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ABSTRACT

This thesis focuses on the exact analytical description of quantum states, in either 1-
or 2-dimensional systems, that are either proven or conjectured to be out of reach for
tensor network (TN) techniques. In order to provide such analytical descriptions we
introduce a new ansatz, which we call field tensor network states (fTNS), where we
exploit the connection that these complicated states have with conformal field theory
(CFT). The wavefunctions of both critical 1-dimensional systems and 2-dimensional
chiral gapped topological order can be understood as correlators computed in an un-
derlying CFT whose properties match those of the states via its conformal data. fTNS
are a modification of TNs such that these CFT correlations can be exactly reproduced.

Firstly, we present the fTNS approach to describing phases of matter, as well as
our main example throughout the whole thesis, the free boson fTNS. We begin by
discussing all the intrinsic features of this ansatz, such as regularizations and gauge
transformations. We then proceed to showcase the free boson fMPS and fPEPS, as
the TN equivalent fTNS that recover the previously out-of-reach states. Afterwards,
we present the most currently advanced form of the proof for the most important
property of this tensors, which is their exact contractibility. Coupled to this concept,
we also show how contracting the network of fTNS in different topologies has severe
implications for the properties of the resulting states.

Secondly, we study how much of the analytical properties of 1-dimensional TNs
can be translated to the free boson fMPS, specifically tackling the question of phase
classification. To do so, we describe the structure of symmetries for the free boson
fMPS, and provide an example in which the analogous theorem of SPT classification of
TNs holds for fMPS. We then use this result to distinguish amongst the two topologically
distinct groundstates of the critical point of the Majumdar-Ghosh model.

Thirdly, we showcase our study of the properties of another field theoretical ap-
proach to TNs, known as continuous TNs (cTNS). While this ansatz posesses a very
clean and intuitive theoretical approach, its optimal use case scenarios are far from
understood. By studying a property known as bulk-boundary correspondence of TNs,
we provide an example in which a ¢cTNS description provides an advantage in the de-
scription of a complicated field theory. Inspired by this result, we show the current
state of our proof for a classification of the possible interesting scenarios that can arise
within this formalism.

In summary, this thesis provides a collection of results that showcase the usage of
field theoretical techniques in the context of tensor networks, providing a new avenue
with which to describe physical states exactly that were previously out of reach for
TNs.
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ZUSAMMENFASSUNG

Diese Arbeit konzentriert sich auf die exakte analytische Beschreibung von Quanten-
zustéanden in 1- oder 2-dimensionalen Systemen, die nachweislich oder mutmaf3lich
aufBerhalb der Reichweite von Tensornetzwerktechniken (TN) liegen. Um solche ana-
lytischen Beschreibungen zu liefern, fithren wir einen neuen Ansatz ein, den wir Feld-
Tensor-Netzwerk-Zustdande (fTNS) nennen, wobei wir die Verbindung ausnutzen, die
diese komplizierten Zustinde mit der konformen Feldtheorie (CFT) haben. Die Wel-
lenfunktionen sowohl kritischer eindimensionaler Systeme als auch zweidimensiona-
ler chiraler liickenhafter topologischer Ordnungen konnen als Korrelatoren verstanden
werden, die in einer zugrundeliegenden CFT berechnet werden, deren Eigenschaften
mit denen der Zustinde iiber deren konforme Daten {iibereinstimmen. fTNS sind ei-
ne Modifikation von TNs, so dass diese CFT-Korrelationen exakt reproduziert werden
konnen.

Zunachst stellen wir den fTNS-Ansatz zur Beschreibung von Materiephasen vor, so-
wie unser Hauptbeispiel in der gesamten Arbeit, das freie Boson fTNS. Wir beginnen
mit der Erorterung aller wesentlichen Merkmale dieses Ansatzes, wie Regularisierun-
gen und Eichtransformationen. Anschlieend stellen wir die freien Bosonen fMPS und
fPEPS als TN-dquivalente fTNS vor, die die zuvor unerreichbaren Zustdnde wiederher-
stellen. Anschliel3end prasentieren wir die derzeit fortgeschrittenste Form des Beweises
fiir die wichtigste Eigenschaft dieser Tensoren, ndmlich ihre exakte Kontraktibilitdt. In
Verbindung mit diesem Konzept zeigen wir auch, wie die Kontraktion des Netzes von
fTNS in verschiedenen Topologien schwerwiegende Auswirkungen auf die Eigenschaf-
ten der resultierenden Zusténde hat.

Zweitens untersuchen wir, inwieweit sich die analytischen Eigenschaften von ein-
dimensionalen TNs auf das freie Boson fMPS iibertragen lassen, wobei wir insbeson-
dere die Frage der Phasenklassifikation angehen. Dazu beschreiben wir die Struktur
der Symmetrien fiir das freie Boson fMPS und geben ein Beispiel, in dem das analo-
ge Theorem der SPT-Klassifikation von TNs fiir fMPS gilt. Dieses Ergebnis nutzen wir
dann, um zwischen den beiden topologisch unterschiedlichen Grundzustéanden des kri-
tischen Punktes des Majumdar-Ghosh-Modells zu unterscheiden.

Drittens stellen wir unsere Untersuchung der Eigenschaften eines anderen feldtheo-
retischen Ansatzes fiir TNs vor, der als kontinuierliche TNs (cTNS) bekannt ist. Wah-
rend dieser Ansatz einen sehr sauberen und intuitiven theoretischen Ansatz darstellt,
sind seine optimalen Anwendungsszenarien noch lange nicht verstanden. Durch die
Untersuchung einer Eigenschaft, die als Korrespondenz zwischen Volumen und Gren-
zen von TNs bekannt ist, liefern wir ein Beispiel, in dem eine cTNS-Beschreibung ei-
nen Vorteil bei der Beschreibung einer komplizierten Feldtheorie bietet. Inspiriert von
diesem Ergebnis zeigen wir den aktuellen Stand unserer Beweise fiir eine Klassifizie-
rung der moglichen interessanten Szenarien, die innerhalb dieses Formalismus auftre-
ten konnen.

Zusammenfassend bietet diese Arbeit eine Sammlung von Ergebnissen, die die Ver-
wendung von feldtheoretischen Techniken im Kontext von Tensornetzwerken aufzei-
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gen und einen neuen Weg zur genauen Beschreibung physikalischer Zustinde eréffnen,
die zuvor fiir TNs unerreichbar waren.
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1 INTRODUCTION

Theoretical physics hopes to provide analytical descriptions of Nature derived from a
basic set of principles in order to provide predictions and deepen our understanding.
Throughout history, progress in our understanding has been driven by either theoret-
ical predictions left to be confirmed by experimentalists across the globe, or by an
experimental result left to be explained by theorists. As both the technical prowess
of experimentalists grows across the world, finer and finer details of the underlying
rules of Nature are brought to light. Equivalently, as theorists keep solving and un-
derstanding new problems, new languages and formalisms arise to explain more and
more complicated phenomena. Very often these theoretical developments come forth
due to the cross-over of ideas between different fields or mathematical formalisms.
One such surprising cross-over has been the understanding of physics in terms of their
computational complexity [5], which could be summarized as how hard would a given
problem be for a computational machine with a given set of rules. Studying general
problems under this viewpoint has allowed theoretical physicists to identify what seem
to be the limits of what can be analytically and numerically solved.

One such limit is known as the many-body problem, in which one attempts to de-
scribe the properties of a system containing a number of N particles, where this num-
ber can be taken to be arbitrarily large. This problem is paramount, as it is present in
most areas of physics, ranging from black hole physics, high-energy physics, molecular
physics, biophysics and the most interesting for us, quantum physics and condensed
matter physics. The many-body problem presents a major obstruction to providing the-
oretical predictions that begin from a microscopic description, as both our analytical
and numerical techniques become completely impractical as N grows [6]. In the case
of quantum physics, this is due to the exponential growth of the underlying Hilbert
space used to describe our system. In other words, as the space in which our quantum
states live grows, so do the possible patterns of the main ingredient of quantumness,
entanglement.

Entanglement is the key property behind quantum mechanics [7]], and the root of
most of the interesting quantum collective phenomena that we can observe in Nature,
albeit it also constitutes the main limiting factor behind our predictive power. While
our formalism allows for very arbitrary patterns of entanglement, most interestingly
the systems we encounter more often in Nature turn out to be simpler. This is due
to the fact that Nature seems to tend towards certain organizations and/or patterns
that establish certain preferred entanglement structures. This preferences arise in our
formalism in the form of properties such as symmetries or locality constraints that limit
the entanglement and therefore allow us to obtain a better handle in our descriptive
power. Luckily, one of the most important situations in Nature, that of the ground state
of a local system, has a very a "low” and controllable amount of entanglement [8]].
This situation yields the following question: Do we really need the completely generic
formalism to tackle this problem? In light of this question, the field of tensor networks
was born, whose goal was to borrow tools from the field of quantum information,



designed to precisely understand entanglement, to more accurately describe scenarios
in which the underlying entanglement structure of the system can be controlled and
exploited.

Tensor Networks (TN) have provided a playground for theoretical physicists to gain
further insight into the ground states, and low-lying excited states of several many-body
systems that are often found in Nature [9-12]. Although not without its limitations,
they have provided a very generic open window into the physics of low-dimensional
systems, their dynamics and properties [13-17]. At their very core, TNs are a com-
pletely generic ansatz whose goal is to control the amount of entanglement present in
the system as a fundamental property, which allows us to retain analytical control over
the state. By demanding that this generic guess minimizes the energy of the system,
one can find, accurately and with guarantees, the ground state of the system. This can
be done in most cases approximately with numerical techniques, and in some cases
even analytically, usually aided by symmetries or other constraints of the system.

Unfortunately, not all scenarios and systems in physics have such a benevolent en-
tanglement structure that is adequate for a TN description, one such example being a
critical system [18-420]]. In a 1-dimensional critical system, the amount of entangle-
ment grows beyond what the most basic tensor network can control efficiently [21]],
necessitating new tools in order to retain an analytical description of the system. New
TN structures were designed to describe precisely this scenario [22], sacrificing the
intuitive local structure of previous designs in order to increase the complexity of the
output state. In a 2-dimensional system, describing the correlations of a critical system
is well within the scope of the most basic TN structures. In this scenario, the challenge
is to provide an exact description of a specific kind of systems called chiral gapped
topologically ordered , which are a very important kind of state present in the field
of quantum Hall physics [23-25]. While some numerical approaches have been put
forward, a completely exact analytical description remains out of reach .

Quantum Hall physics is a very rich field, where the goal is to provide the wavefunc-
tion of the state of an interacting electron gas, usually subjected to a magnetic field
[26-31]. Many consider the discovery of the quantization of the Hall effect as the first
instance of topological order in physics. Not only do Hall systems have an inherent
scientific interest due to the very rich physics that they host, but topological physics
have found an increasing amount of applications for information-theoretic tasks. The
potential use of this physics in the context of robust quantum information processing
[[32] sparked a new wave of interest in the quantum information community, and even
the very recent realization of one such system in a state-of-the-art quantum simulator
[1331.

At this point, it seems that we have run into a crossroads. We can either sacrifice the
analytically and numerically controllable structure of TNs in order to accommodate for
the increasing complexity present in the Hall or critical physics, or we modify our TNs
in a subtle way such that we can target these interesting states while still retaining an-
alytical control. But how does one go about finding such an extension, specially given
the currently known no-go results [34} 35] that point towards a potential inherent
impossibility to describe Hall physics with TNs?

The answer comes from outside the field of quantum information, when Moore and
Read realized that the wavefunctions present in the fractional quantum Hall effect
(FQHE) could be obtained via a computation much more common in high energy
physics [36]. They found that the wavefunctions of Hall physics could be exactly



1.1 Outline

described by a correlator of field operators for a very special field theory, known as
a conformal field theory [37]. This insight drove the research in FQHE physics for a
long time, extending our knowledge of both these systems and of topological quantum
field theories and their relations to conformal field theories [38-41]]. This discovery
constitutes one of the earliest realizations of a concept that today is known as a bulk-
boundary correspondence. The bulk-boundary correspondence is one of the most im-
portant features in the field of topological order, and its most important insight is that
sometimes the theory that to describe a system can be shown to be dual, or equivalent,
to a different theory on the boundary of the system, and thus in one less dimension.
Sometimes, either the bulk or the boundary theory is easier to manage, and driven by
this insight, newer and more exotic realizations of topological order were found [|42].
Such an intriguing connection is also behind one of the most important theoretical
advancements of the last decades in high energy physics, where this set of ideas takes
the name of the holographic principle or the AdS/CFT correspondance [43].

We have finally reached the main insight from which this thesis arises. Is it pos-
sible to harness the power of conformal field theory, to extend the analytical power
of tensor networks, such that we can exactly describe a wavefunction that demands
an entanglement structure beyond of what is presently available? The original in-
sight is due to Sierra and Cirac [44], where this question was originally postulated and
resolved, showing that in some cases they had a perfect description via numerical tech-
niques. From that point onwards, there have been many contributions that have set
many stepping stones solidifying the use of conformal field theory in the description
of many-body systems [45-50]], both critical and chiral. Most of these developments
fully rely on the formalism of conformal field theory itself, drawing ideas from TNs to
achieve new results.

This thesis aims to provide such a new TN formalism, which we call field TNS (fTNS)
which can help us in understanding these systems from the TNs prespective. fTNS con-
stitute a generalization of standard TNs in which we allow for the correlations between
the different constituents of the system to be controlled by an underlying conformal
field theory. This means that now the different parts of the system can interact through
the Hilbert space of a field theory, which in stark contrast to standard TN, is an infi-
nite dimensional space. An immediate consequence of this choice, is that we will not
be able to describe any state of the generic many-body Hilbert space with fTNS, but
only those that fall under the description of the conformal field theory as well. While
this may seem like a problem a priori, this is precisely the compromise that allows us
to retain the analytical control over the state. This analytical control is guaranteed by
conformal field theory, which allows us to provide exact TNs-like representations of
previously analytically unreachable states via standard TN techniques.

1.1 OUTLINE

This thesis is organized as follows. In Chapter [2| we begin with a broad overview of
the different kinds of many-body phenomena that are relevant for us, focusing mainly
on the difference between gapped and gapless Hamiltonians. We also provide a couple
of examples of systems that are relevant for us, such as a symmetry protected topo-
logical state in a 1-dimensional system and some of the basics of Hall physics. We
then move on to provide a short overview and introduction to tensor networks, while
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also presenting the main results and theorems that are relevant for latter chapters of
this thesis. Finally we present a brief introduction to conformal field theory, such that
some of the concepts that inspired fTNS can be more easily understood.

In Chapter 3| we present field tensor network states, our new ansatz for many-body
states. We focus on the first known example of fTNS, the free boson fTNS. We begin
by deriving the free boson fTNS from first principles and showcase how to understand
and remove all potential divergences from the tensor. As we wish to always target
chiral states, we show how to perform a chiral truncation of the tensor and also show
that Mobius transformations act as a gauge freedom of the tensor. We then move on to
present the free boson fTNS for a critical 1-dimensional system, which we call the free
boson fMPS, alongside its momentum space representation. Our next step is then to
provide an extensive study of its 2-dimensional equivalent fTNS, the free boson fPEPS,
which is a candidate for an exact description of gapped chiral topological order. We
study its regularization structure, as well as its connection to the fMPS tensor and its
chiral truncation. The most important part of this chapter is the proof of the arbitrary
sewing condition, which deals with exact contraction between any two compatible free
boson fTNS. As an application of the sewing condition, one can fully contract an fTNS
to obtain back a chiral wavefunction with different topologies.

In Chapter [4|we provide evidence that the theory of 1-dimensional TNS can be trans-
lated to fMPS, allowing to preserve our intuition from TNS in a realm in which it was
previously impossible to do so analytically. To establish a parallel with the standard
theory of phase classification in 1-dimensional TNS, we derive the relation between the
finite representation of SU(2) on the physical index of a fTNS and its corresponding
representation as functional conformal charges on the virtual space. We also use this
construction to identify the different topological properties of the two distinct ground
states of the Majumdar-Ghosh point of the J;, — .J, model.

In Chapter [5|we present a different field-theoretical ansatz called continuous Tensor
Networks (cTNS), as an ansatz designed to tackle physical quantum field theories by
coupling them to a virtual quantum field theory in the same spirit as TNs. We then
focus our efforts to theoretically studying when using a ¢cTNS can be advantageous
in order to provide predictions for complicated QFTs. Guided by an example related
to the sine-Gordon theory, in which a correlator of a complicated coupled physical
bosonic field theory can be computed as a fixed-point correlator of a specific cTNS, we
attempt to understand the general structure behind the bulk-boundary correspondance
of cTNS.



2 BACKGROUND CONCEPTS AND
RESULTS

In this Chapter, we will introduce most of the relevant terminology and background
concepts used throughout the thesis. As discussed in the introduction, this thesis lies
at the intersection between many-body theory, tensor networks, and conformal field
theory. Naturally, we will provide the necessary context from each of these disciplines
to elucidate the forthcoming chapters

2.1 BACKGROUND CONCEPTS ON MANY-BODY THEORY

In this thesis, we will use highly correlated quantum spin Hamiltonians as the main
subject of study. We wish to consider these systems an effective description for a real
material, atomic gas or even a quantum field theory. The quantum spin Hamiltonian
arises then as a discretization of the continuous Hilbert space where a lattice is defined,
and a tensor product structure is endowed on every site to represent the localized
degrees of freedom. These degrees of freedom can range from spins, fermions, localized
orbitals such as Wannier modes [51]], or more complex algebraic structures. Therefore,
the problem reduces to solving an effective Hamiltonian that acts on such a tensor
product structure of the local modes.

Suppose the local Hilbert space associated with every site is the one of a spin repre-
sentation with a local Hilbert space dimension j. In that case, the total Hilbert is given
by ®2, C’ where N is the total number of lattice sites. This entails an exponential
growth of the Hilbert space as NV approaches the thermodynamic limit, which makes
it a completely intractable problem. Not only is it QMA hard for a classical computer
to find the ground state of the system [52], but even approximating it with a quan-
tum computer is a hard task [53]. Furthermore, the problem of computing correlation
functions or dynamics of the system is also generically hard, even for probabilistic
simulations [54].

As the generic non-local problem will tend to be unmanageable, it is mandatory
that we start performing sensible approximations that reduce the complexity down
to a more tractable scenario. The first and most natural approximation is to demand
locality of the quantum Hamiltonian. This property is enough to allow us to begin
classifying the different kinds of states that exist within the many-body Hilbert space.

2.1.1 GAPS, PHASES AND GROUND STATES

A very common starting point for physics is to begin the exploration of the physical
system from the Hamiltonian. We define a local quantum spin Hamiltonian on a lattice
A with sites A, as

Hy= )Y hy 2.1)

XeA,
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where X is a set with compact support, and % y is a local Hamiltonian on the compact
support with either power-law or exponentially decaying correlations as in [8]. If all
the different h y can be minimized independently, we call the system frustration-free.
Under these assumptions, it is possible to classify quantum Hamiltonians according to
their spectral properties, as seen in [55, 56]]. Informally, one classifies a Hamiltonian
as gapped if there exists a spectral gap between the potentially degenerate ground state
sector and the rest of the spectrum as one approaches the thermodynamic limit N — oc.
If no such gap exists in the thermodynamic limit, then we call the Hamiltonian gapless.

The notion of a gap of local Hamiltonians is crucial in understanding the properties
of the ground state of the system. The major consequence of such a gap is that any
correlation function between two operators that are far apart will always show an
exponential decay with respect to the distance between them, a property known as
exponential clustering [57]]. On the other hand, an algebraic decay of correlations is a
sign of gapless behavior [37].

Although we may have knowledge about the entire spectrum, the central object of
interest in any quantum spin system is the ground state, as quantum features are most
pronounced at low temperatures. The structure of the ground state wave function dic-
tates the features of the elementary excitations or particles, which can then be observed
in experiments. Yet, and as explained above, finding any such generic ground state is
a difficult task, even though local systems force a special structure on the ground state
that allows us to target it with tensor network techniques [10].

The locality of the Hamiltonian forces the other eigenvectors with low energy to be
simple local perturbations of the ground state [58], and this feature is responsible for
the existence of localized elementary excitations. We usually observe these states as
single-particle excitations above the ground states, and thus we further cement why
the ground state is such a relevant object even if the system under consideration is not
at zero temperature. This has to be contrasted to a generic eigenvalue problem where
knowledge of the extremal eigenvector does not give any information about the other
eigenvectors except for the fact that they are orthogonal to it. Without locality, physics
would be even more wild and uncontrollable from a theoretical standpoint.

Because ground states are one of the main objects of interest for the purpose of
many-body physics, it seems natural to shift the focus away from the Hamiltonian as
the central object and instead develop a theory that focuses on the states themselves as
the central objects. One can define a state |¢)) to be gapped if and only if there exists
a gapped Hamiltonian H according to the previous definition for which |¢) acts as a
ground state, which we call the parent Hamiltonian. Accordingly, a state will be called
gapless if one such gapped Hamiltonian can not be found. The main caveat of this defi-
nition is that |¢)) can simultaneously be the ground state of other Hamiltonians as well,
and some of those may be gapless and are usually referred to as uncle Hamiltonians,
as shown in [59, 60].

With the focus now on the ground states themselves, we can now group different
states to form a phase of matter. Historically, the most successful theory of quantum
phase transitions was developed by Landau in 1937 [61]], which relied on the notion of
symmetry-breaking through group theory. This successful theory led to the complete
classification of most classical solid phases of matter, as well as gas and liquid ones.
In Landau’s theory, one understands the notion of a phase by the collection of states
that either preserve or break a given symmetry. However, with the discovery of the
Berezinskii-Kosterlitz-Thouless transition [62] in 1973 and the fractional quantum Hall
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effect [63]] in 1982, it became clear that there were phases of matter beyond the Landau
paradigm. In 1989, the missing pieces were provided by a new framework for gapped
quantum phases, whose name became topological phases, which includes phases with
and without symmetry-breaking [64-66].

The suitable definition of a phase of matter that accommodates topological physics
is as follows:

Gapped Phase of Matter : Two gapped local Hamiltonians H and H’ are in the same
gapped phase of matter if and only if there exists a path of local gapped Hamiltonians
H_ with v € [0,1] such that H, = Hand H, = H'.

In other words, two states belong to the same phase if their respective Hamiltonians
can be continuously connected without closing the gap along the way. A closure of
the gap is then what signifies the phase transition. We will usually denote the trivial
phase as whichever phase contains product states. Equipped with a notion of phases,
we can now begin further coarsening this classification according to the entanglement
signatures of the states.

2.1.2 ENTANGLEMENT IN MANY-BODY GROUND STATES

So far, we have seen that ground states of frustration-free gapped local Hamiltonians
are able to minimize all the local terms of the Hamiltonian /5 simultaneously. We can
therefore exchange the question of finding the ground state by diagonalization of H,
for the question of finding a density matrix p, whose marginals simultaneously extrem-
izes all the terms Tr [hyp,]. Sadly, this is a problem known as the N-representability
theorem [67]], which is also known to be untractable generically [68]].

While not surprising, this teaches us something important about ground states, which
is that all the global features of the state, such as correlation lengths, topological or-
der, entanglement, and excitations, all follow from this set of local conditions. Global
features of the state have to be encoded locally in the state, and it turns out that this
situation corresponds to states that have very little quantum entanglement [[69-72].

Entanglement is the key property that is particular to quantum systems only. We
can intuitively think of entanglement, the shared resource of a quantum state that
correlates the different parties beyond what is classically possible. If one considers a
quantum spin system whose ground state is given by |}, one can partition the system
in disjoint connected regions A and B, such that p, and pz are the corresponding
ground state reduced density matrices. One can quantify the entanglement between
these two regions by means of the Von-Neumann entanglement entropy [73] as

S(pa) =5(pp) =Trpalogpal, (2.2)

where p, stands for the reduced density matrix, albeit there are many distinct ways
with which one can quantify entanglement[74]. The existence of measures with which
to quantify entanglement naturally leads to the notion of states that maximize them,
known as maximally entangled states [75]]. A surprising feature of quantum mechanics
is that it seems that entanglement is a monogamous quantity [76[], and therefore, if a
subregion A is maximally entangled within itself, it will share no entanglement with
the complement B. If we translate this concept to a system of spins, the more a spin
can interact with other ones, the less entanglement it can share simultaneously with
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all of them. This result is formalized in the quantum De Finetti theorem [77]], and
it is the underlying reason why mean field theory works increasingly well in higher
dimensional systems.

We have finally reached a point in which we can understand what we meant with the
statement that ground states of local gapped frustration-free have little entanglement.
In classical systems, the competition between entropy and energy gives rise to phase
transitions and collective phenomena. In quantum physics, the competition between
monogamy of entanglement and the minimization of all the extremals Tr [h yp] is what
leads to quantum collective phenomena.

The key is, therefore, to understand how entanglement is being shared amongst the
different degrees of freedom of the quantum state. Intuitively, for a given spin, it is
of no use to have strong correlations with far-away spins, as this will only bring the
marginals further away from the extremal points. The strongest (quantum) correlations
it needs to have are with those spins with which the locality of the Hamiltonian forces
it to interact with. It is then natural to imagine that the entanglement between a
bipartition of a big system in two regions is proportional to the surface between them,
and this area law for entanglement is exactly the notion of little entanglement that
gapped states have. In equation form, ground states of gapped local frustration-free
Hamiltonians obey the area law of entanglement [8, 78], in which the entanglement
entropy between a region A and its complement behaves as

S(pa) < fOA (2.3)

where 0A is the boundary of the region A, and f is a generic numerical function de-
termined by the specifics of the geometry. This property is in stark contrast to the
situation for a generic state of the many-body Hilbert space, which in general exhibits
a volume law entanglement [79].

So far, we have left gapless states and systems on the side, and the underlying reason
is that they are significantly more complicated than gapped ones. From the gapped
phases of matter perspective, we have associated gapless states with the phase transi-
tion points, and therefore, these will be states that will, in general, not obey the area
law. In general, these states tend more towards logarithmic-like laws, as shown in
[B0]. The one particular example that is well understood is the critical point of 1-
dimensional spin systems, in which the entanglement entropy for a region of length L
scales as [21, 81]

S, ~ glog L, (2.4)

where ~ stands for equality up to L-independent constant corrections, and ¢ corre-
sponds to the central charge of the associated conformal field theory of the critical
point. Because the area law for 1-dimensional systems means that any subregion can
have, at most, a constant amount of entanglement, critical states have, in general, more
entanglement than their gapped counterparts and are, therefore, more complicated to
study.

2.1.3 SYMMETRIES IN MANY-BODY PHYSICS

We will now briefly present the results of [|82], in which an even more coarse classifi-
cation of gapped phases of matter was provided. The first distinction that the authors
make is between the notions of short-range and long-range entangled order.
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The definition of a gapped phase of matter established an equivalence class between
gapped states that were connected via a path of local gapped Hamiltonians. One can
show that this criterion is equivalent to the statement that there exists a local unitary
(LU) evolution that connects both states, as given by the adiabatic theorem [|83]. Be-
cause an LU evolution can remove entanglement from the system in a local way, we
call a state short-range entangled if and only if it can be transformed via an LU to an
unentangled state, a direct product state.

Conversely, a state is long-range entangled if no LU evolution can reduce it to an
unentangled state. Topological order, in fact, provides all the equivalence classes de-
fined by LU evolutions. According to this criterion, it would seem that there are only
two possible phases of matter within the realm of gapped phases. However, the story
changes the moment that we introduce symmetries.

We know that group theory and the notion of symmetries are the backbone behind
Landau’s paradigm of phases of matter. In the previous definition, the LU evolution
is, in general, able to connect any two states that may be ground states of Hamiltoni-
ans with completely different symmetries. This is very different from the situation in
Landau’s paradigm, in which the different phases were characterized by a progressive
breaking of the symmetry group. This motivates the study of the problem of phase
classification under a different criterion, which is that of symmetric LU or, conversely,
under paths of gapped symmetric Hamiltonians. According to this criterion, neither
the gap is able to close, nor the symmetry can be broken along the path that connects
any two states.

In 1-dimensional systems, it turns out that there is only a single gapped phase under
LU, the trivial phase. However, under symmetric LU, one can distinguish between
the trivial phase and the simplest form of short-ranged topological order, symmetry-
protected topological states (SPT) [84]]. Particular of 1-dimensional systems is the fact
that no long-ranged entangled order can exist, which leads to the sometimes confusing
notion that there is no topological order in 1 dimension.

SPT order was originally found in the Haldane chain model [85-89]], which is a
nearest-neighbor odd-spin system protected by spin rotation symmetry given by the
group SO(3). An important signature of such phases is that they sometimes exhibit
gapless protected edge states, which are robust under any perturbation that does not
break the symmetry of the model. SPT phases are very well understood and have
been classified in many different dimensionalities, as shown in [90-92]]. Of special
importance for this thesis is the result shown in [93], in which tensor networks are
used as a very natural language with which to fully classify SPT order in one dimension.
Most interestingly, a complete classification can be found even in the thermodynamic
limit, as shown in [94]. We will showcase an example of a model hosting SPT order
in the next sections.

For systems in two dimensions and beyond, long-range entangled topological order
can emerge, both under an LU or a symmetric LU criterion. This is the family of states,
which is known as true topological order. While providing an exhaustive collection of
all the different kinds of known topological order is beyond the scope of this summary,
we will focus our attention in the upcoming sections on what is considered to be the
first discovery of topological order, the fractional quantum Hall effect. For a complete
classification of long-ranged gapped topological order in terms of category theory, we
refer the reader to the literature on string-net models [95]], and note that an equivalent
formulation in terms of tensor networks is also known [96].



2.1 Background concepts on many-body theory

t=9 P t, =

B —

Figure 2.1: Schematic drawing of the SSH Hamiltonian, where both unit cells as well as the
different interactions are depicted.

We have seen how the different patterns of entanglement are related to the different
phases of matter that we find in Nature. We have also seen that these gapped phases of
matter do not have a particularly large amount of entanglement, which is the insight
that inspired the variational class of tensor network states. As we will see in the up-
coming sections, tensor networks provide a natural language with which to study the
ground state of the many-body problem, both analytically and numerically. For the
remainder of the section, we will briefly showcase both an SPT state in one dimension,
as well as some of the main features that surround the topological order associated
with the fractional quantum Hall effect.

2.1.4 AN EXAMPLE OF 1-DIMENSIONAL SPT ORDER

In this section, we will study the SSH model as a paradigmatic example of SPT order in
1 dimension. This model was originally proposed in [97]], and the authors originally
interpreted the modern notions of SPT order as solitonic excitations of the spin-chain.

The SSH model describes the hopping of spinless fermions on a 1-dimensional chain
whose unit lattice contains two sites, which we will denote by A and B. On a chain
with N sites and open boundary conditions, the Hamiltonian is given by

N-1 N-2
Hegu=(1—196 Z( cB’j—l—h.c.) +(1+496) Z(CB cAJH—l—hc) (2.5)
Jj=0 7=0

where ¢, ; and cg ; are the creation and annihilation operators on either sub-lattice A
or B at unit cell j, and ¢ is the parameter of the model which we call the dimerization
parameter. The intuitive understanding of this model is that fermions hop between
different unit cells with strength 1 — ¢ and within the same unit cell with strength 1+,
as shown in Figure

Thus, depending on the sign and strength of § the fermions will prefer to move within
or between unit cells. In the first example, we will end up with a more localized pattern
of entanglement, whilst in the second one with a pattern much more spread across the
entire chain.

One can easily diagonalize this Hamiltonian imposing under periodic boundary con-
ditions by means of the Fourier transform of the fermionic operators

= .
c, , = — e kel (2.6)
Ak \/]_V = A,j

where £ is the label of the momentum modes, which takes values in k& = Q”T” with

n = 0,...,N — 1. After Equation (2.6) is used for both sub-lattice modes (2.5) one
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reaches the following Bloch Hamiltonian

Hssn = Z EkhSSH(k)g;;
k

hssy(k) = 0” (1 —6) + cos(k)(146)) + o¥(1 + ) sin(k)

(2.7)

where ¢(k) is a 2-dimensional vector that groups the momentum operators for both
sub-lattices. The energy bands +¢(k) of this Hamiltonians can be computed to obtain

e(k) = V2,/(1+62) + cos(k)(1 - 52). (2.8)

We see that this dispersion relation can only be gapless if and only if § = 0, where
the gap closes at momentum k& = —n. The gap closure signifies that this is the phase
transition between the two potentially different gapped phases of this model. To see
the difference between these two regions, we must examine the model once again with
open boundary conditions.

As we only need to characterize one point within the phase, we choose the simplest
possible points in each of the phases, corresponding to § = +1.

We begin with § = —1, where the second term of the Hamiltonian in Equation
disappears, and therefore only intra-cell hopping is present in the model. We call this
phase the fully dimerized phase, as only two fermions can place themselves in each
unit cell, therefore forming an array of pairs within cells. Furthermore, in this limit,
the Hamiltonian with open boundary conditions is identical to the one with periodic
boundary conditions and, therefore, a fully gapped system with NV levels at energy +2
and another N more at energy —2.

On the other hand, at the point § = 1, only inter-cell hopping is present in the SSH
Hamiltonian. In the bulk of the SSH chain, two sites in adjacent unit cells form pairs
that decouple themselves energetically from the rest of the system. In analogy to the
case 6 = —1, they lead to V — 1 levels at energy +2 and N — 1 levels at energy —2 in
the single particle energy spectrum. However, the mode operators for the fermions at

the two ends of the chain, CL,O and c; ~_1 » do not appear in the Hamiltonian. Hence,
these operators create excitations with zero energy, which are fully localized on the
two ends of the chain.

The appearance of gapless edge modes is the key difference between both phases,
and we will denote the trivial phase as the one without them. This model very clearly
exemplifies the competition between locality and monogamy entanglement. In the
trivial phase, all unit cells are able to simultaneously satisfy a monogamous entangle-
ment setting within each cell, essentially leading to a product state in the basis of unit
cells. Yet, in the SPT phase, prioritizing the formation of the maximally entangled
pairs leaves the edges unable to pair due to the locality constraints of the interaction.

It is possible to define for this kind of models a genuine order-parameter that cap-
tures the different topological features of each phase called a winding number for 1-
dimensional systems, and Chern number for higher dimensional systems. If one writes
any Bloch Hamiltonian in the form

(k) = a(k) - & (2.9)

where 7 (k) is a unit normal momentum-dependent vector that also defines the disper-
sion relation as ¢(k) = n(k)?. One then defines the winding number of the system as

11
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Figure 2.2: (left) Schematic of an experimental setup for observing the quantum Hall effect.
(right) Hall resistance and longitudinal resistance as a function of magnetic field B in the integer
QHE. The plateaus in the Hall resistance with vanishing longitudinal resistance are clearly
visible. From the 1998 Press Release of the Swedish Academy of Sciences.

the integral
27
w = i/ dk A(k) - (V % A(k)) (2.10)
271' 0

which is guaranteed to be an integer due to the fact that this is an underlying topolog-
ical invariant of the vector Bloch bundle [[98]. For a complete classification of topo-
logical insulators and superconductors as well as a presentation of their topological
invariants, the 10-fold AZ classification in [99, 100].

2.1.5 A SHORT OVERVIEW OF QUANTUM HALL PHYSICS.

As mentioned in the introduction, the discovery of the quantum Hall effect (QHE) [63,
101] is considered to be the original discovery of topological order. This effect is
observed in 2-dimensional electron gases at very low temperatures that are subject to
a strong transverse magnetic field B. Such a setup is shown in Figure where the
electron gas lies in the xy—plane and the magnetic field points in the positive z—axis.
An electrical current in the positive x then causes the appearance of the Hall voltage
Vy; in the y-direction between the edges of the sample. Following Ohm’s law, classical
physics would predict that the resistance R, associated with this voltage difference
would grow linearly with the magnetic field. However, the great discovery found
in [[101] was that at very low temperatures and strong magnetic fields, R, displays
plateaus where the resistance remained constant independently of the magnetic field
and the longitudinal resistance vanishes! This is shown in the right of Figure The
even more surprising observation is that the Hall conductivity, defined as the inverse
oy = RLH was given, to an astonishing accuracy, by,

== 2.11
O =V ( )

where e and h are fundamental constants, and v € N . This phenomenon is commonly
referred to as the Integer QHE (IQHE), and it was this discovery that sparked the field
of topological phases of matter. As changing the value of the magnetic field does
not break any symmetry, the transitions between the different plateaus had to have
a description beyond the Landau paradigm. To understand this problem further, and

12



2.1 Background concepts on many-body theory

its relation with the Laughlin wave function, let us start with a short derivation of the
IQHE.

We begin from a 2-dimensional gas of electrons of charge ¢ and mass m in the =z —y
plane subjected to a strong magnetic field pointing in the positive z-direction, whose
Hamiltonian is

Hrgmm = % [(~ino, - gAx>2 + (ihd, - %Ay>2] , (2.12)

where A is the vector potential associated to the magnetic field, ¢ is the speed of
light. We will work with the geometry of a disk, such that the components of the
vector potential are given by A, = —y= and A, = :z:g. One can then diagonalize this
Hamiltonian due to rotational invariance and obtain the spectrum of eigenenergies,
usually called Landau levels
E, =hw, (n + %) , (2.13)
where n € N_ is the Landau level, w, is the cyclotron frequency, and all the different
eigenenergies are highly degenerate [102].
The set of degenerate states, also called single-particle orbitals, at each Landau level
n can be labeled by their angular momentums, according to the rule that L, = m# with
an integer m > —n. If we denote by N, the total number of states at the n™ Landau
level, then the filling fraction is defined as

(2.14)

where N is the number of filled single-particle orbitals. If we assume that v < 1, then
only the levels within the lowest Landau level (LLL) can be occupied. Then, in the LLL
the single-particle orbitals are described by the wave function

|22

U (2) = 2Me @02 (2.15)

where z = x + iy, [, is a parameter called the magnetic length, which is controlled by

the strength of the magnetic field as [, ~ %. If the disk has radius R, then the total

number of states is given by
R2

4 (2.16)
v o2

Let us now explore the situation in which we keep increasing the magnetic field B,
such that the Fermi energy of the system sits between the LLL and the next Landau
level. It is usually assumed that under such magnetic fields, the electrons become
completely polarized, and therefore, their behavior is simplified to be that of spinless
fermions.

In this case, the many-body ground state is given by filling the N states of the LLL
only once, meaning that v = 1. The final wave function is then simply given by the
Slater determinant

1 N 2
7% Zi—1 |Zz‘

V1 (21500, 2,) = H (Zi_zj>€ . ) (2.17)
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as required per the Pauli principle. If one repeats this analysis for a toroidal geometry,
one can find that the Hall conductivity of this system is given by precisely a topolog-
ical invariant, the Chern number [103, 104]. This places the IQHE as a topological
insulator, and therefore, it does not host true topological order. In order to host true
topological order, the system needs to both show excitations that posses anyonic be-
havior as well as a groundstate degeneracy that reflects the underlying topology of the
manifold [32, 105].

The reason why the QHE is so prominent in the field of topological physics is because
many years after the discovery of the IQHE, the fractional quantum Hall effect (FQHE)
was discovered [63]]. New plateaus were found at filling fractions such as v = % orv =

%. These plateaus host all the elementary excitations associated with true topological
order and their fractional excitations and statistics. Not only has this phenomenon
been theoretically predicted, but the fractional charges of the excitations have been
experimentally observed [105,[106] and even more recently, their exchange statistics
[107-111].

The understanding of these plateaus necessitates very strong interactions among the
electrons. Due to the strong interaction effects, the ground states of realistic micro-
scopic models hosting intrinsic topological order are generally very difficult to com-
pute. Instead, one frequently relies on model wave functions which are easier to an-
alyze and capture the essential properties of the phase. Here, we will focus on one
specific class of model wave functions: the Laughlin states [112]. These wavefunc-
tions were originally designed to capture the many-body ground states of the FQHE at
filling fractions v = % with ¢ odd.

The fermionic wavefunction that Laughlin proposed is given by

_Lz 21111 ‘ZL|2
Y, 1(21,y ey 2,) = H (2, — 25)%e "o , (2.18)

d 1<i<j<N
where the crucial difference is the appearance of the power ¢ in the polynomial. While
this wavefunction is not the ground state of any realistic Hamiltonian, it has a surpris-
ing overlap with the wavefunctions obtained from exact diagonalization studies [44,
113]]. An intuitive reason behind this is that ¢: is the exact groundstate of a short-

range Hamiltonian, and knowing that electrons have a strong short-range repulsion, it
seems that this wavefunction is mainly capturing this feature.

The FQHE is not a consequence of the fermionic character of the constituents but
a new phenomenon brought forth by the degeneracies of the different Landau levels.
When one attempts to write down an effective field theory that captures the essential
features of fractional charges and statistics for the excitations, one rediscovers a well-
known action of high-energy physics, the Chern-Simons theory [114]].

The Chern-Simons theory belongs to a family of field theories known as topological
quantum field theories (TQFT) [[115]. While an extremely interesting topic in their
own right due to their intricate connections to modular theory or modular fusion tensor
categories [116} 117]], these theories are important for the description of topological
theories as they provide a natural representation of the fusion and braiding mechanism
that define the excitations of the FQHE.

In 1991, inspired by this connection with field theory, Moore and Read [|36, 118]]
had the fundamental insight that the polynomial part of the wavefunction found in
Equation could be written as a conformal block of a 2-dimensional conformal

14



2.2 Background concepts on Tensor Network theory

field theory (CFT). This insight held for both the fermionic and bosonic FQHE and
sprung forward a new wave of research that began exploring the connection between
these states and CFT, even reaching string theory versions of the FQHE [[119]. Years
later, with the discovery of the Chern-Simons/Wess-Zumino-Witten duality, it was fi-
nally understood why the CFT wavefunctions were so good at recovering the properties
of the TQFT, they were, in fact, dual to one another [120} 121]].

The essential insight of Moore and Read is that the polynomial part of the wavefunc-
tion of the FQHE could be, in many instances, written as

w('zlv' ) n) <¢1<Z1) '7¢n<zn>>CFT7 (219)

where ¢,(z;) is a given set of primary and/or descendant fields of the CFT, which will
be properly defined in the following sections. This insight is also the main piece of
information that we need for the rest of the thesis and the one upon which we will
base our new ansatz.

2.2 BACKGROUND CONCEPTS ON TENSOR NETWORK
THEORY

We have seen so far that ground states of quantum gapped local Hamiltonians reside in
a smaller subset of the generic quantum many-body Hilbert space as they must obey the
area-law of entanglement. In order to efficiently describe these states with low entan-
glement, originally called finitely correlated states [9], a new language was introduced
and its what today we call Tensor Network States (TNS). Their popularity rose up as
a strong numerical tool for 1-dimensional systems thanks to the density matrix renor-
malization group algorithm by White [122], and nowadays they are well established
both as a numerical technique for arbitrary dimensionalities as well as an analytical
tool. There are many excellent reviews on TNS available in the literature, amongst
which we recommend [[12] and [[11] for newcomers. For the more mathematically
inclined reader, we recommend the more recent [10].

2.2.1 TENSOR NETWORK STATES AND DIAGRAMMATIC NOTATION

As previously discussed, the goal is to provide the wavefunction of a generic many-
body state, which for the sake of simplicity we will assume to consist of n local Hilbert
spaces of dimension d. The most natural example of such a setting would be a system
consisting of N spins. The wavefunction of such a system is generically given by

Z szh 51)®, ... ®)s,), (2.20)
where s, is the label of the local Hllbert space basis. We will group the d" coefficients
Ys,.....s, in a single object which we will call a tensor. For us, a tensor is nothing but a
multidimensional array of complex numbers with labeled entries, contrary to the usual
definition of the word tensor used in linear algebra. We will denote one such tensor

diagrammatically with
S1 52 Sn

T
Vs1,..5n = LW 2.21)
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where each leg of the box correspond to each of the open indices of the tensor. Every
open leg of the tensor is thus labeled by the index of the basis of the local Hilbert
space, and therefore can take values s, = 1, ..., d. It is useful to think of the legs of the
tensors as the diagrammatic representation of vector spaces themselves, such that then
we have the following diagrammatic identifications

vector matrix tensor
k
‘— i J —‘— i J —:.— i
. . l
Ayli) Aizli) (] Aijra|1) (G, (2.22)

where it is important to note that we have used the right/left leg to denote the vector
space and its dual. Alternative representations of this notion can also be found in the
literature with arrows that either point towards or outwards from the tensor [10]. In
the case of the wavefunction of Equation (2.20), the legs of Equation point all
in the same direction as they all represent each of the identical local Hilbert spaces.
We also define the contraction of any two tensors by the diagram that joins their legs
to represent the sum over that shared index. In the diagramatic example of matrices

Leg contraction

-0
> AieArjli) (Gl (2.23)

which concludes the basic diagrammatic rules.

A Tensor Network ansatz consists in decomposing the exponentially big coefficient
tensor ¢ of Equation into a contraction of smaller tensors that have a smaller
amount of parameters. Examples of possible decompositions could be

S1 S92 Sn S1 59 Sn
E % , (2.24)

where the left example would correspond to a TN that repeats the same tensor for
each open leg and only contracts with its direct neighbours. The example of the right
of Equation is a much more complicated network but serves to portray the many
choices one can make with this ansatz. The different colors indicate that each of the
tensors can, in general, be different and the much more complicated connectivity serves
to illustrate an increase in the complexity of this ansatz.

When breaking down the big tensor in Equation (2.21]), more legs and therefore vec-
tor spaces will appear in the network. It is important to keep a distinction between
the original physical legs, labeled by s,, and the new legs of the tensors that are fully
contracted in the network, which we will call the virtual legs. We will reserve bolder
lines for the physical d—dimensional legs/indices/spaces, and generally depict them
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pointing upwards. The virtual legs/indices/spaces will in general correspond to a dif-
ferent arbitrary vector space with dimensionality D, which we call the bond/virtual
dimension. With the general philosophy of Tensor Networks set in stone, let us now
explore the most important TN ansatz for 1 and 2-dimensional systems

2.2.2 MATRIX PRODUCT STATES AND THEIR LIMITATIONS

The most important TNS for 1-dimensional systems is the Matrix Product State (MPS)
ansatz. This ansatz splits the wavefunction in Equation (2.20) as

D
— S1 So Sn
wsl,...,sn - E Aal,OLZAaQ,aga L) Aan,a17 (225)
QU yeey Oy

where the three-legged tensors Afji,am are repeated at every site. If we write these
tensors explicitely as matrices A% = > " 51 A“;iﬁ|oz) (8|, then the coefficient takes the
form

Qpsl,...,sn =Tr [ASIASZ"'ASn] ’ (2.26)

which makes its name evident. Diagrammatically, an MPS is represented by the left
diagram of Equation (2.24)), and therefore each of the tensors is given diagrammatically
by

(2.27)

It is possible to obtain a generic MPS representation of a 1-dimensional quantum state
by performing successive Schmidt decompositions, where the Schmidt rank across a
given cut becomes the bond dimension across that cut [[123]]. For a generic state, this
will lead to an MPS whose bond dimension D grows exponentially with the number of
sites n. However, most states fulfilling the area-law turn out to be exactly described by
an MPS whose bond dimension grows at most polynomially in n [71]. Intuitively, this
is because, for states that satisfy an area law, the Schmidt coefficients decay quickly
enough to allow one to throw away all but polynomially many of them without sig-
nificantly changing the quantum state. This result means that we can represent MPS
states with only ndD? coefficients, which is an immense improvement over the pre-
vious exponential scaling. Interestingly, states that obey a logarithmic entanglement
law, like critical states, can be well-approximated by MPS, but not exactly represented,
as shown in [124]]. This is one of the main motivations for this thesis, as we wish to
provide such exact representations that still mimic the structure of MPS. As we will see
in the following chapter, we will need to introduce tools from field theory to achieve
this goal.

In preparation for Chapter |5, let us discuss a generic feature of TNS in the context
of MPS, the bulk-boundary correspondance [125]. This correspondance states that if
we divide the system into two connected subsystems A and B, the reduced density
matrix p 4 has the same spectrum as another matrix o that can be viewed as living on
the virtual indices on the boundary between A and B.
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To see this, let us write a quantum state represented by the following open-boundary
conditions MPS as

V) = M M (2.28)

where we omit explicit indexes for the sake of notation and the green tensors are the
open boundary conditions. We compute its density matrix diagrammaticaly as

where the downwards facing physical legs refer to the ”bra” part of the density matrix.
To compute the reduced density matrix p , we are instructed to contract all the physical
legs in the complement region B as follows

A B : (2.30)

If one focuses exclusively on the contracted network in subregion B, it is easy to see
that there are only two leftover legs that connect it with the region A, and therefore
one can change this whole diagram by a matrix o as follows

A . (2.31)

In order to deal with the information of the subsystem A, one begins by defining a
linear map £ from the virtual index at the boundary of A and B to the physical legs as

c-0-0 06
) (2.32)

We can then apply the polar decomposition to £ to write it as £ = VP where P =
V L1 L is a positive matrix and V is an isometry from the virtual to the physical legs
obeying VV! =1, . One can graphically write £1< as

o , (2.33)
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which allows to identify ? = /5. Putting everything together one reaches, in equa-
tion form,

pa =V olop /oL V. (2.34)
Because V is an isometry, the spectrum of p, is identical to the spectrum of o =

\/:ga r\0r, which lives in the virtual space of the tensor network. This is what is
meant in the context of tensor networks by the bulk-boundary correspondance. The
most immediate conclusions from this analysis, is that the entanglement entropy S(p,4)
is equivalent to S(o), which is simply upper bounded by log D, which is the promised
area law. While this derivation has been done in its most simple setting, one can
provide a similar proof for higher dimensionalities, as shown in [125]. The higher
dimensional setting is the one that we will attempt to reproduce in the context of
another field theory ansatz, continuous TNS, in the last chapter.

Another important result from this derivation, is that the entanglement spectrum,
defined as the spectrum of p 4 is always contained in the spectrum of o, which has big
implications in the understanding of gapped phases of matter [126, 127].

In preparation for Chapter |4} let us now discuss the application of MPS to the prob-
lem of phase classification. As we have seen, for one dimensional systems at zero
temperature, there is only a notion of distinct phases when considering symmetries.
Let us therefore begin by considering how on-site symmetries are manifested in MPS.
Suppose that our MPS transforms under the action of a physical on-site symmetry U,
as

(2.35)

where V is a unitary matrix. Any state on N sites that is defined through an MPS that
fulfills Equation is immediately UfN invariant. This is clear because the oper-
ators Vand V' coming from neighbouring sites will cancel in the virtual leg between
them. It turns out that this is the only way to encode a global symmetry into an MPS,
subject to technical conditions [128]. In other words, given a global symmetry U, f’N ,
one can always find a V, such that Equation holds.

In fact, it turns out that the matrices V, form, in general, a projective representa-
tion of the symmetry group G, which satisfy the relation V,V, = w(g, )V, for any
two elements of the group g,h € G [93]. The 2-cocycle that appears in the group
multiplication corresponds to some cohomology class [w] € H*(G,U(1)). The virtual
representation V, therefore provides us with a transparent way of extracting such a
cocycle. This is important, because one can proof that [w] can not be changed under
symmetric, gap preserving deformations of the MPS tensor, what we called symmetric
LU transformations on the previous sections [15]. Therefore, states with different |w]
belong to distinct SPT phases, within the realm of MPS.

The importance of this result, is that we can extract information about the topological
properties of the state, by studying the properties of the MPS tensor which is defined for
a single site. In contrast to the previous section, in which the study of the topological
phase involved the computation of some topological invariant as in Equation (2.10),
the information about the topology of the full state is condensed on the on-site tensor.
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In a future chapter, we will study this property for a different class of ansatz, field
TNS, designed to exactly describe systems that host logarithmic entanglement laws
exactly. There are other approaches to describing such systems with TNS that do not
require field theory, most prominently an ansatz known as MERA [22]. Ultimately,
our goal is to understand how much of the theory of MPS and TNS translates to our
field theory scenario, which is the reason why we do not use the MERA approach.

2.2.3 PROJECTED ENTANGLED PAIR STATES AND CHIRALITY

The most prominent ansatz for 2-dimensional systems is known as Projected Entangled
Pair States (PEPS), which are written diagrammatically as a straightforward general-
ization of MPS to a square lattice as

5 (2.36)

where we have left the boundary conditions arbitrary. The tensor at every site is a
5-legged tensor given by

Sq

Adpys = @ B

gl . (2.37)

PEPS automatically fulfill the area law, but computing correlation functions with them
is significantly more complicated numerically than with MPS due to the appeareance
of closed loops in the network [52, 129]. In contrast to MPS, PEPS can describe alge-
braically decaying correlations, and are therefore suitable to describe gapless systems
[171].

In terms of phase classification, PEPS can classify both SPT and true topological order
[15]. Models that are exactly described by PEPS would be the Kitaev quantum doubles
[130], simple symmetry-enriched models obtained via anyon condensation [131]] or
gapless systems with continuous symmetries [132]]. All of these descriptions share in
common that the PEPS tensor has the symmetry

Si Si

Ug (2.38)

where the unitaries U, form a representation of the relevant global symmetry. In
contrast to MPS, the symmetry arises as a property of the virtual space alone. If the
symmetry in the virtual space is given by a more complicated object known as a Matrix
Product Operator (MPO) [133]], then PEPS can capture more exotic models such as
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Exact TN representation

‘Gappod Parent Hamiltonian‘ ‘Chiral edge excitations‘

Figure 2.3: Schematic depiction of the Gapped chiral PEPS problem

the twisted quantum doubles [[134] and string-net models [[135]. In fact, a complete
classification of the topological order that arises in terms of MPOs has been found in
terms of category theory [96].

PEPS has proven itself to be an invaluable tool for providing exact representations
of representative states within various very complicated phases of matter. One might
even wonder whether one can find a PEPS groundstate representative for all known
phases of matter. Unfortunately, there is a family states that have been eluding an
exact representation in terms of PEPS for a long time, the family of quantum Hall
states. It is even conjectured, that it is in fact impossible for such states to have a PEPS
representation.

Historically, the argument for such a no-go result begins in the study of Wannier
functions as in [136, (137]. Intuitively, the exponential localization of Wannier func-
tions that enables an efficient TN representation, seems to be incompatible with the
extended Wannier functions found in quantum Hall states. This question has also been
studied within the context of TNS, such as [[17, |34]. The conclusion in these papers
was the PEPS can indeed showcase the correlations associated to quantum Hall states,
but paying the price that the Hamiltonian of which the PEPS is a groundstate must
be gapless. This is again incompatible with the gapped Hamiltonians that are associ-
ated with the topological order of the fractional quantum Hall state. Numerical studies
have confirmed this intuition [[138}139], and shown that PEPS can still provide a good
numerical approximation to these states, foregoing an exact analytical description.

From this set of results, we found ourselves in the situation depicted in Figure
in which one must choose two vertices of the triangle and forego the remaining one. If
one chosess to describe a chiral edge with a standard PEPS, one obtains a gapless parent
Hamiltonian. If one choses to guarantee a parent Hamiltonian with PEPS, one never
obtains a chiral edge. Therefore, if one wishes to retain a gapped parent Hamiltonian
and the chiral edge, it seems that what one must do is modify the TN representation
itself, or simply restrict oneself to approximate results.

The lack of an exact representation is the second main motivation behind this thesis.
By means of field theory techniques, we aim to provide one such exact analytical repre-
sentation by means of field TNS. We will see in the upcoming chapter that by utilizing
the connection of quantum Hall states with conformal field theory, we can provide an
explicit TN representation. Very recently, there have been other studies pursuing a
similar approach like [140, |141]], and even a no-go result that seems to finally set in
stone the incompatibility of PEPS with chiral gapped systems [142].
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2.3 Background concepts on Conformal field theory

2.3 BACKGROUND CONCEPTS ON CONFORMAL FIELD
THEORY

High energy particle physics is described by a Lorentz invariant quantum field theory
and is usually concerned with the physics at the energy scales in which these symme-
tries are the most relevant [[143]]. In stark contrast, condensed matter physics wishes to
describe physics at a scale in which these symmetries are not as apparent, the most ob-
vious example being that translation invariance gets reduced to crystalline translation
invariance. Whilst we could always think of a condensed matter state as a quantum
field theory state with non-zero density of particles in the limit of lower energies, it is
precisely the breaking of these symmetries that would demand us of the formalism of
spontaneous symmetry breaking and Goldstone bosons [144]. This route is undoubt-
edly much harder and convoluted than what condensed matter physicists actually do,
which is to simply consider theories with fewer symmetries.

As we have seen in the previous chapters, at energies that are low compared to par-
ticle physics scales, a given condensed matter state can be described starting from an
effective low-energy Hamiltonian with no vestige of the high-energy symmetries. This
description may take the form of a lattice model describing, for example, the interac-
tions of mobile electrons with lattice vibrations [145]. The only remnants of space-
time symmetries in such a model will be discrete translations and rotations, therefore
leading to a generically non-field theoretic description of physics.

However, a further low energy limit can be taken, which considers physics on en-
ergies well below the lattice energy scale. Very interestingly, it is found that in many
important circumstances, universal continuum physics re-emerges as a faithful descrip-
tion of the low energy part of the spectrum as well as of the universal properties of the
model [102,|146]]. These phenomena occur both in gapless systems, such as in quantum
critical points and Fermi liquids and in gapped systems with long-range topological in-
teractions. These emergent universality features are the goal that low energy effective
field theories aim to describe by foregoing many of the details of the lattice system.

Because low-energy effective field theories do not arise as a requirement from Lorentz
symmetry, there is no a priori restriction on the class of symmetries that the theory
can have. One such example are conformal field theories (CFTs), which are genuinely
interacting quantum field theories that arise most naturally in the description of two-
dimensional quantum critical phenomena. Conformal invariance in two dimensions
can be shown to be equivalent to scale invariance, which is a well-known feature of
critical points. The requirement of conformal invariance imposes that all particle-like
excitations of the theory are massless, and therefore they have algebraically decaying
correlation functions. This generic algebraic decay, as an underlying feature of the
theory, can be used to accurately describe how correlation functions of critical mod-
els, governed by the universal critical exponents, behave. Furthermore, CFTs also shed
light on the universal properties of gapped topological systems that host anyonic exci-
tations, as CFTs provide a natural representation for the fusion mechanism that defines
these exotic excitations [32, 147]].

CFT is a very well-established topic of research, and there are already many fan-
tastic reviews in the literature tailored to the different backgrounds and goals of the
reader. For those with a background closer to field theory, I recommend the works of Di
Francesco, Mathieu and Sénéchal [37]], or the reviews by Ginsparg [148]], Gawedezki
[[149] or Moore and Seiberg [[150]. For those with a background closer to mathematical
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physics, an approach based on operator algebras can be found in the review by Gab-
erdiel [151]], which is based upon several works such as [[152-157]]. For those that pre-
fer an approach closer to algebraic quantum field theory and functional spaces [[158]],
I recommend the works by Wassermann [159], and Gabbiani and Frohlich [160].

Of importance to this thesis are also the more recent developments in CFT that per-
tain both to the definition of CFT on surfaces of non-trivial genus, as well as the devel-
opments pertaining to Boundary CFT (BCFT). While these results go beyond the scope
of the brief introduction based on [|37]] that I wish to present here. Some of the impor-
tant results in the field of higher genus CFT can be found in [161-165], whilst some
of the corresponding results from BCFT can be found in [[166-170].

2.3.1 BASICS OF CONFORMAL FIELD THEORY
CONFORMAL INVARIANCE IN A QUANTUM THEORY

We denote by g, the metric tensor in a space-time of dimension d. A conformal
transformation of the coordinates z — 2’ is one that leaves the metric tensor invariant
up to a scale

Guw(") = Mx)g,,, (2), (2.39)

and the name conformal comes from the fact that these preserve angles since they at
most rescale the metric. The group of conformal transformations is given by SO(d +
1,1), whose generators are

translations: z'# = x* + a*
dilations: z'* = ax*
rotations: z’'# = M}z (2.40)

W pHg2
SCTs: 2/ = —= ,
o 1—2b- 2+ b2x2

where we have assumed Einstein’s summation convention, and SCT stands for special
conformal transformation. In d = 2, invariance under dilations is enough to guarantee
conformal invariance [171]], whilst in higher dimensions, this fact no longer holds true.

The first consequence of conformal invariance on a physical theory is that performing
a variation of the action S under an infinitesimal conformal transformation x* — z* +
et yields

55 = = / LTI e, (2.41)

where T is the symmetric energy momentum tensor. Whenever the energy-momentum
tensor is traceless, 7, = 0, the theory will always be conformally invariant, whilst the
converse is not necessarily true [[37]]. The fact that conformal invariance is guaranteed
by the tracelessness of T}, places the energy-momentum tensor as a much more central
object for CFT than the action itself, and it is indeed very common to define CFTs with
no regard to an action whatsoever.

Conformal invariance at the quantum level demands that whenever we compute a
correlation function such as

(Ora)2(22)) = 3 [ D00y (@) (ar)e ) (2.42)
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this correlation function behaves under a conformal transformation as

71A/d 71Ay/d
o e e R A CAREEAR (2.43)

T=I,

T=x,

where the A,’s are a set of numbers that control how the field transforms. This trans-
formation law completely fixes both 2 and 3- point correlators

ortaontogy = | e A= (2.44)
x x = T17%2 .
S 0, if A+ A,
where C|, is an arbitrary normalization constant and
Clas
<¢1 ($1)¢2(CE2)¢3($3)> - |.CC1 . $2|A1+A27A3‘{,‘C2 _ $3|A2+A37A1‘{E3 _ x1|A3+A17A2 )

(2.45)
where again C,, is a normalization constant. One can also show that further n-point
functions are also heavily constrained to only depend on conformally invariant com-
binations of the positions, known as cross-ratios. We have so far seen that conformal
invariance places heavy constraints on the possible correlation functions that can arise
out of a CFT, and we are now going to see that these constraints are even stronger
whenever we impose d = 2.

CONFORMAL INVARIANCE IN d = 2

We use the coordinates on the plane (2°,z!), and under a conformal transformation
zM — wt(x) we can see that the local condition for conformal invariance reduces to
1

ow_ _ ou® and ou’ = —8—7”01, (2.46)

020 0z 0720 0z1
which are nothing but the Cauchy-Riemman equations that define holomorphic func-
tions. Thus, the set of conformal transformations allowed in the plane is given by the
set of holomorphic functions, which is an infinite-dimensional set! It is precisely this
infinite dimensionality that which restricts correlation functions so strongly in confor-
mally invariant field theories in d = 2.

This motivates the use of a change of variables for the coordinates of the plane that

is much more common to complex analysis, which is given by

0

2=20442r | Z2=20—4i2, (2.47)

where z + 2%, that is, we generically understand z as an independent coordinate of the
plane, and then whenever restricting to z* = z we say that we restrict ourselves to the
physical real surface.

The condition of local conformal invariance has led to an infinite dimensional set
of possible conformal transformations, which would seem to be inconsistent with the
result that for a generic d, the conformal group is given by SO(d + 1,1). To fix this
seeming inconsistency, we need to focus on global conformal transformations on the
plane, and demand that these exist and are invertible everywhere. Upon doing so, one
obtains the transformations

fo) = 222

with ad —bc =1, (2.48)
cz +
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where a,b,c,d € C. These constitute the set of projective transformations SL(2,C) of
mappings from C onto itself, which is isomorphic to SO(3, 1) as expected.
With these new coordinates, we can now define a quasi-primary field as a field that,
under a given conformal map z — w(z), z — w(z) transforms as
—h —h
L) (%) e, (2.49)
z

¢ (w.) = ( -

where we call h(h) the (anti)holomorphic conformal dimension. A field that transforms
according to Equation for every possible conformal transformation is a primary
field, and the set of primary fields and their conformal dimensions is one of the most
important aspects of any CFT.

As in higher dimensions, correlation functions are heavily constrained once more,
as they must transform according to
—h,; ( 9w

—h,;
_>—__ (b1(21,21--0,, (2,5 2,))), (2.50)

(b (w1, By, (w0, T,))) = ﬁ (g_"z") -

which fixes the 2-point function to be

C — — —
2 with hy=hy=h, hy =hy=h.
(21 — 29)2M(z1 — Z9)2h

(b1(21,21)o(29, 22)) =

(2.51)
The 3-point function and further n-point function become similarly constrained. Of
significant importance is the fact that the dependence on the holomorphic and anti-
holomorphic variables fully factorizes, which is, in fact, a feature of CFT, as we will
see later.
In order to understand how a generic correlation function (X) behaves under an
infinitesimal conformal transformation, one can prove the conformal Ward identity, in
which a small variation 4. ;> yields

52X) =~ § dee(2T()X) + 2 § = T)X), (2.52)
’ 2m Jo 21 Jo

where we have introduced the holomorphic and anti-holomorphic energy-momentum

tensors defined as T'(z) = —2n7T,, and T(Z) = —2n7T-, and the contour C encircles all

divergences arising from the correlations functions within the integrals.

The most important consequence of Equation is that the symmetry properties
of any field, or combination thereof, X are encoded in the divergence structure of their
correlation function with the energy-momentum tensor. In fact, for any primary field
X, the holomorphic correlation functions are given by
(T(2)X) = Z { Dy (X) + ————(X)| +reg. (2.53)

W,
i=1

where reg. groups all the terms that do not diverge in the limit = — w,, and we have a
similar expression for the anti-holomorphic counterpart. The idea that the divergences
arising from correlation functions contain the physical information of the field is one of
the most important features of CFT, as it allows us to study the properties of the theory
by merely keeping track of the divergences that arise alongside any computation.
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This generic behavior is what motivates us to introduce the concept of an Operator
Product Expansion (OPE), which is an operation that allows us to only focus on these
divergences. The OPE consists of considering the correlation function between two
fields and substituting their product within the correlation functions by exclusively
the divergent terms of their expansion as their positions get close. As an example, the
OPE between the energy-momentum tensor 7'(z) and a primary field ¢(w) can be read
from Equation to be

h

(z —w)?

b
(z —w)

where we have only presented the holomorphic OPE, and ~ means that we are ignoring
all the regular terms. It is, in fact, common to consider the OPE shown in Equation
as the better definition of a primary field, which is the approach usually followed
in the algebraic approaches to CFT that are rooted in operator algebras, where the
OPE enjoys a much more formal definition. Under this definition, quasi-primary or
descendant fields are the ones that appear from the OPE of 7'(z) with a given primary.

Another very important OPE is the one of 7'(z) with itself, where, by conformal
invariance, it can be shown that it is given by

T(z)¢(w) ~ $(w) + D@ (w), (2.54)

C

> 2T (w) oT (w)

—w)?  (z—w)?  (z—w)

T(2)T(w) ~ (2.55)
where a new constant ¢ has appeared on top of the most divergent term, which is
known as the central charge. This is another one of the most important and defining
numbers for a CFT, as it is an intrinsic property of the divergent structure of the energy-
momentum itself. The OPE of 7'(z) with itself also tells us that it is a quasi-primary
field with h, = 2.

The final important OPE is given by the OPE of two primary fields amongst them-
selves, which can generically be written as

0:(2)0;(w) = 37 CE (2 — w) M Pigy (w) + desc. (2.56)
k

where the constants C;;, are a set of numbers that define the normalization of the 3-
point functions and desc. stands for all the descendants that can arise from the product.

Although the dependence of higher n-point functions on cross-ratios is not fixed by
conformal invariance, by repeated use of the OPE within the correlation function, every
n-point function can be reduced to 2 and 3-point functions. Therefore, any correlation
function of CFT is fully characterized by the numbers that appear as these OPEs are
taken, which are the conformal dimensions of the primary fields h,, the central charge
¢, and the 3-point function normalization constant C; ;.. The fact that the entire theory
can be solved by repeated usage of algebraic relations between the fields is what allows
for the rigorous mathematical treatment of CFTs as Operator Algebras [151]].

FREE FIELD EXAMPLES

Let us begin with the simplest CFT given by the free boson action

1
S, = 8—/d2xﬁug08“<p, (2.57)

™
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whose 2-point correlators are well-known and given in two dimensions by

(p(2,2)p(w,w)) = —log (|2 — w[*), (2.58)

which indicates us that the field ¢(z) is not a primary field. However, if we take
derivatives of the boson field, we obtain
1

L (0p(5 D, T) = —————,  (2.59)

(0,0(2,2)0, (w0, w)) = —m w z— w)2’

which allows us to infer the OPE of 0y (z) with itself, which contains a single divergent
term. This OPE also reflects the bosonic character of the field since the positions of
the fields can be swapped without affecting the correlation function. The energy-
momentum tensor of the free boson is given simply by

T(z) = _% 0 (2)0p(2) -, (2.60)

which can be obtained from the action, and normal ordering :: has been introduced
since both fields are evaluated at the same point. Performing the OPE of 7'(z) with the
field Op(w) by repeated application of Equation (2.59)

dpw)  Dp(w)
G-—w?  (z-w)

T(2)0p(w) ~ (2.61)
which tells us that dp(z) is indeed a primary field with conformal dimension h = 1.
This information also allows us to infer from Equation (2.59) the value for the 3-point
constant amongst these primaries to be C,?h = —1 as these fields "multiplied” by the
identity primary field. By using Wick’s theorem, the OPE of T'(z) with itself is

T()T(w) ~ — L 4 2T | 0T(W)

2z—w)t  (z—w)?  (z—w) (2.62)

which tells us that this CFT has ¢ = 1. It would seem that we already have all the
information that we need to find any correlator of this theory, but we are missing a
lot of information in fact. We have only found one primary field of this theory, 0¢(z),
but it turns out that there are infinitely many more, all of them given in the form of
vertex operators

V, (2,7) = Pz . (2.63)

where normal ordering is necessary to be able to perform Taylor expansions for this

exponential. These fields are primary fields with conformal dimension h(a) = “72 and
their OPE is given by

Vo (2,2)Vg(w,w) ~ |z — w|2a517a+6(w,@) + .., (2.64)

which provides us with the rest of the needed constants. Although the theory is simple
enough such that we can extract all the conformal data, the challenge of this theory
resides in the fact that there are infinitely many primary fields, which is a situation
in strong contrast to other simple CFTs such as minimal models. In minimal models,
there is only a finite amount of primary fields, but solving the algebraic relations that
provide us with the conformal data is a generically hard task, which attempts to be
solved by following the so called conformal bootstrap program [172].
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Our next simple example is the free fermion. The action of a free Majorana Fermion
is given by

Spr= % / d?z (o + You), (2.65)

where the correlators amongst the fields ¢(z,z) and (z, ) are given by

(W(z (D) = ——.

(P2, 2) 0w, W) = — (2.66)

—_

w

(¥(z,2)p(w, w)) =0,

which allows us to read the OPEs amongst these fields. Once again, the OPE reflects
the fermionic character of the field whilst also showing that the holomorphic and anti-
holomorphic parts of the field become decoupled. The energy-momentum tensor is
given by

T(z) =~ : 9(:)00(2) - (2.67)

and the relevant OPEs are then given by

sP(W) Gy(w)
GCow?  Gow)
1 2T (w) N oT (w)

(z—w)  (z—w)?  (z—w)

T(z)p(w) ~
(2.68)

T(2)T(w) ~

from which we obtain that ¢ = % and that the field v(z) is a primary field with confor-

mal dimension h = %

OPERATOR FORMALISM

So far, we have shown the consequences of conformal invariance in d = 2 at the
level of the correlation functions obtained from path integral calculations without any
reference to the underlying Hilbert space structure. Since we wish to eventually discuss
the representation of symmetries on a CFT, it is important to understand the constraints
that conformal invariance imposes on the space of states themselves, and not just their
correlation functions.

We will concern ourselves only with the holomorphic part of the theory to ease up
the notation and begin by performing a Laurent expansion of any quasi-primary field
as

6 = 30 2 6= g ), (2.69)
= 211
From this mode expansion, one can define the corresponding conjugate of the field

¢'(z) via the relationship between the modes qﬁjn = ¢_,,. In order to be able to define
the norm of a state, it is mandatory that the vacuum state must satisfy

®,,|0) =0 for m > —h. (2.70)
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With the vacuum state defined, we now define an operator as contour integrals of a
holomorphic field, such as

A= Z){a(z)dz, (2.71)

where the contour encircles the O of the complex plane. With this definition, any
commutation between two such operators is given by

A4, B) = 705 dw }é dza(2)b(w). 2.72)

This is an extremely important definition, as it allows us to relate OPEs and commuta-
tion relations. If we were to take the OPE between the fields a(z) and b(w) in Equation
(2.72)), only the singular terms would survive the contour integrals, and therefore this
expression allows us to translate the dynamical content of the OPE into the algebraic
language.

The most important object to translate to the algebraic language is the energy-
momentum tensor 7'(z). By expanding in Laurent modes as well

T(z) = Z 7" 2L, L, = L dz 2" (2), (2.73)
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where the modes L, are the generators of all conformal transformations on the Hilbert
space. The generators of global conformal transformations associated with SL(2,C)
are given by L_,, L, and L,, with L, being also identified with the Hamiltonian of
the CFT [37]]. Using Equation we can now compute the commutation relations
amongst the symmetry generators, and we obtain

in <n2 o 1) 5n+m,0a

[Ln7 Lm] = (TL - m>Lm n +
12 (2.74)

[Lmzm] =0,

where I, are the modes arising from the anti-holomorphic component of the energy-
momentum tensor. This algebra is known as the Virasoro algebra [37]], which is defined
as a central extension with central charge c of the previously classical Witt algebra that
defined the classical conformal invariance [173]. In these commutation relations, we
finally see the underlying reason for the prevalent factorization of correlation func-
tions into a holomorphic and an anti-holomorphic part. The underlying Hilbert must
organize in representation of the Virasoro algebra, and since there are two uncoupled
copies, the correlations function will behave accordingly.

As with any other symmetric theory, the Hilbert space must fall into representations
of the conformal algebra. Therefore, we can begin constructing this space from the
conformally invariant vacuum state, which must satisfy

L,0)=0 for n>—1 (2.75)

such that the vacuum is invariant under global conformal transformations. We can
construct any state of the theory using the operator-state correspondence

6) = lim 6(2)[0) 276)
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and we denote the states corresponding to primary fields by their conformal dimensions
as |h). These states turn out to be the eigenstates of the CFT Hamiltonian

Lolk) = hlh|) , L,|h)=0 if n >0, (2.77)

and therefore act as the highest-weight state of the conformal representation. To gen-
erate the rest of the excited states, which are the states associated with the descendant
fields of a primary, we simply act with the negative Virasoro generators as

Ly L gLy by, k>1 (2.78)

which allows to reach an excited state with energy " = h + Y. k;, where the sum
> ;k; = N is called the level of the descendant. The subset of the full Hilbert space
generated by the primary state |h) and all of its descendants is closed under the action
of the Virasoro operators, therefore providing us with a Verma module representation
[13711.

We call this representation a module because within the set of descendant states lie
some special states, which are called null vectors |x). These states are special because
they turn out to be descendants of a primary state and highest-weight states at the
same time. Therefore, to obtain a proper representation, these states must be removed
from the set of possible states, such that all the states within the representation can
transform amongst themselves under any possible conformal transformation, which
we will then call a conformal family [¢,] associated to the primary field ¢,..

The exploration of all the possible Verma modules, and more explicitly, their re-
ducibility or unitarity, is what led to the discovery of minimal models [37]], which are
defined to be irreducible unitary Verma modules. These models play very important
roles as they are found, for instance, in the critical points of the Ising model in two
dimensions or further families such as the critical points of the tri- or tetra-critical Ising
models. Because minimal models have a finite amount of conformal families, the the-
ory is considered to be solved as we can provide the entire spectrum and, therefore,
compute any correlation function.

The structure and constraints among the states of the Verma Module can be trans-
lated back to correlation functions, where the correlation function of any combination
of primary fields X = ¢, (w,)...¢, (w,,) with a descendant field ¢ "1+ (w) is given
by

(pFv T (w)X) = £y . Ly, (D(w)X), (2.79)

n

where the £_,, are differential operators given by

_ (TL T 1)hz awi
£, =) — o e | (2.80)

7 (w;

Therefore, any correlation function involving descendant fields can be related to an-
other one of the primary fields, which in turn can always be found via performing
OPEs amongst the primary fields if the complete conformal data is known. Further-
more, some of the more complicated correlators can even be found directly by solving
the differential equation associated with the descendant being a null field and, hence,
the correlator of primaries with it vanishing.

The last piece of information that we will provide about standard CFT theory is
the notion of fusion rules and fusion algebra. We have seen so far that the CFT Hilbert
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2.3 Background concepts on Conformal field theory

space organizes in families labeled by the primary fields of the theory, which we called
the conformal families [¢,]. As we have seen, the OPE introduces a notion of "mul-
tiplication” in the space of primary fields, giving us a recipe with which to send two
primaries to a third one. This concept is formalized as the fusion rules of the different
conformal families

Z N[, (2.81)

where the numbers NV fj are called the fusion coefficients. To each choice of fusion
coefficient, one can associate the notion of a fusion algebra, which is a commutative
and associative algebra with generators ¢;, identity ¢; = [ and a product given by the
OPE. These fusion rules are extremely important in the context of topological physics,
as they provide us with an explicit representation of the braiding and fusing of the
anyonic excitations that define long-range topological order [32].

In the upcoming sections, we will provide a very short introduction to some of the
main results of the more advanced CFT topics that appear in the field of topological
order, and that will be of use in the later part of this thesis.

2.3.2 MODULAR INVARIANCE

We have so far only concerned ourselves with CFTs in d = 2 defined on the complex
plane. However, there is no a priori restriction on the kind of manifolds on top of
which we could study CFT. We know from the previous sections that one of the sig-
nifying features of topological order is that the ground state degeneracy reflects the
topology of the underlying manifold. As CFT provides a natural representation of any-
onic excitations due to the fusion rules, it is important to understand how the ground
state of CFTs changes when placed on a different surface, like, for instance, a torus.
We present here a very short summary of the results related to studying CFTs on a
torus. Firstly, the most important parameter for a torus is the ratio between the length
of the two non-contractible circles w;, which we call the modular parameter 7 = =2.

Wi
We define a Virasoro character for a specific Verma module as

Xp(q) =Trpgho 2 | q=e2m, (2.82)

where the trace is taken over the Verma module. The partition function on a torus is
given by

Z(r) Tr{qLO 3ig Lo~ } (2.83)

where now the trace is taken over the entire CFT Hilbert space. As the Hilbert space
is broken down into the different Verma modules associated with the primaries, the
partition function becomes

= ZNh,EIh@)XE@)a (2.84)

where the non-negative numbers V, 7 are called the multiplicity matrix and corre-
spond to how many times each character X', is associated with the primary family
with conformal dimension h appears.

Because the partition function is a physical quantity, it must be left invariant under
any symmetry of the underlying torus coordinates, transformations known as modular
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2.3 Background concepts on Conformal field theory

transformations. These transformations are given by the modular group PSL(2,7)
and have two generators, usually denoted by § and 7, associated with inversions and
translations of the modular parameters 7. Invariance of Z(7) under both § and T
introduces very stringent constraints on the possible values of the multiplicity matrix
N once a set of irreducible modules gets fixed. Such complete classifications have
been achieved for unitary minimal models, as can be seen in [[174].

The most remarkable result of modular invariance is a theorem known as the Ver-
linde Formula [175]. If the Virasoro characters are transformed according to the §
generator, one obtains

27

Xi(q) = Zsijxj<Q> , §=e T (2.85)
J

and the numbers S,; are collected in the modular matrix S. A modular transformation

is a global notion, as it involves a change of coordinates everywhere in the torus, but

the Verlinde formula surprisingly links the modular matrix S to the fusion matrix N f"j

which arises from OPEs, which are intrinsically local operations. The Verlinde formula
states _
SimSimS.

NE=3" %’”‘“ (2.86)

m m
where the index 0 corresponds to the vacuum representation. This is an extremely

deep result that can be traced back to the underlying Fusion category theory structure
of vertex operator algebras, of which CFTs are an example [176].

2.3.3 BOUNDARY CFT

In this section, we want to briefly present one of the main intuitions that will be used
in Chapter 4|in order to deal with manifolds with boundaries in the context of CFT. The
simplest manifold with a boundary on which we can use CFT is the Upper Half Plane
(UHP) H, consisting of the complex numbers with positive imaginary parts. Conformal
invariance in the UHP implies that conformal transformations must keep the boundary,
in this case the real line R, and any boundary conditions on it invariant. This constraint
reduces the set of possible global conformal transformations from SL(2,C) down to
SL(2,R), therefore reducing in half the amount of conformal generators.

Although we have lost half of the generators of symmetry, we still possess an infi-
nite amount of them, but the main consequence is that the holomorphic and the anti-
holomorphic sectors of the CFT are no longer independent, as they have been coupled
on the real line. To see this in more detail, we consider the Ward identities

1
2m Jo 2me

J.=(X) = L dze(z)(T(2)X) + %d%(z)(T(Z)X% (2.87)
c

where the contour C lies entirely within the UHP. In the infinite plane, the variations
£(z) and £(z) were independent, and because of this independence, we could treat
Equation as two separate Ward identities involving only either the holomor-
phic or the anti-holomorphic sector, however, this is no longer the case. Now, the
coordinate variation € = ¢*, and therefore in the UHP, we will regard the dependence
on the anti-holomorphic variables 2, as a dependence on the conjugated holomorphic
variables 2} that live in the lower half plane (LHP).
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2.3 Background concepts on Conformal field theory

We have thus essentially introduced a mirror image of the system in the LHP, which
enforces that the energy-momentum tensor behaves as T'(z*) = T(z). To preserve
conformal invariance, it is mandatory that 7(z) = T'(z) whenever z € R, which means
that no energy or momentum can be transferred across the real axis as expected of a
system with a boundary. Fortunately, we will still be able to rewrite the conformal
Ward identity on the UHP as a purely holomorphic expression on the infinite plane.

The second term of Equation becomes a mirror image of the contour on the
LHP because of the complex conjugation of the variable of integration z*. Because
T = T on the real axis, both integrations can be put together once again. This results
in a contour C that encircles the origin and doubles as many points as the original
contours, as shown in Figure Using this identification, which is nothing but the

Im(z) >0

Im(z) <0

Figure 2.4: Schematic diagram showcasing how a CFT in the UHP can be dealt with using the
method of images.

well-known method of images of classical electrostatics, the conformal Ward identity
becomes

5. =(X) = —ﬁ p dze(2)(T(2)X) (2.88)

where the contour C encircles the origin and the collection of primary fields is given

by X’ = ¢y, (21)05 (2))bp (2)87 (20)-

In summary, a correlator (X) in the UHP, as a function of the 2n variables z,, z, ..., z,,,
z,,, satisfies the same differential equations required by conformal invariance as the
correlator (X’) on the entire plane regarded as a function of the 2n holomorphic vari-
ables z, 2], ..., z,, z,,. Effectively, we have replaced the anti-holomorphic degrees of
freedom on the UHP with holomorphic degrees of freedom on the LHP. In Chapter
we will make use of this technique in order to properly define symmetry operators on

the virtual space of fTNS.

2.3.4 WZW MODELS

So far we have only concerned ourselves with the case in which the different fields
of the theory had to form representations of conformal symmetry exclusively. A very
important class of CFTs are those that possess an extended symmetry, and in this case,
we will briefly present those CFTs that possess a Lie-algebraic symmetry. This family
of models is known as the Wess-Zumino-Witten (WZW) models [177, 178]], and they
are particular amongst the CFTs in the sense that they can be described by means of
an action.
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2.3 Background concepts on Conformal field theory

The defining action is given by

k 9 / 1 ik / 3 ' To—laa,. —1a8,. —1
- | 2zT1r [o¢ d T 0 v
5(9) = 1~ /82 e Tt [0'g1D,9] — 31 | @ Yeapy T [9710%gg 1 0%gg~10"g]
(2.89)

where ¥ is a 3-dimensional manifold whose boundary 0% is the 2-sphere. Tr’ is a
rescaled trace, €. is the Levi-Civita symbols, and the field g takes values in any Lie
group G, such that g € G. The second term corresponds to a topological total deriva-
tive term and the requirement that the partition function is single-valued leads to the
condition that k£ € Z. This action is not only invariant under conformal transforma-
tions but also under the local action of any element (2(z) € G that transforms the field
as

9(2,7) = Q2)g(,2)Q (3). (2.90)

Local invariance under the action of the Lie group means that the symmetry will be
characterized by the holomorphic currents

J(2) = —kd,gg " = T (2t =D Jhz "M, (2.91)

nez

where t* are elements of the Lie algebra g corresponding to Gz, and similar expression
equations for the anti-holomorphic sector have been ignored. The set of currents fulfills
the Kac-Moody OPE [37]]

" b k6 , J(w)
TN w) ~ s D ey
where f,,. are the structure constants of g, and this set of relations means that the
set of currents forms a current algebra at level k. As was to be expected, the com-
mutation relations between the holomorphic current algebra and its anti-holomorphic
counterpart is zero, signifying the decoupling of both sectors.
The energy-momentum tensor for this theory can be constructed via the Sugawara-
Sommerfeld construction to yield

(2.92)

T(z)=—— > :+J%":(2), (2.93)

where h is the dual Coxeter number, which can be computed from the Lie Group G.
The conformal currents have conformal dimension ~ = 1 and that they are Virasoro
primary fields. From this energy-momentum, one computes the Virasoro generators to
obtain
I S S (2.94)
Afterwards one checks that the Virasoro generators and the modes of the currents fulfill
the commutation relations
[L,,J)]) =—mJg

n+m?
2.95
[']1%7 an] =1 abc n+m + k‘ﬂ5 5n+m,07 ( )

and the commutation relation of the Virasoro generators is that of the Virasoro algebra.
From these commutation relations, we see that in the same way that the Virasoro
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2.3 Background concepts on Conformal field theory

generators are a central extension of the Witt algebra with the central charge ¢, the
current algebra is an affine Lie algebra, constructed as a loop-extension of the Lie
algebra by the level k£ of the WZW theory. It is worth pointing out that the full affine
Lie algebra is not a symmetry algebra since not all of its generators commute with
L. Only J§ do commute, which are the affine generators that recover the original Lie
algebra, which will become relevant in Chapter |4 We will call the affine Lie algebra
the spectrum-generating algebra of the theory. The central charge of the theory gets
fixed in terms of the choice of G and level & to be

k dim(G

Primary fields are then defined by their OPEs with the currents as

_ —t%g(w,w
J2)g(w,w) ~ L, (2.97)
Z— W
where we assume that g transforms in the minimal representation of g, to which ¢¢
refers. In the operator representation, the condition for primary becomes

T10) = —1°19), 2.08)
J2o) =0 for n >0,
and then all descendant states have the form .J¢,, ...J° |#) as in the case of usual CFT,
with n, being positive integers. Finally, as in the case "of standard CFT, all the corre-
lation functlons involving descendant fields can be reduced to correlation functions of
primary fields, and the primary fields obey certain differential equations because of
the null vectors of the module. For the WZW models, this is known as the Knizhnik-
Zamolodchikov equation [|37]], which takes the form

@t
0.~ T S| ()b (2)) =0 (2.99)

T . .
i G E

These models have found use as rational conformal field theories, but their most im-
portant application for our purposes is their appearance as the boundary side of the
Chern-Simons/WZW duality [[179]. In short, the correlation functions of WZW theories
can, in general, be represented as partition functions of a specific TQFT known as the
Chern-Simons theory, which is a gapped topological theory. This duality highlights the
deep connection between the topological excitations of TQFTs and their CFT boundary
counterparts.
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In the previous chapter, we have seen a general overview of many of the different
phases of matter that appear in Nature. Ranging from gapped to gapless and from
short-range to long-range entangled, there is undoubtedly a myriad of phases that one
can theoretically describe. We have also presented TNs as an ansatz that allows us
to provide representative states within most of these phases. Because of the inherent
trade-off between the amount of entanglement and the expressivity of TN states, almost
all of the phases of matter mentioned above can be analytically described with TNs.
Simultaneously, we have also seen the limitations of this family of ansatzs, mainly in
describing gapless order with MPS or describing gapped chiral topological order in 2d.

In this chapter, we provide an approach that potentially closes this gap and pro-
vides a new family of trial wavefunctions that specifically targets the ones that were
previously out of reach by standard TN methods. We call this family of states field
tensor network states (fTNS). We construct this family by using the intrinsic connec-
tion that our target states have with CFT while borrowing techniques from the realm
of CFT to apply them to the realm of tensor networks. Of course, no increase in the
complexity of the state comes for free, and the price that we pay is that we must work
with an infinite-dimensional virtual space. However, this is not any arbitrary infinite-
dimensional space; otherwise, we would describe any state of the many-body Hilbert
space, which we know is an arduous task. This infinite-dimensional space is con-
strained to fulfill the structure of the CFT and, therefore, allows us to retain analytical
control over the ansatz.

We first present the generic construction of any fTNS to provide our primary example
of interest, the free boson fTNS. We then study the fMPS, representing an example of
a critical 1-dimensional MPS-like structure. Afterward, we present an fPEPS, which is
a representative of a chiral gapped phase of matter, which is one of the main results
of this thesis, as no such analytical example of a PEPS-like structure describing this
topological order exactly was known before.

We then present one of the most important results of this thesis, which is the sewing
condition. This condition pertains to the contraction of the virtual space of fTNS
amongst any two tensors, even when this contraction involves a sum over an infi-
nite dimensional space. Although the proof is not yet complete, we present the most
recent form of the proof as well as what are the remaining steps for its completion.
Afterwards, we use the developed technology to perform the closing condition of the
fTNS, allowing to recover the wavefunction of the spin system.
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3.1 GENERIC FTNS

3.1.1 FRoM TNS 1O FTNS

Our goal is to describe the quantum state of a spin system consisting of a lattice of NV
d-dimensional spins whose wavefunction can be written as

d

‘w> = Z Csl,.,.,sN|81‘“SN>' (31)

51...sn=1

As we have seen in Chapter [2, TNs are precisely an ansatz representation of such
a wavefunction in terms of a set of tensors A’, where the index i runs through all
the different tensors that constitute the wavefunction. For simplicity, we will only
consider a single tensor repeated on every site, setting i = 1, which is the common
scenario found in MPS and PEPS. Mathematically, we can generally understand the
ansatz tensors as a map

A %irtual ® %physical . C» (3.2)
where 7,41 1S the generic vector space corresponding to the virtual legs of the tensor
and 7 hysical 1S the Hilbert space corresponding to the d-dimensional spin on any site.

In almost all TNS constructions, one usually takes dim(%,;,,.;) = x’** where  is the

bond dimension and N, the number of legs of the tensor. The bond dimension is the
main parameter that controls the expressivity of the ansatz, the amount of entangle-
ment present in the state, and, therefore, the complexity of the state. Keeping x finite
and as small as possible is of paramount importance in all numerical tasks that use TNS
[11]. Unless controlled, numerical algorithms would demand an unbounded amount
of memory, rendering the task impossible.

A significant part of the fame of TNS is attributed to their success in numerical
simulation. Still, in this thesis, we want to focus on providing exact analytical repre-
sentations of quantum states as tensor networks. We know that TNS with finite bond
dimension target precisely those states that fulfill the area-law of entanglement [[10],
yet we also painstakingly know that not all interesting states that one can find in Nature
obey it. Firstly, states that fulfill the area law are the exception and not the rule in the
Hilbert space of a local gapped Hamiltonians [[79], as a generic state will almost always
exhibit volume-law entanglement. Secondly, the ground state of a 1-dimensional criti-
cal system exhibits a logarithmic growth for the entanglement entropy for a subsystem
[[180], necessitating a different TN architecture to achieve an better representation of
that state, usually in the form of a MERA [22]]. Lastly, although PEPS can host al-
gebraically decaying correlations, an exact representation of a state belonging to the
FQHE family remains out of reach, and there have even been no-go theorems indicating
that it may be impossible [181]],[182].

It seems that before us lies a crossroad. On one path, we accept that not all states
can have exact TN representations. Although we can have excellent numerical ap-
proximations, for instance via finite size scaling as in [[183], we preserve our simple
TN structures to describe those states approximately. On the other path, we modify the
TN representation to provide an exact description of the state, at the cost of obscuring
some of the previous theorems and numerical guarantees and having to study and un-
derstand a new class of ansatz. In this thesis, we follow the second path, and our main
modification consists of allowing the virtual space of the TN to be co-dimensional.
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Let us define field Tensor Network States (fTNS) as the states constructed from a
network of tensors .4°i, interpreted as a map

A %Virtual &® %physical — ([:, (3.3)

where now dim(%,;,,,;) = oo. We allow the virtual Hilbert space to be an infinite di-
mensional space in which we can define a countably infinite basis, which is the more
precise meaning of the limit y — oo. Note how this is different from the approach
pursued in cMPS [184]] or cTNS [185], where the goal is to describe a physical quan-
tum field with TN, and thus 7. is the space that is allowed to become infinite-
dimensional. Our goal remains to describe the state of a quantum spin chain as in
Equation (3.1I). Therefore, the dimension of the physical Hilbert space is fixed by the
spin dimension dim (% pysica) = d-

The Hilbert space that we will use the most in this thesis is the space of square-
integrable functions on an interval [a, b] with a < b € R, alongside the set of constant
functions L.%([a, b]) U K. Note how we can also allow the interval to be infinite, R or
semi-infinite [0, +-00). We say that a function is square integrable on any given interval
if and only if

b
fla,b] = C € L*([a,b]) < / dz|f(x)|? < oo. (3.4)

Although the set of constant functions K is not square integrable when the domain is
unbounded, such as in the case of R, we will see in the upcoming sections that they
need to be accounted for in order to describe the sector of zero modes that is present
in most field theories. Because the virtual space of .4 has become a functional space,
we will use the notation A[f,, f,,...] or A; . interchangeably to denote a functional

tensor whose virtual legs have been fixed to specific functions f;, f,, ... € L*([a, b]).

For clarity, let us establish a parallel with the much more familiar case of MPS. In the
case of translationally invariant MPS, the coefficients of the wavefunction are written
as

D
Coan = D AN AR LAY (3.5)
Ny,...,n =1
where the matrices Afji,niﬂ € C are the MPS tensors consisting of d complex matrices of
dimension x x x, n;, = 1, ..., x. Similarly, the coefficients of the wavefunction obtained
from a translationally invariant field Matrix Product States (fMPS) will be written as

ooy = / Df,... / D A1, folo A (s 11, (3.6)

where the previous sum over the indices has now become an integration of all possible
functions that can be given as input to the functional, commonly known as a path
integral. Because we want to define our functionals parallel to what is done in standard
tensor networks theory, we had to choose an infinite dimensional Hilbert space as the
virtual space, as opposed to other infinitely sized spaces. Because any two finite tensors
can be contracted by summing over their connecting index, we must also require that
our functional tensors can. It is, therefore, mandatory that we must be able to find a
basis that one can sum over in the virtual space, and Hilbert spaces provided precisely
one such mathematical structure.

Without any further structure, performing this generalization would simply be an
interesting mathematical experiment since sending y — oo would allow us to describe
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any state of the Hilbert space and, therefore, highly complicated states. Analytically,
it is prohibitively hard to describe such arbitrarily entangled states without the aid
of symmetries or any further properties. Numerically, it is very hard to optimize an
infinite dimensional space without truncating the space and, therefore, returning to the
standard formulation of TNS. We are missing one final insight: the spin wave function
that we wish to describe exactly with fTNS has to be characterized by a correlator of
the system’s underlying low-energy effective field theory.

3.1.2 FIELD-THEORETICAL CONSTRUCTION OF THE FTNS TENSOR

From this point onwards, we will assume that our target spin system wave function
corresponds to a 1- or 2-dimensional system for simplicity. The starting point of our
fTNS construction is to assume that the coefficients of the spin system can be computed
as

Cs1 sn<z17z27"'zn) = <¢<Z1731>¢<Z2782>"'¢<Zn78n>>5 (37)

.....

where ¢(z, s) is whatever field operator that is important for the correlator of the
underlying low-energy effective field theory and z, = =, + iy, would correspond to the
i"-spin position in the final wavefunction. Usually, the correlator is assumed to be
between the in-vacuum state and the out-vacuum state of the field theory. Different
boundary states could be used to define further states of the Hilbert space, such as
excited states of a 1-dimensional critical system as shown in [48].

To find the expression of the functional tensor, the first step consists in rewriting the
correlator as an Euclidean path-integral

Csl,...,sn = /(SD¢ ¢(21751)¢(22752)'“¢<Zn7Sn>6_SE[¢}7 (38)

where S;[¢] is the Euclidean action of the field theory, and § is the underlying base
space of the theory, usually assumed to be the plane, an infinite cylinder, or a torus.
The path integral in Equation will sum over all possible field configurations over
8, and so if the underlying space can be broken down into small patches 2 ;, we can
break down the path integral into the contributions of each patch. Mainly, if § = U, M,

éﬂ¢%A;ﬂ%”A%ﬂ%’ (3.9)

where now each path integral is only over the configurations within the patch 2 ,.
However, Equation could not be complete as it stands, as now each patch has a
boundary 0/, in which we need to specify boundary conditions for the field. Thus,
we also need to sum over all possible boundary conditions ¢(z) = f;(2) z € M, and
hence the correct breakdown of the path integral is

é@¢:/ﬂﬁm/ﬂh4;2%méép%, (3.10)

where the path integrals with a prime correspond to the sum over field configurations
that obey the appropriate Dirichlet boundary conditions for that patch. Finally, we can
always choose the regions /M, to each enclose a single one of the operator insertions
of Equation (3.7), finally reaching the expression for the functional

A% ()] = /M Doz s)e 5 3.11)

k3
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By inputting this expression back into Equation (3.8)), we find

Csy sy :/ﬂfl--'/@fnflsl[fﬂ---ﬂsﬂ[fn], (3.12)

where the path integral over all possible boundary conditions is nothing but the sum
over all the open indices of the functionals. Therefore, this equation is precisely the
complete contraction of the tensor network, which we call the closing condition.

In order to simplify future equations, we now define a diagrammatic notation for
fTNS. We will be diagrammatically representing these functionals with 2-dimensional
closed manifolds ), corresponding to the patches of Equation as shown in Figure
The ”legs” of the tensors correspond to different sections in which we choose to
partition the boundary 02 ;, and the physical degree of freedom corresponds to the
cross in the middle accompanied by its spin value.

Figure 3.1: Diagrammatic notation for the functional .4°[f;, f,]. Each section of the boundary
OM corresponds to the different functional legs of the tensor. The physical leg corresponds to
the cross in the center.

As an example, and as it was shown in [186]], the two choices of M, that lead to
the fMPS and fPEPS functional are depicted in Figure An infinite strip is the only
2-dimensional surface with exactly two isomorphic boundaries, each corresponding
to the functional legs of the fMPS. Similarly, four isomorphic boundaries lead to the
geometry of a square, which we use for the fPEPS.

o0 f2 (X1 i
x —> ‘
LI X} fl 00 .
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/3 x i e—— ;
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Figure 3.2: Diagrammatic notation for the MPS (top) and PEPS (bottom) functional.

With a diagrammatic notation in hand, we can now represent the most important
operation of these tensors: tensor contraction. In our language, this operation corre-
sponds to performing a path integral over all the possible functions that live in a shared
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compatible boundary,

/ﬂgﬂsl[fpg]ﬂs?[g, fol = A*v*2(fy, o (3.13)

or diagrammatically,

fi

: (3.14)

and this operation is what we will call the sewing condition. There are several im-
portant requirements for the sewing condition to be properly defined. Firstly, the two
functionals 4, and .4, must have a compatible boundary. More precisely, the sub-
manifold of the boundary 0M ¢ where the path integral takes place must be present in
both M, and M ,. Secondly, we demand that the result of sewing two functionals is
again a new functional that inherits both the physical and the uncontracted functional
legs of the previous ones. We will devote a future section to providing the current
state of proof of the exact sewing condition for two arbitrary compatible functionals
precisely.

Finally, to recover the wave function of the target state, we must keep performing
sewings until there are no uncontracted functional legs left, and this last step is what we
will call the closing condition. Depending on the specifics of the intermediate sewings,
it is possible to emulate the geometry of the target spin system state. For instance,
by sewing the MPS functionals in a ring, one ends up with a set of spins that form a
periodic chain, whose closing diagrammatically is

x53

x S§9 7

X S1 j
xSn, j

— , (3.15)

CSlaSQa"'aSn o

ATTT

which can be used to recover the ground state of the critical Haldane-Shastry model
[186]. Another option explored in [186]] would be to generate a torus geometry with
the fPEPS tensor, which we will explore in a future section with the hope of recovering
the Kalmeyer-Laughlin state on a torus.

To summarize, to define an fTNS tensor, we need as an input an effective field theory,
a specific operator insertion at the position of the spin, and the boundary conditions
for the field that will act as the legs of the tensor for a given geometry.

3.1.3 THE FREE BOSON FTNS
DERIVATION OF THE FREE BOSON FTNS

From now on, we will focus on the case of the massless free boson, one of the simplest
CFTs. As we have seen in Chapter 2, it can also be understood as the WZW SU(2),
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model when its compactification radius is chosen to be R = /2 [37]. The set of target
wavefunctions that we are aiming for are those that can be obtained from the vertex
operator correlator
Cor o O (1 €IVEDE) ¢ isnVERaN) 1) (3.16)

where :: denotes normal ordering, ¢(z;) is the chiral real massless scalar field, z, is
the position of the spin, and the subscript O denotes the correlator is taken in the
vacuum of the CFT. The chiral vertex operators : e**:V*#(*:) : with o = % are the spin %
primary fields of the WZW SU(2), theory. This family of states is of extreme relevance
to us, as it provides us with examples that are analytically out of reach for standard
TN techniques. If this correlator is computed in the cylinder, the ground state of the
critical point Haldane-Shastry chain is recovered [187]],[188]. If solved on a plane
or a torus, it yields the Kalmeyer-Laughlin state [[189],[190], a paradigmatic state of
2-dimensional chiral gapped topological order.

We start by providing the fTNS tensor of the free boson on an arbitrary manifold M
that contains only one of the vertex operator insertions of Equation (3.16). The action
of the free boson on this manifold in 2 dimensions reads

1

Syl = 3

/ d*x 0,¢(x)0"¢(x), (3.17)
where ¢(z) is the massless scalar field. The path integral that one must perform is then
ASi [f] — / D[¢]6_SM[¢}€_iSi\/a¢i(zi)7 (3]_8)

where the boundary condition corresponds to
o(x) = f(z) z € OM. (3.19)

We begin by computing the path integral of the action with a source term

/ D[gleol? (3.20)
where the action is now given by
1 ; 1
Saepldl = o= [ Pado@diow) — & [ Paplow. @D
™ Inm 47 M

where the spin density is given by p(z) = 4mi Z;\L 1 sj(52(a: — z;), where z; are the
Cartesian coordinates of the spin position, and we have absorbed the /a pre-factor as
a normalization factor for the spin-values s.

First, we start by isolating the contribution from the constant zero mode to the path

integral. If we split the field as ¢(z) = ¢, + ¢() then Equation (3.20) becomes

/ Dy D]GleSrrldleioo Xy = / dapye' 01 / Dple5rrl?6(dy — f,),

(3.22)
where the zero mode path integral imposes that the constant part of the boundary
condition of the classical equations of motion also splits as f(z) = f, + f(x), and thus
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3.1 Generic fTNS

that the zero mode of the boundary function is the same on all boundaries. Equation
(3.22)) then reduces to

N ,
A%i[f] =9 (Z 3j> / D[le S p[¢]5( ~ 6 (ZS ) e~ Sacplbal  (3.23)
=1

where in the last step, we have solved the path integral by performing a saddle point
approximation around the classical solution ¢ (z). This expression is obtained as the
solution of the Poisson equations of motion with Dirichlet boundary conditions

Ve (x) = —p(z)
Va(z) = f(z) = f(z)+ f) ©€IM.
From now on, the zero mode contribution to the boundary condition will be omitted

as it will play no role in the computation of the classical solution. This equation is
solved by classical Green’s functions techniques [191]] and yields

(3.24)

vule) == [ EGrclemp) + [ a0 T G, 329

where V is the normal derivative operator w.r.t to the boundary 97, the contour inte-
gral is taken to be counterclockwise where dI', is the parametrization of the boundary
and the Green function G, (x,y) is the solution of

VGl y) = 0°(z —y)

3.26
Gyr(z,y) =0 if zorye oM. ( )

Now, we insert the classical solution into S, ,, which we do after using the second
Green identity to write the action in Equation (3.21)) as

+ [ AR )~ o [ Pt (3.27)

Sat.plal = .

After inserting Equation (3.25) into Equation ([3.27) and reorganizing the terms, one
obtains

%um—;/d%ﬁm><mey——/d2/dr F) N Gl )

+8—7T/ dF/ dr, F (@) F) N NG (,),
(3.28)

where the variables x, y € M are used as either 2-dimensional Cartesian coordinates or
as a parametrization of the boundary according to their respective integration measure.

We identify the first term in the action in Equation as a spin-spin interaction
term, the second term will correspond to the spin-boundary interaction, and the last
one we interpret as a propagation term amongst the different boundaries. We, there-
fore, have the functional tensor exclusively in terms of the Poisson Green’s function on
M and the spin density p(z). Whilst p(x) is always chosen to mimic the spatial distri-
bution of spins, we must guarantee that we can always find such a Green’s function,
thus a general solution to Equation (3.26)).
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3.1 Generic fTNS

To obtain a generic solution, one departs from the well-known solution of the 2-
dimensional Poisson Equation in C, which is given by

Golz,2) = ﬁlog]z—z’ﬁ (3.29)

where z = z + iy is the position in the complex plane. Next, we use this solution to
construct the solution in the Upper Half Plane (UHP) H using the method of images,
which is

(z—2")(z-7")

(z—2)(z—2)

where now the boundary is the real line R. Finally, we make use of the Riemann
mapping theorem, which informally states that there always exists a conformal map
g from any simply connected closed submanifold of C, M, to the UHP such that the
boundary of M is mapped to the real line. More formally, that is

(3.30)

’ 1
Gul(z,2') = Elog

g: M —H st g(OM) =R. (3.31)

One can use this map to find the final Green function on an arbitrary manifold M

(9(2) = 9()) (9() — 9»))
Gela,y) = —log | ——— —, (3.32)
T (9@ - 9w) (9(2) — 90

where z,y are now coordinates in ). As we can see in Equation (3.32]), we write the
dependence of G, (z, y) on the coordinates z, y € M directly, although the dependence
is through the conformal map g(z). We do this for ease of notation and should be
remembered for all expressions that depend on the coordinates in )7, such as Equation
(3.28).

Although the existence of such a conformal map is guaranteed, we need a specific
form for it in order to compute any tensor. Whenever the geometry of interest is a
polygon, we can use the Schwarz-Christoffel mapping technique [192],[193], which
we shortly review. For a polygon with interior angles «, 3, ..., the conformal map
which maps R to the edges, and the UHP to the interior of the polygon, is given by

e Kdw
f(&)—/ = . ¢EH, (3.33)

w—b)"" (w— c)l_%...

where K is a constant to be fixed by boundary conditions, and ¢« < b < ¢ < ... are
points along R that will be mapped to the vertices of the polygon. Note that this map
is, in fact, the inverse of the map we described in Equation (3.31)), as it maps from H
to M. With this technique, the two maps leading to the fMPS and the fPEPS tensors
can be constructed, and they will be provided in the upcoming sections.

In summary, in this section, we have provided the generic construction of the free
boson fTNS tensor on an arbitrary manifold M. Furthermore, we have shown the
generic construction for the Green function G, up to an unspecified conformal map.
Whenever the geometry is simpler, we can construct such a conformal map via the
Schwarz-Christoffel construction.
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REGULARIZATION OF THE FREE BOSON FTNS

In this section, we will explore the three different terms that appear in Equation ([3.28)),
starting with the first one, the spin-spin interaction term. If we introduce the expression
for the spin densities p(z), the first term from Equation (3.28) becomes

1 N (Q(Zz) _g<zj>> (@_T%D
—= s;8;1
2 2% (9G0) = 9(z) (9(z0) — 9(z)))

where the divergent terms arising from i = j, which would correspond to a spin in-
teracting with itself, have been omitted. Their more accurate description in terms of
normal ordering will be presented in a later section. This is not the only potential
divergence, as this term could still diverge if the positions of two different spins were
identical. Because the Green function must contain this divergent behavior to capture
the correct features of the CFT, special care must be taken to evaluate all the other
terms of Equation (3.28). Similar divergences will be present in all of those terms and
hence a regularization procedure must be employed to guarantee that the functional
tensor is finite. Furthermore, this requirement will provide insight into which bound-
ary functions are acceptable candidates for the boundary functions of the tensor. To
prevent the divergence arising from any two points being close, we will regularize
these terms by evaluating the boundary integrals of Equation (3.28) in a contour that
is € close from the inside to M, which we denote by [, .

Let us demonstrate this regularization scheme with the second term of Equation
(3.28)

(3.34)

1

4—/ dzx/ dpr(x)f(y)J\AfyGM(x,y), (3.35)
T JIMm oM

€

which we called the spin-boundary interaction term. After introducing the spin density,
it becomes

N
i) s / T, f ()N ,Garr(2iy)- (3.36)
i=1 OM

Given a parametrization of the boundary in terms of a real parameter s € 2, where D is
a real domain such that y(s) € dM, the integral reads [ dI', = [, ds. As a convention,
we always take the orientation of the boundary integrals to be counter-clockwise. To
perform the regularization, we evaluate the terms inside of the integral ¢ away from
the boundary at x(s) — en(s), where n(s) is the normal outwards vector at each point
of the boundary. With this considerations Equation becomes

N
i Z Si /’_D dsf(y(s))NyGM<zz7 y) ’y:y(s)—an(s)7 (3.37)
i=1

where we have set f(y) ly—y(s)—en(s) = 1 (y(s)) because we assume the boundary function
to be a regular function, and thus without any divergent behavior to regularize. Then,
we take the normal derivative of the Green function

- —1{ N ,9(y) N ,9(y) N ,9(y) N,9(y)

N,Go(2,y) = — — + — )
M Am 19(z) —9)  gz)—gly) 9Gz)—9(w)  9(z) —a(y)
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where we can identify the first two terms as the chiral part and the latter ones as the
anti-chiral part, as the position of the spin z, appears either without or with complex
conjugation. Because g(y) € R whenever y € M by the construction of the conformal
map, whenever z;, — y, we will encounter the aforementioned divergence in all of
the terms of Equation ([8.38). This divergence is regularized by evaluating these terms
e-away from the boundary. Intuitively, we expect the evaluation on the regularized
boundary to correspond to a small imaginary offset, as depicted in Figure |3.3

A
P — I A

Figure 3.3: Diagram depicting the effect of the conformal map ¢ on the normal directions of an

arbitrary manifold M

The proof of this intuition goes as follows. For a given parameterized boundary
y(s) € OM, then goy(s) = f(s) with f(s) € R, simply by definition of the conformal
map. If we take the tangent vector along the boundary 9, [goy(s)] = 0,f(s), then
the r.h.s will remain in R. Using the chain rule on the Lh.s we get 0,9(2),_, 5 95y(s),
where both terms are complex numbers. Writing the second one in polar coordinates,
we get azg(z)|z:y(s)|8sy(s)|ewt, where 0, is the angle of the tangent direction at this

point of M. This allows us to conclude that d,g(2)| ¢'% ¢ R, because the r.h.s is
real.

z=y(s)

By performing a small displacement along the normal direction like in ([8.37)), g(y(s)+
¢), where ¢ is a complex offset in the normal direction, then g(y(s) + ¢) ~ g(y(s)) +
0,9(2)|,=y(s)€+---- If we now use that ¢ is in the normal direction, a.k.a perpendicular to
the tangent, then g(y(s)) £ |e[e* "2 0,9(2)|._ o)+ = 9(y(s)) £ile|€D,g(2)] ._y(s) + -
where we now know that the second term is purely real, and thus this is a strictly imag-
inary offset at first order in . Moreover, this linear term in the expansion will always
be present due to the holomorphicity of g(z). It is worth noting that it need not be a
small offset, as the derivative could be arbitrarily big, but we should always be able to
choose ¢ small enough to counter such a situation.

The previous arguments also allow us to express the normal derivative more explic-
itly. We immediately recognize the second term as +|e| NV y9(Y)|y—y(s)» and hence as
a purely imaginary quantity. The same expansion for the conjugate of the conformal
map yields, g(y(s) + ¢) ~ g(y(s)) F ile|e® .9(2)].—y(s)> and hence the second term is

identified as F|e| NV y I y—y(s)-

For the rest of the discussion on regularization, we will only focus on the chiral part
of the expressions for simplicity. After evaluating the normal derivative according to
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the regularization scheme, at first order in ¢, one obtains

NZGM(Z,'; y) |y:y(8)*€ﬁ(3) -

-1 NyQ(ZJ)‘y:y(s) Nyg(y)’y:y(é’) :l

4r

g(zz) - g(y(S)) + i‘gleiet(s>azg(z)|z:y(s) g<Zz> - g(y(S)) - i|€|ei0t<s)azg<z>|z:y(s)
i€, g(2)
A

J—

1 1
. + . ,
[g(zi) — 9(y(s)) + ilele?0,9(2)|.ys)  9(2:) —9(y(s)) — il6|€wf(8>6z9(2)|z:y<s>]
(3.39)

where in the numerator we have again evaluated at y(s) directly, and the superscript
c refers to the chiral part. To understand how to regularize these expressions, one
must first see the isolated contribution of the divergence. Thus, one takes the limit
alongside the tangent direction to the boundary z;, — y(s), which by a simple expansion
9(z:) = g(y(s)) + |2z — () D,9(2)],_y0) + - leads to
Hm NCGop(zo )| vy n ) = = 1 L |, (.40
smyls) YT MO g | [z —y(s) [ 4 le] |z —y(s)] —ile]

which we immediately recognize as a divergence of the principal value kind. Notice

how the details about the conformal map have all vanished from Equation (3.40),

something to be expected as the CFT should exclusively control the divergent behavior.
We can finally define the regularized version of this kernel as

RNZG]V[<ZZ7 y) |y:y(s) = NEG]V[<217 y) |y:y(s) o zl—lg%s) NZGM<227 y) |y:y(s)

' - (3.41)

+ zzliryl%s) NQCJGM(ZW y) |y:y(s)—€ﬁ(s) .
To put this equation in plain words, our regularization scheme removes the diver-
gence originating from the spin position from the original kernel and adds it again in
its distributional form, in this case, a principal value with a regulator ¢. If one returns
now to Equation (3.39), we see that the regularized kernel can now be safely inte-
grated against the boundary functions, as the first line of Equation contains no
divergent behavior, and the second line is a distribution integrated against a suitable
well-behaved boundary function.

This is precisely the insight that allows us to choose a family of boundary functions.
We have seen that the distributional divergence is of the principal value kind and
thus belongs to the family of tempered distributions [194]]. Therefore, the family of
boundary functions that we should choose is the family of Schwartz functions S(R)
on an arbitrary interval, which is the functional space dual to the space of tempered
distributions. The Schwartz space is a very commonly used space in physics because :

1. This space is a dense subspace of square-integrable functions S(R") € L*(R").

Therefore, it remains a Hilbert space, and a contraction operation can be properly
defined.

2. Any smooth function with compact support is in §(R™). Therefore, this is a good
space to work with for both compact and non-compact boundaries 9.
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3. The Fourier transform acts as an isomorphism on the Schwartz space, providing
guarantees of convergence when usable.

As we will see in the specific example of the PEPS functional in the upcoming sec-
tions, the specific details of the conformal map, such as periodicities, must be taken
into account for the subtraction of all possible divergences in Equation (3.41). Thus,
it is important to check for any conformal map that the following identity holds

UM(RN G (2 Yl y—ys)—eiis) = NyGae(Zi Wly—y(s)—ens) = 0 V25, 9(s),  (3.42)

where in the last equation the limit z; — y(s) is taken before the limit ¢ — 0. This
equation guarantees that both kernels will result in the same integration when we take
the limit of removing the regulators.

As with the spin-boundary term, the last term of Equation of (3.28)), which we call the
propagation term or the boundary-boundary term, will contain the same divergences
and thus require regularization. We start by computing the double derivative

SIS 1
NmNyGM(x7y) =

Nog(@)Nygly)  Nogl@) N y9ly
47 (

g(x) —g(y))? ( g_y)
(3.43)

where now there is no distinction between chiral and anti-chiral terms, as this term
contains no information about the positions of the spins. As before, one must now
evaluate this term in a regularized boundary according to the regularization scheme.
However, both boundary integrals could generally have different regulators, € and ¢’.
If the boundary is parameterized according to a function A(s), then

) _ei(et(t)+9t(5))6zg<z>|z:h(s)azg<z>|z:h(t)

NN G, y) Lo 20 = =
1
(9(h(£)) = g(h(s)) = i(e0D,g(2)] iy |e] — € 9]e’[D.9(2)]op(s))?
N 1
(9(h(£)) = g(h(s)) — i(e 0D, g(2)] oo |e] + €0’ 10,9(2) op)))
N 1
(9(h(£)) = g(h(s)) + i(e 0D, g(2)] oo |e] + €0 10,9(2) op)))
+ L )
(9(h()) = g(h(s)) + (@ DD,g(2)] oo le] — ¥ e']0.9(2) .n(s)))

(3.44)

whereas before, we kept all the regulator expansion up to the first order. As before,
we isolate the divergence by taking the limit s — ¢ for this arbitrary parametrization,
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which yields
lim N,V G (w,9) o) oty =
-1 1 N 1
dm [ (Jh(s) — h@)| +i(le| + |e’))?  (|h(s) — h(t)] —i(le] + |€’]))? (3.45)
1 1
+(|h(3) —h(t)| +i(le| —|e’]))? i (|h(s) = h(t)] —i(le] — |z—:’|))2} '

To reach a known distribution, we identify the regulators as |¢| + |¢’| — |¢|, making
the final expression be

llmJ\Af .7([ G Z, v n o
MmNV el y)|gg:h(t)—an(t) o (|h(s)—h(t)|+i’5|)2

h(s)—en(s) _ —1 1 N 1 }
(|n(s) = h(t)] —ile))*]
(3.46)
which is precisely the derivative of the principal value distribution. With the behavior
of the divergence identified, we can proceed to regularize this kernel following the
same procedure as in Equation (3.41)), as well as making sure that Equation is
being satisfied for the specifics of the conformal map.

In summary, we have provided a regularization scheme that guarantees that the
tensor is a finite, well-behaved object for any manifold M. The regularization scheme
has also fixed the family of boundary functions that are compatible with the divergent
structure of the free boson functional, fixing the space to be the Schwartz space. With
a well-behaved tensor, we can now begin exploring the properties of this object for
different geometries and tackle the question of contraction of two such tensors.

CHIRAL TRUNCATION OF THE FREE BOSON FTNS

As in [186], we will be interested in eventually performing a chiral truncation of this
functional. This is because we ultimately wish to target chiral wavefunctions [[190]]
and, therefore, wish to work exclusively with the chiral part of our tensor. The chiral
truncation consists in the removal from the functional of all the terms that depend on
the conjugate spin positions z;. As we have seen, these terms will always be found
only in the spin-spin interaction and boundary-spin terms. For the sake of simplifying
notation, we define the two following functions

By(2,y) = N ,Ga(z,y), (3.47)
P]V[(x7y> = NxNyG]\/[(x7y>v

which we will call the boundary and propagation kernels. With these definitions, one
can then write Equation (3.38) as

BM(Zia y) = B_%/[(szy) + B%/[('%?ZU) (348)
where
) 1 Nl Ny
BM( Y = A _g(zi) —9g(y) 9(z;) _@_ (3.49)
1 [ Ny N,o(y) ] '
B (2,y) = — —
. T L g(z) —9(y)  9(z) —9(y) ]
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which are the previously mentioned chiral and anti-chiral terms of the boundary ker-
nel. Therefore, the chiral truncation of the generic action in Equation (3.28)) is given

by

Ssulfil =g [ Paup@pw)Gslen) - 1= [ @ [ v, fe s )

1 o
bk [ ar, [ @) ) Pty
T Jom oM
(3.50)
where the chiral truncation of the Green function is given by
. 1
Go(@,y) = —logl(g(z) — g(y)]. (3.51)

MOBIUS TRANSFORMATIONS OF THE FREE BOSON FTNS

As we have seen in Chapter [2| the free boson action is a CFT and, therefore, invariant
under conformal transformations. As we have also seen, to define our tensor, we have
used the method of images to map the theory to the UHP, which means that we are no
longer dealing with a standard CFT but with a Boundary conformal field theory (BCFT)
instead.

Cardy is one of the pioneers who developed the theory of BCFTs and their multi-
ple applications [[167]]. One of his most important insights is that since a conformal
transformation now needs to preserve the real line in a BCFT defined in the UHP, this
restricts the set of allowed global conformal transformations to those with only real
coefficients, reducing in half the amount of conformal generators. Because our theory
is one such BCFT, a natural question is: How does our tensor change under the effect
of one such real PSL(2, R) transformation?

We begin by taking a look at Equation in the UHP, where the tensor is given
by

W7 Zi Zj><z_z‘ - Zj)

1 x 1 1
- [da — (3.52)
5 ZS/R yf(y) L — y]

ks / da / dyf<x>f<y>m) ~

We will denote a real Mobius transformations on any coordinate in the UHP by

waq; + ay

ay,09,03,04 €R, z,we H. (3.53)
was + ay

z=7w) =
where we demand that a,a, —asa, = 1, such that we restrict ourselves to the subgroup
of the Mobius group that preserves the real line, PSL(2, R). We now perform a PSL(2, R)
on the coordinates of the spins such that z, = v(w; ), akin to performing a transforma-
tion only on the physical index of a standard tensor network. A fundamental property
of Mobius transformations is that they leave cross-ratios invariant, and therefore the
spin-spin term in the first line of Equation will always be left invariant. On the
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spin-boundary term, we can compensate the transformation on the z,’s by changing
the variables in the integral by y = v(w, ), transforming the term to

1 3 1 1 _
_%ZSi/Rdyf(y) [,y(w.)—y_— }_

v Y(w;) —y

1 7 1 azw; tay 1 azw; +ay
_ 4 [ d — — = (3.54)
27‘_;8 /R Wyf(’)/(wy» !wi—yagwy+a4 Wi_ya3wy+a’4
1 = 1 1
2 |ua —
5 | 4, fre,) [wi ey sy
Similarly, the boundary-boundary term transforms as
L / dz / dy () Fly)—— =+ / dw / doo, F (1 (w,) Fr(0,) ——5
812 Jr R (l'_y>2 812 Jg N R Y ’ Y (ww_wy>2
(3.55)

We can therefore reach the conclusion that under a physical PSL(2, R) transformation,
a generic tensor behaves as

ﬂM[f; {7(%), Si}i]il] = ‘AM[/Y ° fa {wi7 Si}ij\ilL (356)

since A, and A, are connected by the biholomorphic conformal map g(z). Equation
also implies that the wavefunctions defined by either its Lh.s or the r.h.s are
identical. This is due to the fact that the composition f = 7o f preserves the integration
measure of the path integral [ 2 f= [D f, because v(R) = R. Therefore, the same
wave function will be recovered when the virtual indices are contracted following any
chosen geometry.

However, we are ultimately interested in the chiral truncation of the functional ten-
sor, in which the Green function is no longer a cross-ratio. In this case, the chiral tensor
becomes

A [T w), s3] =

1
exp (+§ ; $iS; (log [(w; —w;)] + log

(azay —ayag)
(ay + azw;)(ay + azw;)
1 = 1 asw; +ay (3.57)
1 M
=Y /R w0, F(7(w,)) Li T GJ

1 z 3 1
v5m [ | dwyfm(wx))fwy»—) .

(wx - wy)2

We clearly see that although all the boundary functions have become ~ o f, a Mobius
transformation induces both a pre-factor from the spin-spin term as well as a modifica-
tion of the spin-boundary term, while still leaving the boundary-boundary term intact.
A priori, it is not clear that a chiral tensor and its Mobius transformed version lead to
the same wavefunction, but we will see in future sections that this is indeed true, at
least for the basic geometry with genus 0. These chiral tensors and their Mobius trans-
formations are very important for us, as these constitute the main pieces with which
we will attempt to prove a generic sewing condition.
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Figure 3.4: Schematic behavior of the conformal map that produces the fMPS tensor.

3.2 THE FREE BOSON FMPS

3.2.1 EXPLICIT CONSTRUCTION OF THE FMPS TENSOR

We begin this construction following [[186] and will perform a summarized version
of the derivation found there, as it is instructive later for us in the case of the fPEPS.
We aim to map the UHP onto a polygon with only two sides, which can only be the
geometry of an infinite strip of width A in the compactified complex plane. Therefore,
the inner angles are « = 5 = 0, and we leave arbitrary where the point z, € R that
gets mapped to infinity is. Then, the Schwarz-Christoffel recipe tells us

¢ K
(&) = = Klog ({ — z) + C, (3.58)

w_ZO

where K, C and z, are arbitrary constants. To fix them, we add the boundary condi-
tions

f(zp) = —00
f(zp+¢€) =—o00 +ima (3.59)
f(zyg —€) = —o0 +imb

where A = b —a, b > a where b,a € R, , and since we left the point z, arbitrary, we

can simply choose z, = 0. Under these boundary conditions, the map from the UHP to
the infinite strip becomes

f(&) = Alog(¢) + ima, (3.60)

and thus the inverse of this map is the desired conformal map that defines the fTNS
tensor

(3.61)

z —iwa)

Imps(z) = exp ( A

whose behavior is schematically shown in Figure
One then inputs this conformal map into the action in Equation (3.28), where the
boundary integrals for this geometry are given by

|0, Olyeane = [ d0iBhme)Olecyrina + [ A0(i0) Oy 362
oM R R

where Im(z) refers to the imaginary part of z, and thus the vertical derivative normal
to the boundary. One then chooses the value of the boundary functions to be

f(gMPS<Z)>‘z:y+i7Ta = er(y) ) f(gMPS(Z))lz:eriﬂb = f—(y) (363)
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3.2 The free boson fMPS

and after computing the derivatives, introducing a generic N-spin density p and per-
forming some simplifications, the action of the fMPS tensor is given by

Salfeoforl=4ge [ @[ @G ool

N 16Z'7T2/ d’z /dmp( ) (fe(@) fo(2)) ( U+’Ava<x’ZE_UM>

RSN CIED R RN CY

i [ [ ) ) (08020 L AGT) (£
(3.64)

where the kernels are given by

, 2 1 , 1
upale—2)= 2t (@ —a) =

2
A2 s1nh< A )2 A2 cosh( 2Al)2

Ur,8,0(@:27) = %COth (%) , Vo nal(,2) = %tanh (%)
(3.65)

Note that these are the unregulated expressions, and therefore u, 5 and v, A contain
divergences. Following the regularization procedure presented in the previous section,
the corresponding e-regulated expressions are given by:

usf (x—:c’)—L ( 1 + 1
A A2 . r—x'+i(e+e’) \ 2 . z—x/—i(e+e’)\ 2
sinh (—2 X ) sinh (—2 X )

(3.66)
T . x—ﬂj—ki(a—&:’) 2 + x—a}—i(s—s’) 2) ’
sinh (—2 N ) sinh (—2 N )
ol ) = o (cotn (I oy (2= i) g
0 p (e 2) = 21A <tanh ("" —= “5> + tanh (‘” —= _25>> . (3.68)

Following the regularization procedure shown in Equation (3.41)), the corresponding
distributional expressions in the ¢,” — 0 limit are

N2 1L 2A N o 1
Ru+’A(:1:—a:)— Ao (sinh<x_§/)2 <x—x/> ) 8P ((m—x’))’ (3.69)
2

| x— 2 +ira 24 ) 1
R _ 1 th _ 2P 3.70

, 1 x— 7 +ima 2A 1
V_Aq(T,2") A (tan ( 2A ) T — z’) + ((:c )) G0
where we have introduced the principal value distribution P(i) and its derivative

P’ (x) as the limits
P<l>:nm1( L ) (3.72)
T e=02 \x+1c x—1ic
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3.2 The free boson fMPS

P <l> —lims(— 1 ) (3.73)
x e=0 2 \(z+1ie)? (z—ie)?
The next step is to perform the chiral truncation on the action S,,pg, which, after
introducing the expressions for the spin densities, leads to the truncated action

Sl £ ) = s o (wsinh (Ziz_[j))

1>7

_ ﬁﬁ;si/Rdx (fi(x) fo()) ( Veaal? >
z’)
) u

—U_ pq(T
b [ far () ) (Z*iﬁx_x

where a constant  has been introduced in the interaction term after the truncation that
will be fixed later to yield the correct closing condition. The spin positions z, € M
are such that 7a < Im(z;) < 7b, and thus are not allowed to be on the boundaries
of the tensor, removing the need for regularization on the spin-boundary terms. The
expression for the functional fMPS tensor is then given by

AA[f—&-a fo Az Si}f\il] = €Xp (_SCA[f-H fodz, 51}1111]) (3.75)
or diagrammatically, the tensor corresponding to a single spin would be given by
I
Aalfe, f- {2z, s} = X {z,s} [A

ST )
(3.74)

I+ . (3.76)

3.2.2 THE FMPS TENSOR IN MOMENTUM SPACE

Particular to the fMPS tensor is that we can use the Fourier transform to simplify the
tensor further. If we define the Fourier transform of the boundary functions f, (z) by

fi(r) = 4 dke™** f, (k) (3.77)

In [186]], the Fourier transformations of all the integral kernels were provided, and
therein, one finds the expression for the fMPS tensor in momentum space, which is
given by

N

Sq oo fodzasidig] == sis 103(“31“h< _Azj»

7 2
1 wen(k) w_a(R)\ [ Fr(k)
Y RRCACIEAT) (w_,iac) w,i(@) (fi(k)> (3.78)

7 al ikz.sz wkb rka £
_EZ/R m@ Folk) —e™af (k)),
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3.2 The free boson fMPS

with w, , = kcoth (7kA) and w_ , = —Fk sech(rkA). After providing this tensor in
momentum space, the authors performed the sewing condition for two such tensors
on a fixed coordinate basis. Here, we generalize their result to an arbitrary coordinate
basis, as the computation follows identically as in their study. The computation relies
precisely on the Fourier Transform of the tensor, which allows the diagonalization
of the Gaussian integral, which is the bottleneck of the computation. As we hope to
provide a more general version of the sewing condition in the upcoming sections, we
do not reproduce their computation explicitly here. Derived originally in [186]] and
generalized in this work, the sewing condition for two fMPS tensors with a single spin
reads

/Z)g./qu [anf-o-agv{Zl’Sl}] AAQ [vaga f—a{'z2782}]
_AA1+A2 [f07f+7f {25 sitie 1]7

(3.79)

where now the exponent of the sewn strips is given by :

51 5
A LUA, [f+7f— {szsz}z 12} = ElogAf_l_ElOgAf

1 [ee) . ~ WJ’,’Af(k‘)) w—,Af(k> fi(k>
+2/0 dk (f, (k) [_(k)) (w_,Af(kﬁ wwf(k)) (fj(k:))
- (3.80)

1 i=1, 5 wkby £ _ _mkay £
-1 Ay (e F 0 - e w)

— 5,85 log (usmh ( 2;?) ),

where A, = A, + A, and p = —2i. Diagrammatically, Equation (3.79) is given by

ooe 'f7 oo YY) f7 [
f D X {22, 52} IAz X {22, 52}
= A+ Ay
g X{z1,51} IAl X{z1,81}
eoe er oo (I f+ o00
(3.81)

Notice how in the first line of Equation the terms %log A have appeared,
which are there to ensure that this tensor has the correct scaling dimension under a
scaling transformation. This means that we must modify all previous tensors to include
them as a constant within the action so that the sewing condition is now exact. The
way to find this constant before performing the sewing condition is to explore the
divergence arising in the 2; — 2, limit of the Green function in the spin-spin term
in Equation (3.74). If one demands normal ordering, and thus the removal of the
divergence, the sub-leading 0™-order term that appears is precisely this factor.

The main difference concerning the derivation in [[186] is that now the sewing of
these tensors can be performed with arbitrary lengths A, as well as at any height b,, a;,
a feature that is needed in Chapter [4] to study the properties of these tensors in regards
to its symmetries. The generalization to more spins is straightforward and follows from
repeated application of Equation (3.80)).
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3.2 The free boson fMPS

Furthermore, the closing condition for the fMPS was also provided by using again the
result of the sewing integral. Diagrammatically shown in Equation (3.15)), the result
is given by

N
/ Df, / DFANfor [ o {75}V, ] = 20 (Z)

=1

I (A sin (yj ; y)) (3.82)

j>i

which is precisely the conformal correlator

N N
2o (Z Si) <H s et85P(%5) . pisse(zi) :>cyl (3.83)

i=1 J>i

evaluated in the geometry of a cylinder, which is almost the desired Haldane-Shastry
wavefunction and the exact ground state of the critical point of the Majumdar-Ghosh
model. Interestingly, the connection with Haldane-Shastry appears when the 2’s are
uniformly distributed, while the connection with Majumdar-Ghosh is in the limit where
the coordinates approach one another pairwise. To recover it exactly, one should have
added in the definition of the tensors a phase that depends on the spin value found
within the tensor. In this particular case, this is the Marshall factor y, for each site,
which is given for the even sites by "

Xsm — 6im71'(sm—1)/2 (384)
which globally counts the number of "down”-spins on odd sites and gives a phase
accordingly. With this, the final wavefunction is given by

_ [x(n—m)]\ 2™
Cspponsyy X 5En 51,0 HXsn H (Sln [T}) ) (3.85)

n>m

which is now precisely the exact desired ground state.
There are two main takeaways from these last two computations:

1. Sewing is key : The sewing condition allows both to contract tensors and close
them entirely, exactly and in the y — oo limit. Therefore, and unlike in nu-
merical approaches, performing a single contraction is as hard as performing
exponentially many of them, as the hardness comes from solving the Gaussian
integral found in the most simple sewing. It is thus of utmost importance to pro-
vide any fTNS with its corresponding sewing condition if one wishes to provide
an analytical tool with which one can provide new exact TNS representations of
states.

2. The conformal map encodes the geometry : Interestingly, the conformal cor-
relator of Equation (3.61) is the one corresponding to a compactified boson on
a cylinder of perimeter A, and yet we constructed our function from the uncom-
pactified free boson. This means that the field’s geometry information is encoded
in the conformal map g,,p¢(2), where we can identify the cylindrical geometry.
It would be interesting to perform the closing condition in this case with a slightly
different boundary condition, such that the geometry of a Mobius strip would be
recovered, as that is the only other possible geometry that this map allows for.
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3.3 The free boson fPEPS

This result suggests many possible open directions. Firstly and most obviously, pro-
vide the fMPS tensor corresponding to other simple Gaussian CFTs for which a local
action exists, such as the free Majorana/Dirac fermion or the ghost system. Other
generic options would be other WZW theories via the Wakimoto free field representa-
tion or simple minimal models for which a Couloumb-gas representation exists [37].
Ultimately, a more generic BCFT approach should be possible and needed for non-
Gaussian CFTs by representing these tensors as conformal correlators between Ishibasi
or Cardy states with a fixed boundary condition. Still, we leave this exciting approach
for future projects.

3.3 THE FREE BOSON FPEPS

3.3.1 EXPLICIT CONSTRUCTION OF THE PEPS FUNCTIONAL

In this section, we provide a derivation analogous to the one for the fMPS tensor but
for the geometry corresponding to a PEPS tensor. This is then the formal derivation
of the fPEPS tensor. We start by constructing the conformal map according to the
Schwarz-Christoffel recipe that diagrammatically achieves Figure To this end, we
choose 4 points of the real line, —b, —a, a,b with a < b € R" and set all the interior
anglestobea==7=¢§ = g Then Equation (3.33)), becomes

13
f(&) = / N _fi‘;w2 = (3.86)
which, after manipulating it, one obtains
fe == / : e , (3.87)
bJ /A=) - k22)

where k = % is the elliptic modulus, and because a < b, then 0 < k < 1. Now, taking
the following change of variables ¢ = arcsin (w) yields

arcsin £
f(&) = E/ ’ aé = EF(arcsinﬁ, k) + C, (3.88)
b 1 — k2sin? ¢ a
g §€H Fet) el 1)
f
|.| )
—‘b—_ﬂ—g—’ f(~a) 20 f(a)

Figure 3.5: Diagrammatic representation of the PEPS Schwarz-Christoffel map.
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3.3 The free boson fPEPS

n,m e Z sn(R(z), k) cen(R(z), k) dn(R(z), k)
Periods | 2mL, +2niL, | 2mL, +2n(% +iL,) mL, +4niL,
Zeroes mL, + 2niL, (m+3)L, +2niL, | (m+3)L, + (2n+1)iL,

Poles | mL,+ (2n+1)iL, | mL, + (2n+1)iL, mL, + (2n +1)iL,

Residues (—1)mk i(—1)" et (=)™t

Table 3.1: Positions of zeroes, poles, periodicities, and residues in our coordinate system for
all the relevant Jacobi elliptic functions.

where F'(-, k) is the incomplete elliptic integral of the first kind and C an arbitrary
constant. To fix all the free parameters, we now employ the boundary conditions

2 (3.89)

where z; is an arbitrary reference point of the complex plane and L, L, are the width
and height of the rectangle in Figure Upon solving the system of equations, one
arrives at

L
&) =75 K?H) F(arcsin g k) + 2, (3.90)
where K (k) is the complete elliptic integral of the first kind, and % = —Qgg) with

K (k) = K(R) and &k = V1 — k2. Finally, one inverts this equation to obtain the desired
conformal map, which is given by

2K
gpeps(z) =a sn < L(K) (z—2), ff) ; (3.91)

T

where f(§) = z and the function sn(-,x) is known as the Jacobi elliptic sine, and the
a parameter can be freely chosen to be one. The Jacobi elliptic functions [195] are
a family of 12 functions that form a lattice of simple poles and zeros in the complex
plane, spanned by the quarter periods K (x) and K (k). To ease notation, we define the
following function

(s 20) = B (o) 412

T T Yy

2K (k)
L

R(z) (y —yo) = Rh(z) +iRv(y), (3.92)

where Re(z,) = z, and Im(2,) = y,. In Table we have translated all the relevant
properties of the most important Jacobi functions according to our coordinate system,
the most relevant one being the double periodicity as it plays a role in the regularization
procedure.

The next step is to introduce the expression of the conformal map into the action
in Equation ([3.28)), take derivatives and obtain specific forms for all the terms. To do
so in an orderly manner, we assign different boundary functions to each of the sides
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3.3 The free boson fPEPS

according to Figure such that after taking derivatives, the final expression for the
action is

Snelhys by By, By, p) = /dx/d (37 )p(E)p(F)

el dx/:; o ey o) (G2 D) ()
“an [ (g ) ()
g [ e [ G ) (G e ) ()

0—

. xo-i-— - . V , AN ﬁ
+ 2/ dw/ Az p(z') (h+(:1:) , h_(a:)) h (T xj M
167 Lz M ~V, (2,7") +V, (z,7)

) yO+L —/ ~ _VU yaf/ +VU y,f’
+ 2/ dy/dwp Ly, 1.(y) . q,) %) :
167 Yo M ‘/1;7<y7$ ) - %7(971: )

where 7L and v__are the horizontal and vertical boundary conditions without the zero
modes, the integral kernels V}, and V, correspond to the spin-boundary terms, and
the U, ,,_and the rest of its variants are the boundary-boundary terms. We use inter-
changeably the notation G ,,(%,2') and G,,(z, 2") with z = x + iy, both notations are
used to denote the same object and the different notation is merely to adapt better to
the context in which it is found, in this case to mimic the coordinates of the integral
over M.

1 [votL, ot . Uy n (y,2"), U, 4 (C%»T/)) h,(a)
_ d d s — Vet ’ el / "
6472 / y/x Le 7 (0, W) (Uv,h+<y7$ )y Uy (w,27)) \h_(2)

(3.93)

h_

- S; o
UV x _

<0

By

Figure 3.6: Schematic representation of the PEPS functional, with all the different boundary
conditions, the spin position, and the reference point of the conformal map.

Let us explore each term separately, starting with the spin-spin term. The Green
function of the first line, denoting sn(-, k) = sn(-) is given by

Go(3 1) 1 (sn (%( (z—zo)> —sn (% (z’—z&))(sn (% (E—z_o)) — sn <2L_fj (5/_%>>>
,2') = —log
M 47 (sn (%(z—%))—sn(if z —ZO)))(sn (%(5—%0—371 <2Lij(z/_zo>>)
(3.94)
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3.3 The free boson fPEPS

We simplify notation by re-defining:

, 1
Gylz,2') = Elog

R
J(R(z),R(z))J(R(2), R(z'))] (3.95)
J(f17 f2> - 87’L<f1) — Sn(f2>.

For later purposes, we must explicitly find when J(f,, f,) becomes either O or infinite,
as this will be the origin of the regularizable divergences. The most straightforward
way in which this can happen is whenever f, = f,, or because of the periodicity of sn,
whenever

fi = fo+4mK (k) +i2nK (k) n,m € Z. (3.96)

Translating to the more intuitive coordinates of the rectangle using Table that
translates to
2y = zy +2mL, + 2nil, n,m € Z. (3.97)

However, it could also happen that both terms of J( f,, f,) vanish simultaneously, cor-
responding to the zeroes of sn(-) located at

sn(f)=0— f=2mK(r) +2niK (k) = z— 2y = mL, + 2nil, n,me€Z  (3.98)

If both f; and f, are at a zero of sn, they must either be at the same zero or differ
by a lattice vector mL, + 2niL,. However, the values that the spin positions z; can
take are restricted to be within the rectangle %[ﬂfo — L, mq + L] ¥ i[yo, yo + L,], and
hence only the zero corresponding to (n,m) = (0,0) is possible. Thus, this divergence
corresponds to the previous case.

The boundary-spin terms correspond to the first normal derivative of the Green func-
tion, which, because of the geometry, is either +0, for the vertical boundaries or +9,
for the horizontal ones. Compactly, as in Equation (3.38), these read

0,G (2, 7)) =

99)
Evaluating these derivatives at the respective non-regularized boundaries yields the
kernels

V. (2.2) = 4K (k) en(Rh(x))dn(Rh(z))
S L, (sn(Rh(x)) — sn(R(z')))
V. (o) = 4K (k) cn(Rh(x))dn(Rh(x))
S Ly sn(Rh(z))(1 — ksn(Rh(z))sn(R(2')))
\ _ 2RR(R) &7 ( Ro(y) ) (Ro(y)) (3100
Vo (y,2") = — =
v dn(Ru(y)( +dn(Ru(y))sn(R(2)))
b, () = (RN Rs)
v dn(Ro(y))(1—dn(Ro(y))sn(R(2)))
where any Jacobi elliptic function with a tilde corresponds to sn(-,x) = sn(-, k),
x € [zy— L2 , Ty + %], Yy € [yo,Yo + L,] and 2" will correspond to the spin position
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3.3 The free boson fPEPS

variable after the integral with p(Z’) in Equation (3.93). One can find the regularized
counterparts of all these kernels by performing the following substitution

Vi (,2) = % (Vi (& +ie,2) + Vi (x — iz, 2)) (3.101)

and safely removing the ¢ from all the well-behaved terms, which corresponds exactly
to the evaluation on the regularized boundary described in Equation (3.36). In Equa-
tion (3.101), V}, was picked as means of an example, as the prescription works for all
the kernels. As we have discussed in previous sections, we expect a divergence on all
of these kernels whenever 2" € 9, which one can confirm by finding the zeroes of all
the denominators of Equation (3.100). We also confirm that the potential divergences
coming from the poles of the Jacobi elliptic functions in the numerator are unreachable
because the variables x, y are confined within the rectangle. While the distributional
counterpart of the divergence is again a principal value as in Equation (3.71]) or (3.70),
we have already seen in the case of fMPS that there is no need to provide their regu-
larized distributional counterparts. This divergence can never be triggered as long as
we demand that all the spin positions z; are never exactly at the boundary oM.

The boundary-boundary terms correspond to the second normal derivative of the
Green function w.r.t the second variable,

1 [0.J(R(2),R(2))0,J(R(2),R('))  8,J(R(2), R('))3J(R(2), R(¢'))

/
¢ J

0:0,Gp(z,2") = — +
! Am J(R(z2),R(z"))? J(R(z), R(z'))?
 9,:J(R(2). R(z\))0,](R(2), R(z"))  8;J(R(2), R(z))9,J(R(). R())
J(R(z),R(z"))? J(R(z), R(z'))?

(3.102)

Once again, evaluating all these terms yields the sixteen boundary-boundary kernels of
Equation (3.28). Let us start with the terms connecting two of the horizontal boundary
terms

8(4K (k)?) en(Rh(x))dn(Rh(z))en(Rh(x"))dn(Rh(x"))

Up p (z,2") = Uh+h+($a$’) =

L (sn(Rh(z)) — sn(Rh(z")))? 7

" o 8k(4K (k)?) en(Rh(x))dn(Rh(z))en(Rh(x"))dn(Rh(z"))
Unn, (@, 2) = Uy p (2,07) = 72 (1 — rsn(Rh(z))sn(Rh(z')))2 ’
(3.103)

L L . . .
where z,2” € {xo — 55 %+ 71} and the ones connecting the two vertical boundaries
are

84K (r)” 5 Ro(y) )&(Ro(y))5T(Ru(y))@i(Ru(y )

Uy o ,9)=U, ., (y,y) =

Lﬁ (dn(Ru(y)) — dn(Ro(y’)))?
Us o y) = U (1) = 871K (r)2 57(Ru(y))an(Ro(y))8R(Ru(y ))en(Ru(y'))
e R L (dn(Ru(y)) + dn(Ru(y’)))?

(3.104)

where y,y’ € [yo,yo + Ly]. Before moving on to the crossed boundary propagation
terms, we can find all the regularized versions of these kernels using the following
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3.3 The free boson fPEPS

prescription

EE/ / 1 . / ./ . / ./
U, (rv,2')==(U x+ie,x’ +1ie’ )+ U, r—1e,x —1ie
o) = 1 (U € )+ Up ( ) 3105

- / -/ . / ./
+Up p, (@ +ie,a" —ie") + Uy (x —ide, 2" +ic )),

where as before, Up,n, Was simply picked as an example. The horizontal to vertical
propagation terms are given by

8°K ()° cn(Rh(x))dn(Rh(z))5(Ro(y ))& (Ro(y'))

Uh+v+(x7y/) =

L (sn(Rh(z))dn(Ru(y’)) +1)2
U (o) SR en(Bh(e) dn(Bh(e) ST (Roty) il Ry )
~ L (sn(Rh(zx))dn(Ru(y’)) — 1)2 5106)
U (o) S en(RAGe))dn(RA() T Ru(y ) EH(Re(y)
v, L? (ksn(Rh(z)) + dn(Rv(y’)))?
U, . (z,y) = 8/£/<;24K( )* en(RA( ))dn(Rh(x))g’z(vRU(y/>)%(Rv(y,))’
v L? (ksn(Rh(x)) — dn(Rv(y’)))2

and the terms corresponding to vertical to horizontal propagation are identical to the
ones in Equation (3.106)) with the role of the variables exchanged, that is U, (z',y) =
U,.(x',y). As both the horizontal-vertical and the vertical-horizontal kernels are iden-
tical, one may wonder why we did not add both terms in Equation (3.93). The rea-
soning is that doing so involves an exchange in the order of integration, which can
only be done if the integrals are finite. As seen in previous sections, all these ker-
nels contain divergences, which could make said integrals problematic unless they are
properly regularized. Hence, we now provide a second, more complicated example of
the regularization scheme shown in Equation for the PEPS functional, due to
the periodicities of the Jacobi functions.

3.3.2 REGULARIZATION OF THE PEPS FUNCTIONAL

We begin with the regularization of U, ,, (z,z ") as a representative of the horizontal
to horizontal terms. By solving for the zeroes of the denominator in Equation ([3.103),
we find

sn(Rh(z)) — sn(Rh(z")) =0 — & — 2’ = 2mL, + 2niL,
sn(Rh(z)) + sn(Rh(z') + 2K (k)) = 0 = (z — x() + (2" — 2) = (2m — 1)L, + 2niL,,.
(3.107)

Since z,2", 2, € Rand z,2" € [wo -5 o+ %] , then n = 0 in the previous equation.

Expanding the kernel around these lines, one obtains

1111‘1 Uh h - 8

/ 0
z—a’+2mL, o (33' —x — 2mLx)2 +0 <<I T szm) )

—8
(x+a" —2x5— (2m —1)L,)?

].im Uh h. —
z——z'+2x9+2mL, T

(3.108)
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3.3 The free boson fPEPS

from which we see that the divergences form an alternating fishnet-like structure. Fi-
nally, according to Equation (3.41), we subtract the divergences while adding their
regularized counterparts

00 8 > 8
RU; =|U ) -
hon, (2:27) [ RCIED Z (r —a’ —2mL,)? i Z (x4 2" —2z5 — (2m — 1>Lw>2]

m=—oQ m=—0o0

- 1 1
+ 1 +
m;oo [(:c —a’' —2mL, +i€)?  (x—a’ —2mL, — i5)2}

1 1
— 4
m;m [(x +a’ —2zy— (2m — 1)L, + ic)? * (x+a" —2xy—(2m—1)L, — ie)Q} ’
(3.109)

which in the limit of ¢ — 0 allows us to identify the distributional divergence as the
derivative of the principal value once again shown in Equation (3.73).

One can then confirm that Equation is indeed satisfied Vz, 2’, but most impor-
tantly, is to check that the integral against the boundary function is indeed finite, as
we have added and subtracted an infinite amount of divergences in Equation (3.109).
Mainly, one must show that

xOJr% 1‘0+%
/ . d:v/ . dz’h, (2)h, (2" )RU}, , (7,2") < oo (3.110)
IO—T aco—T

Let us first start with the first line of Equation (3.109), which when integrating it
in the domain x,z" € [mo — %, Ty + %} , the divergence coming from U, , (z,2’) is
mitigated exclusively by the counter terms with m = 0. As we assume all boundary
functions h(z) to be well-behaved, the integral of the first line with m = 0 will be
finite. The integrals of the second and third lines for the terms that can diverge in this

interval are reduced to

8/_d /W%d i (@)h, (2 ! .
= +
oL x%,% T g (x — a2’ +ig)?2 (v —a’ —ig)?

0

1 1 1

= —

2 {(m+x’—2xo+Lx—l—iE)? (x—l—x’—QwO—l—Lx—z’s)?}
1

2

1 1
{(w+x’—2xo—Lm+i€)2 (x+x’—2x0—Lx—i5)2}

(3.111)
By sending x — = — 2y and ” — 2’ — x,, and in the limit of ¢ — 0
s Fa [ an hy (2 P(——)-P(— 2 p(— L
[ [ ,] dahban o oo P20 = Pl = Pl
(3.112)

From this expression, we can see why this integral is finite. In the inside of the domain
of integration, the only term that can diverge is P’(ﬁ), but because this is a principal

value, the divergence gets removed from the support symmetrically from both sides.
This is, however, not possible strictly at two points, the two edges of the integral
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3.3 The free boson fPEPS

r=1 = i%. But it is precisely at these two points where the two other principal
values participate to exactly diverge as well but with opposite signs, hence making the
whole expression finite. For m # 0, U,, ;, has no divergence inside of the domain of
integration, and thus the limit ¢ — 0 can be safely taken in Equation (3.109)), removing
all the counter terms. The reason for subtracting all the divergences, as opposed to only
the one inside of the domain of integration, will be made apparent when exploring the
k — 1 limit of the functional.

Following the same procedure, an example of the regularized version of a vertical-
to-vertical propagation kernel is

oo o0

RU; , (y:y') = |Upu (9:9) = D : p3 8

m=—oo (y - y/ - 2mLy)2 m=—o0

m=—o0

- 1 1
+ +
Z (y—y —2mL,+ie)?*  (y—y —2mL, — is)2]

- 1 1
- 4 X + . )
mz_oo (y+y —2yy—2mL, +ic)*  (y+y — 2y —2mL, — 15)2]
(3.113)

where we again subtract all the divergences, even those beyond the domain of inte-
gration. As in the previous case, this regularization scheme leads to a finite integral
when integrated against the vertical boundary functions for the same reasons.

For the regularization of the horizontal to vertical terms, we encounter a different
divergence, as both boundaries meet only at a single point. Therefore, whereas in the
previous examples, the divergence would correspond to a line, for these kernels, it is
localized at a single point and leads to the following regularization

> 8(x —wog— (2m + 3)L,)(y —yo — 2nL,)
RU, v <$,y/> = Uh v (x7y/) + 2
e o m,nz—:oo (z =g — (2m + 3)L,)2 + (y — yo — 2nL,)?)?

x 8(x —zy — (2m +3)L,)(y — yy — 2nL,)

- WZOO (@ —2— (2m+ D)L, +i)2 + (y—yp — 2L, + ic)?)?
* 8w —xg — (2m + 3)L,)(y — yo — 2nL,)

R 2N 1y — (2m+ L)L, —ie)? + (y — yo — 2nL, + ic)2)?
> 8(x —xo — (2m + 5)L,)(y —yo — 2nL,)

- m,;oo (@ —2— (2m+ L)L, +ie)? + (y—yp — 2L, — ic)?)?
> 8(x —zy — (2m + 3)L,)(y — yy — 2nL,)

R 2N 1y — (2m+ L)L, —ie)? + (y— yo — 2nL, — ic)2)?

(3.114)

where for these kernels the precise location of the divergence will depend on which
of the different kernels is being regularized. As with the previous regularizations,
the only divergence present in the integration domain is the one corresponding to
m,n = 0. Similarly, as in the previous case, the first line of Equation is finite
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3.3 The free boson fPEPS

when integrated, and the remaining terms that previously led to the derivatives of the
principal value are

B 2(x —xg — 5L,)(y — yo) B 2(x —xg — 5L,)(y — 9o)

(2 20— 1L, +ze> + =y +ie))? (@ —zo— 1L, —zs) +(y— o +ie)?)?
2o =y~ L)y~ ) 2o — 0~ L)y~
A T i PO vy PSR

(3.115)

In the limit of ¢ — 0, these terms correspond to the kernel associated with the Riesz
transform [196]], primarily used in harmonic analysis. This transformation can be
considered a generalization of the Hilbert transform [197], the latter being the trans-
formation usually associated with the principal value distribution in R. Similarly, the
Riesz transform defines a linear bounded operator from L?(R?) to itself, and hence its
kernel is also a tempered distribution. Therefore, the expression in Equation (3.115)) is
nothing but an e-limit of this tempered distribution, and thus, when integrated against
the boundary function, it yields a finite result.

3.3.3 THE MPS FUNCTIONAL AS A LIMIT OF THE PEPS FUNCTIONAL

It was conjectured at the end of the Supplementary Material of [186] that by taking
the x — 1 limit in the PEPS conformal map (3.91)), one should recover a functional that
would be either the fMPS functional exactly or rather a Mobius transformation thereof.
Performing the calculation of this limit explicitly serves a double purpose. Firstly, it
allows us to check the integrity of the fPEPS functional by contrasting this limit with
the much more well-known fMPS functional. Secondly, it allows us to understand
the effect of Mobius transformations on our functionals and constraints the possible
classes of functions that can serve as boundary functions. In this limit, the first elliptic
integrals behave as K (1) = oo, K(1) = g, which means that the defining ratio of the
conformal map

K (k)
2K (k)
Therefore, in this limit, L, >> L,, and because we want to recover an infinitely long
strip with a finite width, we demand that L, remains a finite quantity and, therefore,
that L, — oo in this limit. As it was shown in [186], if one defines a Mobius transfor-
mation by

Ly 0 3.116
L_x_ — 0. (3. )

a2+ a
f(z) = ¥, aya, —aqsas =1, aq,aq,a5,a4 € C (3.117)
asz + ay

then the x — 1 limit of Equation (3.91)) is

. sinh(R(z)) 2R 1 ety
1 = tanh = = -
,-;IE} sn(R(z)) = tanh(R(z)) cosh(R(z))  ¢2R(2) 41 eLly(z—Zo) 11

which is a Mébius transformation of the MPS conformal map g,,pg(z) = exp(m)

(3.118)

with A = =¥, ima = z;and (a,, ay,a5,a,) = (1,—1,1,1), where a € R. Using the expres-
sions shown in Equations (3.57) both G (2, 2’) as well as V}, (x, 2") correctly reduce to
the expected Mobius transformations of the MPS functional, whilst V, (y,z) — 0 Vy, z.
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3.3 The free boson fPEPS

More interestingly, this limit also provides information on what the behavior of the
boundary functions must be, since the domain of integration of the horizontal boundary
functions goes from a finite domain %[a:o —L,,xy+ L, to R. This is precisely the origin
of the restriction of the boundary functions to the space of Schwarz functions, even in
the case of fPEPS, as they must be able to become the ones of the fMPS tensor.

The most interesting aspects of this limit appear in the propagation terms. We ex-
pect both the horizontal-vertical propagation terms and the vertical-vertical ones to
vanish in this limit, while the horizontal-horizontal ones become the ones of the MPS
functional. Let us start with U, ,, (z,y’)

. N 282 = . [y —ma Yy —ma
EE}UMM(:I:,y)—AQe Asm( A )cos( A )%O (3.119)

as it is expected. However, it is not just the kernel that must vanish, but the integral
as well, and the exponential term obstructs that. The integral that must vanish in this

limit is then A )
& -z [T . (Y 2K

dxh, (x)ea / dyv, (y + ma) sin | = ) _—, (3.120)
(/ +< ) b +( ) <A) A2

oo
which implies that i, (z) must decay faster than an exponential in the  — —oo limit.
From the rest of the horizontal to vertical kernels U, ,, (z,y'),U, , (z,y), U, ,, (z,9)
one extracts similar conditions, leading to the restriction of the horizontal boundary
functions i (z) to belong to the space of Schwartz functions [191]. This restriction
is not only necessitated for a solid convergence of this limit but also for a proper
guarantee of convergence of the integrals presented in the regularization procedure,
such as those found in Equations (3.112)), (3.113) and (3.114).
For the horizontal to horizontal terms, we recover the correct regularized limit

/ 1
%+8P(
(x —a’) r—x

lim RU} 3 (z,2") = U, 5, (z,2) — ) (3.121)

K—1 hih, 4

because the L, — oo limit removes all the terms of the sum in Equation except
for the ones where L, is not present on the denominator.

Finally, we reach the vertical to vertical terms, and while U, , (y,y’) correctly re-
duces to zero in this limit, U, , (y, y') does not

. 2 1 1
limU, , (y,y') = — — - : (3.122)
P A2 sin ((yQ—Ay ))2 sin ((y+y2;27m)>2

and furthermore, it is clearly a divergent kernel. This is precisely the reason that all
the possible divergences were subtracted in the regularization procedure, as one can
then use the following identity

1 1
sm( 7r2 Z (x — mZ —y — 2m7TA) T 4A2 sin ((y—y’) 2’
2A
(3.123)
to write the first line of Equation (3.113)) as
2 1 2 1
Wy)— + = : (3.124)
CERCHS A2 ) A2 . 4y’ —27a )\ 2
sin (53°)7 7 sin (#5)



3.3 The free boson fPEPS

which completely subtracts the divergent leftovers of the x — 1 limit. All that is left
are the remaining terms in the second and third lines of Equation (3.113)), which by
the choice of the boundary function v_(y) to be a Schwartz function, it contributes a
finite amount to the functional. Furthermore, these pieces are the only dependence on
v, (y) in the x — 1 limit. Because they contribute quadratically to the action, they can
be integrated out into a constant that can be absorbed into the normalization of the
overall state.

A pictorial way in which this constant can also be understood is that the x — 1 limit
indeed must send L, — oo but not necessarily L, — 0, therefore leaving a leftover that
was never there in the fMPS case and that is absorbed as a constant due to this term
being uncoupled from the rest of the action.

3.3.4 CHIRAL TRUNCATION OF THE GENERIC AND PEPS
FUNCTIONAL.

As we already know, we are ultimately interested in a chiral tensor. Following the pro-
cedure described in the previous sections, the fPEPS functional from Equation ([3.93)
reduces to

st [ e [ b ) () )

o= [ [ o (e )

o [ [ Gt ) () e ) ()
2 - U

. 6;2 / +_ dz /M 47 p(@) (hry(z) . o (x)) (_@ﬁfj;»

{ y0+L ~ -V, (yvi:/>
dy [ dz v BT
+167T2/y y/M Fol@) (0. U‘<y>)<VU(y,w)

where we have now collected the cross-propagation term under the same integral,
and thanks to the regularization scheme, we have been able to exchange the order
of integration. With the truncated action, we can also introduce the spin densities
to extract the conformal dimension factor, akin to the fMPS case shown in Equation
(3.80). To extract it, one simply takes the regularized limit

~

N

(5+ (),

(3.125)

Z—w Lm

: lim G (2, w) := s log (@) (3.126)

where we have subtracted the divergent term to extract the 0®-order term of the ex-
pansion. This term correctly reduces to the corresponding conformal dimension term
of the fMPS functional in the x — 1 limit.
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3.4 The sewing condition for the free boson

3.4 THE SEWING CONDITION FOR THE FREE BOSON

SET UP AND SPLIT OF THE FUNCTIONALS

In this section, we will present the most general proof of the sewing condition for any
two chiral tensors fl;v[1 and /13,[2. Our starting point is two functionals defined in two
distinct manifolds M, and M, employing the conformal maps g; and g,. Each tensor
hosts their own set of spins denoted by p, and p,, and we will demand that they have a
compatible boundary. To be more precise, one begins splitting the boundary into two
sections, the section in which the sewing takes place 01 ¢ and the rest of the boundary

in which it does not M g, such that OM = OM g U OM g, a.k.a the two manifolds can
be glued together. Diagrammatically, we are aiming to prove the following identity

f

oM

M,

(3.127)

where the path integral sums only over the functions present in the shared compatible
boundary h. Exploring the sewing condition for generic functionals 4,, is a very
complicated task. Still, we will use conformal invariance to treat this problem with
the respective representations of both tensors in the UHP, where all the expressions
become much simpler. In the coordinates shown in Equation (3.127), we would split
the boundary functions as

Filg:(x) = filgi(x))x(z € OM;,) + h(g;(x))x(x € OMg) (3.128)

where x(z) is the indicator distribution, and we have explicitly included the conformal
map’s dependence on the functions. If one wishes to split the original function f (x)
in a continuous fashion, then one should choose the endpoints of the indicators to be
X(0OM g) = % However, that is not strictly necessary for the function to remain within
the Schwartz space.

If we wish to perform the sewing of the common boundary in the coordinates of
the UHP, then we need to undo the change of variables from the conformal maps g,,
therefore leading to the following split in the UHP

fi@) = f(x)x(z € g; <8Mis)) + h(z)x(x € g; (0M g)) (3.129)

where g, (W) Ug,; (OM ) = R by definition of the conformal map. Therefore, in the
UHP, the sewing boundary 0 ¢ gets in general sent to different subdomains of the
real line D, = g, (0M g), while the remaining of the boundary of each functional gets
sent to the remainder of R, D, = g, (WZS) This is schematically shown in Figure (3.7
for two arbitrary domains and randomly chosen domains in the UHP to showcase that
generically D, # D,, and that these can be either compact or non-compact. Moving
to the UHP allows to forego the potentially complicated geometry of 9M g, while sim-
ply backloading that information on the specific forms of the subdomains D, and D,.
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3.4 The sewing condition for the free boson

N ]

M.,
M.

Figure 3.7: Schematic depiction of the pre-image of 0 g in the UHP for generic conformal
maps g;.

Therefore, the minimal tensor in the UHP that captures any potential sewing scenario is
that of an UHP tensor whose boundary function is split between a generic sub-domain
of R, D and its complement D.

Our starting point is then the chiral UHP functional tensor derived from Equation
using the chiral truncation, given by

[f {z;,8; ] = exp ( Z ; (log [(2 —2z;)]) — —Z /dyf
—2 Rdl’/Rdyf(fc)f(y)m) -

where we split the boundary integral as

4da:f(:c) :/Ddxh(a:)—kﬁDda:f(:c), (3.131)

such that then the tensor becomes

(3.130)

H [f, h, {zi,si}i = exp ( Zslsj log 2, — 2, )])

217r (/ dyhly )zll—y ﬁd )3 . y) (3.132)
8W2 dxﬁdyf ﬁD /dyf h(y )<x_1y>2
= Dd”“"/DdW”“")h(y) <x—y>2>’

which we can re-organize as

 [fohs {283, ] = [f {2,581 ,] exp (——Z /dyh

47r2 dx/dyf _1y>2 +8W2/Ddx/Ddyh(x)h(y> (x_y)g),
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3.4 The sewing condition for the free boson

where in B¢ L Ve have accumulated all the terms that will not take part in the sewing
path 1ntegral over the function h, which are

B _[f, {25} —exp( Zszsj log [(z; — 2))]) — 21 D5 (ﬁDdyf@)Z.l_ )

o Lo [anorm——).

(3.134)

With the expressions for a generic split of the boundary, we can now move forward
toward the sewing equation, given in the UHP by

/Dh/lnal [fph; {%,1751',1}511] A[EZ [f27h'7 {%,2»%2}1{1] (3.135)
which after introducing Equation ([3.133]) becomes

= [fp{%,p%@}fil} 3;5 {an{Zi,Qasz’Q}il] X
1 1
/Z?hexp (——Zszl/ dyh(y — = 312/ dyh(y)
—Y Zi,2_y
— [ d dyh(x d dyh(z)h(y) ———=
=3 “'/ v —y)ﬁwéz /D s <y)<w—y>2>’

(3.136)

where the range of the spin sums goes from 1 to either V; or N, as indicated by
the spin subindex. From now on, we will focus exclusively on the terms under the
functional integral. To express the integral of Equation as a Gaussian integral
over the function h, we first need the domains of the integrals under which the function
h appears to be the same. Here, we can use Mobius transformations to change the
domains D, and D, to a common one that we will name D. A very natural choice
would be for D = R*, which would then make D = R™. If D, = ~,(D) and D,, = v,(D),

then obviously D, = ~,(D) and D, = ~,(D), due to the biholomorphicity of the Mobius
transformation. We parametrize these transformations by

a;w, + b;
y:/yl(wy>:— , a, b,,c.,d. € R (3137)

19 Y Sy g
cwy, +d;

Changing variables employing these transformations, both for the boundary integrals
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3.4 The sewing condition for the free boson

and the spin positions as z, ; = v,(w; ;), one writes Equation (3.136) as

1 1 cw; 1 +dy
Dh — , dw, h .
/ eXp ( 271' ; Sz,l /l) wy (71 <wy>)wi71 —w Clwy n dl

Yy

1 1 Cow; 9 + dy
1 dw, h ’
o i 59 / Wy, (”)’2( )>Wz‘,2 —w, cw, + d,
1 1
+@ dwx dwyfl (71 (wm))h(’yl (wy)>(<,u——w)2
1 5} D z , Yy (3.138)
— | d d h o —w 2
+472 ww/D wy fo(V2(w,)) (’Yz(wy»(wx —w,)?

where one can now finally put together all the previously different integrals to obtain

h(m(wy)) cqw; 1 +d h(vo(w,)) cow,; 5 + d
/Z)hexp —i/dw ZS“ (n(wy)) iy 1 +ZS'2 (V2(wy)) Caw; o + dy

J

o Lo, [ do,——s [f1<wl< D0 (9,)) + Fola(er, ) h( ()]
ram [ o [ o, ——s [h<vl<wx>>h<m<wy>>+h<72<wm>>h<72<wy>>]>.
7 JpD D (wy, Wy

(3.139)

At this point, we can already start to see the structure of the Gaussian integral emerge,
as we have both a quadratic and a linear term in A, albeit their arguments are different
due to the different Mobius transformations required to make both domains be the
same. In order to move forward, we will now assume that there exists an integral
transform and an inverse of the form

hz) = /C o' K (z,aVh(z) | h(z) = /C K e )h) (3.140)

for unspecified domains of integration C' and C~" such that [, dyK (z,y)K '(y,z) =
d(x — z). Assuming such a transformation exists, we will further assume that it pre-
serves the measure of the functional integration, which means [ Dh = [ Dh, and
therefore that this transformation preserves the Schwartz space. An example of such a
transformation would be the well-known Fourier transform or the Hilbert transform.
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3.4 The sewing condition for the free boson

Inserting the expressions for h in the transformed basis, one obtains

/Dﬁexp(
- K(w,,v,(w,)) ciw; 1 +d KW, vo(w,)) cow: o +d

—L/dw;h(w;)/dwy 5 ( y 1 ( y)) 1Wi 1 1 Z - ( y 5( y)) oW o 2

21 Jo D - Wi —w,  Cw, +dy > Wig =W,  Cow, + dy

1 /7 ’ 1 / /
tig [t [, [ do, e [ ) 1 0) + RO K 7500

z Wy
- - K(w.,, v (w, ) K (w), 71 (w,)) + K(w,,, K (W, vy(w

L1 dw;dw/h(w;)h(w')/dwxdw (Wa Y1 (W ) K (wy, 11 (wy)) + K (wg, Yo (wy)) K (W), Y2 (wy)) |

872 Jo Y " Jp Y (W —w,)?

(3.141)

THE GAUSSIAN INTEGRAL

To reach the final Gaussian integral form, one collects the terms linear on % and those
quadratic in separate terms as

Wy 11 (wy)) cw; g +dy K (w,,v2(w,)) cow; o 4 dy
( y7f17f2 = T35~ [/ 2811 y +ZSj,2 = 2 ’

Y

15 [a /D — [f1<vl< DK (10 (,)) + Fal3a(0,) K (), 72(0,))]
g (3.142)

and

K<wlx7 Al (wx>)K(w;7 TN (wy)) + K( Wy 72( )>K(w;7 72(wy>)
dw,dw,, 5 ,
D (wx - wy)
(3.143)
where we have made explicit the dependance of 1 on the Mobius transformations
involved in the specific sewing scenario. With these definitions, Equation (3.141) be-
comes

W(w;n w::/a Y1 72) =TT 5

7 /7 / ’ 1 / /7 I\ / / /
/ﬂhexp (—i—édwyh(wy)J(wy,fl,fQ) - §/dexdwyh(wx)h(wy)W(wl,,wy,71,72)>
(3.144)

This Gaussian functional integral is very well known, and ignoring a potentially infinite
pre-factor constant, its solution is given by

x exp (2 /dw dw,,J (w;af17fz)W—l(w;,w'y,vl,%)J(w;,f17f2)> ; (3.145)

where W' (w),,w),7,,7,) is another function that fulfills

/deW(wm,wz,”yl,%)W1(wz,wy,’yl,72) = 0(w, —w,), (3.146)
c

and therefore acts as the functional inverse of the Gaussian Kernel. Finding this inverse
kernel is, in general, very hard. However, some solutions for this family of kernels can
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3.4 The sewing condition for the free boson

be explicitly found in the theory of Hilbert Transforms [197]], and more specifically in
the realm of finite Hilbert Transforms [[198].

In order to aid with intuition, we present here two examples of kernels and their
respective inverses. The Hilbert transform of a function f is denoted H|f] = f, with
f € LP(R), 1 < p < oo and it is usually defined as an integral over R

dof ()

x—1

Hf]t) = —(p.V.)/R : (3.147)

where ¢ € R and hence as a convolution with the principal value distribution. The
main result from which we depart, is the convolution of the principal value with itself,

H [p.v. <é>} — (3.148)

which is precisely the kind of expression we wish to achieve for the Gaussian kernel
W (x,y). The first step in constructing such an inverse, is to derive a similar expression
(3.148)

the regularized distributions of the principal value and the Dirac distribution

p(le)-1(Ao+ ).
T 2\x+1e x—1¢

] 1 1 (3.149)
5(:13‘,8) - - T . )
2w \x +1e T —1€
where z € R, ¢ € R, ¢ > 0. Then, if one integrates by parts in the l.h.s of
1 1
51> P(—,sl) = Lol — e, te), (3.150)
r—Uu T
one obtains
/de’ (x 1 ) log [(z —u)?*+ €3] = —u, ey +&5), (3.151)
a _

which is much closer to the functional form of W (z,y). However,the logarithm in
Equation is far from being our desired inverse, as the domain integration is
R, whilst the domain of integration found in the Gaussian integral can in general be
finite. We thus turn our attention to the theory of finite Hilbert transforms, defined by

HIJ]() = %(p.v.) / ' dgff_(j ), (3.152)

where f is supported on the domain [, b] and ¢ € [a, b]. In [199], an explicit inversion
formula for this transform was found, given by

_ arH(f)@)
£(t) = - — (/a e V(@ —a)b )+/a £ )d), (3.153)

with f € LP(R). The simplest case is to consider a semi-infinite line with ¢ = 0 and
b — oo, and if one demands that H[f](z) = §(z — u),u > 0 then

_ el
ft) = \/;u_t (3.154)

73




3.4 The sewing condition for the free boson

which one can then use to derive a similar expression to Equation (3.151)). By basic
integration techniques, one finds

> ds _ ds
6(t—u):/0 s—t[u—s_ TEE 2Arctanh <\/;> (3.155)

which is then our desired inverse. As a general rule of thumb, we see that these inverses
have branch cuts when studied as complex functions, which will become relevant later
on.

For the time being, we will proceed forward by leaving it as an arbitrary unknown
function. We will see that we can derive it by comparing the expressions found in this
functional via sewing with the corresponding functions that correspond to a functional
directly defined with the characteristics of the sown functional.

THE FINAL SOWN FUNCTIONAL

The next step is to insert the currents from Equation (3.142) into Equation (3.145),
which leads to

exp (2/dw dwy, W (wh, w1, 72) [SS (W), w)) + SB(w),, w)) + BB(w), w)]>,

(3.156)
where we have already grouped up all the terms that will become spin-spin terms in
SS(w,w,), the ones that will become spin- boundary ones in SB(w;,w,) and the ones
regardmg boundary-boundary terms in BB(w,,w,). The explicit expressions of these
kernels are

SS(wy,wy) = o 2/dw /dw”

K(wy, 11 (W) cw; 1 +dy K(w, Ya(wy)) cow; o + dy
Zsm Z 3,2

S .

7 Y Yy

xa%( ))C1wk1+d1 ma%( ))Czwz2+d2
ZSM 2512 )

(3.157)
/ / 1 V4 V4

Wy 11 (wy)) cw; 4 +dy (W Y2(w,)) cow; o + dy
(ZS” Wi —w, Cw,+d 2572 Wjo — W, Cwa+d2)
<<f1(71(%;>)K( Wi, Y1 (W) + fa(va(w ))K( 957’72(“7;))))
(w2 _Wy)z

1 "
= dww/dey/dey

(Why Y1 (wy)) cywyy +dy (Wi, Yalwy)) cowy o + do
Zskl Zsl,2 ”

W — Wy Cwy +d; 7 Wi —wy  Cowy +dy
((fl(”h( wy ) ) K (w ya%(wy)) + f2(72(wx))K(w;772(wy)>>>
(wz - wy>2 |

(3.158)
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BB(w,,w,) = 167r4ﬁdw /deﬁ
1 (7 » 11

((f 1 (wi) K (wg, 71 (wy ))+fz(Vz(WZ))K(w;ﬁz(w;j)))>
(3.159)

(wir — wy)Q
<<f1(71(wx>)K(Wya 71(%,)) + f2(72(wz))K(W;p 72(%))))
(wx - wy>2 ‘

To start simplifying all these terms, we will first get rid of the integral transform by
defining the transformed inverse kernel ! to be

~

Wﬁl(’Vj(WZ)a%(Wy» /dw dw K( y772< >>Wﬁl(w;7w;7’}/1772>K<w;:77j<wg/;>)7

(3.160)
such that now all the previous integrals can make use of this definition to get rid of the
integrals over the domain C and where we have omitted the dependence of W' on the
original Mobius transformations for the sake of easing notation. With this definition,
the spin-spin terms are simplified to

1 / / — / / / /
E/dwmdwyw 1(wm7wy;71772>83(w:c7wy) =

cyw; 1 +dy) (crwy, 1 4+ dy) W (g (W), 7y (w
1 dw /dw” Z 518 kl( 1951 1) (Crwy 4 1) (71 (wy ), 71 (wy))
872

ik (crwy +dy) (cywy +dy) (Wi —w,) Wy —wy)
Clw 11+ dy) (cow o +dy) W‘l(%(w;’),% (w,))
+ Z S; 1Sl 2 d 7 "
(crwy +dy) (cowy +dy) (w; 1 —wy) (w5 —wy)

N Z . (Cow; o +ds) (cwy 1 + dy) Wy, (wy)s v2(w,))
5271 (cowy +ds) (crwy +dy) (wjo—w,)(wy —wy)

N Z (cow; o + dy) (cow; o + ds) W71<72<Wg)7’72(wy))
752012 (cowy +do) (cowy +dy) (Wjo —w,) (W) —wy)

(3.161)

and if we now undo the Mobius transformations we obtain

W‘l(y” y)
N ,N ” )
SS({%,b31‘,17%7273]‘,2}@;:12 = 8 QZ zlskl/ dy/ d?/ (

—y) (21 — y”)
1/
+ @ ; 8i,151,2 /131 dy /[)2 dy” (Z“M_/ y)iil;yi y’)
tg s [ v W V_Vlikly)— 7
8 {712 Z 55,251,2 / dy/ dy” d y)((yz;/,’zyi y')
(3.162)
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3.4 The sewing condition for the free boson

In Equation (3.162)), we see how sewing has generated all the necessary spin-spin terms.
The first line corresponds to the interaction of one of the spins from /', with the sewing
boundary OM ¢ and with one of the M, spins again. The fourth line corresponds to the
same situation for the spins in 2 ,, and the second and third lines are the interactions
between a spin from ), and another one from M ,, which arises as a new interac-
tion from the sewing procedure. To further derive the form of W' we will compare
this result with the corresponding functional constructed directly as M = M, U M,
but before doing so let us also bring the rest of the terms to a form suitable for this
comparison.

After using Equation on Equation the spin-boundary term arising
from sewing simplifies down to

]- / / — /7 / 4 /
3 [ ded 20,7 S Bl ) =

1 V4 Va
~ 163 ﬁdww/dwy/dwy

+Z Si (erwis +d) fi (3 (@) W (@) m (@) + W @), m (@)

clw +dy) (w Wil _Wy) (wy — Wy/;/)Q
+Z (crw; 1 +d )fg(vg(w;))( (@), 11 (wy)) + W (@), Ya(wy)))
%1 (crw, +dy) (Wi —w,) (wy — wyy)?
+Z 02w32+d2> fl(’Yl((«U;)) ( ( ( /y/>772(wy)) +W71(72<wy>771(w;;>>>
“52 (cowy +da) (wjo —wy) (wz — wy)?
+Z 02w]2+d2) fg(’)/g(wx)) ( ( ( 5)7’72(“}3/))+W—1<’72<wy)7'72(wg>))
%32 (o, + dy) (wjo —w,) (we — wy)?
(3.163)
which after undoing the corresponding Mobius transformations the result is
{zz 15 54,117,255 32}N1 e 1 fol =
, , fi") W y) + W (y,y")
d d d
167r32$11ﬁ ’ /Dl ’ /Dl yu y (" —y")?
, , L) Wy y) + Wy, y”
3211[d$/dy/dy ( ( //> //2< )>
167 D, D, D, %1~V (" —y") (3.164)
" " fl( ) ( i (yﬂv y) + W_l(:% y”))
= . d d d
167T3 zj: %2 Jél ! /D1 Y /172 yzj,Q -y (2" —y")?
J[ /// /// f2(x”> (W_l(y”,y) + W_1<?Jay”))
— Sio dx dy dy
1673 < 7% Jp, D, D, Zj2—Y (" —y")?

As before, we can interpret both first(last) lines as the interactions between the spins
in M) with the final boundary function index f;,, that originally came from the
same functional. Therefore, the second and third lines correspond to the interaction
between the spins on M ;) with the leftover boundary function of 2. Lastly, the
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3.4 The sewing condition for the free boson

boundary-boundary term becomes

1 / / — / / / /
§/dwmdw W 1<wx’wy771772>BB(wm7wy> =

1
d d d// d//
e o o ot o

<f1(71(wx))f1(71<w )>W (1w )71(‘*’ ))+f1(71(wg)>f2(72(w ))W (v (”) Yo(wy )
P2 (W) Fr(n (@ DW ™ (a(wy)s 11(w0y)) + Fo(a (@) fa (Yo (wa )W (1 (), 72 (wy))) -

(3.165)
and as before, undoing the Mobius transformations yields
” ” fl W 1<y 7y) ( )
f1s f5] j[ dx / dy j[ dx / dy
[ 1>J2 32 4 B, b, D, T’ y//> (CC )
V4 1
+ 32 Z de | dy | dz” dy” /i l‘//) //)(( ol )g 2
2 D Y Y (3.166)

(@”
(
(
//f2<$”> 1( ,Y) f1()
(z” — y”) (z —y)?
folz

V4 ” ) ( )f2< )
i [

As in the previous terms, the first and last term corresponds to the self-interaction
of the leftover boundary functions f, ) from M, through the one that was sowed
in OM 4. The second and third correspond then to the new interaction between the
leftover indices of each of the original manifolds, such that the final manifold M =
M, UM, contains interactions between the functions on its entire boundary 0.

We have finally collected and simplified all the terms that have arisen from the
sewing integral, and we can, therefore, bring back the non-sewing participating terms
that we grouped in the constants B; = and ZB; B, at the very beginning of the com-

1
putation to obtain the final result of the chiral sown amplitude

N NN )
[f17f27{zzl7 Si1,%5,2)S 32} Tl =exp (SSSW {71081, j,2> 32}”1 7]
Ny, N.
+5 By {%’,17 5;1>Wj 2 Sj,2}i7;:12 , f15 fal
+BBsw[f17f2])

(3.167)
where each of the terms is given by

Sst[{Zi,la 8; 11 %5,25 33’,2}?3;1;[2] =

1 1 Wy, y)
+=) 8,48 log |z, — 2 +—/ dy/ dy”

2 22’1; ,1°k,1 ( [ ,1 k,l] A2 b, b, (22'71 _ y)(sz — y/,)

1 1 (WY ) + Wy, y")) (3.168)
+5 Z SinSier | [ dy ~

2 il 4 Jp, D, (zi1—Y) (22— V")

1 1 s WY y)
+ = S; o8 log |z, 5 — 2 —|——/ dy [ dy ,

92 32,2: 73,2°1,2 ( [ 7,2 l,2] Q712 b, D, (Zj,2 _ y) (Zl,2 _ y//)
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3.4 The sewing condition for the free boson

N,,N
SBsw[{Zi,p31‘,17%,2753',2}1’,;:12 , f1, fal =

., 1 ) 1 Wy, y) + W y,y")
__ZS”J[ = hE) [ 87r2/p dy / Z1 =Y (z” —y")? ]

1

- T 2 “ﬁ dx”/ / ( ) (VAT ' (;{/)jy’M//)Q (v.9"))
ayudclel st

1

V4 V4 1 V4 (y//7 y) + Wﬁl(y’ y”))
——ZSjQJ[d.T f2(x> 2/ dy / dy ” 7”\2 )
2m J D, Zjg — " 87T D, %2 (" —y")
(3.169)
and
BBSW[fl? 2] -

1 v 1 1 , Wy y)
+ 87‘(’2% d(TﬁD dx fl(x )fl(x> [(33”—33)2 + 472 Ll dy /D dy( ” y//> ( y)2]

1

1 p @)WY y) + Wy, y") fal@)
+ 3904 ﬁD2 d-r/D2 dyél dzx /D1 dy (I'/’—y”)2<1'_y>2

Wfl Vi
dx,/f2<$,,>f2<x)[ 1,1 /dy/D dy”(l‘” y”(y,y) ]

(z” —x)*> 47 Jp, " Jp, —y")*z —y)?
(3.170)

Equation (3.167) alongside Equations (3.168)-(3.170) is the resulting new tensor that
arises from an arbitrary exact contraction.

COMPARISON AGAINST AN EQUIVALENT UNSOWN FUNCTIONAL

Within these expressions, we have assumed the existence of the kernel W1, which we
will now attempt to find. As we have mentioned before, we will do so by comparing
the result of the tensor arising from sewing against a tensor defined directly in the final
manifold M = M, U M, with spin density corresponding to p = p; + p,, which fixes
both their values s, and positions z, to be the ones of the original manifolds.

Because we choose the spin positions to be the same in the coordinate system of the
original manifolds, their image in the UHP under the respective conformal maps will
be different because g,(z; ;) # g(z;,). We will denote the spin positions in the UHP
obtained via the conformal map that defines the final tensor g(2), by g(z; ;) = p, ;, and
the ones obtained via the conformal maps of the pre-sewing manifolds by g,(z; ;) = 3, ;.
A similar situation is found for the notation of the unsown boundary functions f;, f, of
the original manifolds, where they will be compared against the functions of the final
tensor hq, h, that are defined in the same parts of the boundary as the originals, but
whose image in the UHP will be different. Figure showcases these identifications
and notations.
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3.4 The sewing condition for the free boson

<

Figure 3.8: Diagrammatic showcase of the notation used for the comparison between the result
of sewing two tensors and the final tensor.

We begin by first writing the UHP tensor of the final amplitude in this notation as

c 1
Al [has o {pss 530t ) = exp (+§ Zsisj (log [(u; — Nj)])

ihj

1 / 1
— s, dyh,(y dyhs(y
2 ( <>u-—4/ .é; ?

f

{ 1 / 1
d dyhy(x)hy( d ho( —
87?2 oF mD yho(z)hy( (x_ 2 o x/D yho(x >(x—y)2

;
1 / 1

dz [ dyhy(z ,
s D b, " )( ?/)2)

f

(3.171)

where D; = g(0M,) and D_f = g(OM,). We can further split the sum over the spin
indices as >V . 5, = Zflll Siq+ Zgjl Sk.2» such that each sum corresponds to the spins

=11
originating from M, or M ,. After this split, we demand that
flc f1af2» {Bz 1584,15 Pj,25 3,2}5\7;’]1]2 = A@ﬁnal Ay by, {1, 85 Z]\il] ) (3.172)

which will provide the necessary constraints to extract the unknown kernel W~'. We
will begin identifying terms by first comparing the spin-spin terms of both sides.
The spin-spin term coming from the final amplitude is given by

N N,
1
+3 Z s;s;1og [(ps — ) =+5 Z $;15;1108 [(Mz 17 M1 )]
N2 Z‘7]\[17]\[2 1 N17N2
+3 Z S;25;2108 |( [( Pio = Ij2) )] + Z $;152108 [(Mm _:U’j,2>] + > Z 8;.15;2(im)
ij=1 ig=1

(3.173)

where the last term is a spin-dependent phase factor that factorizes to the front of the
exponential. The spin-spin terms from the resulting sewing tensor are given in Equation
(3.168). We then start by equating the terms that multiply the sum that includes the
spins from M ,, which yields

Hi1 — K1 1 / / , W‘l(y”, y)
lo = dy | dy , (3.174)
s |:Bi,1 - Bj,l] Ar* Jp, D, (Bix —9)(Bj1—y")

’
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3.4 The sewing condition for the free boson

where if we restore the dependence on the original spin coordinates via the conformal
transformations g, and g, we obtain

9(zi1) —9(zj 1) 1 / / W_l(y”,y)
1 ’ ’ = d dy” . (3.175)
o8 [91(21',1) - 91(%‘,1)] 42 D, Y D, Y (91(%,1) - y)(91(zj,1) —y”)

This is the first equation that provides us with information for obtaining W', and
by equating the terms that arise from the products of spins from )7, on both sides of
Equation (3.172)) we obtain a similar condition

9(2;2) — 9(2,2) 1 / / Wy, y)
| ’ ’ = d dy” . (3.176)
o8 [gz(zm) - 92(%‘,2)] 42 D, Y D, Y (92(%,2) - y)(QQ(Zj,2) —y”)

When comparing the terms that correspond to the spin-spin interaction between M,
and M ,, we obtain the condition

log [9(%‘,1) _g(zj,z)] = L/D dy/D dy” <;V1<Z <13; ))—(l—VT(/ () ?/> (3.177)

These three equations already provide us with means for obtaining W, but let us first
find the rest of the equalities by exploring the spin-boundary and boundary-boundary
terms.

Let us begin with the boundary-boundary terms, where the terms coming from the
final tensor on the r.h.s of Equation (3.172) are given in the UHP by

1 1 1 1
vk Adaz JLdyhx Jha(y) — b e [ ot ——

f !
+— dx/ dyh,(x

( y)2’
(3.178)

and this expression should be equated term-by-term against Equation (3.170). How-
ever, the integrals on both sides pertain to different subdomains of R, and therefore,
these expressions need to be sent to the same "gauge” through more Mobius transfor-
mations. If we denote by +,(D;) = 51771(Df> D, and 72(Df) D2,72(Df) D,
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such that z(y) = v;(wy
B w[fla fz] -
1

[

+_
2
8 ;

1

dw
47'('2 D

f

= [

f

327T4

Wy
Y

/

/Df
Dy

4
W,

de

), then Equation (3.170]) becomes

/ Ao 1 (1 (W) Fol(a(ey))
Dy

AL LN ) [ s
W), 20(,)
<W —wy)?

(3.179)

J[ dw;/ dwy<W1<71<wy)7?:2<wy>”> + W (1a(w,), 71 (@)
Df Df (waz — wy>2(wa¢ _wy>2

1 p p 1
+@jéfdwx Jéf dwy fo(Va(wy)) fo(v2(w,)) m

1 L W (v (w)), va(w,) |
+m /Df dwy /Df dwy (W —wg)Q(wm —wy)Q_

Now, we can start comparing the terms within the integrals individually. Comparing
first the terms with integrals over D, we obtain

x—y) Wy, (W), w,
R e ) ) e

(3.180)
which allows us to infer the behavior of the integral found within the brackets in
Equation ([3.180). Because the product of Schwarz functions is again Schwarz and the
L.h.sis one such product, the r.h.s must be Schwarz again. Therefore, whatever function
arises from the integral in the bracket must result in a function that does not spoil the
product f, f; from being Schwarz. Thus, it must be a bounded smooth function with
bounded derivatives. .

Analyzing the terms that go with the integrals over D, we obtain a similar expression

— // (72( ) Yo (wy>)
o) = oo 11 0al0) (15 55 [ [ B TR
(3.181)
and comparing the crossed-terms we obtain
hy(2)hy(y) :f1(71(x;)7rj;2(72(y))
, (z = )> (W (3 (@), 12 (wy) + W (), 71 (wy))
f 5 ), (v — w2y — P |
(3.182)

which concludes the comparisons on the boundary-boundary terms.
All that is left are the spin-boundary terms, which are the most complicated as they
are not gauge-invariant due to the chiral truncation. The terms arising from the r.h.s
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3.4 The sewing condition for the free boson

of Equation (3.172) are given by

N
1« /
—— s; dyh, (y -l—JLdyh
27%2_; ’1( D, le D, o i —Y

f

1 1 1
52 Si2 dyh, (y) + [ dyhy(y) :
T3 Dy :ui,2 -y D Mi,2 -y

(3.183)

f

and the corresponding terms from the 1.h.s of Equation are the ones found in
Equation (3.169). As with the boundary-boundary terms, we can not start equating
terms because all the integrals are defined over different subdomains of R due to the
different conformal maps. Using the same conformal maps as before, we can rewrite
Equation in the gauge of Equation (3.183) as

SBSW[{wi,l,Si,lawj,Q; SJQ}f\]Jl:];IQ S fo] =
(crw;q +dy)
- d V4 s
2811/ wg f1(71(w3)) [(wi,1—w;£)(clw§2+d1)
[ s ,[ (i1 + ) (0(@) 1 @,)) + W () m ()
87r2 <Wz',1 — wy)(clwy + dy ) (wy — wp)?

- ﬁ Z Si1 ﬁDf dw, fo(va(w))
/ dwﬁj[ dw, (erwix +d) (W () 1 (@) + W (@), 7 (@)

(%',1 - wy)<clwy +dy) (wz — Wg;/)2

—1 / 4 V4

- Sje [ dwpfi(mi(w;

1677329-: J,2 b, 1 (7 (wg))

JZ dw"/ 1 ez + )W (W), 15(@y)) + W (3(w)) m ()
Dy b, ' (w0 — wy)(cowy, + do)(wg — wy)?

U £ 732 5

1 dw,,/ o, (caw; o + do) (W 1(72<w§j>,72(wy))+W1(72(%),72(%)))]’

87T2 (ZCU] 2 y)(CQWy + d2><w;t/ - w:l,;)2

(Cowj o + dy)

(wjo— wy ) (Cowy + dy)

duwy fo(Y2 (W) [

f

Dy
(3.184)

which is an expression ready for comparison. Comparing first the terms multiplying
the s, ; and running along D, one obtains

(:ui,l - y)(Cl%,l +dy)
(wi1 —y) ey +dy)

hi(y) = f1(71(y)) {

ﬁ dw'ﬁ dw (crwig +dy) (w1 —y) (WA(%(W;Z),%(W;;)) + Wl(’h(wy)»’h(f"f;/)))l
D, )(Clwy +dy) (y — wy)?
(3.185)

which is a priori a surprising expression. The surprise stems from the fact that the
resulting boundary function seems to depend on the spin positions through the gauge
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3.4 The sewing condition for the free boson

transformations. This is, however, a consequence of the chiral truncation, as this phe-
nomenon can already be seen in the gauge transformations shown in Equation (3.54).
Equating now the terms that go with s, ; and D, one gets

ho(y) =— fo(12(1))

)

2
/ ﬁ (tix —y) (w1 + dl)(wfl(’Yz(wZ% Y1 (wy)) + Wﬁl(% (W) 12 (w
D,

(wi71 - OL)y)(cl(")y + d1><y - w?/j)Q
(3.186)

which again has a phenomenology similar to the last term. The final two comparisons
yield

M (4) =551 (1 (0)
[ a / (42 = 4) (e + d) (W~ (1)), 10(0,)) + W (2(wy) 1 )))
5, (@52 — 0,0, + ) (y —})?
(3.187)
and

(1152 — Y)(cow; o + do)
(Wj o — Y)(cay + dy)

ho(y) = fo(r2(y)) {

1 dw”/ do, Czwj 2 o) (10— y) (W (@), (@) + W (75(w,), 72(w)))
87T2 Y D Wjo — y)(CQWy + d2> (y - UJZ)Q

(3.188)

Because all of these equations must be valid simultaneously we can equate either Equa-
tions (3.185) and (3.187) or (3.186) and (3.188) to extract more constraints on W ".
These constraints can then be supplemented with even more constraints arising from
the comparisons from the boundary-boundary terms from Equations (3.180)),(3.181)
and (3.182). This is the final step missing for the completion of the proof of the arbi-
trary sewing condition, which will lead to the completion of the upcoming paper.

As a final note, it is possible to isolate W' from the sp1n spin comparisons, albeit
with some assumptions on its behavior. Assuming that W' contains no branch cuts
that can spoil the forthcoming contour integrals, then from Equation (3.175]), one can
invert the equation by

7§ d91( )?g d91( )log [ gzi’li_zf? 1))] =

47@/ dy/ W) ) o %ﬂgl“ﬂ"l)@xzi,n—y><1g1<zj,1>—y”>

1

:—|D1| W <91<Zj, ) (2%1)),

(3.189)

where | D, | stands for the length of the real interval D,, and jiD means a counterclock-

wise contour integral that encircles the interval D, entirely. Similar equations can be
obtained from Equations (3.177) and (3.176) following the same logic, but it remains
to be checked whether this solution complies with all the constraints derived from the
sewing condition.
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3.5 The closing condition for the free boson

3.5 THE CLOSING CONDITION FOR THE FREE BOSON

In the previous section, we presented the most advanced proof of the arbitrary sewing
condition. Although not fully complete yet, its current form already provides enough
information to start tackling the computation of the full contraction of the fTNs, which
is the closing condition. The closing condition is nothing but the sewing condition
in the scenario in which no functions are left un-integrated according to some chosen
pattern that defines the underlying topology of the state. In the simplest case, we sew
two open boundaries together to reach the topology of a sphere, which is also a plane or
an infinite cylinder due to conformal invariance, which corresponds to the translational
invariant scenarios. One can think of these closing conditions as equivalent to the

oo\

[ Dh

Figure 3.9: Diagrammatic representation of the closing condition leading to a wavefunction
with the underlying topology of a sphere.

contraction of a TN with periodic boundary conditions. Alternatively, one can also
choose to integrate these open functional indices against another functional to simulate
the open boundary condition scenario, whose simplest form is to fix the functions such
that a number is obtained. We can diagrammatically represent the periodic boundary
condition scenarios as shown in Figures 3.9 and

h

— th2h2<> BRI x>h2

Figure 3.10: Diagrammatic representation of the closing condition leading to a wavefunction
with the underlying topology of a torus.

In the section in which we presented the Mobius transformations of fTNS, we also
stated that for these transformations to be "gauge” transformations of the chiral tensor,
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3.5 The closing condition for the free boson

it was important that the resulting wavefunction remained invariant. We will now
prove the closing condition to the topology of a ball, which was already proven for the
fMPS case in [186]]. However, we will perform this computation with the machinery
developed in the UHP and in an arbitrary gauge, such that we can show that Mobius
transformations are indeed a gauge transformation of the tensor.

CLOSING CONDITION FOR A SPHERE TOPOLOGY

Our starting point is then a chiral tensor in an arbitrary gauge in the UHP given by

Aﬂc% [f’ {7(wi) s 7{11} = &XP (+% ZS % (log [ YT )] *log |:((I4 ifgﬁ'iilisigw‘)} )

1 ~ 1 agw; +ay
= | d
%;sz [t [wi N

= 1
87r2 dw /dw f ) f(y(w ))'(wm_wy>2>'

(3.190)

The first thing one notices is that the second term of the first line can go out of the
exponential to become

(aga, — a1a3)21 iz eXP ( Z ZS log [(ay + agw;)]

2 Zsizsj log [(a4 + a3wj)]> -1

(3.191)

due to the charge neutrality condition ) |, s; = 0. With this simplification, we can now
proceed to execute the closing condition by splitting the function as

f(1(w)) = h(7(w))O(w € D) + h(y(w))O(w € D) (3.192)

where the manifold D is fixed because of the conformal map g by whatever split of
the original boundary M was chosen, as depicted in Figure (3.9). However since we
added the arbitrary gauge, we can choose without loss of generality that D = (0, o¢].
As part of the sewing condition, we identify the points h(vy(w)) = h(—(w)). With this
split, one then performs the closing condition

/ DhAE, [y o hyyoh {y(w,),s;} Y] = / DhAE, [h, hy {y(w;), s; Y] (3.193)

as we assume that the measure of the path integral is invariant under such Mobius
transformations, and therefore it does not matter whether we integrate over all h or
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3.5 The closing condition for the free boson

~ o h. Inserting Equation (3.190)) into Equation (3.193) we obtain
/ 1 azw; +ay
Y [y
W; — Wy, AW, + Gy
1 1 azw; tay
— | dw,h
Z Szﬁ wyhle,) Lw — w,, azw, + aJ

w—w

1,

1

d dw,h(w,)h(w (3.194)
87T2 “ /D wyhleor) >(w —w,)?
1 1

d dw, h(w
e D N ﬁD “ )(w —w,)?
Lﬁdw ﬁdw h(w,)h(w );
82 Jp oy e G T )

which can be readily simplified by performing changes of variables on the different
integrals and the sewing identification h(w,) = h(—w,) to

H(Wi—w)%/ﬂ?hexp —izsi/ dw, h(w,) 1 agw; +ay L1 asw; + ay
i, J 21 & 0 YUY e~ wy agw, ay w tw, ay — azw,

1 1
— d dw, h(w
+47T2 W, / Wy, ) [(wx_wy>2 + (wI+wy)2 ) )

(3.195)

which is not very surprising given Equation (3.192). This equation is already in the
form of a Gaussian integral, with the current given by

4 4
T(w; 85, wy) = — o Z it 1 B TA) (3.196)
W — Wy gwy, +ay  w; +w, ay — asw,
and the kernel is given by
1 1 1
W(w,, =— . 3.197
(Weywy) = =5 [(% —o ) + o wy)Q} ( )

because the domain of integration is the entire real line R on all the terms. This is the
perfect setting to use the Fourier transform to find the inverse kernel, but in order to be
consistent with the sewing condition, we will finish this computation entirely in real
space. The inverse of this kernel on the positive real line is known from the theory of
Hilbert transforms [[197]], and it is given by

Wl(z,y) = %log (22— y2)?). (3.198)

After performing the gaussian integral in Equation (3.195) we obtain

H(w —w, Slfjjexp( / dw/ dw,,J wl,Sl,wm)W_l(wx,wy)J(w],S],wy)>.
27-7
(3.199)
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MO\ N\ M NN N N AN\ NN\ AN N
U U U WY o O U U A
_wy __ a4 aq wy
as as

Figure 3.11: Schematic representation of the pole and branch cut structure of Equation (??)

After inserting the expressions for the currents, one obtains

2i%5 1 asw; + a 1 a.w,; + a
H(wi—wj) = exp —225 / dw, / dw, { 2 St il 4}
-4 8T o W; — W, W, + a4 W; +w, ay — asw,

%]

To perform these integrals, we need to provide more details on the branch cuts of
W Hw,, w,) to extend these integrals to complex contour integrals safely. Given that
the integrals are over R, the most natural contours would be semicircle contours that
either close through the UHP or the LHP, given that the integrand is invariant under
W, — —Wy.

Let us focus now on the first integral over w,

Wj; — Wy agw, +ay Wi+ W, a4y — d3w,

Wil (wam wy) |:

(3.200)

1 AgW; + Gy 1 Asw; + ay

/ dw, W (w, ;Wy) , (3.201)

0 W; — W, AW, +ay  W; +W, a4 — 3w,
where we will choose the branchcuts of W~ (w,, w,) to go to infinity along the real
axis and thus close the contour through the UHP to encircle the pole at w,. As depicted
in Figure “ 3.11], there are another two poles located on top of the path of integration
at w, = i— As is usual in these kind of calculations, the integral over the big semi-

circle of radlus R vanishes in the limit of R — oo, while the contribution from the
small semicircles of radius ¢,,, ¢;, around the branch cut points vanishes in the limit
of €,1, €5 — 0. By residue techniques, the contribution from the pole at w; as well as
from the semicircles that dodge the poles on the real axis yield

T . _1,0
miW ™ (w;, w,) + imagW 1(@-2,%), (3.202)

where we have used that W' (—w,,w,) = W '(w,,w,). The next integral to perform
is then given by

a asw; + a asWw,; + a
/dwy(m'W_l(wz., w,) +i7ra3W—1(—_47 w,)) 1 37 T4 1 3Wj T Ay
R a3 Wj — Wy 3wy, +ay W + Wy Ay — A3W,
(3.203)
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3.5 The closing condition for the free boson

By using the exact same contour, this integral becomes

— W w;,w;) — 7r2a3W_1(—%, w;)
3
3.204
— W wy, =) — w2l W (2, 2 o
a3 az ag

Because of the charge neutrality condition, only the term that involves both w, and
w; will survive, which removes all the information about the gauge of the UHP as
promised in previous sections. This means that Mobius transformations are a genuine
gauge transformation of the tensor. Finally one inserts the form of W~ such that the

final result of the closing condition is given by

H(%’ —wj) 5 exp <_1_16 Z s;5;10g ((wf - w§)2)) i (3.205)

(2]

After bringing the terms from the exponent down one obtains

(Wi ooy wyy) = l_I(cuZ — wj)Tj (w? — w?)_sij : (3.206)

]

Vs, ..

Sn

which has to be the the wavefunction obtained from a CFT computation in which
there has been a conformal transformation from the UHP to another surface of genus
zero. At this point in time, this transformation is not quite fully understood yet, but
this computation serves both to illustrate how the gauge transformation of the tensor
does not affect the wavefunction as well as to provide an explicit example of a closing
condition. The final details of this conformal map will be finalized in the upcoming
work [1].

CLOSING CONDITION FOR A TORUS TOPOLOGY

The closing condition to obtain the topology of a torus is the next more natural step,
yet it involves a significant step up in difficulty, as the inverse kernel of the Gaussian
is more challenging to find, and we will have to perform a transformation other than a
Mobius transformations to bring the tensors into a form in which the Gaussian integral
can be performed on a connected interval. Because this is an unfinished computation,
we cannot write down the final wave function entirely in this thesis. What follows is
merely a showcase of the main structure of the calculation so that the main roadblocks
can be readily identified.

As with any closing, we depart from a tensor in the UHP, this time without any gauge
transformation given by

[ {Zp z}z 1] = €Xp ( ZS log Z —z])]
_—Zsi/dyf’(y){ 1_

87?2 dm/dyf y)2> .
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3.5 The closing condition for the free boson

and because we wish to obtain the topology of a torus, we cut the boundary function
as

F(x) = hy(2)O(z € D)) +hy(2)O(z € Dy)+h,(2)0(x € D3)+hy(x)O(z € D,) (3.208)
such that U | D; = R and the specific split in the subsections D, corresponds to the

one determined by the conformal map ¢ from Figure Inserting Equation ([3.208]
into Equation (3.207) we obtain

. 1
'/4 [h17h27h13h27 {Zza z}z 1] = exp < 2 Zsisj log [(ZZ - zj>]

4,J

_% i S; </D1dy+/Dde> hi(y) {zzl—y]_%zsz (/Dzdy+/]j4dy> ho(y) Lzl_
+8% /Dldx/D dy+2/D dm/D dy-l—/ngx/I)gdy) _hzi;xih;%)
h

(3.209)

In Equation (3.209), we see that we will have to perform a similar computation as
the one we did in the sewing condition, as all the integrals are over different intervals.
Following Figure we will first integrate over h,. By collecting all the participating
terms in this integral from Equation (3.209)), one obtains

/Z)hl exp (—— (/ dy+/ dy) l y]
L ( [ [ avea [ aof aye [ e dy> HEC
= (/D e dm) e (2 o] o —<yy>>>> |

If we denote by D = D, U D, a disjoint interval of R, and its complement D = D, U D,,
then we simplify Equation (3.210)) down to

Jruon( £ [ st
47r2 (Jé a(: >)
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3.5 The closing condition for the free boson

We can, therefore, write down a Gaussian integral as

/Z)hl exp(——/dx/dyh o)W, (z,y)hy (y) + /dle(sZ, 25, Y)hy (y>>

Wi(z,y) = (3.212)

27T2 (:v—y)2

1 1 1 hy ()
Ty (51 2,y) = —om L [ .
I(S’L < y) o' - SZZZ- —y + 47'('2 2 x(l'—y>2

Whilst we could again keep going by assuming the inverse of W, on the disjoint interval
D, we can no longer use Mobius transformations to bring any interval to the half-line
R* where we have more knowledge about the inverse of W,. This is because there is
no way to bijectively map two intervals into a continuous one using PSL(2, R) alone.
This is the missing piece of this computation needed to complete the closing condition
on a torus, and more work is needed to understand this problem.

To showcase the rest of the computation, we will assume that an inverse W, ' can

be found on D, therefore obtaining as a result of the integral

eXp( /d'r/ dle szz?x W (:U y>J1(8]7zj7y>>
§;S 1 ,
exp / d:z:/ dyW (z,y) 4 = S; dex -
<8ﬂ2 b Z (z; —2)(z; —y) 2; b (z—x)(r' —y)?
/ / h /
Sj j[dx/ ) 1 j[dx/ dy/ (1'2) 2/(y ) - )
(2" — ) Z; =) 4 D D YAy —z)
Now we can bring back the rest of the terms from Equation (3.209) to obtain

ho( ho (@) Ry
exp <+%Zsi8j log [(Zz _Zj)] - %Z:Sijédy{ ‘ y)} + 871T2 jédmdy>—)y)

l\DI»—t

(3.213)

> Z =Y (z —y)?
1 55, I, [ gy (@)
=) K RTLE >[;<zi—x><zj—y> 3 2 s P
_1 / hy(2”) 1 2 , ha(z)hy(y')
2 jz (z/ —x) (zj—y)+4 [)d Edy (x/—y)2(y/—m)2]>’
(3.214)

where we can again identify the terms that will become the currents and the kernel for
the integral over h,. We can then write

e (3 S won =)+ 5 [ s o B

J

/zth exp <—§jédxjédyh2(x)wg($,y)h2( )+ j[dng(s@, z;,Y)ho(y )))

(3.215)
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where the kernel and current are given by

11 1 o WY
w _ _ d d 3.216
2(7,y) Ar? (z —y)2  16m2 /D v /b Y (x—y" )2 (y—a’)? ( )

and

. Wfl .CE/, ’ + Wil /,LIZ‘/
JQ(Si, Z,”y) = —L Si _ 1 5 Zsi / dl’/ / dy/ 1 ( Y l) . 1 <§J )
2T & 5 Y 167 g D ) (x—y)(zz—x)

Z (3.217)
We would then assume again the existence of an inverse kernel W, ' so that we can
obtain the result of this final Gaussian integral. This leads to a function that no longer
depends on any boundary function and, therefore, corresponds to the contraction of
the fTNS. As this is only a showcase of this computation, we will not proceed further
than this point, as there are too many assumptions on the inverse kernels to extract any
meaningful conclusion about the final resulting state. As a final note, it is possible to
significantly constrain these inverse kernels in the case of the torus because the order in
which the sewings were performed, either with h, first and A, or vice versa, should not
matter. Therefore, comparing the closing conditions following both routes should give
us meaningful constraints about the inverse kernels. As there are still many lessons to
be learned about the inverse kernels from the sewing and closing conditions, we will
leave the rest of this computation for the upcoming paper.

3.6 OUTLOOK

In this chapter, we have presented a new ansatz for many-body states, which we name
fTNS. It is an ansatz that targets states whose wave function can be written as a corre-
lator of an a priori given QFT. Although it preserves the local structure of a TN in terms
of its theoretical construction, the virtual space must become infinite dimensional such
that correlations beyond area law can be obtained. We have focused uniquely on the
first known example of fTNS, the free boson fTNS.

We began by deriving the free boson fTNS from the first principles so that this pro-
cedure can be repeated for other free theories. We showcased how to understand and
remove all potential divergences within the tensor, most of them arising from the need
to normal order the underlying field theory correlator. As we always wish to target
chiral states, we showed how to perform a chiral truncation of the tensor and then
showed how Mobius transformations act as a notion of gauge freedom for the tensor.

We then briefly showcased the corresponding free boson fMPS as the tensor that
allows us to provide an exact MPS reproducing log-like area law correlations, a scenario
out of reach for MPS. We briefly showed its momentum space representation, a feature
of this tensor not commonly found in other fTNS, and generalized its sewing condition
to an arbitrary coordinate frame.

Our next step was to provide an extensive study of the free boson fPEPS, a candidate
for an exact description of gapped chiral topological order believed to be out of reach
for PEPS. We studied its regularization structure, as well as its connection to the fMPS
tensor and its chiral truncation.

The most important part of this chapter was the proof of the arbitrary sewing condi-
tion, which deals with exact contraction between any two compatible free boson fTNS.
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3.6 Outlook

Although the proof is incomplete, we have readily identified and highly constrained
the remaining pieces such that they can be soon found. We hope to provide the fi-
nal solution in our upcoming work, showing that fTNS can be contracted exactly even
though they possess an infinite dimensional virtual space.

As an application of the sewing condition, one can fully contract an fTNS to obtain
back a wave function. The underlying topology of the field theory that defines this
wavefunction can be constructed from the sewing recipe of the closing condition. In
this thesis, we have wholly shown how to obtain the topology of a sphere and only
showcased the structure of the computation that would lead to the topology of the
torus, as the missing piece from the sewing condition is also needed to finish this
computation.

In summary, we have presented the first examples of fTNS and their use cases. From
this point onwards, several open directions would be fascinating to pursue. In no
particular order, we want to highlight:

1. Fermions and Ghosts: The Majorana fermion and the ghost system [37]] are the
subsequent simplest free CFT actions whose fTNS could be explored. Obtaining
fTNS arising for different systems is an exciting avenue as then the relationship
between different symmetry groups can be explored as in Chapter 4] or new states
can be found by examining the closing conditions with different topologies.

2. Non-orientable topologies: We have explored the closing condition so that ori-
entable manifolds with either no holes or one hole are recovered. Already, in the
simplest case of fMPS, one could wonder how to recover a non-orientable surface
such as a Mobius strip by performing a modification of the sewing condition in
which the different boundaries get identified with a twist. This would allow us
to obtain more families of states out of known ansatz without deriving any new
sewing or tensor.

3. Numerical breakdown: A very appealing direction would be to consider a trun-
cation of the infinite-dimensional virtual space such that the tensor can be ex-
plored via numerics. Of particular interest would be understanding how the prop-
erties believed to be unique to the infinite-dimensional virtual space break down
once this is truncated. For fMPS, this would entail computing the entanglement
entropy and finding that it no longer behaves with a logarithm. In contrast, for
fPEPS, this would entail that the corresponding chiral correlations should break
and reproduce results closer to [[138].

4. G-WZW theory: The ultimate goal for constructing a model in the functional
space representation of fTNS would be to provide a tensor whose symmetry struc-
ture can be given by an arbitrary group G. This is possible because this theory
remains Gaussian thanks to the Wakimoto free field representation, which pro-
vides us with the hope that such a tensor can be understood and dealt with in
this language.

5. Topological order in fPEPS: As we will see in Chapter (4), we can understand
the SPT classification theorem of MPS in the context of fMPS. Therefore, the
most natural question, once we have obtained the fPEPS, is whether the classifi-
cation and signatures of topological order of standard PEPS theory still hold in
the context of fPEPS. This is a very natural next project after the results of this
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thesis, as it would hopefully cement our intuition that fTNS are a great natural
generalization of TNS.

. Algebratization of fTNS: While the language in terms of functional spaces is the
most intuitive, we have seen already that it is very hard in general to perform any
computation, and the few we can do are highly constrained due to the Gaussian-
ity of the theory. The breakdown of the QFT correlator in smaller pieces can also
be done within the language of CFT, leading to a definition of the fTNS tensor
as a bracket between Cardy states [[167]]. This would correspond to a more al-
gebraic approach that would serve CFTs beyond Gaussian free field theories and
hopefully provide a cleaner description for the sewing description. Ideally, this
would also allow us to explore other symmetry structures, such as the categorical
descriptions of TQFTs. This direction is, without a doubt, the most exciting and
potentially powerful one.
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4 FMPS AND SYMMETRIES

As we have seen in Chapter |3, we can define an co-dimensional object that we call an
fMPS tensor, which can be contracted as if it were a finite MPS to provide the ground
state of critical or chiral models. Although MERA is already an ansatz that targets
the correlations of a 1-dimensional critical ground state, fMPS retains the same local
geometry of an MPS. It is then natural to ask, what are the properties and results from
standard TNs theory, specifically MPS, that carry over to fMPS? More specifically, as
seen in Chapter[2| MPSs fully classifies SPT order in 1D. Can we provide a similar result
for fMPS? We will explore this question for the case of the WZW SU(2), free boson CFT
presented in the previous chapter.

4.1 SYMMETRIES AS FTNS

In Chapter[2], we presented several important analytical properties of TNS states, amongst
which the theorem that they constitute the exact groundstates of gapped frustration-
free Hamiltonians [200]. As such, it is important to understand and find represen-
tatives of all possible phases of matter generated by such Hamiltonians. This is a
problem known as the phase classification problem, which in the context of TNSs has
been positively answered for a wide variety of phases, including both the ones with
non-topological order but degenerate groundstates as well as proper topological phases
as shown in [15]. We will particularly focus on the results in 1-dimensional systems,
where our TN ansatz of choice are MPSs.

Phase classification for MPSs was positively and completely solved in several works
such as [201]],[202]] and reviewed, for example, in [10]. We briefly showcase the main
result we wish to understand in the context of fMPS. When a state is symmetric under
a representation U, of a symmetry group g € G and can be represented by an injective
MPS in its canonical form [[10], then the following relation holds

(4.1)

where the representation on the virtual space V, can in general be a projective repre-
sentation [203]. In equation form for an MPS tensor denoted A;ik,

Z(Ug)si,sjAfzj;m = Z(%)n,kAZfl(VgT)l,m7 (4-2)

s k,l

which holds, for instance, when G is a Lie group, and we can use the exponential map
to write U, (0) = ¢ where a € g is an element of the corresponding Lie algebra.

94



4.1 Symmetries as fTNS

Projective representations differ from linear ones in that they fulfill the more general
composition rule

V,V,, = e“lohy (4.3)

where the extra phase factor is known as the cocycle w(g, h) € #?(G,U(1)) which is
known to classify SPT order in 1-dimensional gapped systems fully [10, 201, |204].

The current known classifications are well established for gapped 1-dimensional sys-
tems, with classifications for gapless systems already studied, for instance, in [205-
207]]. Most of these results rely upon the computation of topological obstructions
computed from the underlying CFT of the corresponding spin model. We wish to ask a
similar yet methodologically different question. Is it possible to translate in a one-to-
one fashion the phase classification result of standard MPS to fMPS? In other words,
Equation is the main relation we wish to establish for fTNS. To answer this ques-
tion, we first need to identify the relevant symmetries for the free boson fMPS and
how they are represented on the discrete physical index and the continuous functional
space.

4.1.1 SYMMETRIES OF THE FREE BOSON FMPS

First, let us understand the physical index of fMPS. As we have seen already, the family
of states defined by the correlator in Equation [3.16]are the groundstates of a family of
long-range Hamiltonians as shown in [208]. One of the most simple examples is the
critical point of the Haldane-Shastry chain, defined by the Hamiltonian

Zi%;
%HS:_Z—JQ(Tz‘j—l)a (4.4)
iz (2 — %)

where z; are the positions of the spins in real space and 7,; is the spin permuta-
tion operator. This is a paradigmatic model of criticality, and its ground state can
be obtained from the state defined in equation (3.16) by choosing s, = +1, a = %,
Xs, = €™™*m=D/% and defining the CFT to be on a cylinder of circumference x N [37].

Since the spin-permutation operator for %-Spins is given by

) J

?u=%w+2@-a% (4.5)

it is clear that [# ,4,0,] = 0 ¢ = 1,2,3. Therefore, since there is no spontaneous
symmetry breaking, the ground state of this Hamiltonian must be invariant under the
action of the symmetry group SU(2), whose action on the physical index is generated
by the usual Pauli matrices.

We use the Hilbert space of the free boson’s boundary functions on the virtual space,
which is also a symmetry-extended CFT, the WZW SU(2), theory. As we have seen in
Chapter[2], WZW theories have as a fundamental property that their conserved currents
J%(z) form a current algebra, which is defined through the OPE

J(w)
(z — w)

where £ is the level of the theory and f,,. the structure constants of the Lie algebra g
associated to the G-WZW. The conformal dimension of all the WZW currents is h ; = 1.

ko
LWQNWMAY;f%ﬁ+§:iMC , (4.6)
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4.1 Symmetries as fTNS

While these theories have two independent current algebras, one for the holomor-
phic sector and another for the anti-holomorphic one, we will focus exclusively on the
holomorphic one. The SU(2); WZW theory has £ = 1 and G = SU(2), and therefore
fabe = 2ie .- At the same time there are only two primary fields, denoted by ¢, ng%,
to establish a connection with the more familiar spin representatlons While the field
¢, acts as the identity, the field gbl should be thought of as a spin-"2 5-spin” field, and

therefore we can understand the field components ¢, 1 as the correspondlng spin pro-
2

jections along a chosen direction. The Virasoro central charge and the fusion rules of
this theory are given by

3k B B B
=L d1xer=do doxdr=901 ., dxdy=¢  (47)
and the conformal dimensions of these fields are 7, = 0 and h1 = -. For this specific

theory, we can represent all of these primary fields and their currents in terms of the
compactified free boson field with radius R = v/2. Firstly, in terms of the chiral field
©(2), the currents are given by

H(z) =: i0p(2) :,

, (4.8)
Bt (z) = etiV2e®

where :: denotes normal ordering, and we want to identify these operators with the

usual spin operators J° < H(z), J* < E*(z). Then, the corresponding states that act

as the highest-weight states for the representations are generated by the primary fields

P 1(z) = e3P . (4.9)
2
which have the correct conformal dimension. As we already know from Chapter

performing OPEs amongst all these fields provides us with information about their
commutation relations. Among the currents, these are

BB ) ~ e Y,
H(2)E*(w) ~ % (4.10)
HUH ) ~ s,

which is nothing but an explicit version of Equation (4.6) for the SU(2); WZW. The
OPEs between primary fields and the currents are given by

E* (26,1 (w) ~ 0
d.1(w) (4.11)

(z—w)’

()61 () ~

which we can interpret as the effect of raising and lowering operators on spin eigen-
states. If one attempts to act with the raising (lowering) operator £*(7)(z) on the
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4.1 Symmetries as fTNS

highest (lowest) state of the ladder ¢, 1 then the resulting OPE provides no contri-

bution, and therefore destroys the state. Similarly, raising (lowering) with £(7)(2) the
lowest (highest) state ¢_ .1 provides us with the corresponding primary field ¢, 1.
2 2

Similarly, the remaining OPE is given by

H(z)gbi%(w) ~ (4.12)

(2 —w)’
akin to how o, would provide the value of the spin projection in standard spin theory.

We have identified the set of extended symmetries present in the free boson’s vir-
tual space beyond the conformal symmetries. We wish now to establish an analogous
relation to Equation for the free boson fMPS. Immediately, we are faced with a
significant problem: the symmetry algebra of the physical index is given by the su(2)
algebra and, therefore, is finite; this object plays the role of defining U, in Equation
(4.1). However, the symmetry of the virtual space is a current algebra, a Kac-Moody
algebra, and therefore infinite dimensional algebra since it is an affine extension of
su(2), as shown for example in [37].

To understand which object plays the role of V, in a possible generalization of Equa-
tion (4.1)), we begin by writing the Laurent expansion of the currents as

J(z) =) 2", (4.13)
nez

from which one can derive the equivalent expression to Equation (4.6) in terms of the
modes to be the Kac-Moody algebra relation given by

(T2, 8] = Zz’ b vm T ENGq 460 o0- (4.14)
C
From this equation, we immediately notice that one can recover the standard Lie alge-
bra relations for the generators if one sticks to the zeroth term of the mode expansions.
Indeed,
I8, J0) = ifave s (4.15)
C
which is precisely the standard finite Lie algebra relation upon which the affine exten-
sion is constructed. To obtain the zero modes from the currents in standard CFT, one
computes the corresponding Noether charges in radial quantization by
1
@ = — QpdzJ2z) = JI, 4.16
Q 277/6 0 & (Z) 0 ( )
where the integral encircles the origin. Because we now have again a finite algebra, in
fact, the same as the one in the physical index, we can use these Noether charges as the
field theory objects in the virtual space that will play the role of the V,’s of Equation
(4.1).

As a final technical detail, we must remember that our fTNS tensors are defined in
the UHP, and therefore one should use the definitions of BCFTs as opposed to the usual
CFT ones like in Equation (4.16)). Using the method of images, one should define the
correct Noether charges in BCFT as

Q= ﬁ fdzj(z) _ 1 /,\ dz (J(2) — J(3)). (4.17)

271
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4.1 Symmetries as fTNS

where now the contour is a semi-circle that only visits the UHP. We will use these
charges in the future, as failing to do so and using the ones from Equation (4.16) leads
to diverging results.

4.1.2 VIRTUAL SYMMETRIES AS FMPSs

Our goal was to provide the equivalent of the V,’s from Equation (4.1), and these must
be precisely the BCFT charges arising from the integration of the algebra currents of
the SU(2); WZW theory. By construction, the free boson fMPS from Equations
and is the corresponding fTNS of the vertex operator : e'*#*) :  and therefore
we know how to represent any vertex operator as an fMPS. This entails that we readily
have the two primary fields from Equation as fMPSs since these are simply vertex
operators and hence given by

Qsi%(zz) :AA f+7f7{zi7j:%} 9 (418)

and we will think of these tensors as the corresponding ”up” and "down” spin fMPSs.
Similarly, we can easily find the tensors corresponding to the raising and lowering
currents, which are given by

5 (2) <o —%/ZA (o fo {2 2v2)], (4.19)

where the constant y = —2i is a requirement for the correct normalization of the al-
gebra arising from the fMPS sewing condition, as seen in [[186]]. To obtain the H(z)
current, one simply realizes that the derivative of the field can be found by differen-
tiating the field’s exponential and then only retaining the first order of the expansion.
In equation form 9, : €'*9°) := jagd,p(z) : €292 ;= agH(z) : €*9°®) ., Therefore,
the fMPS representation of the U(1) term of the algebra is

ool fol

where we have introduced the parameter ¢ to take the limit and isolate the derivative
of the field, and the v/2 factors arise from the radius of compactification of the free
boson.

To check that these fMPSs indeed represent the current algebra, we can start by
checking the OPEs from Equation (4.10). To take these OPEs, one first performs the
sewing of both fMPS and then takes the z — w limit. These can, therefore, be easily
checked from Equation to ensure that we have found the correct fMPS repre-
sentation of these operators.

Let us start, for example, with the OPE of the raising and lowering currents, the first

98



4.1 Symmetries as fTNS

line of (4.10),
B ) o i [ 20, [ (5 V) A, o1 {3} -
LXX] f_ voe
*X {w, —/2} IAQ
X {z,v/2} IAl
o000 er voe
2 4N ~
= ’M_L—f _1 7 - f
4 AT (z — w)? =P ( 2/0 dkf(k)S2k, Ap) f(K) ) + s

(4.21)

with A, = A, + A,, the momentum integral is a shortcut notation for the propagation
term of Equation (3.78), and the expression correctly reproduces the first term of the
desired OPE. The fractions in the pre-factor have been left unsimplified to explain
where each of them is coming from. The first one, “72 arises from the normalization

of the currents as functionals, Ai arises from the conformal dimension factors of the

f
2

) an
amplitude, and TP ju B
of z — w. Because the expansion of the interaction term can only contain even terms
in (z — w), the second term of the OPE in Equation (4.10) must arise from the spin-
boundary term, the only other term of the fMPS that contains information about the

spin position. Taking the limit 2 — w of that term alone yields

lim exp( / Qe V2 — Vo (s F, (k) — emker f_(k)))

comes from the expansion of the interaction term in the limit

v sinh (TkA f)

' ke ( W2 (4.22)
— G the ™ (z—w b 7 ke e
=1t /de sinh (kA ) (e™sf, (k) — ™ f (k) + O ((z —w)?),

which is the promised linear term that arises from the first position derivative of the
expansion. Hence the OPE between the fMPSs of E*(z) and E~ (w) is

- e (_% [ ansian, Af>f(7~f>T>

7 ikeikw - fA - afA _l e’} N ot
"o /de;—sinh (7kD;) (e™br f (k) — e™ f_(k:>)exp( 2{ dkf )k, A ) £ k) )

+O((z—w)0), 423)

and one can readily see that the complicated prefactor that has appeared exactly corre-
sponds to the H(z) current as shown in Equation (4.20), as it is nothing but a position
derivative. The final result is then

o B V2v2lim, o 20, AN | foro 42 L
exp{ (—%/O dkf(k)ﬂ(k,Af)f(k)T)}+ L (z;g RG]
(4.24)

(z —w)?
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which perfectly reproduces the OPE and, therefore, allows us to identify the identity
operator in the functional space with

b =1 An [, ] {z0)] = exp{ (-% /OOO dkf () Qk, Af)f(k)T> } (4.25)

Let us now perform the OPE of H(z) with itself. This corresponds to

4, d>
H(z)H(w) +— 21lim lim —85’/@/1 [ , ,{z,—}}/l [,_,{w,—}}
(2)H (w) W 41,330 Gy 9/, fi9 /2 A, |9 f 2

o00 f_ (X 1]
eo0 f+ (X 1]
_ R Yy ! L —w) )
= 2exp{< 2/0 dkf(k)Q(k, Ag) f(k) )}!%qllglo ql%a 0, (usmh ( oy ))
1
= mﬂAf [fes fo {2, 0},

(4.26)

where in the step between the second and third line we have dropped all the terms of
the expansion that are regular in the OPE limit.
Finally, the OPE of H(z) with either of E*(w) will be given by

H(2)E*(w) + \/_5 llmhm 8 /ZDgflAl [f+,g,{ ,\;%H An, [g,f,,{w,i\/i}]

z—wq—0 q

o00 f_ (XX}
1 X foeva) IM
ﬁ llmz—>w 1Mg—0 q az J({Z’%} IAl
00 f+ oo
+q
— Z
— _E ;%(Ig% qa (Msmh ( oy )) Ax, oo £ {w, £V2}]
+v2

( 2 Af [f+vf {w if}})

T G-w
(4.27)

which is again the desired OPE.
Up until now, we have been using the symbol «+— to establish the identification
between the corresponding current and its fMPS representation; the reason for this
will now be made clear with the study of the OPE between the current and the primary

field fMPS representation. Let us begin with the simplest ones, the OPEs in Equation
(4.11)), where the first line reads

Ei(’Z)(bil ('U)) — _ﬁ lim /DgﬂAl |:f+?g7 {Za :l:\/i}] AAQ |:g7f—7 {w7 j:_l}:|
2 2 z—w 1 \/5 (4.28)
- Ltim |1 e VR B o
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4.1 Symmetries as fTNS

which is true because both charges have the same sign, and therefore, the expansion
of the interaction term in the z — w has no divergent terms whatsoever. On the other
hand, the OPE E7(2)¢, 1 (w) reads

2

B (2)p,1 (w) = =5 !L‘?U/ Pods [ 12 TV} Ao, {g’f_’ {m %H

W, +1
= _E ;gl;lu‘/qu |if+7f—7 {Z, q:\/ivwa E}:|

1 B . (4.29)
L . . w—z

— ——— 1lim [ usinh A [f cfos w,—}

QAfzﬁw('u (ZAf)> ap [ Fefod \/5}

= L AAf |if+7f—a{w7:'\;_; :|

(z —w)

which is almost the OPE we wanted to recover up to a significant detail. The new
tensor representing the primary field is defined on a strip of width A, = A, + A,
while the original primary field tensor was defined on a strip of width A,!

The fact that the sewing property enlarges the resulting fMPS tensor with the width
A of the newly sown strip is precisely the obstruction to establishing a strict equality
in Equations (4.18),(4.20)),(4.19) and (4.25). To understand why this is a problem, let
us go back to the field theory definition of our fMPS state, that is, as a correlator of
primaries

(05, (21)05,(22)-- 05 (2n)) = (D5, (21) P00, (22) -0 (2n)), (4.30)

where the equality holds because the fusion rules of the identity field in Equation
with any other field are trivial, and therefore one can insert as many identity field
primaries as desired. Therefore, the correlator on the r.h.s of Equation would
be computed as the closing condition of N + 1 strips, where the one corresponding to
¢, would host no spin and width A;. But because this correlator is equal to that of NV
spins on a system of total length A, = > . A,, it is not sensible that it is also equal
to the one of a system of length A, + A;. Therefore, the only correct way in which
one can insert a current operator, or the identity, on a correlator defined through the
closing condition of Equation (3.82)), is if one then also takes the limit of A, A ; — 0.

This limit, mandatory to recover the correct OPEs and correlation functions, has im-
portant implications. If one naively attempts to take the limit A — 0 in the expression
of the fMPS tensor as in Equation one will encounter divergences in the propa-
gation, the spin-boundary term as well as the interaction term, essentially leading to a
completely useless tensor. However, we have already seen that we have encountered
no such issues in either of the OPEs in Equation (4.28)) or (4.29). This means that this
limit can only make sense after sewing has already occurred, akin to how a regularized
distribution is only well-defined in the limit of the regulator going to O when integrated
against suitable test functions.
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4.2 The push-through relation of the free boson fMPS

Therefore, we finally define the current operators as fMPS with

E*(z) = =5 lim Ay [ f {7 2V2}]

H(2) = V2 lim lim 29_4,, [f_,_,f_, {z iH ,

A—=04qg—0 q \/5
b= 0, — £ )= im A [fiof {0}] = exp (—% [ arsia. Aﬂf@)T) ,

(4.31)

where all of these limits have to be understood in the distributional sense, in which
the corresponding integral is the sewing operation, and the corresponding test func-
tions are any other fMPS tensors that represent a vertex operator in a correlator. The
last line constitutes the identity in functional space and, thus, the free boson fMPS
representation of a functional Dirac distribution.

4.2 THE PUSH-THROUGH RELATION OF THE FREE BOSON
FMPS

We now tackle the original question of this chapter:

Can we translate the pushing-through condition for symmetries of injective MPSs,
shown in Equation (4.1)), to the setting of fMPS?

We wish to reproduce that equation exactly, and thus, diagrammatically, we are
aiming at an equation of the form

-
Ay ol Vg
XU,{z, s} IA — X {z, s}
Ay = 0] Vga
oot . vee

(4.32)
where the blue lines correspond to sewing operations, U,. corresponds to the expo-
nentiated matrix group representation of SU(2), with ¢ the usual Pauli matrices, and
V. the corresponding exponentiated group representation of the charge algebra su(2),
originating from the current algebra su(2),. As we have already seen, we have an
fMPS representation of the charges (Q“ and not their exponentials. Assuming that

Vg« x exp{aQ®}, one can then use the usual Lie algebra derivation in which one
expands

U.. = explac®) — lim 20, U,. = o (4.33)

a—0
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4.2 The push-through relation of the free boson fMPS

Performing this limit on Equation (4.32)), yields

: /-
I AQ—>0l Q° o
x5} IA — x(z.5) IA _ X(z5) IA
fv f+ Ay o] Qe

(4.34)
where A, is the width associated with the fMPS charge andthe limit of A, — 0 is
taken after the sewing. It is important to emphasize that the symmetry on the L.h.s is
acting on a spin state and is represented by a 2 x 2 matrix, which gets translated to
the r.h.s employing the commutation of a Noether charge with the tensor. Our next
goal is to prove this relation for all currents, which we call the ”algebra-level” push-
through relation, to afterward prove the complete group-level relation via the usual
exponentiation techniques.

PROOF OF THE ALGEBRA-LEVEL PUSH-THROUGH EQUATION

In this section, we derive the rules of the action for the fMPS conformal charges on a
single primary fMPS, which correspond to either of the two terms of|4.34, where we are
we will be using that the spin value of the primary fields fMPS has the normalization

S

9= 5 We start with the action of the H(z) current, whose charge is denoted by
Q°. First and foremost, we need to choose a convention for the order in which we sew
strips in situations where we have more than two. In this thesis we choose to always
sew from the lower boundary first and then move upwards. In strip form, what we

need to compute is

A1_>01 QO

= (a). (4.35)
IA

In equation form, equation (4.35)) is written as

@ = [ Do5e [de1An (g Goal] im L2 (0,44, lo. S ol = (1 60 2).
i Jk 00 gy
(4.36)
where [ dz; means the integration over R of the real part of z; and corresponds to the
contour integral of the charge construction in the UHP, as shown in Equation (4.17).

After performing the sewing integral, one finds

1 . 2 _
(Cl) = 2_7'(‘Z /Rdzl ‘1111210\(]/_1_ [8;;1*’4Af [f+af—7 {Z7Q7217Q1}] o (Zl A Z1>:| ) (437)
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4.2 The push-through relation of the free boson fMPS

where A F=A+ AL Performing the derivative with respect to z,, one obtains:

. . ikzq
O [1 [ e ) e 1)
R

270 Jg @0 ¢ |2 sinh (7kA ;)
99,
49, 21—z —Z
_ZAfCOth ( 2Af > (HSlnh ( Af )) :| AAf [f+7f—a{Z7Q7zlaQ1}]
- (Zl A Zl)a
(4.38)

and in what follows, we treat both terms separately. Let us start with the first line,
that is the integral

ike'k#

d ™Rbif (k) —e™ s f (k). 4.39
2m R Zl\/_/ sinh (7kA ;) (kA ) (™ (k) — €™ f () ( )
We first swap the order of integration, that is we first perform the z,-integral and
then the k-integral. To be able to perform this change for this specific Riemmann, it
is enough to guarantee that the k-integral is convergent. We start by analyzing the
behavior of the integrand in the £ — +oo limits

k— 400 keikzl—wk(Af—bf)er(k) zkzl—wk Aj—ay) f (]{3) (4 40)

E— —00 o keikz1+7rk(Af+bf)f+<k) _ zkzl+7rk Astay) f (k’) .

where the decay to 0 in the limit is guaranteed because Im(z;) < A; = b; —a, and
[, (k) are quickly decaying functions. The other potentially problematic pointis k = 0,
but the divergence is tamed by the power of % in the numerator. We can thus exchange
the order of integrals and use the Dirac delta distribution to obtain :

TFkIIIIl(Zl)
\/_/ smh (ThA}) (™71, (k) — e™ f_ (k). (4.41)

All that is left is the evaluation of the k-integral by means of the Dirac distribution. In
this case, we must evaluate the limit £k — 0

. keiﬂklm('zl) kb Tka — 1 —
i@%m (e™rf (k) —em™ s f (k) = W_Af<f+<0> — f-(0)) =0, (4.42)

where the last equality follows from the fact that the zero-mode is chosen to be the
same amongst all the different sewing points on a state, as explained in Chapter
Thus, we have simplified Equation (4.38) down to

99,
[;lef coth (ZzAfz) (Msmh (Z A:)) ] An, o oAz gz al] = (20 2).
(4.43)
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4.2 The push-through relation of the free boson fMPS

We are now in a position to take the limit ¢; — 0, obtaining

1 —z 24 — Z
(a) AAf [f+7f {z, Q}] \/—Af27m /Rdzl |:C0th ( Af ) — coth ( 2Af )
(4.44)

where the limit removed the z; contribution to the functional A A, and thus allows

us to take it out of the integral. The remaining integral can be computed by residue
calculus, and it yields

V2¢Im(z,)

@=""%

AAf [f+,f7,{z,q}] . (445)

Finally, we can take the limit A; — 0 without any danger of any part diverging, which
in turn forces Im(z,) to be at the edge of the original strip, in this case, the upper edge
Im(z,) = wb. This concludes this computation yielding

V2qb
A

<CL) = AA [f+a f—a {Z7 Q}] . (446)

To conclude the computation of the commutator (4.34]), we now need to compute the
second term of its L.h.s

= (b), (4.47)

- o

J+

which is a computation that follows along the same lines as the one we have just done.
To see this, we can look at to see the effect of sewing from the lower boundary.
The main difference is that all the terms that depend on z; — z will now go as z — 2,
and the sign in front will change because of the derivative. Since the cotangent is an
odd function, we recover at the end of the computation. With this result, the
commutator with Q" becomes

@0 = 2L 1,1 o)) -

o o )] = Vg A o s )]

(4.48)
since A = b—a. This is the expected action on a single spin with the usual o, operator,

given that the charge is chosen to be ¢ = % In equation form, we have deduced that

/

s s
) E‘| = SﬂA |:f+7 f-) {Z, E}:| ’
which is nothing but the expected action of the o* operator on a spin eigenstate but
computed through its action on the virtual space.

We now turn our attention to the action of the lowering and raising currents J*(z),
whose charges we will denote Q*. As before, we start with the action on the upper

o7 A [z (4.49)
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4.2 The push-through relation of the free boson fMPS

edge of a strip, which in strip form reads

AI%O Qi

= (c), (4.50)
[

or in equation form

/9927” /dzlflA [f1r 9,12 4}] Aa, [9 fos {Zlai\/_}} (21 ¢ 21),

(4.51)
where —% ensures proper normalization. We then perform the sewing and factorize

what does not depend on z; outside of the integral to obtain

i\/iq
o Z —Z
i (_5) /Rdzl (“S‘nh( 24, ))
i i\/ieikzl B
exp{ (5 /dem@(k)> } — (21 © 21),

where C(k) = (e”kbf fo(k) —em™ s f,(k)) is a shorthand notation for the functional part
of the boundary term. To tackle this integral, we start by Taylor-expanding the second

exponential as
i :I:\/i@ikzl
— [ dk———"7——C(k =
exp{ (2/R sinh (7kA )€< >)}
dk;...dk — WA
;4 ' "< (i\/_> H . sinh (7k,,, A )e ’

where w = ) ", k;. We can then again exchange the order of integration as both
integrals are finite, as was shown in the previous computation for the charge Q°. Then,

271m' (—g);/mdkl...dkn
C(k,,) 2, — 2 V24 ios _
() )" [T et [ (o (355) ) oo

(4.54)

o

(c) = Apfs fodza}] AT

(4.52)

(4.53)

() = An [fus f oz a}] A2

and we can apply residue calculus to the integral

_ +v2q s, +v2q
/Rd21 (,u sinh ( oy )) e — (M sinh ( oy >) e, (4.55)

To evaluate these integrals, we need to choose both ¢ = %

current J*(z). We can start by first considering the case when we choose J*(z) and

as well as the sign of the
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4.2 The push-through relation of the free boson fMPS

¢ = 4+—-=, which corresponds to the case of annihilating the state by acting with the
2

raising (lowering) operator on a state that is already the highest (lowest) element of
the spin multiplet. In both of these cases, the integral reads

) Z1— 2\ ) 21— 2\ ..,
fonn () (B2 s
R 2A; 2A;

and we can compute it by turning this integral into a contour integral. We start by more
explicitly writing z; = x + iy and expanding the hyperbolic sines into exponentials as

2

z(tw+l)ty(i—w)—z z(tw—1)—y(i+w)+z z(tw+l)—y(i—w)—z z(tw—1)+y(itw)+z
]/dxe 285 —e 285 —e 285 +e 288 , (4.57)
R

which, after manipulating a bit, yields

. y(i — (,u) z(iwtl)—z . y(i + w) z(iw—1)+z
u/dx sinh <—> e 22/ +sinh [ ———= |e 247 . (4.58)
R 24y 2A;

To ensure the convergence of these integrals, for w > 0, we must extend the contour
with a semicircle above the real axis, while for w < 0, we must do so below the real
axis. Special attention is required for the case w = 0, where the integral reads

) 1y T —z
p sinh (QAf> /Rdx cosh ( A ), (4.59)

which is clearly divergent. However, this divergence will get canceled once the com-
mutator’s second term is subtracted, as we are only dealing with the first term right
now. We can thus write

s x(tw+l)—z ; z(iw—1)+z
@(w),u?{ dz sinh yli—w) e 2t +sinh yli +w) e 2 +
UHP 2Af 2Af

 — z(iwtl)—z ; z(iw—1)+z
O(—w)u %HP dx sinh <%> e **f +sinh (%) e =0,

where UHP/LHP stands for the sunrise contour going along the upper/lower half plane
and O(w) is the step function. However, since these contours encircle no poles what-
soever, as the integrand has none, the result of this integral is simply zero. We thus
find that acting with the raising (lowering) current on the highest (lowest) states of a
multiplet correctly sends them to zero. Of course, sewing from below yields the same
result while subtracting the aforementioned divergence because the hyperbolic cosine
is even.

We can now go back to and consider the case of J7(z) and s = +1, which is
the case in which we go from the higher to the lower state of the multiplet or vice-versa.
In this case reads

1/ 21—z \ Z1—2Z\ ..
— [ dz,csch (—) e'“*1 — csch (—) e, (4.61)
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4.2 The push-through relation of the free boson fMPS

and performing a similar analysis as the previous one, we can end up writing it as the
contours integrals

1 —Z ) z2— 2 .
O(w)— é dz,csch e'“?t — csch w4
( K JuHP ! ( Af ) ( Af >
1 z . 21— 2 o
O(—w)= Z{ dz,csch e"?1 —csch| ——— | ™.
7 P (Af> <2Af>

Let us focus first on the first line of (4.62). If we write z; = x + iy as previously, then
the poles of the first term are located at x = 2z —iy +2minA ; and the ones of the second
term at x = z + iy + 2minA, for n € Z. These are infinite towers of poles sitting in the
imaginary axis, and the UHP contour encircles the poles corresponding to n € [1,00)
for the first term and n € [0, co) for the second term since z < iy as we are sewing from
the upper edge. We thus evaluate this integral using the residue theorem as

(4.62)

1 Z1—Z X Z1— % -
O(w)= é dz, | csch e'“#1 — csch ewr | =
(>N Hp <2Af> <2Af) ]
271'2 |iz QA n zwz+2Af7rwn ZQA )n zwz+2Afﬂwn] _ (4.63)
— @(CU)lQﬂ'ZQAf@
7

Similarly, for the second line of (4.62)), the LHP contour encircles the poles correspond-
ing ton € [0, —oo) for the first term and to n € [—1, —oo) for the second term for n € Z.
Similarly, but with the contour now being counterclockwise, the integral reads

1 21— 2\ . 21— 2\ -
O(—w)— d h| —— |e*“*t —csch wzy —
( w>/£1§m> 2,€SC ( oA, )e csc ( 2Af )e

@(_w> l(—271’7,) |:Z 2Af(_ n plwz 24 pmwn. Z 2Af )n iwzA2A prwn | (4.64)
H n=0 n=1
—0O(—w) l?ﬂi2Afei“’Z
I
Collecting all the results, we conclude
1 /dzlcsch — %) eiwm —esch [ L2 | giwa — —@QAf . (4.65)
HJR 20, f 20, f H

Inserting this result back into (4.54)) yields
1Y i =\"
() =Axfo, fr {2} A_ﬂ —5);4%1...%” <i§\/§>

- C(k
m Sinh (7k,, A ) o

(4.66)

which allows us to collect the sum back into an exponential to finally write, after taking
the A, — 0 limit,

(c) = %AA o fo Az 0 £ V2 JESY (4.67)
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4.2 The push-through relation of the free boson fMPS

As before, sewing from the lower edge of the strip would again change the sign of the
terms depending on z; — z, and thus only change an overall minus sign. Therefore, in
equation form, we have derived that

y ra _{ 0, (s==+1)
O s A{Z’\@}_ A [z,%:l:\/i], (s =F1),

which is again the expected action of the raising and lowering operators oc* on the
corresponding states of the spin multiplet, but computed through the virtual space.

With these two computations we have confirmed the action of the algebra on the
physical space via its representation on the virtual one. From these computations, we
can also summarize the following rules for the action of single fMPS charges Q“ on a
primary and in the usual spin basis, as these will be useful in the next section. Using
that o* = % (6" +07)and 0¥ = % (67 —0o7), one can write for 7, first in equation
form

Jim [ D903 [l o1 {iﬁ}] YN {jFEH S
AI;IEO Dg"qA [f+?g7 {Zai%}} mAQ[g’f*] = _%AA |:f+>f7 {Z7:F%}:| 9 (469)

or in diagrammatic notation

] {e) =3 s} [

f+ I+

N~

AI x{z+3} " = _ - x {zF%} ...IA

N o T

(4.70) |

Analogously for )Y, in equation form

dim [ 200, (edas |os {rab] < apas o {ra ] @

Jim [ DA {fg{iﬁ}] K, lo: f) = F54a [ff{ﬂFEH (472)
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or diagrammatically

() f_ 000
AQ _>Ol Qy f_ n
AI ~ x{=%75) = =N x{= ¥} IA
f+ I+
' f- - I -
AI x {23} = F1 x {zF%} mIA
NS m— —
f+ -

(4.73) |

And finally for Q* = Q°, in equation form

AI;IEO/Z)QQZAQ[f-Hg]AA |:.gv f—7 {Zvi%}] = igﬂA |:f+7f—7 {Z7i%}:| 9 (474)

dm [ ogas |0z el @ o) = w54 [ or {22 @rs

or diagrammatically

" I "
Bq _>01 QZ f 5
AI _ x{z 22} _ = :|:§ x{z %21 mIA
J+ I+
' f- - f- -
AI x{z%5} =F3 x{z x5} ...IA

I+

©l>
!
(Qt\z

[+ .
(4.76)

where if we compare this last equation with Equation (4.46)), we see that we choose
the limits of the strip to be a = —% and b = %.

PROOF OF STATE INVARIANCE WITH THE GROUP-LEVEL PUSH-THROUGH RELATION

In this section, we prove that a state described by an fMPS is invariant under the group
action corresponding to the infinitesimal algebra-level relations derived in the previous
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4.2 The push-through relation of the free boson fMPS

section. Suppose we draw intuition from the usual SU(2) Lie group theory. In that case,
the goal is to show that the state is invariant under a full rotation with angle 6 and not
only invariant with respect to the generators of said rotation. To prove this statement,
the main formula of use is the following version of the renowned BCH formula

e 9)?
e Xy X — y 4 iflY, X] + (12)

X, [X, Y]] + .. (4.77)

Since we have computed all the commutators in the previous section, it is easy to see
the action of the whole exponential on a single strip, and they perfectly mirror the
well-known results for SU(2). If we write a state described by a fMPS as

) = /Dfl znyAf e A‘;Z,fl\sl...sN% (4.78)
sy==%1
where we use A, for the functionals to simplify notation with the boundary indices
and we act with the unltary matrix correspondmg to a rotation around any of the axes
a = z,y,2 UXH) = exp{(i#o})} on the i h_spin, we can translate the action of this
unitary onto the strip with the previously derived rules and the BCH formula. By
moving the action to the virtual space, we have

U(6)[) = / D DA A U (O)]s).0o5)
Sq...8ny=1
v N (4.79)

DI L e

(0)s; ;s
fur Afz,f1|81"'81\7>’
s1...sn=1

i (0)s;
fz afer
iM-strip, and thus it can be moved onto the virtual space by means of Equation (4.32).

Mathematically, what we mean is

A = [ Do fexp{(i6Q° (f VAT, exp((~i6Q%(g. fin)}. (480)

which is the same as Equation (4.32]). Now, the BCH formula can be used to rewrite
this in terms of commutators as
7 ( ) (3 - « Sy

Afmfzﬂ = AL g, HOMQY AT g e (4.81)
Before we proceed any further, it is important to recall that the common zero mode
enforces the charge neutrality condition upon the closing of the fTNS, which means
that any term of the superposition (4.78) fulfills >-V s, = 0. We start by consider-
ing the charge O associated to the current H(z), whose commutator acts as [Q*, A°] =

s;A fl ;.- Accordingly, the charges associated to the other generators act as [Q”, A**i| =
i0d 41

A}FVS y. and [QY, AF] = +iAL 1.7, ,» Where all of these relations have been derived by
12 1+ i+1
repeated usage of the rules proved in the last section. We can then re-sum the com-

mutator expansion, similar to how one does it for Pauli matrices, and obtain
0)s;

where what is meant by AL is that the unitary acts on the physical space of the

i _ ’LQS
Afzvfﬁ»l o Afz’fz+1
U (0)(%s;) _ 0 +s; A 0 Fs;
Afirfi+1 = CcoS (5)/1]%’]{“1 + 4 sin (5)/1]%’](“1 (4.82)
U?(H)(isi) _ 0 +s; . 0 Fs;
Afofin =08 (2)“4@7]&-“ +sin (5)“4&,1’”1'
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4.2 The push-through relation of the free boson fMPS

Once we know the action of a full rotation on a strip, we can tackle the question of
whether the full state is invariant under this operation. Clearly, is not invariant
under the action of a single unitary on a site but only invariant under a unitary that acts
on all spins simultaneously. We can easily see the invariance under rotations around
the z-axis since

z z UX(0)sy
UA(0) ® ... ® UZ(0) 1) = /Z)f1 D AT AT N )
S (4.83)
= Z e’f2i Z/Z)fl Z)fN"élf s "4fo |81---83) = [¥),

Sq...sy=%1

where the last equality follows from charge neutrality. For our concrete example of
fMPS, the phase factors y, present in are known collectively as the Marshall
sign, which counts the number of "down”-spins on odd sites and gives a phase accord-
ingly. This sign is the key to showing invariance under rotations under any of the
other two axes, and we show it for the z-axis by means of induction. Let us assume
that Uy (0) ® ... ® U, (0) 1)) = |[4) for a state consisting of n pairs of spins. Then, for a
state consisting of n + 1 pairs

Uf(9)®...®Uw () @U;, 1 (0)@U5, L,(0)|Y) =U7(0)®... U, (0)

f2n+17f2n+2

Son U2n+1(9>32n+1 U§n+2(6)32n+2
Z /ﬂ fl f2n+2] f >f2““/4f2naf1‘/4 Af2n+2,f1 |81‘“

S1...89,=%1 82n+1752n+2 +1

(4.84)

where we acted with the unitaries corresponding to the last pair. The action of these
two unitaries yields

AU;n+l(0)32n+1AU§n+2<0)82n+2 — <COS <g>‘/qi52n+l + ZSiIl <g>‘/4:|:52n+1

.f2n+1’f2n+2 f2n+27.f1 f2n+17f2n+2 f2n+1’f2n+2
0 +Son10 .. 6 FSonio
(COS <§)Af2n+27f1 + tsm 5 Af2n+27f1 !

on the two functionals alone. Since the charge neutrality condition must be obeyed
by all the terms of the superposition of spins, only configurations that preserve it can
contribute to the sum. That means that for every term of the sum with fixed spin values
S1, ..., So,,, the two remaining spins can only be able to either flip their value or remain
the same together. That means that we can then simplify to

) | (4.85)

f2n+17f2n+2 f2'n+27f1 f2n+17f2n+2 f2n+2’f1 f2n+17f2n+2 f2'n+27f17

(4.86)
where the last equality follows from the fact that the first and second terms are related
by the Marshall sign. The Marshall sign always changes when two neighboring spins
swap values together, as that operation can only change the number of "down” spins
that are sitting at odd sites. This shows that we recover back the same state when we
add an extra pair and it also shows the invariance of a single pair, thus concluding the
proof.

oS <Q 2Ai52n+1 Ai52n+2 _sin Q 2A$52n+1 A3F52n+2 :AiSQnﬂ Ai52n+2
2 2
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4.3 Application to the Majumdar-Gosh model and SPT phases

4.3 APPLICATION TO THE MAJUMDAR-GOSH MODEL AND
SPT PHASES

Our original question for this chapter was: Can we understand the SPT classification
of standard MPS in the context of fMPS? So far, we have seen that we can define a
consistent notion of symmetries for the physical and virtual space of fMPS while also
establishing a push-through relation between both representations. We know from
Chapter 2| that the representation found in the virtual space of an MPS can be, in
general, projective, such that non-trivial cocycle can help us distinguish different SPT
phases. Therefore, we must check whether the representation defined by the fMPSs of
Q*,QY, and @ is projective.

For the standard representation theory of SU(2), it is common knowledge that the
representations with half-integer spin are projective representations of SO(3), while the
ones with integer spin are linear representations [209]. One way that one can check
this is by computing any of the group commutators to extract the cocycle. For the case
of the spin—% representations of SU(2) one such group commutator reads c”c*0"c”.
Indeed, if one computes this product of matrices, one obtains —I[, as opposed to the
expected [ for a linear representation. The minus sign is the characteristic cocycle of
projective representations, and therefore it will be enough for us to show that such a
sign appears for fMPS.

Our first approach would be to compute

0% 0 0P Apf1, f2, {2, S}, (4.87)

through its action in the virtual space. By recursive usage of Equation (4.34)), one can
push these four algebra operators down to the virtual space to obtain a combination of
16 different sewing setups. Slowly working through them, after consistent application
of the rules found in Equations (4.70),(4.73) and (4.76)), one obtains that

UIOZUIOZAA [fla f27 {Z’ S}] = _AA [fl? f27 {27 5}] ) (488)

which is consistent with the fact that the representation on the physical space was
projective from the very beginning. After confirming that the virtual space reproduces
the correct representation of the physical space, we can now turn to the question of
whether the operators Q*, ¥, Q* themselves form a projective representation of SO(3).
We can extract some conclusions even before computing anything by using some
knowledge borrowed from representation theory. For instance, we already know that
the Kac-Moody algebra will always yield projective representations, as it is an affine
extension of a standard Lie algebra. This is a consequence of a very deep theorem of
representation theory known as Bargmann’s theorem [210]. Informally, this theorem
states that if the second cohomology group for a continuous Lie group H?(g, R) is triv-
ial, any projective representation G can be lifted to a linear one by means of its double
cover. In other words, as long as a non-trivial central extension exists, an infinite
dimensional representation of a Lie group will always be projective. Therefore, this
guarantees that any Kac-Moody algebra will yield a projective representation. How-
ever, we are dealing just with the Noether charges that originate from this current
algebra, and we wish to understand them as if they were a “matrix” representation.
Thus, we compute the group commutator as the product Q*Q*Q*Q*. Because of the
distributional character of these fMPS due to the A, — 0 limit, we must act with this
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4.3 Application to the Majumdar-Gosh model and SPT phases

product on a primary fMPS so that we can have a well-defined operation. Thus, the
task is to compute diagrammatically

f_
AI x{z+21 _ (%)4 x{z+5] IA
f+ J+

(4.89)
which yields the negative sign in front of the normalization factor —, indicating that
the charges Q“ form a projective representation.

This result opens the door to exploring tasks such as classifying different states de-
scribed by this fMPS according to the usual criterion of SPT classification that one finds
in MPS [201]. As we have shown already in Chapter (3, specifically Equation |3.85|
among the states within the family defined by the free boson, fMPS are the ground-
states of the critical point of the Haldane-Shastry model. In [44], a similar ansatz
based on vertex operators named infinite MPS (iMPS), the original prototype behind
fTNS, was used to study different models whose critical points were described by a
¢ = 1 CFT. In their study, the positions of the vertex operator insertions were treated
as the variational parameters to maximize the overlap with the real ground state nu-
merically. Because both the iMPS and the fMPS descriptions describe the same states,
the following question arises:

Can we use the physical position of the spin in fMPS to change the properties of the
whole state? If so, can we predict this change in the properties of the entire state from
one or a few tensors, similarly to how one does it in MPS?

We explore this question by analyzing how the representation of the extended SU(2)
symmetry in the virtual space depends on the spin positions of two tensors.

First, we consider the limit in which two spins are placed very close together, as
shown on the left Figure which in CFT literature is the limit that one must consider
when computing an OPE [37]]. As was shown in Equation (4.7) for the WZW SU(2),
model, the fusion rules for the two primary fields ¢ 1 are ¢ 1 X ¢1 = ¢,. This means that
whenever two spins are very close, CFT tells us that the dominant term in the expansion
should be the identity. By taking the limit 2, — z; in equation (3.80), similar to the
one taken when performing an OPE, the expression for a strip with two spins in this
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limit becomes

:u%é 1,—s2V 2A

h_l;n AA [f+7f77{21781v22582}] ~ - AA [f+7f77{2:170}] =
212y 21— 29

R PRI

pE R S

where d,, _, ensures the spins have opposite value and ~ means that we have omitted
sub-leading terms in z; — 2z,. Remarkably, whenever two insertions get close to each
other, the functional greatly simplifies and becomes an identity in the virtual space.
The decoupling of the virtual space from the physical space is a phenomenon one
encounters when considering dimerized states in MPS theory [93]. To mimic the results
of MPS, we are interested in seeing how the symmetry is represented in this limit. We
can see by applying the rules (4.70)), and on the identity, that since it
corresponds to a strip with s = 0, the outcome is always 0. This is akin to how the
monomial representation of su(2) acts on the j = 0 element. The main point to take
away is that this limit forces the virtual space to be on the trivial representation j = 0
of SU(2), making all the symmetry operators simply the identity.

000 f_ 000 (1] {_ 000
X
A i )
X X
000 000 000 J’ 000
J+ I+

Figure 4.1: This figure shows the two limits of interest for a pair of spin insertions. The left
strip corresponds to the trivial representation, while the right strip belongs to the non-trivial
one.

To obtain the j = % representation, we consider the opposite limit, in which two
spins are placed as far apart from one another as possible, as shown on the right Figure
of Because of the inherent long-range interaction of the strips, we can only clearly
understand the virtual space representation of any of the two boundaries when we
take the limit A — oo, such that only the dominant representation remains. Let us
first study this limit for a single spin, in which we can approach the limit in different
ways. We could send the strip’s upper (lower) boundary to the (—)occ limit or both of
them simultaneously. In either case, whenever the spin is not located exactly at the
boundary, the functional simplifies to

Jm Ay [F (o) = =) (490
—00 A4

where [ [f,, f_] stands for the corresponding identity on virtual space for an infinitely
wide strip. However, whenever the spin is sitting exactly at one of the boundaries being
taken to infinity, the virtual space does not fully trivialize and instead remains within
the corresponding spin representation, and we denote this limit by

hm Ap s oAz, 53] = oo L fos {20 8] (4.91)
A
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where z, is i7b (ima) for the upper (lower) boundary. The explicit expression corre-
sponding to equation (4.90) is

|]OO [f+7f_] = G_ROO[f-Hf_L
Tk (F f fi (4.92)
Rolfind | =+3 [ k(700 F.) (’5 2) (inuf)),

0

and the one for equation (4.91) is
‘/400 [f+7 f_y {Zb, S}] = e_ROO [er?f—y{Zb,SH,

© . - kO [ fr(k
Rolfof el =43 [T ae(f Fo0) (5 ) (j}g,{j) 4.93)

0
i .
2\/58 /defb<k>7
where the contribution of the zero mode has been omitted and fb(k) is the correspond-
ing boundary function of whichever boundary the spin is located at. We can then apply
the rules (4.70), and (4.76)), which were derived in a A-independent fashion, to
conclude that the boundary of the strip at which the spin sits remains in the s = % rep-
resentation. Similar expressions are obtained whenever we have several spins within
the strip, the only contributions surviving the infinite width limit being the boundary
ones. We can hence see that in this limit, the virtual space representation is com-
pletely dominated by whichever spin is located exactly at the boundary. It is, hence,
non-trivial and carries the representation label of the spin itself.

When considering the case of finite A, we can only detect when one representation
is favored by parameterizing the spin insertions by their distance away from the trans-
lation symmetric configuration. Let us take the case of two insertions, whose positions
are parameterized by z; = ira — 2 F ind and z, = ira + =2 + ind, where the term
ima is there to ensure our choice of coordinate axis for the insertions do not matter.
With these explicit positions, the 2-spin functional reads

(%) : (cos (%) + sin (%))_ A (4.94)

where A’, we mean the two-strip functional without the interaction term between the
spins, that is, without the last line of equation (3.80). We can then check which values
of ) maximize this expression and how these relate to the different phases. We can see

5152

that whenever the spins have opposite value -2 = —1, the Equation (4.94) diverges

for 6 = i%, which exactly corresponds to the configuration presented in Equation
(??). These positions correspond to the spins meeting at the center of the system, and
as we have seen, this situation corresponds to the virtual space trivializing. Once we
close the strip, the charge-neutrality condition prevents the strip with % = +1 from
contributing. However, we can still see which representations are favored in this case.
We find that the maximum happens as well for § = i%, in which case the functional
simply inherits the representation of the spin closest to each boundary, as that is the
dominant term as we take the A — oo limit. Thus, we see that as soon as the insertions
depart from the perfect spacing, one of the two representations immediately becomes
favored, depending on which pairing is encouraged.
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V) [P_)

‘\. (1) - 1)

Figure 4.2: Schematic representation of the two possible configurations of dimer states

We can now take the spin configuration on the left of Figure [4.1|a step further for the
case in which we have more than two spins. Let us start with four spins and consider
the limit z; — 2, and z; — z,, which corresponds to a situation like in equation (??).
If the distance between any two spins is denoted by z; — z; = z;;, in the limit where
219, 234 — 0 the four-spin functional becomes

2651,—526537—54[' [f f ] T 551,52553,54 51, —53“\/ 212 2V 234
A s J—
2124/ %34 ’ 2

where 2z are the positions at which the different pair of spins meet, and s is the value
of any of the two original spins of the pair. The dominant term is the expected identity
in the virtual space as it arises from the charge neutrality condition. However, having
two pairs allows for the individual pairs not to have opposite spin values but for the
different pairs to compensate for each other’s sign, and thus, a new sub-leading term
can arise. This sub-leading term corresponds exactly to a strip containing two spins of
higher value, and thus, a state constructed out of this term falls into a higher SU(2)
spin representation from the original one.

The different limits explored in this section are useful as they also correspond to
the two distinct topological ground states of the Majumdar-Ghosh [211]] point of the
J, — J, Heisenberg model on an even number of sites [V, defined by

An [fr fos {2,287} 1)

N
%JDJQ = Z (‘]lgi : §i+1 + J2‘§i ’ §i+2) ) (4.95)

=1

where 5 is the spin operator on the i™-site and periodic boundary conditions are as-
sumed. This model hosts an exactly solvable point at = 0.5 in which it is known

that the exact ground states are the two dimerized states also known as an RVB con-
figuration [212]. These states can be schematically represented on a 1-dimensional
chain as in Figure In the left figure, we see a potential dimerization configuration,
in which all spins maximally entangle themselves with either of its two neighbors,
whilst the other configuration is concerned with the other possible choice. We wish to
establish a parallel to these two configurations with the limits found in Figure

In [44], the connection between fTNS and this model was established. With our re-
sults, we can now tell apart the two dimerized ground states based only on symmetry
considerations, analogous to the treatment of the AKLT model with MPS [213, 214].
Indeed, the first dimerized configuration corresponds to the left of Figure but for N
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pairs of spins, in which we have seen that the dominant contribution carries the trivial
representation on its virtual space. On the other hand, the opposite dimerized config-
uration, corresponding to the opposite pairing, will host a pair of spins on the edges
that will carry a non-trivial representation, which we identify with the topologically
inequivalent ground state. Therefore, it seems like we can understand SPT order in the
context of a gapless model with fMPS while utilizing the same logic of MPS techniques.

Before concluding, we should elaborate on what we mean by two fTNS corresponding
to distinct critical SPT phases. While we can check which SU(2)-representation lies
on the virtual space, a priori, it could be possible that by redefining the parameters of
the fTNS, such as the boundary functions f, (k), f_(k) or its width A, we could map
to a different representation. We can easily see that a redefinition of the boundary
functions alone is not enough to change the representation since the new functions
f L (k), f_(k) must still be square-integrable by definition. If we take a look at the last
term of Equation (3.78)), we note that the spin representation is determined by the term
s;,e**# . In order to change the representation, the new function would need to change
this term, and since it is exponential, it would be impossible for it to remain in L2(R).

The only way in which this term could be absorbed would be if the width of the
strip after the map A were to be such that the function remained integrable or if it
simply changed the s, directly. However, there is no way to redefine the functions in a
way that simultaneously keeps the boundary functions in L%(R) and keeps the sewing
condition of Equation intact. Thus, the only way in which a fTNS can change
its representation is with the value and position of the spin that it represents. Conse-
quently, we can call inequivalent two fTNSs which describe different spin representa-
tions as they can not be mapped into one another by a redefinition of the parameters
of the virtual space.

4.4 OUTLOOK

In this Chapter, we have provided evidence that the theory of MPS can be translated
to fMPS, allowing us to preserve our intuition from TNS in a realm in which it was
previously impossible to do so analytically. To establish a parallel with the standard
theory of SPT phase classification of MPS, we have derived the relation between the
finite representation of SU(2) on the physical index of a fTNS and its corresponding
representation as functional conformal charges on the virtual space. We have used
this construction to identify the different topological properties of the two distinct
ground states of the Majumdar-Ghosh point of the J; — J, model. The way in which
we understand these different groundstates draws intuition and mimics the theory of
standard MPS, which was our departing goal for this project. Ultimately, we wish to
further understand fTNS as a generalization of TNS in any dimension, but such that we
can still retain most of the knowledge and structure of the theory of TNS. Therefore,
understanding the simplest case of a 1-dimensional system was the first successful
stepping stone in this direction.

As possible, new open directions and interesting computations in the context of sym-
metric models that can be suitably represented by 1-dimensional fMPS we propose :

1. Computing the fMPS corresponding to one of the simplest fermionic actions, the
c = % CFT, commonly known as the Majorana fermion. This theory also has a
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simple description in terms of a linear action, and therefore, the techniques de-
veloped for the free boson fMPS should apply as well. In fact, a theory of N real
fermions constitutes an example of the so(N); WZW model, and therefore, an-
other model in which one could also ask questions about the extended symmetry
of the CFT and its connection to the physical symmetry of the spin.

. When it comes to the study of symmetries, another potentially interesting and
simple model would be the ghost model [37]]. Although its connection to real
physical systems is much more limited and serves more as an academic example,
it is known from the Wakimoto free field representation of WZW models that any
Lie algebra g can be constructed out of a number of free bosons and pairs of ghost
systems [|37]]. Therefore, the study of the ghost system alone would represent a
stepping stone in order to develop the free field fMPS representation of a generic
WZW theory and, therefore, of any generic virtual extended symmetry.

. In chapter [3 we have also seen the construction of fPEPS and therefore a natural
question would be whether we can also translate the theory of PEPS to fPEPS. As
we have seen in Chapter[2] the study of topological order with PEPS involves only
virtual symmetries of the tensor. Therefore, in the context of fPEPS we would
first need to find an operator in the context of the CFT that leaves the vertex
operators within the correlators invariant. From there, one can start constructing
the analogous symmetry operators of PEPS by breaking down and representing
the CFT operator as fTNSs as well. This and other questions related to fPEPS are
already being explored in one of the upcoming works mentioned at the beginning
of this thesis.

. Finally, a description of fTNS in the basis of Cardy states [167]] would also con-
stitute a valuable upgrade in the context of the study of symmetries. Such a
representation would allow to describe symmetries of CFTs without the need to
translate them into a functional tensor, removing, for instance, the need to con-
sider them as distributional objects. As we mentioned in the Outlook of Chapter
such a representation would also allow for the study of, even if not exactly,
non-Gaussian and more complicated CFTs, as was done in [140].
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5 CTNS RESULTS

Throughout this thesis, we have focused on providing new TN ansatzes for spin systems,
such that these can exactly describe systems previously out of reach for TN techniques.
To do so, we have focused on describing the virtual space by means of a field theory,
therefore studying an infinite-dimensional virtual space and, thus, a possible notion
of a continuum theory. A very natural question would be the following: how would
a TN ansatz look if the target physical system of study was not a discrete spin system
or generically a system with a local finite Hilbert space? Could one provide an ansatz
targeting already continuous theories, such as QFTs?

Naturally, this question has already been answered in 1-dimensional non-relativistic
systems, leading to the ansatz known as continuous MPS (cMPS) [[184]],[215]]. This
ansatz constitutes the first example of a TN approach to the analytical description
of a QFT using an optimization over a virtual space. Particular of cMPS is that the
variational space remains finite-dimensional, allowing for variational optimization of
the groundstates of interacting theories in external potentials [216] or even the time
evolution of an interacting Bose gas as shown in [217]]. Another possible extension of
1-dimensional TNS is found in continuous MERA (cMERA) [218]], in which a similar
theoretical generalization as in cMPS was carried out for the MERA architecture [[219].
cMERA has also been successfully used in several scenarios, such as in the description
of Chern insulators [[220] or for conformal field theories with boundaries and defects
[221].

Despite the success of 1-dimensional systems, attempts to extend TNS theory to the
continuum in higher dimensions have proven to be challenging. A naive extension
faces the issue of a preferred temporal direction and, therefore, the breaking of Eu-
clidean invariance, a symmetry paramount for non-relativistic QFTs. Although the
most prominent extension that solved this problem is the one found in [222], one can
show that this extension is no longer the limit to the continuum of a finite TNs [223]].

The lack of a satisfactory extension to higher dimensional systems that followed a
TN approach motivated the authors of [[185] to provide the first continuous TN ansatz
in higher dimensions, which was named a continuous Tensor Network state (cTNS).
cTNS are shown to be a genuine continuum limit of a finite TNs that retain Euclidean
invariance, and they can be shown to reduce to cMPS for 1-dimensional systems. De-
spite a very elegant theoretical construction, there have not been as many numerical
results that explore their applications for physical systems. The main result so far has
been a variational optimization over Gaussian bosonic states [[224]].

Although cTNS is a very recent theoretical development, its applicability to physical
systems remains largely unexplored numerically or analytically. This lack of explo-
ration is precisely the starting point that motivates our question for this Chapter:
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Is it possible to analytically find a suitable use-case scenario to show that ¢TNS has a
theoretical advantage over other ansatzes? Can we use the theory of TNS, mainly the
bulk-boundary correspondence, to obtain new analytical insights into the correlation
functions of interacting QFTs?

5.1 DEFINITION OF CONTINUOUS TNS

Continuous TNS (c¢TNS) are intuitively defined as an ansatz that couples a virtual QFT
to the target physical QFT, such that one can compute correlations of the latter via the
correlations of the former. To define such a state, one must first define all the param-
eters of both QFTs. Let the pair (M, g) denote a d-dimensional orientable Riemannian
manifold with a boundary 0 and metric tensor g. Let D be a positive integer to which
we will refer as the bond field dimension, whose purpose is to quantify the number of
virtual fields present in the virtual QFT. Let Vand «,, fori = 1, ..., N be complex-valued
functions on R”, and let B be a complex-valued functional on L?(99%) that specifies
the boundary conditions. These three functions, V', «;, B, serve as the variational pa-
rameters that act as the ”optimization” parameters for the virtual QFT.

A cTNS with a bosonic virtual QFT is then defined, slightly more generally than in
[185], by a path integral of a D-component virtual bosonic field ¢:

V.B.{0)) = [ DoB (dlsc)exp {— JREN: (% >~ 40,000,080 + Vi, 6(a), Vo(0)]
M M k=1

N
o Z a; [x7 ¢(x)7 VQb(x)] 1/11(93)) } ‘0>7
=1
(5.1)

where |0) is the Fock vacuum state of the physical theory, and [¢,(x), w; (y)] = 0, jéd(x—
y), so that ¢,(x) are the N usual bosonic field operators of the physical theory. The
virtual field ¢ over which the path integral sums should be interpreted as the bond
dimension degree of freedom that is known from usual TNs. If both V' and the «a;’s do
not depend explicitly on = € M, then the cTNS is translationally invariant. As seen
in Equation The function V[z, ¢(x), Vo(x)] acts as the "potential” term of the
action of the virtual QFT, while the o[z, ¢(x), V¢(x)] serve as the coupling between
the physical and the virtual QFTs. Each of the terms «, couples the virtual QFT to
each physical field ;. Finally, the functional B serves as the boundary condition for
the virtual QFT, meaning that if M = (), then it can be simply set to B(¢|y,) = 1,
making the virtual QFT live in a compact space such as a surface with genus x. If the
space M is compact, then one needs to specify Dirichlet, Neumann, or more arbitrary
boundary conditions as shown in [185].

In the simplest case, M is taken to be just a simple subset of Euclidean space (i.e., a
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non-empty connected open set)  C R%. In this case

D
Q k=1
N
= aila, él), Vo()] o] <x>) } 0),
=1
(5.2)
The above state can be written equivalently in the form
V.B{ah) = [ dulé)Au(@)lao)), (5.3)

with du(¢) being the massless free probability measure for ¢

D
ap(9) = Dexp (—% JREDS [wk(x)F) , (5.4)
k=1

the operator within the path integral is given by

Avkd) = B(dlga) exp{ = [ a'aVie. (o). Vool 55)
and N
a(9)) = exp { JREDMAXIER LN <x>} o). 5.6)

which is nothing but a coherent state of the physical theory. One can, therefore, inter-
pret a cTNS in terms of a path integration over all possible coherent state configurations
of the physical QFT weighted by the dynamics and coupling of the virtual QFT. If one
wished to now describe a generic state [+/) of the bosonic Fock space F[L*(R?,C)]?,
then one begins by expanding it into the basis of n-particle wavefunctions

= Op(Ty, .y y) 4 i
n=0 n

n!

where the state of the Fock space could involve the different physical bosonic species
;. Each of the n-particle wavefunctions can be computed by expanding the exponen-
tial in Equation ((5.3)) to obtain

o1y ) = / A ) A D)0z, (5.8)

where we interpret the wave function of the physical theory as a correlator of the
coupling operators of the virtual theory. As shown in [185]], one can see that the
computation of correlation functions involves the product of «,; with itself inside of
the exponential, and thus, any dependence above linear dependence on the field will
introduce non-Gaussianities into the theory.

While the state presented in Equation is more intuitively understood from the
field theory perspective, we wish to establish a closer parallel to the language found in
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Figure 5.1: Diagram of the operator representation of the cTNS ansatz. In the left we can
identify a standard tensor network, where the virtual space is colored orange and the physical
space light blue. After taking the continuum limit, they become two coupled QFTs on the right
figure. The presented cTNS on the right has open boundary conditions denoted by the |in) and
lout).

TN theory. Such a representation was already provided in [185]], where they showed
that an equivalent operator representation exists for any given cTNS defined on the
previous domains. As in any Hamiltonian representation of a theory, a specific direc-
tion needs to be chosen as the “time” direction so that we can define the Hamiltonian
operator in charge of evolving the theory. To this end, we will suppose that the domain
is of the form (2 = [—g ) g] x S'with S = (). It is helpful to build intuition from one of
the more intuitive examples of such an €2, which would be a finite cylinder, where S
would be the compact direction and 7'would be the total length/height of the cylinder.

Then, the operator representation of cTNS is given by

‘V7Ba {O‘z}> =
T N
tr{ﬁyexp —[2 dTédi (%(T, :z)—Zai[T,f,é(f),ﬁ(f)]@@,f))] } 0, &9
with b R
7’{- f 2 ~\12 N
H(r, @)=Y ([ k(2 i [w’;( ) >+V[T,9?, o(), 7 (7)), (5.10)
k=1
FHo(Z)

where 7 is the mordering operator, and 7, are the conjugate momentum of ék acting
on D copies of the virtual d — 1 dimensional bosonic Fock space, F[L*(S,C)]|?, over
which the above trace is taken, i.e.

[9(2), 1 (3)] = i6,,0% (& — ). (5.11)

It is important to stress that both variational functions V and «,’s may depend on
both # and 7 in the most general setting. Restricting them not explicitly to depend on
either of these parameters would make the cTNS translationally invariant and as in
the previous representation, the operator B implements boundary conditions on the
virtual theory. The natural condition for a r-invariant theory would be B = [, but a
condition that is also very interesting would be B = |in)(out|. The latter boundary
condition turns the trace operator into the correlator between a |in) and |out) state of
the virtual theory. Diagrammatically, we can see this representation as in the right
of Figure where both virtual and physical QFTs are depicted with a solid color
on top of the geometry of (2. As in the coherent state representation, the n-particle
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5.1 Definition of continuous TNS

wavefunction is now computed as

~ ~ ~

o, =tr [Bé%z& (7., 7.)C. G a(m, :fl)é_zﬁ] , (5.12)

‘7 n’ n n-l?T o

n

where @;(ty,, %},) = a |1, 2}, &(a3, 7())] and G, , = T exp (— [V dr [;dZ (Z)). The
interpretation of Equation is as follows. To compute the n-particle wavefunction
of physical fields v,(x,), one computes the trace over the coupling operators of the
virtual space, where the virtual space is first initialized in some initial state |in). Then,
the virtual space is evolved with the virtual evolution operator C?f%ﬂm from its initial

time —;—F to the time of the physical field insertion 7,. At that time, the corresponding
coupling operator &, is evaluated, and the procedure is repeated until we reach the
final boundary condition of the virtual space |out). To compute correlation functions,
field theory tells us to evaluate the generating functionals with currents given by

(V,B,{a;}| exp (fg dz ZZ]\; J;(f)lﬁj(f)) €xp (J:g dz 21]11 jz<f)¢z(f)) \V, B, {a;})
E <V7 Ba {O‘i}“/?Ba {O&Z}> .

J
(5.13)
We can write this functional in the operator representation with

SN T/2 al
2, =tr {B@B* exp{/ drT, () —/Sdfzg'k(:z)j,;@)}] L 514)
- k=1

T/2

which we have used to introduce the definition of the transfer operator with sources
T, ;(7) given by

One can intuitively think of the transfer operator T as the operator that generates the
time evolution of both the ’bra’ and the ’ket’ part of the correlator simultaneously
between a time 7 and 7 + d7. A couple of examples are now in order.

First, the norm of |V, B, a) in the denominator of Equation will be computed
in the operator representation as

S

(Vi B, {a;}|V, B, {a;}) = tr

B® B* T exp (/T drT(r))] : (5.16)

where the source-less transfer operator T has been introduced

N
T(r) = /S di (-}f(T, B @U—1@ H*(1,7) + ) oylr,2,6(2), 7(D)] ® oy[r, &, 6(7), 7 ()]

=1
(5.17)
We see that the norm of a state is nothing but the expectation value of the identity
operator, therefore performing the trace over the evolution of the virtual space without
any insertion of the coupling functions «;’s.
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5.2 The bulk-boundary correspondence of cTNS

Our second example is a simple 2-body correlator of the physical theories, e.g.,

(V] (@) (y)) = R : (5.18)

540(x) i y) 7
Ji@) agy) T,

k2

This correlator will be computed using the operator representation of the virtual space
as

(/@) (®)) = 0 [BO B Mya,, 1® af[ry, 7, $(@), F@)M, .

- (5.19)
x (gm0, 6(5), 7@ @ DM, 1] »

where z = (7,,%) and y = (7,,%) and M, , = T exp [ [ drT(7)], the propagator oper-

ator of the virtual theory in the virtual field theory. We can interpret Equation

the same way that we interpreted Equation (5.12)), in which each physical field is im-

plemented in the virtual space trace through the couplings «;s.

With these tools, in [224]], some correlators of simple quadratic and quartic bosonic
theories were numerically studied. The authors showed that the manifold of Gaus-
sian cTNSs provides arbitrarily accurate approximations to the ground states of the
quadratic Hamiltonians and decent estimates for quartic ones at weak coupling. Ad-
ditionally, since they captured the short-distance behavior of the theories in a very
precise manner, they showed that Gaussian cTNSs even allow one to renormalize away
simple divergences variationally. As of today, this result is the only one that provides
evidence that cTNS is an advantageous numerical tool with which to study further
QFTs.

This lack of exploration stands in contrast to the many studies performed with
c¢MPS such as [217]],[225] or [216], which are made possible because cMPSs are
parametrized by finite matrices, and can therefore more easily be variationally op-
timized. Given how it was shown in [[185] that cTNS reduces to ¢cMPS in the 1-
dimensional limit, is it somehow possible to harness the numerical power of cMPS
to study higher dimensional systems described by cTNS?

As we have seen in Chapter [2| this question already has an answer in the context
of PEPS. In [125]], the authors provided an exact duality transformation between the
bulk of a quantum spin system, described by a PEPS, and its boundary given as an
MPS. The duality associates to every region a Hamiltonian on the boundary, in such a
way that the bulk’s entanglement spectrum corresponds to the boundary Hamiltonian’s
excitation spectrum. In short, for every PEPS, there exists a dual description in terms
of its boundary MPS. Finally, our question is, under which conditions can we find a
similar result for cTNS?

5.2 THE BULK-BOUNDARY CORRESPONDENCE OF CTNS

5.2.1 FIXED POINTS OF THE TRANSFER OPERATOR AND ITS
LINDBLAD FORM

To tackle the question, let us first understand the transfer operator’s structure, specif-
ically its fixed point. We will assume that T is ~independent and that it has a single

125



5.2 The bulk-boundary correspondence of cTNS

non-degenerate eigenstate )\, that has the biggest positive real part. If |R,) and |L,)
are the respective right and left eigenvectors such that

TIRg) = Xg|Rg) (Lo|T = (L0|/\_0, (5.20)
then
‘R( )<0
TT _ Z eT)\j|Rj>( T Ao Z e >\ —o) ‘R eT Ao Z CT|R (5.21)
J

with [(;| < 1. Therefore, in the limit 7" — oo we get
eI — eT™|Ry) (L, (5.22)
and as a result, the computation of the norm of cTNS would be reduced to
[V, B {a;})[I” = " (Ly| B® B*|Ry), (5.23)

in the fixed-point limit. If / is bounded from below, then one can rescale the Hamilto-
nian of the virtual cTNS without loss of generality to make A\, = 0. The most important
concept to take away from this computation is that the fixed-point limit replaces the
computation of the trace of cTNS with the correlator of the fixed points of the trans-
fer operator. This procedure significantly reduces the complexity of the computation
of any correlator with ¢TNS, but of course, the complexity of the computation gets
relegated to finding such fixed points.
As will be shown in [3], one can show that a ¢TNS is in Lindblad form if

/d:ﬁ?[( + H (2 /dea a;. (5.24)
S

in which case the coupling functions «; correspond to the jump operators of the Lind-
bladian. Working on the basis of the Lindbladian would provide us with certain an-
alytical guarantees about the behavior of the fixed points, such as their existence as
groundstates of local gapped Hamiltonians under certain conditions [226]. However,
working on the basis in which the ¢TNS has the Lindblad form comes with caveats.

Let us see this problem using an example: the real massive boson. We consider
here the bosonic virtual field theory with a single real bosonic species given by the
Hamiltonian

Hpp = /Sdf P H (T (5.25)
with )
~ 12 12

and where : : is the normal ordering with respect to the momentum modes.
The goal is to find ¢; s.t. the ¢cTNS is in the Lindblad form. It is the case if and only

N
2H,, = /Sdeajai, (5.27)
=1

if
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5.2 The bulk-boundary correspondence of cTNS

where o, = o7, o(), 7(2)], because we assume the bosonic field to be real ot = ¢.
Because the theory is quadratic and thus free, we can use the momentum expansion of
the operators, which is given by

5(@) = —— / B (F5(R) + e 75 (R)) (5.28)
(2m)= 2w(k)
and
~( 1 o Jwk) —iked Tx (T
(%) = — [ dE\| —= (""" ¢(k) —e o*(k) ), (5.29)

with w(k) = V2 + m2.
The next step is to insert both Equations (5.28) and (5.29)) into Equation (5.27)). The
first step is then to compute

[zt = [ a2 (300960 + 5@ - SRS - 5 (5 (D).

2
(5.30)
as well as
[z (i@ + m2o(aP)
g ) (5.31)
S oW ~ o~ -~ o . o~ .~ e S
= [ @22 (503(—F)+ G0 () + 5 (RIFD) + 6 (05" (D)
so that then the Hamiltonian is written as
2 [ a7t (@) = [ disll) (5 ()30 + 5015 (). (5.32)
and therefore
2H,, = / dk: 2w(k) o (k) p(K). (5.33)
From (5.29) and (5.28) we can deduce that the momentum modes are given by
3y = @ L / did(z)e *F 4 L [ izr@e*®,  (5.34)
(2m)2 75 2w(k) (2m) 2 8
and

AR G /S did(z)eh® — L L /S A7 (7). (5.35)

2w(k) (2m) 2

Then, inserting these expressions into Equation (5.33)) one gets

2Hfb:/sda:7rf e 1/dl€/ dmdy{w QZ )o()e’ (Z-7)

+iw (k)[4

)

(5.36)

HL
\_/
>]>
—~
<
=
o
-
a_
TTT
@
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5.2 The bulk-boundary correspondence of cTNS

To satisfy the requirement that the above expression can be presented in the form
N

Js dZ 21 a’ay, it is enough to take N = 1 and o = «; being of the form
1=

o = i#(@) + [ dji(E - (o) (5.37)
S

with some real-valued symmetric kernel /(7). By an explicit use of this ansatz, we

easily get
, 1 I\ il mk, (m[7])
1(7) = dk w(k = —K— 5.38
1) = oy [ bR = s, (538)

where K is the modified Bessel function of the second type and « a numerical constant.

Finally,

a = i7(F) — mk / gy K2 =90 5 (5.39)

S |7 — 9|

and this is the Lindblad operator for the free massive boson. Here, we see that the
coupling operator in the Lindblad form is highly non-local, and therefore, it will be
tough to provide any details about the fixed point of such a highly non-local open
QFT. Interestingly, this choice of basis for this model has already been used in the
context of cMPS [227] to provide a relativistic use-case scenario, even though it was
derived in a completely different way.

5.2.2 THE TRANSFER OPERATOR IN HAMILTONIAN FORM

We have seen that the Lindblad form of cTNS yields highly non-local couplings, which
does not simplify the task of finding the fixed points of T, regardless of the analytical
guarantees about the properties of the fixed points. To simplify this task, we attempt to
interpret the transfer operator T instead as a new Hamiltonian on the double bosonic
Fock space, which we denote by ' and call the boundary hamiltonian, following the
standard approach known from quantum theory. Before discussing the general prob-
lem of which bulk virtual Hamiltonians in ¢cTNS form yield neat boundary Hamiltonian
forms for the transfer operator, we begin with some motivating results.

THE SINE-GORDON AND TODA MODELS AS BOUNDARY HAMILTONIANS

We start from the operator representation of cTNS as shown in Equation (5.9). Our first
choice will be that the virtual QFT is a single virtual massless free real (¢(Z) = ¢*(Z))
boson, and therefore D = 1. The Hamiltonian then reads

FDE | [VO@)
2 2 '
To fully specify the ¢cTNS, we also need to choose the couplings to the physical theory
«;’s, and this is the key choice that achieves the interesting bulk-boundary correspon-
dence. We will choose the virtual field theory to be coupled to a physical theory

consisting of two physical species. Therefore, we choose the last term of the exponent
of Equation ([5.9) to be

Ho (%) = (5.40)

Za Q/JT (1,2) = uelﬁd’ (@) wT(T Z) + pe” iBH(% dJT( z), (5.41)
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5.2 The bulk-boundary correspondence of cTNS

where 3, 1 € R. With this specific coupling, the transfer operator of Equation (5.17)
becomes

i=1

1= [ (—%O(f) ®1-10 K@) + Y (6@ ® <az-[<5<f>]>*>

— / dz <_ Ho(F) @1 —10 K (T) + (2680@) @ o—iBHE) | | 2,—iB0@) g ei5<¢3(f)> _
S
(5.42)

IN what follows, we introduce the notation @' = @ ® 1 and ¥? = 1 ® . Thus, we can
rewrite Equation (5.42)

T = / dz <_ K@) — H2(F) + (263891 @)—9%(@) 4 M2€—iﬁ(é1<az)—<£2(of>>> . (5.43)
S

which leads to
T— / 4 (—30)() — 2 () + 202 cos B (F) — $2(3))) . (5.44)
S

The transfer operator acts on the doubled Fock space of the virtual QFT. By defining
a new basis for the joint Fock space as ¢ = %(Qﬁl + ¢*?) and using the hermiticity of

<§, we see that the transfer matrix becomes
T= /S dz (—Hy (Z) — H _(2)) . (5.45)
with the sine-Gordon Hamiltonian
H (&) = H (&) — 2p® cos (BV26 (7)) . (5.46)

We have positively written the transfer operator in terms of known Hamiltonians
on the coupled Fock space. The specific choice of «;’s led to the factorization of the
two spaces into a free boson part and a sine-Gordon part. Thanks to this factorization,
some of the correlators of the original field theory can now be easily computed via this
specific cTNS representation. A good example would be given by

T—00

<¢1 (Tl7 g)¢;(727 j}))Phys =Tr [B ® B*MT/2,Tza§*(727 E)MTQ,HOZ%(TD g)Mrl,fT/Q] —
(2 (9% (r1.8) i (12,0))

20159 (08) 3758 (radly (756 (08) 3756 (rad)y

sG®0 — 2 < sG-

(5.47)

Equation is the main result of this section, and its central message is that the
computation of a physical correlator splits into two known correlators of the fixed-point
theory of the cTNS. This result solidifies our intuition that cTNS can be used to gain
insight analytically into complicated QFTs by using a smart choice of the virtual space.
In this specific case, the free boson correlator of vertex operators is known from CFT.
At the same time, in the sine-Gordon theory we can compute analytically some of the
vertex operator correlators using the Fateev-Lukyanov-Zamolodchikov-Zamolodchikov
(FLZZ) formulas [[228]] or make use of the Relativistic Continuous Matrix Product States
(RCMPS) [225, 227] to do it numerically.
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5.2 The bulk-boundary correspondence of cTNS

The previous example can be generalized straightforwardly to more general Kac-
Moody algebras, as we show now. Let then g be a Kac-Moody algebra of rank r with
Cartan subalgebra h) equipped with an inner product (-, -) induced by the Killing form
[209]. Since dimbh = r, let &, ..., &, denote simple roots and {n,}!_, be the corre-
sponding set of Kac labels. We define

;[6(7)] = %\/n—iew@%w». (5.48)
Then
r 2 " “ -
2= TrayE M iB(@;, 3 (#)—¢* (3
Zl%[ﬁb(x)] ® a;[o(Z)]" = ﬁ 27%6 0 @07, (5.49)
Again, introducing ¢* = iz (gzﬁl + ¢2) we see that the transfer matrix becomes
T= /Sda‘é (=H o (Z) — H . (Z)), (5.50)

where 7 _(Z) is now the Toda Hamiltonian [229] in the ¢~ field, which again is
another analytically tractable QFT.

It is natural to ask now, how general is this procedure of constructing a boundary
virtual Hamiltonian out of the virtual QFT of a ¢cTNS?

GENERIC BOUNDARY HAMILTONIAN OF CTNS

We would like to determine when a given boundary Hamiltonian J;(#) can be repre-
sented as

Hy=HRL+1®H — Y o, ®aj, (5.51)
k

for a certain bulk Hamiltonian & = %, + V, and a family of bulk couplings {«,}.
Moreover, motivated by the sine-Gordon example, we demand that there exists a lin-
ear change of variables such that the Hamiltonian J(; splits into two distinct terms,
each depending exclusively on one of the variables such that we can still retain some
analytical power over the resulting correlators. Mainly, for D = 1, we denote ¢! = ¢®1
and ¢* = 1 ® ¢, and ask about a linear transformation S : (¢!, ¢?) — (¢, ¢ ") to a new
variables (¢*, ¢~ ) such that

Hy=G,(67)+ 3G (o), (5.52)

where again both G, and G_ are bosonic Hamiltonians in the corresponding variables.
Let us denote the right-hand side of (5.51) by F(¢',$?), and have a nondegenerate
linear transformation S : (¢*, ¢?) — (¢T, ¢~ ) parameterized by

o 1 2
{¢+ =a¢ + 597, a6 + Bry. (5.53)

¢~ =o' +d¢*

To begin constraining this transformation, we will demand that both bulk and bound-
ary Hamiltonians have the bosonic kinetic terms,

F(¢h, ¢) = Ho(oY) + Ho(6%) + F(¢1, 0%, G(¢,) = Holo,) +V.(6,), (5.54)
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5.2 The bulk-boundary correspondence of cTNS

and also that
F(¢',¢*) = G.(6") + G_(¢7), (5.55)

We can condense all the previous conditions as

{ﬂ0(¢1)+?fo<¢2) = Ho(¢,) + FHo(4) (5.56)

F(¢',¢*) =V, (¢,)+V (6.).

The first of these conditions implies that o> + 1> = 1 = % + 6% and a8 + 7§ = 0.
Therefore

- 1
(i) = (2;);; (s:i)rfg) <£2> , with ¢, 0 satisfying cos(f — ¢) = 0. (5.57)
The second condition implies that either 6 = ¢ + g, in which case,
¢t _ [(cosgp —sinp) (¢
(gb_ “ \sing cosy %)’ (5.58)

orezgp—gand

¢T\ _ [cosp sing o'
<¢) B <Sin90 —cos gp) <¢2> : (5.59)

In the second case, let us parameterize ¢ — 2¢. Then, the first choice of angles corre-
sponds to a rotation X, by an angle », while the second one is a reflection 7, about
a line through the origin which makes an angle ¢ with the horizontal axis. All such
transformations give us the group O(2) of isometries of the plane.
Since ) a;, ® a; = > (o, ® 1)(1 ® ), the remaining condition in Equation
k k
is

V(oh) + V(4?) Zak Jai (¢%) =V, (¢1) + V_(¢7). (5.60)
For D > 1, we denote the var1ab1es by
o7 =¢; ®1, o7 =1® ¢, i=1,..,D. (5.61)

The new boundary fields are then denoted by ¢  With k =1,...,2D. Repeating the pre-
vious arguments we deduce that the transformation between them must be an isometry
so that it belongs to O(2D). Any such matrix can be parametrized as
diag(®, ,...,R, , £1,...,£1), (5.62)
1 P —

PK’
L times
with 2K + L = 2D.

Now that we know what kind of transformations are allowed in the space of virtual
fields such that a kinetic term is preserved, can we find the «,’s such that a specific
theory is recovered in the boundary?

Let us demand, for instance, that the boundary recovers a generic ¢" theory, which
would correspond to

m2 (¢+)2

V6" = —5——  V.(¢7) = —5—+ 5 ()", (5.63)
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5.2 The bulk-boundary correspondence of cTNS

we have even allowed possible mass terms for the bosonic boundary field theories,
as these would still allow us to retain analytical control over many correlators. We
demand that the virtual bulk Hamiltonian J is also described by a free bosonic theory,
and we have to find then possible o’s that could satisfy (5.51). Since the mass term
is preserved by any of the O(2) maps (¢!, $?) — (¢, ¢ "), it remains to find «;’s such
that

S an(@h)aj(?) = =2 (7). (5.64)
l |

Since ¢~ = ag! + bgp? with a® + b?> = 1 (with a = sing, b = cos ¢ for rotations, and
a = sin 2¢, b = — cos 2y for reflections), the right-hand side of Equation (5.64) can be
written as

Zﬂk a,b) (") (¢*)" ", Byla,b) = == (Z) ad"'vF e R (5.65)

One can then look for solutions to our problem within a certain class of functionals
«,’s. We concentrate here on the ones that admit a Laurent-type ansatz decomposition.

Mainly, we assume that o, (¢) = > o ,®" with some complex parameters o, ;- Then
kez

Zaz Jay(¢*)* Z Z o kagp (¢2)p = Z [Z (Z Oéz,ka;:p> (¢2)p] (¢1)k-
!

k,peZ keZ | peZ
(5.66)

We immediately notice that k£ (and p) have to be restricted to 0, ... , n. Furthermore, for
every k,p = 0,...,n we have to have

Z alvkojlk,p = Bkén—k,p' (567)
l

In particular, for every k = m # g we have ) |o; «|> = 0. For n odd this means that

I

o, = 0, for every [ and k, which leads to a contradiction. Thus the only option left is

that n = 2q is even. Then we have o, ;,, = 0, for arbitrary /. The only coefficient of «,

that is potentially nonzero is «, ,, and is subject to }_ o q|2 = B,- Then, in particular,
I

> oy(¢)ar(¢?) contains only a single monomial (¢'¢*)?, which leads to contradiction
with (5.65).

In summary, there exists no set of «,’s that can be written as a formal power series,
such that a bosonic bulk theory can exactly become a boundary bosonic ¢" theory.
There is however a way to allow for a ¢" boundary starting from a bosonic bulk, and
for that, it is mandatory that the boundary splits into two ¢" theories.

If we consider instead the following boundary Hamiltonian

2
T (¢7)2 + u(p)" (5.68)

2
_.m n
J[F:}[§+%O+—2 (M) + p(p™)"™ + 5

with p € R, then we will be able to find a bulk theory that reproduces this boundary.
We begin by parametrizing the orthogonal transformation S € O(2) by

+ _ 1 i 2
{¢ = cospg' + esin pp?, (5.69)

¢~ = sin pp! — e cos p@?,
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5.2 The bulk-boundary correspondence of cTNS

where ¢ = +1. In the above parametrization, we have

Iy = Ho+ I+ m (") + (6°)*] +2u ) ( ) cos® psin” " p(¢!)*(¢?)" 7
2

2 k=n (mod
(5.70)
To satisfy

V() + V(62 — Y ar(@M)aj(6%) =21 Y ()cosksosinn—%<¢1>k<¢2>“—k (5.71)
2

l k=n (mod

we have to have 2|n. This condition arises as a consequence of our demand for a
symmetric decomposition of the polynomials in terms of the potentials for both ¢! and
¢*. Then, in order to generate the appropiate cross-terms, o, (¢) = (lcp%, which in turn
enforces that n = 4. But then }_ |¢|? = 2u cos2 psin? ¢ and V(gp) = v,¢" and v,, =

I
2ucos™ o = 2usin” ¢. Therefore this means that the only allowed transformations S €
O(2) are the ones that satisfy cos ¢ = ¢ sin ¢, which forces that ¢ = %- Furthermore, we

see that ; has to be non-positive since under the above conditions, we have Z G2 =

——. In that case, the remaining condition implies that » = 4 and V' (¢) = 7'“ | Lot

272
So far, we have presented a setting in which we could provide a bulk cTNS with a

desired fixed point and one in which it was not possible. Indeed, the more freedom
we introduce into the ansatz using «,’s and V’s, the easier it becomes to reproduce a
target boundary Hamiltonian, at the cost of complicating the bulk ¢cTNS. There is a lot
of arbitrariness in which functions can or can not be reproduced generically. To make
more accurate statements, we will attempt to study this situation more systematically
in the upcoming section.

5.2.3 A GENERIC APPROACH TO THE BULK-BOUNDARY PROBLEM

We have seen that we must determine some baselines for both the boundary and the
bulk Hamiltonian to start providing more accurate statements about their relationship.
We then begin by demanding the following structure of the boundary Hamiltonian

Hy(¢F,¢7) = THo(d") + To(¢7) + Vi(d",¢7), (5.72)
such that the potential V; is given by
V6", 67) = V(0" + V(¢ = > ay(¢h)ey(¢?), (5.73)

l

where (¢!, ¢?) is related to (¢", ¢ ) through an orthogonal transformation S € O(2D).
The corresponding bulk Hamiltonian corresponding to these choices is the cTNS Hamil-
tonian found in Equation (5.10)). Because we demand that the kinetic term is preserved
before and after the orthogonal transformation, the question on which two Hamiltoni-
ans can be mapped reduces to finding V,Vand «¢; such that Equation is satisfied.

One can interpret finding these solutions in two directions. Choose a cTNS, and
therefore a V and «;’s, and then see what boundary theory arises, hopefully leading
to a fixed point where some correlators can be computed. Alternatively, choose a
boundary theory for which analytical control is guaranteed, providing V;, and then
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5.2 The bulk-boundary correspondence of cTNS

find the functions V and «;’s. The latter option is our choice of interpretation. To put
Equation (5.73) in a more mathematically simple notation, we are looking for a class
of functions g, 3,, such that given an f, the following equation is satisfied

(foS)(x,y) = g(x Zﬁ )",y €RP, (5.74)

where f plays the role of V, g of V, 3, of o; and z,y of ¢', $*. We will assume that all
of these functions have convergent Taylor series representations and use the following

/

notation for the orthogonal transformation (2,) =S (Z) For simplicity, we will also

assume that there is only a finite amount of coupling functions, thatis [ =0, ..., N and
a single bosonic species in the cTNS ansatz, therefore D = 1.
If we parametrize the transformation S by

g <c9sgp esinp > 7 e=+1, p € [0,2n), (5.75)
sing —ecosy

then the left-hand-side of (5.74) is a function of (z’,3") = (x cos ¢ + yesin p, z sinp —
yecos ). If one then assumes the aforementioned Taylor expansions, then the Lh.s
reads

(foS)(z,y) = Z fr1(z cosp + yesin ©)F (2 sin ¢ — ye cos p)!, (5.76)
k>0

with some coefficients f; ; € R, where the reality of the coefficients is imposed due to
the hermiticity of the boundary Hamiltonian. Using the well-known binomial expan-
sion, the above formula can be expressed in the following form:

kool
(foS)(z,y) ZZanlnm nmy ktl=(ntm) (5.77)

k, >0 n=0 m=0

where

m

n(k,l,n,m) = fp., (k> ( : ) (—1)lmektl=(ntm) cogntl=m ,gin™m k" o, ¢ R, (5.78)
n

To deal with the r.h.s of Equation (5.74), we again perform Taylor expansions of

the corresponding functions. Expanding 8,(z) = >_ b; Lot with b, € Cand g(z) =
k>0

S giaz® with g, € R then the r.h.s becomes
k>0

N
—Zﬁi(l‘)ﬁi(y)* = ng($k+yk)+ Z Bk,lxkyl s Bry= _Zbi,kb;l €R

i k>0 k,1>0 i=1
(5.79)
Equations and are the key Equations for all future computations. Our
goal will be now to understand the minimal ingredients needed in both the bulk and
the boundary in order to obtain anything non-trivial. To do so, we depart from the
simplest examples and slowly increase their complexity until anything non-trivial can
emerge. Our first simplest example will be to assume that the bulk potentials are simply

set to 0 and that there is a single coupling « in the cTNS.
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5.2 The bulk-boundary correspondence of cTNS

POTENTIAL-LESS BULK WITH A SINGLE COUPLING

Since we are assuming that the bulk potential is simply ¢ = 0 and that there is only
one coupling «, the condition that we need to solve is given by

E o1l
E E E nk,L,n,m)x y =E kl’“y. .
(k l ) n+m, k+l—(n+m) B e l (5.80)

k,1>0 n=0 m=0 k,1>0

Denoting 1, = 7(0,0,0,0), and observing that

~ J(fo8)(x,—zecoty), sinp # 0,
o = {(f o S)(z,xetan ), cos o % 0, (5.81)

we infer that, for all n > 0,

_ l i 0
0=Y" Bklel{< coty) } for 4 S¥ 70 (5.82)
’ tan’ ¢ cosp #+ 0,

and B ; = 1,. Defining b, = byp(l) with

p(l> _ 6l <_ cot So)l7 Sin@ 7& 0, (5 83)
tan' ¢, cosy = 0, '

the above condition takes the form

vn>0 > by =0. (5.84)

k+l=n

We first assume that ¢ is such that we can indeed freely use the above formulas, i.e.,
sin p # 0 and cos ¢ # 0. We will consider the remaining cases separately later.

To gather intuition on how to solve this set of equations, we first look at its behavior
for low n and then increasingly raise it. For n = 1, this yields:

bobs 4 b1b5 =0 (5.85)

First, we show that if b, = 0, then also Yk > 0b, = 0. Indeed, if b, = 0, then by
considering with n = 2, we infer that bl?)’{ = 0. As long as our condition on ¢ is
satisfied, we infer that b; = 0. Seeing the structure of this last set of equations, we can
proceed by induction.

Suppose that all b, b, ..., b,,_; vanish and consider with the parameter 2n,
ie.

bobs,, + byby | A by (05 b bE A by g b e by 1 BY by, B = 0. (5.86)

By the inductive hypothesis, this equation reduces to |b, |*p(n) = 0, so that also b,, = 0
since p # 0 under the assumptions on ¢. Therefore, it suffices to assume b, # 0.

Let us now write all the b,’s in their polar decompositions, i.e. b, = |b,|e?’*. Assum-
ing b, # 0, from we get that either b, = 0, or

ei01=00) — _p(1), (5.87)
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5.2 The bulk-boundary correspondence of cTNS

and the latter implies that |p(1)| = 1. Suppose now b, = 0. Then considering (5.84)
with n = 2 we infer that either b, = 0 or |p(2)| = 1. As an inductive hypothesis, suppose

that b, = ... = b,, = 0 and take (5.84) with the parameter n + 1. It then reduces to
bob*+1 + anb* = 0. (5.88)

Therefore, either b, ; = 0 or |p(n+ 1)| = 1. As a result, either b, = 0 for all £ > 0, or
there exists [ > 0 such that |p(l)| = 1.

In the former case we end up with the conclusion that 5(z) = b, = const, so that
(f o S)(z,y) = —|by|* < 0, while the latter, since p(I) = p(1)’, leads to the conclusion
that |p(1)| = 1, that is, only transformations with either |cotp| = 1 or |[tanp| = 1 are
allowed. In fact, in both cases, this is the same condition, leading to

T 37 bw Iw
— e — 5, 5.89
E{4’4’4’4} ( )

The corresponding transformations S = S () are
1 1

1 -1
(—1

s 1 1
()= -l
1
ﬁ

)5 (0

S+(%”)= ) s (2
(F)-50 ) = (F

< - a) s (B-50)

Therefore, in this case, the function f depends only on either x —y or z+y. In summary,
we have proven that in the absence of bulk potentials, the only possible non-trivial
solution is that the boundary potentials depend exclusively on one of the variables.
Let us briefly comment on the case in which we could not move the trigonometric
functions to the r.h.s in Equation (5.82). For sin¢ = 0, the only allowed transforma-

/
tions are S = (%

(5.90)

>:
>:

1
1
1

3,) with €', ¢” = £1, corresponding to (z,y) > (€'z,€”y). Similarly,

/
€

0
these cases, the transformation reduces to a trivial relabeling of the names of functions,
which will exclude them from our considerations.

It remains, therefore, to explicitly study transformations leading to the variables x—y
and x +y. We start with the  —y case. This means that (foS_)(z —y) = P(x —y) for
some function P. Writing this explicitly,

—y) =Y pylz—y)"* ZZpk< ) —Dkrgngkn e R, (5.91)

k>0 kE>0n

for cos p = 0, we have S = 2, with €', ¢” = +1, and (z,y) — (¢'y,¢"z). In both

so that the equation we have to solve takes the form

Zzpk<>_ )y = ZBM?UZ/ (5.92)

k>0n k,[>0
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5.2 The bulk-boundary correspondence of cTNS

First, taking y = «, the left-hand-side is simply p,, and for all n > 0 we have to have

> By, =0, (5.93)

k+l=n

while py, = B,y = —|b,|*. The system of equations (5.93) is in this case equivalent to

> Re(b*b):O, n=2m+1, m>0,

k+l=n

> Re(bib) +50b, > =0,  n=2m, m>0 (5.94)
k+l=n

k,l#Fm

Therefore, there exists a sequence x = (x,,)7-; C Rs.t.

> bibi=ix, ——|bm| O, (5.95)
k+l=n
k<l
Since B, ; = —b,b;, the above equation can be equivalently written as
Z Bk L= 1Bm ’m6n 2m i’%n‘ (5.96)
k+l=n 2

k>1

This leads to at most one family of solutions for By, ; = By ,(x, By o) parameterized by a

sequence  of real numbers, and a non-positive number B, , (since B, o = —|by|*> = py).
If p, = 0, then b, = 0 and therefore all b, must vanish. On the other hand, from (5.92)
we get
k+1
(_1)lpk+l < * ) = By, (5.97)
n

and since p,, is a purely real quantity for all n, it must happen that B, , € R, for all £, I,
which leads to contradiction with unless b,, = K,,, =0, for all m > 0. Therefore,
the only potential solution is of the form 3(z) = b, = \/=pye’ and P(z —y) = p,, with
6 € [0,27) and p, < 0.

Now we consider the situation with (fo.S)(z,y) = Q(x+y) with some polynomial Q).
In this case p(k) = (—1)*, for n = 2m + 1 with m > 0 the condition on E,ﬁl = By p(1)

reads
k+l=2m-+1
k<l
sothat ) B, = kg, € R. Similarly, for n = 2m with m > 0 we get
k+l=2m+1
k<l
m( > B z) + . p=0 (5.99)
k4= ’ 2 " ’
+1=2m
k<l
hence .
(_1) 2
Z By = Ko, + ZT|bm| ; (5.100)
k+1=2m
k<l
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5.2 The bulk-boundary correspondence of cTNS

with k,,, € R. Comparing Q(z + y) with Y~ B, 2"y’ we infer that Vk,I B, , € R. As
k>0
a result, for all m > 0, we have b, = 0.

To summarize, whenever the bulk Hamiltonian contains no potentials, and there is
only a single coupling to the physical field, the only possible allowed transformations of
variables restrict the boundary potential to exclusively depend on one of the fixed-point
variables. Furthermore, the only permitted solution in this case is with constant 5 and
f. This example shows how important it is to either include virtual bulk potentials or
several couplings in order to be able to describe anything other than the trivial scenario.
These last two scenarios are the ones that show the positive examples presented above
with the ¢? bulk theory or the sine-Gordon fixed-point.

POTENTIAL-FULL BULK WITH A SINGLE COUPLING

Let us then increase the complexity one more step by allowing the bulk to have non-
trivial potentials as well as several couplings to the physical field theory. Here we
assume that the function f is of the form f(z’,y") = h(z’) +1(y"), where both functions
h and [ are allowed to be non-constant. With .S € O(2) as in (5.75), we have

(foS)(x,y) = th(:pcosw + yesin )* + Zlk(acsincp — yecos p)”
k>0 k>0
k

=3y <k> [hk cos™ ek sinf " o 4 1, sin™ p(—1)F b cosh T |y E
k>0n=0 \T
(5.101)

Therefore, Equations (5.74)),(5.77) and (5.79) take the form

b . .
(a + ) [hsp cos® @sin® e’ + 1, sin® o cos® p(—1)%€"] = 9,6, 0 + 9504.0 + Bas-

a
(5.102)
We first remark that « = b = 0 leads to hq + [, = 2g, + B, o. Then, taking a # b = 0
we end up with
h,cos® ¢ +1,sin" p = g, + B, o, (5.103)

while for b # a = 0 we get
hy sin® e’ + 1, cos® o(—1)°e” = g, + By . (5.104)
Comparing these two conditions and making use of the hermiticity, we have
h,(cos® ¢ — sin® pe®) + 1, (sin® ¢ — (—e€)® cos® ) = 0. (5.105)

This equation was derived under the assumption that a > 0; however, it also holds
identically for a = 0, so we can make use of it for any a > 0.
At this point, one can distinguish two cases here:

1. There exists (¢, €) such that cos® ¢ = ¢ sin® ¢, for all a > 0, or such that cos® p =
(—e)*sin® ¢, for all @ > 0. Both of them can be unified to the existence of ¢ s.t.
cos p = +sin . The solutions in the second case can be easily obtained from the
first one by simply replacing (h,,(,,€) by (I,,h,,—€). Hence, we can consider

only the first scenario without the loss of generality.
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5.2 The bulk-boundary correspondence of cTNS

2. There exists (¢, €) such that for some a > 0 we have either cos® ¢ # € sin® ¢ or

cos® ¢ # (—e)*sin® .

From now on, we will assume that we find ourselves under the first case. First, the

condition cos® ¢ = €*sin® ¢ applied in (5.105) implies that

l,sin” p(1—(—1)*) = 0.

(5.106)

For a even this does not lead to any further restrictions on the coefficient /,. However,
since under our assumption sin ¢, # 0, we infer that for a odd, a = 2p + 1, this leads

to the constraint: [y, ; = 0. From (5.103)) we then get

€

hopi1 = ————(92p:1 + Bopi1,0)-
P+ sin2p+1 © P+ p+1,

Taking a = b = p in (5.102) we end up with

Bp,p + 291)51?,0

(*") cos?? ¢
p

We now analyze (5.102). For a, b + 0, it is equivalent to

Vp >0 hyy+ (—1)Ply, =

(CL + b) €a+b Sina+b @(ha-q—b + (_1>bla+b> — Ba,b'
a

Applying it for the pair (a,b) ~ (a + 1, 2k) gives

b ) B B2k
ohtatl T lokyar1 = () cart gip2krart o
a+1
while for (a,b) ~ (a,2k + 1) we have
Ba,2k+1

h —1 = :
2k+a+1 2k+a+1 (2k+a+1>€a+1 sin2k+a+l ©

a

As a result,

1 Boi1,26 B okt
hokrar1 = 2eatlgin2k+atl <2k+a+1) (2k+a+1>] ’
a+1
and
1 Ba+1,2k Ba,2k+1
loktar1 = 2¢atl gin2k+atl <2k+a+1) o (2k+a+1)] :

Since under our assumptions /44 = 0, the latter equation leads to

2k+2p+1

. 2p+1 . 2k + 1
By, 11,01 = Bap ok Ra=ry =9y 122kt

2p
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therefore, the former one reduces to

fBQp,zsz
hopioki1 = I ginph a1 (5.115)
2p
Comparing with (5.107) with p ~ p + k, we have
Bopion
ﬁ = Yopr2k+1 T Bopioki1,0- (5.116)
In particular, the expression gzp“”“;+32p*2’”1’° is k-independent, and
2p+2k+1
L0 +Bio 93+ Bso 95+ Bso (5.117)
By Bs Bs y o
Next, from (5.109) we get for all a,b > 0,
B,y hgp+ (1),
,b _ +b ( ) +b ) (5.118)

Bb,a ha+b + <_1>ala+b

There are four cases for (a,b): (even, even), (odd, odd), (odd, even), (even, odd).
For the first two of them, the above ratio is trivially equal to 1. For the remaining
ones, however, we have a + b € 27 + 1, but then [, = 0, and again the ratio is equal
to 1. Asaresult, B,, = B, , for all a,b > 0. From and (5.104), due to the
hermiticity of the remaining terms, we also have B, , = B , for all a > 0. Therefore,
B,,= B, foralla,b>0.

This symmetry, together with (5.110)), introduces a constraint on the transformation
S. Mainly, the parameter ¢ has to satisfy ¢**! = 1 for all > 0, i.e. only € = 1 is
allowed.

As we have seen in this section, there are many constraints amongst all the coeffi-
cients. Still, the exploration of this set of Equations is not yet complete and constitutes
the content of our upcoming work [3]. To establish further constraints, one can begin
by demanding that N = 1 alongside non-trivial bulk potentials. Our explorations so
far point us towards the conclusion that in order to allow for non-trivial solutions, the
series expansion of the couplings « needs to contain no zero terms, as otherwise, all
the constraints lead only to finite polynomials, but more work is needed to set this
result in stone.

5.3 OUTLOOK

In this chapter, we have presented continuous Tensor Networks as an ansatz designed
to tackle physical QFTs by coupling them to a virtual QFT in the same spirit as Ten-
sor Networks. Although being a proper generalization of the already known cMPS to
higher dimensions, much less is understood either numerically or analytically about
the ansatz or its use-case scenarios.

In this chapter, we have focused our efforts on trying to study theoretically when
using a ¢TNS can be advantageous in order to study complicated QFTs. Guided by
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an example in which a correlator of a complicated coupled physical bosonic field the-
ory could be computed as a fixed-point correlator of a specific cTNS, we sought to
understand what is the general structure behind this phenomenology.

Although this is an ongoing study, we have so far understood the minimal ingredients
a ¢cTNS must have to exhibit non-trivial behaviour at its fixed point. These ingredients
are either non-trivial bulk potentials or several independent couplings to the physical
theory. Our current efforts are devoted to fully understand the latter ones to provide
more useful scenarios for cTNS.

Future directions include the completion of the aforementioned results, as well as the
usage of the numerical approach of cMPS to efficiently describe the cases in which an
analytical expression for the fixed-point correlator exists. Possible extensions include
the development of a consistent fermionic ¢TNS, as well as possible implementations
of cTNS on curved space-times.
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