which the charge
carriers are transported. There are several known possible electrolyte
combinations, e.g., all-vanadium or vanadium/bromine solutions [32].
As the energy conversion unit and the energy storage medium are de-
coupled, the power and energy of an RFB can be scaled separately [31,
32].

Fig. 5 shows the structure of the main components modeled in
SimSES to describe an RFB. The electrochemical model calculates the
electrical operating parameters of a specific stack module dependent
on the chemical composition of the selected electrolyte system. The
control system checks whether the target parameters are within safe
operating limits and returns the actual usable values. Different pumps
and pump control algorithms can be configured. In the following, the
model components are described in more detail.
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Table 2
Lithium-ion battery cells currently implemented in SimSES, including their electrical parameters.

Manufacturer
Model

Acronym
in SimSES

Anode
Cathode

Nom. voltage (V)
Voltage range (V)

Capacity
(Ah)

Crate Ch. (1/h)
Crate Dch. (1/h)

Source

Sonya

US26650FTC1
SonyLFP Graphite

LiFePo4
3.2
2.0–3.6

3.0 1.0
6.6

[25,26]

Panasonic
NCR18650PD

Panasonic-
NCA

Graphite
LiNiCoAlO2

3.6
2.5–4.2

2.73 0.5
3.5

[27]

E-One Moli
Energy
IHR18650A

MolicelNMC Graphite
LiNiCoMnO2

3.7
3.0–4.25

1.9 1.05
2.1

[28]

Sanyo
UR18650E

SanyoNMC Graphite
LiNiCoMnO2

3.6
2.5–4.2

2.05 1.0
3.0

[27,29]

Generic cell
model

GenericCell – 3.5
3.0–4.0

2.5 2.0
2.0

–

aMurata Manufacturing Co. acquired the Sony battery division in 2017.

Table 3
LIB-specific degradation models along with corresponding variable dependencies and literature sources.

Cell acronym Calendar aging Cyclic aging Model based on

Ccal
loss Rcal

inc Ccyc
loss Rcyc

inc

SonyLFP t,SOC,Tcell t,SOC,Tcell EFC, 𝛥DOD, C-rate EFC, 𝛥DOD, C-rate [25,26]
PanasonicNCA t,UT ,Tcell t,SOC,Tcell EFC, UT, C-rate EFC, UT, C-rate [27]
MolicelNMC t,SOC,Tcell t,SOC,Tcell Q, 𝛥DOD, C-rate Q, 𝛥DOD, C-rate [28]
SanyoNMC t,UT ,Tcell t,UT ,Tcell Q, 𝛥DOD,UT Q, 𝛥DOD,UT [29]
GenericCell t – EFC – –

Fig. 5. Package structure for a redox flow battery (RFB). It contains an electrochemical
model (equivalent circuit model) with specific parameters for different stack modules,
an implemented control system, an electrolyte system, a degradation model, and pumps,
with interchangeable control algorithms.

4.2.1. Electrochemical model
As with LIB, the currently implemented electrochemical model of an

RFB is based on an equivalent circuit model (cf. Fig. 5). The terminal
voltage UT is directly calculated from the power applied to the RFB.
Eq. (4) can be derived from Eq. (1) by using the relation between
storage power Pst , terminal voltage UT, and current I (Pst = UT ⋅I). UT is
therefore calculated by Pst , the OCV, and the internal resistance Ri. Both
OCV and Ri are dependent on the SOC and the electrolyte temperature
in the stack module Tstack .

UT = 0.5 ⋅
(

UOCV +
√

U2
OCV + 4 ⋅ Ri ⋅ Pst

)

UOCV = f
(

SOC,Tstack
)

Ri = f
(

SOC,Tstack
)

(4)

Charge effects are taken into account by implementing a current for
the charging losses Ichar-loss when calculating the change of the system
SOC (SOCsystem) via Eq. (5), considering the simulation time step Δt,
the nominal voltage at the stack module Unom, and the total energy
of the electrolyte Etotal. Ichar-loss includes coulombic losses due to self-
discharge through the transport of reactants over the membrane and

shunt currents. Shunt currents occur due to a connection of cells in the
stack through an ionic conductive electrolyte distribution system. This
creates a bypass current forced by the electric field due to the electrical
series connection of the cells [33].

𝛥SOCsystem =

(

I − Ichar-loss
)

⋅ 𝛥t ⋅ Unom

Etotal
(5)

A control system is integrated in the electrochemical model, which
checks whether UT, I, and SOC are within safe operating limits. If the
values are out of range, they will be adapted and the other parameters
are recalculated accordingly.

Additionally, a capacity degradation model including the capacity
losses Closs due to hydrogen evolution is implemented in the RFB model.
Further research is required to estimate a realistic hydrogen evolution
current for industrial-sized stacks to predict the capacity reduction
realistically over time. A current approach using experimental data of
a laboratory cell from Schweiss et al. [34] overestimates the resulting
capacity losses. Whitehead et al. [35] stated a capacity loss of less than
1% per year due to hydrogen evolution. Therefore, a hydrogen current
of 5 ⋅ 10−8 mA

cm2 is assumed, resulting in a capacity loss of about 1% per
year for a system with an Energy-to-Power Ratio (EPR) of 1. As the EPR
increases, the loss decreases accordingly.

4.2.2. Stack module and electrolyte system
The calculations in the electrochemical model are based on elec-

trical and geometrical data for a stack. A stack consists of a fixed
number of cells electrically connected in series. The data to consider
the voltage, charge, and hydraulic losses of a stack can be obtained
either from experimental data or from the literature values and models.
Stacks can be electrically connected in parallel or in series to a stack
module to increase power and voltage of the RFB system. In this
configuration the electrolyte flows in parallel through all cells and
stacks. The performance parameters of the stack are directly connected
to the used electrolyte system. The currently in SimSES examined
and implemented electrolyte is an all-Vanadium system, consisting of
1.6 mol/l Vanadium solved in an aqueous sulfuric acid (2 mol/l H2SO4)
from GfE (Gesellschaft für Elektrometallurgie mbH). To reduce side
reaction due to high potentials and to prevent performance penalties
the electrolyte needs to operate in a limited SOC range. A typical usable
SOC range for a RFB lies between 20 and 80% [36]. Based on this SOC
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Table 4
Redox-flow battery stack types in SimSES.

Acronym in SimSES Cell number Cell area (cm2) Based on experimental data of Model based on

CellDataStack5500W 40 2160 Appendix C [37–39]
DummyStack3000W 20 1000 N/A N/A
IndustrialStack1500W 18 551 Voltstorage GmbH [37,38]

range the nominal power of a stack is calculated. An overview of the
in SimSES implemented stacks is listed in Table 4. The name of the
stack includes its nominal power. In addition, some modifications of
the described stacks are included, which are up-scaled or simplified
versions that are not included in the list.

4.2.3. Pumps and pump control algorithm
The pump control algorithm used to control the flow rate or pres-

sure drop in the system is an important performance-determining factor
that affects the operating losses. Two different algorithms to choose
from are currently integrated: the constant and the stoichiometric flow
rate. It is assumed that the pumps always stop during stand-by to
reduce the operating losses. If flow rate V̇ or pressure drop Δp is given,
the other value is calculated via Eq. (6) from the specific hydraulic,
viscosity-corrected resistance Rhydraulic,specif ic and the viscosity 𝜇 of the
anolyte or catholyte.

𝛥p = V̇ ⋅ Rhydraulic,specif ic ⋅ 𝜇 (6)

If the pump is operating with a constant flow rate, it must be
ensured that the volume flow is sufficiently high so that the stack
module is supplied with enough reactants at any time of operation
(depending on SOC and I). This is checked by the control system
integrated in the electrochemical model.

For the stoichiometric flow rate algorithm V̇ is calculated according
to Eq. (7) via the stoichiometric factor 𝜈, the total concentration of the
active charge carriers in the electrolyte cact-car (for the implemented
Vanadium electrolyte it is 1.6 mol/l), the Faraday constant F, and the
still available concentration of reactants in the electrolyte, which is
described through the SOC for discharging and (SOC − 1) for charging.
If, for example, the RFB is charging at SOC 70%, reactants that can
be maximal charged in the Stack are 30% of the total concentration,
therefore value is 0.3.

V̇ = 𝜈 ⋅ I
F ⋅ cact-car ⋅ (SOC − 1)

for P >= 0

V̇ = 𝜈 ⋅ I
F ⋅ cact-car ⋅ SOC

for P < 0
(7)

The pump losses Ppump can be calculated with Δp, V̇, and the pump
efficiency 𝜂pump of a specific pump that can be selected in SimSES via
Eq. (8) [40].

Ppump =
V̇ ⋅ 𝛥p
𝜂pump

(8)

4.3. Hydrogen energy chain: Electrolyzer, storage, and fuel cell

Hydrogen as an energy carrier is supposed to be one of the major
contributors impacting future energy provision, storage, and distribu-
tion [41]. The abundance of chemically-bound hydrogen in the form
of water as well as its very high-energy density is compelling for
its deployment as an energy carrier for large-scale energy storage.
However, the efficiency of splitting water into its separate components
via electrochemical electrolysis and reverting the process through fuel
cells or combustion power plants is comparatively low, in striking
contrast to electrochemical storage like LIB [14,42]. As such, hydrogen
is thought to complement rather than to compete with LIB and RFB.
In order to understand the effects of a hydrogen-based energy chain
on a system level including its periphery, models for electrolyzers,
fuel cells, hydrogen storage, and its auxiliary components like pumps
and compressors are integrated as models within SimSES. Within this

Fig. 6. Package structure for hydrogen in SimSES includes four main components: a
hydrogen management system, an electrolyzer, a fuel cell, and a storage model.

section, implementations of the respective models are explained in
detail.

The hydrogen package structure is displayed in Fig. 6, consisting
of a Hydrogen Management System (HMS), an electrolyzer, a fuel cell,
and a 𝐻2 storage model. The HMS supervises the whole hydrogen chain
for valid ranges of temperature and SOC and reduces applied power
if necessary. The storage model could be a gas pipe with an assumed
infinite capacity or a hydrogen pressure tank with a predefined energy
capacity. Depending on the pressure of the gas within the storage tank,
the gas needs to be compressed to the desired pressure level. The
electrolyzer and fuel cell models are explained in detail in the following
sections. It is worth to mention that SimSES also allows a single-
direction hydrogen energy chain by neglecting either the electrolyzer or
the fuel cell component with special implementations. A summary of all
currently implemented models is given in Table 5. Due to the modular
structure of SimSES, additional models can be implemented in a future
release accordingly.

4.3.1. Electrolyzer
A water electrolyzer splits water with the use of electricity into

hydrogen and oxygen by passing ions through an electrolyte from one
electrode to the other. The pressure and temperature-dependent polar-
ization curve is based on the general equation of Nernst voltage 𝑈𝑛𝑒𝑟𝑛𝑠𝑡
as well as overpotentials represented by ohmic 𝜂ohm, activation 𝜂act , and
diffusion losses 𝜂dif f as shown in Eq. (9) [50]. In some implementations
mass transport and membrane permeation are also considered.

UT,EL = Unernst + 𝜂ohm + 𝜂act + 𝜂dif f (9)

Depending on the stack technology, e.g., alkaline or polymer elec-
trolyte membranes (PEM), the electrolyzer is operated at different pres-
sure and temperature levels, which is taken into consideration by
varying polarization curves for each technology [50]. As shown in
Fig. 7, the electrolyzer model is divided into its stack and corresponding
degradation models, pressure and thermal models as well as necessary
auxiliaries like a pump, water heater, and gas dryer. The electrical
auxiliary power is calculated according to the hydrogen and oxygen
generation pressures for the anode and cathode, as well as the stack
temperature. A water pump regulates the humidification of the elec-
trolyzer, whereas the generated hydrogen gas needs to be dried. These
auxiliary models calculate the necessary electrical power in order to
provide a temperature and mass equilibrium.
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Table 5
Overview of implemented electrolyzer, fuel cell and hydrogen storage models in SimSES.

Technology Acronym in SimSES Type Degradation effects Based on experimental data of Model based on

Electrolyzer PemElectrolyzerMultiDimAnalytic PEM Resistance increase,
Decrease of exchange current

Forschungszentrum Jülich [43–45]

PemElectrolyzer PEM N/A N/A [46]
AlkalineElectrolyzer Alkaline N/A Hydrogen Research Institute [47,48]

Fuel Cell PemFuelCell PEM N/A N/A [49]
JupiterFuelCell PEM N/A SFC Energy AG –

Hydrogen Storage PressureTank Pressure Tank N/A N/A –
SimplePipeline Pipeline N/A N/A –

Fig. 7. Package structure for electrolyzer in SimSES includes a stack, pressure, thermal
and degradation model as well as a pump and gas dryer.

Electrolyzer degradation is a field of ongoing research with con-
troversy over underlying mechanisms and influencing factors [51,52].
However, active operation time and applied current density seem to
be major impact factors for electrolyzer degradation. For instance, the
implemented degradation for the Polymer Electrolyte Membrane (PEM)
electrolyzer acquired from the work of Tjarks [43] is based on the
findings of Rakousky et al. [44,45] considering a resistance increase
and a decrease of the exchange current. Other implementations of
electrolyzers are a PEM variant without degradation effects based on
the work of Marangio et al. [46] and an alkaline version based on the
work of Hammoudi et al. [47] and Henao et al. [48].

4.3.2. Fuel cell
As an opposite to electrolyzers, fuel cells combine hydrogen and

oxygen to water while releasing usable energy in the form of elec-
tricity [42]. The terminal voltage is calculated by the Nernst voltage
subtracted by the voltages due to ohmic, activation, and diffusion losses
shown in Eq. (10).

UT,FC = Unernst − 𝜂ohm − 𝜂akt − 𝜂dif f (10)

The fuel cell package has a structure that is similar to the electrolyzer
package, with a stack, pressure, and thermal model. During operation,
the water handling especially for PEM fuel cells is crucial and handled
by water pumps. An implementation of a PEM fuel cell based on Feroldi
et al. [49] as well as a model for the Jupiter PEM fuel cell of SFC Energy
AG11 including a thermal model is available in SimSES. However, the
implementation of adequate degradation models within SimSES is a
task for future action.

5. System periphery, management, and evaluation

Energy storage systems not only consist of the underlying storage
technology but also the periphery like power electronic components

11 https://www.efoy-pro.com/efoy-pro/efoy-jupiter-2-5/

and thermal behavior as well as an EMS. These elements are crucial
for evaluating energy storage systems as a whole. In order to provide
insights into the overall system behavior, SimSES not only models
the periphery and the EMS, it also provides in-depth technical and
economical analysis of the investigated ESS.

5.1. Power electronics

Besides the storage technology, the power electronic components
play a crucial role in terms of system efficiency. Depending on topol-
ogy and application, power electronics may contribute significantly to
the overall system losses [53]. Hence, SimSES has to consider these
electronic components for an accurate simulation of a storage system
like ACDC and DCDC converters. An overview of the implemented
models in SimSES is given in Table 6. Models of these converters
are represented by power and voltage-dependent efficiency curves. In
principle, the efficiency of a power electronics module is represented
by a given storage power 𝑃𝑆𝑡𝑜𝑟𝑎𝑔𝑒 and the rated power of the power
electronics component PRated as displayed in Eq. (11).

𝜂PE = f
(

PStorage,PRated
)

(11)

The power applied to the power electronic components is crucial
for simulating the efficiency. When considering storage systems, it is
possible that these systems do not fully deliver the requested power.
These situations occur, for example, if the storage is outside of its
temperature limits or the SOC is at its lower or upper limits. Hence,
the power is adjusted compared to the target power of the EMS, which
leads not only to non-fulfillment, but also to an altered efficiency.

5.2. Power control

Every power flow in an ESS has to be monitored and controlled. The
power flow is dependent on the application and system topology. In
SimSES, these two dependencies are handled separately with an EMS,
respectively, Power Distribution Strategies (PDS). The EMS defines the
target power for the ESS as a function of the application while the PDS
allocates the target power to the configured subsystems. These control
mechanisms are explained in detail in the following sections.

5.2.1. Energy management system
The EMS in an ESS is a system consisting of both hardware and

software that allows the user to monitor and control the energy flows
within an ESS. In SimSES, the function of the EMS is to calculate and
supply a target power value for each simulation timestep (Δt) based on
the selected operation strategy. This target power value can be depen-
dent or independent of previous system states as well as interfere with
various input profiles. In SimSES both stand-alone and stacked opera-
tion strategies can be simulated. Stacked operation strategies are sorted
according to their user-associated priority level. Consequently, the indi-
vidual stand-alone operating strategies are executed one after another
depending on their priority. Additionally, time-discrete serial stacking
is already available within SimSES. More complex multi-use strategies
can be integrated as stand-alone strategies. At present, a handful of
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Table 6
Overview of implemented ACDC and DCDC converter models in SimSES.

Converter type Acronym in SimSES Based on experimental data of Model based on

AC/DC FixEfficiencyAcDcConverter N/A N/A
NottonAcDcConverter N/A [54]
Sinamics120AcDcConverter Sinamics S120 [55]
BonfiglioliAcDcConverter Bonfiglioli RPS TL-4Q Datasheeta

SungrowAcDcConverter Sungrow SC 1000 TL Datasheetb

M2bAcDcConverter Stable Energy GmbH [56]

DC/DC FixEfficiencyDcDcConverter N/A N/A

ahttps://www.docsbonfiglioli.com.
bhttps://en.sungrowpower.com.

Fig. 8. Structure of the energy management system and overview of available operation
strategies and their categorization in SimSES.

operation strategies are implemented in SimSES. An overview of these
operation strategies and their categorization is depicted in Fig. 8.

The power follower strategy is a basic operation strategy which aims
to get the storage system operation to replicate a given power profile.
Similar to the aforementioned strategy, the SOC follower converts a
given SOC profile to a power profile and attempts to make the storage
system fulfill this calculated demand power at each timestep.

Based on the work of Zeh and Witzmann [57], two operation
strategies for residential SCI in combination with Photovoltaic (PV)
generation units have been implemented. The residential PV greedy
operation strategy charges the ESS as fast as possible without con-
sideration of the grid by meeting the residual load at all times. To
reduce the maximum grid load the residential PV feed in damp operation
strategy schedules the charging of the ESS according to a PV prediction.
It attempts to provide a constant charging power and aims for a fully
charged ESS at sundown.

Two strategies have currently been implemented for industrial con-
sumers. The simple Peak Shaving (PS) strategy works as follows. As
long as the target power is above a specified threshold, the additionally
required power is provided by the ESS. In addition, the ESS will
recharge itself if the power value is below the PS threshold [58] (used
in the case study in Section 6.1). In order to reduce calendar aging for
a lithium-ion based ESS, the PS perfect foresight strategy operates under
the assumption of perfect foresight for the load profile. The ESS will
only charge up to the energy that is required for the next load peak,
right before the occurrence of that load peak [59].

The EMS strategy for providing FCR implemented in SimSES is
based on the German regulatory framework [60,61]. The requested
charging and discharging power is proportional to the frequency de-
viation. Below 49.8 Hz or above 50.2 Hz the output power is set to
the prequalified power. Within the frequency dead band around 50 Hz
with +/-10 mHz the output power is set to 0 W. The degree of freedom
to exceed the output power by 20% is used, aiming to bring the SOC
back to a predefined SOC set-point. The IDM operation strategy charges

or discharges the ESS by trading energy on the electricity market, in
particular on the IDM, if the SOC falls below a predefined lower limit
or it exceeds an upper limit [62]. An example for a FCR and a IDM
stacked operation strategy is provided in Section 6.2.

5.2.2. Power distribution strategies
For complex storage system topologies, the power needs to be

distributed between the different subsystems of an ESS [63,64]. For this
purpose, several power distribution logics are implemented in SimSES.
These logics distribute the power to the corresponding storage systems,
for instance, based on the respective SOH or SOC. In SimSES, the ESS
is differentiated between an AC and DC storage system (see Section 3).
For each node of parallel connected AC systems as well as DC systems,
a power flow decision has to be made similar to Bauer [64]. Mühlbauer
et al. [63] as well as Bauer [64] define PDS as a simple problem of a
distribution factor 𝛼 as shown in Eq. (12).

Pi = Ptarget ⋅ 𝛼i, (12)

where Ptarget is the target power provided by the EMS, 𝛼i the power
distribution factor for system i, and Pi the corresponding power of
system i on condition that the sum of all 𝛼i equals one. In an optimal
case the PDS takes the current limitations of the underlying storage
technology for Pi into consideration in order to be able to fulfill the
requested power, e.g., temperature limitations could lead to lower
deliverable power. For each node, a PDS can be configured.

Mühlbauer et al. distinguish between static and dynamic categories
for PDS while Bauer has more subtle definitions for a dynamical
PDS approach with a fixed and variable sequence [63,64]. Bauer also
mentions a PDS as an optimization problem currently not considered in
SimSES. In the following, PDS implemented in SimSES are presented.

The most straightforward implementation of a PDS is an equal
distribution of the power to all storage systems. This is a static PDS
approach with a fixed power distribution factor. Other static PDS-
like distribution based on the ESS capacity can be easily added to
the PDS set of SimSES. In addition, a dynamic PDS is implemented
by differentiating between charge and discharge distribution factors
depending on the SOC of each system based on [63].

Due to the modularity of SimSES, multiple ESSs with different
storage technologies can be combined with a hybrid ESS, e.g., a LIB and
a RFB system. For this purpose, a novel PDS is introduced prioritizing
configured storage technologies by base and peak loads, respectively.
While the prioritized system stays within a defined SOC range, e.g., be-
tween 25 % and 75 %, it tries to fulfill the target power within its
power limits. If either the SOC or the power limit is exceeded, the
next highest prioritized system takes over. If the power target is not
completely allocated, a second loop distributes the power independent
from the defined SOC range. In addition, the logic balances the SOC of
the configured ESS if one or more systems are outside of the defined
SOC range while other systems are within those ranges. The algorithm
also allows a two or one way balancing, e.g., if only the peak load
system should be balanced by the base load system (used in the case
studies in Section 6).
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5.3. Thermal modeling

Performance, efficiency, and aging of all aforementioned storage
processes depend not only on charge and discharge currents, but are
also highly sensitive to thermal conditions. While for some small-
scale storage realizations (e.g., residential battery storage) modeling
electricity flows in a fixed temperature setting might be a solution of
choice with sufficient accuracy for techno-economic simulations [65],
larger storage systems along with investigations about storage effi-
ciency particularly require detailed thermal models [53]. Utility-scale
LIB stationary ESS are often designed as free-standing systems, which
are installed outdoors and exposed to the environment. The use of
standard shipping containers to install entire energy storage systems is
the preferred option in the industry today to shield sensitive electric
components from adverse environmental conditions. The benefits of
such a configuration include modularity, scalability, ease of logistics,
conformance with road-transport regulations, and the ability to plan
and optimize land usage. Such containers are also specially fitted out
with insulation to limit heat flow to/from the environment, and to
present a stable operation temperature to the components inside.

Heat is generated in LIBs due to internal resistance to the passage
of current during operation. Lithium-ion cell technology is particularly
vulnerable to adverse changes in cell temperatures, and degrade faster
when operated outside of their optimal temperature ranges. In particu-
lar, degradation may result from accelerated kinetics for unwanted side
reactions at elevated temperatures resulting in a loss of capacity and an
increase in the internal resistance. If the generated heat is not rejected
to the environment at a rate greater than the rate of heat generation,
overheating and—in extreme cases—a thermal runaway may occur. In
contrast, for applications with relatively lower current rates (alike most
stationary storage use cases), air cooling systems are deemed adequate
to aid the heat rejection process to maintain the cell temperatures
within the stipulated ranges. It is worth to mention in this context,
that in the absence of cooling systems, the capabilities of the cells are
severely limited, and under-utilized [66].

In summary, thermal modeling of energy storage systems is a crucial
step of the system design process, especially due to the following
factors:

• temperature-dependence of the energy conversion efficiency of
LIB (dependent on the internal resistance) [67] and other storage
technologies,

• temperature-dependence of the degradation mechanisms [68,69],
• dependence of the round-trip efficiency on the energy consump-

tion of auxiliary components, such as the HVAC system [55]
and

• operational hazards under extreme temperatures which are too
low, or too high [70].

Thermal modeling in SimSES follows a zero-dimensional lumped-
capacity approach, and consists of a number of component packages
which run in tandem to emulate the thermal behavior of a system under
the specified operating conditions. Zero-dimensional lumped-capacity
approaches are widely used in the reviewed literature and found to be
suitable for system models [55,71]. Each of these packages and their
core features are presented in this section, along with how they fit
into the larger picture within SimSES and its architecture. The thermal
model and its associated components function at the AC storage system
level in SimSES. SimSES currently supports a container-based housing
solution with an air cooling system for LIB stationary ESS. An overview
of these packages and their interplay is seen in Fig. 9.

5.3.1. Ambient thermal model
The primary function of the ambient thermal model is to account for

the predominant environmental effects that play a role in the thermal
behavior of the ESS. The ambient thermal model currently consists

Fig. 9. SimSES is thermally interconnected with the thermal nodes of ambient air Taa,
wall Tw, inner air Tia, and storage technology TST. The temperature conjunction of
TACDC and TDCDC can be switched off. The HVAC system controls Tia of the storage
system.

of an ambient temperature which supplies a value of ambient air
temperature Taa for each simulation timestep Δt at time t. The ambient
temperature is available in two variants: a constant temperature model,
which supplies a user-specified Taa for each timestep, and a location-
specific model, which, depending on the time of day and year, supplies
a value of Taa based on recorded temperature time-series data. The
ambient temperature datasets currently present in SimSES have been
generated with the help of the publicly available simulation tool gree-
nius, developed by the German Aerospace Center (DLR) [72]. A solar
irradiation model is also envisioned for a future release of SimSES as an
extension of the ambient thermal model in order to be able to supply
values of incident solar irradiation at a given location at time t to allow
for better estimation of the heat load on an ESS. The ambient thermal
model is understandably applicable to all AC storage system instances
present in a given BESS configuration.

5.3.2. Housing model
The housing model emulates the physical attributes of the specified

housing type. SimSES currently supports system simulations with a
standard 20 foot shipping container as the housing. The walls are
modeled with three layers of materials, including an insulating layer
of Polyurethane (PU) between the outer and inner metal layers. The
geometrical dimensions and physical and thermal properties of the
walls of the shipping container can be adapted to suit any desired
variant. The modular and extendable structure of SimSES ensures that
the choice is not limited to the presently implemented model, but rather
allows for other housing types or installation conditions to be modeled
and included in simulations.

5.3.3. Heating, ventilation and air conditioning model
As the temperature inside the housing is to be maintained within

a stipulated range to ensure safe and optimal operating conditions, a
HVAC unit is necessary to correct temperature deviations. SimSES also
supports inclusion and modeling of HVAC systems. Two basic HVAC
models are currently implemented: one, which uses the internal air
temperature Tia deviation from its user-specified set-point to roughly es-
timate the amount of thermal power required to counter this deviation,
and the other, which employs a Proportional-Integral-Derivative (PID)
controller logic to arrive at a value of thermal power to counteract the
deviation in Tia from its set-point. The corresponding electrical power
consumption Pelectrical of the HVAC, which is related to the thermal
power Phvac by the Coefficient of Performance (COP) (see Eq. (13)),
is logged in the state of the AC storage system, and influences the
round-trip efficiency of the ESS.

Pelectrical =
Phvac
COP

(13)

5.3.4. System thermal model
The system thermal model is central to the thermal modeling pro-

cess in SimSES, in that it emulates the physical phenomenon of heat
transfer among the components of the ESS and its environment, as well
as integrates the functioning of all aforementioned components. The
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system thermal model estimates the temperatures of all components
of interest after each simulation timestep Δt, based on the various
heat loads—both external and internal—that the ESS is subjected to.
Each instance of AC storage system has its own system thermal model,
and captures the thermal behavior of all components present in each
AC storage system. The analysis applies the zero-dimensional lumped
capacity approach, and the central assumption is that all the com-
ponents are treated as lumped isotropic homogeneous objects with
heat capacities and heat transfer coefficients. The internal air in the
container is assumed to possess a uniform temperature throughout its
volume, and flows are not considered. The temperatures of the storage
technologies influence important parameters such as efficiency and
voltage, as well as the rate at which they degrade. The component
models used in SimSES, which are explained in the subsequent sections,
take these temperature variations into account.

The system thermal model solves a system of first-order coupled
differential equations to obtain the temperatures of the storage tech-
nologies, the internal air, and components such as the ACDC converter,
if they are present within the same housing. This list of components,
whose temperatures are of interest, can be expanded as required owing
to the modular structure of the system thermal model. As the tempera-
tures at the start of each timestep Δt are known, and the temperatures
at the end of each timestep are of interest, an initial value problem can
be formulated.

Within each DC storage system, for each instance of storage tech-
nology i with a mass mst and specific heat cstp , a differential equation
capturing the variation in its temperature TST under the combined
effects of natural convection with the internal air (ia) Pst−iaconv and the heat
generation within itself on account of energy conversion losses Pstloss can
be formulated (see Fig. 9). For an AC storage system with a total of n
storage technology instances within its DC storage systems, a total of n
differential equations based on Eq. (14) can be formulated.

mst,i ⋅ cst,ip ⋅
dTst,i

dt
= Pst,iloss − Pst,i−iaconv

(14)

Similarly, a heat balance equation with a form similar to Eq. (14)
can be formulated for other components such as the ACDC converter,
which also introduce heat into the housing due to the energy conversion
losses (see Fig. 9).

For the internal air with a mass mia and specific heat ciap , a heat
balance can also be formulated to determine the variation in its tem-
perature Tia. The heat balance outlines its interaction via natural con-
vection with each storage technology Pst−iaconv , other components such as
the ACDC converter (if present) Pacdc−iaconv , and the innermost layer (il) of
the housing walls Pil−iaconv . The thermal power of the HVAC Phvac is also
accounted for in this balance (see Eq. (15)).

mia ⋅ cp,ia ⋅
dTia
dt

= 𝛴Pst,i−iaconv + Pacdc−iaconv − Phvac − Pia−ilconv (15)

The innermost layer of the housing walls, in addition to the convec-
tive heat transfer with the internal air, also exchanges heat with the
insulation layer adjacent to it via heat conduction, and a heat balance
equation can be written.

The insulation layer interacts with both the innermost and outer
layers via heat conduction, and a corresponding heat balance equation
can be drafted as well. The outer layer exchanges heat with the adjacent
insulation layer via conduction, and interacts with the ambient air via
natural convection. The outer layer is also subjected to a heat load due
to the direct and diffuse solar irradiation incident on its surfaces. A heat
balance for the outer layer can be applied by taking into account the
heat loads due to the incident solar irradiation, the conduction through
the layers, and the natural convection with the ambient air.

Depending on the chosen simulation timestep Δt, the heat balance
equations for all considered components are then solved simultaneously
at least once, or in the case of very large Δt, the system of equations
is solved multiple times in an attempt to obtain a greater degree of
accuracy. The solution of this system of equations yields the values

of the temperatures at the end of each simulation timestep, which
influence the component models.

In case simpler simulations are to be conducted, the thermal model
can also be disabled, in which case the storage technologies experience
a constant (user-defined) ambient temperature, and the temperatures of
the storage technologies and other components are also set to remain at
this value and are not updated. SimSES currently only offers modeling
of thermal behavior for LIB. Augmentation of these capabilities for
other storage technologies is planned for future releases.

5.4. Analysis

Following the simulation of ESSs, an analysis of the simulation re-
sults is conducted automatically by SimSES providing Key Performance
Indicators (KPIs) and plots that allow the user to gain insights of the
configured ESS. Furthermore, the analysis can be used to compare sim-
ulation results of different scenarios quantitatively and qualitatively.
While the Data subpackage provides relevant parsers and utility func-
tions for processing the time series of simulation results, the Evaluation
subpackage includes the actual methods for deriving the KPIs and
creating plots. Which evaluations should be performed, as well as
relevant input data (e.g., electricity prices and storage cost) can be
specified by the user. In the following, the technical evaluation and
economic evaluation will be explained in more detail.

5.4.1. Technical evaluation
Within the Technical Evaluation part of SimSES, technical KPIs are

determined on the system and storage technology level. Depending on
the storage technology used, the respective KPIs are exported at the
end of the analysis. Automatically generated plots give the user an
impression of the usage and performance of the simulated ESS like time
variance of AC and DC power, SOC and capacity. More advanced users
can also use the simulation results to calculate characteristic values
beyond the displayed KPIs. The technical evaluation’s KPIs on system,
lithium-ion, redox flow and hydrogen level are summarized in Table 7.
As an example, the calculation of two KPIs is shown below.

The Round-Trip Efficiency (RTE) is calculated on the system level
using Eq. (17) deviated from Eq. (16). To calculate the RTE, the
discharged energy (Eout) is divided by the charged energy (Ein), from
which the change of energy by SOC rise or decrease (𝛥E) is subtracted.
For simulations over a longer period of time, the efficiency influence
on the SOC change can be neglected because charged and discharged
energy are substantially larger than the change in energy between the
start and end SOC of the simulation. For shorter simulation periods,
the influence of efficiency on the SOC change must be considered. For
this purpose, the SOC change is divided by the root of the efficiency,
since, for example, the additionally charged energy at SOC increase has
already passed through the power electronics in one direction and was
thus influenced by the efficiency. A symmetrical efficiency for charge
and discharge is assumed here.

𝜂RTE =
Eout

Ein −
𝛥E

√

𝜂RTE

(16)

with 𝛥E = SOClast ⋅ Elast − SOCinitial ⋅ Einitial. Solving Eq. (16) for 𝜂RTE
leads to:

𝜂RTE =
Eout
Ein

+
𝛥E2 + 𝛥E

√

4EoutEin + 𝛥E2

2E2
in

(17)

Another KPI calculated in the technical analysis is the remaining
energy content (erem) as a percentage of the initial energy (Eq. (18)).
For this, the current energy (Eact) is divided by the initial energy (Enom).

erem =
Eact
Enom

(18)
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Table 7
Key Performance Indicators (KPIs) for technical evaluation and the level at which they are calculated. Crosses indicate for which level the respective KPI is calculated.

Selected key performance indicators (KPI) System Lithium-ion Redox flow Hydrogen

Round-trip efficiency (%) x x x x
Mean state of charge (%) x x x x
Number of changes of signs per day (#) x x x x
Avg. length of resting times (min) x x x x
Pos. energy between changes of sign (% of capacity) x x x x
Avg. fulfillment factor (%) x x x x
Remaining capacity (%) x x x x
Energy throughput (kWh) x x x x
Mean power electronics efficiency (%) x
Equivalent full cycles (#) x x
Depth of discharges (%) x x
Coulomb efficiency (%) x
State of health (%) x
Energy for heating of water (kWh) x
Energy for compression of hydrogen produced (kWh) x
Total mass of hydrogen (kg) x

5.4.2. Economic evaluation
The economic evaluation of SimSES allows assessing the overall

profitability of an energy storage project through economic KPIs. These
KPIs include the net present value (NPV), internal rate of return,
profitability index, return on investment, and levelized cost of storage.
Eq. (19) shows the calculation of the NPV as it is performed in SimSES.

NPV = −I0 +
N
∑

n=1

CFn
(1 + i)n

(19)

I0 denotes the initial investment cost, i the discount rate, CF the
cashflow, and n and N the current and total number of project years,
respectively. All parameters apart from the cashflow are derived from
the settings in the Configuration File. The cashflow itself is calculated
from the time series of logged simulation results. Depending on the
selected operation strategy, the cashflows of multiple revenue streams
(CFn,r) may be added to obtain the cashflow for a single project year
(CFn), as shown in Eq. (20).

CFn = −OMn +
∑

r∈R
CFn,r (20)

Here, R denotes the set of applicable revenues streams r for the
selected operation strategy and OM the operation and maintenance
cost. Table 8 shows the matching of revenue streams and operation
strategies, while the following list provides brief descriptions for all cur-
rently implemented revenue streams. For stacked operation strategies,
such as FCR paired with IDM, all respective revenue streams will be
considered in Eq. (20).

• Energy Cost Reduction (ECR): Reduction of energy-based electricity
costs, caused, for example, by increased self-consumption of PV-
generated electricity. This is calculated based on the total site load
for both with and without the BESS, the electricity purchase price,
and the electricity sales price or feed-in tariff.

• Demand Charge Reduction (DCR): Savings generated by a reduc-
tion in demand charges, calculated based on the maximum site
load with and without the BESS, the applicable billing period, and
the demand charge price per unit of power.

• Frequency Containment Reserve (FCR): Revenue that is generated
by participating in the FCR market, calculated based on the
system’s nominal power, the FCR price, and the power allocated
to the FCR market.

• Spot Market Trading (SMT): Revenue that is generated through
spot market trading, based on the amount of energy traded and
the specified time series of prices.

6. Case studies

The following section will focus on SimSES from a user perspective.
Compared to other solutions and tools in the field of energy system
simulation, SimSES provides detailed modeling of ESS and applications
on a system level during the full investment period. Both the technical
properties of different storage technologies and the economic modeling
of the components and systems are mapped in detail.

In order to clarify the implementation and adaptability of the tool,
two applications are discussed. First, Peak Shaving (PS) for an industrial
application comparing a different set of storage technologies—LIB,
RFB, and a hybrid system of both technologies. Second, Frequency
Containment Reserve (FCR) including an Intraday Continuous Market
(IDM) by considering various system topologies are discussed. The
underlying system costs are discussed in Appendix D. These case studies
can be downloaded and executed as described in Appendix E.

6.1. Case study 1: Peak shaving application

A commonly used application for ESS is Peak Shaving (PS). The
tariff model with separate energy- and power-related prices plays an
important role here. The PS application aims to cut high power de-
mands from the distribution grid. Since the highest power peak per
billing period (usually monthly or annually) is multiplied by the power-
related price, it can be economical favorable to cap high demand peaks
by using an ESS to provide the necessary power and energy [9].

In this case study, three different storage systems are simulated: a
LIB system with 150 kWh, a RFB system with 200 kWh, and a hybrid
system with 10 kWh LIB capacity and 180 kWh RFB capacity. More
detail on the system configuration chosen for this case study is given
in Fig. 10. When investing in a system the user may be interested in
deciding upfront which of the three configurations will provide the best
economic solution. All systems are dimensioned to provide the peak
shaving power even after 20 years, including capacity degradation. In
addition, the restriction of a usable SOC range of RFB systems from
20% to 80% is considered [36]. The power electronics is dimensioned
with 40 kW rated power. The Sony LFP cell technology for LIB and
a scaled CellDataStack5550W model (cf. Table 4) as an all-Vanadium
RFB system is considered. The assumed system costs for the economic
evaluation are provided in Table D.11. As a revenue for reducing the
power peak a fixed price of 100 EUR/kW in a yearly billing period is
assumed. As an input power profile for the PS application, the Cluster
1 PS power profile from Kucevic et al. [73] is used and scaled to an
annual load of 347.55 MWh from which the peak power is reduced to
63.5 kW.

After the simulation has been executed, the analysis and evaluation
include both detailed technical and economic evaluations. An extract
of the evaluations and results can be seen in the following illustrations:
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Table 8
Matching of revenue streams and operation strategies for the cashflow calculation within the economic
evaluation.

ECR DCR FCR SMT

Residential PV Greedy x
Residential PV Feed in Damp x
Peak Shaving x x
Peak Shaving Perfect Foresight x x
Frequency Containment Reserve x
Intraday Continuous Market x

Fig. 10. Three different Energy Storage Systems (ESS) are investigated in the Peak
Shaving (PS) case study: (a) A hybrid ESS consisting of a DC-coupled LIB and
RFB system as well as single storage systems of (b) LIB and (c) RFB. All systems
are dimensioned for providing the PS power even after 20 years of operation. A
maximum Depth of Discharge (DOD) for RFB systems of 0.6 is considered. The
Power Distribution Strategies (PDS) for the hybrid system performs according to the
technology prioritization as described in Section 5.2.2. The DCDC converter is assumed
with a fixed efficiency of 98%.

Fig. 11 shows the characteristic curve of the power during the PS
application for the hybrid storage system. The residual power can be
seen with and without energy storage. It can be seen that the power
drawn from the grid does not exceed the value of the PS threshold as
was dictated by the operation strategy. Power demand values above
the PS threshold are provided by the respective storage unit. This
comes in line with charging and discharging power from the ESS and
a simultaneous change in the storage-lumped SOC. According to the
conditions set, recharging of the storage systems is executed only at
times such that the PS threshold is never exceeded. In addition, the
power distribution to the corresponding storage technologies of the
hybrid system can be seen. The RFB system is prioritized to provide
the bulk energy of the PS event while the LIB system covers high power
peaks, especially if the RFB systems power capabilities are exhausted.

The remaining capacity (SOH) of the ESS can be seen in Fig. 12. The
LIB capacity decreases to 70% during the 20-year simulation, while for
the hybrid system as well as for the RFB system the capacity remains
higher at 97% and 96%, respectively. Although the integrated degra-
dation models consider both the calendar and the cycle degradation, it
is noteworthy that the calendar degradation takes up the largest share
in this operation of PS application [59].

In Fig. 12 the difference of the system round-trip efficiency can be
observed. The LIB system demonstrates the highest efficiency with 88%,
followed by the hybrid system with 68% and the RFB system with
62%. The energy losses of the RFB storage compartments are higher
compared to LIB, attributed to a comparably low Coulomb efficiency
and additional energy needed for electrolyte pumps.

In addition to the technical evaluation, SimSES also provides a
comprehensive economic analysis of the simulated time series. In order

Fig. 11. Peak Shaving (PS) application on a hybrid Energy Storage System (ESS). (a)
Residual load with and without the PS application with the delivered AC power of the
installed ESS as well as the power distribution between the two DC-coupled storage
systems. (b) State of Charge (SOC) development of the hybrid ESS. LIB systems takes
over if target power exceed RFB stack power or if the RFB system hits its SOC limits.

to show a metric for overall costs, an alternative NPV considering
capacity degradation as well is shown in Eq. (21), where cST represents
energy-specific costs of the storage technology and Cdeg the capacity
degradation.

NPVCD = NPV − cST ⋅ Cdeg (21)

Fig. 12 shows the overall costs of the ESS operated with baseline
cost set to 100% of the LIB system. For the evaluation of the system,
not only real tariff models but also the investment costs for the ESS
are integrated in the tool resulting in the NPV. In addition, the cost
of capacity degradation is added to the NPV in order to take not
only the system efficiency into account but also the capacity loss over
20 years (see Eq. (21)). It can be seen that the hybrid system is 5% more
cost effective while the RFB system has 81% higher overall costs. The
primary reason for these values are the cost of capacity degradation,
which is 51% of the overall costs for the LIB system although the
NPV for the LIB systems is lowest compared to the other systems.
In conclusion, a hybrid system can deliver an overall better solution
compared to single storage systems although only a small peak LIB ESS
is added to an RFB system, combining the benefits of both techniques,
i.e., a higher NPV compared to a single RFB system and a lower capacity
degradation compared to a single LIB system. However, with the input
parameters chosen herein, none of the three negative storage solutions
were able to justify an investment as all resulted in negative NPVCD
values. The overall economics of this case study could potentially be
improved if the ESS value generation was increased, e.g., by applying
multi-use operation and dispatching storage in PS idle times [4,74].
Additionally, results with hybrid storage systems could be improved
with optimization and machine learning techniques instead of applying
a rule-based algorithm [75,76].

6.2. Case study 2: Frequency containment reserve application

A widely used application of utility-scale ESS is participation in the
market for FCR. In this application, the ESS compensate for fluctuations
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Fig. 12. Economic analysis of the three different Energy Storage Systems (ESS) serving
the Peak Shaving (PS) application. (a) Comparison of remaining capacity and system
efficiency of all simulated ESS after 20 years. (b) Overall costs consisting of the NPV
and cost of capacity degradation using the LIB system as the baseline. The hybrid
system could decrease overall cost by 5%, whereas the RFB system increased the cost
by 81%.

between consumption and generation in the power grid by reacting ac-
cordingly to changes in the grid frequency. The regulations and degrees
of freedom for FCR application complying to German regulation criteria
are taken into account and are described in detail in [4,8,62,73]. In
this operation strategy of SimSES the SOC stabilization of the ESS is
achieved by support of IDM. FCR and IDM are each basic operation
strategies running in a stacked operation. For the simulation a grid
frequency profile of 2014 is used to account for the provided stabilizing
power [77]. It is assumed that the provided power of 1 MW does not
affect the integrated network frequency.

In this case study, three different ESS topologies are simulated (cf.
Fig. 13), each with a Sony LFP cell technology providing a capacity
of 1.6 MWh and a grid-connection power of 1.6 MW. First, a simple
direct approach of connecting a LIB to a grid-connected ACDC converter
is investigated. Second, eight parallel DC-coupled systems with a LIB
capacity of 0.2 MWh each are simulated. Third, eight parallel connected
ACDC converters with a nominal power of 0.2 MW each are activated in
a cascaded approach promising a higher efficiency [78]. The assumed
system costs for the economic evaluation are provided in Table D.12.
The revenue of FCR12 is taken as a fixed price of 0.2 EUR per kW and
day and the IDM13 price is fixed to 0.04 EUR/kWh, corresponding to a
price level of 2020.

The results of the 20-year simulations are displayed in Fig. 14.
The cascaded ACDC converter approach shows the best efficiency with
92% compared to the direct approach with 78% and the least efficient
topology with DC-coupled systems of 63%. FCR is an application with a
high partial-load frequency below 30% of nominal power [55]. Hence,
the cascaded ACDC converter are either under a high load compared
to their nominal power or deactivated, leading to a higher overall
efficiency compared to the direct system. The DC-coupled system shows
an overproportional efficiency decrease compared to the direct system.
The systems of the DC-coupled ESS are activated similar to the cascade
of ACDC converter: one system is ramped up to full power before the
second system is activated. Due to relatively high currents in addition
to the losses of the DCDC converter, the DC-coupled system shows
a comparatively low efficiency. This result suggests that the chosen
PDS is inappropriate in terms of efficiency for a FCR application with
the given system for the DC-coupled system. Comparing the remaining
capacity of the three investigated systems, no large difference can be
observed, with a remaining capacity of each system after 20 years of
around 80%. One target of the chosen PDS for the DC-coupled system

12 Prices for the German FCR market can be found at https://www.
regelleistung.net.

13 Prices for the European spot market can be found at https://www.
epexspot.com.

Fig. 13. Three different ESS topologies are investigated in the FCR case study, all
with a LIB system of 1.6 MWh and an ACDC connection to the grid of 1.6 MW. The
ACDC converter model is the NottonAcDcConverter (cf. Table 6). (a) A direct-coupled
ESS with one ACDC converter. (b) Eight parallel DC-coupled systems with an assumed
fixed DCDC efficiency of 98%. (c) Eight parallel connected ACDC converter with a
cascaded activation: The first ACDC converter drives to its nominal power of 0.2 MW
before the second ACDC converter is activated.

was to reduce the capacity degradation by cycling a few systems more
often than other systems in order to get an overall better degrada-
tion behavior. However, it can be observed that the chosen strategy
shows no improvement in terms of the degradation behavior for this
application compared to the other systems.

Analyzing the economics, the high efficiency advantage of the cas-
caded system could be transferred to a slight monetary improvement
compared to the other systems. The cascaded system shows a 4%
increase of the NPV compared to the direct system. The DC-coupled
system falls behind with a lower NPV of 5% in comparison to the direct
system (cf. Fig. 14). This could be explained with IDM recharging cost
over the simulation time period since the FCR revenue is the same for
all investigated systems (cf. Table 9).

First, the IDM transaction costs are comparatively low: The direct
system accounts for 36 kEUR, the DC-coupled system for 64 kEUR
and the cascaded system for 14 kEUR, accumulated after 20 years of
operation. In comparison, the FCR revenue compensates for around
1,218 kEUR. Second, the low efficiency of the DC-coupled system re-
sults in 231 MWh energy sold on the IDM whereas the direct system and
the cascaded system could sell 347 MWh and 494 MWh, respectively.
This is also reflected in the numbers of bought energy: the DC-coupled
system had to buy most energy with 1,829 MWh while the cascaded
system had to buy 851 MWh. Although large differences in terms of
efficiency exist compared to the direct system (+14% for the cascaded
system and -15% for the DC-coupled system) this could only be trans-
lated into a 4% increase of the NPV, respectively to a 5% decrease. The
economic result of more efficient ESS could be improved by reducing
the storage capacity and improving the IDM operation strategy. In
conclusion, all three systems have a positive NPV, likely leading to a
positive investment decision.

With these case studies a high variety of topologies as well as
technology combinations could be investigated. Parameter variations,
e.g., for the investment costs or sizing of individual components can
easily be made by the user when adapting according initialization files
of the case studies available as presented in Appendix E.

7. Conclusion and outlook

Within this work, the simulation and analysis tool for energy storage
systems SimSES is presented. SimSES provides a library of state-of-
the-art energy storage models by combining modularity of multiple
topologies as well as the periphery of an ESS. This paper summarizes
the structure as well as the capabilities of SimSES. Storage technology
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Table 9
Overview of the IDM transaction costs for all three investigated ESS.

System IDM transaction costs/EUR Energy bought/MWh Energy sold/MWh

Direct 35,772 1242 347
DC-coupled 63,894 1829 231
Cascaded 14,280 851 494

Fig. 14. Technical and economical analysis of the three different Energy Storage
Systems (ESS) serving the Frequency Containment Reserve (FCR) application. (a)
Comparison of remaining capacity after 20 years and system efficiency of all simulated
ESSs. (b) Economic value consisting of the NPV using the direct system as baseline.

models based on current research for lithium-ion batteries, redox flow
batteries, as well as hydrogen storage-based electrolysis and fuel cell
are presented in detail. In addition, thermal models and their corre-
sponding HVAC systems, housing, and ambient models are depicted.
Power electronics are represented with ACDC and DCDC converters
mapping the main losses of power electronics within a storage sys-
tem. Additionally, auxiliary components like pumps, compressors, and
HVAC are considered. Standard use cases like peak shaving, residen-
tial storage, and control reserve power provisions through dispatch
of storage are discussed in this work, with the possibility to stack
these applications in a multi-use scenario. The analysis is provided by
technical and economic evaluations illustrated by KPIs.

SimSES’ capabilities are demonstrated through the discussion of
two case studies mapped to the applications of peak shaving and
frequency containment reserve, respectively. It is demonstrated how
different energy storage system topologies as well as various perfor-
mance indicators can be investigated and analyzed with SimSES. For
the specific cases discussed, the results underline that hybrid storage
systems can lead in terms of overall cost and degradation behavior to
a beneficial economic results. Special ESS topologies like the cascaded
ACDC converter approach can lead to a substantial increase in system
efficiency for the FCR application, although the economic benefits are
comparatively low.

In the future, more detailed performance and aging models for all
types of storage systems will be implemented. This will allow a more
detailed cross-technology comparison. For instance, models for bidirec-
tional thermal storage system could be implemented in future versions.
Further operating strategies matching internationally renowned and
national derivatives of application scenarios could also be investigated.
This may allow assessing the value of storage deployment across dif-
ferent regions and convince internationally active investors to reveal
best investment scenarios worldwide. SimSES has interfaces that can
be easily integrated into physically derived and more accurate storage
models as well as grid modeling and system analysis tools. While
selected validation experiments have already been executed, the au-
thors encourage others in the research community to conduct hardware
validation experiments at their sites and contribute to the presented
tool. The authors envision interlinking SimSES to the vast selection of
open-source tools in order to expand on the value chain that storage
simulations are capable of covering, e.g., SimSES is already a part of

the openMOD14 initiative. SimSES is open-source available, and the
authors encourage users and developers to join in and assist in its
further development.
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Appendix A. Open circuit voltage curve fitting

The OCV for LIBs (see Section 4.1) is dependent on the cell type.
The OCV data for all currently implemented cell types have been
measured at the Institute for Electrical Energy Storage Technology at
the Technical University of Munich. To improve the performance, the
look-up tables of the voltage values are replaced with a mathematical
function. These curve-fitting functions are based on the work of Weng
et al. [79]. The parameters of this function for the OCV are estimated
using the MATLAB® global optimization toolbox. Fig. A.15 shows the
OCV in V for the measured data as well as the curve-fitted data and the
difference between those in mV.

14 https://openmod-initiative.org/
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Table B.10
Physical parameters for modeling of thermal behavior of lithium-ion batteries (LIBs).

Manufacturer
model

Mass
(g)

Dimensions
(mm)

Specific
heat
(Jkg−1K−1)

Convection
coefficient
(Wm−2K−1)

Source

Sony
US26650FTC1

70 dia: 26
len: 65

1001 15 [55,80–89]

Panasonic
NCR18650PD

44 dia: 18
len: 65

1048 15 [88–90]

E-One Moli
Energy
IHR18650A

45 dia: 18
len: 65

965 15 [83,86,89,91–94]

Sanyo
UR18650E

46 dia: 18
len: 65

965 15 [83,86,89,92–95]

Fig. A.15. Open Circuit Voltage (OCV) curve fitting for the MolicelNMC lithium-ion
battery (LIB). The figure shows the OCV in V for the measured data as well as the
curve-fitted data and the difference between those in mV.

Appendix B. Thermal parameters

The geometrical and thermal parameters used for modeling the
thermal behavior of LIBs are presented in Table B.10. Geometrical
parameters such as the dimensions and the weight are obtained from
datasheets of the cells. The thermal properties, such as the specific
heat capacity for each cell type, are determined from the literature
for each cell chemistry, and averaged over several values found in the
literature. The value of the convection coefficient is known with the
least accuracy, and a value of 15 Wm−2K−1 is selected as a ‘‘reasonable’’
value lying between typical values for purely natural convection and
forced convection. This is assumed to emulate slow intermittent motion
of air around the cells. It is expected that availability of better data in
the future will increase the accuracy of the modeling process.

Appendix C. Stack data for a redox flow battery

The parameters are based on single-cell measurements carried out
at ZAE Bayern of a cell with a technical representative cell area of
2160 cm2. To obtain parameters for a stack, the measured values were
scaled up with a number of 40 cells. Fig. C.16 shows the data of the
internal resistance of the 40-cell stack for charge and discharge. The
internal resistance is determined by applying a constant current and
measuring the resulting change of voltage. The cell was operating in
Vanadium electrolyte (1.6 mol/l V solved in 2 mol/l H2SO4) from GfE
(Gesellschaft für Elektrometallurgie mbH). Temperature and flow rate
were controlled during the procedure. The SOC was determined with
an OCV-cell. Due to the relatively high ohmic resistance of the cell and
the low possible operation current density (up to approx. 50 mA∕cm2),
the cell resistance shows no significant current dependency. The cell

Fig. C.16. Charge and discharge resistance of a stack for a redox flow battery (cell area
= 2160 cm2) dependent on State of Charge (SOC) and temperature (T). The single-cell
measurements were scaled up to a stack resistance with a cell number of 40.

resistance Rcell was scaled up with the number of cells ncell to receive
the stack resistance Rstack (Rstack = ncell ⋅ Rcell).

Appendix D. Economics for case studies

Assumptions for economical analysis of the case studies are based
on Tsiropoulos et al. Minke et al. Figgener et al. and Mongird et al. [96–
99]. Challenges for determining energy-specific costs for ESS occur
due to a wide range of technology costs as well as various system
sizes and designs. In order to distinguish between power and energy
system design, Tsiropoulos et al. takes the EPR as an indicator: If
EPR is above one, the authors talk about an energy-driven design,
otherwise about power-driven design [96]. In addition, it is not always
clearly stated which costs for a system design are included, e.g., power
electronics, housing, and grid connection [96,98]. For instance, utility
scale system costs for LIB in 2017 ranged between 300 EUR/kWh
and 1200 EUR/kWh with an average around 570 EUR/kWh [96].
Figgener et al. depicted a similar range for 2018 [98] as well as one
reported system for 2019 with an EPR of 1 h and system costs of
around 900 EUR/kWh. However, LIB systems with an EPR of 0.125 h
show lowest cost with 300 EUR/kWh and costs increase with rising
EPR [96]. Mongird et al. have presented system costs for LIB system
with an EPR larger than 1 h with falling costs [99]. Interestingly, the
system costs of [99] show a lower average system cost price than
those of [96,98] representing European costs’ levels (a USD to EUR
conversion of 0.82 is assumed). In contrast, a broad cost database does
not exist for RFB systems. However, Minke et al. investigated various
RFB projects from 2004 to 2017 by determining system prices for
different EPR, similar to Tsiropoulos et al. [97]. The authors also found
an even broader range of system costs for RFB from 155 EUR/kWh to
1738 EUR/kWh, especially due to different electrolytes, stack modules,
sizing, and system definition. RFB system costs decrease with a rising
EPR with average system costs of 717 EUR/kWh for an EPR of 2 h and
166 EUR/kWh for a ratio of 15 h. These findings are also in agreement
with the results of Mongird et al. [99].

For the following case studies, system cost curves depending on
EPR are assumed for LIB and RFB systems with the prices and ratios
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Table D.11
Economics for Case Study 1.

Storage technology Power/kW Capacity/kWh EPR/h Specific system cost/EUR kWh−1 System cost/EUR Overall system cost/EUR

LIB 40 10 0.25 584 5,839
RFB 20 180 9.00 329 59,216 65,055

LIB only 40 150 3.75 367 55,089 55,089

RFB only 40 200 5.00 451 90,247 90,247

Table D.12
Economics for Case Study 2.

Storage technology Power/kW Capacity/kWh EPR/h Specific system cost/EUR kWh−1 System cost/EUR

LIB 1,600 1,600 1 473 756,800

Fig. D.17. System costs curves depending on EPR for LIB and RFB systems based
on [96,97,99].

given represented by regression curves in Eqs. (D.1) and (D.2). From
an EPR of 1 h up to 15 h, this cost curve has a realistic cost range
with decreasing cost over EPR. The system costs, however, have a high
uncertainty attached, as shown in the previous analysis. The used price
curves are shown in Fig. D.17. It is worth mentioning that the cost
assumptions for RFB systems are based on a usable SOC range of 20%
and 80%, which reduces the gross capacity configured by 40% [97].

cLIB = −80 ⋅ ln(EPR) + 473 and (D.1)

cRFB = −208 ⋅ ln(EPR) + 786, (D.2)

where c represents the energy specific costs of LIB, respectively RFB.
Using Eqs. (D.1) and (D.2) the system costs for the two case studies

discussed in Section 6 are calculated as provided in Tables D.11 and
D.12.

Appendix E. Availability of SimSES

SimSES is available as open source15 and is part of the open-source
simulation and optimization toolchain of the Institute for Electrical
Energy Storage Technology at the Technical University of Munich.16

A readme.md helps with the first steps in order to get SimSES running.
An installed Python environment is mandatory as well as the required
packages installed automatically if you run setup.py. With executing
main.py, a default configured simulation could be started directly. This
file offers also all necessary interfaces in order to connect it to other
simulation programs. The case studies presented within this paper are
conducted with the open-source release version 1.0.4.

For configuring a simulation, there are two important configuration
files: simulation.ini and analysis.ini. These configuration files are docu-
mented and offer all possible settings for setting up a simulation and the
consequent evaluation. These config files follow a pattern for a default
and local configuration. The default configuration inherits all possible
settings, in the local file: only the changed settings are necessary. This
allows a quick exchange of configuration settings between users.

15 https://gitlab.lrz.de/open-ees-ses/simses
16 http://www.simses.org

The Simulation package allows multiple simultaneous simulations,
which are also used for the presented case studies. In here, the con-
figurations and code could be found with the case study configs in
case_studies. In order to execute the case studies, the configuration needs
to be copied to the config location and renamed to simulation.local.ini.
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