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Abstract

This thesis focuses on the exact analytical description of quantum states, in either 1-

or 2-dimensional systems, that are either proven or conjectured to be out of reach for

tensor network (TN) techniques. In order to provide such analytical descriptions we

introduce a new ansatz, which we call field tensor network states (fTNS), where we

exploit the connection that these complicated states have with conformal field theory

(CFT). The wavefunctions of both critical 1-dimensional systems and 2-dimensional

chiral gapped topological order can be understood as correlators computed in an un-

derlying CFT whose properties match those of the states via its conformal data. fTNS

are a modification of TNs such that these CFT correlations can be exactly reproduced.

Firstly, we present the fTNS approach to describing phases of matter, as well as

our main example throughout the whole thesis, the free boson fTNS. We begin by

discussing all the intrinsic features of this ansatz, such as regularizations and gauge

transformations. We then proceed to showcase the free boson fMPS and fPEPS, as

the TN equivalent fTNS that recover the previously out-of-reach states. Afterwards,

we present the most currently advanced form of the proof for the most important

property of this tensors, which is their exact contractibility. Coupled to this concept,

we also show how contracting the network of fTNS in different topologies has severe

implications for the properties of the resulting states.

Secondly, we study how much of the analytical properties of 1-dimensional TNs

can be translated to the free boson fMPS, specifically tackling the question of phase

classification. To do so, we describe the structure of symmetries for the free boson

fMPS, and provide an example in which the analogous theorem of SPT classification of

TNs holds for fMPS.We then use this result to distinguish amongst the two topologically

distinct groundstates of the critical point of the Majumdar-Ghosh model.

Thirdly, we showcase our study of the properties of another field theoretical ap-

proach to TNs, known as continuous TNs (cTNS). While this ansatz posesses a very

clean and intuitive theoretical approach, its optimal use case scenarios are far from

understood. By studying a property known as bulk-boundary correspondence of TNs,

we provide an example in which a cTNS description provides an advantage in the de-

scription of a complicated field theory. Inspired by this result, we show the current

state of our proof for a classification of the possible interesting scenarios that can arise

within this formalism.

In summary, this thesis provides a collection of results that showcase the usage of

field theoretical techniques in the context of tensor networks, providing a new avenue

with which to describe physical states exactly that were previously out of reach for

TNs.
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Zusammenfassung

Diese Arbeit konzentriert sich auf die exakte analytische Beschreibung von Quanten-

zuständen in 1- oder 2-dimensionalen Systemen, die nachweislich oder mutmaßlich

außerhalb der Reichweite von Tensornetzwerktechniken (TN) liegen. Um solche ana-

lytischen Beschreibungen zu liefern, führen wir einen neuen Ansatz ein, den wir Feld-

Tensor-Netzwerk-Zustände (fTNS) nennen, wobei wir die Verbindung ausnutzen, die

diese komplizierten Zustände mit der konformen Feldtheorie (CFT) haben. Die Wel-

lenfunktionen sowohl kritischer eindimensionaler Systeme als auch zweidimensiona-

ler chiraler lückenhafter topologischer Ordnungen können als Korrelatoren verstanden

werden, die in einer zugrundeliegenden CFT berechnet werden, deren Eigenschaften

mit denen der Zustände über deren konforme Daten übereinstimmen. fTNS sind ei-

ne Modifikation von TNs, so dass diese CFT-Korrelationen exakt reproduziert werden

können.

Zunächst stellen wir den fTNS-Ansatz zur Beschreibung von Materiephasen vor, so-

wie unser Hauptbeispiel in der gesamten Arbeit, das freie Boson fTNS. Wir beginnen

mit der Erörterung aller wesentlichen Merkmale dieses Ansatzes, wie Regularisierun-

gen und Eichtransformationen. Anschließend stellen wir die freien Bosonen fMPS und

fPEPS als TN-äquivalente fTNS vor, die die zuvor unerreichbaren Zustände wiederher-

stellen. Anschließend präsentieren wir die derzeit fortgeschrittenste Form des Beweises

für die wichtigste Eigenschaft dieser Tensoren, nämlich ihre exakte Kontraktibilität. In

Verbindung mit diesem Konzept zeigen wir auch, wie die Kontraktion des Netzes von

fTNS in verschiedenen Topologien schwerwiegende Auswirkungen auf die Eigenschaf-

ten der resultierenden Zustände hat.

Zweitens untersuchen wir, inwieweit sich die analytischen Eigenschaften von ein-

dimensionalen TNs auf das freie Boson fMPS übertragen lassen, wobei wir insbeson-

dere die Frage der Phasenklassifikation angehen. Dazu beschreiben wir die Struktur

der Symmetrien für das freie Boson fMPS und geben ein Beispiel, in dem das analo-

ge Theorem der SPT-Klassifikation von TNs für fMPS gilt. Dieses Ergebnis nutzen wir

dann, um zwischen den beiden topologisch unterschiedlichen Grundzuständen des kri-

tischen Punktes des Majumdar-Ghosh-Modells zu unterscheiden.

Drittens stellen wir unsere Untersuchung der Eigenschaften eines anderen feldtheo-

retischen Ansatzes für TNs vor, der als kontinuierliche TNs (cTNS) bekannt ist. Wäh-

rend dieser Ansatz einen sehr sauberen und intuitiven theoretischen Ansatz darstellt,

sind seine optimalen Anwendungsszenarien noch lange nicht verstanden. Durch die

Untersuchung einer Eigenschaft, die als Korrespondenz zwischen Volumen und Gren-

zen von TNs bekannt ist, liefern wir ein Beispiel, in dem eine cTNS-Beschreibung ei-

nen Vorteil bei der Beschreibung einer komplizierten Feldtheorie bietet. Inspiriert von

diesem Ergebnis zeigen wir den aktuellen Stand unserer Beweise für eine Klassifizie-

rung der möglichen interessanten Szenarien, die innerhalb dieses Formalismus auftre-

ten können.

Zusammenfassend bietet diese Arbeit eine Sammlung von Ergebnissen, die die Ver-

wendung von feldtheoretischen Techniken im Kontext von Tensornetzwerken aufzei-
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gen und einen neuen Weg zur genauen Beschreibung physikalischer Zustände eröffnen,

die zuvor für TNs unerreichbar waren.
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1 Introduction

Theoretical physics hopes to provide analytical descriptions of Nature derived from a

basic set of principles in order to provide predictions and deepen our understanding.

Throughout history, progress in our understanding has been driven by either theoret-

ical predictions left to be confirmed by experimentalists across the globe, or by an

experimental result left to be explained by theorists. As both the technical prowess

of experimentalists grows across the world, finer and finer details of the underlying

rules of Nature are brought to light. Equivalently, as theorists keep solving and un-

derstanding new problems, new languages and formalisms arise to explain more and

more complicated phenomena. Very often these theoretical developments come forth

due to the cross-over of ideas between different fields or mathematical formalisms.

One such surprising cross-over has been the understanding of physics in terms of their

computational complexity [5], which could be summarized as how hard would a given

problem be for a computational machine with a given set of rules. Studying general

problems under this viewpoint has allowed theoretical physicists to identify what seem

to be the limits of what can be analytically and numerically solved.

One such limit is known as the many-body problem, in which one attempts to de-

scribe the properties of a system containing a number of 𝑁 particles, where this num-
ber can be taken to be arbitrarily large. This problem is paramount, as it is present in

most areas of physics, ranging from black hole physics, high-energy physics, molecular

physics, biophysics and the most interesting for us, quantum physics and condensed

matter physics. The many-body problem presents a major obstruction to providing the-

oretical predictions that begin from a microscopic description, as both our analytical

and numerical techniques become completely impractical as 𝑁 grows [6]. In the case
of quantum physics, this is due to the exponential growth of the underlying Hilbert

space used to describe our system. In other words, as the space in which our quantum

states live grows, so do the possible patterns of the main ingredient of quantumness,

entanglement.

Entanglement is the key property behind quantum mechanics [7], and the root of

most of the interesting quantum collective phenomena that we can observe in Nature,

albeit it also constitutes the main limiting factor behind our predictive power. While

our formalism allows for very arbitrary patterns of entanglement, most interestingly

the systems we encounter more often in Nature turn out to be simpler. This is due

to the fact that Nature seems to tend towards certain organizations and/or patterns

that establish certain preferred entanglement structures. This preferences arise in our

formalism in the form of properties such as symmetries or locality constraints that limit

the entanglement and therefore allow us to obtain a better handle in our descriptive

power. Luckily, one of the most important situations in Nature, that of the ground state

of a local system, has a very a ”low” and controllable amount of entanglement [8].

This situation yields the following question: Do we really need the completely generic

formalism to tackle this problem? In light of this question, the field of tensor networks

was born, whose goal was to borrow tools from the field of quantum information,
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designed to precisely understand entanglement, to more accurately describe scenarios

in which the underlying entanglement structure of the system can be controlled and

exploited.

Tensor Networks (TN) have provided a playground for theoretical physicists to gain

further insight into the ground states, and low-lying excited states of several many-body

systems that are often found in Nature [9–12]. Although not without its limitations,

they have provided a very generic open window into the physics of low-dimensional

systems, their dynamics and properties [13–17]. At their very core, TNs are a com-

pletely generic ansatz whose goal is to control the amount of entanglement present in

the system as a fundamental property, which allows us to retain analytical control over

the state. By demanding that this generic guess minimizes the energy of the system,

one can find, accurately and with guarantees, the ground state of the system. This can

be done in most cases approximately with numerical techniques, and in some cases

even analytically, usually aided by symmetries or other constraints of the system.

Unfortunately, not all scenarios and systems in physics have such a benevolent en-

tanglement structure that is adequate for a TN description, one such example being a

critical system [18–20]. In a 1-dimensional critical system, the amount of entangle-

ment grows beyond what the most basic tensor network can control efficiently [21],

necessitating new tools in order to retain an analytical description of the system. New

TN structures were designed to describe precisely this scenario [22], sacrificing the

intuitive local structure of previous designs in order to increase the complexity of the

output state. In a 2-dimensional system, describing the correlations of a critical system

is well within the scope of the most basic TN structures. In this scenario, the challenge

is to provide an exact description of a specific kind of systems called chiral gapped

topologically ordered , which are a very important kind of state present in the field

of quantum Hall physics [23–25]. While some numerical approaches have been put

forward, a completely exact analytical description remains out of reach .

Quantum Hall physics is a very rich field, where the goal is to provide the wavefunc-

tion of the state of an interacting electron gas, usually subjected to a magnetic field

[26–31]. Many consider the discovery of the quantization of the Hall effect as the first

instance of topological order in physics. Not only do Hall systems have an inherent

scientific interest due to the very rich physics that they host, but topological physics

have found an increasing amount of applications for information-theoretic tasks. The

potential use of this physics in the context of robust quantum information processing

[32] sparked a new wave of interest in the quantum information community, and even

the very recent realization of one such system in a state-of-the-art quantum simulator

[33].

At this point, it seems that we have run into a crossroads. We can either sacrifice the

analytically and numerically controllable structure of TNs in order to accommodate for

the increasing complexity present in the Hall or critical physics, or we modify our TNs

in a subtle way such that we can target these interesting states while still retaining an-

alytical control. But how does one go about finding such an extension, specially given

the currently known no-go results [34, 35] that point towards a potential inherent

impossibility to describe Hall physics with TNs?

The answer comes from outside the field of quantum information, when Moore and

Read realized that the wavefunctions present in the fractional quantum Hall effect

(FQHE) could be obtained via a computation much more common in high energy

physics [36]. They found that the wavefunctions of Hall physics could be exactly
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1.1 Outline

described by a correlator of field operators for a very special field theory, known as

a conformal field theory [37]. This insight drove the research in FQHE physics for a

long time, extending our knowledge of both these systems and of topological quantum

field theories and their relations to conformal field theories [38–41]. This discovery

constitutes one of the earliest realizations of a concept that today is known as a bulk-

boundary correspondence. The bulk-boundary correspondence is one of the most im-

portant features in the field of topological order, and its most important insight is that

sometimes the theory that to describe a system can be shown to be dual, or equivalent,

to a different theory on the boundary of the system, and thus in one less dimension.

Sometimes, either the bulk or the boundary theory is easier to manage, and driven by

this insight, newer and more exotic realizations of topological order were found [42].

Such an intriguing connection is also behind one of the most important theoretical

advancements of the last decades in high energy physics, where this set of ideas takes

the name of the holographic principle or the AdS/CFT correspondance [43].

We have finally reached the main insight from which this thesis arises. Is it pos-

sible to harness the power of conformal field theory, to extend the analytical power

of tensor networks, such that we can exactly describe a wavefunction that demands

an entanglement structure beyond of what is presently available? The original in-

sight is due to Sierra and Cirac [44], where this question was originally postulated and

resolved, showing that in some cases they had a perfect description via numerical tech-

niques. From that point onwards, there have been many contributions that have set

many stepping stones solidifying the use of conformal field theory in the description

of many-body systems [45–50], both critical and chiral. Most of these developments

fully rely on the formalism of conformal field theory itself, drawing ideas from TNs to

achieve new results.

This thesis aims to provide such a new TN formalism, which we call field TNS (fTNS)

which can help us in understanding these systems from the TNs prespective. fTNS con-

stitute a generalization of standard TNs in which we allow for the correlations between

the different constituents of the system to be controlled by an underlying conformal

field theory. This means that now the different parts of the system can interact through

the Hilbert space of a field theory, which in stark contrast to standard TNs, is an infi-

nite dimensional space. An immediate consequence of this choice, is that we will not

be able to describe any state of the generic many-body Hilbert space with fTNS, but

only those that fall under the description of the conformal field theory as well. While

this may seem like a problem a priori, this is precisely the compromise that allows us

to retain the analytical control over the state. This analytical control is guaranteed by

conformal field theory, which allows us to provide exact TNs-like representations of

previously analytically unreachable states via standard TN techniques.

1.1 Outline

This thesis is organized as follows. In Chapter 2 we begin with a broad overview of

the different kinds of many-body phenomena that are relevant for us, focusing mainly

on the difference between gapped and gapless Hamiltonians. We also provide a couple

of examples of systems that are relevant for us, such as a symmetry protected topo-

logical state in a 1-dimensional system and some of the basics of Hall physics. We

then move on to provide a short overview and introduction to tensor networks, while

3



1.1 Outline

also presenting the main results and theorems that are relevant for latter chapters of

this thesis. Finally we present a brief introduction to conformal field theory, such that

some of the concepts that inspired fTNS can be more easily understood.

In Chapter 3 we present field tensor network states, our new ansatz for many-body

states. We focus on the first known example of fTNS, the free boson fTNS. We begin

by deriving the free boson fTNS from first principles and showcase how to understand

and remove all potential divergences from the tensor. As we wish to always target

chiral states, we show how to perform a chiral truncation of the tensor and also show

that Möbius transformations act as a gauge freedom of the tensor. We then move on to

present the free boson fTNS for a critical 1-dimensional system, which we call the free

boson fMPS, alongside its momentum space representation. Our next step is then to

provide an extensive study of its 2-dimensional equivalent fTNS, the free boson fPEPS,

which is a candidate for an exact description of gapped chiral topological order. We

study its regularization structure, as well as its connection to the fMPS tensor and its

chiral truncation. The most important part of this chapter is the proof of the arbitrary

sewing condition, which deals with exact contraction between any two compatible free

boson fTNS. As an application of the sewing condition, one can fully contract an fTNS

to obtain back a chiral wavefunction with different topologies.

In Chapter 4 we provide evidence that the theory of 1-dimensional TNS can be trans-

lated to fMPS, allowing to preserve our intuition from TNS in a realm in which it was

previously impossible to do so analytically. To establish a parallel with the standard

theory of phase classification in 1-dimensional TNS, we derive the relation between the

finite representation of SU(2) on the physical index of a fTNS and its corresponding

representation as functional conformal charges on the virtual space. We also use this

construction to identify the different topological properties of the two distinct ground

states of the Majumdar-Ghosh point of the 𝐽1 − 𝐽2 model.

In Chapter 5 we present a different field-theoretical ansatz called continuous Tensor

Networks (cTNS), as an ansatz designed to tackle physical quantum field theories by

coupling them to a virtual quantum field theory in the same spirit as TNs. We then

focus our efforts to theoretically studying when using a cTNS can be advantageous

in order to provide predictions for complicated QFTs. Guided by an example related

to the sine-Gordon theory, in which a correlator of a complicated coupled physical

bosonic field theory can be computed as a fixed-point correlator of a specific cTNS, we

attempt to understand the general structure behind the bulk-boundary correspondance

of cTNS.
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2 Background concepts and
results

In this Chapter, we will introduce most of the relevant terminology and background

concepts used throughout the thesis. As discussed in the introduction, this thesis lies

at the intersection between many-body theory, tensor networks, and conformal field

theory. Naturally, we will provide the necessary context from each of these disciplines

to elucidate the forthcoming chapters

2.1 Background concepts on many-body theory

In this thesis, we will use highly correlated quantum spin Hamiltonians as the main

subject of study. We wish to consider these systems an effective description for a real

material, atomic gas or even a quantum field theory. The quantum spin Hamiltonian

arises then as a discretization of the continuous Hilbert space where a lattice is defined,

and a tensor product structure is endowed on every site to represent the localized

degrees of freedom. These degrees of freedom can range from spins, fermions, localized

orbitals such as Wannier modes [51], or more complex algebraic structures. Therefore,

the problem reduces to solving an effective Hamiltonian that acts on such a tensor

product structure of the local modes.

Suppose the local Hilbert space associated with every site is the one of a spin repre-

sentation with a local Hilbert space dimension 𝑗. In that case, the total Hilbert is given
by ⨂𝑁

𝑖=1 ℂ𝑗 where 𝑁 is the total number of lattice sites. This entails an exponential
growth of the Hilbert space as 𝑁 approaches the thermodynamic limit, which makes
it a completely intractable problem. Not only is it QMA hard for a classical computer

to find the ground state of the system [52], but even approximating it with a quan-

tum computer is a hard task [53]. Furthermore, the problem of computing correlation

functions or dynamics of the system is also generically hard, even for probabilistic

simulations [54].

As the generic non-local problem will tend to be unmanageable, it is mandatory

that we start performing sensible approximations that reduce the complexity down

to a more tractable scenario. The first and most natural approximation is to demand

locality of the quantum Hamiltonian. This property is enough to allow us to begin

classifying the different kinds of states that exist within the many-body Hilbert space.

2.1.1 Gaps, phases and ground states

A very common starting point for physics is to begin the exploration of the physical

system from the Hamiltonian. We define a local quantum spin Hamiltonian on a lattice

Λ with sites Λ𝑠 as

𝐻Λ = ∑
𝑋∈Λ𝑠

ℎ𝑋 (2.1)

5



2.1 Background concepts on many-body theory

where 𝑋 is a set with compact support, and ℎ𝑋 is a local Hamiltonian on the compact

support with either power-law or exponentially decaying correlations as in [8]. If all

the different ℎ𝑋 can be minimized independently, we call the system frustration-free.

Under these assumptions, it is possible to classify quantum Hamiltonians according to

their spectral properties, as seen in [55, 56]. Informally, one classifies a Hamiltonian

as gapped if there exists a spectral gap between the potentially degenerate ground state

sector and the rest of the spectrum as one approaches the thermodynamic limit𝑁 → ∞.
If no such gap exists in the thermodynamic limit, then we call the Hamiltonian gapless.

The notion of a gap of local Hamiltonians is crucial in understanding the properties

of the ground state of the system. The major consequence of such a gap is that any

correlation function between two operators that are far apart will always show an

exponential decay with respect to the distance between them, a property known as

exponential clustering [57]. On the other hand, an algebraic decay of correlations is a

sign of gapless behavior [37].

Although we may have knowledge about the entire spectrum, the central object of

interest in any quantum spin system is the ground state, as quantum features are most

pronounced at low temperatures. The structure of the ground state wave function dic-

tates the features of the elementary excitations or particles, which can then be observed

in experiments. Yet, and as explained above, finding any such generic ground state is

a difficult task, even though local systems force a special structure on the ground state

that allows us to target it with tensor network techniques [10].

The locality of the Hamiltonian forces the other eigenvectors with low energy to be

simple local perturbations of the ground state [58], and this feature is responsible for

the existence of localized elementary excitations. We usually observe these states as

single-particle excitations above the ground states, and thus we further cement why

the ground state is such a relevant object even if the system under consideration is not

at zero temperature. This has to be contrasted to a generic eigenvalue problem where

knowledge of the extremal eigenvector does not give any information about the other

eigenvectors except for the fact that they are orthogonal to it. Without locality, physics

would be even more wild and uncontrollable from a theoretical standpoint.

Because ground states are one of the main objects of interest for the purpose of

many-body physics, it seems natural to shift the focus away from the Hamiltonian as

the central object and instead develop a theory that focuses on the states themselves as

the central objects. One can define a state |𝜓⟩ to be gapped if and only if there exists
a gapped Hamiltonian 𝐻 according to the previous definition for which |𝜓⟩ acts as a
ground state, which we call the parent Hamiltonian. Accordingly, a state will be called

gapless if one such gapped Hamiltonian can not be found. The main caveat of this defi-

nition is that |𝜓⟩ can simultaneously be the ground state of other Hamiltonians as well,
and some of those may be gapless and are usually referred to as uncle Hamiltonians,

as shown in [59, 60].

With the focus now on the ground states themselves, we can now group different

states to form a phase of matter. Historically, the most successful theory of quantum

phase transitions was developed by Landau in 1937 [61], which relied on the notion of

symmetry-breaking through group theory. This successful theory led to the complete

classification of most classical solid phases of matter, as well as gas and liquid ones.

In Landau’s theory, one understands the notion of a phase by the collection of states

that either preserve or break a given symmetry. However, with the discovery of the

Berezinskii-Kosterlitz-Thouless transition [62] in 1973 and the fractional quantum Hall
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2.1 Background concepts on many-body theory

effect [63] in 1982, it became clear that there were phases of matter beyond the Landau

paradigm. In 1989, the missing pieces were provided by a new framework for gapped

quantum phases, whose name became topological phases, which includes phases with

and without symmetry-breaking [64–66].

The suitable definition of a phase of matter that accommodates topological physics

is as follows:

Gapped Phase of Matter : Two gapped local Hamiltonians 𝐻 and 𝐻′ are in the same

gapped phase of matter if and only if there exists a path of local gapped Hamiltonians

𝐻𝛾 with 𝛾 ∈ [0, 1] such that 𝐻0 = 𝐻 and 𝐻1 = 𝐻′.

In other words, two states belong to the same phase if their respective Hamiltonians

can be continuously connected without closing the gap along the way. A closure of

the gap is then what signifies the phase transition. We will usually denote the trivial

phase as whichever phase contains product states. Equipped with a notion of phases,

we can now begin further coarsening this classification according to the entanglement

signatures of the states.

2.1.2 Entanglement in many-body ground states

So far, we have seen that ground states of frustration-free gapped local Hamiltonians

are able to minimize all the local terms of the Hamiltonian ℎ𝑋 simultaneously. We can

therefore exchange the question of finding the ground state by diagonalization of 𝐻Λ
for the question of finding a density matrix 𝜌Λ whose marginals simultaneously extrem-

izes all the terms Tr [ℎ𝑋𝜌Λ]. Sadly, this is a problem known as the 𝑁-representability
theorem [67], which is also known to be untractable generically [68].

While not surprising, this teaches us something important about ground states, which

is that all the global features of the state, such as correlation lengths, topological or-

der, entanglement, and excitations, all follow from this set of local conditions. Global

features of the state have to be encoded locally in the state, and it turns out that this

situation corresponds to states that have very little quantum entanglement [69–72].

Entanglement is the key property that is particular to quantum systems only. We

can intuitively think of entanglement, the shared resource of a quantum state that

correlates the different parties beyond what is classically possible. If one considers a

quantum spin system whose ground state is given by |𝜓⟩, one can partition the system
in disjoint connected regions 𝐴 and 𝐵, such that 𝜌𝐴 and 𝜌𝐵 are the corresponding

ground state reduced density matrices. One can quantify the entanglement between

these two regions by means of the Von-Neumann entanglement entropy [73] as

𝑆(𝜌𝐴) = 𝑆(𝜌𝐵) = Tr [𝜌𝐴 log 𝜌𝐴] , (2.2)

where 𝜌𝐴 stands for the reduced density matrix, albeit there are many distinct ways

with which one can quantify entanglement[74]. The existence of measures with which

to quantify entanglement naturally leads to the notion of states that maximize them,

known as maximally entangled states [75]. A surprising feature of quantum mechanics

is that it seems that entanglement is a monogamous quantity [76], and therefore, if a

subregion 𝐴 is maximally entangled within itself, it will share no entanglement with
the complement 𝐵. If we translate this concept to a system of spins, the more a spin
can interact with other ones, the less entanglement it can share simultaneously with
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2.1 Background concepts on many-body theory

all of them. This result is formalized in the quantum De Finetti theorem [77], and

it is the underlying reason why mean field theory works increasingly well in higher

dimensional systems.

We have finally reached a point in which we can understand what we meant with the

statement that ground states of local gapped frustration-free have little entanglement.

In classical systems, the competition between entropy and energy gives rise to phase

transitions and collective phenomena. In quantum physics, the competition between

monogamy of entanglement and the minimization of all the extremals Tr [ℎ𝑋𝜌] is what
leads to quantum collective phenomena.

The key is, therefore, to understand how entanglement is being shared amongst the

different degrees of freedom of the quantum state. Intuitively, for a given spin, it is

of no use to have strong correlations with far-away spins, as this will only bring the

marginals further away from the extremal points. The strongest (quantum) correlations

it needs to have are with those spins with which the locality of the Hamiltonian forces

it to interact with. It is then natural to imagine that the entanglement between a

bipartition of a big system in two regions is proportional to the surface between them,

and this area law for entanglement is exactly the notion of little entanglement that

gapped states have. In equation form, ground states of gapped local frustration-free

Hamiltonians obey the area law of entanglement [8, 78], in which the entanglement

entropy between a region 𝐴 and its complement behaves as

𝑆(𝜌𝐴) ≤ 𝑓𝜕𝐴 (2.3)

where 𝜕𝐴 is the boundary of the region 𝐴, and 𝑓 is a generic numerical function de-
termined by the specifics of the geometry. This property is in stark contrast to the

situation for a generic state of the many-body Hilbert space, which in general exhibits

a volume law entanglement [79].

So far, we have left gapless states and systems on the side, and the underlying reason

is that they are significantly more complicated than gapped ones. From the gapped

phases of matter perspective, we have associated gapless states with the phase transi-

tion points, and therefore, these will be states that will, in general, not obey the area

law. In general, these states tend more towards logarithmic-like laws, as shown in

[80]. The one particular example that is well understood is the critical point of 1-

dimensional spin systems, in which the entanglement entropy for a region of length 𝐿
scales as [21, 81]

𝑆𝐿 ∼ 𝑐
3
log𝐿, (2.4)

where ∼ stands for equality up to 𝐿-independent constant corrections, and 𝑐 corre-
sponds to the central charge of the associated conformal field theory of the critical

point. Because the area law for 1-dimensional systems means that any subregion can

have, at most, a constant amount of entanglement, critical states have, in general, more

entanglement than their gapped counterparts and are, therefore, more complicated to

study.

2.1.3 Symmetries in many-body physics

We will now briefly present the results of [82], in which an even more coarse classifi-

cation of gapped phases of matter was provided. The first distinction that the authors

make is between the notions of short-range and long-range entangled order.
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2.1 Background concepts on many-body theory

The definition of a gapped phase of matter established an equivalence class between

gapped states that were connected via a path of local gapped Hamiltonians. One can

show that this criterion is equivalent to the statement that there exists a local unitary

(LU) evolution that connects both states, as given by the adiabatic theorem [83]. Be-

cause an LU evolution can remove entanglement from the system in a local way, we

call a state short-range entangled if and only if it can be transformed via an LU to an

unentangled state, a direct product state.

Conversely, a state is long-range entangled if no LU evolution can reduce it to an

unentangled state. Topological order, in fact, provides all the equivalence classes de-

fined by LU evolutions. According to this criterion, it would seem that there are only

two possible phases of matter within the realm of gapped phases. However, the story

changes the moment that we introduce symmetries.

We know that group theory and the notion of symmetries are the backbone behind

Landau’s paradigm of phases of matter. In the previous definition, the LU evolution

is, in general, able to connect any two states that may be ground states of Hamiltoni-

ans with completely different symmetries. This is very different from the situation in

Landau’s paradigm, in which the different phases were characterized by a progressive

breaking of the symmetry group. This motivates the study of the problem of phase

classification under a different criterion, which is that of symmetric LU or, conversely,

under paths of gapped symmetric Hamiltonians. According to this criterion, neither

the gap is able to close, nor the symmetry can be broken along the path that connects

any two states.

In 1-dimensional systems, it turns out that there is only a single gapped phase under

LU, the trivial phase. However, under symmetric LU, one can distinguish between

the trivial phase and the simplest form of short-ranged topological order, symmetry-

protected topological states (SPT) [84]. Particular of 1-dimensional systems is the fact

that no long-ranged entangled order can exist, which leads to the sometimes confusing

notion that there is no topological order in 1 dimension.

SPT order was originally found in the Haldane chain model [85–89], which is a

nearest-neighbor odd-spin system protected by spin rotation symmetry given by the

group SO(3). An important signature of such phases is that they sometimes exhibit

gapless protected edge states, which are robust under any perturbation that does not

break the symmetry of the model. SPT phases are very well understood and have

been classified in many different dimensionalities, as shown in [90–92]. Of special

importance for this thesis is the result shown in [93], in which tensor networks are

used as a very natural language with which to fully classify SPT order in one dimension.

Most interestingly, a complete classification can be found even in the thermodynamic

limit, as shown in [94]. We will showcase an example of a model hosting SPT order

in the next sections.

For systems in two dimensions and beyond, long-range entangled topological order

can emerge, both under an LU or a symmetric LU criterion. This is the family of states,

which is known as true topological order. While providing an exhaustive collection of

all the different kinds of known topological order is beyond the scope of this summary,

we will focus our attention in the upcoming sections on what is considered to be the

first discovery of topological order, the fractional quantum Hall effect. For a complete

classification of long-ranged gapped topological order in terms of category theory, we

refer the reader to the literature on string-net models [95], and note that an equivalent

formulation in terms of tensor networks is also known [96].
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2.1 Background concepts on many-body theory

Figure 2.1: Schematic drawing of the SSH Hamiltonian, where both unit cells as well as the

different interactions are depicted.

We have seen how the different patterns of entanglement are related to the different

phases of matter that we find in Nature. We have also seen that these gapped phases of

matter do not have a particularly large amount of entanglement, which is the insight

that inspired the variational class of tensor network states. As we will see in the up-

coming sections, tensor networks provide a natural language with which to study the

ground state of the many-body problem, both analytically and numerically. For the

remainder of the section, we will briefly showcase both an SPT state in one dimension,

as well as some of the main features that surround the topological order associated

with the fractional quantum Hall effect.

2.1.4 An example of 1-dimensional SPT order

In this section, we will study the SSH model as a paradigmatic example of SPT order in

1 dimension. This model was originally proposed in [97], and the authors originally

interpreted the modern notions of SPT order as solitonic excitations of the spin-chain.

The SSH model describes the hopping of spinless fermions on a 1-dimensional chain

whose unit lattice contains two sites, which we will denote by 𝐴 and 𝐵. On a chain
with 𝑁 sites and open boundary conditions, the Hamiltonian is given by

ℋSSH = (1 − 𝛿)
𝑁−1

∑
𝑗=0

(𝑐†
𝐴,𝑗𝑐𝐵,𝑗 + h.c.) + (1 + 𝛿)

𝑁−2

∑
𝑗=0

(𝑐†
𝐵,𝑗𝑐𝐴,𝑗+1 + h.c.) (2.5)

where 𝑐𝐴,𝑗 and 𝑐𝐵,𝑗 are the creation and annihilation operators on either sub-lattice 𝐴
or 𝐵 at unit cell 𝑗, and 𝛿 is the parameter of the model which we call the dimerization
parameter. The intuitive understanding of this model is that fermions hop between

different unit cells with strength 1−𝛿 and within the same unit cell with strength 1+𝛿,
as shown in Figure 2.1.

Thus, depending on the sign and strength of 𝛿 the fermions will prefer to move within
or between unit cells. In the first example, we will end up with a more localized pattern

of entanglement, whilst in the second one with a pattern much more spread across the

entire chain.

One can easily diagonalize this Hamiltonian imposing under periodic boundary con-

ditions by means of the Fourier transform of the fermionic operators

𝑐†
𝐴,𝑘 = 1√

𝑁

𝑁−1

∑
𝑗=0

𝑒−𝑖𝑗𝑘𝑐†
𝐴,𝑗 (2.6)

where 𝑘 is the label of the momentum modes, which takes values in 𝑘 = 2𝜋𝑛
𝑁
with

𝑛 = 0, ..., 𝑁 − 1. After Equation (2.6) is used for both sub-lattice modes (2.5) one
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2.1 Background concepts on many-body theory

reaches the following Bloch Hamiltonian

ℋSSH = ∑
𝑘

⃗𝑐𝑘ℎSSH(𝑘) ⃗𝑐†
𝑘

ℎSSH(𝑘) = 𝜎𝑥 ((1 − 𝛿) + cos(𝑘)(1 + 𝛿)) + 𝜎𝑦(1 + 𝛿) sin(𝑘)
(2.7)

where ⃗𝑐(𝑘) is a 2-dimensional vector that groups the momentum operators for both
sub-lattices. The energy bands ±𝜖(𝑘) of this Hamiltonians can be computed to obtain

𝜖(𝑘) =
√

2√(1 + 𝛿2) + cos(𝑘)(1 − 𝛿2). (2.8)

We see that this dispersion relation can only be gapless if and only if 𝛿 = 0, where
the gap closes at momentum 𝑘 = −𝜋. The gap closure signifies that this is the phase
transition between the two potentially different gapped phases of this model. To see

the difference between these two regions, we must examine the model once again with

open boundary conditions.

As we only need to characterize one point within the phase, we choose the simplest

possible points in each of the phases, corresponding to 𝛿 = ±1.
We begin with 𝛿 = −1, where the second term of the Hamiltonian in Equation (2.5)
disappears, and therefore only intra-cell hopping is present in the model. We call this

phase the fully dimerized phase, as only two fermions can place themselves in each

unit cell, therefore forming an array of pairs within cells. Furthermore, in this limit,

the Hamiltonian with open boundary conditions is identical to the one with periodic

boundary conditions and, therefore, a fully gapped system with 𝑁 levels at energy +2
and another 𝑁 more at energy −2.
On the other hand, at the point 𝛿 = 1, only inter-cell hopping is present in the SSH
Hamiltonian. In the bulk of the SSH chain, two sites in adjacent unit cells form pairs

that decouple themselves energetically from the rest of the system. In analogy to the

case 𝛿 = −1, they lead to 𝑁 − 1 levels at energy +2 and 𝑁 − 1 levels at energy −2 in
the single particle energy spectrum. However, the mode operators for the fermions at

the two ends of the chain, 𝑐†
𝐴,0 and 𝑐†

𝐵,𝑁−1 , do not appear in the Hamiltonian. Hence,

these operators create excitations with zero energy, which are fully localized on the

two ends of the chain.

The appearance of gapless edge modes is the key difference between both phases,

and we will denote the trivial phase as the one without them. This model very clearly

exemplifies the competition between locality and monogamy entanglement. In the

trivial phase, all unit cells are able to simultaneously satisfy a monogamous entangle-

ment setting within each cell, essentially leading to a product state in the basis of unit

cells. Yet, in the SPT phase, prioritizing the formation of the maximally entangled

pairs leaves the edges unable to pair due to the locality constraints of the interaction.

It is possible to define for this kind of models a genuine order-parameter that cap-

tures the different topological features of each phase called a winding number for 1-

dimensional systems, and Chern number for higher dimensional systems. If one writes

any Bloch Hamiltonian in the form

ℎ(𝑘) = 𝑛̂(𝑘) ⋅ 𝜎⃗ (2.9)

where 𝑛̂(𝑘) is a unit normal momentum-dependent vector that also defines the disper-
sion relation as 𝜖(𝑘) = 𝑛̂(𝑘)2. One then defines the winding number of the system as
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2.1 Background concepts on many-body theory

Figure 2.2: (left) Schematic of an experimental setup for observing the quantum Hall effect.

(right) Hall resistance and longitudinal resistance as a function of magnetic field B in the integer

QHE. The plateaus in the Hall resistance with vanishing longitudinal resistance are clearly

visible. From the 1998 Press Release of the Swedish Academy of Sciences.

the integral

𝑤 = 1
2𝜋

∫
2𝜋

0
𝑑𝑘 𝑛̂(𝑘) ⋅ (∇ × 𝑛̂(𝑘)) (2.10)

which is guaranteed to be an integer due to the fact that this is an underlying topolog-

ical invariant of the vector Bloch bundle [98]. For a complete classification of topo-

logical insulators and superconductors as well as a presentation of their topological

invariants, the 10-fold AZ classification in [99, 100].

2.1.5 A short overview of quantum Hall physics.

As mentioned in the introduction, the discovery of the quantum Hall effect (QHE) [63,

101] is considered to be the original discovery of topological order. This effect is

observed in 2-dimensional electron gases at very low temperatures that are subject to

a strong transverse magnetic field 𝐵. Such a setup is shown in Figure 2.2, where the
electron gas lies in the 𝑥𝑦−plane and the magnetic field points in the positive 𝑧−axis.
An electrical current in the positive 𝑥 then causes the appearance of the Hall voltage
𝑉𝐻 in the 𝑦-direction between the edges of the sample. Following Ohm’s law, classical
physics would predict that the resistance 𝑅𝐻 associated with this voltage difference

would grow linearly with the magnetic field. However, the great discovery found

in [101] was that at very low temperatures and strong magnetic fields, 𝑅𝐻 displays

plateaus where the resistance remained constant independently of the magnetic field

and the longitudinal resistance vanishes! This is shown in the right of Figure 2.2. The

even more surprising observation is that the Hall conductivity, defined as the inverse

𝜎𝐻 = 1
𝑅𝐻
was given, to an astonishing accuracy, by,

𝜎𝐻 = 𝜈𝑒2

ℎ
, (2.11)

where 𝑒 and ℎ are fundamental constants, and 𝜈 ∈ ℕ>0. This phenomenon is commonly

referred to as the Integer QHE (IQHE), and it was this discovery that sparked the field

of topological phases of matter. As changing the value of the magnetic field does

not break any symmetry, the transitions between the different plateaus had to have

a description beyond the Landau paradigm. To understand this problem further, and
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2.1 Background concepts on many-body theory

its relation with the Laughlin wave function, let us start with a short derivation of the

IQHE.

We begin from a 2-dimensional gas of electrons of charge 𝑒 and mass 𝑚 in the 𝑥 − 𝑦
plane subjected to a strong magnetic field pointing in the positive 𝑧-direction, whose
Hamiltonian is

ℋIQHE = 1
2𝑚

[(−𝑖ℏ𝜕𝑥 − 𝑒
𝑐
𝐴𝑥)

2
+ (−𝑖ℏ𝜕𝑦 − 𝑒

𝑐
𝐴𝑦)

2
] , (2.12)

where ⃗𝐴 is the vector potential associated to the magnetic field, 𝑐 is the speed of
light. We will work with the geometry of a disk, such that the components of the

vector potential are given by 𝐴𝑥 = −𝑦𝐵
2
and 𝐴𝑦 = 𝑥𝐵

2
. One can then diagonalize this

Hamiltonian due to rotational invariance and obtain the spectrum of eigenenergies,

usually called Landau levels

𝐸𝑛 = ℏ𝜔𝑐 (𝑛 + 1
2

) , (2.13)

where 𝑛 ∈ ℕ>0 is the Landau level, 𝜔𝑐 is the cyclotron frequency, and all the different

eigenenergies are highly degenerate [102].

The set of degenerate states, also called single-particle orbitals, at each Landau level

𝑛 can be labeled by their angular momentums, according to the rule that 𝐿𝑧 = 𝑚ℏwith
an integer 𝑚 ≥ −𝑛. If we denote by 𝑁𝜙 the total number of states at the 𝑛th Landau
level, then the filling fraction is defined as

𝜈 = 𝑁
𝑁𝜙

, (2.14)

where 𝑁 is the number of filled single-particle orbitals. If we assume that 𝜈 ≤ 1, then
only the levels within the lowest Landau level (LLL) can be occupied. Then, in the LLL

the single-particle orbitals are described by the wave function

𝜓𝑚(𝑧) = 𝑧𝑚𝑒− |𝑧|2

(4𝑙0)2 , (2.15)

where 𝑧 = 𝑥 + 𝑖𝑦, 𝑙0 is a parameter called the magnetic length, which is controlled by
the strength of the magnetic field as 𝑙0 ∼ 1√

𝐵
. If the disk has radius 𝑅, then the total

number of states is given by

𝑁𝜙 = 𝑅2

2𝑙20
. (2.16)

Let us now explore the situation in which we keep increasing the magnetic field 𝐵,
such that the Fermi energy of the system sits between the LLL and the next Landau

level. It is usually assumed that under such magnetic fields, the electrons become

completely polarized, and therefore, their behavior is simplified to be that of spinless

fermions.

In this case, the many-body ground state is given by filling the 𝑁𝜙 states of the LLL

only once, meaning that 𝜈 = 1. The final wave function is then simply given by the
Slater determinant

𝜓𝜈=1(𝑧1, ..., 𝑧𝑛) = ∏
1≤𝑖<𝑗≤𝑁

(𝑧𝑖 − 𝑧𝑗)𝑒
− 1

4𝑙2
0

∑𝑁
𝑖=1 |𝑧𝑖|2

, (2.17)
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2.1 Background concepts on many-body theory

as required per the Pauli principle. If one repeats this analysis for a toroidal geometry,

one can find that the Hall conductivity of this system is given by precisely a topolog-

ical invariant, the Chern number [103, 104]. This places the IQHE as a topological

insulator, and therefore, it does not host true topological order. In order to host true

topological order, the system needs to both show excitations that posses anyonic be-

havior as well as a groundstate degeneracy that reflects the underlying topology of the

manifold [32, 105].

The reason why the QHE is so prominent in the field of topological physics is because

many years after the discovery of the IQHE, the fractional quantum Hall effect (FQHE)

was discovered [63]. New plateaus were found at filling fractions such as 𝜈 = 1
3
or 𝜈 =

2
5
. These plateaus host all the elementary excitations associated with true topological

order and their fractional excitations and statistics. Not only has this phenomenon

been theoretically predicted, but the fractional charges of the excitations have been

experimentally observed [105, 106] and even more recently, their exchange statistics

[107–111].

The understanding of these plateaus necessitates very strong interactions among the

electrons. Due to the strong interaction effects, the ground states of realistic micro-

scopic models hosting intrinsic topological order are generally very difficult to com-

pute. Instead, one frequently relies on model wave functions which are easier to an-

alyze and capture the essential properties of the phase. Here, we will focus on one

specific class of model wave functions: the Laughlin states [112]. These wavefunc-

tions were originally designed to capture the many-body ground states of the FQHE at

filling fractions 𝜈 = 1
𝑞
with 𝑞 odd.

The fermionic wavefunction that Laughlin proposed is given by

𝜓𝜈= 1
𝑞
(𝑧1, ..., 𝑧𝑛) = ∏

1≤𝑖<𝑗≤𝑁
(𝑧𝑖 − 𝑧𝑗)𝑞𝑒

− 1
4𝑙2

0
∑𝑁

𝑖=1 |𝑧𝑖|2
, (2.18)

where the crucial difference is the appearance of the power 𝑞 in the polynomial. While
this wavefunction is not the ground state of any realistic Hamiltonian, it has a surpris-

ing overlap with the wavefunctions obtained from exact diagonalization studies [44,

113]. An intuitive reason behind this is that 𝜓1
𝑞
is the exact groundstate of a short-

range Hamiltonian, and knowing that electrons have a strong short-range repulsion, it

seems that this wavefunction is mainly capturing this feature.

The FQHE is not a consequence of the fermionic character of the constituents but

a new phenomenon brought forth by the degeneracies of the different Landau levels.

When one attempts to write down an effective field theory that captures the essential

features of fractional charges and statistics for the excitations, one rediscovers a well-

known action of high-energy physics, the Chern-Simons theory [114].

The Chern-Simons theory belongs to a family of field theories known as topological

quantum field theories (TQFT) [115]. While an extremely interesting topic in their

own right due to their intricate connections to modular theory or modular fusion tensor

categories [116, 117], these theories are important for the description of topological

theories as they provide a natural representation of the fusion and braiding mechanism

that define the excitations of the FQHE.

In 1991, inspired by this connection with field theory, Moore and Read [36, 118]

had the fundamental insight that the polynomial part of the wavefunction found in

Equation (2.18) could be written as a conformal block of a 2-dimensional conformal
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2.2 Background concepts on Tensor Network theory

field theory (CFT). This insight held for both the fermionic and bosonic FQHE and

sprung forward a new wave of research that began exploring the connection between

these states and CFT, even reaching string theory versions of the FQHE [119]. Years

later, with the discovery of the Chern-Simons/Wess-Zumino-Witten duality, it was fi-

nally understood why the CFT wavefunctions were so good at recovering the properties

of the TQFT, they were, in fact, dual to one another [120, 121].

The essential insight of Moore and Read is that the polynomial part of the wavefunc-

tion of the FQHE could be, in many instances, written as

𝜓(𝑧1, ..., 𝑧𝑛) = ⟨𝜙1(𝑧1), ..., 𝜙𝑛(𝑧𝑛)⟩CFT, (2.19)

where 𝜙𝑖(𝑧𝑗) is a given set of primary and/or descendant fields of the CFT, which will
be properly defined in the following sections. This insight is also the main piece of

information that we need for the rest of the thesis and the one upon which we will

base our new ansatz.

2.2 Background concepts on Tensor Network

theory

We have seen so far that ground states of quantum gapped local Hamiltonians reside in

a smaller subset of the generic quantummany-body Hilbert space as they must obey the

area-law of entanglement. In order to efficiently describe these states with low entan-

glement, originally called finitely correlated states [9], a new language was introduced

and its what today we call Tensor Network States (TNS). Their popularity rose up as

a strong numerical tool for 1-dimensional systems thanks to the density matrix renor-

malization group algorithm by White [122], and nowadays they are well established

both as a numerical technique for arbitrary dimensionalities as well as an analytical

tool. There are many excellent reviews on TNS available in the literature, amongst

which we recommend [12] and [11] for newcomers. For the more mathematically

inclined reader, we recommend the more recent [10].

2.2.1 Tensor Network states and diagrammatic notation

As previously discussed, the goal is to provide the wavefunction of a generic many-

body state, which for the sake of simplicity we will assume to consist of 𝑛 local Hilbert
spaces of dimension 𝑑. The most natural example of such a setting would be a system
consisting of 𝑁 spins. The wavefunction of such a system is generically given by

|𝜓⟩ = ∑
𝑠1,...,𝑠𝑛

𝜓𝑠1,...,𝑠𝑛
|𝑠1⟩⊗, ..., ⊗|𝑠𝑛⟩, (2.20)

where 𝑠𝑖 is the label of the local Hilbert space basis. We will group the 𝑑𝑛 coefficients

𝜓𝑠1,...,𝑠𝑛
in a single object which we will call a tensor. For us, a tensor is nothing but a

multidimensional array of complex numbers with labeled entries, contrary to the usual

definition of the word tensor used in linear algebra. We will denote one such tensor

diagrammatically with

, (2.21)
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where each leg of the box correspond to each of the open indices of the tensor. Every

open leg of the tensor is thus labeled by the index of the basis of the local Hilbert

space, and therefore can take values 𝑠𝑖 = 1, ..., 𝑑. It is useful to think of the legs of the
tensors as the diagrammatic representation of vector spaces themselves, such that then

we have the following diagrammatic identifications

, (2.22)

where it is important to note that we have used the right/left leg to denote the vector

space and its dual. Alternative representations of this notion can also be found in the

literature with arrows that either point towards or outwards from the tensor [10]. In

the case of the wavefunction of Equation (2.20), the legs of Equation (2.21) point all

in the same direction as they all represent each of the identical local Hilbert spaces.

We also define the contraction of any two tensors by the diagram that joins their legs

to represent the sum over that shared index. In the diagramatic example of matrices

. (2.23)

which concludes the basic diagrammatic rules.

A Tensor Network ansatz consists in decomposing the exponentially big coefficient

tensor 𝜓 of Equation (2.21) into a contraction of smaller tensors that have a smaller
amount of parameters. Examples of possible decompositions could be

, (2.24)

where the left example would correspond to a TN that repeats the same tensor for

each open leg and only contracts with its direct neighbours. The example of the right

of Equation (2.24) is a much more complicated network but serves to portray the many

choices one can make with this ansatz. The different colors indicate that each of the

tensors can, in general, be different and themuchmore complicated connectivity serves

to illustrate an increase in the complexity of this ansatz.

When breaking down the big tensor in Equation (2.21), more legs and therefore vec-

tor spaces will appear in the network. It is important to keep a distinction between

the original physical legs, labeled by 𝑠𝑖, and the new legs of the tensors that are fully

contracted in the network, which we will call the virtual legs. We will reserve bolder

lines for the physical 𝑑−dimensional legs/indices/spaces, and generally depict them
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pointing upwards. The virtual legs/indices/spaces will in general correspond to a dif-

ferent arbitrary vector space with dimensionality 𝐷, which we call the bond/virtual
dimension. With the general philosophy of Tensor Networks set in stone, let us now

explore the most important TN ansatz for 1 and 2-dimensional systems

2.2.2 Matrix Product States and their limitations

The most important TNS for 1-dimensional systems is the Matrix Product State (MPS)

ansatz. This ansatz splits the wavefunction in Equation (2.20) as

𝜓𝑠1,...,𝑠𝑛
=

𝐷

∑
𝛼1,...,𝛼𝑛

𝐴𝑠1
𝛼1,𝛼2

𝐴𝑠2
𝛼2,𝛼3

, ..., 𝐴𝑠𝑛
𝛼𝑛,𝛼1

, (2.25)

where the three-legged tensors 𝐴𝑠𝑖
𝛼𝑖,𝛼𝑖+1

are repeated at every site. If we write these

tensors explicitely as matrices 𝐴𝑠𝑖 = ∑𝐷
𝛼,𝛽=1 𝐴𝑠𝑖

𝛼𝛽|𝛼⟩⟨𝛽|, then the coefficient takes the
form

𝜓𝑠1,...,𝑠𝑛
= Tr [𝐴𝑠1𝐴𝑠2...𝐴𝑠𝑛] , (2.26)

which makes its name evident. Diagrammatically, an MPS is represented by the left

diagram of Equation (2.24), and therefore each of the tensors is given diagrammatically

by

. (2.27)

It is possible to obtain a generic MPS representation of a 1-dimensional quantum state

by performing successive Schmidt decompositions, where the Schmidt rank across a

given cut becomes the bond dimension across that cut [123]. For a generic state, this

will lead to an MPS whose bond dimension 𝐷 grows exponentially with the number of
sites 𝑛. However, most states fulfilling the area-law turn out to be exactly described by
an MPS whose bond dimension grows at most polynomially in 𝑛 [71]. Intuitively, this
is because, for states that satisfy an area law, the Schmidt coefficients decay quickly

enough to allow one to throw away all but polynomially many of them without sig-

nificantly changing the quantum state. This result means that we can represent MPS

states with only 𝑛𝑑𝐷2 coefficients, which is an immense improvement over the pre-

vious exponential scaling. Interestingly, states that obey a logarithmic entanglement

law, like critical states, can be well-approximated by MPS, but not exactly represented,

as shown in [124]. This is one of the main motivations for this thesis, as we wish to

provide such exact representations that still mimic the structure of MPS. As we will see

in the following chapter, we will need to introduce tools from field theory to achieve

this goal.

In preparation for Chapter 5, let us discuss a generic feature of TNS in the context

of MPS, the bulk-boundary correspondance [125]. This correspondance states that if

we divide the system into two connected subsystems 𝐴 and 𝐵, the reduced density
matrix 𝜌𝐴 has the same spectrum as another matrix 𝜎 that can be viewed as living on
the virtual indices on the boundary between 𝐴 and 𝐵.
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To see this, let us write a quantum state represented by the following open-boundary

conditions MPS as

, (2.28)

where we omit explicit indexes for the sake of notation and the green tensors are the

open boundary conditions. We compute its density matrix diagrammaticaly as

, (2.29)

where the downwards facing physical legs refer to the ”bra” part of the density matrix.

To compute the reduced density matrix 𝜌𝐴 we are instructed to contract all the physical

legs in the complement region 𝐵 as follows

. (2.30)

If one focuses exclusively on the contracted network in subregion 𝐵, it is easy to see
that there are only two leftover legs that connect it with the region 𝐴, and therefore
one can change this whole diagram by a matrix 𝜎𝑅 as follows

. (2.31)

In order to deal with the information of the subsystem 𝐴, one begins by defining a
linear map ℒ from the virtual index at the boundary of 𝐴 and 𝐵 to the physical legs as

. (2.32)

We can then apply the polar decomposition to ℒ to write it as ℒ = 𝒱𝒫 where 𝒫 =√
ℒ†ℒ is a positive matrix and 𝒱 is an isometry from the virtual to the physical legs
obeying 𝒱𝒱† = 𝕀𝐷×𝐷. One can graphically write ℒ†ℒ as

, (2.33)
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which allows to identify 𝒫 = √𝜎𝐿. Putting everything together one reaches, in equa-

tion form,

𝜌𝐴 = 𝒱†√𝜎𝑇
𝐿𝜎𝑅

√𝜎𝐿𝒱. (2.34)

Because 𝒱 is an isometry, the spectrum of 𝜌𝐴 is identical to the spectrum of 𝜎 =
√𝜎𝑇

𝐿𝜎𝑅
√𝜎𝐿, which lives in the virtual space of the tensor network. This is what is

meant in the context of tensor networks by the bulk-boundary correspondance. The

most immediate conclusions from this analysis, is that the entanglement entropy 𝑆(𝜌𝐴)
is equivalent to 𝑆(𝜎), which is simply upper bounded by log𝐷, which is the promised
area law. While this derivation has been done in its most simple setting, one can

provide a similar proof for higher dimensionalities, as shown in [125]. The higher

dimensional setting is the one that we will attempt to reproduce in the context of

another field theory ansatz, continuous TNS, in the last chapter.

Another important result from this derivation, is that the entanglement spectrum,

defined as the spectrum of 𝜌𝐴 is always contained in the spectrum of 𝜎, which has big
implications in the understanding of gapped phases of matter [126, 127].

In preparation for Chapter 4, let us now discuss the application of MPS to the prob-
lem of phase classification. As we have seen, for one dimensional systems at zero

temperature, there is only a notion of distinct phases when considering symmetries.

Let us therefore begin by considering how on-site symmetries are manifested in MPS.

Suppose that our MPS transforms under the action of a physical on-site symmetry 𝑈𝑔
as

, (2.35)

where 𝑉𝑔 is a unitary matrix. Any state on 𝑁 sites that is defined through an MPS that
fulfills Equation (2.35) is immediately 𝑈⊗𝑁

𝑔 invariant. This is clear because the oper-

ators 𝑉 and 𝑉 † coming from neighbouring sites will cancel in the virtual leg between

them. It turns out that this is the only way to encode a global symmetry into an MPS,

subject to technical conditions [128]. In other words, given a global symmetry 𝑈⊗𝑁
𝑔 ,

one can always find a 𝑉𝑔 such that Equation (2.35) holds.

In fact, it turns out that the matrices 𝑉𝑔 form, in general, a projective representa-

tion of the symmetry group 𝐺, which satisfy the relation 𝑉𝑔𝑉ℎ = 𝜔(𝑔, ℎ)𝑉𝑔ℎ for any

two elements of the group 𝑔, ℎ ∈ 𝐺 [93]. The 2-cocycle that appears in the group
multiplication corresponds to some cohomology class [𝜔] ∈ 𝐻2(𝐺, 𝑈(1)). The virtual
representation 𝑉𝑔 therefore provides us with a transparent way of extracting such a

cocycle. This is important, because one can proof that [𝜔] can not be changed under
symmetric, gap preserving deformations of the MPS tensor, what we called symmetric

LU transformations on the previous sections [15]. Therefore, states with different [𝜔]
belong to distinct SPT phases, within the realm of MPS.

The importance of this result, is that we can extract information about the topological

properties of the state, by studying the properties of the MPS tensor which is defined for

a single site. In contrast to the previous section, in which the study of the topological

phase involved the computation of some topological invariant as in Equation (2.10),

the information about the topology of the full state is condensed on the on-site tensor.
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In a future chapter, we will study this property for a different class of ansatz, field

TNS, designed to exactly describe systems that host logarithmic entanglement laws

exactly. There are other approaches to describing such systems with TNS that do not

require field theory, most prominently an ansatz known as MERA [22]. Ultimately,

our goal is to understand how much of the theory of MPS and TNS translates to our

field theory scenario, which is the reason why we do not use the MERA approach.

2.2.3 Projected Entangled Pair States and chirality

The most prominent ansatz for 2-dimensional systems is known as Projected Entangled

Pair States (PEPS), which are written diagrammatically as a straightforward general-

ization of MPS to a square lattice as

, (2.36)

where we have left the boundary conditions arbitrary. The tensor at every site is a

5-legged tensor given by

. (2.37)

PEPS automatically fulfill the area law, but computing correlation functions with them

is significantly more complicated numerically than with MPS due to the appeareance

of closed loops in the network [52, 129]. In contrast to MPS, PEPS can describe alge-

braically decaying correlations, and are therefore suitable to describe gapless systems

[17].

In terms of phase classification, PEPS can classify both SPT and true topological order

[15]. Models that are exactly described by PEPS would be the Kitaev quantum doubles

[130], simple symmetry-enriched models obtained via anyon condensation [131] or

gapless systems with continuous symmetries [132]. All of these descriptions share in

common that the PEPS tensor has the symmetry

(2.38)

where the unitaries 𝑈𝑔 form a representation of the relevant global symmetry. In

contrast to MPS, the symmetry arises as a property of the virtual space alone. If the

symmetry in the virtual space is given by a more complicated object known as a Matrix

Product Operator (MPO) [133], then PEPS can capture more exotic models such as
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Figure 2.3: Schematic depiction of the Gapped chiral PEPS problem

the twisted quantum doubles [134] and string-net models [135]. In fact, a complete

classification of the topological order that arises in terms of MPOs has been found in

terms of category theory [96].

PEPS has proven itself to be an invaluable tool for providing exact representations

of representative states within various very complicated phases of matter. One might

even wonder whether one can find a PEPS groundstate representative for all known

phases of matter. Unfortunately, there is a family states that have been eluding an

exact representation in terms of PEPS for a long time, the family of quantum Hall

states. It is even conjectured, that it is in fact impossible for such states to have a PEPS

representation.

Historically, the argument for such a no-go result begins in the study of Wannier

functions as in [136, 137]. Intuitively, the exponential localization of Wannier func-

tions that enables an efficient TN representation, seems to be incompatible with the

extended Wannier functions found in quantum Hall states. This question has also been

studied within the context of TNS, such as [17, 34]. The conclusion in these papers

was the PEPS can indeed showcase the correlations associated to quantum Hall states,

but paying the price that the Hamiltonian of which the PEPS is a groundstate must

be gapless. This is again incompatible with the gapped Hamiltonians that are associ-

ated with the topological order of the fractional quantum Hall state. Numerical studies

have confirmed this intuition [138, 139], and shown that PEPS can still provide a good

numerical approximation to these states, foregoing an exact analytical description.

From this set of results, we found ourselves in the situation depicted in Figure 2.3,

in which one must choose two vertices of the triangle and forego the remaining one. If

one chosess to describe a chiral edge with a standard PEPS, one obtains a gapless parent

Hamiltonian. If one choses to guarantee a parent Hamiltonian with PEPS, one never

obtains a chiral edge. Therefore, if one wishes to retain a gapped parent Hamiltonian

and the chiral edge, it seems that what one must do is modify the TN representation

itself, or simply restrict oneself to approximate results.

The lack of an exact representation is the second main motivation behind this thesis.

By means of field theory techniques, we aim to provide one such exact analytical repre-

sentation by means of field TNS. We will see in the upcoming chapter that by utilizing

the connection of quantum Hall states with conformal field theory, we can provide an

explicit TN representation. Very recently, there have been other studies pursuing a

similar approach like [140, 141], and even a no-go result that seems to finally set in

stone the incompatibility of PEPS with chiral gapped systems [142].
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2.3 Background concepts on Conformal field

theory

High energy particle physics is described by a Lorentz invariant quantum field theory

and is usually concerned with the physics at the energy scales in which these symme-

tries are the most relevant [143]. In stark contrast, condensed matter physics wishes to

describe physics at a scale in which these symmetries are not as apparent, the most ob-

vious example being that translation invariance gets reduced to crystalline translation

invariance. Whilst we could always think of a condensed matter state as a quantum

field theory state with non-zero density of particles in the limit of lower energies, it is

precisely the breaking of these symmetries that would demand us of the formalism of

spontaneous symmetry breaking and Goldstone bosons [144]. This route is undoubt-

edly much harder and convoluted than what condensed matter physicists actually do,

which is to simply consider theories with fewer symmetries.

As we have seen in the previous chapters, at energies that are low compared to par-

ticle physics scales, a given condensed matter state can be described starting from an

effective low-energy Hamiltonian with no vestige of the high-energy symmetries. This

description may take the form of a lattice model describing, for example, the interac-

tions of mobile electrons with lattice vibrations [145]. The only remnants of space-

time symmetries in such a model will be discrete translations and rotations, therefore

leading to a generically non-field theoretic description of physics.

However, a further low energy limit can be taken, which considers physics on en-

ergies well below the lattice energy scale. Very interestingly, it is found that in many

important circumstances, universal continuum physics re-emerges as a faithful descrip-

tion of the low energy part of the spectrum as well as of the universal properties of the

model [102, 146]. These phenomena occur both in gapless systems, such as in quantum

critical points and Fermi liquids and in gapped systems with long-range topological in-

teractions. These emergent universality features are the goal that low energy effective

field theories aim to describe by foregoing many of the details of the lattice system.

Because low-energy effective field theories do not arise as a requirement from Lorentz

symmetry, there is no a priori restriction on the class of symmetries that the theory

can have. One such example are conformal field theories (CFTs), which are genuinely

interacting quantum field theories that arise most naturally in the description of two-

dimensional quantum critical phenomena. Conformal invariance in two dimensions

can be shown to be equivalent to scale invariance, which is a well-known feature of

critical points. The requirement of conformal invariance imposes that all particle-like

excitations of the theory are massless, and therefore they have algebraically decaying

correlation functions. This generic algebraic decay, as an underlying feature of the

theory, can be used to accurately describe how correlation functions of critical mod-

els, governed by the universal critical exponents, behave. Furthermore, CFTs also shed

light on the universal properties of gapped topological systems that host anyonic exci-

tations, as CFTs provide a natural representation for the fusion mechanism that defines

these exotic excitations [32, 147].

CFT is a very well-established topic of research, and there are already many fan-

tastic reviews in the literature tailored to the different backgrounds and goals of the

reader. For those with a background closer to field theory, I recommend the works of Di

Francesco, Mathieu and Sénéchal [37], or the reviews by Ginsparg [148], Gawedezki

[149] or Moore and Seiberg [150]. For those with a background closer to mathematical
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physics, an approach based on operator algebras can be found in the review by Gab-

erdiel [151], which is based upon several works such as [152–157]. For those that pre-

fer an approach closer to algebraic quantum field theory and functional spaces [158],

I recommend the works by Wassermann [159], and Gabbiani and Fröhlich [160].

Of importance to this thesis are also the more recent developments in CFT that per-

tain both to the definition of CFT on surfaces of non-trivial genus, as well as the devel-

opments pertaining to Boundary CFT (BCFT). While these results go beyond the scope

of the brief introduction based on [37] that I wish to present here. Some of the impor-

tant results in the field of higher genus CFT can be found in [161–165], whilst some

of the corresponding results from BCFT can be found in [166–170].

2.3.1 Basics of conformal field theory

Conformal Invariance in a quantum theory

We denote by 𝑔𝜇𝜈 the metric tensor in a space-time of dimension 𝑑. A conformal
transformation of the coordinates 𝑥 → 𝑥′ is one that leaves the metric tensor invariant

up to a scale

𝑔′
𝜇𝜈(𝑥′) = Λ(𝑥)𝑔𝜇𝜈(𝑥), (2.39)

and the name conformal comes from the fact that these preserve angles since they at

most rescale the metric. The group of conformal transformations is given by 𝑆𝑂(𝑑 +
1, 1), whose generators are

translations: 𝑥′𝜇 = 𝑥𝜇 + 𝑎𝜇

dilations: 𝑥′𝜇 = 𝛼𝑥𝜇

rotations: 𝑥′𝜇 = 𝑀𝜇
𝜈 𝑥𝜈

SCTs: 𝑥′𝜇 = 𝑥𝜇 − 𝑏𝜇𝑥2

1 − 2𝑏 ⋅ 𝑥 + 𝑏2𝑥2 ,

(2.40)

where we have assumed Einstein’s summation convention, and SCT stands for special

conformal transformation. In 𝑑 = 2, invariance under dilations is enough to guarantee
conformal invariance [171], whilst in higher dimensions, this fact no longer holds true.

The first consequence of conformal invariance on a physical theory is that performing

a variation of the action 𝑆 under an infinitesimal conformal transformation 𝑥𝜇 → 𝑥𝜇 +
𝜀𝜇 yields

𝛿𝑆 = 1
𝑑

∫ 𝑑𝑑𝑥𝑇 𝜇
𝜇 𝜕𝜌𝜀𝜌, (2.41)

where 𝑇 𝜇
𝜈 is the symmetric energymomentum tensor. Whenever the energy-momentum

tensor is traceless, 𝑇 𝜇
𝜇 = 0, the theory will always be conformally invariant, whilst the

converse is not necessarily true [37]. The fact that conformal invariance is guaranteed

by the tracelessness of 𝑇 𝜇
𝜈 places the energy-momentum tensor as a much more central

object for CFT than the action itself, and it is indeed very common to define CFTs with

no regard to an action whatsoever.

Conformal invariance at the quantum level demands that whenever we compute a

correlation function such as

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ = 1
𝑍

∫ 𝒟𝜙𝜙1(𝑥1)𝜙2(𝑥2)𝑒−𝑆[𝜙], (2.42)
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this correlation function behaves under a conformal transformation as

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ = ∣𝜕𝑥′

𝜕𝑥
∣
Δ1/𝑑

𝑥=𝑥1

∣𝜕𝑥′

𝜕𝑥
∣
Δ2/𝑑

𝑥=𝑥2

⟨𝜙1(𝑥′
1)𝜙2(𝑥′

2)⟩, (2.43)

where the Δ𝑖’s are a set of numbers that control how the field transforms. This trans-

formation law completely fixes both 2 and 3- point correlators

⟨𝜙1(𝑥1)𝜙2(𝑥2)⟩ = {
𝐶12

|𝑥1−𝑥2|2Δ1
, if Δ1 = Δ2

0, if Δ1 ≠ Δ2
(2.44)

where 𝐶12 is an arbitrary normalization constant and

⟨𝜙1(𝑥1)𝜙2(𝑥2)𝜙3(𝑥3)⟩ =
𝐶123

|𝑥1 − 𝑥2|Δ1+Δ2−Δ3|𝑥2 − 𝑥3|Δ2+Δ3−Δ1|𝑥3 − 𝑥1|Δ3+Δ1−Δ2
,

(2.45)

where again 𝐶123 is a normalization constant. One can also show that further 𝑛-point
functions are also heavily constrained to only depend on conformally invariant com-

binations of the positions, known as cross-ratios. We have so far seen that conformal

invariance places heavy constraints on the possible correlation functions that can arise

out of a CFT, and we are now going to see that these constraints are even stronger

whenever we impose 𝑑 = 2.

Conformal invariance in 𝑑 = 2

We use the coordinates on the plane (𝑧0, 𝑧1), and under a conformal transformation
𝑧𝜇 → 𝑤𝜇(𝑥) we can see that the local condition for conformal invariance reduces to

𝜕𝑤1

𝜕𝑧0 = 𝜕𝑤0

𝜕𝑧1
and

𝜕𝑤0

𝜕𝑧0 = −𝜕𝑤1

𝜕𝑧1 , (2.46)

which are nothing but the Cauchy-Riemman equations that define holomorphic func-

tions. Thus, the set of conformal transformations allowed in the plane is given by the

set of holomorphic functions, which is an infinite-dimensional set! It is precisely this

infinite dimensionality that which restricts correlation functions so strongly in confor-

mally invariant field theories in 𝑑 = 2.
This motivates the use of a change of variables for the coordinates of the plane that

is much more common to complex analysis, which is given by

𝑧 = 𝑧0 + 𝑖𝑧1 , 𝑧 = 𝑧0 − 𝑖𝑧1, (2.47)

where 𝑧 ≠ 𝑧∗, that is, we generically understand 𝑧 as an independent coordinate of the
plane, and then whenever restricting to 𝑧∗ = 𝑧 we say that we restrict ourselves to the
physical real surface.

The condition of local conformal invariance has led to an infinite dimensional set

of possible conformal transformations, which would seem to be inconsistent with the

result that for a generic 𝑑, the conformal group is given by 𝑆𝑂(𝑑 + 1, 1). To fix this
seeming inconsistency, we need to focus on global conformal transformations on the

plane, and demand that these exist and are invertible everywhere. Upon doing so, one

obtains the transformations

𝑓(𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

with 𝑎𝑑 − 𝑏𝑐 = 1, (2.48)
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where 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℂ. These constitute the set of projective transformations 𝑆𝐿(2, ℂ) of
mappings from ℂ onto itself, which is isomorphic to 𝑆𝑂(3, 1) as expected.
With these new coordinates, we can now define a quasi-primary field as a field that,

under a given conformal map 𝑧 → 𝑤(𝑧), 𝑧 → 𝑤(𝑧) transforms as

𝜙′(𝑤, 𝑤) = (𝜕𝑤
𝜕𝑧

)
−ℎ

(𝜕𝑤
𝜕𝑧

)
−ℎ

𝜙(𝑧, 𝑧), (2.49)

where we call ℎ(ℎ) the (anti)holomorphic conformal dimension. A field that transforms
according to Equation (2.49) for every possible conformal transformation is a primary

field, and the set of primary fields and their conformal dimensions is one of the most

important aspects of any CFT.

As in higher dimensions, correlation functions are heavily constrained once more,

as they must transform according to

⟨𝜙1(𝑤1, 𝑤1...𝜙𝑛(𝑤𝑛, 𝑤𝑛))⟩ =
𝑛

∏
𝑖=1

(𝜕𝑤
𝜕𝑧

)
−ℎ𝑖

𝑤=𝑤𝑖

(𝜕𝑤
𝜕𝑧

)
−ℎ𝑖

𝑤=𝑤𝑖

⟨𝜙1(𝑧1, 𝑧1...𝜙𝑛(𝑧𝑛, 𝑧𝑛))⟩, (2.50)

which fixes the 2-point function to be

⟨𝜙1(𝑧1, 𝑧1)𝜙2(𝑧2, 𝑧2)⟩ =
𝐶12

(𝑧1 − 𝑧2)2ℎ(𝑧1 − 𝑧2)2ℎ
with ℎ1 = ℎ2 = ℎ , ℎ1 = ℎ2 = ℎ.

(2.51)

The 3-point function and further 𝑛-point function become similarly constrained. Of
significant importance is the fact that the dependence on the holomorphic and anti-

holomorphic variables fully factorizes, which is, in fact, a feature of CFT, as we will

see later.

In order to understand how a generic correlation function ⟨𝑋⟩ behaves under an
infinitesimal conformal transformation, one can prove the conformal Ward identity, in

which a small variation 𝛿𝜀,𝜀 yields

𝛿𝜀,𝜀⟨𝑋⟩ = − 1
2𝜋𝑖

∮
𝐶

𝑑𝑧𝜀(𝑧)⟨𝑇 (𝑧)𝑋⟩ + 1
2𝜋𝑖

∮
𝐶

𝑑𝑧𝜀(𝑧)⟨𝑇(𝑧)𝑋⟩, (2.52)

where we have introduced the holomorphic and anti-holomorphic energy-momentum

tensors defined as 𝑇 (𝑧) = −2𝜋𝑇𝑧𝑧 and 𝑇(𝑧) = −2𝜋𝑇𝑧𝑧, and the contour 𝐶 encircles all
divergences arising from the correlations functions within the integrals.

The most important consequence of Equation (2.52) is that the symmetry properties

of any field, or combination thereof, 𝑋 are encoded in the divergence structure of their
correlation function with the energy-momentum tensor. In fact, for any primary field

𝑋, the holomorphic correlation functions are given by

⟨𝑇 (𝑧)𝑋⟩ =
𝑛

∑
𝑖=1

[ 1
𝑧 − 𝑤𝑖

𝜕𝑤𝑖
⟨𝑋⟩ +

ℎ𝑖

(𝑧 − 𝑤𝑖)2 ⟨𝑋⟩] + reg. (2.53)

where reg. groups all the terms that do not diverge in the limit 𝑧 → 𝑤𝑖, and we have a

similar expression for the anti-holomorphic counterpart. The idea that the divergences

arising from correlation functions contain the physical information of the field is one of

the most important features of CFT, as it allows us to study the properties of the theory

by merely keeping track of the divergences that arise alongside any computation.
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2.3 Background concepts on Conformal field theory

This generic behavior is what motivates us to introduce the concept of an Operator

Product Expansion (OPE), which is an operation that allows us to only focus on these

divergences. The OPE consists of considering the correlation function between two

fields and substituting their product within the correlation functions by exclusively

the divergent terms of their expansion as their positions get close. As an example, the

OPE between the energy-momentum tensor 𝑇 (𝑧) and a primary field 𝜙(𝑤) can be read
from Equation (2.53) to be

𝑇 (𝑧)𝜙(𝑤) ∼ ℎ
(𝑧 − 𝑤)2 𝜙(𝑤) + 1

(𝑧 − 𝑤)
𝜕𝑤𝜙(𝑤), (2.54)

where we have only presented the holomorphic OPE, and∼means that we are ignoring
all the regular terms. It is, in fact, common to consider the OPE shown in Equation

(2.54) as the better definition of a primary field, which is the approach usually followed

in the algebraic approaches to CFT that are rooted in operator algebras, where the

OPE enjoys a much more formal definition. Under this definition, quasi-primary or

descendant fields are the ones that appear from the OPE of 𝑇 (𝑧) with a given primary.
Another very important OPE is the one of 𝑇 (𝑧) with itself, where, by conformal
invariance, it can be shown that it is given by

𝑇 (𝑧)𝑇 (𝑤) ∼
𝑐
2

(𝑧 − 𝑤)4 +
2𝑇 (𝑤)

(𝑧 − 𝑤)2 +
𝜕𝑇 (𝑤)
(𝑧 − 𝑤)

, (2.55)

where a new constant 𝑐 has appeared on top of the most divergent term, which is
known as the central charge. This is another one of the most important and defining

numbers for a CFT, as it is an intrinsic property of the divergent structure of the energy-

momentum itself. The OPE of 𝑇 (𝑧) with itself also tells us that it is a quasi-primary
field with ℎ𝑇 = 2.
The final important OPE is given by the OPE of two primary fields amongst them-

selves, which can generically be written as

𝜙𝑖(𝑧)𝜙𝑗(𝑤) = ∑
𝑘

𝐶𝑘
𝑖𝑗(𝑧 − 𝑤)ℎ𝑘−ℎ𝑖−ℎ𝑗𝜙𝑘(𝑤) + desc. (2.56)

where the constants 𝐶𝑖𝑗𝑘 are a set of numbers that define the normalization of the 3-

point functions and desc. stands for all the descendants that can arise from the product.

Although the dependence of higher 𝑛-point functions on cross-ratios is not fixed by
conformal invariance, by repeated use of the OPEwithin the correlation function, every

𝑛-point function can be reduced to 2 and 3-point functions. Therefore, any correlation
function of CFT is fully characterized by the numbers that appear as these OPEs are

taken, which are the conformal dimensions of the primary fields ℎ𝑖, the central charge

𝑐, and the 3-point function normalization constant 𝐶𝑖𝑗𝑘. The fact that the entire theory

can be solved by repeated usage of algebraic relations between the fields is what allows

for the rigorous mathematical treatment of CFTs as Operator Algebras [151].

Free field examples

Let us begin with the simplest CFT given by the free boson action

𝑆𝑓𝑏 = 1
8𝜋

∫ 𝑑2𝑥𝜕𝜇𝜑𝜕𝜇𝜑, (2.57)
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whose 2-point correlators are well-known and given in two dimensions by

⟨𝜑(𝑧, 𝑧)𝜑(𝑤, 𝑤)⟩ = − log (|𝑧 − 𝑤|2) , (2.58)

which indicates us that the field 𝜑(𝑧) is not a primary field. However, if we take
derivatives of the boson field, we obtain

⟨𝜕𝑧𝜑(𝑧, 𝑧)𝜕𝑤𝜑(𝑤, 𝑤)⟩ = − 1
(𝑧 − 𝑤)2 , ⟨𝜕𝑧𝜑(𝑧, 𝑧)𝜕𝑤𝜑(𝑤, 𝑤)⟩ = − 1

(𝑧 − 𝑤)2 , (2.59)

which allows us to infer the OPE of 𝜕𝜑(𝑧) with itself, which contains a single divergent
term. This OPE also reflects the bosonic character of the field since the positions of

the fields can be swapped without affecting the correlation function. The energy-

momentum tensor of the free boson is given simply by

𝑇 (𝑧) = −1
2

∶ 𝜕𝜑(𝑧)𝜕𝜑(𝑧) ∶, (2.60)

which can be obtained from the action, and normal ordering ∶∶ has been introduced
since both fields are evaluated at the same point. Performing the OPE of 𝑇 (𝑧) with the
field 𝜕𝜑(𝑤) by repeated application of Equation (2.59)

𝑇 (𝑧)𝜕𝜑(𝑤) ∼
𝜕𝜑(𝑤)

(𝑧 − 𝑤)2 +
𝜕2

𝑤𝜑(𝑤)
(𝑧 − 𝑤)

, (2.61)

which tells us that 𝜕𝜑(𝑧) is indeed a primary field with conformal dimension ℎ = 1.
This information also allows us to infer from Equation (2.59) the value for the 3-point

constant amongst these primaries to be 𝐶0
ℎℎ = −1 as these fields ”multiplied” by the

identity primary field. By using Wick’s theorem, the OPE of 𝑇 (𝑧) with itself is

𝑇 (𝑧)𝑇 (𝑤) ∼ 1
2(𝑧 − 𝑤)4 +

2𝑇 (𝑤)
(𝑧 − 𝑤)2 +

𝜕𝑇 (𝑤)
(𝑧 − 𝑤)

, (2.62)

which tells us that this CFT has 𝑐 = 1. It would seem that we already have all the
information that we need to find any correlator of this theory, but we are missing a

lot of information in fact. We have only found one primary field of this theory, 𝜕𝜑(𝑧),
but it turns out that there are infinitely many more, all of them given in the form of

vertex operators

𝒱𝛼(𝑧, 𝑧) =∶ 𝑒𝑖𝛼𝜑(𝑧,𝑧) ∶, (2.63)

where normal ordering is necessary to be able to perform Taylor expansions for this

exponential. These fields are primary fields with conformal dimension ℎ(𝛼) = 𝛼2

2
and

their OPE is given by

𝒱𝛼(𝑧, 𝑧)𝒱𝛽(𝑤, 𝑤) ∼ |𝑧 − 𝑤|2𝛼𝛽𝒱𝛼+𝛽(𝑤, 𝑤) + ..., (2.64)

which provides us with the rest of the needed constants. Although the theory is simple

enough such that we can extract all the conformal data, the challenge of this theory

resides in the fact that there are infinitely many primary fields, which is a situation

in strong contrast to other simple CFTs such as minimal models. In minimal models,

there is only a finite amount of primary fields, but solving the algebraic relations that

provide us with the conformal data is a generically hard task, which attempts to be

solved by following the so called conformal bootstrap program [172].
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Our next simple example is the free fermion. The action of a free Majorana Fermion

is given by

𝑆𝑓𝑓 = 1
2𝜋

∫ 𝑑2𝑥(𝜓𝜕𝜓 + 𝜓𝜕𝜓), (2.65)

where the correlators amongst the fields 𝜓(𝑧, 𝑧) and 𝜓(𝑧, 𝑧) are given by

⟨𝜓(𝑧, 𝑧)𝜓(𝑤, 𝑤)⟩ = 1
𝑧 − 𝑤

,

⟨𝜓(𝑧, 𝑧)𝜓(𝑤, 𝑤)⟩ = 1
𝑧 − 𝑤

,

⟨𝜓(𝑧, 𝑧)𝜓(𝑤, 𝑤)⟩ = 0,

(2.66)

which allows us to read the OPEs amongst these fields. Once again, the OPE reflects

the fermionic character of the field whilst also showing that the holomorphic and anti-

holomorphic parts of the field become decoupled. The energy-momentum tensor is

given by

𝑇 (𝑧) = −1
2

∶ 𝜓(𝑧)𝜕𝜓(𝑧) ∶, (2.67)

and the relevant OPEs are then given by

𝑇 (𝑧)𝜓(𝑤) ∼
1
2
𝜓(𝑤)

(𝑧 − 𝑤)2 +
𝜕𝜓(𝑤)
(𝑧 − 𝑤)

,

𝑇 (𝑧)𝑇 (𝑤) ∼
1
4

(𝑧 − 𝑤)4 +
2𝑇 (𝑤)

(𝑧 − 𝑤)2 +
𝜕𝑇 (𝑤)
(𝑧 − 𝑤)

,

(2.68)

from which we obtain that 𝑐 = 1
2
and that the field 𝜓(𝑧) is a primary field with confor-

mal dimension ℎ = 1
2
.

Operator formalism

So far, we have shown the consequences of conformal invariance in 𝑑 = 2 at the
level of the correlation functions obtained from path integral calculations without any

reference to the underlying Hilbert space structure. Since we wish to eventually discuss

the representation of symmetries on a CFT, it is important to understand the constraints

that conformal invariance imposes on the space of states themselves, and not just their

correlation functions.

We will concern ourselves only with the holomorphic part of the theory to ease up

the notation and begin by performing a Laurent expansion of any quasi-primary field

as

𝜙(𝑧) = ∑
𝑚∈ℤ

𝑧−𝑚−ℎ𝜙𝑚, 𝜙𝑚 = 1
2𝜋𝑖

∮ 𝑑𝑧 𝑧𝑚+ℎ−1𝜙(𝑧). (2.69)

From this mode expansion, one can define the corresponding conjugate of the field

𝜙†(𝑧) via the relationship between the modes 𝜙†
𝑚 = 𝜙−𝑚. In order to be able to define

the norm of a state, it is mandatory that the vacuum state must satisfy

𝜙𝑚|0⟩ = 0 for 𝑚 > −ℎ. (2.70)
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With the vacuum state defined, we now define an operator as contour integrals of a

holomorphic field, such as

𝐴 = ∮
0

𝑎(𝑧)𝑑𝑧, (2.71)

where the contour encircles the 0 of the complex plane. With this definition, any

commutation between two such operators is given by

[𝐴, 𝐵] = ∮
0

𝑑𝑤 ∮
𝑤

𝑑𝑧𝑎(𝑧)𝑏(𝑤). (2.72)

This is an extremely important definition, as it allows us to relate OPEs and commuta-

tion relations. If we were to take the OPE between the fields 𝑎(𝑧) and 𝑏(𝑤) in Equation
(2.72), only the singular terms would survive the contour integrals, and therefore this

expression allows us to translate the dynamical content of the OPE into the algebraic

language.

The most important object to translate to the algebraic language is the energy-

momentum tensor 𝑇 (𝑧). By expanding in Laurent modes as well

𝑇 (𝑧) = ∑
𝑛∈ℤ

𝑧−𝑛−2𝐿𝑛 , 𝐿𝑛 = 1
2𝜋𝑖

∮ 𝑑𝑧 𝑧𝑛+1𝑡(𝑧), (2.73)

where the modes 𝐿𝑛 are the generators of all conformal transformations on the Hilbert

space. The generators of global conformal transformations associated with 𝑆𝐿(2, ℂ)
are given by 𝐿−1, 𝐿0 and 𝐿1, with 𝐿0 being also identified with the Hamiltonian of

the CFT [37]. Using Equation (2.72) we can now compute the commutation relations

amongst the symmetry generators, and we obtain

[𝐿𝑛, 𝐿𝑚] = (𝑛 − 𝑚)𝐿𝑚+𝑛 + 𝑐
12

𝑛 (𝑛2 − 1) 𝛿𝑛+𝑚,0,

[𝐿𝑛, 𝐿𝑚] = 0,
(2.74)

where 𝐿𝑚 are the modes arising from the anti-holomorphic component of the energy-

momentum tensor. This algebra is known as the Virasoro algebra [37], which is defined

as a central extension with central charge 𝑐 of the previously classical Witt algebra that
defined the classical conformal invariance [173]. In these commutation relations, we

finally see the underlying reason for the prevalent factorization of correlation func-

tions into a holomorphic and an anti-holomorphic part. The underlying Hilbert must

organize in representation of the Virasoro algebra, and since there are two uncoupled

copies, the correlations function will behave accordingly.

As with any other symmetric theory, the Hilbert space must fall into representations

of the conformal algebra. Therefore, we can begin constructing this space from the

conformally invariant vacuum state, which must satisfy

𝐿𝑛|0⟩ = 0 for 𝑛 ≥ −1 (2.75)

such that the vacuum is invariant under global conformal transformations. We can

construct any state of the theory using the operator-state correspondence

|𝜙⟩ = lim
𝑧→0

𝜙(𝑧)|0⟩ (2.76)
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andwe denote the states corresponding to primary fields by their conformal dimensions

as |ℎ⟩. These states turn out to be the eigenstates of the CFT Hamiltonian

𝐿0|ℎ⟩ = ℎ|ℎ|⟩ , 𝐿𝑛|ℎ⟩ = 0 if 𝑛 > 0, (2.77)

and therefore act as the highest-weight state of the conformal representation. To gen-

erate the rest of the excited states, which are the states associated with the descendant

fields of a primary, we simply act with the negative Virasoro generators as

𝐿−𝑘1
𝐿−𝑘2

...𝐿−𝑘𝑛
|ℎ⟩ , 𝑘𝑖 > 1 (2.78)

which allows to reach an excited state with energy ℎ′ = ℎ + ∑𝑖 𝑘𝑖, where the sum

∑𝑖 𝑘𝑖 = 𝑁 is called the level of the descendant. The subset of the full Hilbert space
generated by the primary state |ℎ⟩ and all of its descendants is closed under the action
of the Virasoro operators, therefore providing us with a Verma module representation

[37].

We call this representation a module because within the set of descendant states lie

some special states, which are called null vectors |𝜒⟩. These states are special because
they turn out to be descendants of a primary state and highest-weight states at the

same time. Therefore, to obtain a proper representation, these states must be removed

from the set of possible states, such that all the states within the representation can

transform amongst themselves under any possible conformal transformation, which

we will then call a conformal family [𝜙𝑘] associated to the primary field 𝜙𝑘.

The exploration of all the possible Verma modules, and more explicitly, their re-

ducibility or unitarity, is what led to the discovery of minimal models [37], which are

defined to be irreducible unitary Verma modules. These models play very important

roles as they are found, for instance, in the critical points of the Ising model in two

dimensions or further families such as the critical points of the tri- or tetra-critical Ising

models. Because minimal models have a finite amount of conformal families, the the-

ory is considered to be solved as we can provide the entire spectrum and, therefore,

compute any correlation function.

The structure and constraints among the states of the Verma Module can be trans-

lated back to correlation functions, where the correlation function of any combination

of primary fields 𝑋 = 𝜙1(𝑤1)...𝜙𝑛(𝑤𝑛) with a descendant field 𝜙−𝑘1,...,−𝑘𝑛(𝑤) is given
by

⟨𝜙−𝑘1,...,−𝑘𝑛(𝑤)𝑋⟩ = ℒ−𝑘1
...ℒ−𝑘𝑛

⟨𝜙(𝑤)𝑋⟩, (2.79)

where the ℒ−𝑛 are differential operators given by

ℒ−𝑛 = ∑
𝑖

[
(𝑛 − 1)ℎ𝑖

(𝑤𝑖 − 𝑤)𝑛 −
𝜕𝑤𝑖

(𝑤𝑖 − 𝑤)𝑛−1 ] . (2.80)

Therefore, any correlation function involving descendant fields can be related to an-

other one of the primary fields, which in turn can always be found via performing

OPEs amongst the primary fields if the complete conformal data is known. Further-

more, some of the more complicated correlators can even be found directly by solving

the differential equation associated with the descendant being a null field and, hence,

the correlator of primaries with it vanishing.

The last piece of information that we will provide about standard CFT theory is

the notion of fusion rules and fusion algebra. We have seen so far that the CFT Hilbert
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space organizes in families labeled by the primary fields of the theory, which we called

the conformal families [𝜙𝑘]. As we have seen, the OPE introduces a notion of ”mul-
tiplication” in the space of primary fields, giving us a recipe with which to send two

primaries to a third one. This concept is formalized as the fusion rules of the different

conformal families

[𝜙𝑖] × [𝜙𝑗] = ∑
𝑘

𝒩𝑘
𝑖𝑗[𝜙𝑘], (2.81)

where the numbers 𝒩𝑘
𝑖𝑗 are called the fusion coefficients. To each choice of fusion

coefficient, one can associate the notion of a fusion algebra, which is a commutative

and associative algebra with generators 𝜙𝑗, identity 𝜙1 = 𝕀 and a product given by the
OPE. These fusion rules are extremely important in the context of topological physics,

as they provide us with an explicit representation of the braiding and fusing of the

anyonic excitations that define long-range topological order [32].

In the upcoming sections, we will provide a very short introduction to some of the

main results of the more advanced CFT topics that appear in the field of topological

order, and that will be of use in the later part of this thesis.

2.3.2 Modular Invariance

We have so far only concerned ourselves with CFTs in 𝑑 = 2 defined on the complex
plane. However, there is no a priori restriction on the kind of manifolds on top of

which we could study CFT. We know from the previous sections that one of the sig-

nifying features of topological order is that the ground state degeneracy reflects the

topology of the underlying manifold. As CFT provides a natural representation of any-

onic excitations due to the fusion rules, it is important to understand how the ground

state of CFTs changes when placed on a different surface, like, for instance, a torus.

We present here a very short summary of the results related to studying CFTs on a

torus. Firstly, the most important parameter for a torus is the ratio between the length

of the two non-contractible circles 𝜔𝑖, which we call the modular parameter 𝜏 = 𝜔2
𝜔1
.

We define a Virasoro character for a specific Verma module as

𝒳𝒱(𝑞) = Tr𝒱 𝑞𝐿0− 𝑐
24 , 𝑞 = 𝑒2𝑖𝜋𝜏, (2.82)

where the trace is taken over the Verma module. The partition function on a torus is

given by

𝑍(𝜏) = Tr{𝑞𝐿0− 𝑐
24 𝑞−𝐿0− 𝑐

24 }, (2.83)

where now the trace is taken over the entire CFT Hilbert space. As the Hilbert space

is broken down into the different Verma modules associated with the primaries, the

partition function becomes

𝑍(𝜏) = ∑
ℎ,ℎ

𝒩ℎ,ℎ𝒳ℎ(𝑞)𝒳ℎ(𝑞), (2.84)

where the non-negative numbers 𝒩ℎ,ℎ are called the multiplicity matrix and corre-

spond to how many times each character 𝒳ℎ is associated with the primary family

with conformal dimension ℎ appears.
Because the partition function is a physical quantity, it must be left invariant under

any symmetry of the underlying torus coordinates, transformations known as modular
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transformations. These transformations are given by the modular group 𝑃𝑆𝐿(2, ℤ)
and have two generators, usually denoted by 𝒮 and 𝒯, associated with inversions and
translations of the modular parameters 𝜏. Invariance of 𝑍(𝜏) under both 𝒮 and 𝒯
introduces very stringent constraints on the possible values of the multiplicity matrix

𝒩 once a set of irreducible modules gets fixed. Such complete classifications have

been achieved for unitary minimal models, as can be seen in [174].

The most remarkable result of modular invariance is a theorem known as the Ver-

linde Formula [175]. If the Virasoro characters are transformed according to the 𝒮
generator, one obtains

𝒳𝑖( ̃𝑞) = ∑
𝑗

𝑆𝑖𝑗𝒳𝑗(𝑞) , ̃𝑞 = 𝑒− 2𝜋𝑖
𝜏 (2.85)

and the numbers 𝑆𝑖𝑗 are collected in the modular matrix 𝑆. A modular transformation
is a global notion, as it involves a change of coordinates everywhere in the torus, but

the Verlinde formula surprisingly links the modular matrix 𝑆 to the fusion matrix𝒩𝑘
𝑖𝑗

which arises from OPEs, which are intrinsically local operations. The Verlinde formula

states

𝒩𝑘
𝑖𝑗 = ∑

𝑚

𝑆𝑖𝑚𝑆𝑗𝑚𝑆𝑚𝑘

𝑆0𝑚
, (2.86)

where the index 0 corresponds to the vacuum representation. This is an extremely

deep result that can be traced back to the underlying Fusion category theory structure

of vertex operator algebras, of which CFTs are an example [176].

2.3.3 Boundary CFT

In this section, we want to briefly present one of the main intuitions that will be used

in Chapter 4 in order to deal with manifolds with boundaries in the context of CFT. The

simplest manifold with a boundary on which we can use CFT is the Upper Half Plane

(UHP) ℍ, consisting of the complex numbers with positive imaginary parts. Conformal
invariance in the UHP implies that conformal transformations must keep the boundary,

in this case the real line ℝ, and any boundary conditions on it invariant. This constraint
reduces the set of possible global conformal transformations from 𝑆𝐿(2, ℂ) down to
𝑆𝐿(2, ℝ), therefore reducing in half the amount of conformal generators.
Although we have lost half of the generators of symmetry, we still possess an infi-

nite amount of them, but the main consequence is that the holomorphic and the anti-

holomorphic sectors of the CFT are no longer independent, as they have been coupled

on the real line. To see this in more detail, we consider the Ward identities

𝛿𝜀,𝜀⟨𝑋⟩ = − 1
2𝜋𝑖

∮
𝐶

𝑑𝑧𝜀(𝑧)⟨𝑇 (𝑧)𝑋⟩ + 1
2𝜋𝑖

∮
𝐶

𝑑𝑧𝜀(𝑧)⟨𝑇(𝑧)𝑋⟩, (2.87)

where the contour 𝐶 lies entirely within the UHP. In the infinite plane, the variations
𝜀(𝑧) and 𝜀(𝑧) were independent, and because of this independence, we could treat
Equation (2.87) as two separate Ward identities involving only either the holomor-

phic or the anti-holomorphic sector, however, this is no longer the case. Now, the

coordinate variation 𝜀 = 𝜀∗, and therefore in the UHP, we will regard the dependence

on the anti-holomorphic variables 𝑧𝑖 as a dependence on the conjugated holomorphic

variables 𝑧∗
𝑖 that live in the lower half plane (LHP).
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We have thus essentially introduced a mirror image of the system in the LHP, which

enforces that the energy-momentum tensor behaves as 𝑇 (𝑧∗) = 𝑇(𝑧). To preserve
conformal invariance, it is mandatory that 𝑇(𝑧) = 𝑇 (𝑧) whenever 𝑧 ∈ ℝ, which means
that no energy or momentum can be transferred across the real axis as expected of a

system with a boundary. Fortunately, we will still be able to rewrite the conformal

Ward identity on the UHP as a purely holomorphic expression on the infinite plane.

The second term of Equation (2.87) becomes a mirror image of the contour on the

LHP because of the complex conjugation of the variable of integration 𝑧∗. Because

𝑇 = 𝑇 on the real axis, both integrations can be put together once again. This results
in a contour 𝐶 that encircles the origin and doubles as many points as the original
contours, as shown in Figure 2.4. Using this identification, which is nothing but the

Figure 2.4: Schematic diagram showcasing how a CFT in the UHP can be dealt with using the

method of images.

well-known method of images of classical electrostatics, the conformal Ward identity

becomes

𝛿𝜀,𝜀⟨𝑋⟩ = − 1
2𝜋𝑖

∮
𝐶

𝑑𝑧𝜀(𝑧)⟨𝑇 (𝑧)𝑋′⟩, (2.88)

where the contour 𝐶 encircles the origin and the collection of primary fields is given
by 𝑋′ = 𝜙ℎ1

(𝑧1)𝜙ℎ1
(𝑧∗

1)...𝜙ℎ𝑛
(𝑧𝑛)𝜙ℎ𝑛

(𝑧∗
𝑛).

In summary, a correlator ⟨𝑋⟩ in the UHP, as a function of the 2𝑛 variables 𝑧1, 𝑧1, ..., 𝑧𝑛,
𝑧𝑛, satisfies the same differential equations required by conformal invariance as the

correlator ⟨𝑋′⟩ on the entire plane regarded as a function of the 2𝑛 holomorphic vari-
ables 𝑧1, 𝑧∗

1, ..., 𝑧𝑛, 𝑧∗
𝑛. Effectively, we have replaced the anti-holomorphic degrees of

freedom on the UHP with holomorphic degrees of freedom on the LHP. In Chapter 4,

we will make use of this technique in order to properly define symmetry operators on

the virtual space of fTNS.

2.3.4 WZW models

So far we have only concerned ourselves with the case in which the different fields

of the theory had to form representations of conformal symmetry exclusively. A very

important class of CFTs are those that possess an extended symmetry, and in this case,

we will briefly present those CFTs that possess a Lie-algebraic symmetry. This family

of models is known as the Wess-Zumino-Witten (WZW) models [177, 178], and they

are particular amongst the CFTs in the sense that they can be described by means of

an action.
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The defining action is given by

𝑆(𝑔) = 𝑘
16𝜋

∫
𝜕Σ

𝑑2𝑥Tr′ [𝜕𝜇𝑔−1𝜕𝜇𝑔] − 𝑖𝑘
24𝜋

∫
Σ

𝑑3𝑦𝜖𝛼𝛽𝛾 Tr
′ [𝑔−1𝜕𝛼𝑔𝑔−1𝜕𝛽𝑔𝑔−1𝜕𝛾𝑔] ,

(2.89)

where Σ is a 3-dimensional manifold whose boundary 𝜕Σ is the 2-sphere. Tr’ is a
rescaled trace, 𝜖𝛼𝛽𝛾 is the Levi-Civita symbols, and the field 𝑔 takes values in any Lie
group 𝐺, such that 𝑔 ∈ 𝐺. The second term corresponds to a topological total deriva-
tive term and the requirement that the partition function is single-valued leads to the

condition that 𝑘 ∈ ℤ. This action is not only invariant under conformal transforma-
tions but also under the local action of any element Ω(𝑧) ∈ 𝐺 that transforms the field
as

𝑔(𝑧, 𝑧) → Ω(𝑧)𝑔(𝑧, 𝑧)Ω−1(𝑧). (2.90)

Local invariance under the action of the Lie group means that the symmetry will be

characterized by the holomorphic currents

𝐽(𝑧) = −𝑘𝜕𝑧𝑔𝑔−1 = 𝐽𝑎(𝑧)𝑡𝑎 = ∑
𝑛∈ℤ

𝐽𝑎
𝑛𝑧−𝑛−1𝑡𝑎, (2.91)

where 𝑡𝑎 are elements of the Lie algebra 𝔤 corresponding to 𝐺, and similar expression
equations for the anti-holomorphic sector have been ignored. The set of currents fulfills

the Kác-Moody OPE [37]

𝐽𝑎(𝑧)𝐽 𝑏(𝑤) ∼
𝑘𝛿𝑎𝑏

(𝑧 − 𝑤)2 + ∑
𝑐

𝑖𝑓𝑎𝑏𝑐
𝐽𝑐(𝑤)

(𝑧 − 𝑤)
, (2.92)

where 𝑓𝑎𝑏𝑐 are the structure constants of 𝔤, and this set of relations means that the
set of currents forms a current algebra at level 𝑘. As was to be expected, the com-
mutation relations between the holomorphic current algebra and its anti-holomorphic

counterpart is zero, signifying the decoupling of both sectors.

The energy-momentum tensor for this theory can be constructed via the Sugawara-

Sommerfeld construction to yield

𝑇 (𝑧) = 1
𝑘 + ℎ

dim(𝐺)

∑
𝑎=1

∶ 𝐽𝑎𝐽𝑎 ∶ (𝑧), (2.93)

where ℎ is the dual Coxeter number, which can be computed from the Lie Group 𝐺.
The conformal currents have conformal dimension ℎ = 1 and that they are Virasoro
primary fields. From this energy-momentum, one computes the Virasoro generators to

obtain

𝐿𝑛 = 1
2(𝑘 + 𝑔)

∑
𝑚∈ℤ

∶ 𝐽𝑎
𝑚𝐽𝑎

𝑛−𝑚 ∶ . (2.94)

Afterwards one checks that the Virasoro generators and the modes of the currents fulfill

the commutation relations

[𝐿𝑛, 𝐽𝑎
𝑚] = −𝑚𝐽𝑎

𝑛+𝑚,
[𝐽𝑎

𝑛 , 𝐽 𝑏
𝑚] = 𝑖𝑓𝑎𝑏𝑐𝐽𝑐

𝑛+𝑚 + 𝑘𝑛𝛿𝑎𝑏𝛿𝑛+𝑚,0,
(2.95)

and the commutation relation of the Virasoro generators is that of the Virasoro algebra.

From these commutation relations, we see that in the same way that the Virasoro
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generators are a central extension of the Witt algebra with the central charge 𝑐, the
current algebra is an affine Lie algebra, constructed as a loop-extension of the Lie

algebra by the level 𝑘 of the WZW theory. It is worth pointing out that the full affine
Lie algebra is not a symmetry algebra since not all of its generators commute with

𝐿0. Only 𝐽𝑎
0 do commute, which are the affine generators that recover the original Lie

algebra, which will become relevant in Chapter 4. We will call the affine Lie algebra

the spectrum-generating algebra of the theory. The central charge of the theory gets

fixed in terms of the choice of 𝐺 and level 𝑘 to be

𝑐𝑊𝑍𝑊 =
𝑘 dim(𝐺)

𝑘 + ℎ
. (2.96)

Primary fields are then defined by their OPEs with the currents as

𝐽𝑎(𝑧)𝑔(𝑤, 𝑤) ∼
−𝑡𝑎𝑔(𝑤, 𝑤)

𝑧 − 𝑤
, (2.97)

where we assume that 𝑔 transforms in the minimal representation of 𝔤, to which 𝑡𝑎

refers. In the operator representation, the condition for primary becomes

𝐽𝑎
0 |𝜙⟩ = −𝑡𝑎|𝜙⟩,

𝐽𝑎
𝑛 |𝜙⟩ = 0 for 𝑛 > 0,

(2.98)

and then all descendant states have the form 𝐽𝑎
−𝑛1

...𝐽 𝑏
−𝑛𝑚

|𝜙⟩ as in the case of usual CFT,
with 𝑛𝑖 being positive integers. Finally, as in the case of standard CFT, all the corre-

lation functions involving descendant fields can be reduced to correlation functions of

primary fields, and the primary fields obey certain differential equations because of

the null vectors of the module. For the WZW models, this is known as the Knizhnik-

Zamolodchikov equation [37], which takes the form

[𝜕𝑧𝑖
− 1

𝑘 + ℎ
∑
𝑖≠𝑗

𝑡𝑎
𝑖 ⊗ 𝑡𝑎

𝑗

𝑧𝑖 − 𝑧𝑗
] ⟨𝜙1(𝑧1)...𝜙𝑛(𝑧𝑛)⟩ = 0. (2.99)

These models have found use as rational conformal field theories, but their most im-

portant application for our purposes is their appearance as the boundary side of the

Chern-Simons/WZW duality [179]. In short, the correlation functions of WZW theories

can, in general, be represented as partition functions of a specific TQFT known as the

Chern-Simons theory, which is a gapped topological theory. This duality highlights the

deep connection between the topological excitations of TQFTs and their CFT boundary

counterparts.
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In the previous chapter, we have seen a general overview of many of the different

phases of matter that appear in Nature. Ranging from gapped to gapless and from

short-range to long-range entangled, there is undoubtedly a myriad of phases that one

can theoretically describe. We have also presented TNs as an ansatz that allows us

to provide representative states within most of these phases. Because of the inherent

trade-off between the amount of entanglement and the expressivity of TN states, almost

all of the phases of matter mentioned above can be analytically described with TNs.

Simultaneously, we have also seen the limitations of this family of ansatzs, mainly in

describing gapless order with MPS or describing gapped chiral topological order in 2d.

In this chapter, we provide an approach that potentially closes this gap and pro-

vides a new family of trial wavefunctions that specifically targets the ones that were

previously out of reach by standard TN methods. We call this family of states field

tensor network states (fTNS). We construct this family by using the intrinsic connec-

tion that our target states have with CFT while borrowing techniques from the realm

of CFT to apply them to the realm of tensor networks. Of course, no increase in the

complexity of the state comes for free, and the price that we pay is that we must work

with an infinite-dimensional virtual space. However, this is not any arbitrary infinite-

dimensional space; otherwise, we would describe any state of the many-body Hilbert

space, which we know is an arduous task. This infinite-dimensional space is con-

strained to fulfill the structure of the CFT and, therefore, allows us to retain analytical

control over the ansatz.

We first present the generic construction of any fTNS to provide our primary example

of interest, the free boson fTNS. We then study the fMPS, representing an example of

a critical 1-dimensional MPS-like structure. Afterward, we present an fPEPS, which is

a representative of a chiral gapped phase of matter, which is one of the main results

of this thesis, as no such analytical example of a PEPS-like structure describing this

topological order exactly was known before.

We then present one of the most important results of this thesis, which is the sewing

condition. This condition pertains to the contraction of the virtual space of fTNS

amongst any two tensors, even when this contraction involves a sum over an infi-

nite dimensional space. Although the proof is not yet complete, we present the most

recent form of the proof as well as what are the remaining steps for its completion.

Afterwards, we use the developed technology to perform the closing condition of the

fTNS, allowing to recover the wavefunction of the spin system.
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3.1 Generic fTNS

3.1.1 From TNS to fTNS

Our goal is to describe the quantum state of a spin system consisting of a lattice of 𝑁
𝑑-dimensional spins whose wavefunction can be written as

|𝜓⟩ =
𝑑

∑
𝑠1...𝑠𝑁=1

𝑐𝑠1,...,𝑠𝑁
|𝑠1...𝑠𝑁⟩. (3.1)

As we have seen in Chapter 2, TNs are precisely an ansatz representation of such

a wavefunction in terms of a set of tensors 𝐴𝑖, where the index 𝑖 runs through all
the different tensors that constitute the wavefunction. For simplicity, we will only

consider a single tensor repeated on every site, setting 𝑖 = 1, which is the common
scenario found in MPS and PEPS. Mathematically, we can generally understand the

ansatz tensors as a map

𝐴 ∶ 𝒱virtual ⊗ ℋphysical ⟶ ℂ, (3.2)

where 𝒱virtual is the generic vector space corresponding to the virtual legs of the tensor
and ℋphysical is the Hilbert space corresponding to the 𝑑-dimensional spin on any site.
In almost all TNS constructions, one usually takes dim(𝒱virtual) = 𝜒𝑁𝑙 where 𝜒 is the
bond dimension and 𝑁𝑙 the number of legs of the tensor. The bond dimension is the

main parameter that controls the expressivity of the ansatz, the amount of entangle-

ment present in the state, and, therefore, the complexity of the state. Keeping 𝜒 finite
and as small as possible is of paramount importance in all numerical tasks that use TNS

[11]. Unless controlled, numerical algorithms would demand an unbounded amount

of memory, rendering the task impossible.

A significant part of the fame of TNS is attributed to their success in numerical

simulation. Still, in this thesis, we want to focus on providing exact analytical repre-

sentations of quantum states as tensor networks. We know that TNS with finite bond

dimension target precisely those states that fulfill the area-law of entanglement [10],

yet we also painstakingly know that not all interesting states that one can find in Nature

obey it. Firstly, states that fulfill the area law are the exception and not the rule in the

Hilbert space of a local gapped Hamiltonians [79], as a generic state will almost always

exhibit volume-law entanglement. Secondly, the ground state of a 1-dimensional criti-

cal system exhibits a logarithmic growth for the entanglement entropy for a subsystem

[180], necessitating a different TN architecture to achieve an better representation of

that state, usually in the form of a MERA [22]. Lastly, although PEPS can host al-

gebraically decaying correlations, an exact representation of a state belonging to the

FQHE family remains out of reach, and there have even been no-go theorems indicating

that it may be impossible [181],[182].

It seems that before us lies a crossroad. On one path, we accept that not all states

can have exact TN representations. Although we can have excellent numerical ap-

proximations, for instance via finite size scaling as in [183], we preserve our simple

TN structures to describe those states approximately. On the other path, we modify the

TN representation to provide an exact description of the state, at the cost of obscuring

some of the previous theorems and numerical guarantees and having to study and un-

derstand a new class of ansatz. In this thesis, we follow the second path, and our main

modification consists of allowing the virtual space of the TN to be∞-dimensional.
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Let us define field Tensor Network States (fTNS) as the states constructed from a

network of tensors 𝒜𝑠𝑖, interpreted as a map

𝒜 ∶ ℋvirtual ⊗ ℋphysical ⟶ ℂ, (3.3)

where now dim(ℋvirtual) = ∞. We allow the virtual Hilbert space to be an infinite di-
mensional space in which we can define a countably infinite basis, which is the more

precise meaning of the limit 𝜒 → ∞. Note how this is different from the approach
pursued in cMPS [184] or cTNS [185], where the goal is to describe a physical quan-

tum field with TN, and thus ℋphysical is the space that is allowed to become infinite-
dimensional. Our goal remains to describe the state of a quantum spin chain as in

Equation (3.1). Therefore, the dimension of the physical Hilbert space is fixed by the

spin dimension dim(ℋphysical) = 𝑑.
The Hilbert space that we will use the most in this thesis is the space of square-

integrable functions on an interval [𝑎, 𝑏] with 𝑎 < 𝑏 ∈ ℝ, alongside the set of constant
functions 𝕃2([𝑎, 𝑏]) ∪ 𝕂. Note how we can also allow the interval to be infinite, ℝ or
semi-infinite [0, ±∞). We say that a function is square integrable on any given interval
if and only if

𝑓 ∶ [𝑎, 𝑏] → ℂ ∈ 𝕃2([𝑎, 𝑏]) ⟷ ∫
𝑏

𝑎
𝑑𝑥|𝑓(𝑥)|2 < ∞. (3.4)

Although the set of constant functions 𝕂 is not square integrable when the domain is
unbounded, such as in the case of ℝ, we will see in the upcoming sections that they
need to be accounted for in order to describe the sector of zero modes that is present

in most field theories. Because the virtual space of 𝒜 has become a functional space,
we will use the notation𝒜[𝑓1, 𝑓2, ...] or𝒜𝑓1,𝑓2,... interchangeably to denote a functional

tensor whose virtual legs have been fixed to specific functions 𝑓1, 𝑓2, ... ∈ 𝕃2([𝑎, 𝑏]).
For clarity, let us establish a parallel with the much more familiar case of MPS. In the

case of translationally invariant MPS, the coefficients of the wavefunction are written

as

𝑐𝑠1,...,𝑠𝑁
=

𝐷

∑
𝑛1,...,𝑛𝑁=1

𝐴𝑠1
𝑛1,𝑛2

𝐴𝑠2
𝑛2,𝑛3

...𝐴𝑠𝑁
𝑛𝑁,𝑛1

, (3.5)

where the matrices𝐴𝑠𝑖
𝑛𝑖,𝑛𝑖+1

∈ ℂ are the MPS tensors consisting of 𝑑 complex matrices of
dimension 𝜒 × 𝜒, 𝑛𝑖 = 1, ..., 𝜒. Similarly, the coefficients of the wavefunction obtained
from a translationally invariant field Matrix Product States (fMPS) will be written as

𝑐𝑠1,...,𝑠𝑛
= ∫ 𝒟𝑓1... ∫ 𝒟𝑓𝑛𝒜𝑠1[𝑓1, 𝑓2]...𝒜𝑠𝑛[𝑓𝑛, 𝑓1], (3.6)

where the previous sum over the indices has now become an integration of all possible

functions that can be given as input to the functional, commonly known as a path

integral. Because we want to define our functionals parallel to what is done in standard

tensor networks theory, we had to choose an infinite dimensional Hilbert space as the

virtual space, as opposed to other infinitely sized spaces. Because any two finite tensors

can be contracted by summing over their connecting index, we must also require that

our functional tensors can. It is, therefore, mandatory that we must be able to find a

basis that one can sum over in the virtual space, and Hilbert spaces provided precisely

one such mathematical structure.

Without any further structure, performing this generalization would simply be an

interesting mathematical experiment since sending 𝜒 → ∞ would allow us to describe
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any state of the Hilbert space and, therefore, highly complicated states. Analytically,

it is prohibitively hard to describe such arbitrarily entangled states without the aid

of symmetries or any further properties. Numerically, it is very hard to optimize an

infinite dimensional space without truncating the space and, therefore, returning to the

standard formulation of TNS. We are missing one final insight: the spin wave function

that we wish to describe exactly with fTNS has to be characterized by a correlator of

the system’s underlying low-energy effective field theory.

3.1.2 Field-theoretical construction of the fTNS tensor

From this point onwards, we will assume that our target spin system wave function

corresponds to a 1- or 2-dimensional system for simplicity. The starting point of our

fTNS construction is to assume that the coefficients of the spin system can be computed

as

𝑐𝑠1,...,𝑠𝑛
(𝑧1, 𝑧2, ...𝑧𝑛) = ⟨𝜙(𝑧1, 𝑠1)𝜙(𝑧2, 𝑠2)...𝜙(𝑧𝑛, 𝑠𝑛)⟩, (3.7)

where 𝜙(𝑧, 𝑠) is whatever field operator that is important for the correlator of the
underlying low-energy effective field theory and 𝑧𝑖 = 𝑥𝑖 + 𝑖𝑦𝑖 would correspond to the

𝑖th-spin position in the final wavefunction. Usually, the correlator is assumed to be
between the in-vacuum state and the out-vacuum state of the field theory. Different

boundary states could be used to define further states of the Hilbert space, such as

excited states of a 1-dimensional critical system as shown in [48].

To find the expression of the functional tensor, the first step consists in rewriting the

correlator as an Euclidean path-integral

𝑐𝑠1,...,𝑠𝑛
= ∫

𝒮
𝒟𝜙 𝜙(𝑧1, 𝑠1)𝜙(𝑧2, 𝑠2)...𝜙(𝑧𝑛, 𝑠𝑛)𝑒−𝑆𝐸[𝜙], (3.8)

where 𝑆𝐸[𝜙] is the Euclidean action of the field theory, and 𝒮 is the underlying base
space of the theory, usually assumed to be the plane, an infinite cylinder, or a torus.

The path integral in Equation (3.8) will sum over all possible field configurations over

𝒮, and so if the underlying space can be broken down into small patchesℳ𝑖, we can

break down the path integral into the contributions of each patch. Mainly, if 𝒮 = ∪𝑖ℳ𝑖

∫
𝒮

𝒟𝜙 → ∫
ℳ1

𝒟𝜙1... ∫
ℳ𝑛

𝒟𝜙𝑛, (3.9)

where now each path integral is only over the configurations within the patch ℳ𝑖.

However, Equation (3.9) could not be complete as it stands, as now each patch has a

boundary 𝜕ℳ𝑖 in which we need to specify boundary conditions for the field. Thus,

we also need to sum over all possible boundary conditions 𝜙(𝑧) = 𝑓𝑖(𝑧) 𝑧 ∈ 𝜕ℳ𝑖, and

hence the correct breakdown of the path integral is

∫
𝒮

𝒟𝜙 = ∫ 𝒟𝑓1... ∫ 𝒟𝑓𝑛 ∫
′

ℳ1

𝒟𝜙1... ∫
′

ℳ𝑛

𝒟𝜙𝑛, (3.10)

where the path integrals with a prime correspond to the sum over field configurations

that obey the appropriate Dirichlet boundary conditions for that patch. Finally, we can

always choose the regions ℳ𝑖 to each enclose a single one of the operator insertions

of Equation (3.7), finally reaching the expression for the functional

𝒜𝑠𝑖[𝑓𝑖] = ∫
′

ℳ𝑖

𝒟𝜙𝜙(𝑧𝑖, 𝑠𝑖)𝑒−𝑆𝐸[𝜙]. (3.11)
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By inputting this expression back into Equation (3.8), we find

𝑐𝑠1,...,𝑠𝑛
= ∫ 𝒟𝑓1... ∫ 𝒟𝑓𝑛𝒜𝑠1[𝑓1]...𝒜𝑠𝑛[𝑓𝑛], (3.12)

where the path integral over all possible boundary conditions is nothing but the sum

over all the open indices of the functionals. Therefore, this equation is precisely the

complete contraction of the tensor network, which we call the closing condition.

In order to simplify future equations, we now define a diagrammatic notation for

fTNS. We will be diagrammatically representing these functionals with 2-dimensional

closed manifoldsℳ𝑖, corresponding to the patches of Equation (3.9) as shown in Figure

3.1. The ”legs” of the tensors correspond to different sections in which we choose to

partition the boundary 𝜕ℳ𝑖, and the physical degree of freedom corresponds to the

cross in the middle accompanied by its spin value.

Figure 3.1: Diagrammatic notation for the functional𝒜𝑠𝑖[𝑓1, 𝑓2]. Each section of the boundary
𝜕ℳ corresponds to the different functional legs of the tensor. The physical leg corresponds to

the cross in the center.

As an example, and as it was shown in [186], the two choices of ℳ𝑖 that lead to

the fMPS and fPEPS functional are depicted in Figure 3.2. An infinite strip is the only

2-dimensional surface with exactly two isomorphic boundaries, each corresponding

to the functional legs of the fMPS. Similarly, four isomorphic boundaries lead to the

geometry of a square, which we use for the fPEPS.

Figure 3.2: Diagrammatic notation for the MPS (top) and PEPS (bottom) functional.

With a diagrammatic notation in hand, we can now represent the most important

operation of these tensors: tensor contraction. In our language, this operation corre-

sponds to performing a path integral over all the possible functions that live in a shared
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compatible boundary,

∫ 𝒟𝑔𝒜𝑠1[𝑓1, 𝑔]𝒜𝑠2[𝑔, 𝑓2] = 𝒜𝑠1,𝑠2[𝑓1, 𝑓2] (3.13)

or diagrammatically,

, (3.14)

and this operation is what we will call the sewing condition. There are several im-

portant requirements for the sewing condition to be properly defined. Firstly, the two

functionals 𝒜1 and 𝒜2 must have a compatible boundary. More precisely, the sub-

manifold of the boundary 𝜕𝑀𝑆 where the path integral takes place must be present in

both ℳ1 and ℳ2. Secondly, we demand that the result of sewing two functionals is

again a new functional that inherits both the physical and the uncontracted functional

legs of the previous ones. We will devote a future section to providing the current

state of proof of the exact sewing condition for two arbitrary compatible functionals

precisely.

Finally, to recover the wave function of the target state, we must keep performing

sewings until there are no uncontracted functional legs left, and this last step is what we

will call the closing condition. Depending on the specifics of the intermediate sewings,

it is possible to emulate the geometry of the target spin system state. For instance,

by sewing the MPS functionals in a ring, one ends up with a set of spins that form a

periodic chain, whose closing diagrammatically is

, (3.15)

which can be used to recover the ground state of the critical Haldane-Shastry model

[186]. Another option explored in [186] would be to generate a torus geometry with

the fPEPS tensor, which we will explore in a future section with the hope of recovering

the Kalmeyer-Laughlin state on a torus.

To summarize, to define an fTNS tensor, we need as an input an effective field theory,

a specific operator insertion at the position of the spin, and the boundary conditions

for the field that will act as the legs of the tensor for a given geometry.

3.1.3 The free boson fTNS

Derivation of the free boson fTNS

From now on, we will focus on the case of the massless free boson, one of the simplest

CFTs. As we have seen in Chapter 2, it can also be understood as the WZW SU(2)1
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model when its compactification radius is chosen to be 𝑅 =
√

2 [37]. The set of target
wavefunctions that we are aiming for are those that can be obtained from the vertex

operator correlator

𝑐𝑠1,...𝑠𝑁
∝ ⟨∶ 𝑒𝑖𝑠1

√
𝛼𝜙(𝑧1) ∶ ... ∶ 𝑒𝑖𝑠𝑁

√
𝛼𝜙(𝑧𝑁) ∶⟩0, (3.16)

where :: denotes normal ordering, 𝜙(𝑧𝑖) is the chiral real massless scalar field, 𝑧𝑖 is

the position of the spin, and the subscript 0 denotes the correlator is taken in the

vacuum of the CFT. The chiral vertex operators ∶ 𝑒𝑖𝑠𝑖
√

𝛼𝜙(𝑧𝑖) ∶ with 𝛼 = 1
2
are the spin 1

2
primary fields of the WZW SU(2)1 theory. This family of states is of extreme relevance

to us, as it provides us with examples that are analytically out of reach for standard

TN techniques. If this correlator is computed in the cylinder, the ground state of the

critical point Haldane-Shastry chain is recovered [187],[188]. If solved on a plane

or a torus, it yields the Kalmeyer-Laughlin state [189],[190], a paradigmatic state of

2-dimensional chiral gapped topological order.

We start by providing the fTNS tensor of the free boson on an arbitrary manifoldℳ
that contains only one of the vertex operator insertions of Equation (3.16). The action

of the free boson on this manifold in 2 dimensions reads

𝑆ℳ[𝜙] = 1
8𝜋

∫
ℳ

𝑑2𝑥 𝜕𝑖𝜙(𝑥)𝜕𝑖𝜙(𝑥), (3.17)

where 𝜙(𝑥) is the massless scalar field. The path integral that one must perform is then

𝒜𝑠𝑖[𝑓] = ∫
′

𝒟[𝜙]𝑒−𝑆ℳ[𝜙]𝑒−𝑖𝑠𝑖
√

𝛼𝜙𝑖(𝑧𝑖), (3.18)

where the boundary condition corresponds to

𝜙(𝑥) = 𝑓(𝑥) 𝑥 ∈ 𝜕ℳ. (3.19)

We begin by computing the path integral of the action with a source term

𝒜𝑠𝑖[𝑓] = ∫
′

𝒟[𝜙]𝑒−𝑆ℳ,𝜌[𝜙], (3.20)

where the action is now given by

𝑆ℳ,𝜌[𝜙] = 1
8𝜋

∫
ℳ

𝑑2𝑥𝜕𝑖𝜙(𝑥)𝜕𝑖𝜙(𝑥) − 1
4𝜋

∫
ℳ

𝑑2𝑥𝜌(𝑥)𝜙(𝑥), (3.21)

where the spin density is given by 𝜌(𝑥) = 4𝜋𝑖 ∑𝑁
𝑗=1 𝑠𝑗𝛿2(𝑥 − 𝑥𝑗), where 𝑥𝑗 are the

Cartesian coordinates of the spin position, and we have absorbed the
√

𝛼 pre-factor as
a normalization factor for the spin-values 𝑠𝑗.

First, we start by isolating the contribution from the constant zero mode to the path

integral. If we split the field as 𝜙(𝑥) = 𝜙0 + ̃𝜙(𝑥) then Equation (3.20) becomes

𝒜𝑠𝑖[𝑓] = ∫
′

𝒟𝜙0𝒟[ ̃𝜙]𝑒−𝑆ℳ,𝜌[ ̃𝜙]𝑒𝑖𝜙0 ∑𝑁
𝑗=1 𝑠𝑗 = ∫ 𝑑𝜙0𝑒𝑖𝜙0 ∑𝑁

𝑗=1 𝑠𝑗 ∫
′

𝒟[ ̃𝜙]𝑒−𝑆ℳ,𝜌[ ̃𝜙]𝛿(𝜙0 − 𝑓0),
(3.22)

where the zero mode path integral imposes that the constant part of the boundary

condition of the classical equations of motion also splits as 𝑓(𝑥) = 𝑓0 + ̃𝑓(𝑥), and thus
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that the zero mode of the boundary function is the same on all boundaries. Equation

(3.22) then reduces to

𝒜𝑠𝑖[𝑓] = 𝛿 (
𝑁

∑
𝑗=1

𝑠𝑗) ∫
′

𝒟[ ̃𝜙]𝑒−𝑆ℳ,𝜌[ ̃𝜙]𝛿(𝜙0 − 𝑓0) ∼ 𝛿 (
𝑁

∑
𝑗=1

𝑠𝑗) 𝑒−𝑆ℳ,𝜌[𝜓𝑐𝑙], (3.23)

where in the last step, we have solved the path integral by performing a saddle point

approximation around the classical solution 𝜓𝑐𝑙(𝑥). This expression is obtained as the
solution of the Poisson equations of motion with Dirichlet boundary conditions

∇2𝜓𝑐𝑙(𝑥) = −𝜌(𝑥)
𝜓𝑐𝑙(𝑥) = 𝑓(𝑥) = ̃𝑓(𝑥) + 𝑓0 𝑥 ∈ 𝜕ℳ.

(3.24)

From now on, the zero mode contribution to the boundary condition will be omitted

as it will play no role in the computation of the classical solution. This equation is

solved by classical Green’s functions techniques [191] and yields

𝜓𝑐𝑙(𝑥) = − ∫
ℳ

𝑑2𝑦𝐺ℳ(𝑥, 𝑦)𝜌(𝑦) + ∫
𝜕ℳ

𝑑Γ𝑦
̃𝑓(𝑦)𝒩̂𝑦𝐺ℳ(𝑥, 𝑦), (3.25)

where 𝒩̂ is the normal derivative operator w.r.t to the boundary 𝜕ℳ, the contour inte-
gral is taken to be counterclockwise where 𝑑Γ𝑦 is the parametrization of the boundary

and the Green function 𝐺ℳ(𝑥, 𝑦) is the solution of

∇2𝐺ℳ(𝑥, 𝑦) = 𝛿2(𝑥 − 𝑦)
𝐺ℳ(𝑥, 𝑦) = 0 if 𝑥 or 𝑦 ∈ 𝜕ℳ.

(3.26)

Now, we insert the classical solution into 𝑆ℳ,𝜌, which we do after using the second

Green identity to write the action in Equation (3.21) as

𝑆ℳ,𝜌[𝜓𝑐𝑙] = 1
8𝜋

∫
𝜕ℳ

𝑑Γ𝑥
̃𝑓(𝑥)𝒩̂𝑥𝜓𝑐𝑙(𝑥) − 1

8𝜋
∫

ℳ
𝑑2𝑥𝜓𝑐𝑙(𝑥)𝜌(𝑥). (3.27)

After inserting Equation (3.25) into Equation (3.27) and reorganizing the terms, one

obtains

𝑆ℳ,𝜌[𝑓] = 1
8𝜋

∫
ℳ

𝑑2𝑥𝑑2𝑦𝜌(𝑥)𝜌(𝑦)𝐺ℳ(𝑥, 𝑦) − 1
4𝜋

∫
ℳ

𝑑2𝑥 ∫
𝜕ℳ

𝑑Γ𝑦𝜌(𝑥) ̃𝑓(𝑦)𝒩̂𝑦𝐺ℳ(𝑥, 𝑦)

+ 1
8𝜋

∫
𝜕ℳ
dΓ𝑥 ∫

𝜕ℳ
𝑑Γ𝑦

̃𝑓(𝑥) ̃𝑓(𝑦)𝒩̂𝑦𝒩̂𝑥𝐺ℳ(𝑥, 𝑦),

(3.28)

where the variables 𝑥, 𝑦 ∈ ℳ are used as either 2-dimensional Cartesian coordinates or

as a parametrization of the boundary according to their respective integration measure.

We identify the first term in the action in Equation (3.28) as a spin-spin interaction

term, the second term will correspond to the spin-boundary interaction, and the last

one we interpret as a propagation term amongst the different boundaries. We, there-

fore, have the functional tensor exclusively in terms of the Poisson Green’s function on

ℳ and the spin density 𝜌(𝑥). Whilst 𝜌(𝑥) is always chosen to mimic the spatial distri-
bution of spins, we must guarantee that we can always find such a Green’s function,

thus a general solution to Equation (3.26).
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To obtain a generic solution, one departs from the well-known solution of the 2-

dimensional Poisson Equation in ℂ, which is given by

𝐺ℂ(𝑧, 𝑧′) = 1
4𝜋

log |𝑧 − 𝑧′|2, (3.29)

where 𝑧 = 𝑥 + 𝑖𝑦 is the position in the complex plane. Next, we use this solution to
construct the solution in the Upper Half Plane (UHP) ℍ using the method of images,
which is

𝐺ℍ(𝑧, 𝑧′) = 1
4𝜋

log
(𝑧 − 𝑧′)(𝑧 − 𝑧′)
(𝑧 − 𝑧′)(𝑧 − 𝑧′)

, (3.30)

where now the boundary is the real line ℝ. Finally, we make use of the Riemann
mapping theorem, which informally states that there always exists a conformal map

𝑔 from any simply connected closed submanifold of ℂ, ℳ, to the UHP such that the
boundary ofℳ is mapped to the real line. More formally, that is

𝑔 ∶ ℳ → ℍ s.t. 𝑔(𝜕ℳ) = ℝ. (3.31)

One can use this map to find the final Green function on an arbitrary manifoldℳ

𝐺ℳ(𝑥, 𝑦) = 1
4𝜋

log
⎡
⎢
⎣

(𝑔(𝑥) − 𝑔(𝑦)) (𝑔(𝑥) − 𝑔(𝑦))

(𝑔(𝑥) − 𝑔(𝑦)) (𝑔(𝑥) − 𝑔(𝑦))
⎤
⎥
⎦

, (3.32)

where 𝑥, 𝑦 are now coordinates inℳ. As we can see in Equation (3.32), we write the
dependence of𝐺ℳ(𝑥, 𝑦) on the coordinates 𝑥, 𝑦 ∈ ℳ directly, although the dependence

is through the conformal map 𝑔(𝑥). We do this for ease of notation and should be
remembered for all expressions that depend on the coordinates inℳ, such as Equation
(3.28).

Although the existence of such a conformal map is guaranteed, we need a specific

form for it in order to compute any tensor. Whenever the geometry of interest is a

polygon, we can use the Schwarz-Christoffel mapping technique [192],[193], which

we shortly review. For a polygon with interior angles 𝛼, 𝛽, 𝛾..., the conformal map
which maps ℝ to the edges, and the UHP to the interior of the polygon, is given by

𝑓(𝜉) = ∫
𝜉 𝐾𝑑𝜔

(𝜔 − 𝑎)1− 𝛼
𝜋 (𝜔 − 𝑏)1− 𝛽

𝜋 (𝜔 − 𝑐)1− 𝛾
𝜋 ...

𝜉 ∈ ℍ, (3.33)

where 𝐾 is a constant to be fixed by boundary conditions, and 𝑎 < 𝑏 < 𝑐 < ... are
points along ℝ that will be mapped to the vertices of the polygon. Note that this map
is, in fact, the inverse of the map we described in Equation (3.31), as it maps from ℍ
to ℳ. With this technique, the two maps leading to the fMPS and the fPEPS tensors
can be constructed, and they will be provided in the upcoming sections.

In summary, in this section, we have provided the generic construction of the free

boson fTNS tensor on an arbitrary manifold ℳ. Furthermore, we have shown the
generic construction for the Green function 𝐺ℳ, up to an unspecified conformal map.

Whenever the geometry is simpler, we can construct such a conformal map via the

Schwarz-Christoffel construction.
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Regularization of the free boson fTNS

In this section, we will explore the three different terms that appear in Equation (3.28),

starting with the first one, the spin-spin interaction term. If we introduce the expression

for the spin densities 𝜌(𝑥), the first term from Equation (3.28) becomes

−1
2

𝑁

∑
𝑖≠𝑗

𝑠𝑖𝑠𝑗 log
⎡
⎢
⎣

(𝑔(𝑧𝑖) − 𝑔(𝑧𝑗)) (𝑔(𝑧𝑖) − 𝑔(𝑧𝑗))

(𝑔(𝑧𝑖) − 𝑔(𝑧𝑗)) (𝑔(𝑧𝑖) − 𝑔(𝑧𝑗))
⎤
⎥
⎦

(3.34)

where the divergent terms arising from 𝑖 = 𝑗, which would correspond to a spin in-
teracting with itself, have been omitted. Their more accurate description in terms of

normal ordering will be presented in a later section. This is not the only potential

divergence, as this term could still diverge if the positions of two different spins were

identical. Because the Green function must contain this divergent behavior to capture

the correct features of the CFT, special care must be taken to evaluate all the other

terms of Equation (3.28). Similar divergences will be present in all of those terms and

hence a regularization procedure must be employed to guarantee that the functional

tensor is finite. Furthermore, this requirement will provide insight into which bound-

ary functions are acceptable candidates for the boundary functions of the tensor. To

prevent the divergence arising from any two points being close, we will regularize

these terms by evaluating the boundary integrals of Equation (3.28) in a contour that

is 𝜀 close from the inside to 𝜕ℳ, which we denote by ∫𝜕ℳ𝜀
.

Let us demonstrate this regularization scheme with the second term of Equation

(3.28)
1

4𝜋
∫

𝑀
𝑑2𝑥 ∫

𝜕ℳ𝜀

𝑑Γ𝑦𝜌(𝑥) ̃𝑓(𝑦)𝒩̂𝑦𝐺ℳ(𝑥, 𝑦), (3.35)

which we called the spin-boundary interaction term. After introducing the spin density,

it becomes

𝑖
𝑁

∑
𝑖=1

𝑠𝑖 ∫
𝜕ℳ𝜀

𝑑Γ𝑦
̃𝑓(𝑦)𝒩̂𝑦𝐺ℳ(𝑧𝑖, 𝑦). (3.36)

Given a parametrization of the boundary in terms of a real parameter 𝑠 ∈ 𝒟, where𝒟 is
a real domain such that 𝑦(𝑠) ∈ 𝜕𝑀, the integral reads ∫ 𝑑Γ𝑥 = ∫𝒟 𝑑𝑠. As a convention,
we always take the orientation of the boundary integrals to be counter-clockwise. To

perform the regularization, we evaluate the terms inside of the integral 𝜀 away from
the boundary at 𝑥(𝑠) − 𝜀𝑛(𝑠), where 𝑛(𝑠) is the normal outwards vector at each point
of the boundary. With this considerations Equation (3.36) becomes

𝑖
𝑁

∑
𝑖=1

𝑠𝑖 ∫
𝒟

𝑑𝑠 ̃𝑓(𝑦(𝑠))𝒩̂𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛(𝑠), (3.37)

where we have set ̃𝑓(𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛(𝑠) = ̃𝑓(𝑦(𝑠)) because we assume the boundary function
to be a regular function, and thus without any divergent behavior to regularize. Then,

we take the normal derivative of the Green function

𝒩̂𝑦𝐺ℳ(𝑧𝑖, 𝑦) = −1
4𝜋

⎡⎢
⎣

𝒩̂𝑦𝑔(𝑦)
𝑔(𝑧𝑖) − 𝑔(𝑦)

−
𝒩̂𝑦𝑔(𝑦)

𝑔(𝑧𝑖) − 𝑔(𝑦)
+

𝒩̂𝑦𝑔(𝑦)

𝑔(𝑧𝑖) − 𝑔(𝑦)
−

𝒩̂𝑦𝑔(𝑦)

𝑔(𝑧𝑖) − 𝑔(𝑦)
⎤⎥
⎦

,

(3.38)
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where we can identify the first two terms as the chiral part and the latter ones as the

anti-chiral part, as the position of the spin 𝑧𝑖 appears either without or with complex

conjugation. Because 𝑔(𝑦) ∈ ℝ whenever 𝑦 ∈ 𝜕ℳ by the construction of the conformal

map, whenever 𝑧𝑖 → 𝑦, we will encounter the aforementioned divergence in all of
the terms of Equation (3.38). This divergence is regularized by evaluating these terms

𝜀-away from the boundary. Intuitively, we expect the evaluation on the regularized
boundary to correspond to a small imaginary offset, as depicted in Figure 3.3.

Figure 3.3: Diagram depicting the effect of the conformal map 𝑔 on the normal directions of an
arbitrary manifoldℳ

The proof of this intuition goes as follows. For a given parameterized boundary

𝑦(𝑠) ∈ 𝜕𝑀, then 𝑔 ∘ 𝑦(𝑠) = 𝑓(𝑠) with 𝑓(𝑠) ∈ ℝ, simply by definition of the conformal
map. If we take the tangent vector along the boundary 𝜕𝑠 [𝑔 ∘ 𝑦(𝑠)] = 𝜕𝑠𝑓(𝑠), then
the r.h.s will remain in ℝ. Using the chain rule on the l.h.s we get 𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)𝜕𝑠𝑦(𝑠),
where both terms are complex numbers. Writing the second one in polar coordinates,

we get 𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)|𝜕𝑠𝑦(𝑠)|𝑒𝑖𝜃𝑡, where 𝜃𝑡 is the angle of the tangent direction at this

point of 𝑀. This allows us to conclude that 𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)𝑒𝑖𝜃𝑡 ∈ ℝ, because the r.h.s is
real.

By performing a small displacement along the normal direction like in (3.37), 𝑔(𝑦(𝑠)±
𝜀), where 𝜀 is a complex offset in the normal direction, then 𝑔(𝑦(𝑠) ± 𝜀) ∼ 𝑔(𝑦(𝑠)) ±
𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)𝜀+…. If we now use that 𝜀 is in the normal direction, a.k.a perpendicular to
the tangent, then 𝑔(𝑦(𝑠))±|𝜀|𝑒𝑖𝜃𝑡+ 𝜋

2 𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠) +… = 𝑔(𝑦(𝑠))±𝑖|𝜀|𝑒𝑖𝜃𝑡𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠) +…
where we now know that the second term is purely real, and thus this is a strictly imag-

inary offset at first order in 𝜀. Moreover, this linear term in the expansion will always
be present due to the holomorphicity of 𝑔(𝑧). It is worth noting that it need not be a
small offset, as the derivative could be arbitrarily big, but we should always be able to

choose 𝜀 small enough to counter such a situation.

The previous arguments also allow us to express the normal derivative more explic-

itly. We immediately recognize the second term as ±|𝜀|𝒩̂𝑦𝑔(𝑦)|𝑦=𝑦(𝑠), and hence as

a purely imaginary quantity. The same expansion for the conjugate of the conformal

map yields, 𝑔(𝑦(𝑠) ± 𝜀) ∼ 𝑔(𝑦(𝑠)) ∓ 𝑖|𝜀|𝑒𝑖𝜃𝑡𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠), and hence the second term is

identified as ∓|𝜀|𝒩̂𝑦𝑔(𝑦)|𝑦=𝑦(𝑠).

For the rest of the discussion on regularization, we will only focus on the chiral part

of the expressions for simplicity. After evaluating the normal derivative according to
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the regularization scheme, at first order in 𝜀, one obtains

𝒩̂𝑐
𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛̂(𝑠) =

−1
4𝜋

⎡⎢
⎣

𝒩̂𝑦𝑔(𝑦)|𝑦=𝑦(𝑠)

𝑔(𝑧𝑖) − 𝑔(𝑦(𝑠)) + 𝑖|𝜀|𝑒𝑖𝜃𝑡(𝑠)𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)
−

𝒩̂𝑦𝑔(𝑦)|𝑦=𝑦(𝑠)

𝑔(𝑧𝑖) − 𝑔(𝑦(𝑠)) − 𝑖|𝜀|𝑒𝑖𝜃𝑡(𝑠)𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)

⎤⎥
⎦

=
𝑖𝑒𝑖𝜃𝑡(𝑠)𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)

4𝜋

[ 1
𝑔(𝑧𝑖) − 𝑔(𝑦(𝑠)) + 𝑖|𝜀|𝑒𝑖𝜃𝑡(𝑠)𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)

+ 1
𝑔(𝑧𝑖) − 𝑔(𝑦(𝑠)) − 𝑖|𝜀|𝑒𝑖𝜃𝑡(𝑠)𝜕𝑧𝑔(𝑧)|𝑧=𝑦(𝑠)

] ,

(3.39)

where in the numerator we have again evaluated at 𝑦(𝑠) directly, and the superscript
𝑐 refers to the chiral part. To understand how to regularize these expressions, one
must first see the isolated contribution of the divergence. Thus, one takes the limit

alongside the tangent direction to the boundary 𝑧𝑖 → 𝑦(𝑠), which by a simple expansion
𝑔(𝑧𝑖) → 𝑔(𝑦(𝑠)) + |𝑧𝑖 − 𝑦(𝑠))|𝑒𝑖𝜃𝑡𝜕𝑧𝑔(𝑧)|𝑦=𝑦(𝑠) + ... leads to

lim
𝑧𝑖→𝑦(𝑠)

𝒩̂𝑐
𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛̂(𝑠) = 𝑖

4𝜋
[ 1

|𝑧𝑖 − 𝑦(𝑠)| + 𝑖|𝜀|
+ 1

|𝑧𝑖 − 𝑦(𝑠)| − 𝑖|𝜀|
] , (3.40)

which we immediately recognize as a divergence of the principal value kind. Notice

how the details about the conformal map have all vanished from Equation (3.40),

something to be expected as the CFT should exclusively control the divergent behavior.

We can finally define the regularized version of this kernel as

𝑅𝒩̂𝑐
𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠) ∶= 𝒩̂𝑐

𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠) − lim
𝑧𝑖→𝑦(𝑠)

𝒩̂𝑐
𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)

+ lim
𝑧𝑖→𝑦(𝑠)

𝒩̂𝑐
𝑦𝐺𝑀(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛̂(𝑠).

(3.41)

To put this equation in plain words, our regularization scheme removes the diver-

gence originating from the spin position from the original kernel and adds it again in

its distributional form, in this case, a principal value with a regulator 𝜀. If one returns
now to Equation (3.39), we see that the regularized kernel can now be safely inte-

grated against the boundary functions, as the first line of Equation (3.41) contains no

divergent behavior, and the second line is a distribution integrated against a suitable

well-behaved boundary function.

This is precisely the insight that allows us to choose a family of boundary functions.

We have seen that the distributional divergence is of the principal value kind and

thus belongs to the family of tempered distributions [194]. Therefore, the family of

boundary functions that we should choose is the family of Schwartz functions 𝒮(ℝ)
on an arbitrary interval, which is the functional space dual to the space of tempered

distributions. The Schwartz space is a very commonly used space in physics because :

1. This space is a dense subspace of square-integrable functions 𝒮(ℝ𝑛) ∈ 𝕃2(ℝ𝑛).
Therefore, it remains a Hilbert space, and a contraction operation can be properly

defined.

2. Any smooth function with compact support is in 𝒮(ℝ𝑛). Therefore, this is a good
space to work with for both compact and non-compact boundaries 𝜕ℳ.
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3. The Fourier transform acts as an isomorphism on the Schwartz space, providing

guarantees of convergence when usable.

As we will see in the specific example of the PEPS functional in the upcoming sec-

tions, the specific details of the conformal map, such as periodicities, must be taken

into account for the subtraction of all possible divergences in Equation (3.41). Thus,

it is important to check for any conformal map that the following identity holds

lim
𝜀→0

(𝑅𝒩̂𝑐
𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛̂(𝑠) − 𝒩̂𝑐

𝑦𝐺ℳ(𝑧𝑖, 𝑦)|𝑦=𝑦(𝑠)−𝜀𝑛̂(𝑠)) = 0 ∀𝑧𝑖, 𝑦(𝑠), (3.42)

where in the last equation the limit 𝑧𝑖 → 𝑦(𝑠) is taken before the limit 𝜀 → 0. This
equation guarantees that both kernels will result in the same integration when we take

the limit of removing the regulators.

As with the spin-boundary term, the last term of Equation of (3.28), which we call the

propagation term or the boundary-boundary term, will contain the same divergences

and thus require regularization. We start by computing the double derivative

𝒩̂𝑥𝒩̂𝑦𝐺ℳ(𝑥, 𝑦) = 1
4𝜋

⎡
⎢
⎣

𝒩̂𝑥𝑔(𝑥)𝒩̂𝑦𝑔(𝑦)
(𝑔(𝑥) − 𝑔(𝑦))2 −

𝒩̂𝑥𝑔(𝑥)𝒩̂𝑦𝑔(𝑦)

(𝑔(𝑥) − 𝑔(𝑦))
2

+
𝒩̂𝑥𝑔(𝑥)𝒩̂𝑦𝑔(𝑦)

(𝑔(𝑥) − 𝑔(𝑦))
2 −

𝒩̂𝑥𝑔(𝑥)𝒩̂𝑦𝑔(𝑦)

(𝑔(𝑥) − 𝑔(𝑦))
2

⎤
⎥
⎦

,

(3.43)

where now there is no distinction between chiral and anti-chiral terms, as this term

contains no information about the positions of the spins. As before, one must now

evaluate this term in a regularized boundary according to the regularization scheme.

However, both boundary integrals could generally have different regulators, 𝜀 and 𝜀′.

If the boundary is parameterized according to a function ℎ(𝑠), then

𝒩̂𝑥𝒩̂𝑦𝐺ℳ(𝑥, 𝑦)|𝑦=ℎ(𝑠)−𝜀′𝑛̂(𝑠)
𝑥=ℎ(𝑡)−𝜀𝑛̂(𝑡) =

−𝑒𝑖(𝜃𝑡(𝑡)+𝜃𝑡(𝑠))𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑠)𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑡)

4𝜋

⎡⎢
⎣

1
(𝑔(ℎ(𝑡)) − 𝑔(ℎ(𝑠)) − 𝑖(𝑒𝑖𝜃𝑡(𝑡)𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑡)|𝜀| − 𝑒𝑖𝜃𝑡(𝑠)|𝜀′|𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑠)))

2

+ 1
(𝑔(ℎ(𝑡)) − 𝑔(ℎ(𝑠)) − 𝑖(𝑒𝑖𝜃𝑡(𝑡)𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑡)|𝜀| + 𝑒𝑖𝜃𝑡(𝑠)|𝜀′|𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑠)))

2

+ 1
(𝑔(ℎ(𝑡)) − 𝑔(ℎ(𝑠)) + 𝑖(𝑒𝑖𝜃𝑡(𝑡)𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑡)|𝜀| + 𝑒𝑖𝜃𝑡(𝑠)|𝜀′|𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑠)))

2

+ 1
(𝑔(ℎ(𝑡)) − 𝑔(ℎ(𝑠)) + 𝑖(𝑒𝑖𝜃𝑡(𝑡)𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑡)|𝜀| − 𝑒𝑖𝜃𝑡(𝑠)|𝜀′|𝜕𝑧𝑔(𝑧)|𝑧=ℎ(𝑠)))

2
⎤⎥
⎦

,

(3.44)

whereas before, we kept all the regulator expansion up to the first order. As before,

we isolate the divergence by taking the limit 𝑠 → 𝑡 for this arbitrary parametrization,
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which yields

lim
𝑠→𝑡

𝒩̂𝑥𝒩̂𝑦𝐺ℳ(𝑥, 𝑦)|𝑦=ℎ(𝑠)−𝜀′𝑛̂(𝑠)
𝑥=ℎ(𝑡)−𝜀𝑛̂(𝑡) =

−1
4𝜋

[ 1
(|ℎ(𝑠) − ℎ(𝑡)| + 𝑖(|𝜀| + |𝜀′|))2 + 1

(|ℎ(𝑠) − ℎ(𝑡)| − 𝑖(|𝜀| + |𝜀′|))2

+ 1
(|ℎ(𝑠) − ℎ(𝑡)| + 𝑖(|𝜀| − |𝜀′|))2 + 1

(|ℎ(𝑠) − ℎ(𝑡)| − 𝑖(|𝜀| − |𝜀′|))2 ] .

(3.45)

To reach a known distribution, we identify the regulators as |𝜀| ± |𝜀′| → |𝜀|, making
the final expression be

lim
𝑠→𝑡

𝒩̂𝑥𝒩̂𝑦𝐺ℳ(𝑥, 𝑦)|𝑦=ℎ(𝑠)−𝜀𝑛̂(𝑠)
𝑥=ℎ(𝑡)−𝜀𝑛̂(𝑡) = −1

2𝜋
[ 1

(|ℎ(𝑠) − ℎ(𝑡)| + 𝑖|𝜀|)2 + 1
(|ℎ(𝑠) − ℎ(𝑡)| − 𝑖|𝜀|)2 ] ,

(3.46)

which is precisely the derivative of the principal value distribution. With the behavior

of the divergence identified, we can proceed to regularize this kernel following the

same procedure as in Equation (3.41), as well as making sure that Equation (3.42) is

being satisfied for the specifics of the conformal map.

In summary, we have provided a regularization scheme that guarantees that the

tensor is a finite, well-behaved object for any manifoldℳ. The regularization scheme
has also fixed the family of boundary functions that are compatible with the divergent

structure of the free boson functional, fixing the space to be the Schwartz space. With

a well-behaved tensor, we can now begin exploring the properties of this object for

different geometries and tackle the question of contraction of two such tensors.

Chiral Truncation of the free boson fTNS

As in [186], we will be interested in eventually performing a chiral truncation of this

functional. This is because we ultimately wish to target chiral wavefunctions [190]

and, therefore, wish to work exclusively with the chiral part of our tensor. The chiral

truncation consists in the removal from the functional of all the terms that depend on

the conjugate spin positions 𝑧𝑖. As we have seen, these terms will always be found

only in the spin-spin interaction and boundary-spin terms. For the sake of simplifying

notation, we define the two following functions

𝐵ℳ(𝑥, 𝑦) = 𝒩̂𝑦𝐺ℳ(𝑥, 𝑦),

𝑃ℳ(𝑥, 𝑦) = 𝒩̂𝑥𝒩̂𝑦𝐺ℳ(𝑥, 𝑦),
(3.47)

which we will call the boundary and propagation kernels. With these definitions, one

can then write Equation (3.38) as

𝐵ℳ(𝑧𝑖, 𝑦) = 𝐵𝑐
ℳ(𝑧𝑖, 𝑦) + 𝐵̄𝑐

ℳ(𝑧𝑖, 𝑦) (3.48)

where

𝐵𝑐
ℳ(𝑧𝑖, 𝑦) = −1

4𝜋
⎡⎢
⎣

𝒩̂𝑦𝑔(𝑦)
𝑔(𝑧𝑖) − 𝑔(𝑦)

−
𝒩̂𝑦𝑔(𝑦)

𝑔(𝑧𝑖) − 𝑔(𝑦)
⎤⎥
⎦

𝐵̄𝑐
ℳ(𝑧𝑖, 𝑦) = −1

4𝜋
⎡⎢
⎣

𝒩̂𝑦𝑔(𝑦)

𝑔(𝑧𝑖) − 𝑔(𝑦)
−

𝒩̂𝑦𝑔(𝑦)

𝑔(𝑧𝑖) − 𝑔(𝑦)
⎤⎥
⎦

(3.49)
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which are the previously mentioned chiral and anti-chiral terms of the boundary ker-

nel. Therefore, the chiral truncation of the generic action in Equation (3.28) is given

by

𝑆𝑐
ℳ[𝑓, 𝜌] = 1

8𝜋
∫

ℳ
𝑑2𝑥𝑑2𝑦𝜌(𝑥)𝜌(𝑦)𝐺𝑐

ℳ(𝑥, 𝑦) − 1
4𝜋

∫
ℳ

𝑑2𝑥 ∫
𝜕ℳ

𝑑Γ𝑦𝜌(𝑥) ̃𝑓(𝑦)𝐵𝑐
ℳ(𝑥, 𝑦)

+ 1
8𝜋

∫
𝜕ℳ

𝑑Γ𝑥 ∫
𝜕ℳ

𝑑Γ𝑦
̃𝑓(𝑥) ̃𝑓(𝑦)𝑃ℳ(𝑥, 𝑦),

(3.50)

where the chiral truncation of the Green function is given by

𝐺𝑐
ℳ(𝑥, 𝑦) = 1

4𝜋
log [(𝑔(𝑥) − 𝑔(𝑦))] . (3.51)

Möbius Transformations of the free boson fTNS

As we have seen in Chapter 2, the free boson action is a CFT and, therefore, invariant

under conformal transformations. As we have also seen, to define our tensor, we have

used the method of images to map the theory to the UHP, which means that we are no

longer dealing with a standard CFT but with a Boundary conformal field theory (BCFT)

instead.

Cardy is one of the pioneers who developed the theory of BCFTs and their multi-

ple applications [167]. One of his most important insights is that since a conformal

transformation now needs to preserve the real line in a BCFT defined in the UHP, this

restricts the set of allowed global conformal transformations to those with only real

coefficients, reducing in half the amount of conformal generators. Because our theory

is one such BCFT, a natural question is: How does our tensor change under the effect

of one such real PSL(2, ℝ) transformation?
We begin by taking a look at Equation (3.28) in the UHP, where the tensor is given

by

𝒜ℍ [ ̃𝑓, {𝑧𝑖, 𝑠𝑖}𝑁
𝑖=1] = exp(+1

2
∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 log[
(𝑧𝑖 − 𝑧𝑗)(𝑧𝑖 − 𝑧𝑗)
(𝑧𝑖 − 𝑧𝑗)(𝑧𝑖 − 𝑧𝑗)

]

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝑦 ̃𝑓(𝑦) [ 1
𝑧𝑖 − 𝑦

− 1
𝑧𝑖 − 𝑦

]

+ 1
8𝜋2 ∫

ℝ
𝑑𝑥 ∫

ℝ
𝑑𝑦 ̃𝑓(𝑥) ̃𝑓(𝑦) 1

(𝑥 − 𝑦)2 ) .

(3.52)

We will denote a real Möbius transformations on any coordinate in the UHP by

𝑧 = 𝛾(𝜔) =
𝜔𝑎1 + 𝑎2
𝜔𝑎3 + 𝑎4

𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ ℝ, 𝑧, 𝜔 ∈ ℍ. (3.53)

where we demand that 𝑎4𝑎1 −𝑎3𝑎2 = 1, such that we restrict ourselves to the subgroup
of the Möbius group that preserves the real line, PSL(2, ℝ). We now perform a PSL(2, ℝ)
on the coordinates of the spins such that 𝑧𝑖 = 𝛾(𝜔𝑖), akin to performing a transforma-
tion only on the physical index of a standard tensor network. A fundamental property

of Möbius transformations is that they leave cross-ratios invariant, and therefore the

spin-spin term in the first line of Equation (3.52) will always be left invariant. On the
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spin-boundary term, we can compensate the transformation on the 𝑧𝑖’s by changing

the variables in the integral by 𝑦 = 𝛾(𝜔𝑦), transforming the term to

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝑦 ̃𝑓(𝑦) [ 1
𝛾(𝜔𝑖) − 𝑦

− 1
𝛾(𝜔𝑖) − 𝑦

] =

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝜔𝑦
̃𝑓(𝛾(𝜔𝑦)) [ 1

𝜔𝑖 − 𝑦
𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

− 1
𝜔𝑖 − 𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

] =

− 1
2𝜋

∫
ℝ

𝑑𝜔𝑦
̃𝑓(𝛾(𝜔𝑦)) [ 1

𝜔𝑖 − 𝜔𝑦
− 1

𝜔𝑖 − 𝜔𝑦
] .

(3.54)

Similarly, the boundary-boundary term transforms as

+ 1
8𝜋2 ∫

ℝ
𝑑𝑥 ∫

ℝ
𝑑𝑦 ̃𝑓(𝑥) ̃𝑓(𝑦) 1

(𝑥 − 𝑦)2 = + 1
8𝜋2 ∫

ℝ
𝑑𝜔𝑥 ∫

ℝ
𝑑𝜔𝑦

̃𝑓(𝛾(𝜔𝑥)) ̃𝑓(𝛾(𝜔𝑦)) 1
(𝜔𝑥 − 𝜔𝑦)2

(3.55)

We can therefore reach the conclusion that under a physical PSL(2, ℝ) transformation,
a generic tensor behaves as

𝒜ℳ[ ̃𝑓 , {𝛾(𝜔𝑖), 𝑠𝑖}𝑁
𝑖=1] = 𝒜ℳ[𝛾 ∘ ̃𝑓, {𝜔𝑖, 𝑠𝑖}𝑁

𝑖=1], (3.56)

since 𝒜ℍ and 𝒜ℳ are connected by the biholomorphic conformal map 𝑔(𝑧). Equation
(3.56) also implies that the wavefunctions defined by either its l.h.s or the r.h.s are

identical. This is due to the fact that the composition ̂𝑓 = 𝛾∘ ̃𝑓 preserves the integration
measure of the path integral ∫ 𝒟 ̃𝑓 = ∫ 𝒟 ̂𝑓, because 𝛾(ℝ) = ℝ. Therefore, the same
wave function will be recovered when the virtual indices are contracted following any

chosen geometry.

However, we are ultimately interested in the chiral truncation of the functional ten-

sor, in which the Green function is no longer a cross-ratio. In this case, the chiral tensor

becomes

𝒜𝑐
ℍ [ ̃𝑓, {𝛾(𝜔𝑖), 𝑠𝑖}𝑁

𝑖=1] =

exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 (log [(𝜔𝑖 − 𝜔𝑗)] + log[
(𝑎2𝑎4 − 𝑎1𝑎3)

(𝑎4 + 𝑎3𝜔𝑖)(𝑎4 + 𝑎3𝜔𝑗)
])

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝜔𝑦
̃𝑓(𝛾(𝜔𝑦)) [ 1

𝜔𝑖 − 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

]

+ 1
8𝜋2 ∫

ℝ
𝑑𝜔𝑥 ∫

ℝ
𝑑𝜔𝑦

̃𝑓(𝛾(𝜔𝑥)) ̃𝑓(𝛾(𝜔𝑦)) 1
(𝜔𝑥 − 𝜔𝑦)2 ) .

(3.57)

We clearly see that although all the boundary functions have become 𝛾 ∘ 𝑓, a Möbius
transformation induces both a pre-factor from the spin-spin term as well as a modifica-

tion of the spin-boundary term, while still leaving the boundary-boundary term intact.

A priori, it is not clear that a chiral tensor and its Möbius transformed version lead to

the same wavefunction, but we will see in future sections that this is indeed true, at

least for the basic geometry with genus 0. These chiral tensors and their Möbius trans-

formations are very important for us, as these constitute the main pieces with which

we will attempt to prove a generic sewing condition.
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3.2 The free boson fMPS

Figure 3.4: Schematic behavior of the conformal map that produces the fMPS tensor.

3.2 The free boson fMPS

3.2.1 Explicit construction of the fMPS tensor

We begin this construction following [186] and will perform a summarized version

of the derivation found there, as it is instructive later for us in the case of the fPEPS.

We aim to map the UHP onto a polygon with only two sides, which can only be the

geometry of an infinite strip of width Δ in the compactified complex plane. Therefore,
the inner angles are 𝛼 = 𝛽 = 0, and we leave arbitrary where the point 𝑧0 ∈ ℝ that
gets mapped to infinity is. Then, the Schwarz-Christoffel recipe tells us

𝑓(𝜉) = ∫
𝜉 𝐾

𝜔 − 𝑧0
= 𝐾 log (𝜉 − 𝑧0) + 𝐶, (3.58)

where 𝐾, 𝐶 and 𝑧0 are arbitrary constants. To fix them, we add the boundary condi-

tions

⎧{
⎨{⎩

𝑓(𝑧0) = −∞
𝑓(𝑧0 + 𝜀) = −∞ + 𝑖𝜋𝑎
𝑓(𝑧0 − 𝜀) = −∞ + 𝑖𝜋𝑏

(3.59)

where Δ = 𝑏 − 𝑎, 𝑏 > 𝑎 where 𝑏, 𝑎 ∈ ℝ, , and since we left the point 𝑧0 arbitrary, we

can simply choose 𝑧0 = 0. Under these boundary conditions, the map from the UHP to
the infinite strip becomes

𝑓(𝜉) = Δ log(𝜉) + 𝑖𝜋𝑎, (3.60)

and thus the inverse of this map is the desired conformal map that defines the fTNS

tensor

𝑔𝑀𝑃𝑆(𝑧) = exp(𝑧 − 𝑖𝜋𝑎
Δ

) (3.61)

whose behavior is schematically shown in Figure 3.4.

One then inputs this conformal map into the action in Equation (3.28), where the

boundary integrals for this geometry are given by

∫
𝜕ℳ

𝑑Γ𝑦𝒩̂𝑦(⋅)|𝑦=𝜕ℳ = ∫
ℝ

𝑑𝑦(−𝑖𝜕Im(𝑧))(⋅)|𝑧=𝑦+𝑖𝜋𝑎 + ∫
ℝ

𝑑𝑦(𝑖𝜕Im(𝑧))(⋅)|𝑧=𝑦+𝑖𝜋𝑏 (3.62)

where Im(𝑧) refers to the imaginary part of 𝑧, and thus the vertical derivative normal
to the boundary. One then chooses the value of the boundary functions to be

̃𝑓(𝑔𝑀𝑃𝑆(𝑧))|𝑧=𝑦+𝑖𝜋𝑎 = 𝑓+(𝑦) , ̃𝑓(𝑔𝑀𝑃𝑆(𝑧))|𝑧=𝑦+𝑖𝜋𝑏 = 𝑓−(𝑦) (3.63)
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3.2 The free boson fMPS

and after computing the derivatives, introducing a generic 𝑁-spin density 𝜌 and per-
forming some simplifications, the action of the fMPS tensor is given by

𝑆Δ[𝑓+, 𝑓−, 𝜌] = + 1
8𝜋

∫
𝑀𝑃𝑆

𝑑2𝑧 ∫
𝑀𝑃𝑆

𝑑2𝑧′𝐺𝑀𝑃𝑆(𝑧, 𝑧′)𝜌(𝑧)𝜌(𝑧′)

+ 𝑖
16𝜋2 ∫

𝑀𝑃𝑆
𝑑2𝑧′ ∫

ℝ
𝑑𝑥𝜌(𝑧′) (𝑓+(𝑥) 𝑓−(𝑥)) ( 𝑣+,Δ,𝑎(𝑥, 𝑧′) − 𝑣+,Δ,𝑎(𝑥, 𝑧′)

−𝑣−,Δ,𝑎(𝑥, 𝑧′) + 𝑣−,Δ,𝑎(𝑥, 𝑧′)
)

− 1
64𝜋2 ∫

ℝ
𝑑𝑥 ∫

ℝ
𝑑𝑥′ (𝑓+(𝑥) 𝑓−(𝑥)) (𝑢+,Δ(𝑥 − 𝑥′) 𝑢−,Δ(𝑥 − 𝑥′)

𝑢−,Δ(𝑥 − 𝑥′) 𝑢+,Δ(𝑥 − 𝑥′)) (𝑓+(𝑥′)
𝑓−(𝑥′)) ,

(3.64)

where the kernels are given by

𝑢+,Δ(𝑥 − 𝑥′) = 2
Δ2

1
sinh (𝑥−𝑥′

2Δ
)2 , 𝑢−,Δ(𝑥 − 𝑥′) = 2

Δ2
1

cosh (𝑥−𝑥′

2Δ
)2

𝑣+,Δ,𝑎(𝑥, 𝑧′) = 1
Δ

coth(𝑥 − 𝑧′ + 𝑖𝜋𝑎
2Δ

) , 𝑣−,Δ,𝑎(𝑥, 𝑧′) = 1
Δ

tanh(𝑥 − 𝑧′ + 𝑖𝜋𝑎
2Δ

).

(3.65)

Note that these are the unregulated expressions, and therefore 𝑢+,Δ and 𝑣±,Δ contain

divergences. Following the regularization procedure presented in the previous section,

the corresponding 𝜀-regulated expressions are given by:

𝑢𝜀,𝜀′

+,Δ(𝑥 − 𝑥′) = 1
Δ2

⎛⎜
⎝

1
sinh (𝑥−𝑥′+𝑖(𝜀+𝜀′)

2Δ
)2 + 1

sinh (𝑥−𝑥′−𝑖(𝜀+𝜀′)
2Δ

)2

+ 1
sinh (𝑥−𝑥′+𝑖(𝜀−𝜀′)

2Δ
)2 + 1

sinh (𝑥−𝑥′−𝑖(𝜀−𝜀′)
2Δ

)2
⎞⎟
⎠

,

(3.66)

𝑣+,Δ,𝑎(𝑥, 𝑧′) = 1
2Δ

(coth(𝑥 − 𝑧′ + 𝑖𝜋𝑎 + 𝑖𝜀
2Δ

) + coth(𝑥 − 𝑧′ + 𝑖𝜋𝑎 − 𝑖𝜀
2Δ

)) , (3.67)

𝑣−,Δ,𝑎(𝑥, 𝑧′) = 1
2Δ

(tanh(𝑥 − 𝑧′ + 𝑖𝜋𝑎 + 𝑖𝜀
2Δ

) + tanh(𝑥 − 𝑧′ + 𝑖𝜋𝑎 − 𝑖𝜀
2Δ

)) . (3.68)

Following the regularization procedure shown in Equation (3.41), the corresponding

distributional expressions in the 𝜀, 𝜀′ → 0 limit are

𝑅𝑢+,Δ(𝑥 − 𝑥′) = 2
Δ2

⎛⎜
⎝

1
sinh (𝑥−𝑥′

2Δ
)2 − ( 2Δ

𝑥 − 𝑥′ )
2⎞⎟
⎠

− 8𝑃 ′ ( 1
(𝑥 − 𝑥′)

) , (3.69)

𝑅𝑣+,Δ,𝑎(𝑥, 𝑧′) = 1
Δ

(coth(𝑥 − 𝑧′ + 𝑖𝜋𝑎
2Δ

) − 2Δ
𝑥 − 𝑧′ ) + 2𝑃 ( 1

(𝑥 − 𝑧′)
) (3.70)

𝑅𝑣−,Δ,𝑎(𝑥, 𝑧′) = 1
Δ

(tanh(𝑥 − 𝑧′ + 𝑖𝜋𝑎
2Δ

) − 2Δ
𝑥 − 𝑧′ ) + 2𝑃 ( 1

(𝑥 − 𝑧′)
) (3.71)

where we have introduced the principal value distribution 𝑃 ( 1
𝑥
) and its derivative

𝑃 ′ ( 1
𝑥
) as the limits

𝑃 (1
𝑥

) = lim
𝜀→0

1
2

( 1
𝑥 + 𝑖𝜀

+ 1
𝑥 − 𝑖𝜀

) , (3.72)
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3.2 The free boson fMPS

𝑃 ′ (1
𝑥

) = lim
𝜀→0

−1
2

( 1
(𝑥 + 𝑖𝜀)2 + 1

(𝑥 − 𝑖𝜀)2 ) . (3.73)

The next step is to perform the chiral truncation on the action 𝑆𝑀𝑃𝑆, which, after

introducing the expressions for the spin densities, leads to the truncated action

𝑆𝑐
Δ[𝑓+, 𝑓−, {𝑧𝑖, 𝑠𝑖}𝑁

𝑖=1] = −
𝑁

∑
𝑖>𝑗

𝑠𝑖𝑠𝑗 log(𝜇 sinh(
𝑧𝑖 − 𝑧𝑗

2Δ
))

− 1
4𝜋

𝑁

∑
𝑖=1

𝑠𝑖 ∫
ℝ

𝑑𝑥 (𝑓+(𝑥) 𝑓−(𝑥)) ( 𝑣+,Δ,𝑎(𝑥, 𝑧𝑖)
−𝑣−,Δ,𝑎(𝑥, 𝑧𝑖)

)

− 1
64𝜋2 ∫

ℝ
𝑑𝑥 ∫

ℝ
𝑑𝑥′ (𝑓+(𝑥) 𝑓−(𝑥)) (𝑢+,Δ(𝑥 − 𝑥′) 𝑢−,Δ(𝑥 − 𝑥′)

𝑢−,Δ(𝑥 − 𝑥′) 𝑢+,Δ(𝑥 − 𝑥′)) (𝑓+(𝑥′)
𝑓−(𝑥′)) ,

(3.74)

where a constant 𝜇 has been introduced in the interaction term after the truncation that
will be fixed later to yield the correct closing condition. The spin positions 𝑧𝑖 ∈ ℳ
are such that 𝜋𝑎 < Im(𝑧𝑖) < 𝜋𝑏, and thus are not allowed to be on the boundaries
of the tensor, removing the need for regularization on the spin-boundary terms. The

expression for the functional fMPS tensor is then given by

𝒜Δ[𝑓+, 𝑓−, {𝑧𝑖, 𝑠𝑖}𝑁
𝑖=1] = exp (−𝑆𝑐

Δ[𝑓+, 𝑓−, {𝑧𝑖, 𝑠𝑖}𝑁
𝑖=1]) (3.75)

or diagrammatically, the tensor corresponding to a single spin would be given by

. (3.76)

3.2.2 The fMPS tensor in momentum space

Particular to the fMPS tensor is that we can use the Fourier transform to simplify the

tensor further. If we define the Fourier transform of the boundary functions 𝑓±(𝑥) by

𝑓±(𝑥) = ∫
ℝ

𝑑𝑘𝑒𝑖𝑘𝑥 ̂𝑓±(𝑘) (3.77)

In [186], the Fourier transformations of all the integral kernels were provided, and

therein, one finds the expression for the fMPS tensor in momentum space, which is

given by

𝑆𝑐
Δ [𝑓+, 𝑓−, {𝑧𝑖, 𝑠𝑖}2

𝑖=1] = −
𝑁

∑
𝑖>𝑗

𝑠𝑖𝑠𝑗 log(𝜇 sinh(
𝑧𝑖 − 𝑧𝑗

2Δ
))

+ 1
2

∫
∞

0
d𝑘 ( ̂𝑓+(𝑘) ̂𝑓−(𝑘)) (𝜔+,Δ(𝑘) 𝜔−,Δ(𝑘)

𝜔−,Δ(𝑘) 𝜔+,Δ(𝑘)) (
̂𝑓∗

+(𝑘)
̂𝑓∗

−(𝑘)
)

− 𝑖
2

𝑁

∑
𝑖=1

∫
ℝ
d𝑘

𝑒𝑖𝑘𝑧𝑖𝑠𝑖

sinh (𝜋𝑘Δ)
(𝑒𝜋𝑘𝑏 ̂𝑓+(𝑘) − 𝑒𝜋𝑘𝑎 ̂𝑓−(𝑘)) ,

(3.78)
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with 𝜔+,Δ = 𝑘 coth (𝜋𝑘Δ) and 𝜔−,Δ = −𝑘 sech(𝜋𝑘Δ). After providing this tensor in
momentum space, the authors performed the sewing condition for two such tensors

on a fixed coordinate basis. Here, we generalize their result to an arbitrary coordinate

basis, as the computation follows identically as in their study. The computation relies

precisely on the Fourier Transform of the tensor, which allows the diagonalization

of the Gaussian integral, which is the bottleneck of the computation. As we hope to

provide a more general version of the sewing condition in the upcoming sections, we

do not reproduce their computation explicitly here. Derived originally in [186] and

generalized in this work, the sewing condition for two fMPS tensors with a single spin

reads

∫ 𝒟𝑔𝒜Δ1
[𝑓0, 𝑓+, 𝑔, {𝑧1, 𝑠1}] 𝒜Δ2

[𝑓0, 𝑔, 𝑓−, {𝑧2, 𝑠2}]

= 𝒜Δ1+Δ2
[𝑓0, 𝑓+, 𝑓−, {𝑧𝑖, 𝑠𝑖}2

𝑖=1] ,
(3.79)

where now the exponent of the sewn strips is given by :

𝑆𝑐
Δ1∪Δ2

[𝑓+, 𝑓−, {𝑧𝑖, 𝑠𝑖}𝑖=1,2] =
𝑠2

1
2
logΔ𝑓 +

𝑠2
2
2
logΔ𝑓

+ 1
2

∫
∞

0
d𝑘 ( ̂𝑓+(𝑘) ̂𝑓−(𝑘)) (

𝜔+,Δ𝑓
(𝑘) 𝜔−,Δ𝑓

(𝑘)
𝜔−,Δ𝑓

(𝑘) 𝜔+,Δ𝑓
(𝑘)) (

̂𝑓∗
+(𝑘)
̂𝑓∗

−(𝑘)
)

− 𝑖
2

∫
ℝ
d𝑘

∑𝑖=1,2 𝑒𝑖𝑘𝑧𝑖𝑠𝑖

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏2 ̂𝑓+(𝑘) − 𝑒𝜋𝑘𝑎1 ̂𝑓−(𝑘))

− 𝑠1𝑠2 log(𝜇 sinh(
𝑧2 − 𝑧1

2Δ𝑓
)),

(3.80)

where Δ𝑓 = Δ1 + Δ2 and 𝜇 = −2𝑖. Diagrammatically, Equation (3.79) is given by

(3.81)

Notice how in the first line of Equation (3.80) the terms
𝑠2

𝑖
2
logΔ𝑓 have appeared,

which are there to ensure that this tensor has the correct scaling dimension under a

scaling transformation. This means that we must modify all previous tensors to include

them as a constant within the action so that the sewing condition is now exact. The

way to find this constant before performing the sewing condition is to explore the

divergence arising in the 𝑧𝑖 → 𝑧𝑗 limit of the Green function in the spin-spin term

in Equation (3.74). If one demands normal ordering, and thus the removal of the

divergence, the sub-leading 0th-order term that appears is precisely this factor.
The main difference concerning the derivation in [186] is that now the sewing of

these tensors can be performed with arbitrary lengths Δ𝑖 as well as at any height 𝑏𝑖, 𝑎𝑖,

a feature that is needed in Chapter 4 to study the properties of these tensors in regards

to its symmetries. The generalization to more spins is straightforward and follows from

repeated application of Equation (3.80).
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Furthermore, the closing condition for the fMPS was also provided by using again the

result of the sewing integral. Diagrammatically shown in Equation (3.15), the result

is given by

∫ 𝒟𝑓0 ∫ 𝒟𝑓𝒜Δ[𝑓0, 𝑓, 𝑓, {𝑧𝑖, 𝑠𝑖}𝑁
𝑖=1] = 2𝜋𝛿 (

𝑁

∑
𝑖=1

𝑠𝑖) ∏
𝑗>𝑖

(Δ sin(
𝑦𝑗 − 𝑦𝑖

Δ
))

𝑠𝑗𝑠𝑖
(3.82)

which is precisely the conformal correlator

2𝜋𝛿 (
𝑁

∑
𝑖=1

𝑠𝑖) ⟨
𝑁

∏
𝑗>𝑖

∶ 𝑒𝑖𝑠𝑗𝜑(𝑧𝑗) ∶∶ 𝑒𝑖𝑠𝑗𝜑(𝑧𝑖) ∶⟩cyl (3.83)

evaluated in the geometry of a cylinder, which is almost the desired Haldane-Shastry

wavefunction and the exact ground state of the critical point of the Majumdar-Ghosh

model. Interestingly, the connection with Haldane-Shastry appears when the 𝑧’s are
uniformly distributed, while the connection with Majumdar-Ghosh is in the limit where

the coordinates approach one another pairwise. To recover it exactly, one should have

added in the definition of the tensors a phase that depends on the spin value found

within the tensor. In this particular case, this is the Marshall factor 𝜒𝑠𝑛
for each site,

which is given for the even sites by

𝜒𝑠𝑚
= 𝑒𝑖𝑚𝜋(𝑠𝑚−1)/2 (3.84)

which globally counts the number of ”down”-spins on odd sites and gives a phase

accordingly. With this, the final wavefunction is given by

𝑐𝑠1,...𝑠𝑁
∝ 𝛿∑𝑛 𝑠𝑛,0 ∏

𝑛
𝜒𝑠𝑛

∏
𝑛>𝑚

(sin [
𝜋(𝑛 − 𝑚)

𝑁
])

𝑠𝑛𝑠𝑚
2

, (3.85)

which is now precisely the exact desired ground state.

There are two main takeaways from these last two computations:

1. Sewing is key : The sewing condition allows both to contract tensors and close
them entirely, exactly and in the 𝜒 → ∞ limit. Therefore, and unlike in nu-

merical approaches, performing a single contraction is as hard as performing

exponentially many of them, as the hardness comes from solving the Gaussian

integral found in the most simple sewing. It is thus of utmost importance to pro-

vide any fTNS with its corresponding sewing condition if one wishes to provide

an analytical tool with which one can provide new exact TNS representations of

states.

2. The conformal map encodes the geometry : Interestingly, the conformal cor-
relator of Equation (3.61) is the one corresponding to a compactified boson on

a cylinder of perimeter Δ, and yet we constructed our function from the uncom-
pactified free boson. This means that the field’s geometry information is encoded

in the conformal map 𝑔𝑀𝑃𝑆(𝑧), where we can identify the cylindrical geometry.
It would be interesting to perform the closing condition in this case with a slightly

different boundary condition, such that the geometry of a Möbius strip would be

recovered, as that is the only other possible geometry that this map allows for.
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This result suggests many possible open directions. Firstly and most obviously, pro-

vide the fMPS tensor corresponding to other simple Gaussian CFTs for which a local

action exists, such as the free Majorana/Dirac fermion or the ghost system. Other

generic options would be other WZW theories via the Wakimoto free field representa-

tion or simple minimal models for which a Couloumb-gas representation exists [37].

Ultimately, a more generic BCFT approach should be possible and needed for non-

Gaussian CFTs by representing these tensors as conformal correlators between Ishibasi

or Cardy states with a fixed boundary condition. Still, we leave this exciting approach

for future projects.

3.3 The free boson fPEPS

3.3.1 Explicit construction of the PEPS functional

In this section, we provide a derivation analogous to the one for the fMPS tensor but

for the geometry corresponding to a PEPS tensor. This is then the formal derivation

of the fPEPS tensor. We start by constructing the conformal map according to the

Schwarz-Christoffel recipe that diagrammatically achieves Figure 3.5. To this end, we

choose 4 points of the real line, −𝑏, −𝑎, 𝑎, 𝑏 with 𝑎 < 𝑏 ∈ ℝ+ and set all the interior

angles to be 𝛼 = 𝛽 = 𝛾 = 𝛿 = 𝜋
2
. Then Equation (3.33), becomes

𝑓(𝜉) = ∫
𝜉 𝐾𝑑𝜔

√(𝜔2 − 𝑎2)(𝜔2 − 𝑏2)
, (3.86)

which, after manipulating it, one obtains

𝑓(𝜉) = 𝐾
𝑏

∫
𝜉
𝑎 𝑑𝜔

√(1 − 𝜔2)(1 − 𝜅2𝜔2)
, (3.87)

where 𝜅 = 𝑎
𝑏
is the elliptic modulus, and because 𝑎 < 𝑏, then 0 < 𝜅 < 1. Now, taking

the following change of variables 𝜙 = arcsin (𝜔) yields

𝑓(𝜉) = 𝐾
𝑏

∫
arcsin

𝜉
𝑎 𝑑𝜙

√1 − 𝜅2 sin2 𝜙
= 𝐾

𝑏
𝐹(arcsin

𝜉
𝑎

, 𝜅) + 𝐶, (3.88)

Figure 3.5: Diagrammatic representation of the PEPS Schwarz-Christoffel map.
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3.3 The free boson fPEPS

𝑛, 𝑚 ∈ ℤ 𝑠𝑛(𝑅(𝑧), 𝜅) 𝑐𝑛(𝑅(𝑧), 𝜅) 𝑑𝑛(𝑅(𝑧), 𝜅)
Periods 2𝑚𝐿𝑥 + 2𝑛𝑖𝐿𝑦 2𝑚𝐿𝑥 + 2𝑛(𝐿𝑥

2
+ 𝑖𝐿𝑦) 𝑚𝐿𝑥 + 4𝑛𝑖𝐿𝑦

Zeroes 𝑚𝐿𝑥 + 2𝑛𝑖𝐿𝑦 (𝑚 + 1
2
)𝐿𝑥 + 2𝑛𝑖𝐿𝑦 (𝑚 + 1

2
)𝐿𝑥 + (2𝑛 + 1)𝑖𝐿𝑦

Poles 𝑚𝐿𝑥 + (2𝑛 + 1)𝑖𝐿𝑦 𝑚𝐿𝑥 + (2𝑛 + 1)𝑖𝐿𝑦 𝑚𝐿𝑥 + (2𝑛 + 1)𝑖𝐿𝑦
Residues (−1)𝑚𝜅−1 𝑖(−1)𝑚−1𝜅−1 (−1)𝑛−1𝑖

Table 3.1: Positions of zeroes, poles, periodicities, and residues in our coordinate system for

all the relevant Jacobi elliptic functions.

where 𝐹(⋅, 𝜅) is the incomplete elliptic integral of the first kind and 𝐶 an arbitrary
constant. To fix all the free parameters, we now employ the boundary conditions

⎧{{
⎨{{
⎩

𝑓(−𝑎) = 𝑧0 − 𝐿𝑥
2

𝑓(𝑎) = 𝑧0 + 𝐿𝑥
2

𝑓(𝑏) = 𝑧0 + 𝐿𝑥
2

+ 𝑖𝐿𝑦

𝑓(−𝑏) = 𝑧0 − 𝐿𝑥
2

+ 𝑖𝐿𝑦

(3.89)

where 𝑧0 is an arbitrary reference point of the complex plane and 𝐿𝑥, 𝐿𝑦, are the width

and height of the rectangle in Figure 3.5. Upon solving the system of equations, one

arrives at

𝑓(𝜉) =
𝐿𝑥

2𝐾(𝜅)
𝐹(arcsin

𝜉
𝑎

, 𝜅) + 𝑧0, (3.90)

where 𝐾(𝜅) is the complete elliptic integral of the first kind, and 𝐿𝑥
𝐿𝑦

= 2𝐾(𝜅)
𝐾(𝜅)

with

𝐾(𝜅) = 𝐾( ̃𝜅) and ̃𝜅 =
√

1 − 𝜅2. Finally, one inverts this equation to obtain the desired

conformal map, which is given by

𝑔𝑃𝐸𝑃𝑆(𝑧) = 𝑎 𝑠𝑛 (
2𝐾(𝜅)

𝐿𝑥
(𝑧 − 𝑧0) , 𝜅) , (3.91)

where 𝑓(𝜉) = 𝑧 and the function 𝑠𝑛(⋅, 𝜅) is known as the Jacobi elliptic sine, and the
𝑎 parameter can be freely chosen to be one. The Jacobi elliptic functions [195] are
a family of 12 functions that form a lattice of simple poles and zeros in the complex

plane, spanned by the quarter periods 𝐾(𝜅) and𝐾(𝜅). To ease notation, we define the
following function

𝑅(𝑧) =
2𝐾(𝜅)

𝐿𝑥
(𝑧 − 𝑧0) =

2𝐾(𝜅)
𝐿𝑥

(𝑥 − 𝑥0) + 𝑖
𝐾(𝜅)

𝐿𝑦
(𝑦 − 𝑦0) = 𝑅ℎ(𝑥) + 𝑖𝑅𝑣(𝑦), (3.92)

where Re(𝑧0) = 𝑥0 and Im(𝑧0) = 𝑦0. In Table 3.1, we have translated all the relevant

properties of the most important Jacobi functions according to our coordinate system,

themost relevant one being the double periodicity as it plays a role in the regularization

procedure.

The next step is to introduce the expression of the conformal map into the action

in Equation (3.28), take derivatives and obtain specific forms for all the terms. To do

so in an orderly manner, we assign different boundary functions to each of the sides
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3.3 The free boson fPEPS

according to Figure 3.6, such that after taking derivatives, the final expression for the

action is

𝑆ℳ[ℎ̃+, ℎ̃−, ̃𝑣+, ̃𝑣+, 𝜌] = 1
8𝜋

∫
ℳ

𝑑 ⃗𝑥 ∫
ℳ

𝑑 ⃗𝑥′𝐺ℳ( ⃗𝑥, ⃗𝑥′)𝜌( ⃗𝑥)𝜌( ⃗𝑥′)

− 1
64𝜋2 ∫

𝑥0+ 𝐿𝑥
2

𝑥0− 𝐿𝑥
2

𝑑𝑥 ∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

𝑑𝑥′ (ℎ̃+(𝑥) , ℎ̃−(𝑥)) (
𝑈ℎ+,ℎ+

(𝑥, 𝑥′) , 𝑈ℎ+,ℎ−
(𝑥, 𝑥′)

𝑈ℎ−,ℎ+
(𝑥, 𝑥′) , 𝑈ℎ−,ℎ−

(𝑥, 𝑥′)) (ℎ̃+(𝑥′)
ℎ̃−(𝑥′)

)

− 1
64𝜋2 ∫

𝑦0+𝐿𝑦

𝑦0

𝑑𝑦 ∫
𝑦0+𝐿𝑦

𝑦0

𝑑𝑦′ ( ̃𝑣+(𝑦) , ̃𝑣−(𝑦)) (
𝑈𝑣+,𝑣+

(𝑦, 𝑦′) , 𝑈𝑣+,𝑣−
(𝑦, 𝑦′)

𝑈𝑣−,𝑣+
(𝑦, 𝑦′) , 𝑈𝑣−,𝑣−

(𝑦, 𝑦′)) ( ̃𝑣+(𝑦′)
̃𝑣−(𝑦′))

− 1
64𝜋2 ∫

𝑥0+ 𝐿𝑥
2

𝑥0− 𝐿𝑥
2

𝑑𝑥 ∫
𝑦0+𝐿𝑦

𝑦0

𝑑𝑦′ (ℎ̃+(𝑥) , ℎ̃−(𝑥)) (
𝑈ℎ+,𝑣+

(𝑥, 𝑦′) , 𝑈ℎ+,𝑣−
(𝑥, 𝑦′)

𝑈ℎ−,𝑣+
(𝑥, 𝑦′) , 𝑈ℎ−,𝑣−

(𝑥, 𝑦′)) ( ̃𝑣+(𝑦′)
̃𝑣−(𝑦′))

− 1
64𝜋2 ∫

𝑦0+𝐿𝑦

𝑦0

𝑑𝑦 ∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

𝑑𝑥′ ( ̃𝑣+(𝑦) , ̃𝑣−(𝑦)) (
𝑈𝑣+,ℎ+

(𝑦, 𝑥′) , 𝑈𝑣+,ℎ−
(𝑦, 𝑥′)

𝑈𝑣−,ℎ+
(𝑦, 𝑥′) , 𝑈𝑣−,ℎ−

(𝑦, 𝑥′)) (ℎ̃+(𝑥′)
ℎ̃−(𝑥′)

)

+ 𝑖
16𝜋2 ∫

𝑥0+ 𝐿𝑥
2

𝑥0− 𝐿𝑥
2

𝑑𝑥 ∫
𝑀

𝑑 ⃗𝑥′𝜌( ⃗𝑥′) (ℎ̃+(𝑥) , ℎ̃−(𝑥)) (
𝑉ℎ+

(𝑥, ⃗𝑥′) − 𝑉ℎ+
(𝑥, ⃗𝑥′)

−𝑉ℎ−
(𝑥, ⃗𝑥′) + 𝑉ℎ−

(𝑥, ⃗𝑥′)
)

+ 𝑖
16𝜋2 ∫

𝑦0+𝐿𝑦

𝑦0

𝑑𝑦 ∫
𝑀

𝑑 ⃗𝑥′𝜌( ⃗𝑥′) ( ̃𝑣+(𝑦) , ̃𝑣−(𝑦)) (
−𝑉𝑣+

(𝑦, ⃗𝑥′) + 𝑉𝑣+
(𝑦, ⃗𝑥′)

𝑉𝑣−
(𝑦, ⃗𝑥′) − 𝑉𝑣−

(𝑦, ⃗𝑥′)
) ,

(3.93)

where ℎ̃± and ̃𝑣± are the horizontal and vertical boundary conditions without the zero

modes, the integral kernels 𝑉ℎ±
and 𝑉𝑣±

correspond to the spin-boundary terms, and

the 𝑈ℎ±ℎ±
and the rest of its variants are the boundary-boundary terms. We use inter-

changeably the notation 𝐺ℳ( ⃗𝑥, ⃗𝑥′) and 𝐺ℳ(𝑧, 𝑧′) with 𝑧 = 𝑥 + 𝑖𝑦, both notations are
used to denote the same object and the different notation is merely to adapt better to

the context in which it is found, in this case to mimic the coordinates of the integral

overℳ.

Figure 3.6: Schematic representation of the PEPS functional, with all the different boundary

conditions, the spin position, and the reference point of the conformal map.

Let us explore each term separately, starting with the spin-spin term. The Green

function of the first line, denoting 𝑠𝑛(⋅, 𝜅) = 𝑠𝑛(⋅) is given by

𝐺𝑀( ⃗𝑥, ⃗𝑥′) = 1
4𝜋

log
⎡
⎢
⎣

(𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧 − 𝑧0)) − 𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧′ − 𝑧0)))(𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧 − 𝑧0)) − 𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧′ − 𝑧0)))

(𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧 − 𝑧0)) − 𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧′ − 𝑧0)))(𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧 − 𝑧0)) − 𝑠𝑛 (2𝐾
𝐿𝑥

(𝑧′ − 𝑧0)))

⎤
⎥
⎦

.

(3.94)
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We simplify notation by re-defining:

𝐺𝑀(𝑧, 𝑧′) = 1
4𝜋

log[
𝐽(𝑅(𝑧), 𝑅(𝑧′))𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))𝐽(𝑅(𝑧), 𝑅(𝑧′))
] ,

𝐽(𝑓1, 𝑓2) = 𝑠𝑛(𝑓1) − 𝑠𝑛(𝑓2).

(3.95)

For later purposes, we must explicitly find when 𝐽(𝑓1, 𝑓2) becomes either 0 or infinite,
as this will be the origin of the regularizable divergences. The most straightforward

way in which this can happen is whenever 𝑓1 = 𝑓2, or because of the periodicity of 𝑠𝑛,
whenever

𝑓1 = 𝑓2 + 4𝑚𝐾(𝜅) + 𝑖2𝑛𝐾̃(𝜅) 𝑛, 𝑚 ∈ ℤ. (3.96)

Translating to the more intuitive coordinates of the rectangle using Table 3.1, that

translates to

𝑧1 = 𝑧2 + 2𝑚𝐿𝑥 + 2𝑛𝑖𝐿𝑦 𝑛, 𝑚 ∈ ℤ. (3.97)

However, it could also happen that both terms of 𝐽(𝑓1, 𝑓2) vanish simultaneously, cor-
responding to the zeroes of 𝑠𝑛(⋅) located at

𝑠𝑛(𝑓) = 0 → 𝑓 = 2𝑚𝐾(𝜅) + 2𝑛𝑖𝐾(𝜅) → 𝑧 − 𝑧0 = 𝑚𝐿𝑥 + 2𝑛𝑖𝐿𝑦 𝑛, 𝑚 ∈ ℤ (3.98)

If both 𝑓1 and 𝑓2 are at a zero of 𝑠𝑛, they must either be at the same zero or differ
by a lattice vector 𝑚𝐿𝑥 + 2𝑛𝑖𝐿𝑦. However, the values that the spin positions 𝑧𝑖 can

take are restricted to be within the rectangle 1
2
[𝑥0 − 𝐿𝑥, 𝑥0 + 𝐿𝑥] × 𝑖[𝑦0, 𝑦0 + 𝐿𝑦], and

hence only the zero corresponding to (𝑛, 𝑚) = (0, 0) is possible. Thus, this divergence
corresponds to the previous case.

The boundary-spin terms correspond to the first normal derivative of the Green func-

tion, which, because of the geometry, is either ±𝜕𝑥 for the vertical boundaries or ±𝜕𝑦
for the horizontal ones. Compactly, as in Equation (3.38), these read

𝜕𝑖𝐺𝑀(𝑧, 𝑧′) = 1
4𝜋

[
𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))
𝐽(𝑅(𝑧), 𝑅(𝑧′))

+
𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))
−

𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))
−

𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))
] .

(3.99)

Evaluating these derivatives at the respective non-regularized boundaries yields the

kernels

𝑉ℎ+
(𝑥, 𝑧′) =

4𝐾(𝜅)
𝐿𝑥

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))
(𝑠𝑛(𝑅ℎ(𝑥)) − 𝑠𝑛(𝑅(𝑧′)))

𝑉ℎ−
(𝑧, 𝑧′) =

4𝐾(𝜅)
𝐿𝑥

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))
𝑠𝑛(𝑅ℎ(𝑥))(1 − 𝜅𝑠𝑛(𝑅ℎ(𝑥))𝑠𝑛(𝑅(𝑧′)))

𝑉𝑣+
(𝑦, 𝑧′) =

2 ̃𝜅2𝐾(𝜅)
𝐿𝑦

𝑠𝑛(𝑅𝑣(𝑦))𝑐𝑛(𝑅𝑣(𝑦))

𝑑𝑛(𝑅𝑣(𝑦))(1 + 𝑑𝑛(𝑅𝑣(𝑦))𝑠𝑛(𝑅(𝑧′)))

𝑉𝑣−
(𝑦, 𝑧′) =

2 ̃𝜅2𝐾(𝜅)
𝐿𝑦

𝑠𝑛(𝑅𝑣(𝑦))𝑐𝑛(𝑅𝑣(𝑦))

𝑑𝑛(𝑅𝑣(𝑦))(1 − 𝑑𝑛(𝑅𝑣(𝑦))𝑠𝑛(𝑅(𝑧′)))
,

(3.100)

where any Jacobi elliptic function with a tilde corresponds to 𝑠𝑛(⋅, 𝜅) = 𝑠𝑛(⋅, ̃𝜅),
𝑥 ∈ [𝑥0 − 𝐿𝑥

2
, 𝑥0 + 𝐿𝑥

2
], 𝑦 ∈ [𝑦0, 𝑦0 + 𝐿𝑦] and 𝑧′ will correspond to the spin position
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3.3 The free boson fPEPS

variable after the integral with 𝜌( ⃗𝑥′) in Equation (3.93). One can find the regularized
counterparts of all these kernels by performing the following substitution

𝑉 𝜀
ℎ+

(𝑥, 𝑧′) = 1
2

(𝑉ℎ+
(𝑥 + 𝑖𝜀, 𝑧′) + 𝑉ℎ+

(𝑥 − 𝑖𝜀, 𝑧′)) (3.101)

and safely removing the 𝜀 from all the well-behaved terms, which corresponds exactly
to the evaluation on the regularized boundary described in Equation (3.36). In Equa-

tion (3.101), 𝑉ℎ+
was picked as means of an example, as the prescription works for all

the kernels. As we have discussed in previous sections, we expect a divergence on all

of these kernels whenever 𝑧′ ∈ 𝜕ℳ, which one can confirm by finding the zeroes of all
the denominators of Equation (3.100). We also confirm that the potential divergences

coming from the poles of the Jacobi elliptic functions in the numerator are unreachable

because the variables 𝑥, 𝑦 are confined within the rectangle. While the distributional
counterpart of the divergence is again a principal value as in Equation (3.71) or (3.70),

we have already seen in the case of fMPS that there is no need to provide their regu-

larized distributional counterparts. This divergence can never be triggered as long as

we demand that all the spin positions 𝑧𝑖 are never exactly at the boundary 𝜕ℳ.
The boundary-boundary terms correspond to the second normal derivative of the

Green function w.r.t the second variable,

𝜕′
𝑗𝜕𝑖𝐺𝑀(𝑧, 𝑧′) = 1

4𝜋
⎡⎢
⎣

𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))𝜕′
𝑗𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))2
+

𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))𝜕′
𝑗𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))2

−
𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))𝜕′

𝑗𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))2
−

𝜕𝑖𝐽(𝑅(𝑧), 𝑅(𝑧′))𝜕′
𝑗𝐽(𝑅(𝑧), 𝑅(𝑧′))

𝐽(𝑅(𝑧), 𝑅(𝑧′))2
⎤⎥
⎦

.

(3.102)

Once again, evaluating all these terms yields the sixteen boundary-boundary kernels of

Equation (3.28). Let us start with the terms connecting two of the horizontal boundary

terms

𝑈ℎ−ℎ−
(𝑥, 𝑥′) = 𝑈ℎ+ℎ+

(𝑥, 𝑥′) =
8(4𝐾(𝜅)2)

𝐿2
𝑥

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))𝑐𝑛(𝑅ℎ(𝑥′))𝑑𝑛(𝑅ℎ(𝑥′))
(𝑠𝑛(𝑅ℎ(𝑥)) − 𝑠𝑛(𝑅ℎ(𝑥′)))2 ,

𝑈ℎ−ℎ+
(𝑥, 𝑥′) = 𝑈ℎ+ℎ−

(𝑥, 𝑥′) =
8𝜅(4𝐾(𝜅)2)

𝐿2
𝑥

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))𝑐𝑛(𝑅ℎ(𝑥′))𝑑𝑛(𝑅ℎ(𝑥′))
(1 − 𝜅𝑠𝑛(𝑅ℎ(𝑥))𝑠𝑛(𝑅ℎ(𝑥′)))2 ,

(3.103)

where 𝑥, 𝑥′ ∈ [𝑥0 − 𝐿𝑥
2

, 𝑥0 + 𝐿𝑥
2

] and the ones connecting the two vertical boundaries
are

𝑈𝑣−𝑣−
(𝑦, 𝑦′) = 𝑈𝑣+𝑣+

(𝑦, 𝑦′) =
8 ̃𝜅4𝐾̃(𝜅)2

𝐿2
𝑦

𝑠𝑛(𝑅𝑣(𝑦))𝑐𝑛(𝑅𝑣(𝑦))𝑠𝑛(𝑅𝑣(𝑦′))𝑐𝑛(𝑅𝑣(𝑦′))

(𝑑𝑛(𝑅𝑣(𝑦)) − 𝑑𝑛(𝑅𝑣(𝑦′)))2
,

𝑈𝑣−𝑣+
(𝑦, 𝑦′) = 𝑈𝑣+𝑣−

(𝑦, 𝑦′) =
8 ̃𝜅4𝐾̃(𝜅)2

𝐿2
𝑦

𝑠𝑛(𝑅𝑣(𝑦))𝑐𝑛(𝑅𝑣(𝑦))𝑠𝑛(𝑅𝑣(𝑦′))𝑐𝑛(𝑅𝑣(𝑦′))

(𝑑𝑛(𝑅𝑣(𝑦)) + 𝑑𝑛(𝑅𝑣(𝑦′)))2
,

(3.104)

where 𝑦, 𝑦′ ∈ [𝑦0, 𝑦0 + 𝐿𝑦]. Before moving on to the crossed boundary propagation
terms, we can find all the regularized versions of these kernels using the following
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prescription

𝑈𝜀,𝜀′

ℎ+ℎ+
(𝑥, 𝑥′) = 1

4
(𝑈ℎ+ℎ+

(𝑥 + 𝑖𝜀, 𝑥′ + 𝑖𝜀′) + 𝑈ℎ+ℎ+
(𝑥 − 𝑖𝜀, 𝑥′ − 𝑖𝜀′)

+𝑈ℎ+ℎ+
(𝑥 + 𝑖𝜀, 𝑥′ − 𝑖𝜀′) + 𝑈ℎ+ℎ+

(𝑥 − 𝑖𝜀, 𝑥′ + 𝑖𝜀′)) ,
(3.105)

where as before, 𝑈ℎ+ℎ+
was simply picked as an example. The horizontal to vertical

propagation terms are given by

𝑈ℎ+𝑣+
(𝑥, 𝑦′) =

8 ̃𝜅2𝐾̃(𝜅)2

𝐿2
𝑦

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))𝑠𝑛(𝑅𝑣(𝑦′))𝑐𝑛(𝑅𝑣(𝑦′))

(𝑠𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅𝑣(𝑦′)) + 1)2
,

𝑈ℎ+𝑣−
(𝑥, 𝑦′) =

8 ̃𝜅2𝐾̃(𝜅)2

𝐿2
𝑦

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))𝑠𝑛(𝑅𝑣(𝑦′))𝑐𝑛(𝑅𝑣(𝑦′))

(𝑠𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅𝑣(𝑦′)) − 1)2
,

𝑈ℎ−𝑣+
(𝑥, 𝑦′) =

8𝜅 ̃𝜅24𝐾(𝜅)2

𝐿2
𝑥

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))𝑠𝑛(𝑅𝑣(𝑦′))𝑐𝑛(𝑅𝑣(𝑦′))

(𝜅𝑠𝑛(𝑅ℎ(𝑥)) + 𝑑𝑛(𝑅𝑣(𝑦′)))2
,

𝑈ℎ−𝑣−
(𝑥, 𝑦′) =

8𝜅 ̃𝜅24𝐾(𝜅)2

𝐿2
𝑥

𝑐𝑛(𝑅ℎ(𝑥))𝑑𝑛(𝑅ℎ(𝑥))𝑠𝑛(𝑅𝑣(𝑦′))𝑐𝑛(𝑅𝑣(𝑦′))

(𝜅𝑠𝑛(𝑅ℎ(𝑥)) − 𝑑𝑛(𝑅𝑣(𝑦′)))2
,

(3.106)

and the terms corresponding to vertical to horizontal propagation are identical to the

ones in Equation (3.106) with the role of the variables exchanged, that is 𝑈𝑣ℎ(𝑥′, 𝑦) =
𝑈ℎ𝑣(𝑥′, 𝑦). As both the horizontal-vertical and the vertical-horizontal kernels are iden-
tical, one may wonder why we did not add both terms in Equation (3.93). The rea-

soning is that doing so involves an exchange in the order of integration, which can

only be done if the integrals are finite. As seen in previous sections, all these ker-

nels contain divergences, which could make said integrals problematic unless they are

properly regularized. Hence, we now provide a second, more complicated example of

the regularization scheme shown in Equation (3.41) for the PEPS functional, due to

the periodicities of the Jacobi functions.

3.3.2 Regularization of the PEPS functional

We begin with the regularization of 𝑈ℎ+ℎ+
(𝑥, 𝑥′) as a representative of the horizontal

to horizontal terms. By solving for the zeroes of the denominator in Equation (3.103),

we find

𝑠𝑛(𝑅ℎ(𝑥)) − 𝑠𝑛(𝑅ℎ(𝑥′)) = 0 → 𝑥 − 𝑥′ = 2𝑚𝐿𝑥 + 2𝑛𝑖𝐿𝑦

𝑠𝑛(𝑅ℎ(𝑥)) + 𝑠𝑛(𝑅ℎ(𝑥′) + 2𝐾(𝜅)) = 0 → (𝑥 − 𝑥0) + (𝑥′ − 𝑥0) = (2𝑚 − 1)𝐿𝑥 + 2𝑛𝑖𝐿𝑦.
(3.107)

Since 𝑥, 𝑥′, 𝑥0 ∈ ℝ and 𝑥, 𝑥′ ∈ [𝑥0 − 𝐿𝑥
2

, 𝑥0 + 𝐿𝑥
2

], then 𝑛 = 0 in the previous equation.
Expanding the kernel around these lines, one obtains

lim
𝑥→𝑥′+2𝑚𝐿𝑥

𝑈ℎ+ℎ+
= 8

(𝑥 − 𝑥′ − 2𝑚𝐿𝑥)2 + 𝒪 ((𝑥 − 𝑥′ − 2𝑚𝐿𝑥)0)

lim
𝑥→−𝑥′+2𝑥0+2𝑚𝐿𝑥

𝑈ℎ+ℎ+
= −8

(𝑥 + 𝑥′ − 2𝑥0 − (2𝑚 − 1)𝐿𝑥)2 + 𝒪 ((𝑥 + 𝑥′ − 2𝑥0 − (2𝑚 − 1)𝐿𝑥)0) ,

(3.108)
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from which we see that the divergences form an alternating fishnet-like structure. Fi-

nally, according to Equation (3.41), we subtract the divergences while adding their

regularized counterparts

𝑅𝑈𝜀
ℎ+ℎ+

(𝑥, 𝑥′) = [𝑈ℎ+ℎ+
(𝑥, 𝑥′) −

∞

∑
𝑚=−∞

8
(𝑥 − 𝑥′ − 2𝑚𝐿𝑥)2 +

∞

∑
𝑚=−∞

8
(𝑥 + 𝑥′ − 2𝑥0 − (2𝑚 − 1)𝐿𝑥)2 ]

+
∞

∑
𝑚=−∞

4 [ 1
(𝑥 − 𝑥′ − 2𝑚𝐿𝑥 + 𝑖𝜀)2 + 1

(𝑥 − 𝑥′ − 2𝑚𝐿𝑥 − 𝑖𝜀)2 ]

−
∞

∑
𝑚=−∞

4 [ 1
(𝑥 + 𝑥′ − 2𝑥0 − (2𝑚 − 1)𝐿𝑥 + 𝑖𝜀)2 + 1

(𝑥 + 𝑥′ − 2𝑥0 − (2𝑚 − 1)𝐿𝑥 − 𝑖𝜀)2 ] ,

(3.109)

which in the limit of 𝜀 → 0 allows us to identify the distributional divergence as the
derivative of the principal value once again shown in Equation (3.73).

One can then confirm that Equation (3.42) is indeed satisfied ∀𝑥, 𝑥′, but most impor-

tantly, is to check that the integral against the boundary function is indeed finite, as

we have added and subtracted an infinite amount of divergences in Equation (3.109).

Mainly, one must show that

∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

d𝑥 ∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

d𝑥′ℎ+(𝑥)ℎ+(𝑥′)𝑅𝑈ℎ+,ℎ+
(𝑥, 𝑥′) < ∞ (3.110)

Let us first start with the first line of Equation (3.109), which when integrating it

in the domain 𝑥, 𝑥′ ∈ [𝑥0 − 𝐿𝑥
2

, 𝑥0 + 𝐿𝑥
2

], the divergence coming from 𝑈ℎ+ℎ+
(𝑥, 𝑥′) is

mitigated exclusively by the counter terms with 𝑚 = 0. As we assume all boundary
functions ℎ+(𝑥) to be well-behaved, the integral of the first line with 𝑚 = 0 will be
finite. The integrals of the second and third lines for the terms that can diverge in this

interval are reduced to

8 ∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

d𝑥 ∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

d𝑥′ℎ+(𝑥)ℎ+(𝑥′)1
2

[ 1
(𝑥 − 𝑥′ + 𝑖𝜀)2 + 1

(𝑥 − 𝑥′ − 𝑖𝜀)2 ]

− 1
2

[ 1
(𝑥 + 𝑥′ − 2𝑥0 + 𝐿𝑥 + 𝑖𝜀)2 + 1

(𝑥 + 𝑥′ − 2𝑥0 + 𝐿𝑥 − 𝑖𝜀)2 ]

− 1
2

[ 1
(𝑥 + 𝑥′ − 2𝑥0 − 𝐿𝑥 + 𝑖𝜀)2 + 1

(𝑥 + 𝑥′ − 2𝑥0 − 𝐿𝑥 − 𝑖𝜀)2 ] .

(3.111)

By sending 𝑥 → 𝑥 − 𝑥0 and 𝑥′ → 𝑥′ − 𝑥0, and in the limit of 𝜀 → 0

8 ∫
+ 𝐿𝑥

2

− 𝐿𝑥
2

d𝑥 ∫
+ 𝐿𝑥

2

− 𝐿𝑥
2

d𝑥′ℎ+(𝑥 + 𝑥0)ℎ+(𝑥′ + 𝑥0) [𝑃 ′( 1
𝑥 − 𝑥′ ) − 𝑃 ′( 1

𝑥 + 𝑥′ + 𝐿𝑥
) − 𝑃 ′( 1

𝑥 + 𝑥′ − 𝐿𝑥
)] .

(3.112)

From this expression, we can see why this integral is finite. In the inside of the domain

of integration, the only term that can diverge is 𝑃 ′( 1
𝑥−𝑥′ ), but because this is a principal

value, the divergence gets removed from the support symmetrically from both sides.

This is, however, not possible strictly at two points, the two edges of the integral
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𝑥 = 𝑥′ = ±𝐿𝑥
2
. But it is precisely at these two points where the two other principal

values participate to exactly diverge as well but with opposite signs, hence making the

whole expression finite. For 𝑚 ≠ 0, 𝑈ℎ+ℎ+
has no divergence inside of the domain of

integration, and thus the limit 𝜀 → 0 can be safely taken in Equation (3.109), removing
all the counter terms. The reason for subtracting all the divergences, as opposed to only

the one inside of the domain of integration, will be made apparent when exploring the

𝜅 → 1 limit of the functional.
Following the same procedure, an example of the regularized version of a vertical-

to-vertical propagation kernel is

𝑅𝑈𝜀
𝑣+𝑣+

(𝑦, 𝑦′) = [𝑈𝑣+𝑣+
(𝑦, 𝑦′) −

∞

∑
𝑚=−∞

8
(𝑦 − 𝑦′ − 2𝑚𝐿𝑦)2 +

∞

∑
𝑚=−∞

8
(𝑦 + 𝑦′ − 2𝑦0 − 2𝑚𝐿𝑦)2 ]

+
∞

∑
𝑚=−∞

4 [ 1
(𝑦 − 𝑦′ − 2𝑚𝐿𝑦 + 𝑖𝜀)2 + 1

(𝑦 − 𝑦′ − 2𝑚𝐿𝑦 − 𝑖𝜀)2 ]

−
∞

∑
𝑚=−∞

4 [ 1
(𝑦 + 𝑦′ − 2𝑦0 − 2𝑚𝐿𝑦 + 𝑖𝜀)2 + 1

(𝑦 + 𝑦′ − 2𝑦0 − 2𝑚𝐿𝑦 − 𝑖𝜀)2 ] ,

(3.113)

where we again subtract all the divergences, even those beyond the domain of inte-

gration. As in the previous case, this regularization scheme leads to a finite integral

when integrated against the vertical boundary functions for the same reasons.

For the regularization of the horizontal to vertical terms, we encounter a different

divergence, as both boundaries meet only at a single point. Therefore, whereas in the

previous examples, the divergence would correspond to a line, for these kernels, it is

localized at a single point and leads to the following regularization

𝑅𝑈𝜀
ℎ+𝑣−

(𝑥, 𝑦′) = [𝑈ℎ+𝑣−
(𝑥, 𝑦′) +

∞

∑
𝑚,𝑛=−∞

8(𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥)(𝑦 − 𝑦0 − 2𝑛𝐿𝑦)

((𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥)2 + (𝑦 − 𝑦0 − 2𝑛𝐿𝑦)2)2

]

−
∞

∑
𝑚,𝑛=−∞

1
4

8(𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥)(𝑦 − 𝑦0 − 2𝑛𝐿𝑦)

((𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥 + 𝑖𝜀)2 + (𝑦 − 𝑦0 − 2𝑛𝐿𝑦 + 𝑖𝜀)2)2

−
∞

∑
𝑚,𝑛=−∞

1
4

8(𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥)(𝑦 − 𝑦0 − 2𝑛𝐿𝑦)

((𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥 − 𝑖𝜀)2 + (𝑦 − 𝑦0 − 2𝑛𝐿𝑦 + 𝑖𝜀)2)2

−
∞

∑
𝑚,𝑛=−∞

1
4

8(𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥)(𝑦 − 𝑦0 − 2𝑛𝐿𝑦)

((𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥 + 𝑖𝜀)2 + (𝑦 − 𝑦0 − 2𝑛𝐿𝑦 − 𝑖𝜀)2)2

−
∞

∑
𝑚,𝑛=−∞

1
4

8(𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥)(𝑦 − 𝑦0 − 2𝑛𝐿𝑦)

((𝑥 − 𝑥0 − (2𝑚 + 1
2
)𝐿𝑥 − 𝑖𝜀)2 + (𝑦 − 𝑦0 − 2𝑛𝐿𝑦 − 𝑖𝜀)2)2

,

(3.114)

where for these kernels the precise location of the divergence will depend on which

of the different kernels is being regularized. As with the previous regularizations,

the only divergence present in the integration domain is the one corresponding to

𝑚, 𝑛 = 0. Similarly, as in the previous case, the first line of Equation (3.114) is finite
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when integrated, and the remaining terms that previously led to the derivatives of the

principal value are

−
2(𝑥 − 𝑥0 − 1

2
𝐿𝑥)(𝑦 − 𝑦0)

((𝑥 − 𝑥0 − 1
2
𝐿𝑥 + 𝑖𝜀)2 + (𝑦 − 𝑦0 + 𝑖𝜀)2)2

−
2(𝑥 − 𝑥0 − 1

2
𝐿𝑥)(𝑦 − 𝑦0)

((𝑥 − 𝑥0 − 1
2
𝐿𝑥 − 𝑖𝜀)2 + (𝑦 − 𝑦0 + 𝑖𝜀)2)2

−
2(𝑥 − 𝑥0 − 1

2
𝐿𝑥)(𝑦 − 𝑦0)

((𝑥 − 𝑥0 − 1
2
𝐿𝑥 + 𝑖𝜀)2 + (𝑦 − 𝑦0 − 𝑖𝜀)2)2

−
2(𝑥 − 𝑥0 − 1

2
𝐿𝑥)(𝑦 − 𝑦0)

((𝑥 − 𝑥0 − 1
2
𝐿𝑥 − 𝑖𝜀)2 + (𝑦 − 𝑦0 − 𝑖𝜀)2)2

.

(3.115)

In the limit of 𝜀 → 0, these terms correspond to the kernel associated with the Riesz
transform [196], primarily used in harmonic analysis. This transformation can be

considered a generalization of the Hilbert transform [197], the latter being the trans-

formation usually associated with the principal value distribution in ℝ. Similarly, the
Riesz transform defines a linear bounded operator from 𝐿2(ℝ2) to itself, and hence its
kernel is also a tempered distribution. Therefore, the expression in Equation (3.115) is

nothing but an 𝜖-limit of this tempered distribution, and thus, when integrated against
the boundary function, it yields a finite result.

3.3.3 The MPS functional as a limit of the PEPS functional

It was conjectured at the end of the Supplementary Material of [186] that by taking

the 𝜅 → 1 limit in the PEPS conformal map (3.91), one should recover a functional that
would be either the fMPS functional exactly or rather a Möbius transformation thereof.

Performing the calculation of this limit explicitly serves a double purpose. Firstly, it

allows us to check the integrity of the fPEPS functional by contrasting this limit with

the much more well-known fMPS functional. Secondly, it allows us to understand

the effect of Möbius transformations on our functionals and constraints the possible

classes of functions that can serve as boundary functions. In this limit, the first elliptic

integrals behave as 𝐾(1) = ∞, 𝐾̃(1) = 𝜋
2
, which means that the defining ratio of the

conformal map
𝐿𝑦

𝐿𝑥
=

𝐾̃(𝜅)
2𝐾(𝜅)

→ 0. (3.116)

Therefore, in this limit, 𝐿𝑥 >> 𝐿𝑦, and because we want to recover an infinitely long

strip with a finite width, we demand that 𝐿𝑦 remains a finite quantity and, therefore,

that 𝐿𝑥 → ∞ in this limit. As it was shown in [186], if one defines a Möbius transfor-
mation by

𝑓(𝑧) =
𝑎1𝑧 + 𝑎2
𝑎3𝑧 + 𝑎4

, 𝑎1𝑎4 − 𝑎2𝑎3 = 1, 𝑎1, 𝑎2, 𝑎3, 𝑎4 ∈ ℂ (3.117)

then the 𝜅 → 1 limit of Equation (3.91) is

lim
𝜅→1

𝑠𝑛(𝑅(𝑧)) = tanh(𝑅(𝑧)) =
sinh(𝑅(𝑧))
cosh(𝑅(𝑧))

= 𝑒2𝑅(𝑧) − 1
𝑒2𝑅(𝑧) + 1

= 𝑒
𝜋

𝐿𝑦
(𝑧−𝑧0)

− 1

𝑒
𝜋

𝐿𝑦
(𝑧−𝑧0)

+ 1
(3.118)

which is a Möbius transformation of the MPS conformal map 𝑔𝑀𝑃𝑆(𝑧) = exp(𝑧−𝑖𝜋𝑎
Δ

)
withΔ = 𝐿𝑦

𝜋
, 𝑖𝜋𝑎 = 𝑧0 and (𝑎1, 𝑎2, 𝑎3, 𝑎4) = (1, −1, 1, 1), where 𝑎 ∈ ℝ. Using the expres-

sions shown in Equations (3.57) both 𝐺𝑐
ℳ(𝑧, 𝑧′) as well as 𝑉ℎ±

(𝑥, 𝑧′) correctly reduce to
the expected Möbius transformations of the MPS functional, whilst 𝑉𝑣±

(𝑦, 𝑧) → 0 ∀𝑦, 𝑧.
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More interestingly, this limit also provides information on what the behavior of the

boundary functions must be, since the domain of integration of the horizontal boundary

functions goes from a finite domain 1
2
[𝑥0 −𝐿𝑥, 𝑥0 +𝐿𝑥] to ℝ. This is precisely the origin

of the restriction of the boundary functions to the space of Schwarz functions, even in

the case of fPEPS, as they must be able to become the ones of the fMPS tensor.

The most interesting aspects of this limit appear in the propagation terms. We ex-

pect both the horizontal-vertical propagation terms and the vertical-vertical ones to

vanish in this limit, while the horizontal-horizontal ones become the ones of the MPS

functional. Let us start with 𝑈ℎ+𝑣+
(𝑥, 𝑦′)

lim
𝜅→1

𝑈ℎ+𝑣+
(𝑥, 𝑦′) = 2 ̃𝜅2

Δ2 𝑒− 𝑥
Δ sin(

𝑦′ − 𝜋𝑎
2Δ

) cos(
𝑦′ − 𝜋𝑎

2Δ
) → 0 (3.119)

as it is expected. However, it is not just the kernel that must vanish, but the integral

as well, and the exponential term obstructs that. The integral that must vanish in this

limit is then

(∫
∞

−∞
𝑑𝑥ℎ+(𝑥)𝑒

−𝑥
Δ ∫

𝜋Δ

0
𝑑𝑦𝑣+(𝑦 + 𝜋𝑎) sin(

𝑦
Δ

)) 2 ̃𝜅2

Δ2 , (3.120)

which implies that ℎ+(𝑥) must decay faster than an exponential in the 𝑥 → −∞ limit.
From the rest of the horizontal to vertical kernels 𝑈ℎ+𝑣−

(𝑥, 𝑦′), 𝑈ℎ−𝑣+
(𝑥, 𝑦′), 𝑈ℎ−𝑣−

(𝑥, 𝑦′)
one extracts similar conditions, leading to the restriction of the horizontal boundary

functions ℎ±(𝑥) to belong to the space of Schwartz functions [191]. This restriction
is not only necessitated for a solid convergence of this limit but also for a proper

guarantee of convergence of the integrals presented in the regularization procedure,

such as those found in Equations (3.112), (3.113) and (3.114).

For the horizontal to horizontal terms, we recover the correct regularized limit

lim
𝜅→1

𝑅𝑈𝜀→0
ℎ+ℎ+

(𝑥, 𝑥′) = 𝑈ℎ+ℎ+
(𝑥, 𝑥′) − 8

(𝑥 − 𝑥′)2 + 8𝑃 ′( 1
𝑥 − 𝑥′ ) (3.121)

because the 𝐿𝑥 → ∞ limit removes all the terms of the sum in Equation (3.109) except
for the ones where 𝐿𝑥 is not present on the denominator.

Finally, we reach the vertical to vertical terms, and while 𝑈𝑣+𝑣−
(𝑦, 𝑦′) correctly re-

duces to zero in this limit, 𝑈𝑣+𝑣+
(𝑦, 𝑦′) does not

lim
𝜅→1

𝑈𝑣+𝑣+
(𝑦, 𝑦′) = 2

Δ2
⎛⎜
⎝

1
sin ( (𝑦−𝑦′)

2Δ
)2 − 1

sin ( (𝑦+𝑦′−2𝜋𝑎)
2Δ

)2
⎞⎟
⎠

, (3.122)

and furthermore, it is clearly a divergent kernel. This is precisely the reason that all

the possible divergences were subtracted in the regularization procedure, as one can

then use the following identity

1
sin (𝜋𝑥)2 = 1

𝜋2

∞

∑
𝑘=−∞

1
(𝑥 − 𝑘)2 →

∞

∑
𝑚=−∞

1
(𝑦 − 𝑦′ − 2𝑚𝜋Δ)2 = 1

4Δ2
1

sin ( (𝑦−𝑦′)
2Δ

)2 ,

(3.123)

to write the first line of Equation (3.113) as

𝑈𝑣+𝑣+
(𝑦, 𝑦′) − 2

Δ2
1

sin (𝑦−𝑦′

2Δ
)2 + 2

Δ2
1

sin (𝑦+𝑦′−2𝜋𝑎
2Δ

)2 , (3.124)
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which completely subtracts the divergent leftovers of the 𝜅 → 1 limit. All that is left
are the remaining terms in the second and third lines of Equation (3.113), which by

the choice of the boundary function 𝑣±(𝑦) to be a Schwartz function, it contributes a
finite amount to the functional. Furthermore, these pieces are the only dependence on

𝑣±(𝑦) in the 𝜅 → 1 limit. Because they contribute quadratically to the action, they can
be integrated out into a constant that can be absorbed into the normalization of the

overall state.

A pictorial way in which this constant can also be understood is that the 𝜅 → 1 limit
indeed must send 𝐿𝑥 → ∞ but not necessarily 𝐿𝑦 → 0, therefore leaving a leftover that
was never there in the fMPS case and that is absorbed as a constant due to this term

being uncoupled from the rest of the action.

3.3.4 Chiral truncation of the generic and PEPS

functional.

As we already know, we are ultimately interested in a chiral tensor. Following the pro-

cedure described in the previous sections, the fPEPS functional from Equation (3.93)

reduces to

𝑆𝑐
ℳ[ℎ̃+, ℎ̃−, ̃𝑣+, ̃𝑣+, 𝜌] = 1

8𝜋
∫

ℳ
𝑑 ⃗𝑥 ∫

ℳ
𝑑 ⃗𝑥′𝐺𝑐

ℳ( ⃗𝑥, ⃗𝑥′)𝜌( ⃗𝑥)𝜌( ⃗𝑥′)

− 1
64𝜋2 ∫

𝑥0+ 𝐿𝑥
2

𝑥0− 𝐿𝑥
2

𝑑𝑥 ∫
𝑥0+ 𝐿𝑥

2

𝑥0− 𝐿𝑥
2

𝑑𝑥′ (ℎ̃+(𝑥) , ℎ̃−(𝑥)) (
𝑈ℎ+,ℎ+

(𝑥, 𝑥′) , 𝑈ℎ+,ℎ−
(𝑥, 𝑥′)

𝑈ℎ−,ℎ+
(𝑥, 𝑥′) , 𝑈ℎ−,ℎ−

(𝑥, 𝑥′)) (ℎ̃+(𝑥′)
ℎ̃−(𝑥′)

)

− 1
64𝜋2 ∫

𝑦0+𝐿𝑦

𝑦0

𝑑𝑦 ∫
𝑦0+𝐿𝑦

𝑦0

𝑑𝑦′ ( ̃𝑣+(𝑦) , ̃𝑣−(𝑦)) (
𝑈𝑣+,𝑣+

(𝑦, 𝑦′) , 𝑈𝑣+,𝑣−
(𝑦, 𝑦′)

𝑈𝑣−,𝑣+
(𝑦, 𝑦′) , 𝑈𝑣−,𝑣−

(𝑦, 𝑦′)) ( ̃𝑣+(𝑦′)
̃𝑣−(𝑦′))

− 1
32𝜋2 ∫

𝑥0+ 𝐿𝑥
2

𝑥0− 𝐿𝑥
2

𝑑𝑥 ∫
𝑦0+𝐿𝑦

𝑦0

𝑑𝑦′ (ℎ̃+(𝑥) , ℎ̃−(𝑥)) (
𝑈ℎ+,𝑣+

(𝑥, 𝑦′) , 𝑈ℎ+,𝑣−
(𝑥, 𝑦′)

𝑈ℎ−,𝑣+
(𝑥, 𝑦′) , 𝑈ℎ−,𝑣−

(𝑥, 𝑦′)) ( ̃𝑣+(𝑦′)
̃𝑣−(𝑦′))

+ 𝑖
16𝜋2 ∫

𝑥0+ 𝐿𝑥
2

𝑥0− 𝐿𝑥
2

𝑑𝑥 ∫
𝑀

𝑑 ⃗𝑥′𝜌( ⃗𝑥′) (ℎ̃+(𝑥) , ℎ̃−(𝑥)) (
𝑉ℎ+

(𝑥, ⃗𝑥′)
−𝑉ℎ−

(𝑥, ⃗𝑥′))

+ 𝑖
16𝜋2 ∫

𝑦0+𝐿𝑦

𝑦0

𝑑𝑦 ∫
𝑀

𝑑 ⃗𝑥′𝜌( ⃗𝑥′) ( ̃𝑣+(𝑦) , ̃𝑣−(𝑦)) (
−𝑉𝑣+

(𝑦, ⃗𝑥′)
𝑉𝑣−

(𝑦, ⃗𝑥′) ) ,

(3.125)

where we have now collected the cross-propagation term under the same integral,

and thanks to the regularization scheme, we have been able to exchange the order

of integration. With the truncated action, we can also introduce the spin densities

to extract the conformal dimension factor, akin to the fMPS case shown in Equation

(3.80). To extract it, one simply takes the regularized limit

∶ lim
𝑧→𝜔

𝐺ℳ(𝑧, 𝜔) ∶= 𝑠2 log(
2𝐾(𝜅)

𝐿𝑥
) (3.126)

where we have subtracted the divergent term to extract the 0th-order term of the ex-
pansion. This term correctly reduces to the corresponding conformal dimension term

of the fMPS functional in the 𝜅 → 1 limit.
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3.4 The sewing condition for the free boson

Set up and split of the functionals

In this section, we will present the most general proof of the sewing condition for any

two chiral tensors 𝒜𝑐
ℳ1
and 𝒜𝑐

ℳ2
. Our starting point is two functionals defined in two

distinct manifoldsℳ1 andℳ2 employing the conformal maps 𝑔1 and 𝑔2. Each tensor

hosts their own set of spins denoted by 𝜌1 and 𝜌2, and we will demand that they have a

compatible boundary. To be more precise, one begins splitting the boundary into two

sections, the section in which the sewing takes place 𝜕ℳ𝑆 and the rest of the boundary

in which it does not 𝜕ℳ𝑆, such that 𝜕ℳ = 𝜕ℳ𝑆 ∪ 𝜕ℳ𝑆, a.k.a the two manifolds can

be glued together. Diagrammatically, we are aiming to prove the following identity

(3.127)

where the path integral sums only over the functions present in the shared compatible

boundary ℎ. Exploring the sewing condition for generic functionals 𝒜ℳ is a very

complicated task. Still, we will use conformal invariance to treat this problem with

the respective representations of both tensors in the UHP, where all the expressions

become much simpler. In the coordinates shown in Equation (3.127), we would split

the boundary functions as

̃𝑓𝑖(𝑔𝑖(𝑥)) = 𝑓𝑖(𝑔𝑖(𝑥))𝜒(𝑥 ∈ 𝜕ℳ𝑖𝑆
) + ℎ(𝑔𝑖(𝑥))𝜒(𝑥 ∈ 𝜕ℳ𝑆) (3.128)

where 𝜒(𝑥) is the indicator distribution, and we have explicitly included the conformal
map’s dependence on the functions. If one wishes to split the original function ̃𝑓(𝑥)
in a continuous fashion, then one should choose the endpoints of the indicators to be

𝜒(𝜕𝜕ℳ𝑆) = 1
2
. However, that is not strictly necessary for the function to remain within

the Schwartz space.

If we wish to perform the sewing of the common boundary in the coordinates of

the UHP, then we need to undo the change of variables from the conformal maps 𝑔𝑖,

therefore leading to the following split in the UHP

̃𝑓𝑖(𝑥) = 𝑓𝑖(𝑥)𝜒(𝑥 ∈ 𝑔𝑖 (𝜕ℳ𝑖𝑆
)) + ℎ(𝑥)𝜒(𝑥 ∈ 𝑔𝑖 (𝜕ℳ𝑆)) (3.129)

where 𝑔𝑖 (𝜕ℳ𝑖𝑆
)∪𝑔𝑖 (𝜕ℳ𝑆) = ℝ by definition of the conformal map. Therefore, in the

UHP, the sewing boundary 𝜕ℳ𝑆 gets in general sent to different subdomains of the

real line 𝐷𝑖 = 𝑔𝑖 (𝜕ℳ𝑆), while the remaining of the boundary of each functional gets
sent to the remainder of ℝ, 𝐷𝑖 = 𝑔𝑖 (𝜕ℳ𝑖𝑆

). This is schematically shown in Figure 3.7
for two arbitrary domains and randomly chosen domains in the UHP to showcase that

generically 𝐷1 ≠ 𝐷2, and that these can be either compact or non-compact. Moving

to the UHP allows to forego the potentially complicated geometry of 𝜕ℳ𝑆, while sim-

ply backloading that information on the specific forms of the subdomains 𝐷𝑖 and 𝐷𝑖.
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Figure 3.7: Schematic depiction of the pre-image of 𝜕ℳ𝑆 in the UHP for generic conformal
maps 𝑔𝑖.

Therefore, the minimal tensor in the UHP that captures any potential sewing scenario is

that of an UHP tensor whose boundary function is split between a generic sub-domain

of ℝ, 𝐷 and its complement 𝐷.
Our starting point is then the chiral UHP functional tensor derived from Equation

(3.52) using the chiral truncation, given by

𝒜𝑐
ℍ [ ̃𝑓, {𝑧𝑖, 𝑠𝑖}𝑁

𝑖=1] = exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 (log [(𝑧𝑖 − 𝑧𝑗)]) − 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝑦 ̃𝑓(𝑦) 1
𝑧𝑖 − 𝑦

+ 1
8𝜋2 ∫

ℝ
𝑑𝑥 ∫

ℝ
𝑑𝑦 ̃𝑓(𝑥) ̃𝑓(𝑦) 1

(𝑥 − 𝑦)2 ) .

(3.130)

where we split the boundary integral as

∫
ℝ

𝑑𝑥 ̃𝑓(𝑥) = ∫
𝐷

𝑑𝑥ℎ(𝑥) + ∫
𝐷

𝑑𝑥𝑓(𝑥), (3.131)

such that then the tensor becomes

𝒜𝑐
ℍ [𝑓, ℎ, {𝑧𝑖, 𝑠𝑖}𝑁

𝑖=1] = exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 (log [(𝑧𝑖 − 𝑧𝑗)])

− 1
2𝜋

∑
𝑖

𝑠𝑖 (∫
𝐷

𝑑𝑦ℎ(𝑦) 1
𝑧𝑖 − 𝑦

+ ∫
𝐷

𝑑𝑦𝑓(𝑦) 1
𝑧𝑖 − 𝑦

)

+ 1
8𝜋2 ∫

𝐷
𝑑𝑥 ∫

𝐷
𝑑𝑦𝑓(𝑥)𝑓(𝑦) 1

(𝑥 − 𝑦)2 + 1
4𝜋2 ∫

𝐷
𝑑𝑥 ∫

𝐷
𝑑𝑦𝑓(𝑥)ℎ(𝑦) 1

(𝑥 − 𝑦)2

+ 1
8𝜋2 ∫

𝐷
𝑑𝑥 ∫

𝐷
𝑑𝑦ℎ(𝑥)ℎ(𝑦) 1

(𝑥 − 𝑦)2 ) ,

(3.132)

which we can re-organize as

𝒜𝑐
ℍ [𝑓, ℎ, {𝑧𝑖, 𝑠𝑖}𝑁

𝑖=1] = ℬ𝑐
ℍ,𝐷

[𝑓, {𝑧𝑖, 𝑠𝑖}𝑁
𝑖=1] exp(− 1

2𝜋
∑

𝑖
𝑠𝑖 ∫

𝐷
𝑑𝑦ℎ(𝑦) 1

𝑧𝑖 − 𝑦

+ 1
4𝜋2 ∫

𝐷
𝑑𝑥 ∫

𝐷
𝑑𝑦𝑓(𝑥)ℎ(𝑦) 1

(𝑥 − 𝑦)2 + 1
8𝜋2 ∫

𝐷
𝑑𝑥 ∫

𝐷
𝑑𝑦ℎ(𝑥)ℎ(𝑦) 1

(𝑥 − 𝑦)2 ) ,
(3.133)
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where in ℬ𝑐
ℍ,𝐷
we have accumulated all the terms that will not take part in the sewing

path integral over the function ℎ, which are

ℬ𝑐
ℍ,𝐷

[𝑓, {𝑧𝑖, 𝑠𝑖}𝑁
𝑖=1] = exp(+1

2
∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 (log [(𝑧𝑖 − 𝑧𝑗)]) − 1
2𝜋

∑
𝑖

𝑠𝑖 (∫
𝐷

𝑑𝑦𝑓(𝑦) 1
𝑧𝑖 − 𝑦

)

+ 1
8𝜋2 ∫

𝐷
𝑑𝑥 ∫

𝐷
𝑑𝑦𝑓(𝑥)𝑓(𝑦) 1

(𝑥 − 𝑦)2 ) .

(3.134)

With the expressions for a generic split of the boundary, we can now move forward

toward the sewing equation, given in the UHP by

∫ 𝒟ℎ𝒜𝑐
ℍ1

[𝑓1, ℎ, {𝑧𝑖,1, 𝑠𝑖,1}𝑁
𝑖=1] 𝒜𝑐

ℍ2
[𝑓2, ℎ, {𝑧𝑖,2, 𝑠𝑖,2}𝑁

𝑖=1] (3.135)

which after introducing Equation (3.133) becomes

ℬ𝑐
ℍ,𝐷1

[𝑓1, {𝑧𝑖,1, 𝑠𝑖,1}𝑁
𝑖=1] ℬ𝑐

ℍ,𝐷2
[𝑓2, {𝑧𝑖,2, 𝑠𝑖,2}𝑁

𝑖=1] ×

∫ 𝒟ℎ exp(− 1
2𝜋

∑
𝑖

𝑠𝑖,1 ∫
𝐷1

𝑑𝑦ℎ(𝑦) 1
𝑧𝑖,1 − 𝑦

− 1
2𝜋

∑
𝑖

𝑠𝑖,2 ∫
𝐷2

𝑑𝑦ℎ(𝑦) 1
𝑧𝑖,2 − 𝑦

+ 1
4𝜋2 ∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑦𝑓1(𝑥)ℎ(𝑦) 1
(𝑥 − 𝑦)2 + 1

4𝜋2 ∫
𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑦𝑓2(𝑥)ℎ(𝑦) 1
(𝑥 − 𝑦)2

+ 1
8𝜋2 ∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑦ℎ(𝑥)ℎ(𝑦) 1
(𝑥 − 𝑦)2 + 1

8𝜋2 ∫
𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑦ℎ(𝑥)ℎ(𝑦) 1
(𝑥 − 𝑦)2 ) ,

(3.136)

where the range of the spin sums goes from 1 to either 𝑁1 or 𝑁2 as indicated by

the spin subindex. From now on, we will focus exclusively on the terms under the

functional integral. To express the integral of Equation (3.136) as a Gaussian integral

over the function ℎ, we first need the domains of the integrals under which the function
ℎ appears to be the same. Here, we can use Möbius transformations to change the
domains 𝐷1 and 𝐷2 to a common one that we will name 𝐷. A very natural choice
would be for𝐷 = ℝ+, which would then make𝐷 = ℝ−. If𝐷1 = 𝛾1(𝐷) and𝐷2 = 𝛾2(𝐷),
then obviously𝐷1 = 𝛾1(𝐷) and𝐷2 = 𝛾2(𝐷), due to the biholomorphicity of the Möbius
transformation. We parametrize these transformations by

𝑦 = 𝛾𝑖(𝜔𝑦) =
𝑎𝑖𝜔𝑦 + 𝑏𝑖

𝑐𝑖𝜔𝑦 + 𝑑𝑖
, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 ∈ ℝ (3.137)

Changing variables employing these transformations, both for the boundary integrals
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and the spin positions as 𝑧𝑖,𝑗 = 𝛾𝑗(𝜔𝑖,𝑗), one writes Equation (3.136) as

∫ 𝒟ℎ exp(− 1
2𝜋

∑
𝑖

𝑠𝑖,1 ∫
𝐷

𝑑𝜔𝑦ℎ(𝛾1(𝜔𝑦)) 1
𝜔𝑖,1 − 𝜔𝑦

𝑐1𝜔𝑖,1 + 𝑑1

𝑐1𝜔𝑦 + 𝑑1

− 1
2𝜋

∑
𝑖

𝑠𝑖,2 ∫
𝐷

𝑑𝜔𝑦ℎ(𝛾2(𝜔𝑦)) 1
𝜔𝑖,2 − 𝜔𝑦

𝑐2𝜔𝑖,2 + 𝑑2

𝑐2𝜔𝑦 + 𝑑2

+ 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦𝑓1(𝛾1(𝜔𝑥))ℎ(𝛾1(𝜔𝑦)) 1

(𝜔𝑥 − 𝜔𝑦)2

+ 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦𝑓2(𝛾2(𝜔𝑥))ℎ(𝛾2(𝜔𝑦)) 1

(𝜔𝑥 − 𝜔𝑦)2

+ 1
8𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦ℎ(𝛾1(𝜔𝑥))ℎ(𝛾1(𝜔𝑦)) 1

(𝜔𝑥 − 𝜔𝑦)2

+ 1
8𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦ℎ(𝛾2(𝜔𝑥))ℎ(𝛾2(𝜔𝑦)) 1

(𝜔𝑥 − 𝜔𝑦)2 ) ,

(3.138)

where one can now finally put together all the previously different integrals to obtain

∫ 𝒟ℎ exp(− 1
2𝜋

∫
𝐷

𝑑𝜔𝑦 [∑
𝑖

𝑠𝑖,1
ℎ(𝛾1(𝜔𝑦))
𝜔𝑖,1 − 𝜔𝑦

𝑐1𝜔𝑖,1 + 𝑑1

𝑐1𝜔𝑦 + 𝑑1
+ ∑

𝑗
𝑠𝑗,2

ℎ(𝛾2(𝜔𝑦))
𝜔𝑗,2 − 𝜔𝑦

𝑐2𝜔𝑗,2 + 𝑑2

𝑐2𝜔𝑦 + 𝑑2
]

+ 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦

1
(𝜔𝑥 − 𝜔𝑦)2 [𝑓1(𝛾1(𝜔𝑥))ℎ(𝛾1(𝜔𝑦)) + 𝑓2(𝛾2(𝜔𝑥))ℎ(𝛾2(𝜔𝑦))]

+ 1
8𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦

1
(𝜔𝑥 − 𝜔𝑦)2 [ℎ(𝛾1(𝜔𝑥))ℎ(𝛾1(𝜔𝑦)) + ℎ(𝛾2(𝜔𝑥))ℎ(𝛾2(𝜔𝑦))]) .

(3.139)

At this point, we can already start to see the structure of the Gaussian integral emerge,

as we have both a quadratic and a linear term in ℎ, albeit their arguments are different
due to the different Möbius transformations required to make both domains be the

same. In order to move forward, we will now assume that there exists an integral

transform and an inverse of the form

ℎ(𝑥) = ∫
𝐶

𝑑𝑥′𝐾(𝑥, 𝑥′)ℎ̂(𝑥′) , ℎ̂(𝑥) = ∫
𝐶−1

𝑑𝑥′𝐾−1(𝑥, 𝑥′)ℎ(𝑥′) (3.140)

for unspecified domains of integration 𝐶 and 𝐶−1 such that ∫𝐶 𝑑𝑦𝐾(𝑥, 𝑦)𝐾−1(𝑦, 𝑧) =
𝛿(𝑥 − 𝑧). Assuming such a transformation exists, we will further assume that it pre-
serves the measure of the functional integration, which means ∫ 𝒟ℎ = ∫ 𝒟ℎ̂, and
therefore that this transformation preserves the Schwartz space. An example of such a

transformation would be the well-known Fourier transform or the Hilbert transform.

71



3.4 The sewing condition for the free boson

Inserting the expressions for ℎ in the transformed basis, one obtains

∫ 𝒟ℎ̂ exp (

− 1
2𝜋

∫
𝐶

𝑑𝜔′
𝑦ℎ̂(𝜔′

𝑦) ∫
𝐷

𝑑𝜔𝑦 [∑
𝑖

𝑠𝑖,1
𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦))
𝜔𝑖,1 − 𝜔𝑦

𝑐1𝜔𝑖,1 + 𝑑1

𝑐1𝜔𝑦 + 𝑑1
+ ∑

𝑗
𝑠𝑗,2

𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦))

𝜔𝑗,2 − 𝜔𝑦

𝑐2𝜔𝑗,2 + 𝑑2

𝑐2𝜔𝑦 + 𝑑2
]

+ 1
4𝜋2 ∫

𝐶
𝑑𝜔′

𝑦ℎ̂(𝜔′
𝑦) ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦

1
(𝜔𝑥 − 𝜔𝑦)2 [𝑓1(𝛾1(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦)) + 𝑓2(𝛾2(𝜔𝑥))𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦))]

+ 1
8𝜋2 ∫

𝐶
𝑑𝜔′

𝑥𝑑𝜔′
𝑦ℎ̂(𝜔′

𝑥)ℎ̂(𝜔′
𝑦) ∫

𝐷
𝑑𝜔𝑥𝑑𝜔𝑦

𝐾(𝜔′
𝑥, 𝛾1(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦)) + 𝐾(𝜔′
𝑥, 𝛾2(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾2(𝜔𝑦))
(𝜔𝑥 − 𝜔𝑦)2 ) .

(3.141)

The Gaussian integral

To reach the final Gaussian integral form, one collects the terms linear on ℎ̂ and those
quadratic in separate terms as

𝐽(𝜔′
𝑦, 𝑓1, 𝑓2) = − 1

2𝜋
[∫

𝐷
𝜔𝑦 ∑

𝑖
𝑠𝑖,1

𝐾(𝜔′
𝑦, 𝛾1(𝜔𝑦))

𝜔𝑖,1 − 𝜔𝑦

𝑐1𝜔𝑖,1 + 𝑑1

𝑐1𝜔𝑦 + 𝑑1
+ ∑

𝑗
𝑠𝑗,2

𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦))

𝜔𝑗,2 − 𝜔𝑦

𝑐2𝜔𝑗,2 + 𝑑2

𝑐2𝜔𝑦 + 𝑑2
]

+ 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦

1
(𝜔𝑥 − 𝜔𝑦)2 [𝑓1(𝛾1(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦)) + 𝑓2(𝛾2(𝜔𝑥))𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦))] ,

(3.142)

and

𝑊(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2) = − 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑥𝑑𝜔𝑦

𝐾(𝜔′
𝑥, 𝛾1(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦)) + 𝐾(𝜔′
𝑥, 𝛾2(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾2(𝜔𝑦))
(𝜔𝑥 − 𝜔𝑦)2 ,

(3.143)

where we have made explicit the dependance of 𝑊 on the Möbius transformations

involved in the specific sewing scenario. With these definitions, Equation (3.141) be-

comes

∫ 𝒟ℎ̂ exp(+ ∫
𝐶

𝑑𝜔′
𝑦ℎ̂(𝜔′

𝑦)𝐽(𝜔′
𝑦, 𝑓1, 𝑓2) − 1

2
∫

𝐶
𝑑𝜔′

𝑥𝑑𝜔′
𝑦ℎ̂(𝜔′

𝑥)ℎ̂(𝜔′
𝑦)𝑊(𝜔′

𝑥, 𝜔′
𝑦, 𝛾1, 𝛾2)) .

(3.144)

This Gaussian functional integral is very well known, and ignoring a potentially infinite

pre-factor constant, its solution is given by

∝ exp(1
2

∫
𝐶

𝑑𝜔′
𝑥𝑑𝜔′

𝑦𝐽(𝜔′
𝑥, 𝑓1, 𝑓2)𝑊 −1(𝜔′

𝑥, 𝜔′
𝑦, 𝛾1, 𝛾2)𝐽(𝜔′

𝑦, 𝑓1, 𝑓2)) , (3.145)

where 𝑊 −1(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2) is another function that fulfills

∫
𝐶

𝑑𝜔𝑧𝑊(𝜔𝑥, 𝜔𝑧, 𝛾1, 𝛾2)𝑊 −1(𝜔𝑧, 𝜔𝑦, 𝛾1, 𝛾2) = 𝛿(𝜔𝑥 − 𝜔𝑦), (3.146)

and therefore acts as the functional inverse of the Gaussian Kernel. Finding this inverse

kernel is, in general, very hard. However, some solutions for this family of kernels can
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be explicitly found in the theory of Hilbert Transforms [197], and more specifically in

the realm of finite Hilbert Transforms [198].

In order to aid with intuition, we present here two examples of kernels and their

respective inverses. The Hilbert transform of a function 𝑓 is denoted 𝐻[𝑓] = ̃𝑓, with
𝑓 ∈ 𝕃𝑝(ℝ), 1 ≤ 𝑝 < ∞ and it is usually defined as an integral over ℝ

𝐻[𝑓](𝑡) = 1
𝜋

(p.v.) ∫
ℝ

d𝑥𝑓(𝑥)
𝑥 − 𝑡

, (3.147)

where 𝑡 ∈ ℝ and hence as a convolution with the principal value distribution. The
main result from which we depart, is the convolution of the principal value with itself,

𝐻 [𝑝.𝑣. (1
𝑥

)] = −𝜋𝛿(𝑡), (3.148)

which is precisely the kind of expression we wish to achieve for the Gaussian kernel

𝑊(𝑥, 𝑦). The first step in constructing such an inverse, is to derive a similar expression
as Equation (3.148) but for a function that behaves as∼ 1

(𝑥−𝑡)2 . We start by introducing

the regularized distributions of the principal value and the Dirac distribution

𝑃 (1
𝑥

, 𝜀) = 1
2

( 1
𝑥 + 𝑖𝜀

+ 1
𝑥 − 𝑖𝜀

) ,

𝛿(𝑥, 𝜀) = 1
2𝜋𝑖

( 1
𝑥 + 𝑖𝜀

− 1
𝑥 − 𝑖𝜀

) ,
(3.149)

where 𝑥 ∈ ℝ, 𝜀 ∈ ℝ, 𝜀 > 0. Then, if one integrates by parts in the l.h.s of

∫
ℝ
d𝑥𝑃 ( 1

𝑥 − 𝑠
, 𝜀1) 𝑃 ( 1

𝑥 − 𝑢
, 𝜀1) = − 1

𝜋2 𝛿(𝑠 − 𝑢, 𝜀1 + 𝜀2), (3.150)

one obtains

∫
ℝ
d𝑥𝑃 ′ ( 1

𝑥 − 𝑠
, 𝜀1) 1

2
log [(𝑥 − 𝑢)2 + 𝜀2

2] = 1
𝜋2 𝛿(𝑠 − 𝑢, 𝜀1 + 𝜀2), (3.151)

which is much closer to the functional form of 𝑊(𝑥, 𝑦). However,the logarithm in
Equation (3.151) is far from being our desired inverse, as the domain integration is

ℝ, whilst the domain of integration found in the Gaussian integral can in general be
finite. We thus turn our attention to the theory of finite Hilbert transforms, defined by

𝐻[𝑓](𝑡) = 1
𝜋

(p.v.) ∫
𝑏

𝑎

d𝑥𝑓(𝑥)
𝑥 − 𝑡

, (3.152)

where 𝑓 is supported on the domain [𝑎, 𝑏] and 𝑡 ∈ [𝑎, 𝑏]. In [199], an explicit inversion
formula for this transform was found, given by

𝑓(𝑡) = 1
𝜋√(𝑡 − 𝑎)(𝑏 − 𝑡)

(∫
𝑏

𝑎

d𝑥𝐻[𝑓](𝑥)
(𝑥 − 𝑡)

√(𝑥 − 𝑎)(𝑏 − 𝑥) + ∫
𝑏

𝑎
𝑓(𝑥)d𝑥) , (3.153)

with 𝑓 ∈ 𝕃𝑝(ℝ). The simplest case is to consider a semi-infinite line with 𝑎 = 0 and
𝑏 → ∞, and if one demands that 𝐻[𝑓](𝑥) = 𝛿(𝑥 − 𝑢), 𝑢 ≥ 0 then

𝑓(𝑡) = √𝑢
𝑡

1
𝑢 − 𝑡

(3.154)
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which one can then use to derive a similar expression to Equation (3.151). By basic

integration techniques, one finds

𝛿(𝑡 − 𝑢) = ∫
∞

0

d𝑠
𝑠 − 𝑡

√𝑢
𝑠

1
𝑢 − 𝑠

= ∫
∞

0

d𝑠
(𝑠 − 𝑡)2 2Arctanh(√ 𝑠

𝑢
) (3.155)

which is then our desired inverse. As a general rule of thumb, we see that these inverses

have branch cuts when studied as complex functions, which will become relevant later

on.

For the time being, we will proceed forward by leaving it as an arbitrary unknown

function. We will see that we can derive it by comparing the expressions found in this

functional via sewing with the corresponding functions that correspond to a functional

directly defined with the characteristics of the sown functional.

The final sown functional

The next step is to insert the currents from Equation (3.142) into Equation (3.145),

which leads to

exp(1
2

∫
𝐶

𝑑𝜔′
𝑥𝑑𝜔′

𝑦𝑊 −1(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2) [𝑆𝑆(𝜔′
𝑥, 𝜔′

𝑦) + 𝑆𝐵(𝜔′
𝑥, 𝜔′

𝑦) + 𝐵𝐵(𝜔′
𝑥, 𝜔′

𝑦)]) ,

(3.156)

where we have already grouped up all the terms that will become spin-spin terms in

𝑆𝑆(𝜔′
𝑥, 𝜔′

𝑦), the ones that will become spin-boundary ones in 𝑆𝐵(𝜔′
𝑥, 𝜔′

𝑦) and the ones
regarding boundary-boundary terms in 𝐵𝐵(𝜔′

𝑥, 𝜔′
𝑦). The explicit expressions of these

kernels are

𝑆𝑆(𝜔′
𝑥, 𝜔′

𝑦) = 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑦 ∫

𝐷
𝑑𝜔″

𝑦

(∑
𝑖

𝑠𝑖,1
𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦))
𝜔𝑖,1 − 𝜔𝑦

𝑐1𝜔𝑖,1 + 𝑑1

𝑐1𝜔𝑦 + 𝑑1
+ ∑

𝑗
𝑠𝑗,2

𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦))

𝜔𝑗,2 − 𝜔𝑦

𝑐2𝜔𝑗,2 + 𝑑2

𝑐2𝜔𝑦 + 𝑑2
)

(∑
𝑘

𝑠𝑘,1
𝐾(𝜔′

𝑥, 𝛾1(𝜔″
𝑦))

𝜔𝑘,1 − 𝜔″
𝑦

𝑐1𝜔𝑘,1 + 𝑑1

𝑐1𝜔″
𝑦 + 𝑑1

+ ∑
𝑙

𝑠𝑙,2
𝐾(𝜔′

𝑥, 𝛾2(𝜔″
𝑦))

𝜔𝑙,2 − 𝜔″
𝑦

𝑐2𝜔𝑙,2 + 𝑑2

𝑐2𝜔″
𝑦 + 𝑑2

) ,

(3.157)

𝑆𝐵(𝜔′
𝑥, 𝜔′

𝑦) = − 1
8𝜋3 ∫

𝐷
𝑑𝜔″

𝑥 ∫
𝐷

𝑑𝜔″
𝑦 ∫

𝐷
𝑑𝜔𝑦

(∑
𝑖

𝑠𝑖,1
𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦))
𝜔𝑖,1 − 𝜔𝑦

𝑐1𝜔𝑖,1 + 𝑑1

𝑐1𝜔𝑦 + 𝑑1
+ ∑

𝑗
𝑠𝑗,2

𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦))

𝜔𝑗,2 − 𝜔𝑦

𝑐2𝜔𝑗,2 + 𝑑2

𝑐2𝜔𝑦 + 𝑑2
)

(
(𝑓1(𝛾1(𝜔″

𝑥))𝐾(𝜔′
𝑥, 𝛾1(𝜔″

𝑦)) + 𝑓2(𝛾2(𝜔″
𝑥))𝐾(𝜔′

𝑥, 𝛾2(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2 )

− 1
8𝜋3 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦 ∫

𝐷
𝑑𝜔″

𝑦

(∑
𝑘

𝑠𝑘,1
𝐾(𝜔′

𝑥, 𝛾1(𝜔″
𝑦))

𝜔𝑘,1 − 𝜔″
𝑦

𝑐1𝜔𝑘,1 + 𝑑1

𝑐1𝜔″
𝑦 + 𝑑1

+ ∑
𝑙

𝑠𝑙,2
𝐾(𝜔′

𝑥, 𝛾2(𝜔″
𝑦))

𝜔𝑙,2 − 𝜔″
𝑦

𝑐2𝜔𝑙,2 + 𝑑2

𝑐2𝜔″
𝑦 + 𝑑2

)

(
(𝑓1(𝛾1(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦)) + 𝑓2(𝛾2(𝜔𝑥))𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦)))

(𝜔𝑥 − 𝜔𝑦)2 ) ,

(3.158)

74



3.4 The sewing condition for the free boson

𝐵𝐵(𝜔′
𝑥, 𝜔′

𝑦) = 1
16𝜋4 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦 ∫

𝐷
𝑑𝜔″

𝑥 ∫
𝐷

𝑑𝜔″
𝑦

(
(𝑓1(𝛾1(𝜔″

𝑥))𝐾(𝜔′
𝑥, 𝛾1(𝜔″

𝑦)) + 𝑓2(𝛾2(𝜔″
𝑥))𝐾(𝜔′

𝑥, 𝛾2(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2 )

(
(𝑓1(𝛾1(𝜔𝑥))𝐾(𝜔′

𝑦, 𝛾1(𝜔𝑦)) + 𝑓2(𝛾2(𝜔𝑥))𝐾(𝜔′
𝑦, 𝛾2(𝜔𝑦)))

(𝜔𝑥 − 𝜔𝑦)2 ) .

(3.159)

To start simplifying all these terms, we will first get rid of the integral transform by

defining the transformed inverse kernel 𝑊̂ −1 to be

𝑊̂ −1(𝛾𝑗(𝜔″
𝑦), 𝛾𝑖(𝜔𝑦)) = ∫

𝐶
𝑑𝜔′

𝑦𝑑𝜔′
𝑥𝐾(𝜔′

𝑦, 𝛾𝑖(𝜔𝑦))𝑊 −1(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2)𝐾(𝜔′
𝑥, 𝛾𝑗(𝜔″

𝑦)),

(3.160)

such that now all the previous integrals can make use of this definition to get rid of the

integrals over the domain 𝐶 and where we have omitted the dependence of 𝑊̂ −1 on the

original Möbius transformations for the sake of easing notation. With this definition,

the spin-spin terms are simplified to

1
2

∫
𝐶

𝑑𝜔′
𝑥𝑑𝜔′

𝑦𝑊 −1(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2)𝑆𝑆(𝜔′
𝑥, 𝜔′

𝑦) =

1
8𝜋2 ∫

𝐷
𝑑𝜔𝑦 ∫

𝐷
𝑑𝜔″

𝑦 [∑
𝑖,𝑘

𝑠𝑖,1𝑠𝑘,1
(𝑐1𝜔𝑖,1 + 𝑑1)
(𝑐1𝜔𝑦 + 𝑑1)

(𝑐1𝜔𝑘,1 + 𝑑1)
(𝑐1𝜔″

𝑦 + 𝑑1)
𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾1(𝜔𝑦))
(𝜔𝑖,1 − 𝜔𝑦)(𝜔𝑘,1 − 𝜔″

𝑦)

+ ∑
𝑖,𝑙

𝑠𝑖,1𝑠𝑙,2
(𝑐1𝜔𝑖,1 + 𝑑1)
(𝑐1𝜔𝑦 + 𝑑1)

(𝑐2𝜔𝑙,2 + 𝑑2)
(𝑐2𝜔″

𝑦 + 𝑑2)
𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾1(𝜔𝑦))
(𝜔𝑖,1 − 𝜔𝑦)(𝜔𝑙,2 − 𝜔″

𝑦)

+ ∑
𝑗,𝑘

𝑠𝑗,2𝑠𝑘,1
(𝑐2𝜔𝑗,2 + 𝑑2)
(𝑐2𝜔𝑦 + 𝑑2)

(𝑐1𝜔𝑘,1 + 𝑑1)
(𝑐1𝜔″

𝑦 + 𝑑1)
𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦))
(𝜔𝑗,2 − 𝜔𝑦)(𝜔𝑘,1 − 𝜔″

𝑦)

+ ∑
𝑗,𝑙

𝑠𝑗,2𝑠𝑙,2
(𝑐2𝜔𝑗,2 + 𝑑2)
(𝑐2𝜔𝑦 + 𝑑2)

(𝑐2𝜔𝑙,2 + 𝑑2)
(𝑐2𝜔″

𝑦 + 𝑑2)
𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾2(𝜔𝑦))
(𝜔𝑗,2 − 𝜔𝑦)(𝜔𝑙,2 − 𝜔″

𝑦)
]

(3.161)

and if we now undo the Möbius transformations we obtain

𝑆𝑆({𝑧𝑖,1, 𝑠𝑖,1, 𝑧𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 ) = + 1

8𝜋2 ∑
𝑖,𝑘

𝑠𝑖,1𝑠𝑘,1 ∫
𝐷1

𝑑𝑦 ∫
𝐷1

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑧𝑖,1 − 𝑦)(𝑧𝑘,1 − 𝑦″)

+ 1
8𝜋2 ∑

𝑖,𝑙
𝑠𝑖,1𝑠𝑙,2 ∫

𝐷1

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑧𝑖,1 − 𝑦)(𝑧𝑙,2 − 𝑦″)

+ 1
8𝜋2 ∑

𝑗,𝑘
𝑠𝑗,2𝑠𝑘,1 ∫

𝐷2

𝑑𝑦 ∫
𝐷1

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑧𝑗,2 − 𝑦)(𝑧𝑘,1 − 𝑦″)

+ 1
8𝜋2 ∑

𝑗,2
𝑠𝑗,2𝑠𝑙,2 ∫

𝐷2

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑧𝑗,2 − 𝑦)(𝑧𝑙,2 − 𝑦″)

.

(3.162)
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In Equation (3.162), we see how sewing has generated all the necessary spin-spin terms.

The first line corresponds to the interaction of one of the spins fromℳ1 with the sewing

boundary 𝜕ℳ𝑆 and with one of theℳ1 spins again. The fourth line corresponds to the

same situation for the spins inℳ2, and the second and third lines are the interactions

between a spin from ℳ1 and another one from ℳ2, which arises as a new interac-

tion from the sewing procedure. To further derive the form of 𝑊̂ −1 we will compare

this result with the corresponding functional constructed directly as ℳ = ℳ1 ∪ ℳ2,

but before doing so let us also bring the rest of the terms to a form suitable for this

comparison.

After using Equation (3.160) on Equation (3.158) the spin-boundary term arising

from sewing simplifies down to

1
2

∫
𝐶

𝑑𝜔′
𝑥𝑑𝜔′

𝑦𝑊 −1(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2)𝑆𝐵(𝜔′
𝑥, 𝜔′

𝑦) =

− 1
16𝜋3 ∫

𝐷
𝑑𝜔″

𝑥 ∫
𝐷

𝑑𝜔″
𝑦 ∫

𝐷
𝑑𝜔𝑦

[+ ∑
𝑖

𝑠𝑖,1
(𝑐1𝜔𝑖,1 + 𝑑1)
(𝑐1𝜔𝑦 + 𝑑1)

𝑓1(𝛾1(𝜔″
𝑥))

(𝜔𝑖,1 − 𝜔𝑦)
(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑊̂ −1(𝛾1(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2

+ ∑
𝑖

𝑠𝑖,1
(𝑐1𝜔𝑖,1 + 𝑑1)
(𝑐1𝜔𝑦 + 𝑑1)

𝑓2(𝛾2(𝜔″
𝑥))

(𝜔𝑖,1 − 𝜔𝑦)
(𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑊̂ −1(𝛾1(𝜔𝑦), 𝛾2(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2

+ ∑
𝑗

𝑠𝑗,2
(𝑐2𝜔𝑗,2 + 𝑑2)
(𝑐2𝜔𝑦 + 𝑑2)

𝑓1(𝛾1(𝜔″
𝑥))

(𝜔𝑗,2 − 𝜔𝑦)
(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2

+ ∑
𝑗

𝑠𝑗,2
(𝑐2𝜔𝑗,2 + 𝑑2)
(𝑐2𝜔𝑦 + 𝑑2)

𝑓2(𝛾2(𝜔″
𝑥))

(𝜔𝑗,2 − 𝜔𝑦)
(𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾2(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2
] .

(3.163)

which after undoing the corresponding Möbius transformations the result is

𝑆𝐵[{𝑧𝑖,1, 𝑠𝑖,1, 𝑧𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 , 𝑓1, 𝑓2] =

− 1
16𝜋3 ∑

𝑖
𝑠𝑖,1 ∫

𝐷1

𝑑𝑥″ ∫
𝐷1

𝑑𝑦″ ∫
𝐷1

𝑑𝑦
𝑓1(𝑥″)
𝑧𝑖,1 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2

− 1
16𝜋3 ∑

𝑖
𝑠𝑖,1 ∫

𝐷2

𝑑𝑥″ ∫
𝐷2

𝑑𝑦″ ∫
𝐷1

𝑑𝑦
𝑓2(𝑥″)
𝑧𝑖,1 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2

− 1
16𝜋3 ∑

𝑗
𝑠𝑗,2 ∫

𝐷1

𝑑𝑥″ ∫
𝐷1

𝑑𝑦″ ∫
𝐷2

𝑑𝑦
𝑓1(𝑥″)
𝑧𝑗,2 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2

− 1
16𝜋3 ∑

𝑗
𝑠𝑗,2 ∫

𝐷2

𝑑𝑥″ ∫
𝐷2

𝑑𝑦″ ∫
𝐷2

𝑑𝑦
𝑓2(𝑥″)
𝑧𝑗,2 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2

(3.164)

As before, we can interpret both first(last) lines as the interactions between the spins

in ℳ1(2) with the final boundary function index 𝑓1(2) that originally came from the

same functional. Therefore, the second and third lines correspond to the interaction

between the spins onℳ1(2) with the leftover boundary function ofℳ2(1). Lastly, the
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boundary-boundary term becomes

1
2

∫
𝐶

𝑑𝜔′
𝑥𝑑𝜔′

𝑦𝑊 −1(𝜔′
𝑥, 𝜔′

𝑦, 𝛾1, 𝛾2)𝐵𝐵(𝜔′
𝑥, 𝜔′

𝑦) =

+ 1
32𝜋4 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦 ∫

𝐷
𝑑𝜔″

𝑥 ∫
𝐷

𝑑𝜔″
𝑦

1
(𝜔″

𝑥 − 𝜔″
𝑦)2

1
(𝜔𝑥 − 𝜔𝑦)2

(𝑓1(𝛾1(𝜔″
𝑥))𝑓1(𝛾1(𝜔𝑥))𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑓1(𝛾1(𝜔″
𝑥))𝑓2(𝛾2(𝜔𝑥))𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦))

𝑓2(𝛾2(𝜔″
𝑥))𝑓1(𝛾1(𝜔𝑥))𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑓2(𝛾2(𝜔″
𝑥))𝑓2(𝛾2(𝜔𝑥))𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾2(𝜔𝑦))) .
(3.165)

and as before, undoing the Möbius transformations yields

𝐵𝐵[𝑓1, 𝑓2] = + 1
32𝜋4 ∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑦 ∫
𝐷1

𝑑𝑥″ ∫
𝐷1

𝑑𝑦″ 𝑓1(𝑥″)𝑊̂ −1(𝑦″, 𝑦)𝑓1(𝑥)
(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2

+ 1
32𝜋4 ∫

𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑦 ∫
𝐷1

𝑑𝑥″ ∫
𝐷1

𝑑𝑦″ 𝑓1(𝑥″)𝑊̂ −1(𝑦″, 𝑦)𝑓2(𝑥)
(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2

+ 1
32𝜋4 ∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑦 ∫
𝐷2

𝑑𝑥″ ∫
𝐷2

𝑑𝑦″ 𝑓2(𝑥″)𝑊̂ −1(𝑦″, 𝑦)𝑓1(𝑥)
(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2

+ 1
32𝜋4 ∫

𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑦 ∫
𝐷2

𝑑𝑥″ ∫
𝐷2

𝑑𝑦″ 𝑓2(𝑥″)𝑊̂ −1(𝑦″, 𝑦)𝑓2(𝑥)
(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2

(3.166)

As in the previous terms, the first and last term corresponds to the self-interaction

of the leftover boundary functions 𝑓1(2) from ℳ1(2) through the one that was sowed

in 𝜕ℳ𝑆. The second and third correspond then to the new interaction between the

leftover indices of each of the original manifolds, such that the final manifold ℳ =
ℳ1 ∪ ℳ2 contains interactions between the functions on its entire boundary 𝜕ℳ.
We have finally collected and simplified all the terms that have arisen from the

sewing integral, and we can, therefore, bring back the non-sewing participating terms

that we grouped in the constants ℬ𝑐
ℍ,𝐷1

and ℬ𝑐
ℍ,𝐷2

at the very beginning of the com-

putation to obtain the final result of the chiral sown amplitude

𝒜𝑐
ℍsw

[𝑓1, 𝑓2, {𝑧𝑖,1, 𝑠𝑖,1, 𝑧𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 ] = exp(𝑆𝑆sw[{𝑧𝑖,1, 𝑠𝑖,1, 𝑧𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2

𝑖,𝑗=1 ]

+𝑆𝐵sw[{𝜔𝑖,1, 𝑠𝑖,1, 𝜔𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 , 𝑓1, 𝑓2]

+𝐵𝐵sw[𝑓1, 𝑓2])
(3.167)

where each of the terms is given by

𝑆𝑆sw[{𝑧𝑖,1, 𝑠𝑖,1, 𝑧𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 ] =

+ 1
2

∑
𝑖,𝑘

𝑠𝑖,1𝑠𝑘,1 (log [𝑧𝑖,1 − 𝑧𝑘,1] + 1
4𝜋2 ∫

𝐷1

𝑑𝑦 ∫
𝐷1

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑧𝑖,1 − 𝑦)(𝑧𝑘,1 − 𝑦″)

)

+ 1
2

∑
𝑖,𝑙

𝑠𝑖,1𝑠𝑙,2
1

4𝜋2 ∫
𝐷1

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ (𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑧𝑖,1 − 𝑦)(𝑧𝑙,2 − 𝑦″)

+ 1
2

∑
𝑗,2

𝑠𝑗,2𝑠𝑙,2 (log [𝑧𝑗,2 − 𝑧𝑙,2] + 1
4𝜋2 ∫

𝐷2

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑧𝑗,2 − 𝑦)(𝑧𝑙,2 − 𝑦″)

) ,

(3.168)
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𝑆𝐵sw[{𝑧𝑖,1, 𝑠𝑖,1, 𝑧𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 , 𝑓1, 𝑓2] =

− 1
2𝜋

∑
𝑖

𝑠𝑖,1 ∫
𝐷1

𝑑𝑥″𝑓1(𝑥″) [ 1
𝑧𝑖,1 − 𝑥″ + 1

8𝜋2 ∫
𝐷1

𝑑𝑦″ ∫
𝐷1

𝑑𝑦 1
𝑧𝑖,1 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2 ]

− 1
16𝜋3 ∑

𝑖
𝑠𝑖,1 ∫

𝐷2

𝑑𝑥″ ∫
𝐷2

𝑑𝑦″ ∫
𝐷1

𝑑𝑦
𝑓2(𝑥″)
𝑧𝑖,1 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2

− 1
16𝜋3 ∑

𝑗
𝑠𝑗,2 ∫

𝐷1

𝑑𝑥″ ∫
𝐷1

𝑑𝑦″ ∫
𝐷2

𝑑𝑦
𝑓1(𝑥″)
𝑧𝑗,2 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2

− 1
2𝜋

∑
𝑗

𝑠𝑗,2 ∫
𝐷2

𝑑𝑥″𝑓2(𝑥″) [ 1
𝑧𝑗,2 − 𝑥″ + 1

8𝜋2 ∫
𝐷2

𝑑𝑦″ ∫
𝐷2

𝑑𝑦 1
𝑧𝑗,2 − 𝑦

(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))
(𝑥″ − 𝑦″)2 ] ,

(3.169)

and

𝐵𝐵sw[𝑓1, 𝑓2] =

+ 1
8𝜋2 ∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑥″𝑓1(𝑥″)𝑓1(𝑥) [ 1
(𝑥″ − 𝑥)2 + 1

4𝜋2 ∫
𝐷1

𝑑𝑦″ ∫
𝐷1

𝑑𝑦
𝑊̂ −1(𝑦″, 𝑦)

(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2 ]

+ 1
32𝜋4 ∫

𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑦 ∫
𝐷1

𝑑𝑥″ ∫
𝐷1

𝑑𝑦″ 𝑓1(𝑥″)(𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″))𝑓2(𝑥)
(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2

+ 1
8𝜋2 ∫

𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑥″𝑓2(𝑥″)𝑓2(𝑥) [ 1
(𝑥″ − 𝑥)2 + 1

4𝜋2 ∫
𝐷2

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑥″ − 𝑦″)2(𝑥 − 𝑦)2 ] .

(3.170)

Equation (3.167) alongside Equations (3.168)-(3.170) is the resulting new tensor that

arises from an arbitrary exact contraction.

Comparison against an equivalent unsown functional

Within these expressions, we have assumed the existence of the kernel 𝑊̂ −1, which we

will now attempt to find. As we have mentioned before, we will do so by comparing

the result of the tensor arising from sewing against a tensor defined directly in the final

manifoldℳ = ℳ1 ∪ ℳ2 with spin density corresponding to 𝜌 = 𝜌1 + 𝜌2, which fixes

both their values 𝑠𝑖 and positions 𝑧𝑖 to be the ones of the original manifolds.

Because we choose the spin positions to be the same in the coordinate system of the

original manifolds, their image in the UHP under the respective conformal maps will

be different because 𝑔1(𝑧𝑖,1) ≠ 𝑔(𝑧𝑖,1). We will denote the spin positions in the UHP
obtained via the conformal map that defines the final tensor 𝑔(𝑧), by 𝑔(𝑧𝑖,𝑗) = 𝜇𝑖,𝑗, and

the ones obtained via the conformal maps of the pre-sewing manifolds by 𝑔𝑗(𝑧𝑖,𝑗) = 𝛽𝑖,𝑗.

A similar situation is found for the notation of the unsown boundary functions 𝑓1, 𝑓2 of

the original manifolds, where they will be compared against the functions of the final

tensor ℎ1, ℎ2 that are defined in the same parts of the boundary as the originals, but

whose image in the UHP will be different. Figure 3.8 showcases these identifications

and notations.
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3.4 The sewing condition for the free boson

Figure 3.8: Diagrammatic showcase of the notation used for the comparison between the result

of sewing two tensors and the final tensor.

We begin by first writing the UHP tensor of the final amplitude in this notation as

𝒜𝑐
ℍfinal

[ℎ1, ℎ2, {𝜇𝑖, 𝑠𝑖}𝑁
𝑖=1] = exp(+1

2
∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 (log [(𝜇𝑖 − 𝜇𝑗)])

− 1
2𝜋

∑
𝑖

𝑠𝑖 (∫
𝐷𝑓

𝑑𝑦ℎ1(𝑦) 1
𝜇𝑖 − 𝑦

+ ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑦) 1
𝜇𝑖 − 𝑦

)

+ 1
8𝜋2 ∫

𝐷𝑓

𝑑𝑥 ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑥)ℎ2(𝑦) 1
(𝑥 − 𝑦)2 + 1

4𝜋2 ∫
𝐷𝑓

𝑑𝑥 ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑥)ℎ1(𝑦) 1
(𝑥 − 𝑦)2

+ 1
8𝜋2 ∫

𝐷𝑓

𝑑𝑥 ∫
𝐷𝑓

𝑑𝑦ℎ1(𝑥)ℎ1(𝑦) 1
(𝑥 − 𝑦)2 ) ,

(3.171)

where 𝐷𝑓 = 𝑔(𝜕ℳ1) and 𝐷𝑓 = 𝑔(𝜕ℳ2). We can further split the sum over the spin
indices as∑𝑁

𝑖=1 𝑠𝑖 = ∑𝑁1
𝑖=1 𝑠𝑖,1 +∑𝑁2

𝑘=1 𝑠𝑘,2, such that each sum corresponds to the spins

originating fromℳ1 orℳ2. After this split, we demand that

𝒜𝑐
ℍsw

[𝑓1, 𝑓2, {𝛽𝑖,1, 𝑠𝑖,1, 𝛽𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 ] = 𝒜𝑐

ℍfinal
[ℎ1, ℎ2, {𝜇𝑖, 𝑠𝑖}𝑁

𝑖=1] , (3.172)

which will provide the necessary constraints to extract the unknown kernel 𝑊̂ −1. We

will begin identifying terms by first comparing the spin-spin terms of both sides.

The spin-spin term coming from the final amplitude is given by

+ 1
2

𝑁

∑
𝑖,𝑗=1

𝑠𝑖𝑠𝑗 log [(𝜇𝑖 − 𝜇𝑗)] = +1
2

𝑁1

∑
𝑖,𝑗=1

𝑠𝑖,1𝑠𝑗,1 log [(𝜇𝑖,1 − 𝜇𝑗,1)]

+ 1
2

𝑁2

∑
𝑖,𝑗=1

𝑠𝑖,2𝑠𝑗,2 log [(𝜇𝑖,2 − 𝜇𝑗,2)] +
𝑁1,𝑁2

∑
𝑖,𝑗=1

𝑠𝑖,1𝑠𝑗,2 log [(𝜇𝑖,1 − 𝜇𝑗,2)] + 1
2

𝑁1,𝑁2

∑
𝑖,𝑗=1

𝑠𝑖,1𝑠𝑗,2(𝑖𝜋)

(3.173)

where the last term is a spin-dependent phase factor that factorizes to the front of the

exponential. The spin-spin terms from the resulting sewing tensor are given in Equation

(3.168). We then start by equating the terms that multiply the sum that includes the

spins fromℳ1, which yields

log[
𝜇𝑖,1 − 𝜇𝑗,1

𝛽𝑖,1 − 𝛽𝑗,1
] = 1

4𝜋2 ∫
𝐷1

𝑑𝑦 ∫
𝐷1

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝛽𝑖,1 − 𝑦)(𝛽𝑗,1 − 𝑦″)

, (3.174)
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where if we restore the dependence on the original spin coordinates via the conformal

transformations 𝑔1 and 𝑔, we obtain

log[
𝑔(𝑧𝑖,1) − 𝑔(𝑧𝑗,1)

𝑔1(𝑧𝑖,1) − 𝑔1(𝑧𝑗,1)
] = 1

4𝜋2 ∫
𝐷1

𝑑𝑦 ∫
𝐷1

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑔1(𝑧𝑖,1) − 𝑦)(𝑔1(𝑧𝑗,1) − 𝑦″)

. (3.175)

This is the first equation that provides us with information for obtaining 𝑊̂ −1, and

by equating the terms that arise from the products of spins fromℳ2 on both sides of

Equation (3.172) we obtain a similar condition

log[
𝑔(𝑧𝑖,2) − 𝑔(𝑧𝑗,2)

𝑔2(𝑧𝑖,2) − 𝑔2(𝑧𝑗,2)
] = 1

4𝜋2 ∫
𝐷2

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦)
(𝑔2(𝑧𝑖,2) − 𝑦)(𝑔2(𝑧𝑗,2) − 𝑦″)

. (3.176)

When comparing the terms that correspond to the spin-spin interaction between ℳ1
andℳ2, we obtain the condition

log [𝑔(𝑧𝑖,1) − 𝑔(𝑧𝑗,2)] = 1
8𝜋2 ∫

𝐷1

𝑑𝑦 ∫
𝐷2

𝑑𝑦″ 𝑊̂ −1(𝑦″, 𝑦) + 𝑊̂ −1(𝑦, 𝑦″)
(𝑔1(𝑧𝑖,1) − 𝑦)(𝑔2(𝑧𝑗,2) − 𝑦″)

. (3.177)

These three equations already provide us with means for obtaining 𝑊̂ −1, but let us first

find the rest of the equalities by exploring the spin-boundary and boundary-boundary

terms.

Let us begin with the boundary-boundary terms, where the terms coming from the

final tensor on the r.h.s of Equation (3.172) are given in the UHP by

+ 1
8𝜋2 ∫

𝐷𝑓

𝑑𝑥 ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑥)ℎ2(𝑦) 1
(𝑥 − 𝑦)2 + 1

4𝜋2 ∫
𝐷𝑓

𝑑𝑥 ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑥)ℎ1(𝑦) 1
(𝑥 − 𝑦)2

+ 1
8𝜋2 ∫

𝐷𝑓

𝑑𝑥 ∫
𝐷𝑓

𝑑𝑦ℎ1(𝑥)ℎ1(𝑦) 1
(𝑥 − 𝑦)2 ,

(3.178)

and this expression should be equated term-by-term against Equation (3.170). How-

ever, the integrals on both sides pertain to different subdomains of ℝ, and therefore,
these expressions need to be sent to the same ”gauge” through more Möbius transfor-

mations. If we denote by 𝛾1(𝐷𝑓) = 𝐷1, 𝛾1(𝐷𝑓) = 𝐷1 and 𝛾2(𝐷𝑓) = 𝐷2, 𝛾2(𝐷𝑓) = 𝐷2
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such that 𝑥(𝑦) = 𝛾𝑖(𝜔𝑥(𝑦)), then Equation (3.170) becomes

𝐵𝐵sw[𝑓1, 𝑓2] =

+ 1
8𝜋2 ∫

𝐷𝑓

𝑑𝜔𝑥 ∫
𝐷𝑓

𝑑𝜔″
𝑥𝑓1(𝛾1(𝜔″

𝑥))𝑓1(𝛾1(𝜔𝑥)) [ 1
(𝜔″

𝑥 − 𝜔𝑥)2

+ 1
4𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾1(𝜔𝑦))
(𝜔″

𝑥 − 𝜔″
𝑦)2(𝜔𝑥 − 𝜔𝑦)2

]

+ 1
32𝜋4 ∫

𝐷𝑓

𝑑𝜔𝑥 ∫
𝐷𝑓

𝑑𝜔″
𝑥𝑓1(𝛾1(𝜔″

𝑥))𝑓2(𝛾2(𝜔𝑥))

∫
𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝜔″
𝑥 − 𝜔″

𝑦)2(𝜔𝑥 − 𝜔𝑦)2

+ 1
8𝜋2 ∫

𝐷𝑓

𝑑𝜔𝑥 ∫
𝐷𝑓

𝑑𝜔″
𝑥𝑓2(𝛾2(𝜔″

𝑥))𝑓2(𝛾2(𝜔𝑥)) [ 1
(𝜔″

𝑥 − 𝜔𝑥)2

+ 1
4𝜋2 ∫

𝐷𝑓

𝑑𝜔𝑦 ∫
𝐷𝑓

𝑑𝜔″
𝑦

𝑊̂ −1(𝛾2(𝜔″
𝑦), 𝛾2(𝜔𝑦))

(𝜔″
𝑥 − 𝜔″

𝑦)2(𝜔𝑥 − 𝜔𝑦)2
] .

(3.179)

Now, we can start comparing the terms within the integrals individually. Comparing

first the terms with integrals over 𝐷𝑓, we obtain

ℎ1(𝑥)ℎ1(𝑦) = 𝑓1(𝛾1(𝑥))𝑓1(𝛾1(𝑦)) [1 + 1
4𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑥 − 𝑦)2𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾1(𝜔𝑦))
(𝑥 − 𝜔″

𝑦)2(𝑦 − 𝜔𝑦)2
]

(3.180)

which allows us to infer the behavior of the integral found within the brackets in

Equation (3.180). Because the product of Schwarz functions is again Schwarz and the

l.h.s is one such product, the r.h.s must be Schwarz again. Therefore, whatever function

arises from the integral in the bracket must result in a function that does not spoil the

product 𝑓1𝑓1 from being Schwarz. Thus, it must be a bounded smooth function with

bounded derivatives.

Analyzing the terms that go with the integrals over𝐷𝑓, we obtain a similar expression

ℎ2(𝑥)ℎ2(𝑦) = 𝑓2(𝛾2(𝑥))𝑓1(𝛾2(𝑦)) [1 + 1
4𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑥 − 𝑦)2𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾2(𝜔𝑦))
(𝑥 − 𝜔″

𝑦)2(𝑦 − 𝜔𝑦)2
]

(3.181)

and comparing the crossed-terms we obtain

ℎ1(𝑥)ℎ2(𝑦) =
𝑓1(𝛾1(𝑥))𝑓2(𝛾2(𝑦))

8𝜋2

∫
𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑥 − 𝑦)2(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝑥 − 𝜔″
𝑦)2(𝑦 − 𝜔𝑦)2

,

(3.182)

which concludes the comparisons on the boundary-boundary terms.

All that is left are the spin-boundary terms, which are the most complicated as they

are not gauge-invariant due to the chiral truncation. The terms arising from the r.h.s
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of Equation (3.172) are given by

− 1
2𝜋

𝑁1

∑
𝑖=1

𝑠𝑖,1 (∫
𝐷𝑓

𝑑𝑦ℎ1(𝑦) 1
𝜇𝑖,1 − 𝑦

+ ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑦) 1
𝜇𝑖,1 − 𝑦

)

− 1
2𝜋

𝑁2

∑
𝑖=1

𝑠𝑖,2 (∫
𝐷𝑓

𝑑𝑦ℎ1(𝑦) 1
𝜇𝑖,2 − 𝑦

+ ∫
𝐷𝑓

𝑑𝑦ℎ2(𝑦) 1
𝜇𝑖,2 − 𝑦

) ,
(3.183)

and the corresponding terms from the l.h.s of Equation (3.172) are the ones found in

Equation (3.169). As with the boundary-boundary terms, we can not start equating

terms because all the integrals are defined over different subdomains of ℝ due to the
different conformal maps. Using the same conformal maps as before, we can rewrite

Equation (3.169) in the gauge of Equation (3.183) as

𝑆𝐵sw[{𝜔𝑖,1, 𝑠𝑖,1, 𝜔𝑗,2, 𝑠𝑗,2}𝑁1,𝑁2
𝑖,𝑗=1 , 𝑓1, 𝑓2] =

− 1
2𝜋

∑
𝑖

𝑠𝑖,1 ∫
𝐷𝑓

𝑑𝜔″
𝑥𝑓1(𝛾1(𝜔″

𝑥)) [
(𝑐1𝜔𝑖,1 + 𝑑1)

(𝜔𝑖,1 − 𝜔″
𝑥)(𝑐1𝜔″

𝑥 + 𝑑1)
+

1
8𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑐1𝜔𝑖,1 + 𝑑1)(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑊̂ −1(𝛾1(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝜔𝑖,1 − 𝜔𝑦)(𝑐1𝜔𝑦 + 𝑑1)(𝜔″
𝑥 − 𝜔″

𝑦)2
]

− 1
16𝜋3 ∑

𝑖
𝑠𝑖,1 ∫

𝐷𝑓

𝑑𝜔″
𝑥𝑓2(𝛾2(𝜔″

𝑥))

∫
𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑐1𝜔𝑖,1 + 𝑑1)(𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑊̂ −1(𝛾1(𝜔𝑦), 𝛾2(𝜔″
𝑦)))

(𝜔𝑖,1 − 𝜔𝑦)(𝑐1𝜔𝑦 + 𝑑1)(𝜔″
𝑥 − 𝜔″

𝑦)2

− 1
16𝜋3 ∑

𝑗
𝑠𝑗,2 ∫

𝐷𝑓

𝑑𝜔″
𝑥𝑓1(𝛾1(𝜔″

𝑥))

∫
𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑐2𝜔𝑗,2 + 𝑑2)(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝜔𝑗,2 − 𝜔𝑦)(𝑐2𝜔𝑦 + 𝑑2)(𝜔″
𝑥 − 𝜔″

𝑦)2

− 1
2𝜋

∑
𝑗

𝑠𝑗,2 ∫
𝐷𝑓

𝑑𝜔″
𝑥𝑓2(𝛾2(𝜔″

𝑥)) [
(𝑐2𝜔𝑗,2 + 𝑑2)

(𝜔𝑗,2 − 𝜔″
𝑥)(𝑐2𝜔″

𝑥 + 𝑑2)
+

1
8𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑐2𝜔𝑗,2 + 𝑑2)(𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾2(𝜔″
𝑦)))

(𝑧𝜔𝑗,2 − 𝜔𝑦)(𝑐2𝜔𝑦 + 𝑑2)(𝜔″
𝑥 − 𝜔″

𝑦)2
] ,

(3.184)

which is an expression ready for comparison. Comparing first the terms multiplying

the 𝑠𝑖,1 and running along 𝐷𝑓 one obtains

ℎ1(𝑦) = 𝑓1(𝛾1(𝑦)) [
(𝜇𝑖,1 − 𝑦)(𝑐1𝜔𝑖,1 + 𝑑1)
(𝜔𝑖,1 − 𝑦)(𝑐1𝑦 + 𝑑1)

+

1
8𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑐1𝜔𝑖,1 + 𝑑1)(𝜇𝑖,1 − 𝑦)
(𝜔𝑖,1 − 𝜔𝑦)(𝑐1𝜔𝑦 + 𝑑1)

(𝑊̂ −1(𝛾1(𝜔″
𝑦), 𝛾1(𝜔𝑦)) + 𝑊̂ −1(𝛾1(𝜔𝑦), 𝛾1(𝜔″

𝑦)))
(𝑦 − 𝜔″

𝑦)2
]

(3.185)

which is a priori a surprising expression. The surprise stems from the fact that the

resulting boundary function seems to depend on the spin positions through the gauge

82



3.4 The sewing condition for the free boson

transformations. This is, however, a consequence of the chiral truncation, as this phe-

nomenon can already be seen in the gauge transformations shown in Equation (3.54).

Equating now the terms that go with 𝑠𝑖,1 and 𝐷𝑓 one gets

ℎ2(𝑦) = 1
8𝜋2 𝑓2(𝛾2(𝑦))

∫
𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝜇𝑖,1 − 𝑦)(𝑐1𝜔𝑖,1 + 𝑑1)(𝑊̂ −1(𝛾2(𝜔″

𝑦), 𝛾1(𝜔𝑦)) + 𝑊̂ −1(𝛾1(𝜔𝑦), 𝛾2(𝜔″
𝑦)))

(𝜔𝑖,1 − 𝜔𝑦)(𝑐1𝜔𝑦 + 𝑑1)(𝑦 − 𝜔″
𝑦)2

,

(3.186)

which again has a phenomenology similar to the last term. The final two comparisons

yield

ℎ1(𝑦) = 1
8𝜋2 𝑓1(𝛾1(𝑦))

∫
𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝜇𝑖,2 − 𝑦)(𝑐2𝜔𝑗,2 + 𝑑2)(𝑊̂ −1(𝛾1(𝜔″

𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾1(𝜔″
𝑦)))

(𝜔𝑗,2 − 𝜔𝑦)(𝑐2𝜔𝑦 + 𝑑2)(𝑦 − 𝜔″
𝑦)2

,

(3.187)

and

ℎ2(𝑦) = 𝑓2(𝛾2(𝑦)) [
(𝜇𝑗,2 − 𝑦)(𝑐2𝜔𝑗,2 + 𝑑2)
(𝜔𝑗,2 − 𝑦)(𝑐2𝑦 + 𝑑2)

+

1
8𝜋2 ∫

𝐷𝑓

𝑑𝜔″
𝑦 ∫

𝐷𝑓

𝑑𝜔𝑦
(𝑐2𝜔𝑗,2 + 𝑑2)(𝜇𝑗,2 − 𝑦)
(𝜔𝑗,2 − 𝜔𝑦)(𝑐2𝜔𝑦 + 𝑑2)

(𝑊̂ −1(𝛾2(𝜔″
𝑦), 𝛾2(𝜔𝑦)) + 𝑊̂ −1(𝛾2(𝜔𝑦), 𝛾2(𝜔″

𝑦)))
(𝑦 − 𝜔″

𝑦)2
] .

(3.188)

Because all of these equations must be valid simultaneously we can equate either Equa-

tions (3.185) and (3.187) or (3.186) and (3.188) to extract more constraints on 𝑊̂ −1.

These constraints can then be supplemented with even more constraints arising from

the comparisons from the boundary-boundary terms from Equations (3.180),(3.181)

and (3.182). This is the final step missing for the completion of the proof of the arbi-

trary sewing condition, which will lead to the completion of the upcoming paper.

As a final note, it is possible to isolate 𝑊̂ −1 from the spin-spin comparisons, albeit

with some assumptions on its behavior. Assuming that 𝑊̂ −1 contains no branch cuts

that can spoil the forthcoming contour integrals, then from Equation (3.175), one can

invert the equation by

∮
𝐷1

𝑑𝑔1(𝑧𝑖,1) ∮
𝐷2

𝑑𝑔1(𝑧𝑗,1) log[
𝑔(𝑧𝑖,1) − 𝑔(𝑧𝑗,1)

𝑔1(𝑧𝑖,1) − 𝑔1(𝑧𝑗,1)
] =

1
4𝜋2 ∫

𝐷1

𝑑𝑦 ∫
𝐷1

𝑑𝑦″𝑊̂ −1(𝑦″, 𝑦) ∮
𝐷1

𝑑𝑔1(𝑧𝑖,1) ∮
𝐷1

𝑑𝑔1(𝑧𝑗,1) 1
(𝑔1(𝑧𝑖,1) − 𝑦)(𝑔1(𝑧𝑗,1) − 𝑦″)

= −|𝐷1|2𝑊̂ −1(𝑔1(𝑧𝑗,1), 𝑔1(𝑧𝑖,1)),
(3.189)

where |𝐷1| stands for the length of the real interval 𝐷1, and ∮𝐷1
means a counterclock-

wise contour integral that encircles the interval 𝐷1 entirely. Similar equations can be

obtained from Equations (3.177) and (3.176) following the same logic, but it remains

to be checked whether this solution complies with all the constraints derived from the

sewing condition.
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3.5 The closing condition for the free boson

In the previous section, we presented the most advanced proof of the arbitrary sewing

condition. Although not fully complete yet, its current form already provides enough

information to start tackling the computation of the full contraction of the fTNs, which

is the closing condition. The closing condition is nothing but the sewing condition

in the scenario in which no functions are left un-integrated according to some chosen

pattern that defines the underlying topology of the state. In the simplest case, we sew

two open boundaries together to reach the topology of a sphere, which is also a plane or

an infinite cylinder due to conformal invariance, which corresponds to the translational

invariant scenarios. One can think of these closing conditions as equivalent to the

Figure 3.9: Diagrammatic representation of the closing condition leading to a wavefunction

with the underlying topology of a sphere.

contraction of a TN with periodic boundary conditions. Alternatively, one can also

choose to integrate these open functional indices against another functional to simulate

the open boundary condition scenario, whose simplest form is to fix the functions such

that a number is obtained. We can diagrammatically represent the periodic boundary

condition scenarios as shown in Figures 3.9 and 3.10.

Figure 3.10: Diagrammatic representation of the closing condition leading to a wavefunction

with the underlying topology of a torus.

In the section in which we presented the Möbius transformations of fTNS, we also

stated that for these transformations to be ”gauge” transformations of the chiral tensor,
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it was important that the resulting wavefunction remained invariant. We will now

prove the closing condition to the topology of a ball, which was already proven for the

fMPS case in [186]. However, we will perform this computation with the machinery

developed in the UHP and in an arbitrary gauge, such that we can show that Möbius

transformations are indeed a gauge transformation of the tensor.

Closing condition for a sphere topology

Our starting point is then a chiral tensor in an arbitrary gauge in the UHP given by

𝒜𝑐
ℍ [ ̃𝑓, {𝛾(𝜔𝑖), 𝑠𝑖}𝑁

𝑖=1] = exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 (log [(𝜔𝑖 − 𝜔𝑗)] + log[
(𝑎2𝑎4 − 𝑎1𝑎3)

(𝑎4 + 𝑎3𝜔𝑖)(𝑎4 + 𝑎3𝜔𝑗)
])

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝜔𝑦
̃𝑓(𝛾(𝜔𝑦)) [ 1

𝜔𝑖 − 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

]

+ 1
8𝜋2 ∫

ℝ
𝑑𝜔𝑥 ∫

ℝ
𝑑𝜔𝑦

̃𝑓(𝛾(𝜔𝑥)) ̃𝑓(𝛾(𝜔𝑦)) 1
(𝜔𝑥 − 𝜔𝑦)2 ) .

(3.190)

The first thing one notices is that the second term of the first line can go out of the

exponential to become

(𝑎2𝑎4 − 𝑎1𝑎3)∑𝑖,𝑗
𝑠𝑖𝑠𝑗

2 exp(−1
2

∑
𝑗

𝑠𝑗 ∑
𝑖

𝑠𝑖 log [(𝑎4 + 𝑎3𝜔𝑖)]

−1
2

∑
𝑖

𝑠𝑖 ∑
𝑗

𝑠𝑗 log [(𝑎4 + 𝑎3𝜔𝑗)]) = 1
(3.191)

due to the charge neutrality condition∑𝑖 𝑠𝑖 = 0. With this simplification, we can now
proceed to execute the closing condition by splitting the function as

̃𝑓(𝛾(𝜔)) = ℎ(𝛾(𝜔))Θ(𝜔 ∈ 𝐷) + ℎ(𝛾(𝜔))Θ(𝜔 ∈ 𝐷) (3.192)

where the manifold 𝐷 is fixed because of the conformal map 𝑔 by whatever split of
the original boundary 𝜕ℳ was chosen, as depicted in Figure (3.9). However since we

added the arbitrary gauge, we can choose without loss of generality that 𝐷 = (0, ∞].
As part of the sewing condition, we identify the points ℎ(𝛾(𝜔)) = ℎ(−𝛾(𝜔)). With this
split, one then performs the closing condition

∫ 𝒟ℎ𝒜𝑐
ℍ [𝛾 ∘ ℎ, 𝛾 ∘ ℎ, {𝛾(𝜔𝑖), 𝑠𝑖}𝑁

𝑖=1] = ∫ 𝒟ℎ𝒜𝑐
ℍ [ℎ, ℎ, {𝛾(𝜔𝑖), 𝑠𝑖}𝑁

𝑖=1] (3.193)

as we assume that the measure of the path integral is invariant under such Möbius

transformations, and therefore it does not matter whether we integrate over all ℎ or
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𝛾 ∘ ℎ. Inserting Equation (3.190) into Equation (3.193) we obtain

∏
𝑖,𝑗

(𝜔𝑖 − 𝜔𝑗)
𝑠𝑖𝑠𝑗

2 ∫ 𝒟ℎ exp(− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
𝐷

𝑑𝜔𝑦ℎ(𝜔𝑦) [ 1
𝜔𝑖 − 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

]

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
𝐷

𝑑𝜔𝑦ℎ(𝜔𝑦) [ 1
𝜔𝑖 − 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

]

+ 1
8𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦ℎ(𝜔𝑥)ℎ(𝜔𝑦) 1

(𝜔𝑥 − 𝜔𝑦)2

+ 1
4𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦ℎ(𝜔𝑥)ℎ(𝜔𝑦) 1

(𝜔𝑥 − 𝜔𝑦)2

+ 1
8𝜋2 ∫

𝐷
𝑑𝜔𝑥 ∫

𝐷
𝑑𝜔𝑦ℎ(𝜔𝑥)ℎ(𝜔𝑦) 1

(𝜔𝑥 − 𝜔𝑦)2 )

(3.194)

which can be readily simplified by performing changes of variables on the different

integrals and the sewing identification ℎ(𝜔𝑥) = ℎ(−𝜔𝑥) to

∏
𝑖,𝑗

(𝜔𝑖 − 𝜔𝑗)
𝑠𝑖𝑠𝑗

2 ∫ 𝒟ℎ exp(− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
∞

0
𝑑𝜔𝑦ℎ(𝜔𝑦) [ 1

𝜔𝑖 − 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

+ 1
𝜔𝑖 + 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎4 − 𝑎3𝜔𝑦

]

+ 1
4𝜋2 ∫

∞

0
𝑑𝜔𝑥 ∫

∞

0
𝑑𝜔𝑦ℎ(𝜔𝑥)ℎ(𝜔𝑦) [ 1

(𝜔𝑥 − 𝜔𝑦)2 + 1
(𝜔𝑥 + 𝜔𝑦)2 ]) ,

(3.195)

which is not very surprising given Equation (3.192). This equation is already in the

form of a Gaussian integral, with the current given by

𝐽(𝜔𝑖, 𝑠𝑖, 𝜔𝑦) = − 1
2𝜋

∑
𝑖

𝑠𝑖 [ 1
𝜔𝑖 − 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑦 + 𝑎4

+ 1
𝜔𝑖 + 𝜔𝑦

𝑎3𝜔𝑖 + 𝑎4
𝑎4 − 𝑎3𝜔𝑦

] , (3.196)

and the kernel is given by

𝑊(𝜔𝑥, 𝜔𝑦) = − 1
2𝜋2 [ 1

(𝜔𝑥 − 𝜔𝑦)2 + 1
(𝜔𝑥 + 𝜔𝑦)2 ] . (3.197)

because the domain of integration is the entire real line ℝ on all the terms. This is the
perfect setting to use the Fourier transform to find the inverse kernel, but in order to be

consistent with the sewing condition, we will finish this computation entirely in real

space. The inverse of this kernel on the positive real line is known from the theory of

Hilbert transforms [197], and it is given by

𝑊 −1(𝑥, 𝑦) = 1
2
log ((𝑥2 − 𝑦2)2) . (3.198)

After performing the gaussian integral in Equation (3.195) we obtain

∏
𝑖,𝑗

(𝜔𝑖 − 𝜔𝑗)
𝑠𝑖𝑠𝑗

2 exp(1
2

∫
∞

0
𝑑𝜔𝑥 ∫

∞

0
𝑑𝜔𝑦𝐽(𝜔𝑖, 𝑠𝑖, 𝜔𝑥)𝑊 −1(𝜔𝑥, 𝜔𝑦)𝐽(𝜔𝑗, 𝑠𝑗, 𝜔𝑦)) .

(3.199)
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Figure 3.11: Schematic representation of the pole and branch cut structure of Equation (??)

After inserting the expressions for the currents, one obtains

∏
𝑖,𝑗

(𝜔𝑖 − 𝜔𝑗)
𝑠𝑖𝑠𝑗

2 exp( 1
8𝜋2 ∑

𝑖,𝑗
𝑠𝑖𝑠𝑗 ∫

∞

0
𝑑𝜔𝑥 ∫

∞

0
𝑑𝜔𝑦 [ 1

𝜔𝑖 − 𝜔𝑥

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑥 + 𝑎4

+ 1
𝜔𝑖 + 𝜔𝑥

𝑎3𝜔𝑖 + 𝑎4
𝑎4 − 𝑎3𝜔𝑥

]

𝑊 −1(𝜔𝑥, 𝜔𝑦) [ 1
𝜔𝑗 − 𝜔𝑦

𝑎3𝜔𝑗 + 𝑎4

𝑎3𝜔𝑦 + 𝑎4
+ 1

𝜔𝑗 + 𝜔𝑦

𝑎3𝜔𝑗 + 𝑎4

𝑎4 − 𝑎3𝜔𝑦
]) .

(3.200)

To perform these integrals, we need to provide more details on the branch cuts of

𝑊 −1(𝜔𝑥, 𝜔𝑦) to extend these integrals to complex contour integrals safely. Given that
the integrals are over ℝ+, the most natural contours would be semicircle contours that

either close through the UHP or the LHP, given that the integrand is invariant under

𝜔𝑥 → −𝜔𝑥.

Let us focus now on the first integral over 𝜔𝑥

∫
∞

0
𝑑𝜔𝑥𝑊 −1(𝜔𝑥, 𝜔𝑦) [ 1

𝜔𝑖 − 𝜔𝑥

𝑎3𝜔𝑖 + 𝑎4
𝑎3𝜔𝑥 + 𝑎4

+ 1
𝜔𝑖 + 𝜔𝑥

𝑎3𝜔𝑖 + 𝑎4
𝑎4 − 𝑎3𝜔𝑥

] , (3.201)

where we will choose the branchcuts of 𝑊 −1(𝜔𝑥, 𝜔𝑦) to go to infinity along the real
axis and thus close the contour through the UHP to encircle the pole at 𝜔𝑖. As depicted

in Figure 3.11, there are another two poles located on top of the path of integration

at 𝜔𝑥 = ±𝑎4
𝑎3
. As is usual in these kind of calculations, the integral over the big semi-

circle of radius 𝑅 vanishes in the limit of 𝑅 → ∞, while the contribution from the
small semicircles of radius 𝜖𝑏1, 𝜖𝑏2 around the branch cut points vanishes in the limit

of 𝜖𝑏1, 𝜖𝑏2 → 0. By residue techniques, the contribution from the pole at 𝜔𝑗 as well as

from the semicircles that dodge the poles on the real axis yield

𝜋𝑖𝑊 −1(𝜔𝑖, 𝜔𝑦) + 𝑖𝜋𝑎3𝑊 −1(
𝑎4
𝑎3

, 𝜔𝑦), (3.202)

where we have used that 𝑊 −1(−𝜔𝑥, 𝜔𝑦) = 𝑊 −1(𝜔𝑥, 𝜔𝑦). The next integral to perform
is then given by

∫
ℝ

𝑑𝜔𝑦(𝜋𝑖𝑊 −1(𝜔𝑖, 𝜔𝑦)+𝑖𝜋𝑎3𝑊 −1(−
𝑎4
𝑎3

, 𝜔𝑦)) [ 1
𝜔𝑗 − 𝜔𝑦

𝑎3𝜔𝑗 + 𝑎4

𝑎3𝜔𝑦 + 𝑎4
+ 1

𝜔𝑗 + 𝜔𝑦

𝑎3𝜔𝑗 + 𝑎4

𝑎4 − 𝑎3𝜔𝑦
] .

(3.203)
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By using the exact same contour, this integral becomes

− 𝜋2𝑊 −1(𝜔𝑖, 𝜔𝑗) − 𝜋2𝑎3𝑊 −1(−
𝑎4
𝑎3

, 𝜔𝑗)

− 𝜋2𝑎3𝑊 −1(𝜔𝑖,
𝑎4
𝑎3

) − 𝜋2𝑎2
3𝑊 −1(

𝑎4
𝑎3

,
𝑎4
𝑎3

)
(3.204)

Because of the charge neutrality condition, only the term that involves both 𝜔𝑖 and

𝜔𝑗 will survive, which removes all the information about the gauge of the UHP as

promised in previous sections. This means that Möbius transformations are a genuine

gauge transformation of the tensor. Finally one inserts the form of 𝑊 −1 such that the

final result of the closing condition is given by

∏
𝑖,𝑗

(𝜔𝑖 − 𝜔𝑗)
𝑠𝑖𝑠𝑗

2 exp(− 1
16

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 log ((𝜔2
𝑖 − 𝜔2

𝑗 )2)) . (3.205)

After bringing the terms from the exponent down one obtains

𝜓𝑠1,...,𝑠𝑛
(𝜔1, ..., 𝜔𝑛) = ∏

𝑖,𝑗
(𝜔𝑖 − 𝜔𝑗)

𝑠𝑖𝑠𝑗
2 (𝜔2

𝑖 − 𝜔2
𝑗)−

𝑠𝑖𝑠𝑗
8 , (3.206)

which has to be the the wavefunction obtained from a CFT computation in which

there has been a conformal transformation from the UHP to another surface of genus

zero. At this point in time, this transformation is not quite fully understood yet, but

this computation serves both to illustrate how the gauge transformation of the tensor

does not affect the wavefunction as well as to provide an explicit example of a closing

condition. The final details of this conformal map will be finalized in the upcoming

work [1].

Closing condition for a torus topology

The closing condition to obtain the topology of a torus is the next more natural step,

yet it involves a significant step up in difficulty, as the inverse kernel of the Gaussian

is more challenging to find, and we will have to perform a transformation other than a

Möbius transformations to bring the tensors into a form in which the Gaussian integral

can be performed on a connected interval. Because this is an unfinished computation,

we cannot write down the final wave function entirely in this thesis. What follows is

merely a showcase of the main structure of the calculation so that the main roadblocks

can be readily identified.

As with any closing, we depart from a tensor in the UHP, this time without any gauge

transformation given by

𝒜𝑐
ℍ [ ̃𝑓, {𝑧𝑖, 𝑠𝑖}𝑁

𝑖=1] = exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 log [(𝑧𝑖 − 𝑧𝑗)]

− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
ℝ

𝑑𝑦 ̃𝑓(𝑦) [ 1
𝑧𝑖 − 𝑦

]

+ 1
8𝜋2 ∫

ℝ
𝑑𝑥 ∫

ℝ
𝑑𝑦 ̃𝑓(𝑥) ̃𝑓(𝑦) 1

(𝑥 − 𝑦)2 ) .

(3.207)
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3.5 The closing condition for the free boson

and because we wish to obtain the topology of a torus, we cut the boundary function

as

̃𝑓(𝑥) = ℎ1(𝑥)Θ(𝑥 ∈ 𝐷1)+ℎ2(𝑥)Θ(𝑥 ∈ 𝐷2)+ℎ1(𝑥)Θ(𝑥 ∈ 𝐷3)+ℎ2(𝑥)Θ(𝑥 ∈ 𝐷4) (3.208)

such that ∪4
𝑖=1𝐷𝑖 = ℝ and the specific split in the subsections 𝐷𝑖 corresponds to the

one determined by the conformal map 𝑔 from Figure 3.10. Inserting Equation (3.208)
into Equation (3.207) we obtain

𝒜𝑐
ℍ [ℎ1, ℎ2, ℎ1, ℎ2, {𝑧𝑖, 𝑠𝑖}𝑁

𝑖=1] = exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 log [(𝑧𝑖 − 𝑧𝑗)]

− 1
2𝜋

∑
𝑖

𝑠𝑖 (∫
𝐷1

𝑑𝑦 + ∫
𝐷3

𝑑𝑦) ℎ1(𝑦) [ 1
𝑧𝑖 − 𝑦

] − 1
2𝜋

∑
𝑖

𝑠𝑖 (∫
𝐷2

𝑑𝑦 + ∫
𝐷4

𝑑𝑦) ℎ2(𝑦) [ 1
𝑧𝑖 − 𝑦

]

+ 1
8𝜋2 (∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑦 + 2 ∫
𝐷1

𝑑𝑥 ∫
𝐷3

𝑑𝑦 + ∫
𝐷3

𝑑𝑥 ∫
𝐷3

𝑑𝑦)
ℎ1(𝑥)ℎ1(𝑦)

(𝑥 − 𝑦)2

+ 1
8𝜋2 (∫

𝐷1

𝑑𝑥 + ∫
𝐷3

𝑑𝑥) ℎ1(𝑥) (2 ∫
𝐷2

ℎ2(𝑦)
(𝑥 − 𝑦2)

+ 2 ∫
𝐷4

𝑑𝑦
ℎ2(𝑦)

(𝑥 − 𝑦)2 )

+ 1
8𝜋2 (∫

𝐷2

𝑑𝑥 ∫
𝐷2

𝑑𝑦 + 2 ∫
𝐷2

𝑑𝑥 ∫
𝐷4

𝑑𝑦 + ∫
𝐷4

𝑑𝑥 ∫
𝐷4

𝑑𝑦)
ℎ2(𝑥)ℎ2(𝑦)

(𝑥 − 𝑦)2 ) .

(3.209)

In Equation (3.209), we see that we will have to perform a similar computation as

the one we did in the sewing condition, as all the integrals are over different intervals.

Following Figure 3.10, we will first integrate over ℎ1. By collecting all the participating

terms in this integral from Equation (3.209), one obtains

∫ 𝒟ℎ1 exp(− 1
2𝜋

∑
𝑖

𝑠𝑖 (∫
𝐷1

𝑑𝑦 + ∫
𝐷3

𝑑𝑦) ℎ1(𝑦) [ 1
𝑧𝑖 − 𝑦

]

+ 1
8𝜋2 (∫

𝐷1

𝑑𝑥 ∫
𝐷1

𝑑𝑦 + 2 ∫
𝐷1

𝑑𝑥 ∫
𝐷3

𝑑𝑦 + ∫
𝐷3

𝑑𝑥 ∫
𝐷3

𝑑𝑦)
ℎ1(𝑥)ℎ1(𝑦)

(𝑥 − 𝑦)2

+ 1
8𝜋2 (∫

𝐷1

𝑑𝑥 + ∫
𝐷3

𝑑𝑥) ℎ1(𝑥) (2 ∫
𝐷2

ℎ2(𝑦)
(𝑥 − 𝑦)2 + 2 ∫

𝐷4

𝑑𝑦
ℎ2(𝑦)

(𝑥 − 𝑦)2 )) .

(3.210)

If we denote by 𝐷̃ = 𝐷1 ∪𝐷3 a disjoint interval of ℝ, and its complement 𝐷̃ = 𝐷2 ∪𝐷4,

then we simplify Equation (3.210) down to

∫ 𝒟ℎ1 exp(− 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
𝐷̃

𝑑𝑦
ℎ1(𝑦)
𝑧𝑖 − 𝑦

+ 1
8𝜋2 ∫

𝐷̃
𝑑𝑥𝑑𝑦

ℎ1(𝑥)ℎ1(𝑦)
(𝑥 − 𝑦)2

+ 1
4𝜋2 ∫

𝐷̃
𝑑𝑥 (∫

𝐷̃

ℎ2(𝑦)ℎ1(𝑥)
(𝑥 − 𝑦2)

)) .
(3.211)
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3.5 The closing condition for the free boson

We can, therefore, write down a Gaussian integral as

∫ 𝒟ℎ1 exp(−1
2

∫
𝐷̃

𝑑𝑥 ∫
𝐷̃

𝑑𝑦ℎ1(𝑥)𝑊1(𝑥, 𝑦)ℎ1(𝑦) + ∫
𝐷̃

𝑑𝑦𝐽1(𝑠𝑖, 𝑧𝑖, 𝑦)ℎ1(𝑦))

𝑊1(𝑥, 𝑦) = − 1
2𝜋2

1
(𝑥 − 𝑦)2

𝐽1(𝑠𝑖, 𝑧𝑖, 𝑦) = − 1
2𝜋

∑
𝑖

𝑠𝑖
1

𝑧𝑖 − 𝑦
+ 1

4𝜋2 ∫
𝐷̃

𝑑𝑥
ℎ2(𝑥)

(𝑥 − 𝑦)2 .

(3.212)

Whilst we could again keep going by assuming the inverse of𝑊1 on the disjoint interval

𝐷̃, we can no longer use Möbius transformations to bring any interval to the half-line
ℝ+ where we have more knowledge about the inverse of 𝑊1. This is because there is

no way to bijectively map two intervals into a continuous one using PSL(2, ℝ) alone.
This is the missing piece of this computation needed to complete the closing condition

on a torus, and more work is needed to understand this problem.

To showcase the rest of the computation, we will assume that an inverse 𝑊 −1
1 can

be found on 𝐷̃, therefore obtaining as a result of the integral

exp(1
2

∫
𝐷̃

𝑑𝑥 ∫
𝐷̃

𝑑𝑦𝐽1(𝑠𝑖, 𝑧𝑖, 𝑥)𝑊 −1
1 (𝑥, 𝑦)𝐽1(𝑠𝑗, 𝑧𝑗, 𝑦)) =

exp( 1
8𝜋2 ∫

𝐷̃
𝑑𝑥 ∫

𝐷̃
𝑑𝑦𝑊 −1

1 (𝑥, 𝑦) [∑
𝑖,𝑗

𝑠𝑖𝑠𝑗

(𝑧𝑖 − 𝑥)(𝑧𝑗 − 𝑦)
− 1

2
∑

𝑖
𝑠𝑖 ∫

𝐷̃
𝑑𝑥′ ℎ2(𝑥′)

(𝑧𝑖 − 𝑥)(𝑥′ − 𝑦)2

−1
2

∑
𝑗

𝑠𝑗 ∫
𝐷̃

𝑑𝑥′ ℎ2(𝑥′)
(𝑥′ − 𝑥)2(𝑧𝑗 − 𝑦)

+ 1
4

∫
𝐷̃

𝑑𝑥′ ∫
𝐷̃

𝑑𝑦′ ℎ2(𝑥′)ℎ2(𝑦′)
(𝑥′ − 𝑦)2(𝑦′ − 𝑥)2 ]) .

(3.213)

Now we can bring back the rest of the terms from Equation (3.209) to obtain

exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 log [(𝑧𝑖 − 𝑧𝑗)] − 1
2𝜋

∑
𝑖

𝑠𝑖 ∫
𝐷̃

𝑑𝑦 [
ℎ2(𝑦)
𝑧𝑖 − 𝑦

] + 1
8𝜋2 ∫

𝐷̃
𝑑𝑥𝑑𝑦

ℎ2(𝑥)ℎ2(𝑦)
(𝑥 − 𝑦)2

1
8𝜋2 ∫

𝐷̃
𝑑𝑥 ∫

𝐷̃
𝑑𝑦𝑊 −1

1 (𝑥, 𝑦) [∑
𝑖,𝑗

𝑠𝑖𝑠𝑗

(𝑧𝑖 − 𝑥)(𝑧𝑗 − 𝑦)
− 1

2
∑

𝑖
𝑠𝑖 ∫

𝐷̃
𝑑𝑥′ ℎ2(𝑥′)

(𝑧𝑖 − 𝑥)(𝑥′ − 𝑦)2

−1
2

∑
𝑗

𝑠𝑗 ∫
𝐷̃

𝑑𝑥′ ℎ2(𝑥′)
(𝑥′ − 𝑥)2(𝑧𝑗 − 𝑦)

+ 1
4

∫
𝐷̃

𝑑𝑥′ ∫
𝐷̃

𝑑𝑦′ ℎ2(𝑥′)ℎ2(𝑦′)
(𝑥′ − 𝑦)2(𝑦′ − 𝑥)2 ]) ,

(3.214)

where we can again identify the terms that will become the currents and the kernel for

the integral over ℎ2. We can then write

exp(+1
2

∑
𝑖,𝑗

𝑠𝑖𝑠𝑗 log [(𝑧𝑖 − 𝑧𝑗)] + 1
8𝜋2 ∫

𝐷̃
𝑑𝑥 ∫

𝐷̃
𝑑𝑦𝑊 −1

1 (𝑥, 𝑦) ∑
𝑖,𝑗

𝑠𝑖𝑠𝑗

(𝑧𝑖 − 𝑥)(𝑧𝑗 − 𝑦)
)

∫ 𝒟ℎ2 exp(−1
2

∫
𝐷̃

𝑑𝑥 ∫
𝐷̃

𝑑𝑦ℎ2(𝑥)𝑊2(𝑥, 𝑦)ℎ2(𝑦) + ∫
𝐷̃

𝑑𝑦𝐽2(𝑠𝑖, 𝑧𝑖, 𝑦)ℎ2(𝑦)))

(3.215)
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where the kernel and current are given by

𝑊2(𝑥, 𝑦) = − 1
4𝜋2

1
(𝑥 − 𝑦)2 − 1

16𝜋2 ∫
𝐷̃

𝑑𝑥′ ∫
𝐷̃

𝑑𝑦′ 𝑊 −1
1 (𝑥′, 𝑦′)

(𝑥 − 𝑦′)2(𝑦 − 𝑥′)2 (3.216)

and

𝐽2(𝑠𝑖, 𝑧𝑖, 𝑦) = − 1
2𝜋

∑
𝑖

𝑠𝑖
𝑧𝑖 − 𝑦

− 1
16𝜋2 ∑

𝑖
𝑠𝑖 ∫

𝐷̃
𝑑𝑥′ ∫

𝐷̃
𝑑𝑦′ 𝑊 −1

1 (𝑥′, 𝑦′) + 𝑊 −1
1 (𝑦′, 𝑥′)

(𝑥 − 𝑦′)2(𝑧𝑖 − 𝑥′)
(3.217)

We would then assume again the existence of an inverse kernel 𝑊 −1
2 so that we can

obtain the result of this final Gaussian integral. This leads to a function that no longer

depends on any boundary function and, therefore, corresponds to the contraction of

the fTNS. As this is only a showcase of this computation, we will not proceed further

than this point, as there are too many assumptions on the inverse kernels to extract any

meaningful conclusion about the final resulting state. As a final note, it is possible to

significantly constrain these inverse kernels in the case of the torus because the order in

which the sewings were performed, either with ℎ1 first and ℎ2 or vice versa, should not

matter. Therefore, comparing the closing conditions following both routes should give

us meaningful constraints about the inverse kernels. As there are still many lessons to

be learned about the inverse kernels from the sewing and closing conditions, we will

leave the rest of this computation for the upcoming paper.

3.6 Outlook

In this chapter, we have presented a new ansatz for many-body states, which we name

fTNS. It is an ansatz that targets states whose wave function can be written as a corre-

lator of an a priori given QFT. Although it preserves the local structure of a TN in terms

of its theoretical construction, the virtual space must become infinite dimensional such

that correlations beyond area law can be obtained. We have focused uniquely on the

first known example of fTNS, the free boson fTNS.

We began by deriving the free boson fTNS from the first principles so that this pro-

cedure can be repeated for other free theories. We showcased how to understand and

remove all potential divergences within the tensor, most of them arising from the need

to normal order the underlying field theory correlator. As we always wish to target

chiral states, we showed how to perform a chiral truncation of the tensor and then

showed how Möbius transformations act as a notion of gauge freedom for the tensor.

We then briefly showcased the corresponding free boson fMPS as the tensor that

allows us to provide an exact MPS reproducing log-like area law correlations, a scenario

out of reach for MPS. We briefly showed its momentum space representation, a feature

of this tensor not commonly found in other fTNS, and generalized its sewing condition

to an arbitrary coordinate frame.

Our next step was to provide an extensive study of the free boson fPEPS, a candidate

for an exact description of gapped chiral topological order believed to be out of reach

for PEPS. We studied its regularization structure, as well as its connection to the fMPS

tensor and its chiral truncation.

The most important part of this chapter was the proof of the arbitrary sewing condi-

tion, which deals with exact contraction between any two compatible free boson fTNS.
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3.6 Outlook

Although the proof is incomplete, we have readily identified and highly constrained

the remaining pieces such that they can be soon found. We hope to provide the fi-

nal solution in our upcoming work, showing that fTNS can be contracted exactly even

though they possess an infinite dimensional virtual space.

As an application of the sewing condition, one can fully contract an fTNS to obtain

back a wave function. The underlying topology of the field theory that defines this

wavefunction can be constructed from the sewing recipe of the closing condition. In

this thesis, we have wholly shown how to obtain the topology of a sphere and only

showcased the structure of the computation that would lead to the topology of the

torus, as the missing piece from the sewing condition is also needed to finish this

computation.

In summary, we have presented the first examples of fTNS and their use cases. From

this point onwards, several open directions would be fascinating to pursue. In no

particular order, we want to highlight:

1. Fermions and Ghosts: The Majorana fermion and the ghost system [37] are the
subsequent simplest free CFT actions whose fTNS could be explored. Obtaining

fTNS arising for different systems is an exciting avenue as then the relationship

between different symmetry groups can be explored as in Chapter 4, or new states

can be found by examining the closing conditions with different topologies.

2. Non-orientable topologies: We have explored the closing condition so that ori-
entable manifolds with either no holes or one hole are recovered. Already, in the

simplest case of fMPS, one could wonder how to recover a non-orientable surface

such as a Möbius strip by performing a modification of the sewing condition in

which the different boundaries get identified with a twist. This would allow us

to obtain more families of states out of known ansatz without deriving any new

sewing or tensor.

3. Numerical breakdown: A very appealing direction would be to consider a trun-
cation of the infinite-dimensional virtual space such that the tensor can be ex-

plored via numerics. Of particular interest would be understanding how the prop-

erties believed to be unique to the infinite-dimensional virtual space break down

once this is truncated. For fMPS, this would entail computing the entanglement

entropy and finding that it no longer behaves with a logarithm. In contrast, for

fPEPS, this would entail that the corresponding chiral correlations should break

and reproduce results closer to [138].

4. 𝐺-WZW theory: The ultimate goal for constructing a model in the functional
space representation of fTNS would be to provide a tensor whose symmetry struc-

ture can be given by an arbitrary group 𝐺. This is possible because this theory
remains Gaussian thanks to the Wakimoto free field representation, which pro-

vides us with the hope that such a tensor can be understood and dealt with in

this language.

5. Topological order in fPEPS: As we will see in Chapter (4), we can understand
the SPT classification theorem of MPS in the context of fMPS. Therefore, the

most natural question, once we have obtained the fPEPS, is whether the classifi-

cation and signatures of topological order of standard PEPS theory still hold in

the context of fPEPS. This is a very natural next project after the results of this
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thesis, as it would hopefully cement our intuition that fTNS are a great natural

generalization of TNS.

6. Algebratization of fTNS:While the language in terms of functional spaces is the
most intuitive, we have seen already that it is very hard in general to perform any

computation, and the few we can do are highly constrained due to the Gaussian-

ity of the theory. The breakdown of the QFT correlator in smaller pieces can also

be done within the language of CFT, leading to a definition of the fTNS tensor

as a bracket between Cardy states [167]. This would correspond to a more al-

gebraic approach that would serve CFTs beyond Gaussian free field theories and

hopefully provide a cleaner description for the sewing description. Ideally, this

would also allow us to explore other symmetry structures, such as the categorical

descriptions of TQFTs. This direction is, without a doubt, the most exciting and

potentially powerful one.
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4 fMPS and symmetries

As we have seen in Chapter 3, we can define an∞-dimensional object that we call an
fMPS tensor, which can be contracted as if it were a finite MPS to provide the ground

state of critical or chiral models. Although MERA is already an ansatz that targets

the correlations of a 1-dimensional critical ground state, fMPS retains the same local

geometry of an MPS. It is then natural to ask, what are the properties and results from

standard TNs theory, specifically MPS, that carry over to fMPS? More specifically, as

seen in Chapter 2, MPSs fully classifies SPT order in 1D. Can we provide a similar result

for fMPS? We will explore this question for the case of the WZW SU(2)1 free boson CFT

presented in the previous chapter.

4.1 Symmetries as fTNS

In Chapter 2, we presented several important analytical properties of TNS states, amongst

which the theorem that they constitute the exact groundstates of gapped frustration-

free Hamiltonians [200]. As such, it is important to understand and find represen-

tatives of all possible phases of matter generated by such Hamiltonians. This is a

problem known as the phase classification problem, which in the context of TNSs has

been positively answered for a wide variety of phases, including both the ones with

non-topological order but degenerate groundstates as well as proper topological phases

as shown in [15]. We will particularly focus on the results in 1-dimensional systems,

where our TN ansatz of choice are MPSs.

Phase classification for MPSs was positively and completely solved in several works

such as [201],[202] and reviewed, for example, in [10]. We briefly showcase the main

result we wish to understand in the context of fMPS. When a state is symmetric under

a representation 𝑈𝑔 of a symmetry group 𝑔 ∈ 𝐺 and can be represented by an injective
MPS in its canonical form [10], then the following relation holds

, (4.1)

where the representation on the virtual space 𝑉𝑔 can in general be a projective repre-

sentation [203]. In equation form for an MPS tensor denoted 𝐴𝑠𝑖
𝑗,𝑘,

∑
𝑠𝑗

(𝑈𝑔)𝑠𝑖,𝑠𝑗
𝐴𝑠𝑗

𝑛,𝑚 = ∑
𝑘,𝑙

(𝑉𝑔)𝑛,𝑘𝐴𝑠𝑖
𝑘,𝑙(𝑉

†
𝑔 )𝑙,𝑚, (4.2)

which holds, for instance, when 𝐺 is a Lie group, and we can use the exponential map
to write 𝑈𝑔(𝜃) = 𝑒𝑖𝜃𝑎, where 𝑎 ∈ 𝔤 is an element of the corresponding Lie algebra.
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4.1 Symmetries as fTNS

Projective representations differ from linear ones in that they fulfill the more general

composition rule

𝑉𝑔𝑉ℎ = 𝑒𝑖𝜔(𝑔,ℎ)𝑉𝑔ℎ, (4.3)

where the extra phase factor is known as the cocycle 𝜔(𝑔, ℎ) ∈ ℋ2(𝐺,U(1)) which is
known to classify SPT order in 1-dimensional gapped systems fully [10, 201, 204].

The current known classifications are well established for gapped 1-dimensional sys-

tems, with classifications for gapless systems already studied, for instance, in [205–

207]. Most of these results rely upon the computation of topological obstructions

computed from the underlying CFT of the corresponding spin model. We wish to ask a

similar yet methodologically different question. Is it possible to translate in a one-to-

one fashion the phase classification result of standard MPS to fMPS? In other words,

Equation (4.3) is the main relation we wish to establish for fTNS. To answer this ques-

tion, we first need to identify the relevant symmetries for the free boson fMPS and

how they are represented on the discrete physical index and the continuous functional

space.

4.1.1 Symmetries of the free boson fMPS

First, let us understand the physical index of fMPS. As we have seen already, the family

of states defined by the correlator in Equation 3.16 are the groundstates of a family of

long-range Hamiltonians as shown in [208]. One of the most simple examples is the

critical point of the Haldane-Shastry chain, defined by the Hamiltonian

ℋ𝐻𝑆 = − ∑
𝑖≠𝑗

𝑧𝑖𝑧𝑗

(𝑧𝑖 − 𝑧𝑗)
2 (𝒫𝑖𝑗 − 1) , (4.4)

where 𝑧𝑖 are the positions of the spins in real space and 𝒫𝑖𝑗 is the spin permuta-

tion operator. This is a paradigmatic model of criticality, and its ground state can

be obtained from the state defined in equation (3.16) by choosing 𝑠𝑖 = ±1, 𝛼 = 1
2
,

𝜒𝑠𝑚
= 𝑒𝑖𝑚𝜋(𝑠𝑚−1)/2 and defining the CFT to be on a cylinder of circumference 𝜋𝑁 [37].
Since the spin-permutation operator for 1

2
-spins is given by

𝒫𝑖𝑗 = 1
2

(𝕀 + 2𝜎⃗𝑖 ⋅ 𝜎⃗𝑗), (4.5)

it is clear that [ℋ𝐻𝑆, 𝜎𝑖] = 0 𝑖 = 1, 2, 3. Therefore, since there is no spontaneous
symmetry breaking, the ground state of this Hamiltonian must be invariant under the

action of the symmetry group SU(2), whose action on the physical index is generated

by the usual Pauli matrices.

We use the Hilbert space of the free boson’s boundary functions on the virtual space,

which is also a symmetry-extended CFT, the WZW SU(2)1 theory. As we have seen in

Chapter 2, WZW theories have as a fundamental property that their conserved currents

𝐽𝑎(𝑧) form a current algebra, which is defined through the OPE

𝐽𝑎(𝑧)𝐽 𝑏(𝑤) ∼
𝑘𝛿𝑎𝑏

(𝑧 − 𝑤)2 + ∑
𝑐

𝑖𝑓𝑎𝑏𝑐
𝐽𝑐(𝑤)

(𝑧 − 𝑤)
, (4.6)

where 𝑘 is the level of the theory and 𝑓𝑎𝑏𝑐 the structure constants of the Lie algebra 𝔤
associated to the 𝐺-WZW. The conformal dimension of all the WZW currents is ℎ𝐽 = 1.
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4.1 Symmetries as fTNS

While these theories have two independent current algebras, one for the holomor-

phic sector and another for the anti-holomorphic one, we will focus exclusively on the

holomorphic one. The SU(2)1 WZW theory has 𝑘 = 1 and 𝐺 = SU(2), and therefore
𝑓𝑎𝑏𝑐 = 2𝑖𝜀𝑎𝑏𝑐. At the same time there are only two primary fields, denoted by 𝜙0, 𝜙1

2
,

to establish a connection with the more familiar spin representations. While the field

𝜙0 acts as the identity, the field 𝜙1
2
should be thought of as a spin-”1

2
-spin” field, and

therefore we can understand the field components 𝜙± 1
2
as the corresponding spin pro-

jections along a chosen direction. The Virasoro central charge and the fusion rules of

this theory are given by

𝑐 = 3𝑘
𝑘 + 2

= 1 , 𝜙1
2

× 𝜙1
2

= 𝜙0 , 𝜙0 × 𝜙1
2

= 𝜙1
2

, 𝜙0 × 𝜙0 = 𝜙0, (4.7)

and the conformal dimensions of these fields are ℎ0 = 0 and ℎ1
2

= 1
4
. For this specific

theory, we can represent all of these primary fields and their currents in terms of the

compactified free boson field with radius 𝑅 =
√

2. Firstly, in terms of the chiral field
𝜑(𝑧), the currents are given by

H(𝑧) =∶ 𝑖𝜕𝜑(𝑧) ∶,

E±(𝑧) =∶ 𝑒±𝑖
√

2𝜑(𝑧) ∶,
(4.8)

where :: denotes normal ordering, and we want to identify these operators with the

usual spin operators 𝐽0 ↔ H(𝑧), 𝐽± ↔ E±(𝑧). Then, the corresponding states that act
as the highest-weight states for the representations are generated by the primary fields

𝜙± 1
2
(𝑧) =∶ 𝑒

𝑖√
2

𝜑(𝑧) ∶, (4.9)

which have the correct conformal dimension. As we already know from Chapter 2,

performing OPEs amongst all these fields provides us with information about their

commutation relations. Among the currents, these are

𝐸+(𝑧)𝐸−(𝑤) ∼ 1
(𝑧 − 𝑤)2 +

√
2𝐻(𝑤)

(𝑧 − 𝑤)
,

𝐻(𝑧)𝐸±(𝑤) ∼
±

√
2𝐸±(𝑤)

(𝑧 − 𝑤)
,

𝐻(𝑧)𝐻(𝑤) ∼ 1
(𝑧 − 𝑤)2 ,

(4.10)

which is nothing but an explicit version of Equation (4.6) for the SU(2)1 WZW. The

OPEs between primary fields and the currents are given by

𝐸±(𝑧)𝜙± 1
2
(𝑤) ∼ 0,

𝐸±(𝑧)𝜙∓ 1
2
(𝑤) ∼

𝜙± 1
2
(𝑤)

(𝑧 − 𝑤)
,

(4.11)

which we can interpret as the effect of raising and lowering operators on spin eigen-

states. If one attempts to act with the raising (lowering) operator 𝐸+(−)(𝑧) on the
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4.1 Symmetries as fTNS

highest (lowest) state of the ladder 𝜙+(−) 1
2
then the resulting OPE provides no contri-

bution, and therefore destroys the state. Similarly, raising (lowering) with 𝐸+(−)(𝑧) the
lowest (highest) state 𝜙−(+) 1

2
provides us with the corresponding primary field 𝜙+(−) 1

2
.

Similarly, the remaining OPE is given by

𝐻(𝑧)𝜙± 1
2
(𝑤) ∼

±1
2
𝜙± 1

2

(𝑧 − 𝑤)
, (4.12)

akin to how 𝜎𝑧 would provide the value of the spin projection in standard spin theory.

We have identified the set of extended symmetries present in the free boson’s vir-

tual space beyond the conformal symmetries. We wish now to establish an analogous

relation to Equation (4.1) for the free boson fMPS. Immediately, we are faced with a

significant problem: the symmetry algebra of the physical index is given by the 𝔰𝔲(2)
algebra and, therefore, is finite; this object plays the role of defining 𝑈𝑔 in Equation

(4.1). However, the symmetry of the virtual space is a current algebra, a K ̂ac-Moody
algebra, and therefore infinite dimensional algebra since it is an affine extension of

𝔰𝔲(2), as shown for example in [37].
To understand which object plays the role of 𝑉𝑔 in a possible generalization of Equa-

tion (4.1), we begin by writing the Laurent expansion of the currents as

𝐽𝑎(𝑧) = ∑
𝑛∈ℤ

𝑧−𝑛−1𝐽𝑎
𝑛 , (4.13)

from which one can derive the equivalent expression to Equation (4.6) in terms of the

modes to be the K ̂ac-Moody algebra relation given by

[𝐽𝑎
𝑛 , 𝐽 𝑏

𝑚] = ∑
𝑐

𝑖𝑓𝑎𝑏𝑐𝐽𝑐
𝑛+𝑚 + 𝑘𝑛𝛿𝑎,𝑏𝛿𝑛+𝑚,0. (4.14)

From this equation, we immediately notice that one can recover the standard Lie alge-

bra relations for the generators if one sticks to the zeroth term of the mode expansions.

Indeed,

[𝐽𝑎
0 , 𝐽 𝑏

0] = ∑
𝑐

𝑖𝑓𝑎𝑏𝑐𝐽𝑐
0 , (4.15)

which is precisely the standard finite Lie algebra relation upon which the affine exten-

sion is constructed. To obtain the zero modes from the currents in standard CFT, one

computes the corresponding Noether charges in radial quantization by

𝑄𝑎 = 1
2𝜋𝑖

∮
0

𝑑𝑧𝐽𝑎(𝑧) = 𝐽𝑎
0 , (4.16)

where the integral encircles the origin. Because we now have again a finite algebra, in

fact, the same as the one in the physical index, we can use these Noether charges as the

field theory objects in the virtual space that will play the role of the 𝑉𝑔’s of Equation

(4.1).

As a final technical detail, we must remember that our fTNS tensors are defined in

the UHP, and therefore one should use the definitions of BCFTs as opposed to the usual

CFT ones like in Equation (4.16). Using the method of images, one should define the

correct Noether charges in BCFT as

𝑄 = 1
2𝜋𝑖

∮d𝑧𝐽(𝑧) = 1
2𝜋𝑖

∫ d𝑧 (𝐽(𝑧) − 𝐽( ̄𝑧)) . (4.17)
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4.1 Symmetries as fTNS

where now the contour is a semi-circle that only visits the UHP. We will use these

charges in the future, as failing to do so and using the ones from Equation (4.16) leads

to diverging results.

4.1.2 Virtual symmetries as fMPSs

Our goal was to provide the equivalent of the 𝑉𝑔’s from Equation (4.1), and these must

be precisely the BCFT charges arising from the integration of the algebra currents of

the SU(2)1 WZW theory. By construction, the free boson fMPS from Equations (3.76)

and (3.78) is the corresponding fTNS of the vertex operator ∶ 𝑒𝑖𝑠𝜑(𝑧) ∶, and therefore
we know how to represent any vertex operator as an fMPS. This entails that we readily

have the two primary fields from Equation (4.9) as fMPSs since these are simply vertex

operators and hence given by

𝜙± 1
2
(𝑧𝑖) = 𝒜Δ [𝑓+, 𝑓−, {𝑧𝑖, ± 1√

2
}] , (4.18)

and we will think of these tensors as the corresponding ”up” and ”down” spin fMPSs.

Similarly, we can easily find the tensors corresponding to the raising and lowering

currents, which are given by

𝐸±(𝑧) ⟷ −
𝜇
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ±
√

2}] , (4.19)

where the constant 𝜇 = −2𝑖 is a requirement for the correct normalization of the al-
gebra arising from the fMPS sewing condition, as seen in [186]. To obtain the 𝐻(𝑧)
current, one simply realizes that the derivative of the field can be found by differen-

tiating the field’s exponential and then only retaining the first order of the expansion.

In equation form 𝜕𝑧 ∶ 𝑒𝑖𝛼𝑞𝜑(𝑧) ∶= 𝑖𝛼𝑞𝜕𝑧𝜑(𝑧) ∶ 𝑒𝑖𝛼𝑞𝜑(𝑧) ∶= 𝛼𝑞𝐻(𝑧) ∶ 𝑒𝑖𝛼𝑞𝜑(𝑧) ∶. Therefore,
the fMPS representation of the U(1) term of the algebra is

𝐻(𝑧) ⟷
√

2 lim
𝑞→0

1
𝑞

𝜕𝑧𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞
√

2
}] , (4.20)

where we have introduced the parameter 𝑞 to take the limit and isolate the derivative
of the field, and the

√
2 factors arise from the radius of compactification of the free

boson.

To check that these fMPSs indeed represent the current algebra, we can start by

checking the OPEs from Equation (4.10). To take these OPEs, one first performs the

sewing of both fMPS and then takes the 𝑧 → 𝑤 limit. These can, therefore, be easily
checked from Equation (3.80) to ensure that we have found the correct fMPS repre-

sentation of these operators.

Let us start, for example, with the OPE of the raising and lowering currents, the first
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line of (4.10),

𝐸+(𝑧)𝐸−(𝑤) ⟷ lim
𝑧→𝑤

𝜇2

4
∫ 𝒟𝑔𝒜Δ1

[𝑓+, 𝑔, {𝑧, +
√

2}] 𝒜Δ2
[𝑔, 𝑓−, {𝑤, −

√
2}] =

=
𝜇2

4
1

Δ2
𝑓

4Δ2
𝑓

𝜇2(𝑧 − 𝑤)2 exp(−1
2

∫
∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†) + ...,

(4.21)

with Δ𝑓 = Δ1 + Δ2, the momentum integral is a shortcut notation for the propagation

term of Equation (3.78), and the expression correctly reproduces the first term of the

desired OPE. The fractions in the pre-factor have been left unsimplified to explain

where each of them is coming from. The first one,
𝜇2

4
arises from the normalization

of the currents as functionals, 1
Δ𝑓
arises from the conformal dimension factors of the

amplitude, and
4Δ2

𝑓

𝜇2(𝑧−𝑤)2 comes from the expansion of the interaction term in the limit

of 𝑧 → 𝑤. Because the expansion of the interaction term can only contain even terms
in (𝑧 − 𝑤), the second term of the OPE in Equation (4.10) must arise from the spin-
boundary term, the only other term of the fMPS that contains information about the

spin position. Taking the limit 𝑧 → 𝑤 of that term alone yields

lim
𝑧→𝑤

exp(+ 𝑖
2

∫
ℝ
d𝑘𝑒𝑖𝑘𝑧√

2 −
√

2𝑒𝑖𝑘𝑤

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏𝑓 ̂𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓 ̂𝑓−(𝑘)))

= 1 + 𝑖
2

∫
ℝ
d𝑘

𝑖𝑘𝑒𝑖𝑘𝑤(𝑧 − 𝑤)
√

2
sinh (𝜋𝑘Δ𝑓)

(𝑒𝜋𝑘𝑏𝑓 ̂𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓 ̂𝑓−(𝑘)) + 𝑂 ((𝑧 − 𝑤)2) ,
(4.22)

which is the promised linear term that arises from the first position derivative of the

expansion. Hence the OPE between the fMPSs of 𝐸+(𝑧) and 𝐸−(𝑤) is

= 1
(𝑧 − 𝑤)2 exp(−1

2
∫

∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†)

+ 𝑖√
2 (𝑧 − 𝑤)

∫
ℝ
d𝑘 𝑖𝑘𝑒𝑖𝑘𝑤

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏𝑓 ̂𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓 ̂𝑓−(𝑘)) exp(−1

2
∫

∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†)

+ 𝑂 ((𝑧 − 𝑤)0) ,
(4.23)

and one can readily see that the complicated prefactor that has appeared exactly corre-

sponds to the 𝐻(𝑧) current as shown in Equation (4.20), as it is nothing but a position
derivative. The final result is then

1
(𝑧 − 𝑤)2 exp{(−1

2
∫

∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†)}+

√
2
√

2 lim𝑞→0
1
𝑞
𝜕𝑧𝒜Δ𝑓

[𝑓+, 𝑓−, {𝑧, 𝑞√
2
}]

(𝑧 − 𝑤)
,

(4.24)
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which perfectly reproduces the OPE and, therefore, allows us to identify the identity

operator in the functional space with

𝜙0 = 𝕀 ⟷ 𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 0}] = exp{(−1

2
∫

∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†)}. (4.25)

Let us now perform the OPE of 𝐻(𝑧) with itself. This corresponds to

𝐻(𝑧)𝐻(𝑤) ⟷ 2 lim
𝑧→𝑤

lim
𝑞1,𝑞2→0

1
𝑞1𝑞2

𝜕𝑤𝜕𝑧 ∫ 𝒟𝑔𝒜Δ1
[𝑓+, 𝑔, {𝑧,

𝑞1√
2

}] 𝒜Δ2
[𝑔, 𝑓−, {𝑤,

𝑞2√
2

}]

= 2 exp{(−1
2

∫
∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†)} lim

𝑧→𝑤
lim

𝑞1,𝑞2→0
1

𝑞1𝑞2
𝜕𝑤𝜕𝑧 (𝜇 sinh(𝑧 − 𝑤

2Δ𝑓
))

𝑞1𝑞2
2

= 1
(𝑤 − 𝑧)2 𝒜Δ𝑓

[𝑓+, 𝑓−, {𝑧, 0}] ,

(4.26)

where in the step between the second and third line we have dropped all the terms of

the expansion that are regular in the OPE limit.

Finally, the OPE of 𝐻(𝑧) with either of 𝐸±(𝑤) will be given by

𝐻(𝑧)𝐸±(𝑤) ⟷ −
√

2
𝜇
2
lim
𝑧→𝑤

lim
𝑞→0

1
𝑞

𝜕𝑧 ∫ 𝒟𝑔𝒜Δ1
[𝑓+, 𝑔, {𝑧, 𝑞

√
2

}] 𝒜Δ2
[𝑔, 𝑓−, {𝑤, ±

√
2}]

= −
𝜇

√
2
lim
𝑧→𝑤

lim
𝑞→0

1
𝑞

𝜕𝑧 (𝜇 sinh(𝑤 − 𝑧
2Δ𝑓

))
±𝑞

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑤, ±

√
2}]

= ±
√

2
(𝑧 − 𝑤)

(−
𝜇
2

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑤, ±

√
2}]) ,

(4.27)

which is again the desired OPE.

Up until now, we have been using the symbol ⟷ to establish the identification

between the corresponding current and its fMPS representation; the reason for this

will now be made clear with the study of the OPE between the current and the primary

field fMPS representation. Let us begin with the simplest ones, the OPEs in Equation

(4.11), where the first line reads

𝐸±(𝑧)𝜙± 1
2
(𝑤) ⟷ −

𝜇
2
lim
𝑧→𝑤

∫ 𝒟𝑔𝒜Δ1
[𝑓+, 𝑔, {𝑧, ±

√
2}] 𝒜Δ2

[𝑔, 𝑓−, {𝑤, ±1√
2

}]

= −
𝜇
2
lim
𝑧→𝑤

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, ±

√
2, 𝑤, ±1√

2
}] → 0,

(4.28)
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which is true because both charges have the same sign, and therefore, the expansion

of the interaction term in the 𝑧 → 𝑤 has no divergent terms whatsoever. On the other
hand, the OPE 𝐸∓(𝑧)𝜙± 1

2
(𝑤) reads

𝐸∓(𝑧)𝜙± 1
2
(𝑤) ⟷ −

𝜇
2
lim
𝑧→𝑤

∫ 𝒟𝑔𝒜Δ1
[𝑓+, 𝑔, {𝑧, ∓

√
2}] 𝒜Δ2

[𝑔, 𝑓−, {𝑤, ±1√
2

}]

= −
𝜇
2
lim
𝑧→𝑤

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, ∓

√
2, 𝑤, ±1√

2
}]

= −
𝜇
2

1
Δ𝑓

lim
𝑧→𝑤

(𝜇 sinh(𝑤 − 𝑧
2Δ𝑓

))
−1

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑤, ∓1√

2
}]

= 1
(𝑧 − 𝑤)

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑤, ∓1√

2
}]

(4.29)

which is almost the OPE we wanted to recover up to a significant detail. The new

tensor representing the primary field is defined on a strip of width Δ𝑓 = Δ1 + Δ2,

while the original primary field tensor was defined on a strip of width Δ2!

The fact that the sewing property enlarges the resulting fMPS tensor with the width

Δ of the newly sown strip is precisely the obstruction to establishing a strict equality
in Equations (4.18),(4.20),(4.19) and (4.25). To understand why this is a problem, let

us go back to the field theory definition of our fMPS state, that is, as a correlator of

primaries

⟨𝜙𝑠1
(𝑧1)𝜙𝑠2

(𝑧2)...𝜙𝑠𝑁
(𝑧𝑁)⟩ = ⟨𝜙𝑠1

(𝑧1)𝜙0𝜙𝑠2
(𝑧2)...𝜙𝑠𝑁

(𝑧𝑁)⟩, (4.30)

where the equality holds because the fusion rules of the identity field in Equation (4.7)

with any other field are trivial, and therefore one can insert as many identity field

primaries as desired. Therefore, the correlator on the r.h.s of Equation (4.30) would

be computed as the closing condition of 𝑁 + 1 strips, where the one corresponding to
𝜙0 would host no spin and width Δ𝕀. But because this correlator is equal to that of 𝑁
spins on a system of total length Δ𝑇 = ∑𝑖 Δ𝑖, it is not sensible that it is also equal

to the one of a system of length Δ𝑇 + Δ𝕀. Therefore, the only correct way in which

one can insert a current operator, or the identity, on a correlator defined through the

closing condition of Equation (3.82), is if one then also takes the limit of Δ𝕀, Δ𝐽 → 0.

This limit, mandatory to recover the correct OPEs and correlation functions, has im-

portant implications. If one naively attempts to take the limit Δ → 0 in the expression
of the fMPS tensor as in Equation (3.78) one will encounter divergences in the propa-

gation, the spin-boundary term as well as the interaction term, essentially leading to a

completely useless tensor. However, we have already seen that we have encountered

no such issues in either of the OPEs in Equation (4.28) or (4.29). This means that this

limit can only make sense after sewing has already occurred, akin to how a regularized

distribution is only well-defined in the limit of the regulator going to 0 when integrated

against suitable test functions.
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Therefore, we finally define the current operators as fMPS with

𝐸±(𝑧) = −
𝜇
2
lim
Δ→0

𝒜Δ [𝑓+, 𝑓−, {𝑧, ±
√

2}] ,

𝐻(𝑧) =
√

2 lim
Δ→0

lim
𝑞→0

1
𝑞

𝜕𝑧𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞
√

2
}] ,

𝜙0 = 𝛿(𝑓+ − 𝑓−) = lim
Δ→0

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 0}] = exp(−1

2
∫

∞

0
𝑑𝑘 ⃗𝑓(𝑘)Ω(𝑘, Δ𝑓) ⃗𝑓(𝑘)†) ,

(4.31)

where all of these limits have to be understood in the distributional sense, in which

the corresponding integral is the sewing operation, and the corresponding test func-

tions are any other fMPS tensors that represent a vertex operator in a correlator. The

last line constitutes the identity in functional space and, thus, the free boson fMPS

representation of a functional Dirac distribution.

4.2 The push-through relation of the free boson

fMPS

We now tackle the original question of this chapter:

Can we translate the pushing-through condition for symmetries of injective MPSs,

shown in Equation (4.1), to the setting of fMPS?

We wish to reproduce that equation exactly, and thus, diagrammatically, we are

aiming at an equation of the form

,
(4.32)

where the blue lines correspond to sewing operations, 𝑈𝜎𝑎 corresponds to the expo-

nentiated matrix group representation of SU(2), with 𝜎𝑎 the usual Pauli matrices, and

𝑉𝐽𝑎 the corresponding exponentiated group representation of the charge algebra 𝔰𝔲(2),
originating from the current algebra 𝔰𝔲(2)1. As we have already seen, we have an

fMPS representation of the charges 𝑄𝑎 and not their exponentials. Assuming that

𝑉𝑄𝑎 ∝ exp{𝛼𝑄𝑎}, one can then use the usual Lie algebra derivation in which one
expands

𝑈𝜎𝑎 = exp(𝛼𝜎𝑎) → lim
𝛼→0

1
𝛼

𝜕𝛼𝑈𝜎𝑎 = 𝜎𝑎. (4.33)
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Performing this limit on Equation (4.32), yields

,
(4.34)

where Δ𝑄 is the width associated with the fMPS charge andthe limit of Δ𝑄 → 0 is
taken after the sewing. It is important to emphasize that the symmetry on the l.h.s is

acting on a spin state and is represented by a 2 × 2 matrix, which gets translated to
the r.h.s employing the commutation of a Noether charge with the tensor. Our next

goal is to prove this relation for all currents, which we call the ”algebra-level” push-

through relation, to afterward prove the complete group-level relation via the usual

exponentiation techniques.

Proof of the algebra-level push-through equation

In this section, we derive the rules of the action for the fMPS conformal charges on a

single primary fMPS, which correspond to either of the two terms of 4.34, where we are

we will be using that the spin value of the primary fields fMPS has the normalization

𝑞 = 𝑠√
2
. We start with the action of the 𝐻(𝑧) current, whose charge is denoted by

𝑄0. First and foremost, we need to choose a convention for the order in which we sew

strips in situations where we have more than two. In this thesis we choose to always

sew from the lower boundary first and then move upwards. In strip form, what we

need to compute is

= (𝑎). (4.35)

In equation form, equation (4.35) is written as

(𝑎) = ∫ 𝒟𝑔 1
2𝜋𝑖

∫
ℝ

𝑑𝑧1𝒜Δ [𝑓+, 𝑔, {𝑧, 𝑞}] lim
𝑞1→0

√
2

𝑞1
(𝜕𝑧1

𝒜Δ1
[𝑔, 𝑓−, {𝑧1, 𝑞1}] − (𝑧1 ↔ ̄𝑧1)) ,

(4.36)

where ∫ℝ 𝑑𝑧1 means the integration over ℝ of the real part of 𝑧1 and corresponds to the

contour integral of the charge construction in the UHP, as shown in Equation (4.17).

After performing the sewing integral, one finds

(𝑎) = 1
2𝜋𝑖

∫
ℝ

𝑑𝑧1 lim
𝑞1→0

√
2

𝑞1
[𝜕𝑧1

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 𝑞, 𝑧1, 𝑞1}] − (𝑧1 ↔ ̄𝑧1)] , (4.37)
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where Δ𝑓 = Δ + Δ1. Performing the derivative with respect to 𝑧1, one obtains:

(𝑎) = 1
2𝜋𝑖

∫
ℝ

𝑑𝑧1 lim
𝑞1→0

√
2

𝑞1
[ 𝑖

2
∫

ℝ
𝑑𝑘

𝑖𝑘𝑞1𝑒𝑖𝑘𝑧1

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏𝑓𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓𝑓−(𝑘))

−
𝑞𝑞1
2Δ𝑓

coth(
𝑧1 − 𝑧
2Δ𝑓

) (𝜇 sinh(
𝑧1 − 𝑧
2Δ𝑓

))
𝑞𝑞1

] 𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 𝑞, 𝑧1, 𝑞1}]

− (𝑧1 ↔ ̄𝑧1),
(4.38)

and in what follows, we treat both terms separately. Let us start with the first line,

that is the integral

1
2𝜋𝑖

∫
ℝ

𝑑𝑧1
𝑖√
2

∫
ℝ

𝑑𝑘 𝑖𝑘𝑒𝑖𝑘𝑧1

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏𝑓𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓𝑓−(𝑘)) . (4.39)

We first swap the order of integration, that is we first perform the 𝑧1-integral and

then the 𝑘-integral. To be able to perform this change for this specific Riemmann, it
is enough to guarantee that the 𝑘-integral is convergent. We start by analyzing the
behavior of the integrand in the 𝑘 → ±∞ limits

{
𝑘 → +∞ ∝ 𝑘𝑒𝑖𝑘𝑧1−𝜋𝑘(Δ𝑓−𝑏𝑓)𝑓+(𝑘) − 𝑒𝑖𝑘𝑧1−𝜋𝑘(Δ𝑓−𝑎𝑓)𝑓−(𝑘) → 0
𝑘 → −∞ ∝ 𝑘𝑒𝑖𝑘𝑧1+𝜋𝑘(Δ𝑓+𝑏𝑓)𝑓+(𝑘) − 𝑒𝑖𝑘𝑧1+𝜋𝑘(Δ𝑓+𝑎𝑓)𝑓−(𝑘) → 0,

(4.40)

where the decay to 0 in the limit is guaranteed because Im(𝑧1) < Δ𝑓 = 𝑏𝑓 − 𝑎𝑓 and

𝑓±(𝑘) are quickly decaying functions. The other potentially problematic point is 𝑘 = 0,
but the divergence is tamed by the power of 𝑘 in the numerator. We can thus exchange
the order of integrals and use the Dirac delta distribution to obtain :

𝑖√
2

∫
ℝ

𝑑𝑘
𝑘𝛿(𝑘)𝑒−𝜋𝑘Im(𝑧1)

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏𝑓𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓𝑓−(𝑘)) . (4.41)

All that is left is the evaluation of the 𝑘-integral by means of the Dirac distribution. In
this case, we must evaluate the limit 𝑘 → 0

lim
𝑘→0

𝑘𝑒−𝜋𝑘Im(𝑧1)

sinh (𝜋𝑘Δ𝑓)
(𝑒𝜋𝑘𝑏𝑓𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓𝑓−(𝑘)) = 1

𝜋Δ𝑓
(𝑓+(0) − 𝑓−(0)) = 0, (4.42)

where the last equality follows from the fact that the zero-mode is chosen to be the

same amongst all the different sewing points on a state, as explained in Chapter 3.

Thus, we have simplified Equation (4.38) down to

(𝑎) = 1
2𝜋𝑖

∫
ℝ

𝑑𝑧1 lim
𝑞1→0

√
2

𝑞1

[
𝑞𝑞1
2Δ𝑓

coth(
𝑧1 − 𝑧
2Δ𝑓

) (𝜇 sinh(
𝑧1 − 𝑧
2Δ𝑓

))
𝑞𝑞1

] 𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 𝑞, 𝑧1, 𝑞1}] − (𝑧1 ↔ ̄𝑧1).

(4.43)
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We are now in a position to take the limit 𝑞1 → 0, obtaining

(𝑎) = 𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 𝑞}] 𝑞

√
2Δ𝑓

1
2𝜋𝑖

∫
ℝ

𝑑𝑧1 [coth(
𝑧1 − 𝑧
2Δ𝑓

) − coth(
̄𝑧1 − 𝑧
2Δ𝑓

)] ,

(4.44)

where the limit removed the 𝑧1 contribution to the functional 𝒜Δ𝑓
and thus allows

us to take it out of the integral. The remaining integral can be computed by residue

calculus, and it yields

(𝑎) =
√

2𝑞Im(𝑧1)
𝜋Δ𝑓

𝒜Δ𝑓
[𝑓+, 𝑓−, {𝑧, 𝑞}] . (4.45)

Finally, we can take the limit Δ1 → 0 without any danger of any part diverging, which
in turn forces Im(𝑧1) to be at the edge of the original strip, in this case, the upper edge
Im(𝑧1) = 𝜋𝑏. This concludes this computation yielding

(𝑎) =
√

2𝑞𝑏
Δ

𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}] . (4.46)

To conclude the computation of the commutator (4.34), we now need to compute the

second term of its l.h.s

= (𝑏), (4.47)

which is a computation that follows along the same lines as the one we have just done.

To see this, we can look at (4.38) to see the effect of sewing from the lower boundary.

The main difference is that all the terms that depend on 𝑧1 − 𝑧 will now go as 𝑧 − 𝑧1
and the sign in front will change because of the derivative. Since the cotangent is an

odd function, we recover (4.44) at the end of the computation. With this result, the

commutator with 𝑄0 becomes

(𝑎)−(𝑏) =
√

2𝑞𝑏
Δ

𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}]−
√

2𝑞𝑎
Δ

𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}] =
√

2𝑞𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}] ,
(4.48)

sinceΔ = 𝑏−𝑎. This is the expected action on a single spin with the usual 𝜎𝑧 operator,

given that the charge is chosen to be 𝑞 = 𝑠√
2
. In equation form, we have deduced that

𝜎𝑧
𝑠𝑠′𝒜Δ [𝑧, 𝑠′

√
2

] = 𝑠𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑠√
2

}] , (4.49)

which is nothing but the expected action of the 𝜎𝑧 operator on a spin eigenstate but

computed through its action on the virtual space.

We now turn our attention to the action of the lowering and raising currents 𝐽±(𝑧),
whose charges we will denote 𝑄±. As before, we start with the action on the upper
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edge of a strip, which in strip form reads

= (𝑐), (4.50)

or in equation form

(𝑐) = ∫ 𝒟𝑔 1
2𝜋𝑖

(−
𝜇
2

) ∫
ℝ

𝑑𝑧1𝒜Δ [𝑓+, 𝑔, {𝑧, 𝑞}] 𝒜Δ1
[𝑔, 𝑓−, {𝑧1, ±

√
2}] − (𝑧1 ↔ ̄𝑧1),

(4.51)

where −𝜇
2
ensures proper normalization. We then perform the sewing and factorize

what does not depend on 𝑧1 outside of the integral to obtain

(𝑐) = 𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}] Δ−
𝑞2

1
2

1
2𝜋𝑖

(−
𝜇
2

) ∫
ℝ

𝑑𝑧1 (𝜇 sinh(
𝑧1 − 𝑧
2Δ𝑓

))
±

√
2𝑞

exp{( 𝑖
2

∫
ℝ

𝑑𝑘 ±
√

2𝑒𝑖𝑘𝑧1

sinh (𝜋𝑘Δ𝑓)
𝒞(𝑘))} − (𝑧1 ↔ ̄𝑧1),

(4.52)

where 𝒞(𝑘) = (𝑒𝜋𝑘𝑏𝑓 ̂𝑓+(𝑘) − 𝑒𝜋𝑘𝑎𝑓 ̂𝑓−(𝑘)) is a shorthand notation for the functional part
of the boundary term. To tackle this integral, we start by Taylor-expanding the second

exponential as

exp{( 𝑖
2

∫
ℝ

𝑑𝑘 ±
√

2𝑒𝑖𝑘𝑧1

sinh (𝜋𝑘Δ𝑓)
𝒞(𝑘))} =

∞

∑
𝑛=0

∫
ℝ

𝑑𝑘1...𝑑𝑘𝑛 ( 𝑖
2

)
𝑛

(±
√

2)𝑛
𝑛

∏
𝑚=1

𝒞(𝑘𝑚)
sinh (𝜋𝑘𝑚Δ𝑓)

𝑒𝑖𝜔𝑧1,
(4.53)

where 𝜔 = ∑𝑚
𝑙=1 𝑘𝑙. We can then again exchange the order of integration as both

integrals are finite, as was shown in the previous computation for the charge𝑄0. Then,

(𝑐) = 𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}] Δ−
𝑞2

1
2

1
2𝜋𝑖

(−
𝜇
2

)
∞

∑
𝑛=0

∫
ℝ

𝑑𝑘1...𝑑𝑘𝑛

( 𝑖
2

)
𝑛

(±
√

2)𝑛
𝑛

∏
𝑚=1

𝒞(𝑘𝑚)
sinh (𝜋𝑘𝑚Δ𝑓)

∫
ℝ

𝑑𝑧1 (𝜇 sinh(
𝑧1 − 𝑧
2Δ𝑓

))
±

√
2𝑞

𝑒𝑖𝜔𝑧1 − (𝑧1 ↔ ̄𝑧1),

(4.54)

and we can apply residue calculus to the integral

∫
ℝ

𝑑𝑧1 (𝜇 sinh(
𝑧1 − 𝑧
2Δ𝑓

))
±

√
2𝑞

𝑒𝑖𝜔𝑧1 − (𝜇 sinh(
̄𝑧1 − 𝑧
2Δ𝑓

))
±

√
2𝑞

𝑒𝑖𝜔 ̄𝑧1. (4.55)

To evaluate these integrals, we need to choose both 𝑞 = 𝑠√
2
as well as the sign of the

current 𝐽±(𝑧). We can start by first considering the case when we choose 𝐽±(𝑧) and
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𝑞 = ± 1√
2
, which corresponds to the case of annihilating the state by acting with the

raising (lowering) operator on a state that is already the highest (lowest) element of

the spin multiplet. In both of these cases, the integral reads

𝜇 ∫
ℝ

𝑑𝑧1 sinh(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − sinh(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1, (4.56)

and we can compute it by turning this integral into a contour integral. We start by more

explicitly writing 𝑧1 = 𝑥 + 𝑖𝑦 and expanding the hyperbolic sines into exponentials as

𝜇
2

∫
ℝ

𝑑𝑥𝑒
𝑥(𝑖𝜔+1)+𝑦(𝑖−𝜔)−𝑧

2Δ𝑓 − 𝑒
𝑥(𝑖𝜔−1)−𝑦(𝑖+𝜔)+𝑧

2Δ𝑓 − 𝑒
𝑥(𝑖𝜔+1)−𝑦(𝑖−𝜔)−𝑧

2Δ𝑓 + 𝑒
𝑥(𝑖𝜔−1)+𝑦(𝑖+𝜔)+𝑧

2Δ𝑓 , (4.57)

which, after manipulating a bit, yields

𝜇 ∫
ℝ

𝑑𝑥 sinh(
𝑦(𝑖 − 𝜔)

2Δ𝑓
)𝑒

𝑥(𝑖𝜔+1)−𝑧
2Δ𝑓 + sinh(

𝑦(𝑖 + 𝜔)
2Δ𝑓

)𝑒
𝑥(𝑖𝜔−1)+𝑧

2Δ𝑓 . (4.58)

To ensure the convergence of these integrals, for 𝜔 > 0, we must extend the contour
with a semicircle above the real axis, while for 𝜔 < 0, we must do so below the real
axis. Special attention is required for the case 𝜔 = 0, where the integral reads

𝜇 sinh(
𝑖𝑦

2Δ𝑓
) ∫

ℝ
𝑑𝑥 cosh(𝑥 − 𝑧

2Δ𝑓
), (4.59)

which is clearly divergent. However, this divergence will get canceled once the com-

mutator’s second term is subtracted, as we are only dealing with the first term right

now. We can thus write

Θ(𝜔)𝜇 ∮
UHP

𝑑𝑥 sinh(
𝑦(𝑖 − 𝜔)

2Δ𝑓
)𝑒

𝑥(𝑖𝜔+1)−𝑧
2Δ𝑓 + sinh(

𝑦(𝑖 + 𝜔)
2Δ𝑓

)𝑒
𝑥(𝑖𝜔−1)+𝑧

2Δ𝑓 +

Θ(−𝜔)𝜇 ∮
LHP

𝑑𝑥 sinh(
𝑦(𝑖 − 𝜔)

2Δ𝑓
)𝑒

𝑥(𝑖𝜔+1)−𝑧
2Δ𝑓 + sinh(

𝑦(𝑖 + 𝜔)
2Δ𝑓

)𝑒
𝑥(𝑖𝜔−1)+𝑧

2Δ𝑓 = 0,
(4.60)

where UHP/LHP stands for the sunrise contour going along the upper/lower half plane

and Θ(𝜔) is the step function. However, since these contours encircle no poles what-
soever, as the integrand has none, the result of this integral is simply zero. We thus

find that acting with the raising (lowering) current on the highest (lowest) states of a

multiplet correctly sends them to zero. Of course, sewing from below yields the same

result while subtracting the aforementioned divergence because the hyperbolic cosine

is even.

We can now go back to (4.55) and consider the case of 𝐽∓(𝑧) and 𝑠 = ±1, which is
the case in which we go from the higher to the lower state of the multiplet or vice-versa.

In this case (4.55) reads

1
𝜇

∫
ℝ

𝑑𝑧1csch(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − csch(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1, (4.61)
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and performing a similar analysis as the previous one, we can end up writing it as the

contours integrals

Θ(𝜔) 1
𝜇

∮
UHP

𝑑𝑧1csch(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − csch(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1+

Θ(−𝜔) 1
𝜇

∮
LHP

𝑑𝑧1csch(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − csch(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1.
(4.62)

Let us focus first on the first line of (4.62). If we write 𝑧1 = 𝑥 + 𝑖𝑦 as previously, then
the poles of the first term are located at 𝑥 = 𝑧 −𝑖𝑦 +2𝜋𝑖𝑛Δ𝑓 and the ones of the second

term at 𝑥 = 𝑧 + 𝑖𝑦 + 2𝜋𝑖𝑛Δ𝑓 for 𝑛 ∈ ℤ. These are infinite towers of poles sitting in the
imaginary axis, and the UHP contour encircles the poles corresponding to 𝑛 ∈ [1, ∞)
for the first term and 𝑛 ∈ [0, ∞) for the second term since 𝑧 < 𝑖𝑦 as we are sewing from
the upper edge. We thus evaluate this integral using the residue theorem as

Θ(𝜔) 1
𝜇

∮
UHP

𝑑𝑧1 [csch(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − csch(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1] =

Θ(𝜔) 1
𝜇

2𝜋𝑖 [
∞

∑
𝑛=1

2Δ𝑓(−1)𝑛𝑒𝑖𝜔𝑧+2Δ𝑓𝜋𝜔𝑛 −
∞

∑
𝑛=0

2Δ𝑓(−1)𝑛𝑒𝑖𝜔𝑧+2Δ𝑓𝜋𝜔𝑛] =

− Θ(𝜔) 1
𝜇

2𝜋𝑖2Δ𝑓𝑒𝑖𝜔𝑧.

(4.63)

Similarly, for the second line of (4.62), the LHP contour encircles the poles correspond-

ing to 𝑛 ∈ [0, −∞) for the first term and to 𝑛 ∈ [−1, −∞) for the second term for 𝑛 ∈ ℤ.
Similarly, but with the contour now being counterclockwise, the integral reads

Θ(−𝜔) 1
𝜇

∮
LHP

𝑑𝑧1csch(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − csch(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1 =

Θ(−𝜔) 1
𝜇

(−2𝜋𝑖) [
−∞

∑
𝑛=0

2Δ𝑓(−1)𝑛𝑒𝑖𝜔𝑧+2Δ𝑓𝜋𝜔𝑛 −
−∞

∑
𝑛=1

2Δ𝑓(−1)𝑛𝑒𝑖𝜔𝑧+2Δ𝑓𝜋𝜔𝑛] =

− Θ(−𝜔) 1
𝜇

2𝜋𝑖2Δ𝑓𝑒𝑖𝜔𝑧.

(4.64)

Collecting all the results, we conclude

1
𝜇

∫
ℝ

𝑑𝑧1csch(
𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔𝑧1 − csch(
̄𝑧1 − 𝑧
2Δ𝑓

)𝑒𝑖𝜔 ̄𝑧1 = −2𝜋𝑖
𝜇

2Δ𝑓𝑒𝑖𝜔𝑧. (4.65)

Inserting this result back into (4.54) yields

(𝑐) =𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞}] 1
Δ𝑓

1
2𝜋𝑖

(−
𝜇
2

)
∞

∑
𝑛=0

∫
ℝ
d𝑘1...d𝑘𝑛 (± 𝑖

2
√

2)
𝑛

𝑛

∏
𝑚=1

𝒞(𝑘𝑚)
sinh (𝜋𝑘𝑚Δ𝑓)

(−2𝜋𝑖
𝜇

) 2Δ𝑓𝑒𝑖𝜔𝑧,
(4.66)

which allows us to collect the sum back into an exponential to finally write, after taking

the Δ1 → 0 limit,
(𝑐) = 1

2
𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑞 ±

√
2}] 𝛿𝑞,∓ 1√

2
(4.67)
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As before, sewing from the lower edge of the strip would again change the sign of the

terms depending on 𝑧1 − 𝑧, and thus only change an overall minus sign. Therefore, in
equation form, we have derived that

𝜎±
𝑠𝑠′𝒜Δ [𝑧, 𝑠′

√
2

] = {
0, (𝑠 = ±1)
𝒜Δ [𝑧, 𝑠√

2
±

√
2] , (𝑠 = ∓1),

which is again the expected action of the raising and lowering operators 𝜎± on the

corresponding states of the spin multiplet, but computed through the virtual space.

With these two computations we have confirmed the action of the algebra on the

physical space via its representation on the virtual one. From these computations, we

can also summarize the following rules for the action of single fMPS charges 𝑄𝑎 on a

primary and in the usual spin basis, as these will be useful in the next section. Using

that 𝜎𝑥 = 1
2

(𝜎+ + 𝜎−) and 𝜎𝑦 = 1
2𝑖

(𝜎+ − 𝜎−), one can write for 𝑄𝑥, first in equation

form

lim
Δ𝑄→0

∫ 𝒟𝑔𝑄𝑥
Δ𝑄

[𝑓+, 𝑔]𝒜Δ [𝑔, 𝑓−, {𝑧, ± 𝑠√
2

}] = 1
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ∓ 𝑠√
2

}] , (4.68)

lim
Δ𝑄→0

∫ 𝒟𝑔𝒜Δ [𝑓+, 𝑔, {𝑧, ± 𝑠√
2

}] 𝑄𝑥
Δ𝑄

[𝑔, 𝑓−] = −1
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ∓ 𝑠√
2

}] , (4.69)

or in diagrammatic notation

.
(4.70)

Analogously for 𝑄𝑦, in equation form

lim
Δ𝑄→0

∫ 𝒟𝑔𝑄𝑦
Δ𝑄

[𝑓+, 𝑔]𝒜Δ [𝑔, 𝑓−, {𝑧, ± 𝑠√
2

}] = ± 𝑖
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ∓ 𝑠√
2

}] , (4.71)

lim
Δ𝑄→0

∫ 𝒟𝑔𝒜Δ [𝑓+, 𝑔, {𝑧, ± 𝑠√
2

}] 𝑄𝑦
Δ𝑄

[𝑔, 𝑓−] = ∓ 𝑖
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ∓ 𝑠√
2

}] , (4.72)
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or diagrammatically

.
(4.73)

And finally for 𝑄𝑧 = 𝑄0, in equation form

lim
Δ𝑄→0

∫ 𝒟𝑔𝑄𝑧
Δ𝑄

[𝑓+, 𝑔]𝒜Δ [𝑔, 𝑓−, {𝑧, ± 𝑠√
2

}] = ±𝑠
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ± 𝑠√
2

}] , (4.74)

lim
Δ𝑄→0

∫ 𝒟𝑔𝒜Δ [𝑓+, 𝑔, {𝑧, ± 𝑠√
2

}] 𝑄𝑧
Δ𝑄

[𝑔, 𝑓−] = ∓𝑠
2

𝒜Δ [𝑓+, 𝑓−, {𝑧, ± 𝑠√
2

}] , (4.75)

or diagrammatically

.
(4.76)

where if we compare this last equation with Equation (4.46), we see that we choose

the limits of the strip to be 𝑎 = −Δ
2
and 𝑏 = Δ

2
.

Proof of state invariance with the group-level push-through relation

In this section, we prove that a state described by an fMPS is invariant under the group

action corresponding to the infinitesimal algebra-level relations derived in the previous
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section. Suppose we draw intuition from the usual SU(2) Lie group theory. In that case,

the goal is to show that the state is invariant under a full rotation with angle 𝜃 and not
only invariant with respect to the generators of said rotation. To prove this statement,

the main formula of use is the following version of the renowned BCH formula

𝑒−𝑖𝜃𝑋𝑌 𝑒𝑖𝜃𝑋 = 𝑌 + 𝑖𝜃[𝑌 , 𝑋] +
(𝑖𝜃)2

2
[𝑋, [𝑋, 𝑌 ]] + ... (4.77)

Since we have computed all the commutators in the previous section, it is easy to see

the action of the whole exponential on a single strip, and they perfectly mirror the

well-known results for SU(2). If we write a state described by a fMPS as

|𝜓⟩ = ∑
𝑠1...𝑠𝑁=±1

∫ 𝒟𝑓1...𝒟𝑓𝑁𝒜𝑠1
𝑓1,𝑓2

...𝒜𝑠𝑁
𝑓𝑁,𝑓1

|𝑠1...𝑠𝑁⟩, (4.78)

where we use𝒜𝑓𝑖,𝑓𝑖+1
for the functionals to simplify notation with the boundary indices

and we act with the unitary matrix corresponding to a rotation around any of the axes

𝛼 = 𝑥, 𝑦, 𝑧, 𝑈𝛼
𝑖 (𝜃) = exp{(𝑖𝜃𝜎𝛼

𝑖 )} on the 𝑖th-spin, we can translate the action of this
unitary onto the strip with the previously derived rules and the BCH formula. By

moving the action to the virtual space, we have

𝑈𝛼
𝑖 (𝜃)|𝜓⟩ =

𝑑

∑
𝑠1...𝑠𝑁=1

∫ 𝒟𝑓1...𝒟𝑓𝑁𝒜𝑠1
𝑓1,𝑓2

...𝒜𝑠𝑁
𝑓𝑁,𝑓1

𝑈𝛼
𝑖 (𝜃)|𝑠1...𝑠𝑁⟩

=
𝑑

∑
𝑠1...𝑠𝑁=1

∫ 𝒟𝑓1...𝒟𝑓𝑁𝒜𝑠1
𝑓1,𝑓2

.𝒜𝑈𝛼
𝑖 (𝜃)𝑠𝑖

𝑓𝑖,𝑓𝑖+1
.𝒜𝑠𝑁

𝑓𝑁,𝑓1
|𝑠1...𝑠𝑁⟩,

(4.79)

where what is meant by 𝒜𝑈𝛼
𝑖 (𝜃)𝑠𝑖

𝑓𝑖,𝑓𝑖+1
is that the unitary acts on the physical space of the

𝑖th-strip, and thus it can be moved onto the virtual space by means of Equation (4.32).
Mathematically, what we mean is

𝒜𝑈𝛼
𝑖 (𝜃)𝑠𝑖

𝑓𝑖,𝑓𝑖+1
= ∫ 𝒟𝑔𝒟𝑓 exp{(𝑖𝜃𝑄𝛼[𝑓𝑖, 𝑓])}𝒜𝑠𝑖

𝑓,𝑔 exp{(−𝑖𝜃𝑄𝛼[𝑔, 𝑓𝑖+1])}, (4.80)

which is the same as Equation (4.32). Now, the BCH formula can be used to rewrite

this in terms of commutators as

𝒜𝑈𝛼
𝑖 (𝜃)𝑠𝑖

𝑓𝑖,𝑓𝑖+1
= 𝒜𝑠𝑖

𝑓𝑖,𝑓𝑖+1
+ 𝑖𝜃 [𝑄𝛼, 𝒜𝑠𝑖]𝑓𝑖,𝑓𝑖+1

+ ... . (4.81)

Before we proceed any further, it is important to recall that the common zero mode

enforces the charge neutrality condition upon the closing of the fTNS, which means

that any term of the superposition (4.78) fulfills ∑𝑁
𝑖=1 𝑠𝑖 = 0. We start by consider-

ing the charge𝑄𝑧 associated to the current𝐻(𝑧), whose commutator acts as [𝑄𝑧, 𝒜𝑠𝑖] =
𝑠𝑖𝒜

𝑠𝑖
𝑓𝑖,𝑓𝑖+1

. Accordingly, the charges associated to the other generators act as [𝑄𝑥, 𝒜±𝑠𝑖] =
𝒜∓𝑠𝑖

𝑓𝑖,𝑓𝑖+1
and [𝑄𝑦, 𝒜±𝑠𝑖] = ±𝑖𝒜∓𝑠𝑖

𝑓𝑖,𝑓𝑖+1
, where all of these relations have been derived by

repeated usage of the rules proved in the last section. We can then re-sum the com-

mutator expansion, similar to how one does it for Pauli matrices, and obtain

𝒜𝑈𝑧
𝑖 (𝜃)𝑠𝑖

𝑓𝑖,𝑓𝑖+1
= 𝑒𝑖𝜃𝑠𝑖𝒜𝑠𝑖

𝑓𝑖,𝑓𝑖+1

𝒜𝑈𝑥
𝑖 (𝜃)(±𝑠𝑖)

𝑓𝑖,𝑓𝑖+1
= cos(𝜃

2
)𝒜±𝑠𝑖

𝑓𝑖,𝑓𝑖+1
+ 𝑖 sin(𝜃

2
)𝒜∓𝑠𝑖

𝑓𝑖,𝑓𝑖+1

𝒜𝑈𝑦
𝑖 (𝜃)(±𝑠𝑖)

𝑓𝑖,𝑓𝑖+1
= cos(𝜃

2
)𝒜±𝑠𝑖

𝑓𝑖,𝑓𝑖+1
∓ sin(𝜃

2
)𝒜∓𝑠𝑖

𝑓𝑖,𝑓𝑖+1
.

(4.82)
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Once we know the action of a full rotation on a strip, we can tackle the question of

whether the full state is invariant under this operation. Clearly, (4.78) is not invariant

under the action of a single unitary on a site but only invariant under a unitary that acts

on all spins simultaneously. We can easily see the invariance under rotations around

the 𝑧-axis since

𝑈𝑧
1 (𝜃) ⊗ ... ⊗ 𝑈𝑧

𝑁(𝜃)|𝜓⟩ = ∑
𝑠1...𝑠𝑁=±1

∫ 𝒟𝑓1...𝒟𝑓𝑁𝒜𝑈𝑧
1 (𝜃)𝑠1

𝑓1,𝑓2
...𝒜𝑈𝑧

𝑁(𝜃)𝑠𝑁
𝑓𝑁,𝑓1

|𝑠1...𝑠𝑁⟩

= ∑
𝑠1...𝑠𝑁=±1

𝑒𝑖𝜃 ∑𝑖 𝑠𝑖 ∫ 𝒟𝑓1...𝒟𝑓𝑁𝒜𝑠1
𝑓1,𝑓2

...𝒜𝑠𝑁
𝑓𝑁,𝑓1

|𝑠1...𝑠𝑁⟩ = |𝜓⟩,
(4.83)

where the last equality follows from charge neutrality. For our concrete example of

fMPS, the phase factors 𝜒𝑠𝑖
present in (3.85) are known collectively as the Marshall

sign, which counts the number of ”down”-spins on odd sites and gives a phase accord-

ingly. This sign is the key to showing invariance under rotations under any of the

other two axes, and we show it for the 𝑥-axis by means of induction. Let us assume
that 𝑈𝑥

1 (𝜃) ⊗ ... ⊗ 𝑈𝑥
2𝑛(𝜃)|𝜓⟩ = |𝜓⟩ for a state consisting of 𝑛 pairs of spins. Then, for a

state consisting of 𝑛 + 1 pairs

𝑈𝑥
1 (𝜃) ⊗ ... ⊗ 𝑈𝑥

2𝑛(𝜃) ⊗ 𝑈𝑥
2𝑛+1(𝜃) ⊗ 𝑈𝑥

2𝑛+2(𝜃)|𝜓⟩ = 𝑈𝑥
1 (𝜃) ⊗ ... ⊗ 𝑈𝑥

2𝑛(𝜃)

∑
𝑠1...𝑠2𝑛=±1

∑
𝑠2𝑛+1,𝑠2𝑛+2=±1

∫ 𝒟[𝑓1]...𝒟[𝑓2𝑛+2]𝒜𝑠1
𝑓1,𝑓2

...𝒜𝑠2𝑛
𝑓2𝑛,𝑓1

𝒜𝑈𝑥
2𝑛+1(𝜃)𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
𝒜𝑈𝑥

2𝑛+2(𝜃)𝑠2𝑛+2

𝑓2𝑛+2,𝑓1
|𝑠1...𝑠2𝑛+2⟩,

(4.84)

where we acted with the unitaries corresponding to the last pair. The action of these

two unitaries yields

𝒜𝑈𝑥
2𝑛+1(𝜃)𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
𝒜𝑈𝑥

2𝑛+2(𝜃)𝑠2𝑛+2

𝑓2𝑛+2,𝑓1
= (cos(𝜃

2
)𝒜±𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
+ 𝑖 sin(𝜃

2
)𝒜∓𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
) ⋅

(cos(𝜃
2

)𝒜±𝑠2𝑛+2
𝑓2𝑛+2,𝑓1

+ 𝑖 sin(𝜃
2

)𝒜∓𝑠2𝑛+2
𝑓2𝑛+2,𝑓1

) ,
(4.85)

on the two functionals alone. Since the charge neutrality condition must be obeyed

by all the terms of the superposition of spins, only configurations that preserve it can

contribute to the sum. That means that for every term of the sum with fixed spin values

𝑠1, ..., 𝑠2𝑛, the two remaining spins can only be able to either flip their value or remain

the same together. That means that we can then simplify (4.85) to

cos(𝜃
2

)
2
𝒜±𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
𝒜±𝑠2𝑛+2

𝑓2𝑛+2,𝑓1
− sin(𝜃

2
)

2
𝒜∓𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
𝒜∓𝑠2𝑛+2

𝑓2𝑛+2,𝑓1
= 𝒜±𝑠2𝑛+1

𝑓2𝑛+1,𝑓2𝑛+2
𝒜±𝑠2𝑛+2

𝑓2𝑛+2,𝑓1
,

(4.86)

where the last equality follows from the fact that the first and second terms are related

by the Marshall sign. The Marshall sign always changes when two neighboring spins

swap values together, as that operation can only change the number of ”down” spins

that are sitting at odd sites. This shows that we recover back the same state when we

add an extra pair and it also shows the invariance of a single pair, thus concluding the

proof.

112



4.3 Application to the Majumdar-Gosh model and SPT phases

4.3 Application to the Majumdar-Gosh model and

SPT phases

Our original question for this chapter was: Can we understand the SPT classification

of standard MPS in the context of fMPS? So far, we have seen that we can define a

consistent notion of symmetries for the physical and virtual space of fMPS while also

establishing a push-through relation between both representations. We know from

Chapter 2 that the representation found in the virtual space of an MPS can be, in

general, projective, such that non-trivial cocycle can help us distinguish different SPT

phases. Therefore, we must check whether the representation defined by the fMPSs of

𝑄𝑥, 𝑄𝑦, and 𝑄𝑧 is projective.

For the standard representation theory of SU(2), it is common knowledge that the

representations with half-integer spin are projective representations of SO(3), while the

ones with integer spin are linear representations [209]. One way that one can check

this is by computing any of the group commutators to extract the cocycle. For the case

of the spin−1
2
representations of SU(2) one such group commutator reads 𝜎𝑥𝜎𝑧𝜎𝑥𝜎𝑧.

Indeed, if one computes this product of matrices, one obtains −𝕀, as opposed to the
expected 𝕀 for a linear representation. The minus sign is the characteristic cocycle of
projective representations, and therefore it will be enough for us to show that such a

sign appears for fMPS.

Our first approach would be to compute

𝜎𝑥𝜎𝑧𝜎𝑥𝜎𝑧𝒜Δ [𝑓1, 𝑓2, {𝑧, 𝑠}] , (4.87)

through its action in the virtual space. By recursive usage of Equation (4.34), one can

push these four algebra operators down to the virtual space to obtain a combination of

16 different sewing setups. Slowly working through them, after consistent application

of the rules found in Equations (4.70),(4.73) and (4.76), one obtains that

𝜎𝑥𝜎𝑧𝜎𝑥𝜎𝑧𝒜Δ [𝑓1, 𝑓2, {𝑧, 𝑠}] = −𝒜Δ [𝑓1, 𝑓2, {𝑧, 𝑠}] , (4.88)

which is consistent with the fact that the representation on the physical space was

projective from the very beginning. After confirming that the virtual space reproduces

the correct representation of the physical space, we can now turn to the question of

whether the operators𝑄𝑥, 𝑄𝑦, 𝑄𝑧 themselves form a projective representation of SO(3).

We can extract some conclusions even before computing anything by using some

knowledge borrowed from representation theory. For instance, we already know that

the K ̂ac-Moody algebra will always yield projective representations, as it is an affine
extension of a standard Lie algebra. This is a consequence of a very deep theorem of

representation theory known as Bargmann’s theorem [210]. Informally, this theorem

states that if the second cohomology group for a continuous Lie group 𝐻2(𝔤, ℝ) is triv-
ial, any projective representation 𝐺 can be lifted to a linear one by means of its double
cover. In other words, as long as a non-trivial central extension exists, an infinite

dimensional representation of a Lie group will always be projective. Therefore, this

guarantees that any K ̂ac-Moody algebra will yield a projective representation. How-
ever, we are dealing just with the Noether charges that originate from this current

algebra, and we wish to understand them as if they were a ”matrix” representation.

Thus, we compute the group commutator as the product 𝑄𝑥𝑄𝑧𝑄𝑥𝑄𝑧. Because of the

distributional character of these fMPS due to the Δ𝑄 → 0 limit, we must act with this
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product on a primary fMPS so that we can have a well-defined operation. Thus, the

task is to compute diagrammatically

,
(4.89)

which yields the negative sign in front of the normalization factor 1
24 , indicating that

the charges 𝑄𝑎 form a projective representation.

This result opens the door to exploring tasks such as classifying different states de-

scribed by this fMPS according to the usual criterion of SPT classification that one finds

in MPS [201]. As we have shown already in Chapter 3, specifically Equation 3.85,

among the states within the family defined by the free boson, fMPS are the ground-

states of the critical point of the Haldane-Shastry model. In [44], a similar ansatz

based on vertex operators named infinite MPS (iMPS), the original prototype behind

fTNS, was used to study different models whose critical points were described by a

𝑐 = 1 CFT. In their study, the positions of the vertex operator insertions were treated
as the variational parameters to maximize the overlap with the real ground state nu-

merically. Because both the iMPS and the fMPS descriptions describe the same states,

the following question arises:

Can we use the physical position of the spin in fMPS to change the properties of the

whole state? If so, can we predict this change in the properties of the entire state from

one or a few tensors, similarly to how one does it in MPS?

We explore this question by analyzing how the representation of the extended SU(2)

symmetry in the virtual space depends on the spin positions of two tensors.

First, we consider the limit in which two spins are placed very close together, as

shown on the left Figure 4.1, which in CFT literature is the limit that one must consider

when computing an OPE [37]. As was shown in Equation (4.7) for the WZW SU(2)1
model, the fusion rules for the two primary fields 𝜙1

2
are 𝜙1

2
×𝜙1

2
= 𝜙0. This means that

whenever two spins are very close, CFT tells us that the dominant term in the expansion

should be the identity. By taking the limit 𝑧2 → 𝑧1 in equation (3.80), similar to the

one taken when performing an OPE, the expression for a strip with two spins in this
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limit becomes

lim
𝑧1→𝑧2

𝒜Δ [𝑓+, 𝑓−, {𝑧1, 𝑠1, 𝑧2, 𝑠2}] ∼
𝜇

𝑠1𝑠2
2 𝛿𝑠1,−𝑠2

√
2Δ

√𝑧1 − 𝑧2
𝒜Δ [𝑓+, 𝑓−, {𝑧1, 0}] =

√
2𝛿𝑠1,−𝑠2

𝜇√𝑧1 − 𝑧2
𝕀Δ[𝑓+, 𝑓−],

where 𝛿𝑠1,−𝑠2 ensures the spins have opposite value and ∼means that we have omitted
sub-leading terms in 𝑧1 − 𝑧2. Remarkably, whenever two insertions get close to each

other, the functional greatly simplifies and becomes an identity in the virtual space.

The decoupling of the virtual space from the physical space is a phenomenon one

encounters when considering dimerized states inMPS theory [93]. Tomimic the results

of MPS, we are interested in seeing how the symmetry is represented in this limit. We

can see by applying the rules (4.70), (4.73) and (4.76) on the identity, that since it

corresponds to a strip with 𝑠 = 0, the outcome is always 0. This is akin to how the
monomial representation of 𝔰𝔲(2) acts on the 𝑗 = 0 element. The main point to take
away is that this limit forces the virtual space to be on the trivial representation 𝑗 = 0
of SU(2), making all the symmetry operators simply the identity.

Figure 4.1: This figure shows the two limits of interest for a pair of spin insertions. The left

strip corresponds to the trivial representation, while the right strip belongs to the non-trivial

one.

To obtain the 𝑗 = 1
2
representation, we consider the opposite limit, in which two

spins are placed as far apart from one another as possible, as shown on the right Figure

of 4.1. Because of the inherent long-range interaction of the strips, we can only clearly

understand the virtual space representation of any of the two boundaries when we

take the limit Δ → ∞, such that only the dominant representation remains. Let us
first study this limit for a single spin, in which we can approach the limit in different

ways. We could send the strip’s upper (lower) boundary to the (−)∞ limit or both of
them simultaneously. In either case, whenever the spin is not located exactly at the

boundary, the functional simplifies to

lim
Δ→∞

𝒜Δ [𝑓+, 𝑓−, {𝑧, 𝑠}] = 1

Δ
𝑠2
4

𝕀∞[𝑓+, 𝑓−], (4.90)

where 𝕀∞[𝑓+, 𝑓−] stands for the corresponding identity on virtual space for an infinitely
wide strip. However, whenever the spin is sitting exactly at one of the boundaries being

taken to infinity, the virtual space does not fully trivialize and instead remains within

the corresponding spin representation, and we denote this limit by

lim
Δ→∞

𝒜Δ [𝑓+, 𝑓−, {𝑧𝑏, 𝑠}] = 1

Δ
𝑠2
4

𝒜∞ [𝑓+, 𝑓−, {𝑧𝑏, 𝑠}] , (4.91)
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where 𝑧𝑏 is 𝑖𝜋𝑏 (𝑖𝜋𝑎) for the upper (lower) boundary. The explicit expression corre-
sponding to equation (4.90) is

𝕀∞ [𝑓+, 𝑓−] = 𝑒−𝑅∞[𝑓+,𝑓−],

𝑅∞ [𝑓+, 𝑓−] = +1
2

∫
∞

0
d𝑘 ( ̂𝑓+(𝑘) ̂𝑓−(𝑘)) (𝑘 0

0 𝑘) (
̂𝑓∗

+(𝑘)
̂𝑓∗

−(𝑘)
) ,

(4.92)

and the one for equation (4.91) is

𝒜∞ [𝑓+, 𝑓−, {𝑧𝑏, 𝑠}] = 𝑒−𝑅∞[𝑓+,𝑓−,{𝑧𝑏,𝑠}],

𝑅∞ [𝑓+, 𝑓−, {𝑧𝑏, 𝑠}] = +1
2

∫
∞

0
d𝑘 ( ̂𝑓+(𝑘) ̂𝑓−(𝑘)) (𝑘 0

0 𝑘) (
̂𝑓∗

+(𝑘)
̂𝑓∗

−(𝑘)
)

− 𝑖
2
√

2
𝑠 ∫

ℝ
d𝑘 ̂𝑓𝑏(𝑘),

(4.93)

where the contribution of the zero mode has been omitted and ̂𝑓𝑏(𝑘) is the correspond-
ing boundary function of whichever boundary the spin is located at. We can then apply

the rules (4.70), (4.73) and (4.76), which were derived in a Δ-independent fashion, to
conclude that the boundary of the strip at which the spin sits remains in the 𝑠 = 1

2
rep-

resentation. Similar expressions are obtained whenever we have several spins within

the strip, the only contributions surviving the infinite width limit being the boundary

ones. We can hence see that in this limit, the virtual space representation is com-

pletely dominated by whichever spin is located exactly at the boundary. It is, hence,

non-trivial and carries the representation label of the spin itself.

When considering the case of finite Δ, we can only detect when one representation
is favored by parameterizing the spin insertions by their distance away from the trans-

lation symmetric configuration. Let us take the case of two insertions, whose positions

are parameterized by 𝑧1 = 𝑖𝜋𝑎 − 𝑖𝜋Δ
4

∓ 𝑖𝜋𝛿 and 𝑧2 = 𝑖𝜋𝑎 + 𝑖𝜋Δ
4

± 𝑖𝜋𝛿, where the term
𝑖𝜋𝑎 is there to ensure our choice of coordinate axis for the insertions do not matter.
With these explicit positions, the 2-spin functional reads

(
𝑖𝜇
√

2
)

𝑠1𝑠2
2

(cos(𝛿𝜋
Δ

) ± sin(𝛿𝜋
Δ

))
𝑠1𝑠2

2 𝒜∗
Δ, (4.94)

where 𝒜∗
Δ we mean the two-strip functional without the interaction term between the

spins, that is, without the last line of equation (3.80). We can then check which values

of 𝛿 maximize this expression and how these relate to the different phases. We can see
that whenever the spins have opposite value

𝑠1𝑠2
2

= −1, the Equation (4.94) diverges
for 𝛿 = ±Δ

4
, which exactly corresponds to the configuration presented in Equation

(??). These positions correspond to the spins meeting at the center of the system, and
as we have seen, this situation corresponds to the virtual space trivializing. Once we

close the strip, the charge-neutrality condition prevents the strip with
𝑠1𝑠2

2
= +1 from

contributing. However, we can still see which representations are favored in this case.

We find that the maximum happens as well for 𝛿 = ±Δ
4
, in which case the functional

simply inherits the representation of the spin closest to each boundary, as that is the

dominant term as we take theΔ → ∞ limit. Thus, we see that as soon as the insertions
depart from the perfect spacing, one of the two representations immediately becomes

favored, depending on which pairing is encouraged.
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Figure 4.2: Schematic representation of the two possible configurations of dimer states

We can now take the spin configuration on the left of Figure 4.1 a step further for the

case in which we have more than two spins. Let us start with four spins and consider

the limit 𝑧1 → 𝑧2 and 𝑧3 → 𝑧4, which corresponds to a situation like in equation (??).
If the distance between any two spins is denoted by 𝑧𝑖 − 𝑧𝑗 = 𝑧𝑖𝑗, in the limit where

𝑧12, 𝑧34 → 0 the four-spin functional becomes

2𝛿𝑠1,−𝑠2
𝛿𝑠3,−𝑠4

𝜇√𝑧12
√𝑧34

𝕀Δ[𝑓+, 𝑓−] +
𝛿𝑠1,𝑠2

𝛿𝑠3,𝑠4
𝛿𝑠1,−𝑠3

𝜇√𝑧12
√𝑧34

2
𝒜Δ [𝑓+, 𝑓−, {𝑧∗

𝑖 , 2𝑠∗
𝑖}

2
𝑖=1] ,

where 𝑧∗
𝑖 are the positions at which the different pair of spins meet, and 𝑠∗

𝑖 is the value

of any of the two original spins of the pair. The dominant term is the expected identity

in the virtual space as it arises from the charge neutrality condition. However, having

two pairs allows for the individual pairs not to have opposite spin values but for the

different pairs to compensate for each other’s sign, and thus, a new sub-leading term

can arise. This sub-leading term corresponds exactly to a strip containing two spins of

higher value, and thus, a state constructed out of this term falls into a higher SU(2)

spin representation from the original one.

The different limits explored in this section are useful as they also correspond to

the two distinct topological ground states of the Majumdar-Ghosh [211] point of the

𝐽1 − 𝐽2 Heisenberg model on an even number of sites 𝑁, defined by

ℋ𝐽1,𝐽2
=

𝑁

∑
𝑖=1

(𝐽1
⃗𝑆𝑖 ⋅ ⃗𝑆𝑖+1 + 𝐽2

⃗𝑆𝑖 ⋅ ⃗𝑆𝑖+2) , (4.95)

where ⃗𝑆𝑖 is the spin operator on the 𝑖th-site and periodic boundary conditions are as-
sumed. This model hosts an exactly solvable point at

𝐽2
𝐽1

= 0.5 in which it is known
that the exact ground states are the two dimerized states, also known as an RVB con-

figuration [212]. These states can be schematically represented on a 1-dimensional

chain as in Figure 4.2. In the left figure, we see a potential dimerization configuration,

in which all spins maximally entangle themselves with either of its two neighbors,

whilst the other configuration is concerned with the other possible choice. We wish to

establish a parallel to these two configurations with the limits found in Figure 4.1.

In [44], the connection between fTNS and this model was established. With our re-

sults, we can now tell apart the two dimerized ground states based only on symmetry

considerations, analogous to the treatment of the AKLT model with MPS [213, 214].

Indeed, the first dimerized configuration corresponds to the left of Figure 4.1 but for 𝑁

117



4.4 Outlook

pairs of spins, in which we have seen that the dominant contribution carries the trivial

representation on its virtual space. On the other hand, the opposite dimerized config-

uration, corresponding to the opposite pairing, will host a pair of spins on the edges

that will carry a non-trivial representation, which we identify with the topologically

inequivalent ground state. Therefore, it seems like we can understand SPT order in the

context of a gapless model with fMPS while utilizing the same logic of MPS techniques.

Before concluding, we should elaborate onwhat wemean by two fTNS corresponding

to distinct critical SPT phases. While we can check which 𝑆𝑈(2)-representation lies
on the virtual space, a priori, it could be possible that by redefining the parameters of

the fTNS, such as the boundary functions 𝑓+(𝑘), 𝑓−(𝑘) or its width Δ, we could map
to a different representation. We can easily see that a redefinition of the boundary

functions alone is not enough to change the representation since the new functions
̃𝑓+(𝑘), ̃𝑓−(𝑘) must still be square-integrable by definition. If we take a look at the last
term of Equation (3.78), we note that the spin representation is determined by the term

𝑠𝑖𝑒𝑖𝑘𝑧𝑖. In order to change the representation, the new function would need to change

this term, and since it is exponential, it would be impossible for it to remain in 𝕃2(ℝ).
The only way in which this term could be absorbed would be if the width of the

strip after the map Δ̃ were to be such that the function remained integrable or if it
simply changed the 𝑠𝑖 directly. However, there is no way to redefine the functions in a

way that simultaneously keeps the boundary functions in 𝕃2(ℝ) and keeps the sewing
condition of Equation (3.80) intact. Thus, the only way in which a fTNS can change

its representation is with the value and position of the spin that it represents. Conse-

quently, we can call inequivalent two fTNSs which describe different spin representa-

tions as they can not be mapped into one another by a redefinition of the parameters

of the virtual space.

4.4 Outlook

In this Chapter, we have provided evidence that the theory of MPS can be translated

to fMPS, allowing us to preserve our intuition from TNS in a realm in which it was

previously impossible to do so analytically. To establish a parallel with the standard

theory of SPT phase classification of MPS, we have derived the relation between the

finite representation of SU(2) on the physical index of a fTNS and its corresponding

representation as functional conformal charges on the virtual space. We have used

this construction to identify the different topological properties of the two distinct

ground states of the Majumdar-Ghosh point of the 𝐽1 − 𝐽2 model. The way in which

we understand these different groundstates draws intuition and mimics the theory of

standard MPS, which was our departing goal for this project. Ultimately, we wish to

further understand fTNS as a generalization of TNS in any dimension, but such that we

can still retain most of the knowledge and structure of the theory of TNS. Therefore,

understanding the simplest case of a 1-dimensional system was the first successful

stepping stone in this direction.

As possible, new open directions and interesting computations in the context of sym-

metric models that can be suitably represented by 1-dimensional fMPS we propose :

1. Computing the fMPS corresponding to one of the simplest fermionic actions, the

𝑐 = 1
2
CFT, commonly known as the Majorana fermion. This theory also has a
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simple description in terms of a linear action, and therefore, the techniques de-

veloped for the free boson fMPS should apply as well. In fact, a theory of 𝑁 real
fermions constitutes an example of the 𝔰𝔬(𝑁)1 WZW model, and therefore, an-

other model in which one could also ask questions about the extended symmetry

of the CFT and its connection to the physical symmetry of the spin.

2. When it comes to the study of symmetries, another potentially interesting and

simple model would be the ghost model [37]. Although its connection to real

physical systems is much more limited and serves more as an academic example,

it is known from the Wakimoto free field representation of WZWmodels that any

Lie algebra 𝔤 can be constructed out of a number of free bosons and pairs of ghost
systems [37]. Therefore, the study of the ghost system alone would represent a

stepping stone in order to develop the free field fMPS representation of a generic

WZW theory and, therefore, of any generic virtual extended symmetry.

3. In chapter 3 we have also seen the construction of fPEPS and therefore a natural

question would be whether we can also translate the theory of PEPS to fPEPS. As

we have seen in Chapter 2, the study of topological order with PEPS involves only

virtual symmetries of the tensor. Therefore, in the context of fPEPS we would

first need to find an operator in the context of the CFT that leaves the vertex

operators within the correlators invariant. From there, one can start constructing

the analogous symmetry operators of PEPS by breaking down and representing

the CFT operator as fTNSs as well. This and other questions related to fPEPS are

already being explored in one of the upcoming works mentioned at the beginning

of this thesis.

4. Finally, a description of fTNS in the basis of Cardy states [167] would also con-

stitute a valuable upgrade in the context of the study of symmetries. Such a

representation would allow to describe symmetries of CFTs without the need to

translate them into a functional tensor, removing, for instance, the need to con-

sider them as distributional objects. As we mentioned in the Outlook of Chapter

3, such a representation would also allow for the study of, even if not exactly,

non-Gaussian and more complicated CFTs, as was done in [140].
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5 cTNS results

Throughout this thesis, we have focused on providing new TN ansatzes for spin systems,

such that these can exactly describe systems previously out of reach for TN techniques.

To do so, we have focused on describing the virtual space by means of a field theory,

therefore studying an infinite-dimensional virtual space and, thus, a possible notion

of a continuum theory. A very natural question would be the following: how would

a TN ansatz look if the target physical system of study was not a discrete spin system

or generically a system with a local finite Hilbert space? Could one provide an ansatz

targeting already continuous theories, such as QFTs?

Naturally, this question has already been answered in 1-dimensional non-relativistic

systems, leading to the ansatz known as continuous MPS (cMPS) [184],[215]. This

ansatz constitutes the first example of a TN approach to the analytical description

of a QFT using an optimization over a virtual space. Particular of cMPS is that the

variational space remains finite-dimensional, allowing for variational optimization of

the groundstates of interacting theories in external potentials [216] or even the time

evolution of an interacting Bose gas as shown in [217]. Another possible extension of

1-dimensional TNS is found in continuous MERA (cMERA) [218], in which a similar

theoretical generalization as in cMPS was carried out for the MERA architecture [219].

cMERA has also been successfully used in several scenarios, such as in the description

of Chern insulators [220] or for conformal field theories with boundaries and defects

[221].

Despite the success of 1-dimensional systems, attempts to extend TNS theory to the

continuum in higher dimensions have proven to be challenging. A naive extension

faces the issue of a preferred temporal direction and, therefore, the breaking of Eu-

clidean invariance, a symmetry paramount for non-relativistic QFTs. Although the

most prominent extension that solved this problem is the one found in [222], one can

show that this extension is no longer the limit to the continuum of a finite TNs [223].

The lack of a satisfactory extension to higher dimensional systems that followed a

TN approach motivated the authors of [185] to provide the first continuous TN ansatz

in higher dimensions, which was named a continuous Tensor Network state (cTNS).

cTNS are shown to be a genuine continuum limit of a finite TNs that retain Euclidean

invariance, and they can be shown to reduce to cMPS for 1-dimensional systems. De-

spite a very elegant theoretical construction, there have not been as many numerical

results that explore their applications for physical systems. The main result so far has

been a variational optimization over Gaussian bosonic states [224].

Although cTNS is a very recent theoretical development, its applicability to physical

systems remains largely unexplored numerically or analytically. This lack of explo-

ration is precisely the starting point that motivates our question for this Chapter:
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Is it possible to analytically find a suitable use-case scenario to show that cTNS has a

theoretical advantage over other ansatzes? Can we use the theory of TNS, mainly the

bulk-boundary correspondence, to obtain new analytical insights into the correlation

functions of interacting QFTs?

5.1 Definition of continuous TNS

Continuous TNS (cTNS) are intuitively defined as an ansatz that couples a virtual QFT

to the target physical QFT, such that one can compute correlations of the latter via the

correlations of the former. To define such a state, one must first define all the param-

eters of both QFTs. Let the pair (ℳ, 𝑔) denote a 𝑑-dimensional orientable Riemannian
manifold with a boundary 𝜕ℳ and metric tensor 𝑔. Let𝐷 be a positive integer to which
we will refer as the bond field dimension, whose purpose is to quantify the number of

virtual fields present in the virtual QFT. Let 𝑉 and 𝛼𝑖, for 𝑖 = 1, … , 𝑁 be complex-valued
functions on ℝ𝐷, and let 𝐵 be a complex-valued functional on 𝐿2(𝜕𝔐) that specifies
the boundary conditions. These three functions, 𝑉 , 𝛼𝑖, 𝐵, serve as the variational pa-
rameters that act as the ”optimization” parameters for the virtual QFT.

A cTNS with a bosonic virtual QFT is then defined, slightly more generally than in

[185], by a path integral of a 𝐷-component virtual bosonic field 𝜙:

|𝑉 , 𝐵, {𝛼𝑖}⟩ = ∫
ℳ

𝒟𝜙𝐵 (𝜙∣𝜕ℳ) exp{− ∫
ℳ

𝑑𝑑𝑥
√

𝑔 (1
2

𝐷

∑
𝑘=1

𝑔𝜇𝜈𝜕𝜇𝜙𝑘𝜕𝜈𝜙𝑘 + 𝑉 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)]

−
𝑁

∑
𝑖=1

𝛼𝑖 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)] 𝜓†
𝑖 (𝑥))} |0⟩,

(5.1)

where |0⟩ is the Fock vacuum state of the physical theory, and [𝜓𝑖(𝑥), 𝜓†
𝑗(𝑦)] = 𝛿𝑖𝑗𝛿𝑑(𝑥−

𝑦), so that 𝜓𝑖(𝑥) are the 𝑁 usual bosonic field operators of the physical theory. The
virtual field 𝜙 over which the path integral sums should be interpreted as the bond
dimension degree of freedom that is known from usual TNs. If both 𝑉 and the 𝛼𝑖’s do

not depend explicitly on 𝑥 ∈ ℳ, then the cTNS is translationally invariant. As seen
in Equation (5.1) The function 𝑉 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)] acts as the ”potential” term of the
action of the virtual QFT, while the 𝛼𝑖[𝑥, 𝜙(𝑥), ∇𝜙(𝑥)] serve as the coupling between
the physical and the virtual QFTs. Each of the terms 𝛼𝑖 couples the virtual QFT to

each physical field 𝜓𝑖. Finally, the functional 𝐵 serves as the boundary condition for
the virtual QFT, meaning that if 𝜕ℳ = ∅, then it can be simply set to 𝐵(𝜙|𝜕ℳ) = 1,
making the virtual QFT live in a compact space such as a surface with genus 𝜒. If the
spaceℳ is compact, then one needs to specify Dirichlet, Neumann, or more arbitrary

boundary conditions as shown in [185].

In the simplest case,ℳ is taken to be just a simple subset of Euclidean space (i.e., a
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non-empty connected open set) Ω ⊆ ℝ𝑑. In this case

|𝑉 , 𝐵, {𝛼𝑖}⟩ = ∫𝒟𝜙𝐵 (𝜙∣𝜕Ω) exp{− ∫
Ω

𝑑𝑑𝑥 (1
2

𝐷

∑
𝑘=1

[∇𝜙𝑘(𝑥)]2 + 𝑉 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)]

−
𝑁

∑
𝑖=1

𝛼𝑖 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)] 𝜓†
𝑖 (𝑥))} |0⟩,

(5.2)

The above state can be written equivalently in the form

|𝑉 , 𝐵, {𝛼𝑖}⟩ = ∫ 𝑑𝜇(𝜙)𝒜𝑉(𝜙)|𝛼(𝜙)⟩, (5.3)

with 𝑑𝜇(𝜙) being the massless free probability measure for 𝜙

𝑑𝜇(𝜙) = 𝒟𝜙 exp(−1
2

∫
Ω

𝑑𝑑𝑥
𝐷

∑
𝑘=1

[∇𝜙𝑘(𝑥)]2) , (5.4)

the operator within the path integral is given by

𝒜𝑉(𝜙) = 𝐵 (𝜙∣𝜕Ω) exp{− ∫
Ω

𝑑𝑑𝑥𝑉 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)]} , (5.5)

and

|𝛼(𝜙)⟩ = exp{∫
Ω

𝑑𝑑𝑥
𝑁

∑
𝑖=1

𝛼𝑖 [𝑥, 𝜙(𝑥), ∇𝜙(𝑥)] 𝜓†
𝑖 (𝑥)} |0⟩, (5.6)

which is nothing but a coherent state of the physical theory. One can, therefore, inter-

pret a cTNS in terms of a path integration over all possible coherent state configurations

of the physical QFT weighted by the dynamics and coupling of the virtual QFT. If one

wished to now describe a generic state |𝜓⟩ of the bosonic Fock space ℱ[𝐿2(ℝ2, ℂ)]𝐷,
then one begins by expanding it into the basis of 𝑛-particle wavefunctions

|𝜓⟩ =
+∞

∑
𝑛=0

∫
Ω𝑛

𝑑𝑥1...𝑑𝑥𝑛
𝜑𝑛(𝑥1, ..., 𝑥𝑛)

𝑛!
𝜓†

𝑖 (𝑥1)...𝜓†
𝑗(𝑥𝑛)|0⟩, (5.7)

where the state of the Fock space could involve the different physical bosonic species

𝜓𝑖. Each of the 𝑛-particle wavefunctions can be computed by expanding the exponen-
tial in Equation (5.3) to obtain

𝜑𝑛(𝑥1, ..., 𝑥𝑛) = ∫ 𝑑𝜇(𝜙)𝒜𝑉(𝜙)𝛼𝑖[𝜙(𝑥1)]...𝛼𝑗[𝜙(𝑥𝑛)], (5.8)

where we interpret the wave function of the physical theory as a correlator of the

coupling operators of the virtual theory. As shown in [185], one can see that the

computation of correlation functions involves the product of 𝛼𝑖 with itself inside of

the exponential, and thus, any dependence above linear dependence on the field will

introduce non-Gaussianities into the theory.

While the state presented in Equation (5.1) is more intuitively understood from the

field theory perspective, we wish to establish a closer parallel to the language found in
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5.1 Definition of continuous TNS

Figure 5.1: Diagram of the operator representation of the cTNS ansatz. In the left we can

identify a standard tensor network, where the virtual space is colored orange and the physical

space light blue. After taking the continuum limit, they become two coupled QFTs on the right

figure. The presented cTNS on the right has open boundary conditions denoted by the |in⟩ and
|out⟩.

TN theory. Such a representation was already provided in [185], where they showed

that an equivalent operator representation exists for any given cTNS defined on the

previous domains. As in any Hamiltonian representation of a theory, a specific direc-

tion needs to be chosen as the ”time” direction so that we can define the Hamiltonian

operator in charge of evolving the theory. To this end, we will suppose that the domain

is of the form Ω = [−𝑇
2
, 𝑇

2
] × 𝑆 with 𝜕𝑆 = ∅. It is helpful to build intuition from one of

the more intuitive examples of such an Ω, which would be a finite cylinder, where 𝑆
would be the compact direction and 𝑇 would be the total length/height of the cylinder.
Then, the operator representation of cTNS is given by

|𝑉 , 𝐵, {𝛼𝑖}⟩ =

tr{𝐵̂𝒯 exp[− ∫
𝑇
2

− 𝑇
2

𝑑𝜏 ∫
𝑆

𝑑 ⃗𝑥 (ℋ(𝜏, ⃗𝑥) −
𝑁

∑
𝑖=1

𝛼𝑖[𝜏 , ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)]𝜓†
𝑖 (𝜏, ⃗𝑥))]} |0⟩,

(5.9)

with

ℋ(𝜏, ⃗𝑥) =
𝐷

∑
𝑘=1

(
[ ̂𝜋𝑘( ⃗𝑥)]2

2
+

[∇ ̂𝜙𝑘( ⃗𝑥)]2

2
)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℋ0(𝑥⃗)

+𝑉 [𝜏, ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)], (5.10)

where 𝒯 is the 𝜏-ordering operator, and ̂𝜋𝑘 are the conjugate momentum of
̂𝜙𝑘 acting

on 𝐷 copies of the virtual 𝑑 − 1 dimensional bosonic Fock space, ℱ[𝐿2(𝑆, ℂ)]𝐷, over
which the above trace is taken, i.e.

[ ̂𝜙𝑘( ⃗𝑥), ̂𝜋𝑙( ⃗𝑦)] = 𝑖𝛿𝑘𝑙𝛿𝑑−1( ⃗𝑥 − ⃗𝑦). (5.11)

It is important to stress that both variational functions 𝑉 and 𝛼𝑖’s may depend on

both ⃗𝑥 and 𝜏 in the most general setting. Restricting them not explicitly to depend on
either of these parameters would make the cTNS translationally invariant and as in

the previous representation, the operator 𝐵̂ implements boundary conditions on the
virtual theory. The natural condition for a 𝜏-invariant theory would be 𝐵̂ = 𝕀, but a
condition that is also very interesting would be 𝐵̂ = |in⟩⟨out|. The latter boundary
condition turns the trace operator into the correlator between a |in⟩ and |out⟩ state of
the virtual theory. Diagrammatically, we can see this representation as in the right

of Figure 5.1, where both virtual and physical QFTs are depicted with a solid color

on top of the geometry of Ω. As in the coherent state representation, the 𝑛-particle
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5.1 Definition of continuous TNS

wavefunction is now computed as

𝜑𝑛 = tr [𝐵̂ ̂𝐺𝜏𝑛, 𝑇
2

̂𝛼𝑗(𝜏𝑛, ⃗𝑥𝑛) ̂𝐺𝜏𝑛−1,𝜏𝑛
... ̂𝐺𝜏1,𝜏2

̂𝛼𝑖(𝜏1, ⃗𝑥1) ̂𝐺− 𝑇
2 ,𝜏1

] , (5.12)

where ̂𝛼𝑖(𝑡𝑘, ⃗𝑥𝑘) = 𝛼 [𝜏𝑘, ⃗𝑥𝑘, ̂𝜙( ⃗𝑥𝑘, ̂𝜋( ⃗𝑥𝑘))] and ̂𝐺𝑢,𝑣 = 𝒯 exp (− ∫𝑣
𝑢 𝑑𝜏 ∫𝑆 𝑑 ⃗𝑥ℋ( ⃗𝑥)). The

interpretation of Equation (5.12) is as follows. To compute the 𝑛-particle wavefunction
of physical fields 𝜓𝑖(𝑥𝑖), one computes the trace over the coupling operators of the
virtual space, where the virtual space is first initialized in some initial state |in⟩. Then,
the virtual space is evolved with the virtual evolution operator ̂𝐺− 𝑇

2 ,𝜏1
from its initial

time −𝑇
2
to the time of the physical field insertion 𝜏1. At that time, the corresponding

coupling operator ̂𝛼𝑖 is evaluated, and the procedure is repeated until we reach the

final boundary condition of the virtual space |out⟩. To compute correlation functions,
field theory tells us to evaluate the generating functionals with currents given by

𝒵𝑗′,𝑗 =
⟨𝑉 , 𝐵, {𝛼𝑖}| exp (∫𝑆 𝑑 ⃗𝑥 ∑𝑁

𝑖=1 𝑗′
𝑖( ⃗𝑥)𝜓†

𝑖 ( ⃗𝑥)) exp (∫𝑆 𝑑 ⃗𝑥 ∑𝑁
𝑖=1 𝑗𝑖( ⃗𝑥)𝜓𝑖( ⃗𝑥)) |𝑉 , 𝐵, {𝛼𝑖}⟩

⟨𝑉 , 𝐵, {𝛼𝑖}|𝑉 , 𝐵, {𝛼𝑖}⟩
.

(5.13)

We can write this functional in the operator representation with

𝒵𝑗′,𝑗 = tr[𝐵̂ ⊗ 𝐵̂∗ exp{∫
𝑇 /2

−𝑇 /2
d𝜏𝕋𝑗′,𝑗(𝜏) − ∫

𝑆
d ⃗𝑥

𝑁

∑
𝑘=1

𝑗𝑘( ⃗𝑥)𝑗′
𝑘( ⃗𝑥)}] , (5.14)

which we have used to introduce the definition of the transfer operator with sources

𝕋𝑗′,𝑗(𝜏) given by

𝕋𝑗′,𝑗(𝜏) = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ(𝜏, ⃗𝑥) ⊗ 𝕀 − 𝕀 ⊗ ℋ∗(𝜏, ⃗𝑥)

+
𝑁

∑
𝑖=1

(𝛼𝑖[𝜏 , ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)] + 𝑗′
𝑖( ⃗𝑥)) ⊗ (𝛼𝑖[𝜏 , ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)]∗ + 𝑗𝑖( ⃗𝑥))) .

(5.15)

One can intuitively think of the transfer operator 𝕋 as the operator that generates the
time evolution of both the ’bra’ and the ’ket’ part of the correlator simultaneously

between a time 𝜏 and 𝜏 + 𝑑𝜏. A couple of examples are now in order.
First, the norm of |𝑉 , 𝐵, 𝛼⟩ in the denominator of Equation 5.14 will be computed
in the operator representation as

⟨𝑉 , 𝐵, {𝛼𝑖}|𝑉 , 𝐵, {𝛼𝑖}⟩ = tr[𝐵̂ ⊗ 𝐵̂∗ 𝒯 exp(∫
𝑇
2

− 𝑇
2

𝑑𝜏 𝕋(𝜏))] , (5.16)

where the source-less transfer operator 𝕋 has been introduced

𝕋(𝜏) = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ(𝜏, ⃗𝑥) ⊗ 𝕀 − 𝕀 ⊗ ℋ∗(𝜏, ⃗𝑥) +
𝑁

∑
𝑖=1

𝛼𝑖[𝜏 , 𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)] ⊗ 𝛼𝑖[𝜏 , ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)]∗) .

(5.17)

We see that the norm of a state is nothing but the expectation value of the identity

operator, therefore performing the trace over the evolution of the virtual space without

any insertion of the coupling functions 𝛼𝑖’s.
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5.2 The bulk-boundary correspondence of cTNS

Our second example is a simple 2-body correlator of the physical theories, e.g.,

⟨𝜓†
𝑖 (𝑥)𝜓𝑘(𝑦)⟩ = 𝛿

𝛿𝑗′
𝑖(𝑥)

𝛿
𝛿𝑗𝑘(𝑦)

𝒵𝑗′,𝑗∣
𝑗𝑘,𝑗′

𝑖=0

. (5.18)

This correlator will be computed using the operator representation of the virtual space

as

⟨𝜓†
𝑖 (𝑥)𝜓𝑘(𝑦)⟩ = tr [𝐵̂ ⊗ 𝐵̂∗ℳ𝑇 /2,𝜏2

(𝕀 ⊗ 𝛼∗
𝑖 [𝜏2, ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)])ℳ𝜏2,𝜏1

× (𝛼𝑘[𝜏1, ⃗𝑦, ̂𝜙( ⃗𝑦), ̂𝜋( ⃗𝑦)] ⊗ 𝕀)ℳ𝜏1,−𝑇 /2] ,
(5.19)

where 𝑥 = (𝜏2, ⃗𝑥) and 𝑦 = (𝜏1, ⃗𝑦) andℳ𝑢,𝑣 = 𝒯 exp [∫𝑢
𝑣 𝑑𝜏𝕋(𝜏)], the propagator oper-

ator of the virtual theory in the virtual field theory. We can interpret Equation (5.19)

the same way that we interpreted Equation (5.12), in which each physical field is im-

plemented in the virtual space trace through the couplings 𝛼𝑖´s.

With these tools, in [224], some correlators of simple quadratic and quartic bosonic

theories were numerically studied. The authors showed that the manifold of Gaus-

sian cTNSs provides arbitrarily accurate approximations to the ground states of the

quadratic Hamiltonians and decent estimates for quartic ones at weak coupling. Ad-

ditionally, since they captured the short-distance behavior of the theories in a very

precise manner, they showed that Gaussian cTNSs even allow one to renormalize away

simple divergences variationally. As of today, this result is the only one that provides

evidence that cTNS is an advantageous numerical tool with which to study further

QFTs.

This lack of exploration stands in contrast to the many studies performed with

cMPS such as [217],[225] or [216], which are made possible because cMPSs are

parametrized by finite matrices, and can therefore more easily be variationally op-

timized. Given how it was shown in [185] that cTNS reduces to cMPS in the 1-

dimensional limit, is it somehow possible to harness the numerical power of cMPS

to study higher dimensional systems described by cTNS?

As we have seen in Chapter 2, this question already has an answer in the context

of PEPS. In [125], the authors provided an exact duality transformation between the

bulk of a quantum spin system, described by a PEPS, and its boundary given as an

MPS. The duality associates to every region a Hamiltonian on the boundary, in such a

way that the bulk’s entanglement spectrum corresponds to the boundary Hamiltonian’s

excitation spectrum. In short, for every PEPS, there exists a dual description in terms

of its boundary MPS. Finally, our question is, under which conditions can we find a

similar result for cTNS?

5.2 The bulk-boundary correspondence of cTNS

5.2.1 Fixed points of the transfer operator and its

Lindblad form

To tackle the question, let us first understand the transfer operator’s structure, specif-

ically its fixed point. We will assume that 𝕋 is 𝜏-independent and that it has a single
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5.2 The bulk-boundary correspondence of cTNS

non-degenerate eigenstate 𝜆0 that has the biggest positive real part. If |𝑅0) and |𝐿0)
are the respective right and left eigenvectors such that

𝕋|𝑅0) = 𝜆0|𝑅0) (𝐿0|𝕋 = (𝐿0|𝜆0, (5.20)

then

𝑒𝑇 𝕋 = ∑
𝑗

𝑒𝑇 𝜆𝑗|𝑅𝑗)(𝐿𝑗| = 𝑒𝑇 𝜆0 ∑
𝑗

𝑒𝑇
ℜ(⋅)<0

⏞(𝜆𝑗−𝜆0)|𝑅𝑗)(𝐿𝑗| = 𝑒𝑇 𝜆0 ∑
𝑗

𝜁𝑇
𝑗 |𝑅𝑗)(𝐿𝑗|, (5.21)

with |𝜁𝑗| < 1. Therefore, in the limit 𝑇 → ∞ we get

𝑒𝑇 𝕋 → 𝑒𝑇 𝜆0|𝑅0)(𝐿0|, (5.22)

and as a result, the computation of the norm of cTNS would be reduced to

‖|𝑉 , 𝐵, {𝛼𝑖}⟩‖2 = 𝑒𝑇 𝜆0(𝐿0|𝐵̂ ⊗ 𝐵̂∗|𝑅0), (5.23)

in the fixed-point limit. Ifℋ is bounded from below, then one can rescale the Hamilto-
nian of the virtual cTNS without loss of generality to make 𝜆0 = 0. The most important
concept to take away from this computation is that the fixed-point limit replaces the

computation of the trace of cTNS with the correlator of the fixed points of the trans-

fer operator. This procedure significantly reduces the complexity of the computation

of any correlator with cTNS, but of course, the complexity of the computation gets

relegated to finding such fixed points.

As will be shown in [3], one can show that a cTNS is in Lindblad form if

∫
𝑆

𝑑 ⃗𝑥ℋ( ⃗𝑥) + ℋ∗( ⃗𝑥) = ∫
𝑆

𝑑 ⃗𝑥
𝑁

∑
𝑖=1

𝛼∗
𝑖𝛼𝑖. (5.24)

in which case the coupling functions 𝛼𝑖 correspond to the jump operators of the Lind-

bladian. Working on the basis of the Lindbladian would provide us with certain an-

alytical guarantees about the behavior of the fixed points, such as their existence as

groundstates of local gapped Hamiltonians under certain conditions [226]. However,

working on the basis in which the cTNS has the Lindblad form comes with caveats.

Let us see this problem using an example: the real massive boson. We consider

here the bosonic virtual field theory with a single real bosonic species given by the

Hamiltonian

H𝑓𝑏 = ∫
𝑆

𝑑 ⃗𝑥 ∶ ℋ𝑓𝑏( ⃗𝑥) ∶ , (5.25)

with

ℋ𝑓𝑏( ⃗𝑥) =
[ ̂𝜋( ⃗𝑥)]2

2
+

[∇ ̂𝜙( ⃗𝑥)]2

2
+ 1

2
𝑚2[ ̂𝜙( ⃗𝑥)]2, (5.26)

and where ∶ ∶ is the normal ordering with respect to the momentum modes.
The goal is to find 𝛼𝑖 s.t. the cTNS is in the Lindblad form. It is the case if and only

if

2H𝑓𝑏 = ∫
𝑆

𝑑 ⃗𝑥
𝑁

∑
𝑖=1

𝛼∗
𝑖𝛼𝑖, (5.27)
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where 𝛼𝑖 = 𝛼𝑖[ ⃗𝑥, ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑥)], because we assume the bosonic field to be real ̂𝜙∗ = ̂𝜙.
Because the theory is quadratic and thus free, we can use the momentum expansion of

the operators, which is given by

̂𝜙( ⃗𝑥) = 1
(2𝜋)

𝑑−1
2

∫ 𝑑𝑘⃗

√2𝜔(𝑘⃗)
(𝑒𝑖𝑘⃗⋅𝑥⃗ ̃𝜙(𝑘⃗) + 𝑒−𝑖𝑘⃗⋅𝑥⃗ ̃𝜙∗(𝑘⃗)) , (5.28)

and

̂𝜋( ⃗𝑥) = 1
𝑖(2𝜋)

𝑑−1
2

∫ 𝑑𝑘⃗√𝜔(𝑘⃗)
2

(𝑒𝑖𝑘⃗⋅𝑥⃗ ̃𝜙(𝑘⃗) − 𝑒−𝑖𝑘⃗⋅𝑥⃗ ̃𝜙∗(𝑘⃗)) , (5.29)

with 𝜔(𝑘⃗) = √𝑘⃗2 + 𝑚2.

The next step is to insert both Equations (5.28) and (5.29) into Equation (5.27). The

first step is then to compute

∫
𝑆

𝑑 ⃗𝑥 [𝜋( ⃗𝑥)]2 = ∫ 𝑑𝑘⃗
𝜔(𝑘⃗)

2
( ̃𝜙(𝑘⃗) ̃𝜙∗(𝑘⃗) + ̃𝜙∗(𝑘⃗) ̃𝜙(𝑘⃗) − ̃𝜙(𝑘⃗) ̃𝜙(−𝑘⃗) − ̃𝜙∗(𝑘⃗) ̃𝜙∗(−𝑘⃗)) ,

(5.30)

as well as

∫
𝑆

𝑑 ⃗𝑥 ([∇ ̂𝜙( ⃗𝑥)]2 + 𝑚2[ ̂𝜙( ⃗𝑥)]2)

= ∫ 𝑑𝑘⃗
𝜔(𝑘⃗)

2
( ̃𝜙(𝑘⃗) ̃𝜙(−𝑘⃗) + ̃𝜙(𝑘⃗) ̃𝜙∗(𝑘⃗) + ̃𝜙∗(𝑘⃗) ̃𝜙(𝑘⃗) + ̃𝜙∗(𝑘⃗) ̃𝜙∗(−𝑘⃗)) ,

(5.31)

so that then the Hamiltonian is written as

2 ∫
𝑆

𝑑 ⃗𝑥 ℋ𝑓𝑏( ⃗𝑥) = ∫ 𝑑𝑘⃗ 𝜔(𝑘⃗) ( ̃𝜙∗(𝑘⃗) ̃𝜙(𝑘⃗) + ̃𝜙(𝑘⃗) ̃𝜙∗(𝑘⃗)) , (5.32)

and therefore

2H𝑓𝑏 = ∫ 𝑑𝑘⃗ 2𝜔(𝑘⃗) ̃𝜙∗(𝑘⃗) ̃𝜙(𝑘⃗). (5.33)

From (5.29) and (5.28) we can deduce that the momentum modes are given by

̃𝜙(𝑘⃗) = √𝜔(𝑘⃗)
2

1
(2𝜋)

𝑑−1
2

∫
𝑆

𝑑 ⃗𝑥 ̂𝜙( ⃗𝑥)𝑒−𝑖𝑘⃗⋅𝑥⃗ + 𝑖

√2𝜔(𝑘⃗)

1
(2𝜋)

𝑑−1
2

∫
𝑆

𝑑 ⃗𝑥 ̂𝜋( ⃗𝑥)𝑒−𝑖𝑘⃗⋅𝑥⃗, (5.34)

and

̃𝜙∗(𝑘⃗) = √𝜔(𝑘⃗)
2

1
(2𝜋)

𝑑−1
2

∫
𝑆

𝑑 ⃗𝑥 ̂𝜙( ⃗𝑥)𝑒𝑖𝑘⃗⋅𝑥⃗ − 𝑖

√2𝜔(𝑘⃗)

1
(2𝜋)

𝑑−1
2

∫
𝑆

𝑑 ⃗𝑥 ⃗𝜋( ⃗𝑥)𝑒𝑖𝑘⃗⋅𝑥⃗. (5.35)

Then, inserting these expressions into Equation (5.33) one gets

2H𝑓𝑏 = ∫
𝑆

𝑑 ⃗𝑥 ̂𝜋( ⃗𝑥)2 + 1
(2𝜋)𝑑−1 ∫ 𝑑𝑘⃗ ∫

𝑆2
𝑑 ⃗𝑥𝑑 ⃗𝑦 {𝜔(𝑘⃗)2 ̂𝜙( ⃗𝑥) ̂𝜙( ⃗𝑦)𝑒𝑖𝑘⃗⋅(𝑥⃗− ⃗𝑦)

+𝑖𝜔(𝑘⃗)[ ̂𝜙( ⃗𝑥), ̂𝜋( ⃗𝑦)]𝑒𝑖𝑘⃗⋅(𝑥⃗− ⃗𝑦)} .
(5.36)
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To satisfy the requirement that the above expression can be presented in the form

∫𝑆 𝑑 ⃗𝑥
𝑁
∑
𝑖=1

𝛼∗
𝑖𝛼𝑖, it is enough to take 𝑁 = 1 and 𝛼 = 𝛼1 being of the form

𝛼 = 𝑖 ̂𝜋( ⃗𝑥) + ∫
𝑆

𝑑 ⃗𝑦𝐼( ⃗𝑥 − ⃗𝑦) ̂𝜙( ⃗𝑦), (5.37)

with some real-valued symmetric kernel 𝐼( ⃗𝑟). By an explicit use of this ansatz, we
easily get

𝐼( ⃗𝑟) = 1
(2𝜋)𝑑−1 ∫ 𝑑𝑘⃗ 𝜔(𝑘⃗)𝑒𝑖𝑘⃗⋅ ⃗𝑟 = −𝜅

𝑚𝐾1(𝑚| ⃗𝑟|)
| ⃗𝑟|

, (5.38)

where𝐾1 is the modified Bessel function of the second type and 𝜅 a numerical constant.
Finally,

𝛼 = 𝑖 ̂𝜋( ⃗𝑥) − 𝑚𝜅 ∫
𝑆

𝑑 ⃗𝑦
𝐾1(𝑚| ⃗𝑥 − ⃗𝑦|)

| ⃗𝑥 − ⃗𝑦|
̂𝜙( ⃗𝑦), (5.39)

and this is the Lindblad operator for the free massive boson. Here, we see that the

coupling operator in the Lindblad form is highly non-local, and therefore, it will be

tough to provide any details about the fixed point of such a highly non-local open

QFT. Interestingly, this choice of basis for this model has already been used in the

context of cMPS [227] to provide a relativistic use-case scenario, even though it was

derived in a completely different way.

5.2.2 The transfer operator in Hamiltonian form

We have seen that the Lindblad form of cTNS yields highly non-local couplings, which

does not simplify the task of finding the fixed points of 𝕋, regardless of the analytical
guarantees about the properties of the fixed points. To simplify this task, we attempt to

interpret the transfer operator 𝕋 instead as a new Hamiltonian on the double bosonic
Fock space, which we denote byℋ𝕋 and call the boundary hamiltonian, following the

standard approach known from quantum theory. Before discussing the general prob-

lem of which bulk virtual Hamiltonians in cTNS form yield neat boundary Hamiltonian

forms for the transfer operator, we begin with some motivating results.

The sine-Gordon and Toda models as boundary Hamiltonians

We start from the operator representation of cTNS as shown in Equation (5.9). Our first

choice will be that the virtual QFT is a single virtual massless free real ( ̂𝜙( ⃗𝑥) = ̂𝜙∗( ⃗𝑥))
boson, and therefore 𝐷 = 1. The Hamiltonian then reads

ℋ0( ⃗𝑥) =
[ ̂𝜋( ⃗𝑥)]2

2
+

[∇ ̂𝜙( ⃗𝑥)]2

2
. (5.40)

To fully specify the cTNS, we also need to choose the couplings to the physical theory

𝛼𝑖’s, and this is the key choice that achieves the interesting bulk-boundary correspon-

dence. We will choose the virtual field theory to be coupled to a physical theory

consisting of two physical species. Therefore, we choose the last term of the exponent

of Equation (5.9) to be

2

∑
𝑖=1

𝛼𝑖[ ̂𝜙( ⃗𝑥)]𝜓†
𝑖 (𝜏, ⃗𝑥) = 𝜇𝑒𝑖𝛽 ̂𝜙(𝑥⃗)𝜓†

1(𝜏, ⃗𝑥) + 𝜇𝑒−𝑖𝛽 ̂𝜙(𝑥⃗)𝜓†
2(𝜏, ⃗𝑥), (5.41)
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where 𝛽, 𝜇 ∈ ℝ. With this specific coupling, the transfer operator of Equation (5.17)
becomes

𝕋 = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ0( ⃗𝑥) ⊗ 𝟙 − 𝟙 ⊗ ℋ∗
0( ⃗𝑥) +

2

∑
𝑖=1

(𝛼𝑖[ ̂𝜙( ⃗𝑥)]) ⊗ (𝛼𝑖[ ̂𝜙( ⃗𝑥)])∗)

= ∫
𝑆

𝑑 ⃗𝑥 (−ℋ0( ⃗𝑥) ⊗ 𝟙 − 𝟙 ⊗ ℋ∗
0( ⃗𝑥) + 𝜇2𝑒𝑖𝛽 ̂𝜙(𝑥⃗) ⊗ 𝑒−𝑖𝛽 ̂𝜙(𝑥⃗) + 𝜇2𝑒−𝑖𝛽 ̂𝜙(𝑥⃗) ⊗ 𝑒𝑖𝛽 ̂𝜙(𝑥⃗)) .

(5.42)

IN what follows, we introduce the notation 𝒪1 = 𝒪 ⊗ 𝟙 and 𝒪2 = 𝟙 ⊗ 𝒪. Thus, we can
rewrite Equation (5.42)

𝕋 = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ1
0( ⃗𝑥) − ℋ2∗

0 ( ⃗𝑥) + 𝜇2𝑒𝑖𝛽( ̂𝜙1(𝑥⃗)− ̂𝜙2(𝑥⃗)) + 𝜇2𝑒−𝑖𝛽( ̂𝜙1(𝑥⃗)− ̂𝜙2(𝑥⃗))) , (5.43)

which leads to

𝕋 = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ1
0( ⃗𝑥) − ℋ2∗

0 ( ⃗𝑥) + 2𝜇2 cos𝛽( ̂𝜙1( ⃗𝑥) − ̂𝜙2( ⃗𝑥))) . (5.44)

The transfer operator acts on the doubled Fock space of the virtual QFT. By defining

a new basis for the joint Fock space as ̂𝜙± = 1√
2
( ̂𝜙1 ± ̂𝜙2) and using the hermiticity of

̂𝜙, we see that the transfer matrix becomes

𝕋 = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ+
0 ( ⃗𝑥) − ℋ−

𝑠𝐺( ⃗𝑥)) . (5.45)

with the sine-Gordon Hamiltonian

ℋ−
𝑠𝐺( ⃗𝑥) = ℋ−

0 ( ⃗𝑥) − 2𝜇2 cos (𝛽
√

2 ̂𝜙−( ⃗𝑥)) . (5.46)

We have positively written the transfer operator in terms of known Hamiltonians

on the coupled Fock space. The specific choice of 𝛼𝑖’s led to the factorization of the

two spaces into a free boson part and a sine-Gordon part. Thanks to this factorization,

some of the correlators of the original field theory can now be easily computed via this

specific cTNS representation. A good example would be given by

⟨𝜓1(𝜏1, ⃗𝑦)𝜓†
2(𝜏2, ⃗𝑥)⟩Phys = Tr [𝐵̂ ⊗ 𝐵̂∗ℳ𝑇 /2,𝜏2

𝛼2∗

2 (𝜏2, ⃗𝑥)ℳ𝜏2,𝜏1
𝛼1

1(𝜏1, ⃗𝑦)ℳ𝜏1,−𝑇 /2]
𝑇 →∞
−−−→

𝜇2⟨𝑒𝑖𝛽 ̂𝜙2(𝜏1,𝑥⃗)𝑒𝑖𝛽 ̂𝜙1(𝜏2, ⃗𝑦)⟩𝑠𝐺⊗0 = 𝜇2⟨𝑒𝑖 𝛽√
2

̂𝜙+(𝜏1,𝑥⃗)𝑒𝑖 𝛽√
2

̂𝜙+(𝜏2, ⃗𝑦)⟩0⟨𝑒𝑖 𝛽√
2

̂𝜙−(𝜏1,𝑥⃗)𝑒𝑖 𝛽√
2

̂𝜙−(𝜏2, ⃗𝑦)⟩𝑠𝐺.
(5.47)

Equation (5.47) is the main result of this section, and its central message is that the

computation of a physical correlator splits into two known correlators of the fixed-point

theory of the cTNS. This result solidifies our intuition that cTNS can be used to gain

insight analytically into complicated QFTs by using a smart choice of the virtual space.

In this specific case, the free boson correlator of vertex operators is known from CFT.

At the same time, in the sine-Gordon theory we can compute analytically some of the

vertex operator correlators using the Fateev-Lukyanov-Zamolodchikov-Zamolodchikov

(FLZZ) formulas [228] or make use of the Relativistic Continuous Matrix Product States

(RCMPS) [225, 227] to do it numerically.
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5.2 The bulk-boundary correspondence of cTNS

The previous example can be generalized straightforwardly to more general Kac-

Moody algebras, as we show now. Let then 𝔤 be a Kac-Moody algebra of rank 𝑟 with
Cartan subalgebra 𝔥 equipped with an inner product ⟨⋅, ⋅⟩ induced by the Killing form
[209]. Since dim 𝔥 = 𝑟, let ̃𝛼1, … , ̃𝛼𝑟 denote simple roots and {𝑛𝑖}𝑟

𝑖=1 be the corre-

sponding set of Kac labels. We define

𝛼𝑖[ ̂𝜙( ⃗𝑥)] = 𝑚
𝛽

√𝑛𝑖𝑒𝑖𝛽⟨𝛼𝑖, ̂𝜙(𝑥⃗)⟩. (5.48)

Then 𝑟

∑
𝑖=1

𝛼𝑖[ ̂𝜙( ⃗𝑥)] ⊗ 𝛼𝑖[ ̂𝜙( ⃗𝑥)]∗ = 𝑚2

𝛽2

𝑟

∑
𝑖=1

𝑛𝑖𝑒𝑖𝛽⟨𝛼𝑖, ̂𝜙1(𝑥⃗)− ̂𝜙2(𝑥⃗)⟩. (5.49)

Again, introducing 𝜙± = 1√
2

(𝜙1 ± 𝜙2) we see that the transfer matrix becomes

𝕋 = ∫
𝑆

𝑑 ⃗𝑥 (−ℋ0+( ⃗𝑥) − ℋ𝑇 −( ⃗𝑥)) , (5.50)

where ℋ𝑇 −( ⃗𝑥) is now the Toda Hamiltonian [229] in the 𝜙− field, which again is

another analytically tractable QFT.

It is natural to ask now, how general is this procedure of constructing a boundary

virtual Hamiltonian out of the virtual QFT of a cTNS?

Generic boundary Hamiltonian of cTNS

We would like to determine when a given boundary Hamiltonianℋ𝕋( ⃗𝑥) can be repre-
sented as

ℋ𝕋 = ℋ ⊗ 𝟙 + 𝟙 ⊗ ℋ − ∑
𝑘

𝛼𝑘 ⊗ 𝛼∗
𝑘, (5.51)

for a certain bulk Hamiltonian ℋ = ℋ0 + 𝑉, and a family of bulk couplings {𝛼𝑘}.
Moreover, motivated by the sine-Gordon example, we demand that there exists a lin-

ear change of variables such that the Hamiltonian ℋ𝕋 splits into two distinct terms,

each depending exclusively on one of the variables such that we can still retain some

analytical power over the resulting correlators. Mainly, for𝐷 = 1, we denote 𝜙1 = 𝜙⊗𝟙
and 𝜙2 = 𝟙 ⊗ 𝜙, and ask about a linear transformation 𝑆 ∶ (𝜙1, 𝜙2) −→ (𝜙+, 𝜙−) to a new
variables (𝜙+, 𝜙−) such that

ℋ𝕋 = 𝒢+(𝜙+) + 𝒢−(𝜙−), (5.52)

where again both 𝒢+ and 𝒢− are bosonic Hamiltonians in the corresponding variables.

Let us denote the right-hand side of (5.51) by 𝐹(𝜙1, 𝜙2), and have a nondegenerate
linear transformation 𝑆 ∶ (𝜙1, 𝜙2) → (𝜙+, 𝜙−) parameterized by

{
𝜙+ = 𝛼𝜙1 + 𝛽𝜙2,
𝜙− = 𝛾𝜙1 + 𝛿𝜙2 , 𝛼𝛿 ≠ 𝛽𝛾. (5.53)

To begin constraining this transformation, we will demand that both bulk and bound-

ary Hamiltonians have the bosonic kinetic terms,

𝐹(𝜙1, 𝜙2) = ℋ0(𝜙1) + ℋ0(𝜙2) + ̃𝐹 (𝜙1, 𝜙2), 𝒢±(𝜙±) = ℋ0(𝜙±) + 𝑉±(𝜙±), (5.54)
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and also that

𝐹(𝜙1, 𝜙2) = 𝒢+(𝜙+) + 𝒢−(𝜙−), (5.55)

We can condense all the previous conditions as

{
ℋ0(𝜙1) + ℋ0(𝜙2) = ℋ0(𝜙+) + ℋ0(𝜙−)

̃𝐹 (𝜙1, 𝜙2) = 𝑉+(𝜙+) + 𝑉−(𝜙−).
(5.56)

The first of these conditions implies that 𝛼2 + 𝛾2 = 1 = 𝛽2 + 𝛿2 and 𝛼𝛽 + 𝛾𝛿 = 0.
Therefore

(𝜙+

𝜙−) = (cos𝜑 cos 𝜃
sin𝜑 sin 𝜃) (𝜙1

𝜙2) , with 𝜑, 𝜃 satisfying cos(𝜃 − 𝜑) = 0. (5.57)

The second condition implies that either 𝜃 = 𝜑 + 𝜋
2
, in which case,

(𝜙+

𝜙−) = (cos𝜑 − sin𝜑
sin𝜑 cos𝜑 ) (𝜙1

𝜙2) , (5.58)

or 𝜃 = 𝜑 − 𝜋
2
and

(𝜙+

𝜙−) = (cos𝜑 sin𝜑
sin𝜑 − cos𝜑) (𝜙1

𝜙2) . (5.59)

In the second case, let us parameterize 𝜑 → 2𝜑. Then, the first choice of angles corre-
sponds to a rotation ℛ𝜑 by an angle 𝜑, while the second one is a reflection 𝒫𝜑 about

a line through the origin which makes an angle 𝜑 with the horizontal axis. All such
transformations give us the group 𝑂(2) of isometries of the plane.
Since∑

𝑘
𝛼𝑘 ⊗ 𝛼∗

𝑘 = ∑
𝑘

(𝛼𝑘 ⊗ 𝟙)(𝟙 ⊗ 𝛼∗
𝑘), the remaining condition in Equation (5.56)

is

𝑉 (𝜙1) + 𝑉 (𝜙2) − ∑
𝑘

𝛼𝑘(𝜙1)𝛼∗
𝑘(𝜙2) = 𝑉+(𝜙+) + 𝑉−(𝜙−). (5.60)

For 𝐷 > 1, we denote the variables by

𝜙1
𝑖 = 𝜙𝑖 ⊗ 𝟙, 𝜙2

𝑖 = 𝟙 ⊗ 𝜙𝑖, 𝑖 = 1, … , 𝐷. (5.61)

The new boundary fields are then denoted by ̃𝜙𝑘 with 𝑘 = 1, … , 2𝐷. Repeating the pre-
vious arguments we deduce that the transformation between themmust be an isometry

so that it belongs to 𝑂(2𝐷). Any such matrix can be parametrized as

diag(ℛ𝜑1
, … , ℛ𝜑𝐾

, ± 1, … , ±1⏟⏟⏟⏟⏟
𝐿 times

), (5.62)

with 2𝐾 + 𝐿 = 2𝐷.
Now that we know what kind of transformations are allowed in the space of virtual

fields such that a kinetic term is preserved, can we find the 𝛼𝑖’s such that a specific

theory is recovered in the boundary?

Let us demand, for instance, that the boundary recovers a generic 𝜙𝑛 theory, which

would correspond to

𝑉+(𝜙+) =
𝑚2 (𝜙+)2

2
, 𝑉−(𝜙−) =

𝑚2 (𝜙−)2

2
+ 𝜆𝑛

𝑛!
(𝜙−)𝑛 , (5.63)
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we have even allowed possible mass terms for the bosonic boundary field theories,

as these would still allow us to retain analytical control over many correlators. We

demand that the virtual bulk Hamiltonianℋ is also described by a free bosonic theory,
and we have to find then possible 𝛼’s that could satisfy (5.51). Since the mass term
is preserved by any of the 𝑂(2) maps (𝜙1, 𝜙2) → (𝜙+, 𝜙−), it remains to find 𝛼𝑙’s such

that

∑
𝑙

𝛼𝑙(𝜙1)𝛼∗
𝑙 (𝜙

2) = −𝜆𝑛

𝑛!
(𝜙−)𝑛 . (5.64)

Since 𝜙− = 𝑎𝜙1 + 𝑏𝜙2 with 𝑎2 + 𝑏2 = 1 (with 𝑎 = sin𝜑, 𝑏 = cos𝜑 for rotations, and
𝑎 = sin 2𝜑, 𝑏 = − cos 2𝜑 for reflections), the right-hand side of Equation (5.64) can be
written as

𝑛

∑
𝑘=0

𝛽𝑘(𝑎, 𝑏)(𝜙1)𝑘(𝜙2)𝑛−𝑘 , 𝛽𝑘(𝑎, 𝑏) = −𝜆𝑛

𝑛!
(𝑛

𝑘
)𝑎𝑘𝑏𝑛−𝑘 ∈ ℝ (5.65)

One can then look for solutions to our problem within a certain class of functionals

𝛼𝑙’s. We concentrate here on the ones that admit a Laurent-type ansatz decomposition.

Mainly, we assume that 𝛼𝑙(𝜙) = ∑
𝑘∈ℤ

𝛼𝑙,𝑘𝜙𝑘 with some complex parameters 𝛼𝑙,𝑘. Then

∑
𝑙

𝛼𝑙(𝜙1)𝛼𝑙(𝜙2)∗ = ∑
𝑙

∑
𝑘,𝑝∈ℤ

𝛼𝑙,𝑘𝛼∗
𝑙,𝑝(𝜙1)𝑘(𝜙2)𝑝 = ∑

𝑘∈ℤ
[∑

𝑝∈ℤ
(∑

𝑙
𝛼𝑙,𝑘𝛼∗

𝑙,𝑝) (𝜙2)𝑝] (𝜙1)𝑘.

(5.66)

We immediately notice that 𝑘 (and 𝑝) have to be restricted to 0, … , 𝑛. Furthermore, for
every 𝑘, 𝑝 = 0, … , 𝑛 we have to have

∑
𝑙

𝛼𝑙,𝑘𝛼∗
𝑙,𝑝 = 𝛽𝑘𝛿𝑛−𝑘,𝑝. (5.67)

In particular, for every 𝑘 = 𝑚 ≠ 𝑛
2
we have ∑

𝑙
|𝛼𝑙,𝑘|2 = 0. For 𝑛 odd this means that

𝛼𝑙,𝑘 = 0, for every 𝑙 and 𝑘, which leads to a contradiction. Thus the only option left is
that 𝑛 = 2𝑞 is even. Then we have 𝛼𝑙,𝑘≠𝑞 = 0, for arbitrary 𝑙. The only coefficient of 𝛼𝑙
that is potentially nonzero is 𝛼𝑙,𝑞, and is subject to∑

𝑙
|𝛼𝑙,𝑞|2 = 𝛽𝑞. Then, in particular,

∑𝑙 𝛼𝑙(𝜙1)𝛼∗
𝑙 (𝜙

2) contains only a single monomial (𝜙1𝜙2)𝑞, which leads to contradiction

with (5.65).

In summary, there exists no set of 𝛼𝑖’s that can be written as a formal power series,

such that a bosonic bulk theory can exactly become a boundary bosonic 𝜙𝑛 theory.

There is however a way to allow for a 𝜙𝑛 boundary starting from a bosonic bulk, and

for that, it is mandatory that the boundary splits into two 𝜙𝑛 theories.

If we consider instead the following boundary Hamiltonian

ℋ𝕋 = ℋ+
0 + ℋ−

0 + 𝑚2

2
(𝜙+)2 + 𝜇(𝜙+)𝑛 + 𝑚2

2
(𝜙−)2 + 𝜇(𝜙−)𝑛 (5.68)

with 𝜇 ∈ ℝ, then we will be able to find a bulk theory that reproduces this boundary.
We begin by parametrizing the orthogonal transformation 𝑆 ∈ 𝑂(2) by

{
𝜙+ = cos𝜑𝜙1 + 𝜖 sin𝜑𝜙2,
𝜙− = sin𝜑𝜙1 − 𝜖 cos𝜑𝜙2,

(5.69)
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where 𝜖 = ±1. In the above parametrization, we have

ℋ𝕋 = ℋ1
0 + ℋ2

0 + 𝑚2

2
[(𝜙1)2 + (𝜙2)2] + 2𝜇 ∑

𝑘=𝑛 (mod 2)
(𝑛

𝑘
) cos𝑘 𝜑 sin𝑛−𝑘 𝜑(𝜙1)𝑘(𝜙2)𝑛−𝑘.

(5.70)

To satisfy

𝑉 (𝜙1) + 𝑉 (𝜙2) − ∑
𝑙

𝛼𝑙(𝜙1)𝛼∗
𝑙 (𝜙

2) = 2𝜇 ∑
𝑘=𝑛 (mod 2)

(𝑛
𝑘

) cos𝑘 𝜑 sin𝑛−𝑘 𝜑(𝜙1)𝑘(𝜙2)𝑛−𝑘 (5.71)

we have to have 2|𝑛. This condition arises as a consequence of our demand for a
symmetric decomposition of the polynomials in terms of the potentials for both 𝜙1 and

𝜙2. Then, in order to generate the appropiate cross-terms, 𝛼𝑙(𝜙) = 𝜁𝑙𝜙
𝑛
2 , which in turn

enforces that 𝑛 = 4. But then ∑
𝑙

|𝜁𝑙|2 = 2𝜇 cos
𝑛
2 𝜑 sin

𝑛
2 𝜑 and 𝑉 (𝜙) = 𝑣𝑛𝜙𝑛 and 𝑣𝑛 =

2𝜇 cos𝑛 𝜑 = 2𝜇 sin𝑛 𝜑. Therefore this means that the only allowed transformations 𝑆 ∈
𝑂(2) are the ones that satisfy cos𝜑 = 𝜀 sin𝜑, which forces that 𝜑 = 𝜋

4
. Furthermore, we

see that 𝜇 has to be non-positive since under the above conditions, we have∑
𝑙

|𝜁𝑙|2 =
𝜇

2
𝑛
2 −1 . In that case, the remaining condition implies that 𝑛 = 4 and 𝑉 (𝜙) = −|𝜇|

2
𝑛
4 −1 𝜙4.

So far, we have presented a setting in which we could provide a bulk cTNS with a

desired fixed point and one in which it was not possible. Indeed, the more freedom

we introduce into the ansatz using 𝛼𝑖’s and 𝑉’s, the easier it becomes to reproduce a
target boundary Hamiltonian, at the cost of complicating the bulk cTNS. There is a lot

of arbitrariness in which functions can or can not be reproduced generically. To make

more accurate statements, we will attempt to study this situation more systematically

in the upcoming section.

5.2.3 A generic approach to the bulk-boundary problem

We have seen that we must determine some baselines for both the boundary and the

bulk Hamiltonian to start providing more accurate statements about their relationship.

We then begin by demanding the following structure of the boundary Hamiltonian

ℋ𝕋(𝜙+, 𝜙−) = ℋ0(𝜙+) + ℋ0(𝜙−) + 𝑉𝕋(𝜙+, 𝜙−), (5.72)

such that the potential 𝑉𝕋 is given by

𝑉𝕋(𝜙+, 𝜙−) = 𝑉 (𝜙1) + 𝑉 (𝜙2) − ∑
𝑙

𝛼𝑙(𝜙1)𝛼𝑙(𝜙2)∗, (5.73)

where (𝜙1, 𝜙2) is related to (𝜙+, 𝜙−) through an orthogonal transformation 𝑆 ∈ 𝑂(2𝐷).
The corresponding bulk Hamiltonian corresponding to these choices is the cTNS Hamil-

tonian found in Equation (5.10). Because we demand that the kinetic term is preserved

before and after the orthogonal transformation, the question on which two Hamiltoni-

ans can be mapped reduces to finding 𝑉𝕋,𝑉 and 𝛼𝑙 such that Equation (5.73) is satisfied.

One can interpret finding these solutions in two directions. Choose a cTNS, and

therefore a 𝑉 and 𝛼𝑙’s, and then see what boundary theory arises, hopefully leading

to a fixed point where some correlators can be computed. Alternatively, choose a

boundary theory for which analytical control is guaranteed, providing 𝑉𝕋, and then
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find the functions 𝑉 and 𝛼𝑙’s. The latter option is our choice of interpretation. To put

Equation (5.73) in a more mathematically simple notation, we are looking for a class

of functions 𝑔, 𝛽𝑖, such that given an 𝑓, the following equation is satisfied

(𝑓 ∘ 𝑆)(𝑥, 𝑦) = 𝑔(𝑥) + 𝑔(𝑦) − ∑
𝑖

𝛽𝑖(𝑥)𝛽𝑖(𝑦)∗ 𝑥, 𝑦 ∈ ℝ𝐷, (5.74)

where 𝑓 plays the role of 𝑉𝕋, 𝑔 of 𝑉, 𝛽𝑖 of 𝛼𝑙 and 𝑥, 𝑦 of 𝜙1, 𝜙2. We will assume that all

of these functions have convergent Taylor series representations and use the following

notation for the orthogonal transformation (𝑥′

𝑦′) = 𝑆 (𝑥
𝑦). For simplicity, we will also

assume that there is only a finite amount of coupling functions, that is 𝑙 = 0, ..., 𝑁 and
a single bosonic species in the cTNS ansatz, therefore 𝐷 = 1.
If we parametrize the transformation 𝑆 by

𝑆 = (cos𝜑 𝜖 sin𝜑
sin𝜑 −𝜖 cos𝜑) , 𝜖 = ±1, 𝜑 ∈ [0, 2𝜋), (5.75)

then the left-hand-side of (5.74) is a function of (𝑥′, 𝑦′) = (𝑥 cos𝜑 + 𝑦𝜖 sin𝜑, 𝑥 sin𝜑 −
𝑦𝜖 cos𝜑). If one then assumes the aforementioned Taylor expansions, then the l.h.s
reads

(𝑓 ∘ 𝑆)(𝑥, 𝑦) = ∑
𝑘,𝑙≥0

𝑓𝑘,𝑙(𝑥 cos𝜑 + 𝑦𝜖 sin𝜑)𝑘(𝑥 sin𝜑 − 𝑦𝜖 cos𝜑)𝑙, (5.76)

with some coefficients 𝑓𝑘,𝑙 ∈ ℝ, where the reality of the coefficients is imposed due to
the hermiticity of the boundary Hamiltonian. Using the well-known binomial expan-

sion, the above formula can be expressed in the following form:

(𝑓 ∘ 𝑆)(𝑥, 𝑦) = ∑
𝑘,𝑙≥0

𝑘

∑
𝑛=0

𝑙

∑
𝑚=0

𝜂(𝑘, 𝑙, 𝑛, 𝑚)𝑥𝑛+𝑚𝑦𝑘+𝑙−(𝑛+𝑚), (5.77)

where

𝜂(𝑘, 𝑙, 𝑛, 𝑚) = 𝑓𝑘,𝑙(
𝑘
𝑛

)( 𝑙
𝑚

)(−1)𝑙−𝑚𝜖𝑘+𝑙−(𝑛+𝑚) cos𝑛+𝑙−𝑚 𝜑 sin𝑚+𝑘−𝑛 𝜑 ∈ ℝ. (5.78)

To deal with the r.h.s of Equation (5.74), we again perform Taylor expansions of

the corresponding functions. Expanding 𝛽𝑖(𝑥) = ∑
𝑘≥0

𝑏𝑖,𝑘𝑥𝑘 with 𝑏𝑖,𝑘 ∈ ℂ and 𝑔(𝑥) =

∑
𝑘≥0

𝑔𝑘𝑥𝑘 with 𝑔𝑘 ∈ ℝ then the r.h.s becomes

𝑔(𝑥)+𝑔(𝑦)−∑
𝑖

𝛽𝑖(𝑥)𝛽𝑖(𝑦)∗ = ∑
𝑘≥0

𝑔𝑘(𝑥𝑘 +𝑦𝑘)+ ∑
𝑘,𝑙≥0

𝐵𝑘,𝑙𝑥𝑘𝑦𝑙 , 𝐵𝑘,𝑙 = −
𝑁

∑
𝑖=1

𝑏𝑖,𝑘𝑏∗
𝑖,𝑙 ∈ ℝ

(5.79)

Equations (5.77) and (5.79) are the key Equations for all future computations. Our

goal will be now to understand the minimal ingredients needed in both the bulk and

the boundary in order to obtain anything non-trivial. To do so, we depart from the

simplest examples and slowly increase their complexity until anything non-trivial can

emerge. Our first simplest example will be to assume that the bulk potentials are simply

set to 0 and that there is a single coupling 𝛼 in the cTNS.
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Potential-less bulk with a single coupling

Since we are assuming that the bulk potential is simply 𝑔 = 0 and that there is only
one coupling 𝛼, the condition that we need to solve is given by

∑
𝑘,𝑙≥0

𝑘

∑
𝑛=0

𝑙

∑
𝑚=0

𝜂(𝑘, 𝑙, 𝑛, 𝑚)𝑥𝑛+𝑚𝑦𝑘+𝑙−(𝑛+𝑚) = ∑
𝑘,𝑙≥0

𝐵𝑘,𝑙𝑥𝑘𝑦𝑙. (5.80)

Denoting 𝜂0 = 𝜂(0, 0, 0, 0), and observing that

𝜂0 = {
(𝑓 ∘ 𝑆)(𝑥, −𝑥𝜖 cot𝜑), sin𝜑 ≠ 0,
(𝑓 ∘ 𝑆)(𝑥, 𝑥𝜖 tan𝜑), cos𝜑 ≠ 0,

(5.81)

we infer that, for all 𝑛 > 0,

0 = ∑
𝑘+𝑙=𝑛

𝐵𝑘,𝑙𝜖𝑙 {(− cot𝜑)𝑙

tan𝑙 𝜑 } , for {
sin𝜑 ≠ 0,
cos𝜑 ≠ 0,

(5.82)

and 𝐵0,0 = 𝜂0. Defining
̃𝑏𝑙 = 𝑏𝑙𝜌(𝑙) with

𝜌(𝑙) = 𝜖𝑙 {
(− cot𝜑)𝑙, sin𝜑 ≠ 0,
tan𝑙 𝜑, cos𝜑 ≠ 0,

(5.83)

the above condition takes the form

∀𝑛 > 0 ∑
𝑘+𝑙=𝑛

𝑏𝑘
̃𝑏∗
𝑙 = 0. (5.84)

We first assume that 𝜑 is such that we can indeed freely use the above formulas, i.e.,
sin𝜑 ≠ 0 and cos𝜑 ≠ 0. We will consider the remaining cases separately later.
To gather intuition on how to solve this set of equations, we first look at its behavior

for low 𝑛 and then increasingly raise it. For 𝑛 = 1, this yields:

𝑏0
̃𝑏∗

1 + 𝑏1𝑏̃∗
0 = 0 (5.85)

First, we show that if 𝑏0 = 0, then also ∀𝑘 > 0 𝑏𝑘 = 0. Indeed, if 𝑏0 = 0, then by
considering (5.84) with 𝑛 = 2, we infer that 𝑏1

̃𝑏∗
1 = 0. As long as our condition on 𝜑 is

satisfied, we infer that 𝑏1 = 0. Seeing the structure of this last set of equations, we can
proceed by induction.

Suppose that all 𝑏0, 𝑏1, … , 𝑏𝑛−1 vanish and consider (5.84) with the parameter 2𝑛,
i.e.

𝑏0
̃𝑏∗
2𝑛 + 𝑏1

̃𝑏∗
2𝑛−1 + … + 𝑏𝑛−1

̃𝑏∗
𝑛+1 + 𝑏𝑛𝑏̃∗

𝑛 + 𝑏𝑛+1
̃𝑏∗
𝑛−1 + … + 𝑏2𝑛−1

̃𝑏∗
1 + 𝑏2𝑛

̃𝑏∗
0 = 0. (5.86)

By the inductive hypothesis, this equation reduces to |𝑏𝑛|2𝜌(𝑛) = 0, so that also 𝑏𝑛 = 0
since 𝜌 ≠ 0 under the assumptions on 𝜑. Therefore, it suffices to assume 𝑏0 ≠ 0.
Let us now write all the 𝑏𝑘’s in their polar decompositions, i.e. 𝑏𝑘 = |𝑏𝑘|𝑒𝑖𝜃𝑘. Assum-

ing 𝑏0 ≠ 0, from (5.85) we get that either 𝑏1 = 0, or

𝑒2𝑖(𝜃1−𝜃0) = −𝜌(1), (5.87)
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and the latter implies that |𝜌(1)| = 1. Suppose now 𝑏1 = 0. Then considering (5.84)
with 𝑛 = 2we infer that either 𝑏2 = 0 or |𝜌(2)| = 1. As an inductive hypothesis, suppose
that 𝑏1 = … = 𝑏𝑛 = 0 and take (5.84) with the parameter 𝑛 + 1. It then reduces to

𝑏0
̃𝑏∗
𝑛+1 + 𝑏𝑛+1

̃𝑏∗
0 = 0. (5.88)

Therefore, either 𝑏𝑛+1 = 0 or |𝜌(𝑛 + 1)| = 1. As a result, either 𝑏𝑘 = 0 for all 𝑘 > 0, or
there exists 𝑙 > 0 such that |𝜌(𝑙)| = 1.
In the former case we end up with the conclusion that 𝛽(𝑥) = 𝑏0 = const, so that

(𝑓 ∘ 𝑆)(𝑥, 𝑦) = −|𝑏0|2 < 0, while the latter, since 𝜌(𝑙) = 𝜌(1)𝑙, leads to the conclusion

that |𝜌(1)| = 1, that is, only transformations with either | cot𝜑| = 1 or | tan𝜑| = 1 are
allowed. In fact, in both cases, this is the same condition, leading to

𝜑 ∈ {𝜋
4

, 3𝜋
4

, 5𝜋
4

, 7𝜋
4

} . (5.89)

The corresponding transformations 𝑆 = 𝑆𝜖(𝜑) are

𝑆+ (𝜋
4

) = 1√
2

(1 1
1 −1) , 𝑆− (𝜋

4
) = 1√

2
(1 −1

1 1 ) ,

𝑆+ (3𝜋
4

) = 1√
2

(−1 1
1 1) , 𝑆− (3𝜋

4
) = 1√

2
(−1 −1

1 −1) ,

𝑆+ (5𝜋
4

) = 1√
2

(−1 −1
−1 1 ) , 𝑆− (3𝜋

4
) = 1√

2
(−1 1

−1 −1) ,

𝑆+ (7𝜋
4

) = 1√
2

( 1 −1
−1 −1) , 𝑆− (7𝜋

4
) = 1√

2
( 1 1

−1 1) .

(5.90)

Therefore, in this case, the function 𝑓 depends only on either 𝑥−𝑦 or 𝑥+𝑦. In summary,
we have proven that in the absence of bulk potentials, the only possible non-trivial

solution is that the boundary potentials depend exclusively on one of the variables.

Let us briefly comment on the case in which we could not move the trigonometric

functions to the r.h.s in Equation (5.82). For sin𝜑 = 0, the only allowed transforma-

tions are 𝑆 = (𝜖′ 0
0 𝜖″)with 𝜖′, 𝜖″ = ±1, corresponding to (𝑥, 𝑦) ↦ (𝜖′𝑥, 𝜖″𝑦). Similarly,

for cos𝜑 = 0, we have 𝑆 = ( 0 𝜖′

𝜖″ 0) with 𝜖′, 𝜖″ = ±1, and (𝑥, 𝑦) ↦ (𝜖′𝑦, 𝜖″𝑥). In both

these cases, the transformation reduces to a trivial relabeling of the names of functions,

which will exclude them from our considerations.

It remains, therefore, to explicitly study transformations leading to the variables 𝑥−𝑦
and 𝑥 + 𝑦. We start with the 𝑥 − 𝑦 case. This means that (𝑓 ∘ 𝑆−)(𝑥 − 𝑦) = 𝑃(𝑥 − 𝑦) for
some function 𝑃. Writing this explicitly,

𝑃(𝑥 − 𝑦) = ∑
𝑘≥0

𝑝𝑘(𝑥 − 𝑦)𝑘 = ∑
𝑘≥0

𝑘

∑
𝑛=0

𝑝𝑘(𝑘
𝑛

)(−1)𝑘−𝑛𝑥𝑛𝑦𝑘−𝑛, 𝑝𝑘 ∈ ℝ, (5.91)

so that the equation we have to solve takes the form

∑
𝑘≥0

𝑘

∑
𝑛=0

𝑝𝑘(𝑘
𝑛

)(−1)𝑘−𝑛𝑥𝑛𝑦𝑘−𝑛 = ∑
𝑘,𝑙≥0

𝐵𝑘,𝑙𝑥𝑘𝑦𝑙. (5.92)
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First, taking 𝑦 = 𝑥, the left-hand-side is simply 𝑝0, and for all 𝑛 > 0 we have to have

∑
𝑘+𝑙=𝑛

𝐵𝑘,𝑙 = 0, (5.93)

while 𝑝0 = 𝐵0,0 = −|𝑏0|2. The system of equations (5.93) is in this case equivalent to

⎧{{
⎨{{⎩

∑
𝑘+𝑙=𝑛

Re(𝑏∗
𝑘𝑏𝑙) = 0, 𝑛 = 2𝑚 + 1, 𝑚 ≥ 0,

∑
𝑘+𝑙=𝑛
𝑘,𝑙≠𝑚

Re(𝑏∗
𝑘𝑏𝑙) + 1

2
|𝑏𝑚|2 = 0, 𝑛 = 2𝑚, 𝑚 > 0. (5.94)

Therefore, there exists a sequence 𝜅 = (𝜅𝑛)∞
𝑛=1 ⊂ ℝ s.t.

∑
𝑘+𝑙=𝑛

𝑘<𝑙

𝑏∗
𝑘𝑏𝑙 = 𝑖𝜅𝑛 − 1

2
|𝑏𝑚|2𝛿𝑛,2𝑚. (5.95)

Since 𝐵𝑘,𝑙 = −𝑏𝑘𝑏∗
𝑙 , the above equation can be equivalently written as

∑
𝑘+𝑙=𝑛

𝑘>𝑙

𝐵𝑘,𝑙 = −1
2

𝐵𝑚,𝑚𝛿𝑛,2𝑚 − 𝑖𝜅𝑛. (5.96)

This leads to at most one family of solutions for 𝐵𝑘,𝑙 = 𝐵𝑘,𝑙(𝜅, 𝐵0,0) parameterized by a
sequence 𝜅 of real numbers, and a non-positive number𝐵0,0 (since𝐵0,0 = −|𝑏0|2 = 𝑝0).

If 𝑝0 = 0, then 𝑏0 = 0 and therefore all 𝑏𝑘 must vanish. On the other hand, from (5.92)

we get

(−1)𝑙𝑝𝑘+𝑙(
𝑘 + 𝑙

𝑛
) = 𝐵𝑘,𝑙, (5.97)

and since 𝑝𝑛 is a purely real quantity for all 𝑛, it must happen that 𝐵𝑘,𝑙 ∈ ℝ, for all 𝑘, 𝑙,
which leads to contradiction with (5.96) unless 𝑏𝑚 = 𝜅2𝑚 = 0, for all𝑚 > 0. Therefore,
the only potential solution is of the form 𝛽(𝑥) = 𝑏0 = √−𝑝0𝑒𝑖𝜃 and 𝑃(𝑥 − 𝑦) = 𝑝0, with

𝜃 ∈ [0, 2𝜋) and 𝑝0 ≤ 0.
Now we consider the situation with (𝑓 ∘𝑆)(𝑥, 𝑦) = 𝑄(𝑥+𝑦) with some polynomial𝑄.
In this case 𝜌(𝑘) = (−1)𝑘, for 𝑛 = 2𝑚 + 1 with 𝑚 ≥ 0 the condition on 𝐵̃𝑘,𝑙 = 𝐵𝑘,𝑙𝜌(𝑙)
reads

Im( ∑
𝑘+𝑙=2𝑚+1

𝑘<𝑙

𝐵𝑘,𝑙) = 0, (5.98)

so that ∑
𝑘+𝑙=2𝑚+1

𝑘<𝑙

𝐵𝑘,𝑙 ≡ 𝜅2𝑚+1 ∈ ℝ. Similarly, for 𝑛 = 2𝑚 with 𝑚 > 0 we get

Im( ∑
𝑘+𝑙=2𝑚

𝑘<𝑙

𝐵𝑘,𝑙) +
(−1)𝑚

2
|𝑏𝑚|2 = 0, (5.99)

hence

∑
𝑘+𝑙=2𝑚

𝑘<𝑙

𝐵𝑘,𝑙 = 𝜅2𝑚 + 𝑖
(−1)𝑚

2
|𝑏𝑚|2, (5.100)
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with 𝜅2𝑚 ∈ ℝ. Comparing 𝑄(𝑥 + 𝑦) with ∑
𝑘,𝑙≥0

𝐵𝑘,𝑙𝑥𝑘𝑦𝑙 we infer that ∀𝑘, 𝑙 𝐵𝑘,𝑙 ∈ ℝ. As

a result, for all 𝑚 > 0, we have 𝑏𝑚 = 0.
To summarize, whenever the bulk Hamiltonian contains no potentials, and there is

only a single coupling to the physical field, the only possible allowed transformations of

variables restrict the boundary potential to exclusively depend on one of the fixed-point

variables. Furthermore, the only permitted solution in this case is with constant 𝛽 and
𝑓. This example shows how important it is to either include virtual bulk potentials or
several couplings in order to be able to describe anything other than the trivial scenario.

These last two scenarios are the ones that show the positive examples presented above

with the 𝜙4 bulk theory or the sine-Gordon fixed-point.

Potential-full bulk with a single coupling

Let us then increase the complexity one more step by allowing the bulk to have non-

trivial potentials as well as several couplings to the physical field theory. Here we

assume that the function 𝑓 is of the form 𝑓(𝑥′, 𝑦′) = ℎ(𝑥′)+ 𝑙(𝑦′), where both functions
ℎ and 𝑙 are allowed to be non-constant. With 𝑆 ∈ 𝑂(2) as in (5.75), we have

(𝑓 ∘ 𝑆)(𝑥, 𝑦) = ∑
𝑘≥0

ℎ𝑘(𝑥 cos𝜑 + 𝑦𝜖 sin𝜑)𝑘 + ∑
𝑘≥0

𝑙𝑘(𝑥 sin𝜑 − 𝑦𝜖 cos𝜑)𝑘

= ∑
𝑘≥0

𝑘

∑
𝑛=0

(𝑘
𝑛

)[ℎ𝑘 cos
𝑛 𝜑𝜖𝑘−𝑛 sin𝑘−𝑛 𝜑 + 𝑙𝑘 sin𝑛 𝜑(−1)𝑘−𝑛𝜖𝑘−𝑛 cos𝑘−𝑛 𝜑]𝑥𝑛𝑦𝑘−𝑛.

(5.101)

Therefore, Equations (5.74),(5.77) and (5.79) take the form

(𝑎 + 𝑏
𝑎

) [ℎ𝑎+𝑏 cos
𝑎 𝜑 sin𝑏 𝜑𝜖𝑏 + 𝑙𝑎+𝑏 sin

𝑎 𝜑 cos𝑏 𝜑(−1)𝑏𝜖𝑏] = 𝑔𝑎𝛿𝑏,0 + 𝑔𝑏𝛿𝑎,0 + 𝐵𝑎,𝑏.

(5.102)

We first remark that 𝑎 = 𝑏 = 0 leads to ℎ0 + 𝑙0 = 2𝑔0 + 𝐵0,0. Then, taking 𝑎 ≠ 𝑏 = 0
we end up with

ℎ𝑎 cos
𝑎 𝜑 + 𝑙𝑎 sin𝑎 𝜑 = 𝑔𝑎 + 𝐵𝑎,0, (5.103)

while for 𝑏 ≠ 𝑎 = 0 we get

ℎ𝑏 sin
𝑏 𝜑𝜖𝑏 + 𝑙𝑏 cos𝑏 𝜑(−1)𝑏𝜖𝑏 = 𝑔𝑏 + 𝐵0,𝑏. (5.104)

Comparing these two conditions and making use of the hermiticity, we have

ℎ𝑎(cos𝑎 𝜑 − sin𝑎 𝜑𝜖𝑎) + 𝑙𝑎(sin𝑎 𝜑 − (−𝜖)𝑎 cos𝑎 𝜑) = 0. (5.105)

This equation was derived under the assumption that 𝑎 > 0; however, it also holds
identically for 𝑎 = 0, so we can make use of it for any 𝑎 ≥ 0.
At this point, one can distinguish two cases here:

1. There exists (𝜑, 𝜖) such that cos𝑎 𝜑 = 𝜖𝑎 sin𝑎 𝜑, for all 𝑎 ≥ 0, or such that cos𝑎 𝜑 =
(−𝜖)𝑎 sin𝑎 𝜑, for all 𝑎 ≥ 0. Both of them can be unified to the existence of 𝜑 s.t.
cos𝜑 = ± sin𝜑. The solutions in the second case can be easily obtained from the
first one by simply replacing (ℎ𝑎, 𝑙𝑎, 𝜖) by (𝑙𝑎, ℎ𝑎, −𝜖). Hence, we can consider
only the first scenario without the loss of generality.
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2. There exists (𝜑, 𝜖) such that for some 𝑎 ≥ 0 we have either cos𝑎 𝜑 ≠ 𝜖𝑎 sin𝑎 𝜑 or
cos𝑎 𝜑 ≠ (−𝜖)𝑎 sin𝑎 𝜑.

From now on, we will assume that we find ourselves under the first case. First, the

condition cos𝑎 𝜑 = 𝜖𝑎 sin𝑎 𝜑 applied in (5.105) implies that

𝑙𝑎 sin𝑎 𝜑(1 − (−1)𝑎) = 0. (5.106)

For 𝑎 even this does not lead to any further restrictions on the coefficient 𝑙𝑎. However,
since under our assumption sin𝜑1 ≠ 0, we infer that for 𝑎 odd, 𝑎 = 2𝑝 + 1, this leads
to the constraint: 𝑙2𝑝+1 = 0. From (5.103) we then get

ℎ2𝑝+1 = 𝜖
sin2𝑝+1 𝜑

(𝑔2𝑝+1 + 𝐵2𝑝+1,0). (5.107)

Taking 𝑎 = 𝑏 = 𝑝 in (5.102) we end up with

∀𝑝 ≥ 0 ℎ2𝑝 + (−1)𝑝𝑙2𝑝 =
𝐵𝑝,𝑝 + 2𝑔𝑝𝛿𝑝,0

(2𝑝

𝑝
) cos2𝑝 𝜑

. (5.108)

We now analyze (5.102). For 𝑎, 𝑏 ≠ 0, it is equivalent to

(𝑎 + 𝑏
𝑎

)𝜖𝑎+𝑏 sin𝑎+𝑏 𝜑(ℎ𝑎+𝑏 + (−1)𝑏𝑙𝑎+𝑏) = 𝐵𝑎,𝑏. (5.109)

Applying it for the pair (𝑎, 𝑏) ; (𝑎 + 1, 2𝑘) gives

ℎ2𝑘+𝑎+1 + 𝑙2𝑘+𝑎+1 =
𝐵𝑎+1,2𝑘

(2𝑘+𝑎+1

𝑎+1
)𝜖𝑎+1 sin2𝑘+𝑎+1 𝜑

, (5.110)

while for (𝑎, 𝑏) ; (𝑎, 2𝑘 + 1) we have

ℎ2𝑘+𝑎+1 − 𝑙2𝑘+𝑎+1 =
𝐵𝑎,2𝑘+1

(2𝑘+𝑎+1

𝑎
)𝜖𝑎+1 sin2𝑘+𝑎+1 𝜑

. (5.111)

As a result,

ℎ2𝑘+𝑎+1 = 1
2𝜖𝑎+1 sin2𝑘+𝑎+1 𝜑

[
𝐵𝑎+1,2𝑘

(2𝑘+𝑎+1

𝑎+1
)

+
𝐵𝑎,2𝑘+1

(2𝑘+𝑎+1

𝑎
)
], (5.112)

and

𝑙2𝑘+𝑎+1 = 1
2𝜖𝑎+1 sin2𝑘+𝑎+1 𝜑

[
𝐵𝑎+1,2𝑘

(2𝑘+𝑎+1

𝑎+1
)

−
𝐵𝑎,2𝑘+1

(2𝑘+𝑎+1

𝑎
)
]. (5.113)

Since under our assumptions 𝑙odd = 0, the latter equation leads to

𝐵2𝑝+1,2𝑘 = 𝐵2𝑝,2𝑘+1

(2𝑘+2𝑝+1

2𝑝+1
)

(2𝑘+2𝑝+1

2𝑝
)

= 2𝑘 + 1
2𝑝 + 1

𝐵2𝑝,2𝑘+1, (5.114)
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therefore, the former one reduces to

ℎ2𝑝+2𝑘+1 =
𝜖𝐵2𝑝,2𝑘+1

(2𝑘+2𝑝+1

2𝑝
) sin2𝑘+2𝑝+1 𝜑

. (5.115)

Comparing with (5.107) with 𝑝 ; 𝑝 + 𝑘, we have

𝐵2𝑝+2𝑘,1

2𝑝 + 1
= 𝑔2𝑝+2𝑘+1 + 𝐵2𝑝+2𝑘+1,0. (5.116)

In particular, the expression
𝑔2𝑝+2𝑘+1+𝐵2𝑝+2𝑘+1,0

𝐵2𝑝+2𝑘+1
is 𝑘-independent, and

1 =
𝑔1 + 𝐵1,0

𝐵1,1
=

𝑔3 + 𝐵3,0

𝐵3,1
=

𝑔5 + 𝐵5,0

𝐵5,1
= … . (5.117)

Next, from (5.109) we get for all 𝑎, 𝑏 > 0,

𝐵𝑎,𝑏

𝐵𝑏,𝑎
=

ℎ𝑎+𝑏 + (−1)𝑏𝑙𝑎+𝑏

ℎ𝑎+𝑏 + (−1)𝑎𝑙𝑎+𝑏
. (5.118)

There are four cases for (𝑎, 𝑏): (even, even), (odd, odd), (odd, even), (even, odd).
For the first two of them, the above ratio is trivially equal to 1. For the remaining
ones, however, we have 𝑎 + 𝑏 ∈ 2ℤ + 1, but then 𝑙𝑎+𝑏 = 0, and again the ratio is equal
to 1. As a result, 𝐵𝑎,𝑏 = 𝐵𝑏,𝑎 for all 𝑎, 𝑏 > 0. From (5.103) and (5.104), due to the
hermiticity of the remaining terms, we also have 𝐵𝑎,0 = 𝐵0,𝑎 for all 𝑎 > 0. Therefore,
𝐵𝑎,𝑏 = 𝐵𝑏,𝑎 for all 𝑎, 𝑏 ≥ 0.
This symmetry, together with (5.110), introduces a constraint on the transformation

𝑆. Mainly, the parameter 𝜖 has to satisfy 𝜖𝑎+1 = 1 for all 𝑎 ≥ 0, i.e. only 𝜖 = 1 is
allowed.

As we have seen in this section, there are many constraints amongst all the coeffi-

cients. Still, the exploration of this set of Equations is not yet complete and constitutes

the content of our upcoming work [3]. To establish further constraints, one can begin

by demanding that 𝑁 = 1 alongside non-trivial bulk potentials. Our explorations so
far point us towards the conclusion that in order to allow for non-trivial solutions, the

series expansion of the couplings 𝛼 needs to contain no zero terms, as otherwise, all
the constraints lead only to finite polynomials, but more work is needed to set this

result in stone.

5.3 Outlook

In this chapter, we have presented continuous Tensor Networks as an ansatz designed

to tackle physical QFTs by coupling them to a virtual QFT in the same spirit as Ten-

sor Networks. Although being a proper generalization of the already known cMPS to

higher dimensions, much less is understood either numerically or analytically about

the ansatz or its use-case scenarios.

In this chapter, we have focused our efforts on trying to study theoretically when

using a cTNS can be advantageous in order to study complicated QFTs. Guided by
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an example in which a correlator of a complicated coupled physical bosonic field the-

ory could be computed as a fixed-point correlator of a specific cTNS, we sought to

understand what is the general structure behind this phenomenology.

Although this is an ongoing study, we have so far understood the minimal ingredients

a cTNS must have to exhibit non-trivial behaviour at its fixed point. These ingredients

are either non-trivial bulk potentials or several independent couplings to the physical

theory. Our current efforts are devoted to fully understand the latter ones to provide

more useful scenarios for cTNS.

Future directions include the completion of the aforementioned results, as well as the

usage of the numerical approach of cMPS to efficiently describe the cases in which an

analytical expression for the fixed-point correlator exists. Possible extensions include

the development of a consistent fermionic cTNS, as well as possible implementations

of cTNS on curved space-times.
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