Technische Universitat Minchen
TUM School of Engineering and Design

Lehrstuhl fur Computergestutzte Modellierung und Simulation

A BiM-based Change Management Approach to
Improve Decision-making in Building Design

Revision

Master Thesis

for the Master of Science Degree in Civil Engineering

Autor: Lingyun Yan
Matriculation Number:]
Supervised by: Prof. Dr.-Ing. André Borrmann

M. Sc. Jiabin Wu

Chair of Computational Modeling and Simulation

Date of Issue: 02. May 2024

Date of Submission: 30. September 2024

Lingyun Yan
Highlight

Acknowledgement Il

Acknowledgement

This thesis is a tribute to all the individuals who have made my academic journey at
TUM over the past two years so meaningful. First and foremost, | express my deepest
gratitude to the Chair of Computational Modeling and Simulation at TUM, led by Herr
Prof. Dr. Ing. André Borrmann, for the invaluable support and guidance throughout my
research. | am also profoundly grateful to my supervisor, Mr. Jiabin Wu, for his unwa-
vering dedication, insightful discussions, and constant support from the very beginning.
Your prompt responses and excellent suggestions were key to the completion of this

thesis.

Finally, my heartfelt appreciation goes to my parents, family, and friends for their un-
wavering support throughout this journey. Thank you for always believing in me and

standing by my side.

Abstract 1]

Abstract

Building design revisions are inevitable due to the reliance on experience and engi-
neering knowledge throughout the design process. Additionally, Building Information
Modeling (BIM)-based design is rich in information thanks to advanced technologies,
incorporating not only geometric but also topological and semantic data. This leads to
a significantly higher number of dependencies between building components. While
this intricate web of dependencies enables a more accurate and detailed representa-
tion of a building, it also makes design revisions considerably more challenging. Main-
taining the integrity of the dependency network is crucial to ensure the building can
function as intended without losing key functionalities. As a result, initial changes or
revisions can propagate through these dependencies, affecting other parts of a design.
Change Propagation (CP) processes are traditionally handled manually, which is often
labor-intensive and time-consuming. To address this, the thesis proposes a BIM-based
Change Management (CM) framework that automates CP during building design revi-
sions. As a prototype of this framework, a Design Revision Manager (DRM) was de-
veloped. The DRM aids decision-making by analyzing change propagation processes
before design operations are executed. Furthermore, its versioning and search capa-
bilities allow for tracking the current state of a design and quickly querying information
about existing dependencies between components. Tested in real building design sce-
narios, the DRM prototype demonstrated that having access to component dependen-
cies, CP results, and past revision documentation significantly enhances the decision-

making process in building design revisions.

Keywords: Change Propagation (CP), Change Management System, Building Infor-
mation Modeling (BIM), Building Design Revision, BIM-based Building Design, Engi-

neering Database

Zusammenfassung v

Zusammenfassung

Gebaudedesign-Anderungen sind unvermeidlich, da Designprozesse stark auf
Erfahrung und ingenieurtechnischem Wissen basieren. Dartber hinaus ist das auf
Building Information Modeling (BIM) basierende Gebaudedesign aufgrund
fortschrittlicher Technologien sehr informationsreich. Das bedeutet, dass nicht nur
geometrische, sondern auch topologische und semantische Informationen in BIM-
Modellen enthalten sein kénnen, was zu einer deutlich gréBeren Anzahl von
Abhangigkeiten zwischen den verschiedenen Bauteilen fuhrt. Wahrend ein solch
komplexes Abhangigkeitsnetzwerk eine prézisere und genauere Darstellung eines
Gebaudes ermdglicht, werden Designanderungen dadurch erheblich erschwert. Es ist
notwendig, die Integritait des Abhangigkeitsnetzwerks aufrechtzuerhalten, um
sicherzustellen, dass das Gebaude als Ganzes funktioniert, ohne dass gewilnschte
Funktionen verloren gehen. Folglich konnen anfangliche Anderungen oder
Uberarbeitungen durch diese Abhangigkeiten hindurchgreifen und andere Teile des
Designs beeinflussen. Solche Prozesse der Anderungsweiterleitung (Change
Propagation, CP) werden Ublicherweise manuell bearbeitet, was oft miihsam und
zeitaufwendig ist. In dieser Arbeit wird daher ein BIM-basiertes Change Management
(CM)-Framework vorgeschlagen, das die CP-Prozesse bei Designanderungen
automatisch unterstitzt. Auf Basis dieses Frameworks wurde ein Design Revision
Manager (DRM) entwickelt. Der DRM tragt zur Verbesserung der
Entscheidungsfindung bei Designanderungen bei, indem er die Prozesse der
Anderungsweiterleitung vor der Ausfilhrung von Designoperationen analysiert.
Darlber hinaus erméglichen die Versionierungs- und Suchsysteme des DRM, den
aktuellen Stand eines Designprodukts nachzuverfolgen und schnell Informationen
Uber die aktuellen Abhangigkeiten zwischen Bauteilen abzufragen. Der Prototyp wurde
in realen Gebaudedesign-Szenarien getestet und zeigte, dass der Zugriff auf die
Abhéangigkeiten zwischen den Bauteilen, die Ergebnisse der
Anderungsweiterleitungsprozesse und die Dokumentation vergangener

Designanderungen im Vorfeld maf3geblich zur Entscheidungsfindung beitragen.

Zusammenfassung \%

Schlisselworter: Anderungsweiterleitung (CP), Anderungsmanagementsystem
(CM), Building Information Modeling (BIM), Gebaudedesign-Uberarbeitung, BIM-
basiertes Gebaudedesign, Ingenieurdatenbank

Table of Contents VI

Table of Contents

List of Abbreviations VIl
List of Tables IX
List of Figures X
1 Introduction 14
1.1 RESEAICN SCOPE ... e e e e e e e eeanes 16
1.2 TRESIS SITUCTUIEeeeiiee e e e e e e e e e e e 16
2 Related Work 18
2.1 Building Information Modeling.............uuiiiiiiiiiieeee e 18
2.2 BUIlAING DESIGN PrOCESSvuuiiieeiieeeeeie ettt e e e e e e e e eaaees 20
2.3 ENngineering Changecooviviiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 21
2.4 Change Propagationeeeeeeueeeiiiiiieieiieeieeeeneeeeeeeeeeeneeeeeeeeeee e 23
2.5 Change ManagEMENTuuuuuiiiiiiiiiiiiiiieeieibeie bbb 28
3 Methodology 31
3.1 RESEAICN GaAP ... ieiiiiee et e e e e e e e aaaa 31
3.2 Research Method...........ooiiiiiii e e e e 31
3.3 Topological CONSIIAINTScooeeieeeeeeee e 33
3.4 Operations for Building Design ReVISIONS..........ccccoeeviviiiiiiiiiieeeeeeeeeeinn 35
3.5 Change Propagation MechaniSm............ccoooviiiiiiiiee e 36
3.5.1 SIGNIfICANCE IMALIIXttt eneaeeene 36
3.5.2 Change Propagation HIierarChy.............cccccuueuemmeiimmmiiiiiiiiiiiiiiiiiiiiiiiiiieeenenns 38
3.6 Database SChemaooovuiiiii e 40
4 Prototype Implementation 45
4.1 TEST DALA ...t 45
4.2 Implementation of OPerations...........cooovviiiiiii i 46
At R U 1T [0T o 11 | PP 47
4.2.2 Structural Wall Deletioncoouuuuiiiiiiiiee e 47

4.2.3 Structural Column DeIETION .. .c..eeeee e et 50

Table of Contents VI

4.2.4 SEAIF DEIBTION ... 52
4.2.5 Structural Wall ADditioN........ccooeieiiieieeeeeee 52
4.2.6 Structural Column AddItioNouuiiiiiiiii e 55
72 (S = | Yo [111 o SRR 57
4.3 Implementation of Database Schema..............ccoovviiiiiiiiiccc e, 60
4.4 Design Revision Manager (DRM)oiiiiiiiiiiiiiiiii e e e 64
5 Results and Discussion 67
51 Test Results of Design Revision OpPerations...........coooeveeeeeeeeeeeeeeee e 67
5. 1.1 INitial TESE MOGEL......uuuiiiiiiiiiiiiiiiiiiiiiiiiii e eeneenes 67
5.1.2 Structural Wall DelEtiONuuuuuuuuummiiiiiiiiiiiiiiiiiiiiiiiieinneieneeeeeeeees 68
5.1.3 Structural Column Deletionooeuuiuiiiiieeeieeieeie e 70
5.1.4 Stair Deletion & AdAItIONcooiiiiiiiiiiiiiee e e e eeeeees 71
5.2 Test Results of Topological Constraint-based Commands 74
5.3 (=Y 170 LT o USRI 77
6 Conclusion 78
6.1 (@] o1 1110101 o PP 79
6.2 [T 1 2= 1o o PP 79
6.3 FULUIE WOTK ..o 80

Bibliography 81

List of Abbreviations

VIII

List of Abbreviations

BIM Building Information Modelling

AEC Architecture, Engineering, Construction
LOD Level of Detail

ECs Engineering Changes

CP Change Propagation

CM Change Management

CPA Change Propagation Analysis

API Application Programming Interface
GUI Graphical User Interface

GUID Globally Unique Identifiers

XAML Extensible Application Markup Language
CAD Computer-Aided Design

DSM Design Structure Matrix

DRM Design Revision Manager

SDK Software Development Kit

List of Tables IX

List of Tables

Table 1: Topological constraints in BIM-based building design considered in this study

Table 2: Operations for building design reVviSioNccccooevviiiiiiiiiiie e 36

Table 3: Different constraints for different operations (based on topological constraints

and the significance MatriX).........cooveeeeeieeiiiiiiiie e 37
Table 4: The number of building components (initial state of the test model)........... 67
Table 5: The number of building components (3™ Version).........c..cccceveeevveeeeeveeeenne. 74

Table 6: The number of building components (51 VErsion).........ccccccceveeeviveeeicreeeene. 75

List of Figures X

List of Figures

Figure 1: Building Information Modeling shifts planning effort and design decisions to
earlier phases (MacLeamy 2004)ooeuuuuiiiiiieeeiieeeeiiiee e eeeeeens 19

Figure 2: A system of reference planes and lines forms the basis for setting up a
comprehensive parametric building design (figure from lecture
material by Chuck Eastman, GeorgiaTech).............ccoevvvviviiiinneeenn. 20

Figure 3: The model of a generic change process from Jarratt et al (2004) 22

Figure 4: Ontology of design changes in BIM-based building design (Pilehchian et al.

Figure 5: Change propagation as a cone. Hollow circles are constraints, with their state
inside. Black small circles are entities. The constraint referenced by
the arrow is infeasible, requiring iteration (Eastman et al. 1997)..... 24

Figure 6: Use cases for Change Propagation Analysis (Brahma et al. 2023) 25

Figure 7: DSM of a diesel engine used for CPA model input, showing mechanical
linkages between subsystems from the viewpoints of four engineers.
The position of the colored boxes within the cells refers to a particular

engineer’s marks (Brahma et al. 2023)ccooiriiiiiiiiiii e, 26
Figure 8: Dependency matrix by Pilehchian et al. (2015)cccoooeeiiiiiiiiiiiiiieeeeeeeenns 27
Figure 9: Core technologies of the knowledge-supported system developed by Ma et
oL 221001) 28
Figure 10: Data loss in file conversion between different formats from Oh et al. (2015)
.. 30
Figure 11: Proposed Methodcouviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee ettt 33

Figure 12: Represent dependencies between building components with low-level and
topological CONSLrAINTS.........ccuuiiiiiiiii e 35

Figure 13: Significance Matrix (indicates the existence of dependencies between two
building components and controls the extent of change propagation)

.. 37
Figure 14: Change Propagation Hierarchyccccoooiiiiiiiiiiiiii e, 39
Figure 15: Example of Change Propagation Hierarchycccccoooivviiiiiiiiiiiinieeeennnn, 40

Figure 16: ER model of structural Wall................cooovviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeee 41

List of Figures Xl
Figure 17: ER model of architectural wall ..., 42
Figure 18: ER model of architectural column.............ooooiiiiiiiii e 42
Figure 19: ER model of structural COIUMN............ccooiiiiiiiiiic e, 42
Figure 20: ER Model Of FOOML.........uuiiiiiii e e e e e eeaans 43
Figure 21: ER MOdel Of OOT........oouuiiiiiiie e e e e eeeees 43
Figure 22: ER MOdel Of SEAIN........oovuiiiiiiie e e e e e eeeees 43
Figure 23: ER MOdel Of FEVISIONuuiiii i e e e e eeeanes 44

Figure 24:

Floor plans of the test model (the floor plan on the left is the ground floor

and the one on the right is the first floor)ccccccciiiiiiiiinnes 45
Figure 25: Test MOdel (3D VIEW).......cuiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee ettt 46
FIQUre 26: INPUL FIlEeeeeee e e e e e e eeaees 47
Figure 27: Read critical conditions from inputfileccccccoiiiii i, 47
Figure 28: Constraints for Structural Wall Deletion..............ccccovvviiiiiiiiiiiiiiiiiiieieennn, 48
Figure 29: Structural Wall Deletioncouvvviiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 48
Figure 30: Workflow of the method IsStandAloneStructuralWall 49
Figure 31: BoundingBoxXYZ class in ReVIt APl ..o, 49
Figure 32: LocationCurve of Wall ... 50
Figure 33: Constraints for Structural Column Deletionccccvvvviiiiiiiiiiiiiiennnnn. 51
Figure 34: Structural Column Deletion............ouvuiiiii i 51
Figure 35: Workflow of the method IsStandAloneStructuralColumn.......................... 51
Figure 36: Constraints for Stair Deletion..............ccuvvviiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 52
Figure 37: Stair DeletiONcevviiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee et 52
Figure 38: Constraints for Structural Wall Additioncccccoeiiiiiiiiiiiiie e, 53
Figure 39: Structural Wall Additioncooooiiiiii e 54
Figure 40: Autodesk.Revit.DB.Create method.............ccovvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeee 54
Figure 41: Workflow of the method FindOverlappingWall.............cccccvvviviiiiiiiiiinnnne. 55
Figure 42: Workflow of the method IsRoomAccessible..........ccccooeviiiiiiiiiii, 55
Figure 43: Constraints for Structural Column Addition............cccooeeieiiiiiiiii e, 56
Figure 44: Structural Column AdditioNccvvvviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 56
Figure 45: Autodesk.Revit.Creation.Document.NewFamilylnstanceccc....... 57

List of Figures Xl
Figure 46: Workflow of the method FindOverlappingColumncceeiiiiiiiiinnnnns 57
Figure 47: The implementation of the method NearbyColumns..................ooeeeeeees 57
Figure 48: Constraints for Stair AAditioNccooiiiiiiiiiiiii e, 58
Figure 49: Stair AAItIONcooiiiiiiie e e e e e e aeane 59
Figure 50: Methods for checking the accessibility of Stairs..........ccccvvvviiiiiiiiiiiiieennn. 59
Figure 51: Implementation of the method CreateSingleStraightRunStair 59
Figure 52: Documents and collections in MoNgoDBcccoovviiiiiiiiiiiiiie e, 60
Figure 53: Data model of Wall.............ooiiiiiiiie e 61
Figure 54: Data model of COIUMN...........ooiiiiiiiiiiiiiee e 61
Figure 55: Data model Of dOOKccoviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 62
Figure 56: Check the accessibility Of StairS..........cccovveeiiiiiiiiiici e, 62
Figure 57: Versioning system for design revisSionceeoiiieeeeieeeiiiciie e, 63
Figure 58: Using multiple versioning properties simultaneously in queries............... 63
Figure 59: Track design revisions throughout the design process.........cccccccvveeeeeeee. 64
Figure 60: Design Revision Manager (design Operations)cccevvvvvvvvinieeeeeeenennns 64
Figure 61: Design Revision Manager (topological constraint-based commands) 65
Figure 62: Initial state (version 0) of test model ..., 68
Figure 63: First operation — Structural Wall Deletion (the deleted wall resides in Level

1, the figure on the left is the original status, while the one on the right

is the status after the DELETE operation)ccccccevvvvvvvviiiieeeennn. 68
Figure 64: 15t version of test model (the left figure presents that the operation is

documented in the Revisions collection, while the right one shows the

updates of the deleted wall’s properties)ccccoevveeeiiiiiiiiiiinineen. 69
Figure 65: Design Revision Manager — Structural Wall Deletion (pre-constraints are

the dependencies of building components before the operation is

1S 011 14 T=To) TR 70
Figure 66: Second operation — Structural Column Deletion (the to-be-deleted structural

column from different views, namely Level 1 in the left figure and Level

21N The MgNT ONE)uiiiiii e 70
Figure 67: Third operation — Stair Deletion (the figure on the left is the original status,

containing the to-be-deleted stair with an opening on top, the right one
is the updated status after the DELETE operation)

List of Figures Xl

Figure 68: 2" version of test model (the left figure presents that the operation is
documented in the Revisions collection, while the right one shows the
updates of the deleted stair's properties)ccceevvveeiiiiiiiiiiiinieeen. 71

Figure 69: Fourth operation — Stair Addition (the left figure shows an intended insertion
of a stair at a desired location by picking two points, the right one
shows the updated status after adding the stair)...........ccccoeeeeeeeeens 72

Figure 70: 3™ version of test model (the left figure presents that the operation is
documented in the Revisions collection, while the right one shows the
updates of the inserted stair's properties)cccoovveeviiiiiiiiiiinnnnnn. 73

Figure 71: Design Revision Manager — Stair Addition (change propagation results) 73

Figure 72: Fifth operation — Stair Additioncccoooeiiiiiiiii e, 74
Figure 73: The latest state of test model (5™ version of test model on the left and the

corresponding database on the right)...........ccccccciiiiiiiiiiiiiiiiiies 75
Figure 74: Test results of topological constraint-based commands...........cccccceeeeeeee. 76

Figure 75: Find the problematic dependency with GUID (the red marked GUID refers
to the inaccessible stair found in Fig. 73, the blue marked GUID is the
structural wall or column that blocks the exit or entrance of the stair)

Introduction 14

1 Introduction

Building Information Modeling (BIM) is generally defined as a digital representation of
the physical and functional characteristics of a built facility (NIBS 2015). Two key ad-
vantages of BIM-based building design are its parametric design capabilities and in-
teroperability across different software platforms. BIM models typically contain exten-
sive information that’s relevant for civil engineering projects, including parametric rep-
resentations of building components, non-physical objects, and even the structure of
the project itself (Borrmann et al. 2018). In addition, the enrichment of information
proves valuable for many downstream applications, such as structural simulations and

calculations.

Building design processes are typically divided into three phases: pre-design, sche-
matic design, detailed design, and construction (Borrmann et al. 2018). Implementing
design revisions in the earlier stages requires significantly less effort than changes
made in later phases. Given that building design heavily relies on engineering expertise
(Cross 2021), revisions are often unavoidable. However, this challenge can be miti-
gated through BIM-based planning processes. For instance, clashes between different
discipline-specific BIM models can be identified early by regularly federating these
models. In this way, BIM-based design reduces risks and uncertainties, improving
overall efficiency and productivity. By integrating BIM-based planning throughout all
phases, design revisions can be managed more effectively, minimizing disruptions and

ensuring a smoother design process.

Building design revisions are essentially Engineering Changes (ECs), defined as mod-
ifications made to released parts, drawings, or software (Jarratt et al. 2005). In the
Architecture, Engineering, and Construction (AEC) industry, changes can occur
throughout the entire lifecycle of a built facility. These revisions can stem from various
factors, including coordination defects, updated requirements from stakeholders, or
designer omissions (Cox et al. 1999). Although changes are easier to implement in
earlier design stages, building design revisions generally require significant effort due
to the complex process of Change Propagation (CP), where alterations can affect other
parts of a design (Clarkson et al. 2004; Giffin et al. 2009). Furthermore, BIM-based

designs often involve large-scale projects with thousands of components and detailed

Introduction 15

semantic information. This means that not only the initial change but also its potential
impact on related components must be carefully considered. Thoroughly analyzing the
dependencies between building components is crucial, as more complex designs result
in a much more sophisticated network of dependencies and therefore lead to signifi-

cantly greater challenges in implementing design revisions.

Dependencies between building components are critical for BIM-based building de-
sign. Establishing appropriate dependencies in advance can significantly reduce labo-
rious and time-consuming tasks. For example, two walls on different floors can be au-
tomatically aligned vertically by pre-establishing a relationship, such as applying a con-
straint to both components. In essence, a dependency between two building compo-
nents means that they are mutually constrained. With the advancement of BIM tech-
nologies, a growing number of components can be stored within BIM models, creating
the potential to establish more complex dependencies between them. However, this
potential remains underutilized, as most BIM authoring tools primarily implement only
low-level constraints. For example, while geometric constraints—such as ensuring the
front and back sides of a wall share the same geometry—are standard features in most
BIM authoring tools, more detailed information, such as the number of structural com-
ponents linked to a specific element, is often unavailable.

Given the complexity of building design processes and the inevitability of design revi-
sions, effective Change Management (CM) systems are urgently needed. Change
management in Computer-Aided Design (CAD) focuses on representing design prod-
ucts as they evolve throughout the design process by storing data and organizing their
dependency networks within databases. From a technical standpoint, a change man-
agement system can identify the path of Change Propagation (CP) and subsequently
limit the scope within which CP can occur. Therefore, an effective change management
approach can significantly reduce the negative impacts associated with building design

revisions.

In the AEC industry, change management plays a crucial role in facilitating collabora-
tive and concurrent design among multiple disciplines. T. Jeng and C. Eastman (1998)
developed a database architecture to support collaboration by monitoring data con-
sistency and CP. Ma et al. (2003) proposed an approach to investigate the effects of

ECs by generating alternative scenarios of CP resulting from the same initial change

Introduction 16

and evaluating their respective impacts. With the ability to assess CP, change man-
agement can enhance the optimization processes for resolving clashes. Additionally,
change management systems typically perform Change Propagation Analysis (CPA)
of proposed design revisions before any modifications are made, significantly aiding
decision-making processes. This prior evaluation of CP also enables design automa-
tion to a certain extent, allowing multiple changes resulting from CP to be automatically
applied to a design product, thus improving design efficiency. However, the CP capa-
bilities within individual BIM authoring tools remain limited to low-level constraints, as
mentioned earlier. Consequently, each design revision prompted by project-specific
factors, such as updated requirements from stakeholders, necessitates a manual eval-

uation of its impacts before the revision can be implemented.

1.1 Research Scope

This research aims to develop a change management system that enhances decision-
making for building design revisions within BIM tools. Specifically, this thesis seeks to

answer the following questions:

- How can a change management system for BIM-based building design improve
decision-making regarding design revisions?

- How can we identify the dependencies among building components, and how
can these dependencies be integrated into the design operations in BIM author-

ing tools?

1.2 Thesis Structure
The rest of the thesis is structured as follows:

- Chapter 2, Related Work, conducts an in-depth literature review on topics such
as Building Information Modeling (BIM), change management, Change Propa-
gation Analysis (CPA) and their applications. This chapter establishes a solid
theoretical background for the study.

- Chapter 3, Methodology, presents the proposed approach to address the re-
search questions. The chapter proposes a framework of change management
in BIM-based building design, supporting semi-automatic design revisions.

- Chapter 4, Prototype Implementation, illustrates the steps for the implementa-
tion of the proposed framework by using selected tools. In addition, a test case

is designed to evaluate the functionalities of the prototype.

Introduction 17

- Chapter 5, Results & Discussion, presents the test results and elaborates the
key findings and limitations of the research.

- Chapter 6, Conclusion and Outlook, concludes the study by answering the pro-
posed research questions and outlines recommendations for further research

based on the results of this study.

Related Work 18

2 Related Work

This chapter begins by reviewing the fundamental concepts of BIM and the advantages
of BIM-based planning processes in building design, emphasizing the importance of
shifting design decisions and changes to earlier phases. Next, it elaborates on the
characteristics of building design processes by explaining why design changes occur
and how they manifest. Using the concept of Change Propagation (CP) as a cone
(Eastman et al. 1997), the chapter presents the essence of CP and highlights two crit-
ical issues that must be addressed to maintain the desired functionalities of a design
product. Additionally, based on the generic change process proposed by Jarratt et al.
(2004), the workflow of CPA is detailed, including the representation of input data, data
population based on representation schemes, and various effective approaches for
analyzing these representations. Finally, the chapter thoroughly reviews the applica-

tion of CPA in supporting change management.

2.1 Building Information Modeling

The National Institute of Building Sciences (NIBS) defines Building Information Model-
ing (BIM) as a digital representation of a facility's physical and functional characteristics
(NIBS 2015). BIM is an evolution of the product model concept (Eastman 1999 & Borr-
mann et al. 2009). Its two technological foundations are parametric design and interop-
erability among multiple BIM software products, facilitating data exchange between
different vendors (Eastman 2011). In the AEC industry, BIM typically refers to the pro-
cess of creating a building facility model and managing it throughout its lifecycle, from
conceptual design to deconstruction (Borrmann et al. 2018). A BIM model consists of
parametric objects representing building components at a defined Level of Detail
(LOD), as well as non-physical objects, such as zones, spaces, or the project structure
itself (Borrmann et al. 2018). These objects encompass both geometric and non-geo-
metric properties, including functional, semantic, and topological information (Eastman
2011 & Wong et al. 2010). For example, costs can serve as a functional attribute, while
information regarding intersections and connectivity represents semantic properties,

and an object's perpendicularity or adjacency conveys topological information.

Although the development of 3D CAD systems began in the 1970s, traditional 2D CAD

systems remained the dominant design approach in the AEC industry for many years

Related Work 19

(Volk et al. 2014). The application of BIM technologies in pilot projects to support build-
ing design emerged even later, in the early 2000s (Penttila et al. 2007). The conven-
tional building design process is often laborious, time-consuming, and prone to errors,
such as the manual evaluation of consistency among various 2D technical drawings
and the need to re-enter information extracted from these drawings for downstream

applications, including calculations and simulations (Borrmann et al. 2018).

With the adoption of BIM technologies, numerous benefits throughout a built facility's
entire lifecycle—encompassing pre-construction, design, construction and fabrication,
and post-construction—become achievable (Eastman 2011). In particular, during the
design phase, repetitive and labor-intensive tasks can be automated, leading to in-
creased productivity. Such tasks may include updating the BIM model whenever de-
sign changes occur, generating accurate 2D drawings directly from the BIM model (Kim
et al. 2016), and federating or integrating BIM models from multiple design disciplines
(Beach et al. 2017).

Impact on design and
costs of the building

Costs in case
of changes

BIM-based
planning process

Planning effort

N

Pre-design Schematic Detailed design Construction

design Time

Figure 1: Building Information Modeling shifts planning effort and design decisions to earlier phases
(MacLeamy 2004)

Prior to the construction phase, building design can be divided into three phases: pre-
design, schematic design, and detailed design. Implementing potential design changes

in the earlier phases requires significantly less effort since changes initiated late in the

Related Work 20

process impact more stakeholders (Jarratt et al. 2011). However, conventional design
workflows often commit changes during the detailed design phase and frequently dur-
ing the construction phase, leading to higher costs. By employing a modern BIM-based
planning workflow, design decisions and changes can be shifted to the earlier phases
(Figure 1), resulting in significantly reduced costs and improved building performance
(Borrmann et al. 2018).

2.2 Building Design Process

The essence of engineering design lies in identifying and implementing solutions to
engineering problems. Throughout the design process, practitioners rely heavily on
prior experience, general guidelines, and "rules of thumb" (Cross 2021). However,
these heuristic methods do not guarantee the success of the design product. Among
the various types of engineering design tasks, building design is particularly complex
due to its large scale and the necessity for coordination among multiple design disci-
plines. Changes made in the later stages of building design are often cost-intensive,
and certain modifications may not be feasible due to existing constraints (Keller et al.
2005). Typically, the building design process seeks to balance various competing pa-

rameters, each subject to specific constraints (Machairas et al. 2014).

Architectural
panel control

—— |
Control b Panel cut

Planes planes and
joints

b Columns/ :
Walls b Reveals and

bull noses

b ‘51‘PP01‘I k Subtraction and
Lines/planes additions for
alignment with
b Beams/ beams.columns
Spandrels
ti Embeds Finishes
b 1:‘1001' Connection k
pieces ' Embeds

h Connect| Resolve
ions Reinforcing Reinforcing
embed -

conflicts

Lay out
wash/
topping

Figure 2: A system of reference planes and lines forms the basis for setting up a comprehensive para-
metric building design (figure from lecture material by Chuck Eastman, GeorgiaTech)

Related Work 21

In addition to the designer, numerous stakeholders participate in building design pro-
cesses (Borrmann et al. 2018). Design decisions are significantly influenced by these
stakeholders, whose opinions can differ and evolve over time. Sten de Wit et al. (2002)
noted that the evolution of a building design consists of a series of design decisions,
each informed by insights from various domain experts. From this perspective, multiple
potential re-evaluations and design revisions become necessary to enhance the design
(Koh et al. 2012), rectify design flaws, or adapt to updated requirements from stake-
holders (Ahmed et al. 2012).

2.3 Engineering Change

Engineering Change (EC) is referred to as an alteration made to parts, drawings or
software that have already been released during the product design process and life
cycle, without considering the scale or the type of change (Jarratt et al. 2011 & Jarratt
et al. 2005). In the AEC industry, changes are described as modifications, differences,
subtractions, additions, or exclusions of work (Antill, 1990). Potential changes can oc-
cur throughout the entire design process and have an impact on the product, e.g. BIM
model. Typical causes of change in construction projects could be designer’'s omission
and coordination defects in tender documents, updated employer’s requirements, or
new information regarding site conditions (Cox et al. 1999). Engineering changes that
can trigger a chain of changes, are categorized as either emergent (originating from
the product itself, e.g. errors) or being initiated, e.g. by stakeholders’ new requirements
(Eckert et al. 2004). Jarratt et al. (2005) proposed a model to describe and formalize a
generic change process (Figure 3), which comprises three phases. The before-ap-
proval phase includes raising a change request and identifying possible solutions and
their risk assessment. The second stage is to select and approve one of the possible
solutions. Thereafter, the implementation of the selected solution and the review of a
particular change process are incorporated into the final phase.

Based on the observation of numerous examples of building design changes from case
studies, Pilehchian et al. (2015) developed the following BIM-based ontology of design
changes, so that changes can be structurally and hierarchically organized, and their
impacts can be kept tracible, as illustrated in Figure 4. Building design changes are
categorized into three classes. The object-oriented class represents changes in terms

of geometry, position, or specifications of building components, while the adaptation-

Related Work 22

oriented characteristics are relevant for automatic change propagation, comprising var-
ious dependencies between components and aiming at continuous data modification.
The third class is integration-oriented and, therefore, is responsible for merging data

from multiple sub-models.

Engineering change
reques! raised

BREAK SO TR
POINT 1

\ e BEFORE
solution(s) to change request

BREA oo oo oo o oo o
POINT 2

Risk / impact assessment
of solution(s)

sreak _ | _ _ ’_ i
POINT 3
\

_ DURING
Selection and approval of a APPROVAL
solution by change board

BREAK _ __ _ _ _ _ _ o ‘ ______ -
POINT 4
\

Implementation
of solution

AFTER
APPROVAL

(6]
Review of particular
change process

®

Figure 3: The model of a generic change process from Jarratt et al (2004)

Related Work

23

Classes & Sub-classes

Facets: Description/Example

Object-oriented

Change type
Addition (ADD)
Deletion (DEL)
Modification (MOD)
Recreate (REC)
Merge (MRG)
Split (SPL)

Changed component attributes
Geometry

Position

Specification

Adaptation oriented
Dependencies between components
Spatial dependencies

Analytical dependencies

Propagation of changes
Level of propagation

Type of dependencies

Integration oriented

Change timing
Conceptual design
Basic design
Detail design
Procurement
Fabrication
Construction

Change impact
Cost
Time schedule
Client's objective

Creating a new component

Deleting an existing component

Modification in attributes of an existing component

Deleting a component then adding a new one with similar attributes
Combining two or more components to create a new component
Dividing a component into two or more components

Shape (SHP): cubic, cylindrical, rectangular, plate

Dimensions (DIM): shape, length, width, thickness, diameter, slope
Coordinates (CRD): X, Y, Z

Orientation (ORN): Rx, Ry, Rz

Material (MAT): concrete, mild steel, galvanized steel

Elements (ELM): stud, rebar: size, shape, arrangement

Semantic properties (PRP): fire-rating, acoustic, water proof

Connected to (CNT): column and floors, main and secondary ducts
Adjacent to (ADT): duct and adjacent pipes, duct and ceiling
Supported by (SPB): duct and steel hangers

Surrounded by (SRB): duct and false ceiling/plenum area
Structural (STR): sleeves size and arrangement of rebar
Architectural (ARC): room functionality and exposed duct
Mechanical (MEC): size and location of air supply duct

Electrical (ELC): size of cable tray and motor power

Operational (OPR): dearance around a pipe

Extensive: substantial effects on many components
Regional: affect several adjacent components

Local: minimal effect on other compoments
Intra-model: between components with same LOD
Inter-model: between components with different LOD

During early decision making about the primary design aspects
During early stages of the design but prior to the full extended design
During the detailed design but prior to any procurement /construction
After purchase order but prior to fabrication

After fabrication but prior to erection

After commence of construction

The impacts of the change on the project cost
The impacts of the change on the project time schedule
The impacts of the change on the client’s objectives

Figure 4: Ontology of design changes in BIM-based building design (Pilehchian et al. 2015)

2.4 Change Propagation

ECs that occur in one aspect of the design can result in changes to other parts (Clark-

son et al. 2004 & Giffin et al. 2009), since all parts of the design must work together as

a whole to achieve the desired functionalities of the product. For example, in building

design, a change in a building’s overall height typically results in changes in floor-to-

floor height and some other vertical dimensions. Similarly, Mirshekarlou (2012) de-

scribed this phenomenon as a cumulative or ripple effect of a change. During the de-

sign process, components of complex products that were considered finished are still

subject to design changes (Huang et al. 1999). Due to these knock-on changes (Keller

et al. 2005), Change Propagation (CP) is one key aspect in the building design process.

Related Work 24

To be more specific, CP is initially defined by the changed attribute values, but there-
after proceeds by invalidating constraints that accessed the modified data or that relied
on a constraint that is now invalidated (Eastman et al. 1997). Constraints here are
typically referred to as the integrity rules on each part of the design, e.g., dependencies
to other parts, requirements derived from design codes or directly from the involved
stakeholders etc. Keller et al. (2005) classified CP into two categories: direct propaga-
tion, which appears in components directly connected to the modified component, and

indirect propagation.

Two essential problems regarding CP were proposed by Randy et al. (1990). The first
is to disambiguate the path of CP since different sequences in which the propagation
takes place result in different design products. The second is to limit the scope of prop-
agation. Similarly, Eastman et al. (1997) described and formalized CP as a cone. The
path of propagation, along with a set of pre-defined transaction protocols for identifying
what data and constraints should be invalidated by which kind of initial changes, is
graphically illustrated (Figure 5). Namely, each design change propagates along a set
of components linked by constraints, diversly into multiple directions. The complexity
of the cone increases significantly as the number of components and constraints in the
design becomes larger. Such a complicated network of CP should be handled properly
so that a design product’s semantic integrity, which is a term used in the database field
to designate the constraints that data must satisfy to have a meaningful correspond-

ence with reality (Eastman et al. 1997), can be maintained.

Figure 5: Change propagation as a cone. Hollow circles are constraints, with their state inside. Black
small circles are entities. The constraint referenced by the arrow is infeasible, requiring iteration (East-
man et al. 1997)

Related Work 25

When a design comprises many parts that are tightly integrated and correlated, and
knowledge of the design is distributed among various domain experts, e.g. building
design (Ahmad et al. 2013), it’s typically difficult to identify possible propagations
across disciplinary boundaries (Reddi et al. 2009). For this reason, many researchers
proposed models for the purpose of performing Change Propagation Analysis (CPA),
which can support the process of change management by generating alternatives for
implementing an engineering change, evaluating impacts of a proposed change on
various aspects, coordinating change activities, and finally improving the design quality
(Brahma et al. 2023), as illustrated in Figure 6. Generating a wide range of possible
solutions can improve the likelihood of finding a good one (Pahl et al. 2013). The impact
of a proposed change determines whether the initial change should be implemented
or not. The workflow of CPA includes representing the input data used for CPA, popu-
lating the representations with data, and evaluating the representations (Brahma et al.
2023).

Change Trigger
3.1 USE CASES FOR CHANGE PROPAGATION
ANALYSIS (CPA)
Engineering change
request raised
BREAK
POINTL — 7~~~
3.1.1 CPA can support the generation of
Identification of possibl etz : : :
entncatson or possine APPROVAL || alternatives for implementing change
solution(s) to change
BREAK request
POINT 2 — - [
3.1.2 CPA can support the assessment of how
a proposed change might impact a design
Risk / Impact
3.1.3 CPA can support the assessment of how
assessment of . .
solution(s) a proposed change might impact a product
BREAK family
POINT 3 3.1.4 CPA can support the assessment of a
proposed change in terms of redesign cost,
Selection and approval DURING time and effort
of a solution by change WAL
Y B 3.1.5 CPA can support the assessment of how
board . . .
BREAK a proposed change might impact production
POINT4 — =~
o 3.1.6 CPA can support the coordination of
Implementation of change activity
solution
AFTER
o APPROVAL
Review of particular
change process

3.1.7 CPA can support the improvement of
design with respect to potential future
changes

Provision for future changes
(Not in Jarratt et. al 2004)

Figure 6: Use cases for Change Propagation Analysis (Brahma et al. 2023)

Related Work 26

Design Structure Matrix (DSM), as illustrated in Figure 7, offers a very compact visual
representation of data for CPA. It is typically applied either for displaying the relation-
ships between discrete components, through which design changes can propagate, or
to represent the likelihood and impact values of changes (Keller et al. 2005). In other
words, DSM is a network of dependencies through which change can propagate. Re-
searchers supplemented the schema of DSM by adding extra information into the de-
pendency cells. Ma et al. (2003) included information regarding energy, material, etc.,
for each dependency, while Rutka et al. (2006) indicated levels and types of changes
that are allowed to propagate through each dependency. Lama Adel Saoud et al.
(2017) developed an approach to visually represent the process of predicting changes

through the integration of BIM with a parameter-based DSM.

Mechanical Links | cgiémgggg a“gs‘ésﬁg gz 5 Eﬁ‘*}giﬁ@
(either staticor | IR E R §E§%§§ H SE[cs| gl | E)El1S5) 2| ¢
dynamic) ¢ Slsp2|= =] 3]~ B35S § *‘5"“’§ <83
Cyl Head

Cyl Block

Piston

Conn Rod

Crankshaft

Adapter Plate

Flywheel Housing

Flywheel

Starter Motor

Fan Drive

Sump

Qil Fillers & Breathers.

Oil Filters & Coolers

Crank Pulley

Coolant Pump

Fan & Extensicns

Alternators & Brackets

Belt Driven Auxiliary

Gear Driven Auxiliary

Balancer

Turbocharger

Intake

Exhaust

Fuel Filter

Starting Aid

Lifting Eyes

Figure 7: DSM of a diesel engine used for CPA model input, showing mechanical linkages between
subsystems from the viewpoints of four engineers. The position of the colored boxes within the cells
refers to a particular engineer’s marks (Brahma et al. 2023)

Input data for CPA can be generated from design analysis, workshops, historical data,
etc. In building design, CAD data is mostly available for CPA. An algorithm that ac-
quires constraints between topology faces from CAD models was developed by Yin et

al. (2016). The acquired data was then used to create a relationship matrix for CPA.

Related Work 27

Masmoudi et al. (2017) discussed the approaches for extracting dependencies be-
tween dimensions by adjusting those dimensions in CAD software and how geometric
constraints result in changes in other dimensions. Chen et al. (2017) proposed a novel
change feature-based approach to predict the impact of the current design changes.
The approach detects changed features by comparing CAD files, and the features are
compared to past changes for CPA.

There are various approaches for CPA. Reddi and Monn (2009) applied probabilistic
methods to evaluate the dependency network. They considered the type of changes
and the likelihood of propagation for each dependency in the DSM. Monte Carlo Sim-
ulation can be applied to simulate individual changes as they propagate step by step
(Wynn et al. 2014 & Li et al. 2012). Matrix operations and calculations over cells are
also applicable. For example, Pilehchian et al. (2015) proposed a graph-based ap-
proach and the concept of dependency matrix for realizing automated CP in BIM-based
project delivery processes. The dependency matrix, as illustrated in Figure 8, is defined
to use 0 and 1 to indicate the effect of changes, e.g. a 0 value at the position [1,2]
indicates that the change of attribute g of component 1 has no impact on the attribute

p of component 2. Various types of interdependencies among design changes were

investigated.

1 1.0 (00 0 |1 0 0 |1 0 0

1 10 (00 0 (1 00 |1 00

0 0 11 10 0 ol 0o 0 Of 10 0 O

1 0 0 3= 0 0 0 0 0 0 0

ID11] - |D1n| 1 00 [0 10 000 |000

D [|Dij| 0 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

IDni| - |Dnn] 1 00 [0ooof o1 1] ooo

0 oo 0o 00 01 10 10 00

1 0 0 OO O (00 1] |1 1 0

0 0 O (OO O (00 0 (1 10

o 0 ol 10 0 Ol 10 0 of 10 O 1l
1: ifchange in attribute p of component i

dll1 - dlm affects attribute g of component j

|Dij|= l : dpq]d:\l: d,

dml - dmm 0: ifchange in attribute p of component {

does not affect attribute g of component j

Figure 8: Dependency matrix by Pilehchian et al. (2015)

With the help of CPA, insights regarding possible impacts caused by a proposed
change can be analyzed for change management, which typically supports the deci-
sion-making process when design changes occur. A knowledge-supported system was

proposed by Ma et al. (2003), as illustrated in Figure 9. One part of the system is the

Related Work 28

integrated design information model that represents the complete design data and the
corresponding relationships. The other part is the intelligent change impact analysis
engine, which can generate change plans, quantify the impact of engineering changes,
and evaluate alternative change scenarios. Valeh (2017) developed an automated
model named BIM-Change for calculating and visualizing ripple effects on the project’s
duration, that are caused by changes initiated by owners.

Plan mpact ange
Generator Analyzer Evaluator Knowledge

Intelligent Change Impact Analysis Engine Repository

T

Interrelationship Model
Process Product Resource
Model Model Model

Neutral Integrated Design Information Mode

Design
Database

Figure 9: Core technologies of the knowledge-supported system developed by Ma et al. (2005)
2.5 Change Management

Voropajev (1997) defined Change Management (CM) as an integral process related to
all project internal and external factors, influencing project changes; to possible change
forecast; to identification of already occurred changes; to planning preventive impacts;
to coordination of changes across the entire project. CPA is an effective approach for
managing changes in engineering design. Digital twins as an emerging information
technology provide opportunities for the development of new techniques for managing
change in complex projects, such as infrastructure, new energy and resource projects
(Whyte and Jennifer et al. 2024).

Change management in terms of computer-aided design is essentially a matter of
managing the semantic integrity of the database of a design product when design
changes are initiated. For most CAD software, various transaction protocols and integ-
rity rules aiming at maintaining the semantic integrity are embedded and implemented
in the software database. Namely, simple CPA is already taken into account in 2D or

3D modelling processes. In the context of building design, most low-level constraints,

Related Work 29

e.g. alignment, levels, or direct interference between components (geometric proper-
ties), are already included and implemented, e.g. in BIM authoring tools. Because they

are applicable for most engineering design tasks.

In BIM-based building design, change management systems are primarily
implemented to facilitate concurrent design and enhance collaboration and
coordination among multiple design disciplines or software applications. This involves
managing interactions and data exchanges between different databases. The reason
is the inevitable data loss in file conversion between different formats (Figure 10). A
comprehensive product design repository is typically sought to address all relevant
aspects of a design within a specific context. Jacobsen et al. (1997) explored infor-
mation management requirements and established general criteria for collaboration
and concurrency control in creative engineering design. While Jeng and Eastman
(1998) proposed a new database architecture for design collaboration, emphasizing
consistency monitoring, change propagation, and the structure and application of rules
to support design processes, the concept of “Engineering Design Knowledge
Repository” was proposed by Regli et al. (2000) to aid collaboration and archival
processes for distributed design and manufacturing teams by collecting and storing
public-domain engineering data. Some BIM authoring tools, such as Revit, have
achieved collaborative design. Nevertheless, CAD systems and interoperability
between different CAD software often focus on general rules applicable to most

systems and design disciplines.

Project-dependent and discipline-dependent topological constraints derived from ex-
pert knowledge and good practices are complex and too specific, such as the guaran-
tee of the accessibility of stairs by adding the necessary openings to the relevant slabs.
Therefore, they need to be implemented individually for a CAD system in a specific
design context. Topological constraints can only be imposed incrementally on the data
manually by the designer, since building design is a complicated and cross-disciplinary
process involving many stakeholders, whose opinions and decisions on the design
vary all the time. It is not feasible to account for all topological constraints and satisfy
the requirements of all relevant parties at the outset. Similar to geometric constraints,
these constraints can also be implemented and stored in a design database. Szykman
et al. (2000) pointed out the necessity and importance of a design repository in engi-
neering design. In addition to storing design information, design repositories are rather

designed for retrieval and reuse of design knowledge by using sophisticated methods

Related Work 30

that are not available in conventional database management systems, e.g., querying
components that satisfy required functions. Moreover, Murdock et al. (1997) attempted
to develop a framework in terms of information modeling for supporting the creation of
design repositories. The key aspects are the representation of form, function, and
behavior of artifacts, which are referred to as individual components. What’s more, Xue
et al. (2006) introduced a revolutionary design database model describing design re-
guirements and rules developed at different stages. The representation in the database
comprises both geometric and non-geometric descriptions. Only differences between
design descriptions at different design stages are recorded for propagation and con-
sistency control. Rather than a full representation of a design product, Zahedi et al.
(2021 & 2022) proposed the concept of design episodes, which capture different bits
and pieces of a design product and encapsulate them in various episodes by utilizing
storytelling techniques (Martin et al., 2003). Similarly, a partial representation of a de-
sign product can be applied for change management to significantly reduce the amount

of effort.
Modeling and Revit MEP Revit—IFC—Revit
conversion (1) modeling
[i =
>
S Al
Data loss analysis (1) Shape Recognition of 2D shapes only due to loss of view
Visualization tree data
Location Loss of view and color data
Layer Loss of object location and grid data
Property Loss of object layer
System Loss of object property data

Figure 10: Data loss in file conversion between different formats from Oh et al. (2015)

Loss of object

Loss of MEP system data
222 out of 1031 objects preserved (78.8% lost)

Modeling and conversion Revit MEP Revit—IFC—Solibri
(2) modeling
N —3
& 'ﬁ
Data loss analysis (2) Shape Good overall recognition of object shapes in IFC file
Visualization Loss of color data
Location Loss of object location and grid data
Layer Good overall recognition of layers as IFC data
Property Good overall recognition of property data
System Good overall recognition of MEP system data

Loss of object

1,078 out of 1,031 objects preserved (0.2%

increased)

Methodology 31

3 Methodology

3.1 Research Gap

BIM-based building design is a complex process where design operations can lead to
significant redesigns involving numerous building components and their dependencies.
These dependencies can be classified into two categories: low-level constraints and
topological constraints. While most low-level constraints, such as geometrical con-
straints, have already been implemented in BIM authoring tools, topological constraints
derived from engineering knowledge are often overlooked. This is primarily because
topological constraints are project-specific and can only be defined and implemented
incrementally throughout the design process. Nevertheless, they are essential for en-

suring that the design product maintains a meaningful correspondence with reality.

This thesis aims to develop a BIM-based approach to support building design revisions
by incorporating change propagation processes, which typically depend on topological
constraints, into design operations. The key challenges include defining the necessary
topological constraints and integrating them with design operations to enable prior
evaluation of the change propagation processes for intended design revisions. This
information can help determine whether to proceed with a given operation. Additionally,
another challenge is to devise a method for tracking design revisions throughout the
design process, as accumulated experience can help prevent similar mistakes in future

design tasks.

3.2 Research Method

To address these challenges, a BIM-based change management framework consisting
of two parts was proposed. The first part focuses on integrating change propagation
processes into design operations within BIM authoring tools. A well-defined change
propagation mechanism is essential for this integration, as it addresses two core prob-
lems: controlling the direction and extent of change propagation. Specifically, a set of
topological constraints was established based on disciplinary knowledge to determine
the direction of change propagation, given that changes can only propagate through
existing dependencies. Additionally, a significance matrix, informed by the concept of

DSM and expert knowledge, was proposed to manage the scope of propagation. This

Methodology 32

matrix indicates whether dependencies exist between building components and iden-
tifies which ones hold greater significance. Consequently, change propagation be-
tween two components is possible only if at least one dependency exists between
them. Overall, a change propagation mechanism should be developed within a specific
design context to align with the requirements of the design project. With such a mech-
anism in place, change propagation can be effectively integrated into BIM-based de-
sign operations. Moreover, this mechanism was also utilized to design the documen-
tation system in the second part, as it needs to record change propagation processes

to track design revisions.

The Design Revision Manager (DRM), resulting from this integration, serves as the
change management system. It can execute design operations that not only delete or
add individual building components but also automatically address change propagation
processes. Design revisions or operations performed throughout the design process
are exported to a developed database. The documentation system is crucial because
past revisions, or accumulated experience, can help designers avoid making similar
mistakes in future tasks. Furthermore, by querying data from the design revision data-
base, the DRM provides essential information regarding topological constraints and
the effects of change propagation processes prior to executing intended operations. In
summary, the availability of past revisions, current topological constraints, and poten-
tial change propagation results can significantly enhance decision-making in BIM-
based building design revision. The underlying philosophy is that informed decisions

can be made when the consequences of each choice are known in advance.

The core components of the integration phase—specifically, the development of the
change propagation mechanism based on expert knowledge, which includes the defi-
nition of topological constraints and the corresponding significance matrix—are elabo-
rated in Chapter 3.3 and 3.5.1, respectively. Additionally, the design operations con-
sidered in this thesis are summarized in Chapter 3.4. The database schema, based on
the proposed change propagation mechanism, is illustrated with a set of Entity-Rela-

tionship models in Chapter 3.6.

Methodology 33

Integration Decision-making & Documentation
_
Documentation of change propagation processe
Topological
constraints T Change Execute Export operations
propagation operations (DB)
—] mechanis
Significance
Matrix Design
Revision Look up

l«——— Queries from DB

Manager topological constraints

\\
Design \
operations i Query L
propagation effects J

Figure 11: Proposed method

3.3 Topological Constraints

In engineering databases, semantic integrity refers to the meaningful correspondence
between data and reality (Ullman 1988). To maintain the semantic integrity of a design
product, specific integrity rules must be applied to relevant data and met by the end of
the design phase. Traditionally, adding and evaluating these rules during the building
design process is a manual and time-consuming task. As the number of rules in-
creases, re-evaluations initiated by design revisions become increasingly complex, as
initial changes can propagate through a chain of dependencies defined by these integ-
rity rules. In the context of computer aided design, integrity rules—including geometric
constraints, unit definitions, and construction practices—can be embedded within CAD
software. Thus, BIM-based building design simultaneously generates a data set and a
corresponding set of integrity rules, ensuring that the building is feasible for construc-

tion upon design completion (Eastman et al. 1997).

In this paper, integrity rules are defined as constraints arising from dependencies be-
tween building components, which must be incrementally imposed throughout the de-
sign process to ensure the design product maintains its semantic integrity by the end
of the design phase. Constraints in BIM models can be classified into geometric and
non-geometric (semantic and topological) rules. This research categorizes dependen-
cies into low-level constraints and topological constraints (Figure 12).

Low-level constraints are those inherently implemented in most CAD software. For ex-
ample, dimensional or geometrical constraints are commonly embedded in nearly all

CAD systems. These low-level constraints are applicable across various engineering

Methodology 34

design disciplines. In BIM authoring tools, geometric constraints form the basis for fam-
ilies—flexible geometric models that can be quickly adapted to meet varying boundary
conditions (Borrmann et al. 2018). Consequently, these cross-disciplinary low-level
constraints enhance design efficiency and significantly reduce unintended design er-
rors, such as those related to modifying dimensions or positioning and aligning building
components. This distinction underscores how computer-aided design differs from tra-

ditional building design workflows, which predominantly rely on paper and pencil.

In contrast, topological constraints are more project-specific and discipline-dependent,
requiring expert knowledge. Given that building design is a large-scale and complex
task involving numerous participants from various domains, identifying and implement-
ing all topological constraints at any given stage is simply impractical. In this paper,
topological constraints are abstracted and classified into two types: structural con-

straints and architectural constraints.

Table 1: Topological constraints in BIM-based building design considered in this study

Connected to (CON)

Structural constraints
Supported by (SUP)

Room/enclosed area (ROO)
Spatial Surrounded by (SUR)
. dependency
Architectural
. Clashed by (CLA)
constraints
o Clearance area in front doors, stairs’ exit/entrance (CLE)
Accessibility Floor opening for Stairs (OPE)

Structural constraints primarily focus on structural components, verifying whether a
structural element is connected to (CON) or supported by (SUP) other structural com-
ponents. In contrast, architectural constraints encompass all building elements, includ-
ing non-physical objects. Architectural constraints are further divided into two subcat-
egories: spatial layout and accessibility. Regarding spatial layout, three specific con-
straints are considered: the first, ROO, checks if a given element forms the boundary
of a room or enclosed area; the other two, CLA and SUR, are designed to identify
clashes and undesirable neighboring building components. In terms of accessibility,
two relevant constraints include the clearance area directly in front of doors and stairs

(CLE) and the necessary opening above stairs (OPE).

Methodology 35

Dependencies

Topological
constraints

Structural
constraints

Architectura
constrainis

Spatial dependency

\
(e

—

Connected to Supported by = Room area Surrounded by Clashed by Clearance area Opening
(CON) (SUP) (ROO) (SUR) (CLA) (CLE) (OPE)

Figure 12: Represent dependencies between building components with low-level and topological con-
straints

3.4 Operations for Building Design Revisions

Eastman et al. (1997) defined operations as mechanisms for applying constraints to
data by adding, deleting, or modifying building elements or their attributes, which re-
sults in a new design state and functional dependencies as side effects. In this re-
search, building design revisions involve performing such operations on design data.
This study focuses exclusively on element-level operations, such as adding and delet-
ing components. Changes in geometric properties are particularly significant because
they are more likely to propagate to related components, thereby having a greater im-
pact on the overall building structure. For instance, the consequences of altering the
thermal properties of a wall are considerably less critical than those of deleting a wall
in terms of architectural and structural design. As such, modifications to semantic prop-

erties are not considered in this study.

This research primarily addresses two types of operations for building design revisions
using BIM authoring tools: adding and deleting components. These operations serve
as the foundation for more complex design operations, such as moving, which com-
bines both adding and deleting. In the early stages of BIM-based building design, build-

ing components with large quantities are essential for three-dimensional modeling, as

Methodology 36

they form the primary building structure and are crucial for cost estimation. Sub-sys-
tems, such as HVAC, typically rely heavily on the main building skeleton. Therefore,
this study focuses on design revisions involving walls, columns, and stairs—compo-
nents that significantly affect aspects like the main building structure, spatial layout,

and accessibility.

In this paper, we consider only structural walls and structural columns for these oper-
ations due to their complexity and comprehensive nature, as they encompass more
constraints than their architectural counterparts. In total, this research implements six
operations (Table 2): deleting structural walls, structural columns, and stairs, as well

as adding structural walls, structural columns, and stairs.

Table 2: Operations for building design revision

Building Components

Structural Wall Structural Column Stair
Delete X X X
Operations
Add X X X

note: x means the design operation is applied to the corresponding building component

3.5 Change Propagation Mechanism

3.5.1 Significance Matrix

As discussed in Chapter 2.4, Design Structure Matrix (DSM) effectively displays the
relationships or interdependencies between discrete engineering parts or components,
illustrating how design changes can propagate. It also represents both the likelihood
and impact values of these changes (Keller et al. 2005). Building on the DSM, a signif-
icance matrix (Figure 13) is introduced to illustrate the connections and relative im-
portance of building components. There are three possible relationships between two
components: no relation, equal significance, or one being more important than the

other.

Change propagation can only occur when dependencies exist. For example, the sig-
nificance matrix indicates that structural walls are generally more important than archi-
tectural walls, while structural walls hold equal significance among themselves. This
implies that structural walls take precedence over architectural walls during operations.
For instance, if a new structural wall conflicts with an existing architectural wall, the

architectural wall should be deleted. Conversely, if a conflict arises between two struc-

Methodology 37

tural walls during an operation, further confirmation may be necessary before proceed-
ing. Specifically, inserting a new structural wall that overlaps with an existing one will
require an approval from designer: the operation will continue if the response is affirm-

ative, or be canceled if it is negative.

Notes:

S-wall = Structural wall

A-wall =Architectural wall
S-column = Structural column
A-column = Architectural column

Blue or green cells = unequal significance

Black cells = equal significance

Blank cells = no dependency between two components
Figure 13: Significance Matrix (indicates the existence of dependencies between two building compo-

nents and controls the extent of change propagation)

Table 3: Different constraints for different operations (based on topological constraints and the signifi-

cance matrix)

S-wall A-wall | S-column | A-column | Slab Room | Door | Stair
CON CLA CLA
Add CLA CLA CON SUP ROO CLE | CLE
S-wall
Delete CON CON ROO
CON
CLA CLA CLA
Add CON CLI],?2 SUR SUP CLE | CLE
S-column S
Delete CON CON
CLA CLA CLA CLA SUP
_ Add | ol | cle | cLE CLE | oPE CLE | CLA
Stair
Delete OPE

Notes: S stands for structural, A stands for architectural

Methodology 38

Additionally, a summary table (Table 3) is defined to represent the dependencies and
topological constraints between various building components for different design revi-
sion operations, as outlined in Table 1 and Table 2, and illustrated in Figure 13. This
table reflects that constraints are only partially considered for each operation, as dif-
ferent constraints are activated depending on the specific operation and building com-
ponents involved. For example, two relevant constraints (CON and CLA) must be
checked between two structural walls during an ADD operation, while only one con-
straint (CON) needs to be examined for a DELETE operation, specifically to determine

if any structural walls are connected to the one being deleted.

3.5.2 Change Propagation Hierarchy

Design changes can lead to modifications in related building components, and im-
proper management of change propagation can result in extensive redesign or even
design failure. To address integrity violations during change propagation, two critical
aspects must be considered. First, the path of change propagation needs to be identi-

fied, which has already been effectively addressed in Table 3.

Changes can only propagate along constraints that establish dependencies between
discrete building components. Second, it is essential to define the scope of change
propagation to enable automatic propagation. According to Eastman's theory (Figure
5), which conceptualizes change propagation as a cone, an initial change will continue
to propagate as long as there are existing dependencies, as illustrated in Figure 14;

this implies that change propagation can potentially be infinite.

In this paper, change propagation is generally limited to four levels, as the number of
constraints considered is finite, preventing a highly complex dependency network. The
naming principle for different levels is as follows: "No-Propagation" signifies that a
change has no impact on other components, while the level of change propagation is
denoted by incremental numbers. The "First-Propagation” occurs when changes affect
directly connected building components. As detailed in Table 3, this can be achieved
by simply checking the corresponding constraints during an operation on a specific

component.

Methodology 39

Legends
Building component O
First-Propagation E—
Second-Propagation =

Third-Propagation ===

Fourth-Propagation — -=------=

Figure 14: Change Propagation Hierarchy

The significance matrix (Figure 13) not only illustrates the connections between com-
ponents but also indicates the potential for further propagation, namely Second-Prop-
agation and Third-Propagation. Typically, propagation is feasible only if a dependency
exists between two components. Furthermore, changes can only propagate to compo-
nents of equal or lesser significance, which helps clearly define and limit the scope of
change propagation. Second-Propagation concludes reached once it has checked the
constraints on the first set of indirectly connected components. For instance, as shown
in Figure 15, deleting a structural wall requires identifying its connected structural walls
(the CON constraint), resulting in First-Propagation. Subsequently, it must be deter-
mined whether the identified connected structural walls are structurally stand-alone. At
this stage, in addition to the directly connected structural walls, the first level of indi-
rectly connected structural walls is evaluated, achieving Second-Propagation. Finally,
Third-Propagation involves identifying affected and invalidated rooms, which must be
deleted if the corresponding structural walls are stand-alone and have been removed
in previous propagation stages. It is important to note that while First-Propagation can
result in either DELETE or ADD operations, only deletion is considered in any subse-

quent propagations.

Methodology 40

First-Propagation Second-Propagation Third-Propagation

Yes—~{ Delete affected rooms

structural
columns?

Structurally
stand-alone after
deletion?

Any
connecting
structural
walls?

. » »| Delete Affected rooms

Delete

Structural Wall

Figure 15: Example of Change Propagation Hierarchy
3.6 Database Schema

Default design operations in BIM authoring tools primarily handle common, cross-
disciplinary low-level constraints in engineering design, as discussed in Chapter 3.3.
These built-in commands facilitate modifications to documents through transactions,
which ensure database consistency by managing changes. Each transaction results in
a new data state that represents the design product. A key advantage of transactions
is their ability to be rolled back after successful execution, allowing users to access
both the previous state and the latest version of the design. The proposed operations
can similarly be implemented using transactions. However, access to historical
transactions is limited, as the database of BIM authoring tools only partially grants
access. Transactions remain valid only during an active session, meaning all records
are lost once the current document is closed. Understanding historical design changes
is crucial for further improvements, highlighting the need for a dedicated database to
track and document transactions throughout the design process.

The database schema is specifically developed for documenting and managing
building design revisions initiated by the operations proposed in Chapter 3.4.
Consequently, the corresponding data model must accurately represent the state of
the design and its evolution over time. Representing a design state necessitates
information about both the identities of building components involved in the project and
the active dependencies among them. Based on Table 1, Figure 13, and Table 3, eight
Entity-Relationship (ER) models are proposed. Seven ER models, illustrated in Figures
15 to 21, represent the identities and active topological constraints of seven categories
of building components, reflecting the design state of each. Additionally, an additional

Methodology 41

ER model named Revision (Figure 23) is designed to record executed operations,
detailing when and how design revisions are performed and their side effects.

Unnecessary relationships are omitted for clarity. For instance, architectural walls
share the same relationships as structural walls (Figure 16). However, according to the
significance matrix (Figure 13), architectural walls can only propagate changes to
components of equal or lesser significance, including architectural walls, architectural
columns, rooms, and doors. Furthermore, operations cannot be directly performed on
architectural walls; they can only be deleted during the First-Propagation and then
propagate further changes. Therefore, the active constraints for architectural walls
should include only rooms and doors. Additionally, only relationships derived from
topological constraints are illustrated in the ER models, omitting properties of entities
to simplify representation, as the relationships are already complex. In this research,
two properties are utilized: the identifier and the version number of building
components. The identifier serves as a reference for modeling dependencies and
relationships between components, akin to a foreign key in a relational database, while
the version number aids in tracking and recording design revisions. More details can

be found in the software implementation section (Chapter 4).

Room

is part
of room
boundary

N Stiar - 1

is
overlapped
by

Architectural
Wall

Door —

is
connected
to

blocks

] n N N

|
Structural Wall Structural Wall Structural Architectural
(different level) (same level) Column Walls

Figure 16: ER model of structural wall

Methodology

42

is part
of room
boundary

Architectural

wall N Room

Figure 17: ER model of architectural wall

(1
Architectural overlap Structural
1 : 1
Column with Column

Figure 18: ER model of architectural column

is
surrounded
by

N.

Architectural

N Stiar LN 1 Column
Structural
Column
N
Door -
overlapped
by
—
N blocks

connected
to

1

Structural

Structural Wall
Column

Figure 19: ER model of structural column

Methodology 43
Room 1 N Door
Figure 20: ER model of room
N Room
1—] Structural Wall
1
is
Door 1 hosted by
1 Architectural
Wall
Figure 21: ER model of door
Exit/Entrance
(Opening of the floor above)
1 Stair 1
; ! N ; b \
1 1 | 1
Structural Wall Architectural Structural Architectural Door Stair
Column Column Walls
I
\ N N |
N

/S
blocked

Figure 22

: ER model of stair

by

Methodology

44

Stand-alone
structural
components

—_—

Inaccessible
rooms

Inaccessible
stairs

—_—

Doors Stairs N Architectural
Columns
I
N N
Structural
N
Columns
1 Revision 1 delete n| Structural
Walls
N
ROOMS | Architectural
Walls

Figure 23: ER model of revision

Prototype Implementation 45

4 Prototype Implementation

4.1 Test Data

The design operations defined in Chapter 3.4 can only be executed on a model that
adheres to established design norms, codes, and best practices in building design. In
the early stages of design, floor plans serve as the primary documents. Any alterations
to these floor plans can lead to significant differences in both quantity and cost. For
this research, a floor plan that includes structural and architectural walls, columns,
stairs, slabs, and doors is used for modeling, as changes to these elements can impact
the overall plan. Additionally, rooms, though non-physical entities, are also modeled
due to the ROO constraint. The test model was developed using Autodesk Revit 2023.

C

Bedroom

Closet

Storage

Bathroor

L5]

r

—

]

Kitchen

[]

Dining Room

Bedroom

L7]

L&]

Bedroom

Bathroom

[+]

|1z|)Jl

Storage

Closet

I
I

I -]

Kitchen

[

uP

-

Lobby

Dining room

Bedroom

Il
a1

L

Figure 24: Floor plans of the test model
(the floor plan on the left is the ground floor and the one on the right is the first floor)

Prototype Implementation 46

Figure 25: Test model (3D view)

4.2 Implementation of Operations

Structural walls, structural columns and stairs are considered as subjects, on which the
operations of design revision are to be performed, namely delete and add operations,
while the other building components in the BIM model take part only in the subsequent
change propagation processes. The workload of the implementation of operations can
be divided into two parts. The first part is to implement the simple delete and add func-
tionalities for the three components without any consideration of topological constraints
via the Application Programming Interface (API) of Autodesk Revit 2023. Further is to
incorporate topological constraints into the commands, resulting in change propagation
to a desired extent. The implementation of propagation is based on Figure 13 and Ta-
ble 3. The active constraints indicate the potential directions of propagation, whereas
the significance matrix (Figure 13) gives information regarding the possibility of propa-
gating a change, namely changes are allowed to solely propagate to less or at least
the same important building components. The following is the implementation of the
six proposed operations. A text description and a flow-chart are provided for each of
the commands to elaborate the logic and its full functionalities. Red fonts in the illus-
tration of active constraints indicate how far the given constraint propagates. Addition-
ally, this research considers only rational operations and design revisions, which are
to be performed under the assumption that the given BIM model is well constructed by
following codes and good practices in building design. Furthermore, Revit Lookup
(Tammik et al. 2023), which is an interactive Revit RFA and RVT project database
exploration tool to view and navigate BIM element parameters, properties and relation-

ships, is most often used to help with the implementation.

Prototype Implementation 47

4.2.1 User Input

There are four critical conditions for the following six operations, namely the number of
vertically connected structural walls for deleting structural wall, the number of vertically
connected structural columns for deleting structural column, the number of non-
standalone surrounding structural columns for adding structural column, and the num-
ber of intersecting structural components (walls and columns) for adding stair. Critical
conditions are responsible for determining whether to continue with the current opera-
tion or not. The numbers for the conditions are stored in a text file, whose content can
be easily read (Figure 26). Instead of hard-coded conditions, the user can set the crit-
ical conditions manually as desired with the help of this input file. More flexibility is

achieved.

& CriticalConditions.txt ° +

File Edit View

2 (vertically connected structural walls)

1 (vertically connected structural columns)

2 (non-standalone surrounding structural columns)

2 (intersecting structural components, including walls and columns)

Figure 26: Input file

ug /| set critical condition

u var lines = File.ReadLines(@"D:\lyyan\Progranming\Ct#\Thesis\Design Revision\AutoDesignRevision\CriticalConditions.txt").ToList();
42 int n;

u3 bool success = int.TryParse(lines[2], out n);

ug

us if(n=0){n=2;1}

Figure 27: Read critical conditions from input file
4.2.2 Structural Wall Deletion

According to the significance matrix, changes caused by operations on structural walls
can propagate to all the eight components. However, only the evaluation of the struc-
tural constraint (CON) and the spatial layout constraint (ROO) is relevant for deleting
structural walls (Table 3) in First-Propagation. CON refers to both horizontally and ver-
tically connected structural walls and structural columns. The connected structural
components can result in Second-Propagation. Namely, connected structural walls
from other stories and any other connected structural components, which appear to be
structurally stand-alone after executing the deleting command, are taken into consid-
eration. In addition, structural walls deleted in Second-Propagation can trigger Third-
Propagation due to their related rooms. The number of vertically connected structural

walls, which is required as user input, are viewed as critical condition, since violating

Prototype Implementation 48

this constraint can result in termination of the current operation. Moreover, the deletion
of the structurally stand-alone structural components in Second-Propagation requires
confirmation. All rooms related to the walls, which are to be deleted during the opera-

tion (First-Propagation and Third-Propagation), are to be deleted by default as well.

As illustrated in Figure 28, before deleting the structural wall, it needs to be checked if
there are connecting structural components, resulting in First-Propagation. Further-
more, the connecting structural walls need to be checked if they are structurally stand-
alone components, which then results in Second-Propagation. Thereafter, deleting
some walls in the Second-Propagation can lead to the deletion of some rooms, result-
ing in Third-Propagation. For ROO constraints, only First-Propagation is possible since

rooms cannot propagate changes further.
Structural Architectural
Constraints Constraints
Spatial layout

[~

' '

The horizontally The vertically The rooms dependent on the
connected structural connected structural affected walls during the
components wall operation
(First-Propagation) (First-Propagation) (First-Propagation)
(Second-Propagation) (Second-Propagation)
(Third-Propagation) (Third-Propagation)

Figure 28: Constraints for Structural Wall Deletion

[] i

user input (n)

Request User input (yes/no)

Request, if delete the
connected structural Sﬂ['l,la:::lly
components that are e Yes—pm| N
ey stand-alone
deletion components
No
+
No

Abort
command

L4
If there are >=n
structural walls

Find connected
structural components
Delete

Structural
Wall

Delete affected rooms

Delete
Structural
Wall

Figure 29: Structural Wall Deletion

Prototype Implementation 49

To examine if a structural wall is structurally stand-alone, the class LocationCurve in
the Revit API is of importance, as illustrated in Figure 32 using Revit Lookup. The
location curves of structural walls below or above should have the same direction, and
the length of these walls should be approximately the same, if the walls are to be rec-
ognized and classified as structurally connected. A method called IsStandAloneStruc-
turalWall is implemented accordingly. The logic of the function is illustrated in Figure
30. In the examination, structural walls from levels both above and below are consid-
ered, whereas only structural columns from the same level are relevant. Namely, the
walls from the same level are considered for finding intersecting walls, while walls from
the other levels are for finding walls at the same location in terms of the x-y plane.
Moreover, detection of intersecting columns is implemented by using the get_Bound-
ingBox and the BoundingBoxIntersectsFilter methods from the Revit API, which is ba-

sically to check if there’s an intersection between the bounding boxes (Figure 31) of

Yes Yes Yes Not
»(Structurally
stand-alone
Now Structurally
stand-alone

the given elements.

Any intersecting
structural columns from the
same level?

Any intersecting
structural walls from the
same level?

Any structural walls
connected above or
below?

Given a
structural wall

Figure 30: Workflow of the method IsStandAloneStructuralWall

— RevitLookup - o x
Snoop summary
‘| C’E‘ Q Member Value
Element
& Wall
E Assemblylnstanceld =l
l Generic - 200mm, ID365441
[Z BoundingBox (View) BoundingBoxXYZ
— RevitLookup - o X
Snoop summary
l CE‘ Q Member Value
=) APIObject
= BoundingBoxXYZ
E IsReadOnly False

i Active view }

BoundingBexXYZ
Model

E Enabled True
E IsSet True

ax (920036, 19.670176284, 007874)
ERY) (0.577920036, 19.670176284, 3.937007874)
@ Min (-0.078247943, -28.230086183, 0.000000000)

E Transform Transform

Figure 31: BoundingBoxXYZ class in Revit API

Prototype Implementation 50

APIObject

i

LocationCurve

E IsReadOnly False
' LocationCurve
LocationCurve
E Curve 47.5721784776903 ft
= RevitLookup - o X
Snoop summary
@ Q Member Value
@ e E IsBound True
E IsClosed False
l 47.5721784776903 ft
E IsCyclic False
3 Length 47.5721784776903
E| Period Curve is not cyclic
@ Reference <null=
&) Clone 47.5721784776903 ft
[¥) CreateReversed 47.5721784776903 ft
[¥) Evaluate (Double, Boolean) XYZ
[¥) GetEndParameter (Int32) Double
(¥) GetEndPoint (Int32) XYZ
(¥) GetEndPointReference (Int32) Reference
() Tessellate List<XYZ>
Line
@3 E Direction (0.000000000, -1.000000000, 0.000000000)
@' 3 origin (0.243836046, 19.670176284, 0.000000000)

Figure 32: LocationCurve of wall
4.2.3 Structural Column Deletion

Similarly, structural columns can propagate changes to all other building components
as well. However, rooms are not considered, since they are not dependent on columns.
Structural connections can trigger Second-Propagation and therefore, are important
for deleting a structural column (Table 3). Connected structural walls can trigger Third-
Propagation due to relations to rooms. Vertical connections between structural col-
umns (CON) are significant. Namely, the number of structural columns, which are at
the same location point in terms of the x-y plane, but from different levels, is the critical
condition for this operation. User input is required to set this number and to decide if to
delete the structurally stand-alone structural components as well. Deleting the rooms
dependent on the affected walls (ROO) during the operation is only possible in the

Third-Propagation, since columns and rooms are not directly related.

As illustrated in Figure 33, First-Propagation can be achieved by checking if the to-be
deleted structural column is structurally stand-alone. Following is the Second-Propa-
gation, which is to check if there are further structural connections to the connected
structural components found in the First-Propagation. The connecting Structural walls
can lead to Third-Propagation because some rooms might be removed due to the de-

letion of walls in the Second-Propagation.

Prototype Implementation 51

The horizontally
connected structural
walls

»| (First-Propagation)
(Second-Propagation)
(Third-Propagation)

AN

Structural
Constraints

The vertically
connected structural
columns

™| (First-Propagation)
(Second-Propagation)

Figure 33: Constraints for Structural Column Deletion

User lfput n) Request USeTinput (yesino)

Request

Delete
Structural
Column

Abort
command

Delete
Structural
Column

Figure 34: Structural Column Deletion

Yes Yes »-{NOt structurally
stand-alone

Is there any
intersecting structural
walls from the same
level?

Is there any
structural columns

connected above or
below?

Structurally
stand-alone

Given a
structural
column

)

Figure 35: Workflow of the method IsStandAloneStructuralColumn

Structural columns below and above can be found by comparing the location points.
Revit API provides a class called LocationPoint for accessing the location point of a
column, which is similar to the LocationCurve. If the location points stay the same, two

columns are at the same location in terms of the x-y plane. Similar to structural wall, a

Prototype Implementation 52

method named IsStandAloneStructuralColumn is implemented as well, which takes
both structural columns from different levels and structural walls only from the same

level into consideration (Figure 35).

4.2.4 Stair Deletion

Stairs can only propagate changes mostly to architectural components (Figure 13). In
terms of deleting stairs, the accessibility constraint (OPE) is considered, which is to
basically delete the opening of the slab right above the deleted stair. There could be
openings at the base level of the deleted stair as well. Though, openings from the base

level are usually meant for the stair below.

The opening of
the structural slab
above the stair
(First-Propagation)

Architectural
Constraints

Figure 36: Constraints for Stair Deletion

B
@
=]
)y
RECIUES to user User lnput (yesino)
Delete the

[Request for user input]—» yes—p- opening
E YES
=
5 If there are any
O] opening above ‘

Delete the stair
Stair >
Delete
stair

Figure 37: Stair Deletion
4.2 5 Structural Wall Addition

Compared to the delete operation, adding a structural wall requires an evaluation of
more active constraints, namely CON, CLA, CLE, ROO, and SUP. Since a wall is cre-
ated in Autodesk Revit in such a way that it has both the top level and the base level
constraints, a wall is not necessarily supported by (SUP) a structural slab anymore.

Besides, there are no rules of thumb for the SUR constraint. Namely, SUR and SUP

Prototype Implementation 53

are not considered in the implementation. The constraints, namely CON and CLA, are
viewed as critical conditions here. User input is required to decide if to cancel the op-
eration if the new structural wall is either a stand-alone building component or a struc-
turally stand-alone structural component (CON). Additionally, an overlapping structural
wall (CLA), which is not structurally stand-alone (Second-Propagation), can result in
cancelation of the current operation. An auto-alignment of the inserted wall is per-
formed if there is at least one vertically connected structural wall (CON). Other compo-
nents, which directly clash with the inserted wall, are to be deleted as well. In terms of
the CLE constraint, the accessibility of rooms and stairs are checked. Namely, only
rooms that have at least one door, or at least one of the boundary lines is not a wall,
are viewed as accessible. Namely, deleting clashing doors can lead to Second-Propa-
gation. For stairs, a clearance area of at least one square meter in front of the exit or
entrance should be guaranteed, meaning that the inserted wall should not be in this
clearance area. Moreover, ROO is implemented to delete all the rooms dependent on

the affected or modified walls during the operation.

Different from DELETE operations, CON constraints in ADD operations can only result
in First-Propagation, meaning that it only needs to be checked if the inserted structural
wall is structurally stand-alone. In addition, stairs and rooms do not propagate changes
further and therefore can only cause First-Propagation. Doors, however, can have im-
pacts on rooms (Second-Propagation), which means that some rooms might become
inaccessible if their doors are deleted. Moreover, First-Propagation can be achieved
by searching for overlapping walls. Though, only overlapping structural walls can lead

to Second-Propagation since they need to be checked if structurally independent.

Architectural
Constraints

Structural
Constraints

-

f
Spatial layout Accessibility Spatial layout

¢ ¥
con . W
! . |) ¢ ¢

The horizontally
connected
structural

The rooms
dependent on the
affected walls during

the operation
(First-Propagation)

The vertically
connected
structural walls
(First-Propagation)

The overlapping
structural or
architectural wall
(First-Propagation)
(Second-Propagation)

The doors
blocked by the

inserted wall
(First-Propagation)

The stairs, whose
exit/entrance is
blocked by the

inserted wall

(First-Propagation)

The clashing doors
(First-Propagation)
Second-Propagation

The clashing stairs
(First-Propagation)

)

components
(First-Propagation

Figure 38: Constraints for Structural Wall Addition

Prototype Implementation 54

ser input (yes/no)

If the existing wall is
connected to
structural walls

‘ Ves Request if
contunie
above/below
2 Yes

N
v !

Delete the overlapping
structural wall and
continue insertion

Y
If there are

N o structural walls
ahove/below

Abort

Find stairs, whose| ~ command
exit/entrance area
is blocked by the
inserted wall Add
A

Structural
Wall

If the inserted
wall overlaps
with an existing
structural wall

¥
If the inserted
wall is
stand-alone

Yes
If there are any|
building Y N

Command

Delete affected rooms,
clashing doors, stairs,
over lapping
architectural walls

Find
inaccessible
rooms

Add
Structural
Wall

Auto-alignment

Figure 39: Structural Wall Addition

The creation of a wall instance is based on the method Create (Figure 40), which lies
in the DB namespace of Revit API. The method requires a location curve and the base
level along with the height of the wall as parameters. Therefore, this operation is im-
plemented in such a way that the user is allowed to create a wall by simply picking two
points in a floor plan. The picked two points are automatically aligned and the resulting
location curve is always parallel to the x-axis or the y-axis. Besides, a newly inserted
structural wall is automatically aligned to the connected structural walls from levels
below or above. Furthermore, an overlapping wall can be identified through a compar-
ison of the location curves and the levels in which the walls reside (Figure 41). The
method SameLocWalls, which is to find the walls with the same location curve but from
different levels, is also used in the implementation of IsStandAloneStructuralWall.
Clashing components can be identified by checking if there’s an intersection between
the bounding boxes of two building components. In terms of inaccessible rooms, a
method called IsRoomAccessible (Figure 42) is implemented based on the GetBound-
arySegments method of the Autodesk.Revit.DB.Architecture.Room class. Given a
room, it can tell if the room is accessible or not. Namely, a room is accessible if it has
at least one door or at least one of the room boundary lines is a room separation line

(a built-in category in Autodesk Revit) instead of a solid wall instance.

163
led
165
166
167
168
169
170
171

try

{
structWall = Autodesk.Revit.DB.Wall.Create(doc, geoLine, type.Id, currentLevel.Id, height, 0.0, true, true)
doc.Regenerate();

H

catch (Exception ex)

{

throw ex;

}

Figure 40: Autodesk.Revit.DB.Create method

Prototype Implementation

Yes

Any wall at the same
level?

Overlapping
wall found

Yes

Any structural wall at
the same location?

Any architectural wall

. No overlappin
at the same location? pping

wall

g @ 1,

Given a wall

Figure 41: Workflow of the method FindOverlappingWall

Yﬂr Ye)

No—p Any door? No—{ Inaccessible

Any model line?

Find
Given a room boundary
segements

Figure 42: Workflow of the method IsRoomAccessible

4.2.6 Structural Column Addition

The following five constraints are considered for change propagation processes in-
duced by adding a structural column, namely CON, CLA, SUR, SUP, CLE. The exist-
ence of surrounding structural columns within 1 meter (SUR), including structural col-
umns from levels below and above, can lead to Second-Propagation and termination
of the current operation. One of the critical conditions is still to check if the newly in-
serted structural column is structurally stand-alone (CON). The procedure in terms of
handling overlapping structural columns is similar to that of handling overlapping struc-
tural walls. Therefore, overlapping structural columns can result in Second-Propaga-
tion as well. What's more, the operation deletes surrounding stand-alone structural col-
umns (Second-Propagation) and any other clashing or surrounding architectural com-
ponents, including overlapping (CLA) and nearby architectural columns (SUR), clash-
ing doors and stairs (CLA), and stairs, whose clearance area is blocked by the newly
inserted structural column (CLE). The accessibility of the rooms, which are related to
the deleted doors, is checked in Second-Propagation as well. Since columns and walls
are automatically joined and connected in Autodesk Revit, the corresponding clashing
constraint CLA can be omitted. In addition, SUP is resolved by the top level and base

level constraint.

Prototype Implementation 56

Similar to structural walls, CON constraints and stairs here are also only for First-Prop-
agation. The evaluation of overlapping structural columns is based on the same prin-
ciple as that of overlapping structural walls, involving First- and Second-Propagation.
There is no big difference in terms of evaluating the propagation levels of doors as well.
What’s more, the surrounding columns need to be considered as First-Propagation.
Especially for the surrounding structural columns, their further structural connections

need to be evaluated in the Second-Propagation.

Structural
Constraints

Architectural
Constraints

Spatial layout
v Accessibility

Spatial layout

CON CLA CLE SUR

! ! ! '
; v
The horizontally Tlggrﬁ;g;adlly The overlapping The clashing doors The clashin The doors blocked | [The stairs, whose The surrounding The surrounding
c?nne;ctef ctructl conmns | [structuraliarchitectural Plisdy P’,Dpa%amn) v by the inserted exitlentrance is || structural columns || architectural
structural 3 i r i
t (First-Propagation) T co\unim (Second-Propagation)| [(First-Propagation; column .bIDCKEd by the (First-Propagation) columns
components (Flrst—Pr(JD:\gﬂUU_n) (First-Propagation) inserted column | (Second-Propagation) |(First-Propagation)
(First-Propagation) (Second-Propagation, (Second-Propagation)| |(First-Propagation)

Figure 43: Constraints for Structural Column Addition

The creation of a structural column is implemented based on the method Auto-
desk.Revit.Creation.Document.NewFamilylnstance (Figure 45), which requires a loca-
tion point and a base level of the column as parameters. Not only to find the overlapping
columns at the same location point (Figure 46), but this operation takes also surround-
ing columns into consideration. When the distance between the location points of two
columns are less than one meter, the two columns can be identified as mutually sur-

rounding (NearbyColumns in Figure 47).

0 | |

user input (yes/no)

user input (yes/no)
Request if continue o ¥
o n N ‘
\(Request if continue °
Yes Yes)
< > v

If the existing

es column is connected Request if
to structural columns ‘ es contunie n “
yos below/above No Abort
T v Deteto o Yes Find stairs, whose command
ere are >=n 5 es elete the overlapping exit/entrance area
non-stand-alone Itthe inserted If the inserted structural column and <—J is blocked by the
structural columns CENID(<>mﬂ4 CE MM GLET continue insertion inserted column Add

No.

ithil i structurally with an existing
piinipEc.ding stand-alone structural column Sg;ﬁ‘;r:‘
Delete i
If there are architectural column, Find
No »Quo > nearby stand-alone »| inaccessible
above/below structural column, rooms
e V:S clashing doors, stairs
f

Structural
Column

Figure 44: Structural Column Addition

Prototype Implementation 57

57 = #region Insert structural column by picking a point, auto alignment, delete clashing & nearby columns within 1m
58 = if (type != null)

59 {

60 = try

61 {

62 var tx = new Transaction(doc, "Add Column");

63

64 tx.Start();

65

66 // insert a structural column by seleting a point

67 var p = uidoc.Selection.PickPoint();

68 column = doc.Create

69 .NewFamilyInstance(p, type, doc.ActiveView.GenlLevel, StructuralType.Column);
70 doc.Regenerate();

71

Figure 45: Autodesk.Revit.Creation.Document.NewFamilylnstance

Overlapping
columns found

Any columns at the
same level?

Yes

Yes

Any structural
columns at the same
location?

Any architectural
columns at the same
location?

No overlapping
columns

1=

it

Given a
column

Figure 46: Workflow of the method FindOverlappingColumn

238 = /// <summary>

239 /// Given a column, find surrounding structural and architectural columns

240 /1! </summary>

201 /// <param name="column">The given struct column.</param>

202 /// <remarks>Nearby columns includes columns at the same location point within 33 cm,
243 11! and surrounding columns within 3.3 feet (ca. 1 meter) </remarks>

20y /// <returns>Ids of (structColumnsSamelLoc, structColumnsNearby, archiColumnsNearby, structColumnsAbove, structColumnsBelow)</returns>
2u5 =l public static (List<ElementId>, List<ElementId>, List<ElementId>, List<ElementId>, List<ElementId>) NearbyColumns(Element column)
206 1

207 if (column.Category.BuiltInCategory != BuiltInCategory.0ST_StructuralColumns &&
plit:] =] column.Category.BuiltInCategory != BuiltInCategory.0ST_Columns)

2u9 { throw new Exception("Not a column."); }

250

251 var structColumnsSamelLoc = new List<ElementId>();

252 var structColumnsNearby = new List<ElementId>();

253 var structColumnsAbove = new List<ElementId>();

254 var structColumnsBelow = new List<ElementId>();

255

256 var archiColumnsNearby = new List<ElementId>();

257

258 var doc = column.Document;

259

260 var structColumns = new FilteredElementCollector(doc)

261 .0fClass(typeof(FamilyInstance))

262 .WhereElementIsNotElementType()

Figure 47: The implementation of the method NearbyColumns
4.2.7 Stair Addition

For adding a stair, the clearance area (CLE) and the clashing (CLA) components are
relevant dependencies. According to the significance matrix, structural components are
relatively more significant than stairs, whereas stairs are of greater importance than
architectural components. Therefore, clashing structural walls or structural columns
can result in Second-Propagation and termination of the operation. Clashing structural
walls have the potential to trigger Third-Propagation due to their related rooms. On the
contrary, clashing architectural columns, walls, doors, and stairs are to be deleted di-
rectly, causing only First-Propagation. Though, deleting architectural walls and doors

can lead to Second-Propagation as well, since the deleted walls can be a part of room

Prototype Implementation 58

boundaries. All affected rooms during the operation are to be deleted. OPE is a con-
straint specific for stairs. Namely, an opening above the newly inserted stair is to be

created after the insertion operation. It guarantees the accessibility of stairs.

First-Propagation applies to overlapping stairs, architectural columns and openings of
slabs, since they do not propagate changes further. Because of the structural connec-
tions, structural walls can always propagate one level further than the architectural
ones. Take a clashing structural wall for an example, detecting the clashing wall itself
is the result of First-Propagation. Then this clashing structural wall needs to be checked
if it's structurally stand-alone, resulting in Second-Propagation. If the clashing wall is
structurally stand-alone and is deleted at the end, some rooms that are dependent on
it also need to be deleted, which is Third-Propagation. In addition, doors can propagate

changes to rooms, which makes Second-Propagation possible.

This operation allows the user to create a stair by picking two points (Figure 51), which
can result in a location line with a direction, namely the center line of a stair. Though,
the length of the stair run is 17 feet by default, which is suitable for a floor-to-floor height
of 4 meters. Additionally, the default width of stair run is ca. 1.2 meters. The implemen-
tation is based on the StairsRun.CreateStraightRun method. In addition, clashing com-
ponents can be identified by checking if there’s an intersection between the bounding
boxes of components. Based on the concept of bounding box, two methods are imple-

mented to guarantee the accessibility of stairs, as illustrated in Figure 50.

f . i
Spatial layout Accessibility Accessibility

CLA CLE OPE

The overlapping

stair (
(First-Propagation) | [

!

Y

Y
The clashing
architectural

The structural
columns blacking
the stair's
exitlentrance

The architectural
columns blocking
the stair's
exit/entrance

The opening of
the structural slab
above the stair
| |(First-Propagation)

The clashing

The clashing
architectu

(Second-Propagatio
(Third-Propagation

Figure 48: Constraints for Stair Addition

Prototype Implementation

59

user input(yesino)
- O - |
userinput ()
yes
v
yes ort
command
No—pm|
id
Sthir
N
Yes
Add
Stair
Figure 49: Stair Addition
399 B /// <summary>
400 /// Given a stair, find the columns that block the exit/entrance of the given stair
401 /// </summary>
ue2 /// <param name="stair">The given stair</param>
ue3 /// <param name="structural">structural or architectural</param>
4ey /// <param name="enlargement"></param>
ues /// <remarks>The exit/entrance area = enlargement * enlargement, right in front of the stair.
406 /77 The enlargement is by default 3.3 feet. If structural = 1, return structural columns</remarks>
ue7 /// <returns>A list of column ids</returns>
4 references
4es = public static List<ElementId> FindColumnsBlockingStairExit(Element stair, int structural = 1, double enlargement = 3.3)\3
oy
495 E /// <summary>
496 /// Given a stair, find the walls that block the exit/entrance of the given stair
497 /11 </summary>
498 /// <param name="stair">The given stair</param>
u99 /// <param name="structural">structural or architectural</param>
500 /// <param name="enlargement"></param>
501 /// <remarks>The exit/entrance area = enlargement * enlargement, right in front of the stair.
502 11/ The enlargement is by default 3.3 feet. If structural = 1, return structural walls</remarks>
503 /// <returns>A list of wall ids</returns>
4 references
se4 B public static List<ElementId> FindWallsBlockingStairExit(Element stair, int structural = 1, double enlargement = 3.3)[:'
6160
Figure 50: Methods for checking the accessibility of stairs
632 stairsTrans.Start();
633
634 // Add a straight run
635 Line locationLine = null;
636
637 = if (Math.Abs(ptl.X - pt2.X) > Math.Abs(ptl.Y - pt2.Y))
638 H
639 & if (ptl.X - pt2.X < 8)
648 {
641 locationline = Line.
642 CreateBound(new XYZ(ptl.X, ptl.Y, levelBottom.Elevation),
643 new XYZ(ptl.X + runLength, ptl.Y, levelBottom.Elevation));
6u4)
645 E else
646
64T locationLine = Line.
648 CreateBound(new XYZ(ptl.X, ptl.Y, levelBottom.Elevation),
649 new XYZ(ptl.X — runLength, ptl.Y, levelBottom.Elevation));
650 £
651
652 H
653 = else
654 1
655 & if (ptl.¥ - pt2.¥ < @)
656 {
657 locationline = Line.
658 CreateBound(new XYZ({ptl.X, ptl.Y, levelBottom.Elevation),
659 new XYZ(ptl.X, ptl.Y + runLength, levelBottom.Elevation));
660)
661 = else
662 {
663 locationLine = Line.
664 CreateBound(new XYZ(pt1l.X, ptl.Y, levelBottom.Elevation),
665 new XYZ(ptl.X, ptl.Y - runlLength, levelBottom.Elevation));
666 5
667 H
668
669 StairsRun run = StairsRun.CreateStraightRun(document, newStairsId, locationLine, StairsRunJustificatien.Center);
678 run.ActualRunWidth = 4.9;
671
672 stairsTrans.Commit();

Figure 51: Implementation of the method CreateSingleStraightRunStair

Prototype Implementation 60

4.3 Implementation of Database Schema

This section is to describe the database schema proposed in chapter 3.6, aiming at
recording design revision operations throughout the entire design process. The tools
used for the implementation are Microsoft C# (.Net framework), Revit APl 2023, and
MongoDB, which uses a flexible way of storing data called documents and collections.
A document can represent a single object, e.g. wall, door, column and so on, whereas
a collection is to represent a set of objects. As illustrated in Figure 52, six collections
are involved in the database for design revision, corresponding to the eight ER-dia-
grams in chapter 3.6, since walls and columns can represent both the structural and
non-structural ones by simply adding an attribute to indicate whether a component is
structural or not (Figure 53 & Figure 54). Each document in MongoDB must be as-
signed with a unique identifier. In this research, we use the Globally Unique Identifier
(GUID) of building components obtained from the Revit model to initialize the identifier
of documents (Bsonld in Figure 53 & Figure 54 & Figure 55). GUIDs are used as ref-
erence to build relationships as well.

£ DesignRevisionDB X +*
0 localhost:27017 -
localhost:27017 DesignRevisionDB

{} My Queries

Performance 4+ Create collection Refresh View B $1 Sortby | Collection Name - T

B Databases o o+
Columns

Storage size: Documen ts: Avg. document size: Indexes: Total index size:

- DesignRevisionDB + ¥
AU ot k5 0 204810

Doors

Storage size: Documents: Avg. document size: Indexes: Total index size:
0.48 kB 15 32900 8B 2048 kB

Revisions

i ErEER
: = 2 2 P 9

i Storage size; Documents: Avg. document size: Indexes: Total index size:
* 8 config 2048 kB 1 579.00 8 .48 kB

Documen ts: Avg. document size: Indexes: Total index size:

Figure 52: Documents and collections in MongoDB

Based on the relationship that a room can have multiple doors (Figure 20), we assign
a property to the data model of room to indicate whether a room is accessible or not,
which can be simply checked by the method IsRoomAccessible (Figure 42). Namely,
a room is accessible if it has at least one door or at least one of the room boundary

lines is a room separation line instead of a wall. The data model of door is assigned

Prototype Implementation 61

with a property to store the rooms that it connects (Figure 55). Besides, it stores the
GUID of its host wall as well. In terms of the data model of stair, a property is similarly
assigned to indicate the accessibility of stairs, which is typically based on the methods
in Figure 50. Moreover, it takes the opening above the stair into consideration as well
(Figure 56). Regarding the implementation of the revision data model (Figure 59) stays
the same as described in Figure 23.

35 = @region Fileds

36

37 public int Version { get; set; }

38 public bool IsDeleted { get; set; }

39 public bool IsStructural { get; set; }

e public string OverlappingWall { get; set; }

u1 public List<string> VerticallyConnectedStructWalls { get; set; 1}
42 public List<string> HorizentallyConnectedStructWalls { get; set; }
u3 public List<string> ConnectedStructuralColumns { get; set; }

uu public List<string> ClashingStairs { get; set; }

us public List<string> DependentRooms { get; set; }

u6 public List<string> BlockedDoors { get; set; }

u7 public List<string> BlockedStairs { get; set; }

us public List<string> HorizontallyConnectedArchilWlalls { get; set; }
u9 public string FamilyType { get; set; }

50 public string Level { get; set; }

1

52 [Bsonld]

53 public string Id { get; set; }

54 E public List<int> RevisionCycle { get; set; }

55

56 #endregion

Figure 53: Data model of wall

25 = #region Fields

26

27 public int Version { get; set; }

28 public bool IsDeleted { get; set; }

29 public bool IsStructural { get; set; }

30 public List<string> ConnectedStructuralColumns { get; set; }
31 public List<string> SurroundingStructuralColumns { get; set; }
32 public string OverlappingColumn { get; set; }

33 public List<string> ConnectedStructuralWalls { get; set; }

34 public List<string> ClashingDoors { get; set; }

35 public List<string> ClashingStairs { get; set; }

36 public List<string> BlockedStairs { get; set; }

37 public List<string> SurroundingArchiColumns { get; set; }

38 public string FamilyType { get; set; }

39 public string Level { get; set; }

ue E public List<int> RevisionCycle { get; set; }

41

U2 [BsonId]

43 public string Id { get; set; }

uy

us #endregion

Figure 54: Data model of column

Prototype Implementation 62

35 = #region Fields

36 public int Version { get; set; }

37 public bool IsDeleted { get; set; }

38 public List<string> FromToRooms { get; set; }
39 public string HostWall { get; set; }

ue public string FamilyType { get; set; }

41 public string Mark { get; set; }

42 public string Level { get; set; }

:'_1 [BsonId]

us public string Id { get; set; }

1] E public List<int> RevisionCycle { get; set; }

#endregion

Figure 55: Data model of door

if ((blockingStructuralWallsAndColumns != null && blockingStructuralWallsAndColumns.Count > @) ||
(blockingArchitecturalWallsAndColumns != null && blockingArchitecturalWallsAndColumns.Count > 0) ||
(topOpeningLines.Count < 3))

isAccessible = false;

}
else
isAccessible = true;

Figure 56: Check the accessibility of stairs

To implement a versioning system, a version number, whose initial value is set to O if
no operations have been performed yet, is assigned to each building component at the
point of its creation, representing the current version of the design. The current version
number automatically increments itself by one when an operation is performed. For
newly inserted components, the version number is synchronized with the current ver-
sion of the database, while the version number of deleted items stops updating itself
anymore. For example, the current version number for all existing components in the
database should be five, if five operations have already been performed. Now, if a new
wall needs to be inserted, the version of the wall should be six, meaning that this wall
was created in the sixth operation. In addition, all other existing components in the
database should increase their version numbers to six. Upon both creation and dele-
tion, the version number of a component is to be recorded in a different property,
namely the RevisionCycle property. The version property and the RevisionCycle prop-
erty together can serve as a versioning system (Figure 57). Moreover, an additional
property is assigned to components, indicating whether a component is currently de-
leted or not. The three versioning properties are often used in the implementation sim-
ultaneously as a means of double check, as illustrated in Figure 58. For instance, if a

component is to be deleted in the upcoming operation, the database first increments

Prototype Implementation 63

its version number by one and then marks it as deleted and thereafter, adds the version
number to its RevisionCycle property, whereas no updates are possible anymore if it

is already marked as deleted before an operation.

a O Mye - R i W Walls x +
0 localhost:27017 -
localhost:27017 DesignRevisionDB Walls

{} MyQueries

o+ . 5
o~ 1 : true} ©® Generate query 4+, | Explain Reset Find > Options »
FRCEEISINEE) |« EXPORTDATA « | |/ UPDATE | | @ DELETE 1-20f2 O B8 =
_id
N Ooois Version

IsDeleted : t
ra

Figure 57: Versioning system for design revision

Based on the versioning system, it is now possible to keep track of design revisions.
As illustrated in Figure 59, the identifier of documents in the revisions collection is still
the GUID of building components from Revit. Namely, the identifier indicates the sub-
ject, on which the corresponding operation was performed. Additionally, the version
property tells when the operation was conducted. The affected components in a revi-
sion are also easy to track with their stored GUIDs as reference.

var deletedStructWalls = wallCol.Find(wallFilter.And(
wallFilter.Eq(w => w.IsDeleted, true),
wallFilter.Eq(w => w.IsStructural, true)
E wallFilter.SizeGt(w => w.RevisionCycle, 1),
wallFilter.Eq(w => w.Version, currentVersion),
wallFilter.Ne(w => w.Id, ComponentId))).TolList();

var deletedArchiWalls = wallCol.Find(wallFilter.And(
wallFilter.Eq(w => w.IsDeleted, true),
wallFilter.Eq(w => w.IsStructural, false),

OOy LN LN Lh LN Lh e LN en
H @ W00 B M

62 f wallFilter.SizeGt(w => w.RevisionCycle, 1),

63 wallFilter.Eq(w => w.Version, currentVersion),

6l wallFilter.Ne(w => w.Id, ComponentId))).ToList();
65

66 var deletedStructColumns = colCol.Find{columnFilter.And(
67 columnFilter.Eq(c => c.IsDeleted, true),

68 columnFilter.Eq(c => c.IsStructural, true),

69 [columnFilter.SizeGt(c => c.RevisionCycle, 1),

70 columnFilter.Eq(c => c.Version, currentVersion),

71 columnFilter.Ne(e => c.Id, ComponentId))).TelList();
72

73 var deletedArchiColumns = colCol.Find(columnFilter.And(
74 columnFilter.Eq(c => c.IsDeleted, true),

75 columnFilter.Eq(e => c.IsStructural, false),

76 H columnFilter.SizeGt(c => c.RevisionCycle, 1),

77 columnFilter.Eq(e => c.Version, currentVersien),

Figure 58: Using multiple versioning properties simultaneously in queries

Prototype Implementation 64

{} My Queries & DesignRevisionDR Im Revisions X +
localhost: 27017
localhost:27017 DesignRevisionDB Revisions
{} My Queries
Documents 2 Aggregations Schema Indexes 1 Validation

#+ Performance

& Datoboses 2 +
o~

FETEL D |« ExPORTDATA -

Generate guery ¥ Explain

UPDATE | | & DELETE

= & DesignRevisionDB

8 Columns
_id: "ash 411-42b8-b994-93Te5 f 5 F5i
W Doors Operation : "Add Stair
Versian : 1
] M Revisions Reasons : "First Revision: Add a stair
* DeletedStructuralWalls :
I Rooms + DeletedArchitecturalWalls
8: "280347de-92da-4308-8
I stairs * DeletedStructuralColumns : Arr
* DeletedArchitecturalColumns : Arra
i wolls - StandAloneStructuralComponents : A
~ DeletedRooms : Array
* 8 admin o 2a7de 134388~
~ DeletedStairs : Array (empt
~ DeletedDoors : Array (empt
+ InAccessibleRooms : Array (empty

InAccessibleStairs a
0: "asbazd3a-edll-4ab@-b904-337es510elfaf

id: "esif 32 f-4584-adf9-22b6bfBCATIC-B885648"

Operation : "Delete Structural Wa

Version

Reasons : "Delete structural w
+ DeletedStructuralWalls : Array
» DeletedArchitecturalWalls
~ DeletedStructuralColumns : A
* DeletedArchitecturalColumns :
» standAloneStructuralComponents
~ Deletedrooms

.

Figure 59: Track design revisions throughout the design process

4.4 Design Revision Manager (DRM)

A graphical user interface (GUI)-based Design Revision Manager (DRM) is imple-
mented to realize a better interaction with the user while executing operations. The

implementation was based on XAML, which is a declarative markup language used for

creating user interface (Ul) for .Net applications.

Design Revision Operations
Delete stair
Add stair

Delete structural column
Add structural column

Delete structural wall
Add structural wall

Element Properties:

Unique ID: 65d6fh67-5633-4281-9a11-11816b2d3ba5-0005a2¢ee

Name: Generic - 200mm Revision Cycle:
Base Level: Level 1 Top Level:
Reasons for selected oprations:
First Op - Delete structural wall
Exit Continue Set Reasons

Change Propagation Results based on queries:
QOperation: Delete Structural Wall
Version: 1

Component ID: 65d6ib67-5633-4281-9a1i-1i816b2d3ba5-0005a2ee

Deleted Structural Walls: 0 Deleted Structural Columns:
Deleted Architectural Walls: 0 Deleted Architectural Columns:
Stand-alone Structural Components: 0 Deleted Rooms:

Deleted Stairs: [\] Deleted Doors:

The number of stairs connecting the current level to the upper level:

o w o o

Look up constraints:

Pre-Constraints
Current Version: [

IsDeleted:

IsStructural:

IsAccessible:

Connected Struct Columns
Horizontally Connected Struct Walls:
Vertically Connected Struct Walls:
Horizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms: 3
Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:

Clashing Archi Walls and Columns:

Clashing Doors: 0
Clashing Stairs: (1)
Blocked Stairs: (1]

Blocking Struct Walls and Columns:
Blocking Archi Walls and Columns:

FromToRooms:

Post-Constraints

Current Version: i |
IsDeleted: True]
IsStructural:

IsAccessible:

Connected Struct Columns:
Horizontally Connected Struct Walls:
Vertically Connected Struct Walls:
Horizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms:

Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:
Clashing Archi Walls and Columns:
Clashing Doors:

Clashing Stairs:

Blocked Stairs:

Blocking Struct Walls and Columns:
Blocking Archi Walls and Columns:

FromToRooms:

Quick Commands based on queries of topological constraints from BE:

‘Stru(lurally stand-alone mmpnnents‘

‘\naccessib\e stairs (clearance area of 1 square meter in front of the stair's entrance/exit is not guaranteed)‘

‘\naccessib\e rooms (A room without any exlt/emrance)l

Figure 60: Design Revision Manager (design operations)

Prototype Implementation 65

As illustrated in Figure 60, there are six gray buttons for performing revisions, corre-
sponding to the six operations in Chapter 4.2. Before a command can be executed, the
properties of the element and its pre-constraints, which are typically the relationships
to other building components, are to be displayed, so that the user can gain knowledge
of relevant dependencies before making modifications on the current BIM model.
These relationships are based on the ER models proposed in Chapter 3.6. After the
execution of an operation, the post-constraints of the component are to be displayed.
Nevertheless, post-constraints only make sense for performing add-operations, since
deleted components do not have constraints anymore. In addition, the results, namely
the side effects of change propagation processes, will be shown as well. Moreover, it's

allowed to set the reasons for the performed operation, which are to be written in the

corresponding revision in the database.

Design Revision Operations
Delete stair
Add stair

Delete structural wall Delete structural column
Add structural wall

Element Properties:

Add structural column

Unique ID:
Name: Stair LifeCycle: Created at version 0
Base Level: Level 1 Top Level: Level 2

Reasons for selected oprations:

Exit Continue Set Reasons
Change Propagation Results based on queries:
Operation:
Version:

Component [D:

Deleted Structural Walls: Deleted Structural Columns:
Deleted Architectural Walls: Deleted Architectural Columns:
Stand-alone Structural Components: Deleted Rooms:
Deleted Stairs: Deleted Doors:

The number of stairs connecting the current level to the upper level:

Quick Commands based on queries of topological constraints from DB:

‘Strudurally stand-alone compunenls‘

05e7e50a-dabe-4cd2-b21e-189f766¢c6ac3-00059343; f40d5bal-6329-4e06-bc78-101664a0bd7b-00059345,

‘Ina(cessib\e stairs (clearance area of 1 square meter in front of the stair's entrance/exit is not guaran(eed)‘

df9ae064-06b8-4399-971ad-5afdalef5578-000592¢3;

‘Ina(cessib\e rooms (A room without any Exit{entrance)l

Q05

ts

Current Version:

IsDeleted:

IsStructural:

IsAccessible:

Connected Struct Columns

Horizontally Connected Struct Walls:

Vertically Connected Struct Walls:
Horizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms:

Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:
Clashing Archi Walls and Columns:
Clashing Doors:

Clashing Stairs:

Blocked Stairs:

Blocking Struct Walls and Columns:
Blocking Archi Walls and Columns:

FromToRooms:

1064-06b8-4399-91ad-5afdalef5578-000592¢3

Post-Constraints

Current Version: 3
IsDeleted: False
IsStructural:

IsAccessible: False

Connected Struct Columns:
Horizontally Connected Struct Walls:
Vertically Connected Struct Walls:
Horizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms:

Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns: @
Clashing Archi Walls and Columns:
Clashing Doors: o
Clashing Stairs: (1]
Blacked Stairs:

Blocking Struct Walls and Columns: 2
Blocking Archi Walls and Columns: 0

FromToRooms:

Figure 61: Design Revision Manager (topological constraint-based commands)

The DRM provides another three topological constraint-based commands, which are
implemented through querying the relevant data from the design revision database. In
other words, it allows a quick search for components which satisfy certain topological
constraints. The commands are meant for providing information that’s relevant for the

design process, namely more of such commands can be implemented for various pur-

Prototype Implementation 66

poses and projects. As illustrated in Figure 61, the structurally stand-alone compo-
nents, inaccessible rooms and inaccessible stairs can be quickly found just with one
click. These topological constraints are often easily overlooked since they need to be
checked manually and BIM models from real projects are complex. With the found
GUIDs, one can use the command “Look up constraints” to find the constraints of the
corresponding problematic component. In addition, it's also convenient to locate the
component in a complex BIM model with its GUID. All in all, with this prototype, design-
ers can find the components with “ill” topological constraints swiftly at any time. Be-

sides, topological constraints of components can be looked up with their GUIDs.

Results and Discussion 67

5 Results and Discussion

5.1 Test Results of Design Revision Operations

This chapter presents the test results for both the proposed change management
framework and the various functionalities of the developed prototype. Multiple ADD
and DELETE operations were conducted, and their outcomes were evaluated to con-
firm that the Design Revision Manager (DRM) supports decision-making in building
design revisions. Additionally, the complete workflow for each operation tested is illus-
trated with accompanying test data. Furthermore, we examined the effectiveness of

the proposed versioning system.

5.1.1 Initial Test Model

The prerequisite for running the prototype is a BIM model, as stated before in Chapter
4.1. Since there’s no existing database for the current BIM project, the prototype first
creates a new database in MongoDB locally based on the database schema proposed
previously and then exports the data of relevant building components from the BIM
model to the database. The first time when the prototype is fired up, five collections are
to be created, corresponding to the five categories of building components involved in
change propagation, namely columns, walls, stairs, doors, and rooms. For columns
and walls, both structural and architectural ones are considered. Nevertheless, no op-
erations have been performed till this point yet. Besides, every document from the col-
lections, namely every building component with its topological constraints as attributes,
has the same version number of 0, as illustrated in both Figure 62 and Table 4. It is
namely the initial state of the BIM model for testing, based on which several operations

are to be performed in the following steps.

Table 4: The number of building components (initial state of the test model)

Structural Architectural Structural Architectural

Door Room Stair
wall wall column column

Version 0 19 11 24 1 15 16 1

Results and Discussion 68

{} My Queries

Documents 25 Aggregations Schema Indexes 1 Validation
#. performance
£ Databases < +
[U Type a query: { field: 'value' } or Generate query 4.
Search |
« & DesignRevisionDB © ADDDATA ~ |: @ EXPORTDATA ~ | |: # UPDATE :| |: W DELETE |
Im Columns
. Doors _id: "fa0694c5-d6db-4e05-a205-beb7092add32-0005654d"
| Version : @
I Rooms IsDeleted : false
. IsStructural : true
. Stairs » ConnectedStructuralColumns : Array (1)
m Walls * SurroundingStructuralColumns : Array (empty)
OverlappingColumn : null
L4 § admin » ConnectedStructuralWalls : Array (2)
. » ClashingDoors : Array (empty)
» & config . .
» ClashingStairs : Array (empty)
+ & local » BlockedStairs : Array (empty)

» SurroundingArchiColumns : Array (empty)
FamilyType : "12 x 12"
Level : "Level 1"

» RevisionCycle : Array (1)

_id: "fa0694c5-d6db-4e05-a205-beb7092add32-00056639"
l Version : 0 I
sheleted : Talse
IsStructural : true
» ConnectedStructuralColumns : Array (1)
» SurroundingStructuralColumns : Array (empty)
OverlappingColumn : null
* ConnectedStructuralWalls : Array (1)
» ClashingDoors : Array (empty)
» ClashingStairs : Array (empty)
» BlockedStairs : Array (empty)
» SurroundingArchiColumns : Array (empty)
FamilyType : "12 x 12"

Figure 62: Initial state (version 0) of test model

5.1.2 Structural Wall Deletion

[Level 1 X 4 30} | X &= 3D
r 1 r

Bathroom

| b
|
el

Storage Closet

Bathroom
Kitchen

Bedroom

Kitchen

el

Bedroom

6]

e

Bedroom

Dining Room Bedroom

Dining Room

*aHs: Basic Wall : Generic - 200mm |

Lobby

] Il

I -l T -

Figure 63: First operation — Structural Wall Deletion (the deleted wall resides in Level 1, the figure on
the left is the original status, while the one on the right is the status after the DELETE operation)

Results and Discussion 69

The first operation was to delete a structural wall based on the default critical conditions
(Figure 26 & Figure 63). The critical condition for the deletion of a structural wall is the
number of vertically connecting structural walls, which is 2 by default. Namely, if there
are at least two connecting structural walls below or above from other levels, the dele-
tion operation is not possible, and the operation will be therefore terminated. Since
there are only two floors in the test model, meaning that there is maximum only one
vertically connecting structural wall, the deletion of the selected structural wall is per-
mitted by default. Before the command is executed, the DRM can give us an overview
of the current constraints of the target wall (pre-constraints), which can help to decide
if to continue with the operation or not (Figure 65). After performing the operation, a
new collection named Revisions is created in the database (Figure 64), aiming at re-
cording the latest operation and the effects of change propagation, e.g. three rooms
were deleted in this test case. The results of change propagation are also to be dis-
played on the DRM by simply querying data that’s stored in the Revisions collection
and also related to the first revision, as illustrated in the section of Change Propagation
Results in Figure 65. Additionally, the reasons for the revision were recorded in the
database by using the SetReasons command as well. For the deleted structural wall
here, its version number stops updating ever since. Moreover, the wall was marked as
deleted and the version number, in which the wall was deleted, was documented in the
RevisionCycle property as well, representing that the wall was created at version 0 and

then deleted at version 1 (Figure 64).

+ @ DesignRevisior © ADDDATA ~ EXPORT DATA /' UPDATE | @ DELETE v @ DesignRevisionDB

Figure 64: 15t version of test model (the left figure presents that the operation is documented in the Re-
visions collection, while the right one shows the updates of the deleted wall's properties)

Results and Discussion

70

Look up constraints:

Design Revision Operations
Delete stair
Add stair

Delete structural column
Add structural column

Delete structural wall
Add structural wall

Element Properties:

Unique ID: 65d6ib67-5633-428i-9a11-1i816b2d3ba5-0005a2ee

Name: Generic - 200mm Revision Cycle:
Base Level: Level 1 Top Level:
Reasons for selected oprations:
First Op - Delete structural wall
Exit Continue Set Reasons

Change Propagation Results based on queries:

Operation: Delete Structural Wall
Version: 1

Component ID: 65d6fb67-5633-4251-9a1-1f816b2d3ba5-0005a2ee

Deleted Structural Walls: [Deleted Structural Columns: 0
Deleted Architectural Walls: 1] Deleted Architectural Columns: 0
Stand-alone Structural Compenents: 0 Deleted Rooms: 3
Deleted Stairs: [Deleted Doors: 0
T TIOTTET O ST TS COTe Tt Ty T e CarTenT tevetto-theupper-fevet

Pre-Constraints

Current Version: o
IsDeleted: False
IsStructural: True
IsAccessible:

Connected Struct Columns 1
Horizontally Connected Struct Walls: 1
Vertically Connected Struct Walls: 1
Horizontally Connected Archi Walls: 1
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms: 3
Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:

Clashing Archi Walls and Columns:

Clashing Doors: 0
Clashing Stairs: 0
Blocked Stairs: 0

Blocking Struct Walls and Columns:

Blocking Archi Walls and Columns:

Eromlol

Quick Commands based on queries of topological constraints from DB:

‘Structurally stand-alone components‘

‘\na(cesslb\e stairs (clearance area of 1 square meter in front of the stair's entrance/exit is not guaranteed)‘

‘\na(cesslb\e rooms (A room without any exit/entrance)‘

Post-Constraints

Current Version: 1
IsDeleted: True
IsStructural:

IsAccessible:

Connected Struct Columns:
Horizontally Connected Struct Walls:
Vertically Connected Struct Walls:
Horizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms:

Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:
Clashing Archi Walls and Columns:
Clashing Doors:

Clashing Stairs:

Blocked Stairs:

Blocking Struct Walls and Columns:
Blocking Archi Walls and Columns:

FromToRooms:

Figure 65: Design Revision Manager — Structural Wall Deletion (pre-constraints are the dependencies
of building components before the operation is performed)

5.1.3 Structural Column Deletion

[X g [Level 1 [Level 2 X
[.l
Bathroo ‘; n Bed Bath 1]
edroom athroom
Bedroom 5 Kitchen
d 3
o] Kichen
N
Dining Room Bedroom
Storage Closet Dining room Bedroom
"
y
E
=
- =T

S

1 structural columns above/below at the same

location

Cancel deleting structural column

L,_lm 1 L |

Figure 66: Second operation — Structural Column Deletion (the to-be-deleted structural column from
different views, namely Level 1 in the left figure and Level 2 in the right one)

The second operation aimed to delete a structural column, whose execution was sub-
jected to one of the critical conditions as well. However, different from the condition for
deleting structural walls, the number was set to 1 by default. Namely, if there is at least

Results and Discussion 71

one connecting structural column below or above, the intended operation will be auto-
matically terminated, and no change propagation is possible. Since the to-be-deleted
structural column at level 1 had a connection to one structural column from level 2
(Figure 66), it's not possible to perform the deletion operation. Therefore, the test model
itself as well as the data stored in the database stayed unchanged, meaning that no
updates of the test model were possible regardless of all other pre-constraints.

5.1.4 Stair Deletion & Addition

In this test, we intended to first relocate an existing stair, which comprises a DELETE
and an ADD operation. Afterwards we inserted a new stair, resulting in 2 stairs in total
in the project.

Do you want to delete the opening above the L~ = A
deleted stair?
el —
Lom el
& o
o2
;o i
& &ive
"
el !
P ol
Pl ‘k-:p-m

Figure 67: Third operation — Stair Deletion (the figure on the left is the original status, containing the to-
be-deleted stair with an opening on top, the right one is the updated status after the DELETE opera-

R Dt 1l Agpegetions achuia (tieins ' Veldation Doouments (1 Aggregations Schema Indexes 1 Validation
#. Performance
bas o+
° Gen +
€ Dotabases o+
o~ Type a guery: { field: 'value' } or Generate query +
et
« @ DesignRevisionD8 CYCEETED |« eXPORTDATA - | [/ UPDATE | | @ DELETE
m Columns
W Doors Tbf65-dd4T-469e-9717-bfd1ldaeeT0ce-0085a540"
e B Revisions
Pee + Clashin| ura ns : Array (empty)
g i Reoms + ClashingArchitecturalwallsAndColumns : Array (empty)
M Stairs + Clashingboors :
* ClashingStairs
- walls Ishccessible :

WallsAndColumns : Array (empty)

» @ admin raluWallsAndColumns : Array (empty)

» @ config = =
aselewv "
» & local TopLeve' 2"
- RevisionCycle : Array (2)
a: e
1: 2

Figure 68: 2" version of test model (the left figure presents that the operation is documented in the
Revisions collection, while the right one shows the updates of the deleted stair’s properties)

For relocating a stair, we first deleted the target stair in the project. Since there’s no
significant violation of pre-constraints, the deletion operation can be performed. As a
result of change propagation, the opening of the floor above the stair was deleted by
choice as well (Figure 67). Consequently, an update of the version number to 2 was
committed for every existing building component in the database (Figure 68). After the

Results and Discussion 72

deletion, the IsDeleted and RevisionCycle properties of the deleted stair were updated
accordingly, which is similar to the deletion of structural walls. With the updated prop-
erties, the stair is prevented from any further updates. The 2" revision was also added
to the Revisions collection (Figure 68). In addition, there’s no stair that can establish a
connection between the ground floor and the 1%t floor, resulting in inaccessible areas.

® x

Figure 69: Fourth operation — Stair Addition (the left figure shows an intended insertion of a stair at a
desired location by picking two points, the right one shows the updated status after adding the stair)

Following is the fourth operation, which is to add a stair by directly picking two points
on the ground floor. Since the stair was added at the 3" version, the first entry of the
RevisionCycle property is 3 (Figure 70). In addition, the direction of the new stair can
be determined ourselves, namely the first picked point is to be located at the base level
while the second picked point is at the top level. As illustrated in Figure 69, the to-be-
inserted stair has conflicts with an architectural wall and an architectural column re-
spectively. Since it's of greater importance to guarantee the accessibility of stairs, the
obstacles were deleted automatically, meaning that the clashing components are of
less significance compared to stairs and therefore, can be deleted without confirmation.

This information can be utilized by the DRM to help with decision-making.

Because of the existence of clashing components, which block the exit or entrance of
the stair, the IsAccessible property was marked as False (Figure 70). With the pre-
constraints provided by the DRM, which indicates that there’s no conflict or connection
between the new stair and structural components, a conclusion can be drawn. Namely,
the clashes result from conflicts with non-structural components, which normally re-

quire no further confirmation to resolve these conflicts. As a result, the clashes were

Results and Discussion 73

addressed automatically, and the accessibility of the new stair can be maintained after
the ADD operation. In addition, the effects resulting from the operation were also pro-
vided by the DRM, namely the operation resulted in the deletion of one architectural
wall and one architectural column (Figure 71). What’s more, the accessibility between
two floors was evaluated as well by counting the existing stairs which are supposed to

connect the two stories.

e Genera te query +

visionDB CECEEETEE) © EXPORTDATA + | |/ UPDATE | | @ DELETE
¢ IsDeleted : tr

o~ Generate query +:

v @ DesignRavisionDB FREEERIE © EXPORTDATA - |/ UPDATE | | W DELETE
" Rea: ' ete st

WallsAndColumns : Array (e
ralMallsAndColumns : Array (smpt

[4
c
c
: I
W Stairs. » B WallsAndColumns : 4
B ralMsllsAndColumns : Array
B
T
R

Figure 70: 3 version of test model (the left figure presents that the operation is documented in the Re-
visions collection, while the right one shows the updates of the inserted stair's properties)

Change Propagation Results based on queries:
Operation: Add Stair

Version: 3

Component ID: 96247279-b608-4a16-a31a-372c25172b4e-0005a57

Deleted Structural Walls: 0 Deleted Structural Columns: 0

| Deleted Architectural Walls: 1 Deleted Architectural Columns: 1 |
Stand-alone Structural Components: 0 Deleted Rooms:
Deleted Stairs: 0 Deleted Doors:

| The number of stairs connecting the current level to the upper level: 1 |

Figure 71: Design Revision Manager — Stair Addition (change propagation results)

The next operation was to insert a new stair at a desired location. However, this ADD
operation had conflicts with two structural walls, which had the same location line but
reside in different stories, as illustrated in Figure 72. Since the maximum number of
intersecting structural components allowed for an ADD operation was set to 2 (Figure
26), the operation was automatically denied and no changes were committed as a re-
sult, neither in the test model nor in the design revision database. Therefore, the in-

tended insertion of the marked stair in Figure 72 was discarded by the DRM.

Results and Discussion 74

) X

Dining Room Bedroom

8

T 2 intersecting structural components

i
Ié Insertion cancelled
up—I

Figure 72: Fifth operation — Stair Addition

Table 5: The number of building components (3" version)

Structural Architectural Structural Architectural .
Door Room Stair
wall wall column column
Version 0 19 11 24 1 15 16 1
Version 1 18 11 24 1 15 13 1
Version 2 18 11 24 1 15 13 0
Version 3 18 10 24 0 15 13 1

5.2 Test Results of Topological Constraint-based Commands

We performed two more operations so that the test model is more suitable for testing
the three topological constraint-based commands (Figure 61), which are based on que-

rying data stored in the design revision database.

Different from the change propagation results, which present themselves as various
numbers of different types of building component, the constraint-based commands ra-
ther consider multiple topological constraints simultaneously. With the DRM, we can
easily find the structurally stand-alone structural components, inaccessible rooms and
inaccessible stairs. The results are based on queries on the database and therefore
totally independent from the test model itself. Namely, the dependencies are separated

from the test model to a certain extent. In addition, the active constraints of a specific

Results and Discussion 75

component can be queried by using the Look-up-constraints command. As illustrated
in Figure 74, one inaccessible stair was found through the quick commands and then
its constraints were queried from the database with its GUID. The post-constraints,
namely the currently active ones, indicate that a structural wall or a structural column
blocks the stair. Since connections between components are established by referenc-
ing their GUIDs, we can easily locate this problematic dependency in the design revi-
sion database (Figure 75). Similarly, we can find this conflict in the BIM model easily

with GUIDs and then find out how to resolve the conflict.

[Level 1 X 4 (30} Document ts 1 Aggregations Schema

Bath .
athroor I‘\ Qv Generate query +
Bedroom [] ”—' Kitchen

] B

+ @ DesignRevisionDB LIS © EXPORTDATA - |/ UPDATE | | @ DELETE

M Columns » InAccessiblestairs

Dining Reom Bedroom

7

Figure 73: The latest state of test model (5" version of test model on the left and the corresponding
database on the right)

Table 6: The number of building components (51" version)

Structural Architectural ~ Structural Architectural .

wall wall column column Door Room Stair
Version 0 19 11 24 1 15 16 1
Version 1 18 11 24 1 15 13 1
Version 2 18 11 24 1 15 13 0
Version 3 18 10 24 0 15 13 1
Version 4 18 10 25 0 14 13 1
Version 5 19 10 25 0 14 13 1

Results and Discussion

76

Design Revision Operations
Delete structural wall Delete stair
Add structural wall Add stair
Element Properties:
Unigue 1Dz
Name: Stair Revision Cycle:

Base Level: Level 1 Top Level: Level 2

Reasons for selected oprations:

Exit Continue Set Reasons

Change Propagation Results based on queries:
Operation:

Version:

Component ID:

Deleted Structural Walls: Deleted Structural Columns:
Deleted Architectural Walls: Deleted Architectural Columns:
Stand-alone Structural Components: Deleted Rooms:
Deleted Stairs: Deleted Doors:

The number of stairs connecting the current level to the upper level:

Quick Commands based on queries of topological constraints from DB:

‘Structu rally stand-alone compo nenlsl

96247279-b608-4a16-a31a-372c25f72b4e-0005a5bd;

| stairs (clearance area of 1 square meter in front of the stair's entrance/exit is not

96247279-b608-4a16-a31a-372c25f72bde-0005a57¢;

Inaccessible rooms (A room without any exit/entrance))

fa0694c5-dbdb-4e05-a205-beb7092add32-0005a0b6;

Delete structural column
Add structural column

Pre-Constraints

Current Version:
IsDeleted:
IsStructural:
IsAccessible:

Connected Struct Columns

Harizontally Connected Struct Walls:

Vertically Connected Struct Walls:
Hoarizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms:

Overlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:
Clashing Archi Walls and Columns:
Clashing Doors:

Clashing Stairs:

Blocked Stairs:

Blocking Struct Walls and Columns:
Blocking Archi Walls and Columns:

FromToRooms:

Post-Constraints

279-b608-4a16-a31a-372c25f72b4e-0005a57¢

Current Version:

IsDeleted: False

IsStructural:

IsAccessible: False

Connected Struct Columns:

Horizontally Connected Struct Walls:

Vertically Connected Struct Walls:
Horizontally Connected Archi Walls:
Surrounding Struct Columns:
Surrounding Archi Columns:
Dependent Rooms:

QOverlapping Wall:

Overlapping Column:

Clashing Struct Walls and Columns:
Clashing Archi Walls and Columns:
Clashing Doors:

Clashing Stairs:

Blocked Stairs:

Blocking Struct Walls and Columns:
Blocking Archi Walls and Columns:

FromToRooms:

-

Figure 74: Test results of topological constraint-based commands

) . [UR 4 Type a query: field: 'value' } or Generate query ¥,
Search
v & DesignRevisionDB CYSEETS S (@ EXPORTDATA + | [/ UPDATE | [@ DELETE
) el IsDeleted :
B Doors » ClashingStructuralWallsAndColumns : Array (empty)
» ClashingArchitecturalWallsAndColumns : Array (empty)
I Revisions *» ClashingDoors : Array (empty)
B Rooms * ClashingStairs : Array (empty)
IsAccessible : true
I Stairs » BlockingStructuralWallsAndColumns : Array (empty)
* BlockingArchitecturalWallsAndColumns : Array (empty)
i walls FamilyType : "Stair"
» & admin BaseLevel : "Level 1"
TopLevel : "Level 2"
» & config » RevisionCycle : Array (2)
» £ local

_id: "96247279-b608-4al6-a31a-372c25f72b4e-0005a57c"

Version :

IsDeleted :
ClashingStructuralWallsAndColumns
ClashingArchitecturalWallsAndColumns :
ClashingDoors :
ClashingStairs :
IsAccessible
* BlockingStructuralWallsAndColumns

v v v v

Array (empty)
Array (empty)

false

Array (empty)
Array (empty)

Array (1)

[HI96247279-b608-4a16-a31a-372c25f72bde-0005a5bell

BlockingArchitecturalWallsAndColumns :

FamilyType : "Stair"
BaseLevel : "Level 1"
TopLevel : "Level 2"

» RevisionCycle : Array (1)

Array (empty)

Figure 75: Find the problematic dependency with GUID (the red marked GUID refers to the inaccessi-
ble stair found in Fig. 73, the blue marked GUID is the structural wall or column that blocks the exit or

entrance of the stair)

Results and Discussion 77

5.3 Key Findings

The proposed BIM-based change management framework has been tested and
demonstrated its effectiveness in supporting building design revisions. A core
component of this system is the change propagation mechanism, which outlines the
operational principles of the Design Revision Manager (DRM). This mechanism can be
tailored to different projects, accommodating varying requirements for change

propagation based on specific design contexts.

Moreover, the system exhibits a high degree of adaptability, as the change propagation
mechanism can be applied to most BIM-based building design processes. The
definitions of these mechanisms rely on common engineering knowledge in building
design, ensuring that many relationships between building components are universally
applicable. The change propagation mechanism primarily aids decision-making
regarding design revisions by evaluating the potential impacts on components affected
by an initial change. Consequently, designers can determine whether to proceed with

a proposed revision based on the severity of its effects on related building components.

An additional significant feature of the framework is the versioning system, which
functions as an engineering database designed to track the current state of a BIM
project. This system provides crucial information about the existence and topological
constraints of building components within a BIM model, ensuring that designers always
have access to relevant dependencies among components. Furthermore, design
revisions throughout the entire design process can be documented in the database,
allowing past revisions and their propagation outcomes to inform decision-making for

similar design revisions in the future.

In summary, the proposed framework serves as a comprehensive change
management system that enhances decision-making in building design revisions by
supplying pertinent information regarding change propagation results, topological con-
straints of building components, and historical design revisions. Additionally, the
prototype illustrates how to leverage engineering knowledge—specifically, the

dependencies between building components—to achieve design automation.

Conclusion 78

6 Conclusion

Building design is inherently complex and uncertain, making design revisions an
unavoidable aspect of the process. Specifically, revisions in Building Information
Modeling (BIM)-based design are significantly more intricate due to the rich information
embedded in BIM models. This study proposes a novel change management
framework to support revisions in BIM-based building design, providing a

comprehensive solution for managing change propagation.

The findings of this research validate several key aspects of the proposed change
management system. Firstly, it has been confirmed that expert knowledge in building
design can be effectively translated into topological constraints, which govern the
direction of change propagation. Furthermore, change propagation processes,
facilitated by these topological constraints, can be integrated into BIM-based design
operations through a dedicated change propagation mechanism. This mechanism
consists of a set of pre-defined topological constraints and a significance matrix that
dictates the extent of change propagation, enabling prior evaluation of potential

propagation processes while conducting design operations.

Secondly, the change propagation mechanisms exhibit flexibility, allowing them to be
defined and adjusted according to various design contexts. The complexity of these
mechanisms correlates with the number of building components and their respective
dependencies involved in the propagation process. Nevertheless, these mechanisms
are broadly applicable across most building design projects, as they typically share
common disciplinary knowledge. Lastly, having access to the dependency network of
building components and evaluating potential change propagation processes prior to

executing design operations significantly enhances decision-making capabilities.

This research also contributes to the field of building design automation by addressing
change propagation dynamically during design operations. The outcomes of
propagation processes can be implemented automatically with a single click by the
designer. However, a notable limitation of this study is that the proposed approach is
restricted to Autodesk Revit and the Revit API, with a limited scope of considered

topological constraints.

Conclusion 79

6.1 Contribution

This research contributes significantly to the field of change management in BIM-based
building design. The proposed BIM-based change management system introduces a
change propagation mechanism that aids decision-making throughout the building
design process. The mechanism primarily facilitates the integration of change
propagation processes into design operations within BIM authoring tools. Additionally,
it serves as a tool for tracking design revisions throughout the entire design lifecycle.
Its inherent flexibility and adaptability stem from its reliance on topological constraints
and a corresponding significance matrix, both derived from expert knowledge in
building design. This means that the behavior of change propagation can be tailored

to suit different design contexts.

Furthermore, the Design Revision Manager serves as the practical implementation of
the proposed change management framework. Overall, the prototype enhances
decision-making in BIM-based building design revisions by providing insights into the
dependencies between building components, the effects of change propagation
resulting from intended design operations, and records of past revisions. By presenting
the potential consequences of each decision in advance, the system enables more

informed and rational decision-making.

6.2 Limitation

This research has not yet fully investigated the dependencies among building
components, as it focused on a limited set of components. An increased number of
components could yield a more complex network of dependencies, resulting in more
sophisticated change propagation processes and potentially additional levels of

change propagation.

Additionally, the range of design operations implemented in the prototype is limited.
Currently, the system only supports the addition and deletion of individual building
components. More complex design operations, such as rotation or modification of
semantic properties, are not yet available. These functionalities could be realized by

considering a broader spectrum of dependencies among building components.

Furthermore, the design process experiences interruptions due to user interactions
required during the execution of design operations. To enhance the efficiency of the

design workflow, the change propagation mechanism could be refined to allow

Conclusion 80

operations to run in the background, thereby facilitating a more seamless design

experience.

Finally, the versioning system is restricted to maintaining records of the latest design
version, with no access to previous versions. The ability to compare different versions
could significantly contribute to change management. Moreover, the current versioning
system operates only on a local host, limiting collaborative efforts among team

members via a server connection.

6.3 Future Work

Based on the findings of this research, several recommendations can be made for
future enhancements in this field. First, it is essential to conduct a more comprehensive
investigation into the dependency network of building components. Specifically, a
broader range of building components and their interrelationships should be
considered in the context of change propagation. This expanded scope would facilitate
a more thorough understanding of the factors influencing building design revisions,
ultimately leading to more accurate and desired outcomes in change propagation
processes. However, it is important to note that as the number of components and
dependencies increases, the complexity of the corresponding change propagation

mechanism will also rise, necessitating greater effort in its development.

Second, there is potential for further refinement of the proposed change propagation
mechanism. This research currently focuses on two fundamental design revision
operations: ADD and DELETE. Furthermore, the effects of change propagation
primarily pertain to the deletion of components. Future research should explore the
implementation of additional operations, such as modifying component attributes rather
than solely deleting or adding components. Additionally, various methods of
propagating changes should be examined, including the relocation of components and

the modification of geometric or semantic properties.

Lastly, the database infrastructure should be enhanced in alignment with the increased
number of building components and dependencies. Furthermore, the versioning
system could be improved to maintain records of every version of a BIM project. Given
that BIM projects typically involve numerous participants from diverse disciplines,
establishing a central server for the database becomes critical. This can be effectively
accomplished using Node.js, a cross-platform and open-source JavaScript runtime

environment suitable for developing servers and web applications.

Bibliography 81

Bibliography

Borrmann, A., Konig, M., Koch, C., & Beetz, J. (2018). Building information modeling:
Why? what? how? (pp. 1-24). Springer International Publishing.
https://doi.org/10.1007/978-3-319-92862-3 1

Borrmann, A., & Rank, E. (2009). Specification and implementation of directional op-
erators in a 3D spatial query language for building information models. Ad-
vanced Engineering Informatics, 23(1), 32-44.
https://doi.org/10.1016/j.aei.2008.06.005

National Institute of Building Sciences. (2015). National BIM Standard United States
version 3. Washington, DC: National Institute of Building Sciences.
http://www.nationalbimstandard.org / (Accessed December 9, 2017).

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for
existing buildings—Literature review and future needs. Automation in construc-
tion, 38, 109-127. https://doi.org/10.1016/j.autcon.2013.10.023

Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for
owners, managers, designers, engineers and contractors. John Wiley & Sons.
https://www.academia.edu/download/31053339/BIM_Handbook_ 1st.pdf

Wong, J., & Yang, J. (2010). Research and application of building information model-
ling (BIM) in the architecture, engineering and construction (AEC) industry: a
review and direction for future research. In Proceedings of the 6th International
Conference on Innovation in Architecture, Engineering and Construction
(AEC) (pp. 356-365). Department of Civil and Building Engineering, Loughbor-
ough University. https://eprints.qut.edu.au/38333/1/38333.pdf

Eastman, C. M. (2018). Building product models: computer environments, supporting
design and construction. CRC press. https://doi.org/10.1201/9781315138671

Penttila, H., Rajala, M., & Freese, S. (2007). Building information modelling of modern
historic buildings. Predicting the Future, 25th eCAADe Konferansi, Frankfurt am
Main, Germany, 607-613. https://papers.cumin-
cad.org/data/works/att/ecaade2007_124.content.pdf

Bibliography 82

Cross, N. (2021). Engineering design methods: strategies for product design. John
Wiley & Sons. https://www.academia.edu/download/37650372/engineering_de-
sign_methods.pdf

Machairas, V., Tsangrassoulis, A., & Axarli, K. (2013). Algorithms for optimization of
building design. Renewable & Sustainable Energy Reviews, (IKEEART-2014-
804). https://doi.org/10.1016/j.rser.2013.11.036

Jarratt, T. A. W., Eckert, C. M., Caldwell, N. H., & Clarkson, P. J. (2011). Engineering
change: an overview and perspective on the literature. Research in engineering
design, 22, 103-124. https://doi.org/10.1007/s00163-010-0097-y

De Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evalua-
tions and its implications. Energy and buildings, 34(9), 951-958.
https://doi.org/10.1016/S0378-7788(02)00070-1

Jarratt, T., Clarkson, J., & Eckert, C. (2005). Engineering change. In Design process
improvement: a review of current practice (pp. 262-285). London: Springer Lon-
don. https://doi.org/10.1007/978-1-84628-061-0 11

Koh, E. C., Caldwell, N. H., & Clarkson, P. J. (2012). A method to assess the effects
of engineering change propagation. Research in Engineering Design, 23, 329-
351. https://doi.org/10.1007/s00163-012-0131-3

Ahmad, N., Wynn, D. C., & Clarkson, P. J. (2013). Change impact on a product and its
redesign process: a tool for knowledge capture and reuse. Research in Engi-
neering Design, 24, 219-244. https://doi.org/10.1007/s00163-012-0139-8

Eckert, C., Clarkson, P. J., & Zanker, W. (2004). Change and customisation in complex
engineering domains. Research in engineering design, 15, 1-21.
https://doi.org/10.1007/s00163-003-0031-7

Clarkson, P. J., Simons, C., & Eckert, C. (2004). Predicting change propagation in
complex design. J. Mech. Des., 126(5), 788-797.
https://doi.org/10.1115/1.1765117

Giffin, M., De Weck, O., Bounova, G., Keller, R., Eckert, C., & Clarkson, P. J. (2009).
Change propagation analysis in complex technical systems.
https://doi.org/10.1115/1.3149847

Bibliography 83

Keller, R., Eckert, C. M., & Clarkson, P. J. (2005, July). Multiple views to support engi-
neering change management for complex products. In Coordinated and Multiple
Views in Exploratory Visualization (CMV'05) (pp. 33-41). IEEE.
10.1109/CMV.2005.11

Eastman, C., Parker, D. S., & Jeng, T. S. (1997). Managing the integrity of design data
generated by multiple applications: The principle of patching. Research in engi-
neering design, 9, 125-145. https://doi.org/10.1007/BF01596599

Reddi, K. R., & Moon, Y. B. (2009). A framework for managing engineering change
propagation. International Journal of Innovation and Learning, 6(5), 461-476.
https://doi.org/10.1504/1JIL.2009.02506

Katz, R. H. (1990). Toward a unified framework for version modeling in engineering
databases. ACM Computing Surveys (CSUR), 22(4), 375-4009.
https://dl.acm.org/doi/pdf/10.1145/98163.98172

Brahma, A., & Wynn, D. C. (2023). Concepts of change propagation analysis in engi-
neering design. Research in Engineering Design, 34(1), 117-151.
https://doi.org/10.1007/s00163-022-00395-y

Saoud, L. A., Omran, J., Hassan, B., Vilutieng, T., & Kiaulakis, A. (2017). A method to
predict change propagation within building information model. Journal of Civil
Engineering and Management, 23(6), 836-846.
https://doi.org/10.3846/13923730.2017.1323006

Beitz, G. P. W., Wallace, K., Blessing, L., & Bauert, F. (1996). Engineering Design: A
Systematic Approach. MRS BULLETIN, 71.
https://doi.org/10.1557/S0883769400035776

Ma, S., Song, B., Lu, W. F., & Zhu, C. F. (2003, January). A knowledge-supported
system for engineering change impact analysis. In International Design Engi-
neering Technical Conferences and Computers and Information in Engineering
Conference (Vol. 37009, pp. 439-447).
https://doi.org/10.1115/DETC2003/DAC-48749

Rutka, A., Guenov, M. D., Lemmens, Y., Schmidt-Schaffer, T., Coleman, P., & Riviere,
A. (2006). Methods for engineering change propagation analysis.
http://dspace.lib.cranfield.ac.uk/handle/1826/2621

Bibliography 84

Jacobsen, K., Eastman, C., & Jeng, T. S. (1997). Information management in creative
engineering design and capabilities of database transactions. Automation in
Construction, 7(1), 55-69. https://doi.org/10.1016/S0926-5805(97)00052-6

Pilehchian, B., Staub-French, S., & Nepal, M. P. (2015). A conceptual approach to
track design changes within a multi-disciplinary building information modeling
environment. Canadian Journal of Civil Engineering, 42(2), 139-152.
https://doi.org/10.1139/cjce-2014-0078

Wynn, D. C., Caldwell, N. H., & John Clarkson, P. (2014). Predicting change propaga-
tion in complex design workflows. Journal of Mechanical Design, 136(8),
081009. https://doi.org/10.1115/1.4027495

Li, Y., Zhao, W., & Shao, X. (2012). A process simulation based method for scheduling
product design change propagation. Advanced Engineering Informatics, 26(3),
529-538. https://doi.org/10.1016/|.aei.2012.04.006

Moayeri, V. (2017). Design change management in construction projects using Build-
ing Information Modeling (BIM). Canada: Concordia University. https://spec-
trum.library.concordia.ca/id/eprint/983221/1/Moayeri_PhD_S2018.pdf

Jeng, T. S., & Eastman, C. M. (1998). A database architecture for design collabora-
tion. Automation in Construction, 7(6), 475-483. https://doi.org/10.1016/S0926-
5805(98)00056-9

Whyte, J., Soman, R., Sacks, R., Mohammadi, N., Naderpajouh, N., Hong, W. T., &
Lee, G. (2024). How digital twins provide new opportunities for managing
change in complex projects. arXiv preprint arXiv:2402.00325.
https://doi.org/10.48550/arXiv.2402.00325

Huang, G. Q., & Mak, K. L. (1999). Current practices of engineering change manage-
ment in UK manufacturing industries. International Journal of Operations & Pro-
duction Management, 19(1), 21-37.
https://doi.org/10.1108/01443579910244205

Yin, L., Tang, D., Kang, Y., & Leng, S. (2016). Topology face—based change propaga-
tion analysis in aircraft-assembly tooling design. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(1),
120-135. https://doi.org/10.1177/095440541455869

Bibliography 85

Masmoudi, M., Leclaire, P., Zolghadri, M., & Haddar, M. (2017). Change propagation
prediction: A formal model for two-dimensional geometrical models of prod-
ucts. Concurrent Engineering, 25(2), 174-189.
https://doi.org/10.1177/1063293X17698192

Chen, J., Zhang, S., Wang, M., & Xu, C. (2017). A novel change feature-based ap-
proach to predict the impact of current proposed engineering change. Advanced
Engineering Informatics, 33, 132-143. https://doi.org/10.1016/j.aei.2017.06.002

Regli, W. C., & Cicirello, V. A. (2000). Managing digital libraries for computer-aided
design. Computer-Aided Design, 32(2), 119-132.
https://doi.org/10.1016/S0010-4485(99)00095-0

Szykman, S., Sriram, R. D., Bochenek, C., Racz, J. W., & Senfaute, J. (2000). Design
repositories: next-generation engineering design databases. IEEE Intelligent
Systems, 15(3), 48-55. https://www.researchgate.net/profile/Rdhanapal-R/pub-
lication/2807188 Design_Repositories_Next-Generation_Engineering_De-
sign_Databases/links/09e415099¢c6e321096000000/Design-Repositories-
Next-Generation-Engineering-Design-Databases.pdf

Zahedi, A., Abualdenien, J., Petzold, F., & Borrmann, A. (2022). BIM-based design
decisions documentation using design episodes, explanation tags, and con-
straints. J. Inf. Technol. Constr.,, 27, 756-780. https://www.seman-
ticscholar.org/reader/48a5d9bede2a0ef910a4b8daaf6592f81eb79bb4

Zahedi, A., & Petzold, F. (2022). REVIT ADD-IN FOR DOCUMENTING DESIGN DE-
CISIONS AND RATIONALE. https://papers.cumincad.org/data/works/att/caa-
dria2022_76.pdf

Martin, W. M., Heylighen, A., & Cavallin, H. (2003, April). Building stories. A herme-
neutic approach to studying design practice. In Proceedings of the 5th european
academy of design conference, Barcelona, Spain (pp. 28-30). https://www.aca-
demia.edu/download/31905565/MartinCH.pdf

Xue, D., Yang, H., & Tu, Y. L. (2005, January). Modeling of evolutionary design data-
base. In International Design Engineering Technical Conferences and Comput-
ers and Information in Engineering Conference (Vol. 4739, pp. 109-122).
https://doi.org/10.1115/DETC2005-84956

Bibliography 86

Voropajev, V. (1998). Change management—A key integrative function of PM in tran-
sition economies. International Journal of Project Management, 16(1), 15-19.
https://doi.org/10.1016/S0263-7863(97)00010-0

Antill, J. M., & Woodhead, R. W. (1991). Critical path methods in construction practice.
John Wiley & Sons.

Cox, I. D., Morris, J. P., Rogerson, J. H., & Jared, G. E. (1999). A quantitative study of
post contract award design changes in construction. Construction Management
& Economics, 17(4), 427-439. https://doi.org/10.1080/014461999371358

Rahmani Mirshekarlou, B. (2012). A taxonomy for causes of changes in construc-
tion (Master's thesis, Middle East Technical University).
http://etd.lib.metu.edu.tr/upload/12614692/index.pdf

MacLeamy, P. (2004). Collaboration, integrated information and the project lifecycle in
building design, construction and operation. WP-1202, The construction users
roundtable. https://kcuc.org/wp-content/uploads/2013/11/Collaboration-Inte-

grated-Information-and-the-Project-Lifecycle.pdf

Murdock, J. W., Szykman, S., & Sriram, R. D. (1997, September). An information mod-
eling framework to support design databases and repositories. In International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference (Vol. 80463, p. VO04T31A042). American Society of
Mechanical Engineers. https://doi.org/10.1115/DETC97/DFM-4373

Tammik, J., & Contributors. (2023). Revit Lookup [Software]. Version 2023.0.1.
GitHub. https://github.com/jeremytammik/RevitLookup

Uliman, J.D. (1988). Principles Of Database And Knowledge-Base Systems.

Kim, I., Lee, M., Choi, J., & Kim, G. (2016). Development of an application to generate
2D drawings in automation using open BIM technologies. Korean Journal of
Computational Design and Engineering, 21(4), 417-425.
https://doi.org/10.7315/cde.2016.417

Beach, T., Petri, I., Rezgui, Y., & Rana, O. (2017). Management of collaborative BIM
data by federating distributed BIM models. Journal of Computing in Civil Engi-
neering, 31(4), 04017009. https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000657

Bibliography 87

Oh, M., Lee, J., Hong, S. W., & Jeong, Y. (2015). Integrated system for BIM-based
collaborative design. Automation in construction, 58, 196-206.
https://doi.org/10.1016/j.autcon.2015.07.015

Erklarung

Hiermit erklare ich, dass ich die vorliegende Bachelor-Thesis selbststandig angefertigt
habe. Es wurden nur die in der Arbeit ausdrtcklich benannten Quellen und Hilfsmittel
benutzt. Wortlich oder sinngemal tbernommenes Gedankengut habe ich als solches

kenntlich gemacht.

Ich versichere aufRerdem, dass die vorliegende Arbeit noch nicht einem anderen

Prufungsverfahren zugrunde gelegen hat.

Minchen, 11. Oktober 2024

Lingyun Yan

Lingyun Yan

Lingyun Yan
Highlight

