

Technische Universität München

TUM School of Engineering and Design

Lehrstuhl für Computergestützte Modellierung und Simulation

A BIM-based Change Management Approach to

Improve Decision-making in Building Design

Revision

Master Thesis

for the Master of Science Degree in Civil Engineering

Autor: Lingyun Yan

Matriculation Number: 03768107

Supervised by: Prof. Dr.-Ing. André Borrmann

 M. Sc. Jiabin Wu

 Chair of Computational Modeling and Simulation

Date of Issue: 02. May 2024

Date of Submission: 30. September 2024

Lingyun Yan
Highlight

Acknowledgement II

This thesis is a tribute to all the individuals who have made my academic journey at

TUM over the past two years so meaningful. First and foremost, I express my deepest

gratitude to the Chair of Computational Modeling and Simulation at TUM, led by Herr

Prof. Dr. Ing. André Borrmann, for the invaluable support and guidance throughout my

research. I am also profoundly grateful to my supervisor, Mr. Jiabin Wu, for his unwa-

vering dedication, insightful discussions, and constant support from the very beginning.

Your prompt responses and excellent suggestions were key to the completion of this

thesis.

Finally, my heartfelt appreciation goes to my parents, family, and friends for their un-

wavering support throughout this journey. Thank you for always believing in me and

standing by my side.

Acknowledgement

Abstract III

Building design revisions are inevitable due to the reliance on experience and engi-

neering knowledge throughout the design process. Additionally, Building Information

Modeling (BIM)-based design is rich in information thanks to advanced technologies,

incorporating not only geometric but also topological and semantic data. This leads to

a significantly higher number of dependencies between building components. While

this intricate web of dependencies enables a more accurate and detailed representa-

tion of a building, it also makes design revisions considerably more challenging. Main-

taining the integrity of the dependency network is crucial to ensure the building can

function as intended without losing key functionalities. As a result, initial changes or

revisions can propagate through these dependencies, affecting other parts of a design.

Change Propagation (CP) processes are traditionally handled manually, which is often

labor-intensive and time-consuming. To address this, the thesis proposes a BIM-based

Change Management (CM) framework that automates CP during building design revi-

sions. As a prototype of this framework, a Design Revision Manager (DRM) was de-

veloped. The DRM aids decision-making by analyzing change propagation processes

before design operations are executed. Furthermore, its versioning and search capa-

bilities allow for tracking the current state of a design and quickly querying information

about existing dependencies between components. Tested in real building design sce-

narios, the DRM prototype demonstrated that having access to component dependen-

cies, CP results, and past revision documentation significantly enhances the decision-

making process in building design revisions.

Keywords: Change Propagation (CP), Change Management System, Building Infor-

mation Modeling (BIM), Building Design Revision, BIM-based Building Design, Engi-

neering Database

Abstract

Zusammenfassung IV

Gebäudedesign-Änderungen sind unvermeidlich, da Designprozesse stark auf

Erfahrung und ingenieurtechnischem Wissen basieren. Darüber hinaus ist das auf

Building Information Modeling (BIM) basierende Gebäudedesign aufgrund

fortschrittlicher Technologien sehr informationsreich. Das bedeutet, dass nicht nur

geometrische, sondern auch topologische und semantische Informationen in BIM-

Modellen enthalten sein können, was zu einer deutlich größeren Anzahl von

Abhängigkeiten zwischen den verschiedenen Bauteilen führt. Während ein solch

komplexes Abhängigkeitsnetzwerk eine präzisere und genauere Darstellung eines

Gebäudes ermöglicht, werden Designänderungen dadurch erheblich erschwert. Es ist

notwendig, die Integrität des Abhängigkeitsnetzwerks aufrechtzuerhalten, um

sicherzustellen, dass das Gebäude als Ganzes funktioniert, ohne dass gewünschte

Funktionen verloren gehen. Folglich können anfängliche Änderungen oder

Überarbeitungen durch diese Abhängigkeiten hindurchgreifen und andere Teile des

Designs beeinflussen. Solche Prozesse der Änderungsweiterleitung (Change

Propagation, CP) werden üblicherweise manuell bearbeitet, was oft mühsam und

zeitaufwendig ist. In dieser Arbeit wird daher ein BIM-basiertes Change Management

(CM)-Framework vorgeschlagen, das die CP-Prozesse bei Designänderungen

automatisch unterstützt. Auf Basis dieses Frameworks wurde ein Design Revision

Manager (DRM) entwickelt. Der DRM trägt zur Verbesserung der

Entscheidungsfindung bei Designänderungen bei, indem er die Prozesse der

Änderungsweiterleitung vor der Ausführung von Designoperationen analysiert.

Darüber hinaus ermöglichen die Versionierungs- und Suchsysteme des DRM, den

aktuellen Stand eines Designprodukts nachzuverfolgen und schnell Informationen

über die aktuellen Abhängigkeiten zwischen Bauteilen abzufragen. Der Prototyp wurde

in realen Gebäudedesign-Szenarien getestet und zeigte, dass der Zugriff auf die

Abhängigkeiten zwischen den Bauteilen, die Ergebnisse der

Änderungsweiterleitungsprozesse und die Dokumentation vergangener

Designänderungen im Vorfeld maßgeblich zur Entscheidungsfindung beitragen.

Zusammenfassung

Zusammenfassung V

Schlüsselwörter: Änderungsweiterleitung (CP), Änderungsmanagementsystem

(CM), Building Information Modeling (BIM), Gebäudedesign-Überarbeitung, BIM-

basiertes Gebäudedesign, Ingenieurdatenbank

Table of Contents VI

List of Abbreviations VIII

List of Tables IX

List of Figures X

1 Introduction 14

1.1 Research Scope ... 16

1.2 Thesis Structure .. 16

2 Related Work 18

2.1 Building Information Modeling ... 18

2.2 Building Design Process ... 20

2.3 Engineering Change ... 21

2.4 Change Propagation ... 23

2.5 Change Management ... 28

3 Methodology 31

3.1 Research Gap ... 31

3.2 Research Method .. 31

3.3 Topological Constraints .. 33

3.4 Operations for Building Design Revisions ... 35

3.5 Change Propagation Mechanism .. 36

3.5.1 Significance Matrix .. 36

3.5.2 Change Propagation Hierarchy ... 38

3.6 Database Schema .. 40

4 Prototype Implementation 45

4.1 Test Data .. 45

4.2 Implementation of Operations ... 46

4.2.1 User Input ... 47

4.2.2 Structural Wall Deletion .. 47

4.2.3 Structural Column Deletion ... 50

Table of Contents

Table of Contents VII

4.2.4 Stair Deletion .. 52

4.2.5 Structural Wall Addition ... 52

4.2.6 Structural Column Addition ... 55

4.2.7 Stair Addition .. 57

4.3 Implementation of Database Schema ... 60

4.4 Design Revision Manager (DRM) ... 64

5 Results and Discussion 67

5.1 Test Results of Design Revision Operations ... 67

5.1.1 Initial Test Model ... 67

5.1.2 Structural Wall Deletion .. 68

5.1.3 Structural Column Deletion ... 70

5.1.4 Stair Deletion & Addition ... 71

5.2 Test Results of Topological Constraint-based Commands 74

5.3 Key Findings ... 77

6 Conclusion 78

6.1 Contribution .. 79

6.2 Limitation .. 79

6.3 Future Work .. 80

Bibliography 81

List of Abbreviations VIII

BIM Building Information Modelling

AEC Architecture, Engineering, Construction

LOD Level of Detail

ECs Engineering Changes

CP Change Propagation

CM Change Management

CPA Change Propagation Analysis

API Application Programming Interface

GUI Graphical User Interface

GUID Globally Unique Identifiers

XAML Extensible Application Markup Language

CAD Computer-Aided Design

DSM Design Structure Matrix

DRM Design Revision Manager

SDK Software Development Kit

List of Abbreviations

List of Tables IX

Table 1: Topological constraints in BIM-based building design considered in this study

 .. 34

Table 2: Operations for building design revision ... 36

Table 3: Different constraints for different operations (based on topological constraints

and the significance matrix) ... 37

Table 4: The number of building components (initial state of the test model) 67

Table 5: The number of building components (3rd version) 74

Table 6: The number of building components (5th version) 75

List of Tables

List of Figures X

Figure 1: Building Information Modeling shifts planning effort and design decisions to

earlier phases (MacLeamy 2004) .. 19

Figure 2: A system of reference planes and lines forms the basis for setting up a

comprehensive parametric building design (figure from lecture

material by Chuck Eastman, GeorgiaTech) 20

Figure 3: The model of a generic change process from Jarratt et al (2004) 22

Figure 4: Ontology of design changes in BIM-based building design (Pilehchian et al.

2015) ... 23

Figure 5: Change propagation as a cone. Hollow circles are constraints, with their state

inside. Black small circles are entities. The constraint referenced by

the arrow is infeasible, requiring iteration (Eastman et al. 1997) 24

Figure 6: Use cases for Change Propagation Analysis (Brahma et al. 2023) 25

Figure 7: DSM of a diesel engine used for CPA model input, showing mechanical

linkages between subsystems from the viewpoints of four engineers.

The position of the colored boxes within the cells refers to a particular

engineer’s marks (Brahma et al. 2023) ... 26

Figure 8: Dependency matrix by Pilehchian et al. (2015) ... 27

Figure 9: Core technologies of the knowledge-supported system developed by Ma et

al. (2005) ... 28

Figure 10: Data loss in file conversion between different formats from Oh et al. (2015)

 .. 30

Figure 11: Proposed method .. 33

Figure 12: Represent dependencies between building components with low-level and

topological constraints ... 35

Figure 13: Significance Matrix (indicates the existence of dependencies between two

building components and controls the extent of change propagation)

 .. 37

Figure 14: Change Propagation Hierarchy ... 39

Figure 15: Example of Change Propagation Hierarchy .. 40

Figure 16: ER model of structural wall .. 41

List of Figures

List of Figures XI

Figure 17: ER model of architectural wall ... 42

Figure 18: ER model of architectural column .. 42

Figure 19: ER model of structural column... 42

Figure 20: ER model of room .. 43

Figure 21: ER model of door ... 43

Figure 22: ER model of stair ... 43

Figure 23: ER model of revision ... 44

Figure 24: Floor plans of the test model (the floor plan on the left is the ground floor

and the one on the right is the first floor) ... 45

Figure 25: Test model (3D view) ... 46

Figure 26: Input file ... 47

Figure 27: Read critical conditions from input file ... 47

Figure 28: Constraints for Structural Wall Deletion ... 48

Figure 29: Structural Wall Deletion ... 48

Figure 30: Workflow of the method IsStandAloneStructuralWall 49

Figure 31: BoundingBoxXYZ class in Revit API ... 49

Figure 32: LocationCurve of wall .. 50

Figure 33: Constraints for Structural Column Deletion ... 51

Figure 34: Structural Column Deletion .. 51

Figure 35: Workflow of the method IsStandAloneStructuralColumn 51

Figure 36: Constraints for Stair Deletion ... 52

Figure 37: Stair Deletion ... 52

Figure 38: Constraints for Structural Wall Addition ... 53

Figure 39: Structural Wall Addition ... 54

Figure 40: Autodesk.Revit.DB.Create method .. 54

Figure 41: Workflow of the method FindOverlappingWall ... 55

Figure 42: Workflow of the method IsRoomAccessible... 55

Figure 43: Constraints for Structural Column Addition .. 56

Figure 44: Structural Column Addition .. 56

Figure 45: Autodesk.Revit.Creation.Document.NewFamilyInstance 57

List of Figures XII

Figure 46: Workflow of the method FindOverlappingColumn 57

Figure 47: The implementation of the method NearbyColumns 57

Figure 48: Constraints for Stair Addition ... 58

Figure 49: Stair Addition ... 59

Figure 50: Methods for checking the accessibility of stairs 59

Figure 51: Implementation of the method CreateSingleStraightRunStair 59

Figure 52: Documents and collections in MongoDB ... 60

Figure 53: Data model of wall ... 61

Figure 54: Data model of column .. 61

Figure 55: Data model of door .. 62

Figure 56: Check the accessibility of stairs ... 62

Figure 57: Versioning system for design revision ... 63

Figure 58: Using multiple versioning properties simultaneously in queries 63

Figure 59: Track design revisions throughout the design process 64

Figure 60: Design Revision Manager (design operations) .. 64

Figure 61: Design Revision Manager (topological constraint-based commands) 65

Figure 62: Initial state (version 0) of test model .. 68

Figure 63: First operation – Structural Wall Deletion (the deleted wall resides in Level

1, the figure on the left is the original status, while the one on the right

is the status after the DELETE operation) 68

Figure 64: 1st version of test model (the left figure presents that the operation is

documented in the Revisions collection, while the right one shows the

updates of the deleted wall’s properties) ... 69

Figure 65: Design Revision Manager – Structural Wall Deletion (pre-constraints are

the dependencies of building components before the operation is

performed) ... 70

Figure 66: Second operation – Structural Column Deletion (the to-be-deleted structural

column from different views, namely Level 1 in the left figure and Level

2 in the right one) .. 70

Figure 67: Third operation – Stair Deletion (the figure on the left is the original status,

containing the to-be-deleted stair with an opening on top, the right one

is the updated status after the DELETE operation) 71

List of Figures XIII

Figure 68: 2nd version of test model (the left figure presents that the operation is

documented in the Revisions collection, while the right one shows the

updates of the deleted stair’s properties) .. 71

Figure 69: Fourth operation – Stair Addition (the left figure shows an intended insertion

of a stair at a desired location by picking two points, the right one

shows the updated status after adding the stair) 72

Figure 70: 3rd version of test model (the left figure presents that the operation is

documented in the Revisions collection, while the right one shows the

updates of the inserted stair’s properties) 73

Figure 71: Design Revision Manager – Stair Addition (change propagation results) 73

Figure 72: Fifth operation – Stair Addition .. 74

Figure 73: The latest state of test model (5th version of test model on the left and the

corresponding database on the right) .. 75

Figure 74: Test results of topological constraint-based commands 76

Figure 75: Find the problematic dependency with GUID (the red marked GUID refers

to the inaccessible stair found in Fig. 73, the blue marked GUID is the

structural wall or column that blocks the exit or entrance of the stair)

 .. 76

Introduction 14

Building Information Modeling (BIM) is generally defined as a digital representation of

the physical and functional characteristics of a built facility (NIBS 2015). Two key ad-

vantages of BIM-based building design are its parametric design capabilities and in-

teroperability across different software platforms. BIM models typically contain exten-

sive information that’s relevant for civil engineering projects, including parametric rep-

resentations of building components, non-physical objects, and even the structure of

the project itself (Borrmann et al. 2018). In addition, the enrichment of information

proves valuable for many downstream applications, such as structural simulations and

calculations.

Building design processes are typically divided into three phases: pre-design, sche-

matic design, detailed design, and construction (Borrmann et al. 2018). Implementing

design revisions in the earlier stages requires significantly less effort than changes

made in later phases. Given that building design heavily relies on engineering expertise

(Cross 2021), revisions are often unavoidable. However, this challenge can be miti-

gated through BIM-based planning processes. For instance, clashes between different

discipline-specific BIM models can be identified early by regularly federating these

models. In this way, BIM-based design reduces risks and uncertainties, improving

overall efficiency and productivity. By integrating BIM-based planning throughout all

phases, design revisions can be managed more effectively, minimizing disruptions and

ensuring a smoother design process.

Building design revisions are essentially Engineering Changes (ECs), defined as mod-

ifications made to released parts, drawings, or software (Jarratt et al. 2005). In the

Architecture, Engineering, and Construction (AEC) industry, changes can occur

throughout the entire lifecycle of a built facility. These revisions can stem from various

factors, including coordination defects, updated requirements from stakeholders, or

designer omissions (Cox et al. 1999). Although changes are easier to implement in

earlier design stages, building design revisions generally require significant effort due

to the complex process of Change Propagation (CP), where alterations can affect other

parts of a design (Clarkson et al. 2004; Giffin et al. 2009). Furthermore, BIM-based

designs often involve large-scale projects with thousands of components and detailed

1 Introduction

Introduction 15

semantic information. This means that not only the initial change but also its potential

impact on related components must be carefully considered. Thoroughly analyzing the

dependencies between building components is crucial, as more complex designs result

in a much more sophisticated network of dependencies and therefore lead to signifi-

cantly greater challenges in implementing design revisions.

Dependencies between building components are critical for BIM-based building de-

sign. Establishing appropriate dependencies in advance can significantly reduce labo-

rious and time-consuming tasks. For example, two walls on different floors can be au-

tomatically aligned vertically by pre-establishing a relationship, such as applying a con-

straint to both components. In essence, a dependency between two building compo-

nents means that they are mutually constrained. With the advancement of BIM tech-

nologies, a growing number of components can be stored within BIM models, creating

the potential to establish more complex dependencies between them. However, this

potential remains underutilized, as most BIM authoring tools primarily implement only

low-level constraints. For example, while geometric constraints—such as ensuring the

front and back sides of a wall share the same geometry—are standard features in most

BIM authoring tools, more detailed information, such as the number of structural com-

ponents linked to a specific element, is often unavailable.

Given the complexity of building design processes and the inevitability of design revi-

sions, effective Change Management (CM) systems are urgently needed. Change

management in Computer-Aided Design (CAD) focuses on representing design prod-

ucts as they evolve throughout the design process by storing data and organizing their

dependency networks within databases. From a technical standpoint, a change man-

agement system can identify the path of Change Propagation (CP) and subsequently

limit the scope within which CP can occur. Therefore, an effective change management

approach can significantly reduce the negative impacts associated with building design

revisions.

In the AEC industry, change management plays a crucial role in facilitating collabora-

tive and concurrent design among multiple disciplines. T. Jeng and C. Eastman (1998)

developed a database architecture to support collaboration by monitoring data con-

sistency and CP. Ma et al. (2003) proposed an approach to investigate the effects of

ECs by generating alternative scenarios of CP resulting from the same initial change

Introduction 16

and evaluating their respective impacts. With the ability to assess CP, change man-

agement can enhance the optimization processes for resolving clashes. Additionally,

change management systems typically perform Change Propagation Analysis (CPA)

of proposed design revisions before any modifications are made, significantly aiding

decision-making processes. This prior evaluation of CP also enables design automa-

tion to a certain extent, allowing multiple changes resulting from CP to be automatically

applied to a design product, thus improving design efficiency. However, the CP capa-

bilities within individual BIM authoring tools remain limited to low-level constraints, as

mentioned earlier. Consequently, each design revision prompted by project-specific

factors, such as updated requirements from stakeholders, necessitates a manual eval-

uation of its impacts before the revision can be implemented.

1.1 Research Scope

This research aims to develop a change management system that enhances decision-

making for building design revisions within BIM tools. Specifically, this thesis seeks to

answer the following questions:

- How can a change management system for BIM-based building design improve

decision-making regarding design revisions?

- How can we identify the dependencies among building components, and how

can these dependencies be integrated into the design operations in BIM author-

ing tools?

1.2 Thesis Structure

The rest of the thesis is structured as follows:

- Chapter 2, Related Work, conducts an in-depth literature review on topics such

as Building Information Modeling (BIM), change management, Change Propa-

gation Analysis (CPA) and their applications. This chapter establishes a solid

theoretical background for the study.

- Chapter 3, Methodology, presents the proposed approach to address the re-

search questions. The chapter proposes a framework of change management

in BIM-based building design, supporting semi-automatic design revisions.

- Chapter 4, Prototype Implementation, illustrates the steps for the implementa-

tion of the proposed framework by using selected tools. In addition, a test case

is designed to evaluate the functionalities of the prototype.

Introduction 17

- Chapter 5, Results & Discussion, presents the test results and elaborates the

key findings and limitations of the research.

- Chapter 6, Conclusion and Outlook, concludes the study by answering the pro-

posed research questions and outlines recommendations for further research

based on the results of this study.

Related Work 18

This chapter begins by reviewing the fundamental concepts of BIM and the advantages

of BIM-based planning processes in building design, emphasizing the importance of

shifting design decisions and changes to earlier phases. Next, it elaborates on the

characteristics of building design processes by explaining why design changes occur

and how they manifest. Using the concept of Change Propagation (CP) as a cone

(Eastman et al. 1997), the chapter presents the essence of CP and highlights two crit-

ical issues that must be addressed to maintain the desired functionalities of a design

product. Additionally, based on the generic change process proposed by Jarratt et al.

(2004), the workflow of CPA is detailed, including the representation of input data, data

population based on representation schemes, and various effective approaches for

analyzing these representations. Finally, the chapter thoroughly reviews the applica-

tion of CPA in supporting change management.

2.1 Building Information Modeling

The National Institute of Building Sciences (NIBS) defines Building Information Model-

ing (BIM) as a digital representation of a facility's physical and functional characteristics

(NIBS 2015). BIM is an evolution of the product model concept (Eastman 1999 & Borr-

mann et al. 2009). Its two technological foundations are parametric design and interop-

erability among multiple BIM software products, facilitating data exchange between

different vendors (Eastman 2011). In the AEC industry, BIM typically refers to the pro-

cess of creating a building facility model and managing it throughout its lifecycle, from

conceptual design to deconstruction (Borrmann et al. 2018). A BIM model consists of

parametric objects representing building components at a defined Level of Detail

(LOD), as well as non-physical objects, such as zones, spaces, or the project structure

itself (Borrmann et al. 2018). These objects encompass both geometric and non-geo-

metric properties, including functional, semantic, and topological information (Eastman

2011 & Wong et al. 2010). For example, costs can serve as a functional attribute, while

information regarding intersections and connectivity represents semantic properties,

and an object's perpendicularity or adjacency conveys topological information.

Although the development of 3D CAD systems began in the 1970s, traditional 2D CAD

systems remained the dominant design approach in the AEC industry for many years

2 Related Work

Related Work 19

(Volk et al. 2014). The application of BIM technologies in pilot projects to support build-

ing design emerged even later, in the early 2000s (Penttilä et al. 2007). The conven-

tional building design process is often laborious, time-consuming, and prone to errors,

such as the manual evaluation of consistency among various 2D technical drawings

and the need to re-enter information extracted from these drawings for downstream

applications, including calculations and simulations (Borrmann et al. 2018).

With the adoption of BIM technologies, numerous benefits throughout a built facility's

entire lifecycle—encompassing pre-construction, design, construction and fabrication,

and post-construction—become achievable (Eastman 2011). In particular, during the

design phase, repetitive and labor-intensive tasks can be automated, leading to in-

creased productivity. Such tasks may include updating the BIM model whenever de-

sign changes occur, generating accurate 2D drawings directly from the BIM model (Kim

et al. 2016), and federating or integrating BIM models from multiple design disciplines

(Beach et al. 2017).

Figure 1: Building Information Modeling shifts planning effort and design decisions to earlier phases
(MacLeamy 2004)

Prior to the construction phase, building design can be divided into three phases: pre-

design, schematic design, and detailed design. Implementing potential design changes

in the earlier phases requires significantly less effort since changes initiated late in the

Related Work 20

process impact more stakeholders (Jarratt et al. 2011). However, conventional design

workflows often commit changes during the detailed design phase and frequently dur-

ing the construction phase, leading to higher costs. By employing a modern BIM-based

planning workflow, design decisions and changes can be shifted to the earlier phases

(Figure 1), resulting in significantly reduced costs and improved building performance

(Borrmann et al. 2018).

2.2 Building Design Process

The essence of engineering design lies in identifying and implementing solutions to

engineering problems. Throughout the design process, practitioners rely heavily on

prior experience, general guidelines, and "rules of thumb" (Cross 2021). However,

these heuristic methods do not guarantee the success of the design product. Among

the various types of engineering design tasks, building design is particularly complex

due to its large scale and the necessity for coordination among multiple design disci-

plines. Changes made in the later stages of building design are often cost-intensive,

and certain modifications may not be feasible due to existing constraints (Keller et al.

2005). Typically, the building design process seeks to balance various competing pa-

rameters, each subject to specific constraints (Machairas et al. 2014).

Figure 2: A system of reference planes and lines forms the basis for setting up a comprehensive para-
metric building design (figure from lecture material by Chuck Eastman, GeorgiaTech)

Related Work 21

In addition to the designer, numerous stakeholders participate in building design pro-

cesses (Borrmann et al. 2018). Design decisions are significantly influenced by these

stakeholders, whose opinions can differ and evolve over time. Sten de Wit et al. (2002)

noted that the evolution of a building design consists of a series of design decisions,

each informed by insights from various domain experts. From this perspective, multiple

potential re-evaluations and design revisions become necessary to enhance the design

(Koh et al. 2012), rectify design flaws, or adapt to updated requirements from stake-

holders (Ahmed et al. 2012).

2.3 Engineering Change

Engineering Change (EC) is referred to as an alteration made to parts, drawings or

software that have already been released during the product design process and life

cycle, without considering the scale or the type of change (Jarratt et al. 2011 & Jarratt

et al. 2005). In the AEC industry, changes are described as modifications, differences,

subtractions, additions, or exclusions of work (Antill, 1990). Potential changes can oc-

cur throughout the entire design process and have an impact on the product, e.g. BIM

model. Typical causes of change in construction projects could be designer’s omission

and coordination defects in tender documents, updated employer’s requirements, or

new information regarding site conditions (Cox et al. 1999). Engineering changes that

can trigger a chain of changes, are categorized as either emergent (originating from

the product itself, e.g. errors) or being initiated, e.g. by stakeholders’ new requirements

(Eckert et al. 2004). Jarratt et al. (2005) proposed a model to describe and formalize a

generic change process (Figure 3), which comprises three phases. The before-ap-

proval phase includes raising a change request and identifying possible solutions and

their risk assessment. The second stage is to select and approve one of the possible

solutions. Thereafter, the implementation of the selected solution and the review of a

particular change process are incorporated into the final phase.

Based on the observation of numerous examples of building design changes from case

studies, Pilehchian et al. (2015) developed the following BIM-based ontology of design

changes, so that changes can be structurally and hierarchically organized, and their

impacts can be kept tracible, as illustrated in Figure 4. Building design changes are

categorized into three classes. The object-oriented class represents changes in terms

of geometry, position, or specifications of building components, while the adaptation-

Related Work 22

oriented characteristics are relevant for automatic change propagation, comprising var-

ious dependencies between components and aiming at continuous data modification.

The third class is integration-oriented and, therefore, is responsible for merging data

from multiple sub-models.

Figure 3: The model of a generic change process from Jarratt et al (2004)

Related Work 23

Figure 4: Ontology of design changes in BIM-based building design (Pilehchian et al. 2015)

2.4 Change Propagation

ECs that occur in one aspect of the design can result in changes to other parts (Clark-

son et al. 2004 & Giffin et al. 2009), since all parts of the design must work together as

a whole to achieve the desired functionalities of the product. For example, in building

design, a change in a building’s overall height typically results in changes in floor-to-

floor height and some other vertical dimensions. Similarly, Mirshekarlou (2012) de-

scribed this phenomenon as a cumulative or ripple effect of a change. During the de-

sign process, components of complex products that were considered finished are still

subject to design changes (Huang et al. 1999). Due to these knock-on changes (Keller

et al. 2005), Change Propagation (CP) is one key aspect in the building design process.

Related Work 24

To be more specific, CP is initially defined by the changed attribute values, but there-

after proceeds by invalidating constraints that accessed the modified data or that relied

on a constraint that is now invalidated (Eastman et al. 1997). Constraints here are

typically referred to as the integrity rules on each part of the design, e.g., dependencies

to other parts, requirements derived from design codes or directly from the involved

stakeholders etc. Keller et al. (2005) classified CP into two categories: direct propaga-

tion, which appears in components directly connected to the modified component, and

indirect propagation.

Two essential problems regarding CP were proposed by Randy et al. (1990). The first

is to disambiguate the path of CP since different sequences in which the propagation

takes place result in different design products. The second is to limit the scope of prop-

agation. Similarly, Eastman et al. (1997) described and formalized CP as a cone. The

path of propagation, along with a set of pre-defined transaction protocols for identifying

what data and constraints should be invalidated by which kind of initial changes, is

graphically illustrated (Figure 5). Namely, each design change propagates along a set

of components linked by constraints, diversly into multiple directions. The complexity

of the cone increases significantly as the number of components and constraints in the

design becomes larger. Such a complicated network of CP should be handled properly

so that a design product’s semantic integrity, which is a term used in the database field

to designate the constraints that data must satisfy to have a meaningful correspond-

ence with reality (Eastman et al. 1997), can be maintained.

Figure 5: Change propagation as a cone. Hollow circles are constraints, with their state inside. Black
small circles are entities. The constraint referenced by the arrow is infeasible, requiring iteration (East-

man et al. 1997)

Related Work 25

When a design comprises many parts that are tightly integrated and correlated, and

knowledge of the design is distributed among various domain experts, e.g. building

design (Ahmad et al. 2013), it’s typically difficult to identify possible propagations

across disciplinary boundaries (Reddi et al. 2009). For this reason, many researchers

proposed models for the purpose of performing Change Propagation Analysis (CPA),

which can support the process of change management by generating alternatives for

implementing an engineering change, evaluating impacts of a proposed change on

various aspects, coordinating change activities, and finally improving the design quality

(Brahma et al. 2023), as illustrated in Figure 6. Generating a wide range of possible

solutions can improve the likelihood of finding a good one (Pahl et al. 2013). The impact

of a proposed change determines whether the initial change should be implemented

or not. The workflow of CPA includes representing the input data used for CPA, popu-

lating the representations with data, and evaluating the representations (Brahma et al.

2023).

Figure 6: Use cases for Change Propagation Analysis (Brahma et al. 2023)

Related Work 26

Design Structure Matrix (DSM), as illustrated in Figure 7, offers a very compact visual

representation of data for CPA. It is typically applied either for displaying the relation-

ships between discrete components, through which design changes can propagate, or

to represent the likelihood and impact values of changes (Keller et al. 2005). In other

words, DSM is a network of dependencies through which change can propagate. Re-

searchers supplemented the schema of DSM by adding extra information into the de-

pendency cells. Ma et al. (2003) included information regarding energy, material, etc.,

for each dependency, while Rutka et al. (2006) indicated levels and types of changes

that are allowed to propagate through each dependency. Lama Adel Saoud et al.

(2017) developed an approach to visually represent the process of predicting changes

through the integration of BIM with a parameter-based DSM.

Figure 7: DSM of a diesel engine used for CPA model input, showing mechanical linkages between
subsystems from the viewpoints of four engineers. The position of the colored boxes within the cells

refers to a particular engineer’s marks (Brahma et al. 2023)

Input data for CPA can be generated from design analysis, workshops, historical data,

etc. In building design, CAD data is mostly available for CPA. An algorithm that ac-

quires constraints between topology faces from CAD models was developed by Yin et

al. (2016). The acquired data was then used to create a relationship matrix for CPA.

Related Work 27

Masmoudi et al. (2017) discussed the approaches for extracting dependencies be-

tween dimensions by adjusting those dimensions in CAD software and how geometric

constraints result in changes in other dimensions. Chen et al. (2017) proposed a novel

change feature-based approach to predict the impact of the current design changes.

The approach detects changed features by comparing CAD files, and the features are

compared to past changes for CPA.

There are various approaches for CPA. Reddi and Monn (2009) applied probabilistic

methods to evaluate the dependency network. They considered the type of changes

and the likelihood of propagation for each dependency in the DSM. Monte Carlo Sim-

ulation can be applied to simulate individual changes as they propagate step by step

(Wynn et al. 2014 & Li et al. 2012). Matrix operations and calculations over cells are

also applicable. For example, Pilehchian et al. (2015) proposed a graph-based ap-

proach and the concept of dependency matrix for realizing automated CP in BIM-based

project delivery processes. The dependency matrix, as illustrated in Figure 8, is defined

to use 0 and 1 to indicate the effect of changes, e.g. a 0 value at the position [1,2]

indicates that the change of attribute q of component 1 has no impact on the attribute

p of component 2. Various types of interdependencies among design changes were

investigated.

Figure 8: Dependency matrix by Pilehchian et al. (2015)

With the help of CPA, insights regarding possible impacts caused by a proposed

change can be analyzed for change management, which typically supports the deci-

sion-making process when design changes occur. A knowledge-supported system was

proposed by Ma et al. (2003), as illustrated in Figure 9. One part of the system is the

Related Work 28

integrated design information model that represents the complete design data and the

corresponding relationships. The other part is the intelligent change impact analysis

engine, which can generate change plans, quantify the impact of engineering changes,

and evaluate alternative change scenarios. Valeh (2017) developed an automated

model named BIM-Change for calculating and visualizing ripple effects on the project’s

duration, that are caused by changes initiated by owners.

Figure 9: Core technologies of the knowledge-supported system developed by Ma et al. (2005)

2.5 Change Management

Voropajev (1997) defined Change Management (CM) as an integral process related to

all project internal and external factors, influencing project changes; to possible change

forecast; to identification of already occurred changes; to planning preventive impacts;

to coordination of changes across the entire project. CPA is an effective approach for

managing changes in engineering design. Digital twins as an emerging information

technology provide opportunities for the development of new techniques for managing

change in complex projects, such as infrastructure, new energy and resource projects

(Whyte and Jennifer et al. 2024).

Change management in terms of computer-aided design is essentially a matter of

managing the semantic integrity of the database of a design product when design

changes are initiated. For most CAD software, various transaction protocols and integ-

rity rules aiming at maintaining the semantic integrity are embedded and implemented

in the software database. Namely, simple CPA is already taken into account in 2D or

3D modelling processes. In the context of building design, most low-level constraints,

Related Work 29

e.g. alignment, levels, or direct interference between components (geometric proper-

ties), are already included and implemented, e.g. in BIM authoring tools. Because they

are applicable for most engineering design tasks.

In BIM-based building design, change management systems are primarily

implemented to facilitate concurrent design and enhance collaboration and

coordination among multiple design disciplines or software applications. This involves

managing interactions and data exchanges between different databases. The reason

is the inevitable data loss in file conversion between different formats (Figure 10). A

comprehensive product design repository is typically sought to address all relevant

aspects of a design within a specific context. Jacobsen et al. (1997) explored infor-

mation management requirements and established general criteria for collaboration

and concurrency control in creative engineering design. While Jeng and Eastman

(1998) proposed a new database architecture for design collaboration, emphasizing

consistency monitoring, change propagation, and the structure and application of rules

to support design processes, the concept of “Engineering Design Knowledge

Repository” was proposed by Regli et al. (2000) to aid collaboration and archival

processes for distributed design and manufacturing teams by collecting and storing

public-domain engineering data. Some BIM authoring tools, such as Revit, have

achieved collaborative design. Nevertheless, CAD systems and interoperability

between different CAD software often focus on general rules applicable to most

systems and design disciplines.

Project-dependent and discipline-dependent topological constraints derived from ex-

pert knowledge and good practices are complex and too specific, such as the guaran-

tee of the accessibility of stairs by adding the necessary openings to the relevant slabs.

Therefore, they need to be implemented individually for a CAD system in a specific

design context. Topological constraints can only be imposed incrementally on the data

manually by the designer, since building design is a complicated and cross-disciplinary

process involving many stakeholders, whose opinions and decisions on the design

vary all the time. It is not feasible to account for all topological constraints and satisfy

the requirements of all relevant parties at the outset. Similar to geometric constraints,

these constraints can also be implemented and stored in a design database. Szykman

et al. (2000) pointed out the necessity and importance of a design repository in engi-

neering design. In addition to storing design information, design repositories are rather

designed for retrieval and reuse of design knowledge by using sophisticated methods

Related Work 30

that are not available in conventional database management systems, e.g., querying

components that satisfy required functions. Moreover, Murdock et al. (1997) attempted

to develop a framework in terms of information modeling for supporting the creation of

design repositories. The key aspects are the representation of form, function, and

behavior of artifacts, which are referred to as individual components. What’s more, Xue

et al. (2006) introduced a revolutionary design database model describing design re-

quirements and rules developed at different stages. The representation in the database

comprises both geometric and non-geometric descriptions. Only differences between

design descriptions at different design stages are recorded for propagation and con-

sistency control. Rather than a full representation of a design product, Zahedi et al.

(2021 & 2022) proposed the concept of design episodes, which capture different bits

and pieces of a design product and encapsulate them in various episodes by utilizing

storytelling techniques (Martin et al., 2003). Similarly, a partial representation of a de-

sign product can be applied for change management to significantly reduce the amount

of effort.

Figure 10: Data loss in file conversion between different formats from Oh et al. (2015)

Methodology 31

3.1 Research Gap

BIM-based building design is a complex process where design operations can lead to

significant redesigns involving numerous building components and their dependencies.

These dependencies can be classified into two categories: low-level constraints and

topological constraints. While most low-level constraints, such as geometrical con-

straints, have already been implemented in BIM authoring tools, topological constraints

derived from engineering knowledge are often overlooked. This is primarily because

topological constraints are project-specific and can only be defined and implemented

incrementally throughout the design process. Nevertheless, they are essential for en-

suring that the design product maintains a meaningful correspondence with reality.

This thesis aims to develop a BIM-based approach to support building design revisions

by incorporating change propagation processes, which typically depend on topological

constraints, into design operations. The key challenges include defining the necessary

topological constraints and integrating them with design operations to enable prior

evaluation of the change propagation processes for intended design revisions. This

information can help determine whether to proceed with a given operation. Additionally,

another challenge is to devise a method for tracking design revisions throughout the

design process, as accumulated experience can help prevent similar mistakes in future

design tasks.

3.2 Research Method

To address these challenges, a BIM-based change management framework consisting

of two parts was proposed. The first part focuses on integrating change propagation

processes into design operations within BIM authoring tools. A well-defined change

propagation mechanism is essential for this integration, as it addresses two core prob-

lems: controlling the direction and extent of change propagation. Specifically, a set of

topological constraints was established based on disciplinary knowledge to determine

the direction of change propagation, given that changes can only propagate through

existing dependencies. Additionally, a significance matrix, informed by the concept of

DSM and expert knowledge, was proposed to manage the scope of propagation. This

3 Methodology

Methodology 32

matrix indicates whether dependencies exist between building components and iden-

tifies which ones hold greater significance. Consequently, change propagation be-

tween two components is possible only if at least one dependency exists between

them. Overall, a change propagation mechanism should be developed within a specific

design context to align with the requirements of the design project. With such a mech-

anism in place, change propagation can be effectively integrated into BIM-based de-

sign operations. Moreover, this mechanism was also utilized to design the documen-

tation system in the second part, as it needs to record change propagation processes

to track design revisions.

The Design Revision Manager (DRM), resulting from this integration, serves as the

change management system. It can execute design operations that not only delete or

add individual building components but also automatically address change propagation

processes. Design revisions or operations performed throughout the design process

are exported to a developed database. The documentation system is crucial because

past revisions, or accumulated experience, can help designers avoid making similar

mistakes in future tasks. Furthermore, by querying data from the design revision data-

base, the DRM provides essential information regarding topological constraints and

the effects of change propagation processes prior to executing intended operations. In

summary, the availability of past revisions, current topological constraints, and poten-

tial change propagation results can significantly enhance decision-making in BIM-

based building design revision. The underlying philosophy is that informed decisions

can be made when the consequences of each choice are known in advance.

The core components of the integration phase—specifically, the development of the

change propagation mechanism based on expert knowledge, which includes the defi-

nition of topological constraints and the corresponding significance matrix—are elabo-

rated in Chapter 3.3 and 3.5.1, respectively. Additionally, the design operations con-

sidered in this thesis are summarized in Chapter 3.4. The database schema, based on

the proposed change propagation mechanism, is illustrated with a set of Entity-Rela-

tionship models in Chapter 3.6.

Methodology 33

Figure 11: Proposed method

3.3 Topological Constraints

In engineering databases, semantic integrity refers to the meaningful correspondence

between data and reality (Ullman 1988). To maintain the semantic integrity of a design

product, specific integrity rules must be applied to relevant data and met by the end of

the design phase. Traditionally, adding and evaluating these rules during the building

design process is a manual and time-consuming task. As the number of rules in-

creases, re-evaluations initiated by design revisions become increasingly complex, as

initial changes can propagate through a chain of dependencies defined by these integ-

rity rules. In the context of computer aided design, integrity rules—including geometric

constraints, unit definitions, and construction practices—can be embedded within CAD

software. Thus, BIM-based building design simultaneously generates a data set and a

corresponding set of integrity rules, ensuring that the building is feasible for construc-

tion upon design completion (Eastman et al. 1997).

In this paper, integrity rules are defined as constraints arising from dependencies be-

tween building components, which must be incrementally imposed throughout the de-

sign process to ensure the design product maintains its semantic integrity by the end

of the design phase. Constraints in BIM models can be classified into geometric and

non-geometric (semantic and topological) rules. This research categorizes dependen-

cies into low-level constraints and topological constraints (Figure 12).

Low-level constraints are those inherently implemented in most CAD software. For ex-

ample, dimensional or geometrical constraints are commonly embedded in nearly all

CAD systems. These low-level constraints are applicable across various engineering

Methodology 34

design disciplines. In BIM authoring tools, geometric constraints form the basis for fam-

ilies—flexible geometric models that can be quickly adapted to meet varying boundary

conditions (Borrmann et al. 2018). Consequently, these cross-disciplinary low-level

constraints enhance design efficiency and significantly reduce unintended design er-

rors, such as those related to modifying dimensions or positioning and aligning building

components. This distinction underscores how computer-aided design differs from tra-

ditional building design workflows, which predominantly rely on paper and pencil.

In contrast, topological constraints are more project-specific and discipline-dependent,

requiring expert knowledge. Given that building design is a large-scale and complex

task involving numerous participants from various domains, identifying and implement-

ing all topological constraints at any given stage is simply impractical. In this paper,

topological constraints are abstracted and classified into two types: structural con-

straints and architectural constraints.

Table 1: Topological constraints in BIM-based building design considered in this study

Structural constraints primarily focus on structural components, verifying whether a

structural element is connected to (CON) or supported by (SUP) other structural com-

ponents. In contrast, architectural constraints encompass all building elements, includ-

ing non-physical objects. Architectural constraints are further divided into two subcat-

egories: spatial layout and accessibility. Regarding spatial layout, three specific con-

straints are considered: the first, ROO, checks if a given element forms the boundary

of a room or enclosed area; the other two, CLA and SUR, are designed to identify

clashes and undesirable neighboring building components. In terms of accessibility,

two relevant constraints include the clearance area directly in front of doors and stairs

(CLE) and the necessary opening above stairs (OPE).

Structural constraints

Connected to (CON)

Supported by (SUP)

Architectural

constraints

Spatial

dependency

Room/enclosed area (ROO)

Surrounded by (SUR)

Clashed by (CLA)

Accessibility
Clearance area in front doors, stairs’ exit/entrance (CLE)

Floor opening for Stairs (OPE)

Methodology 35

Figure 12: Represent dependencies between building components with low-level and topological con-
straints

3.4 Operations for Building Design Revisions

Eastman et al. (1997) defined operations as mechanisms for applying constraints to

data by adding, deleting, or modifying building elements or their attributes, which re-

sults in a new design state and functional dependencies as side effects. In this re-

search, building design revisions involve performing such operations on design data.

This study focuses exclusively on element-level operations, such as adding and delet-

ing components. Changes in geometric properties are particularly significant because

they are more likely to propagate to related components, thereby having a greater im-

pact on the overall building structure. For instance, the consequences of altering the

thermal properties of a wall are considerably less critical than those of deleting a wall

in terms of architectural and structural design. As such, modifications to semantic prop-

erties are not considered in this study.

This research primarily addresses two types of operations for building design revisions

using BIM authoring tools: adding and deleting components. These operations serve

as the foundation for more complex design operations, such as moving, which com-

bines both adding and deleting. In the early stages of BIM-based building design, build-

ing components with large quantities are essential for three-dimensional modeling, as

Methodology 36

they form the primary building structure and are crucial for cost estimation. Sub-sys-

tems, such as HVAC, typically rely heavily on the main building skeleton. Therefore,

this study focuses on design revisions involving walls, columns, and stairs—compo-

nents that significantly affect aspects like the main building structure, spatial layout,

and accessibility.

In this paper, we consider only structural walls and structural columns for these oper-

ations due to their complexity and comprehensive nature, as they encompass more

constraints than their architectural counterparts. In total, this research implements six

operations (Table 2): deleting structural walls, structural columns, and stairs, as well

as adding structural walls, structural columns, and stairs.

Table 2: Operations for building design revision

note: x means the design operation is applied to the corresponding building component

3.5 Change Propagation Mechanism

3.5.1 Significance Matrix

As discussed in Chapter 2.4, Design Structure Matrix (DSM) effectively displays the

relationships or interdependencies between discrete engineering parts or components,

illustrating how design changes can propagate. It also represents both the likelihood

and impact values of these changes (Keller et al. 2005). Building on the DSM, a signif-

icance matrix (Figure 13) is introduced to illustrate the connections and relative im-

portance of building components. There are three possible relationships between two

components: no relation, equal significance, or one being more important than the

other.

Change propagation can only occur when dependencies exist. For example, the sig-

nificance matrix indicates that structural walls are generally more important than archi-

tectural walls, while structural walls hold equal significance among themselves. This

implies that structural walls take precedence over architectural walls during operations.

For instance, if a new structural wall conflicts with an existing architectural wall, the

architectural wall should be deleted. Conversely, if a conflict arises between two struc-

Building Components

Structural Wall Structural Column Stair

Operations
Delete x x x

Add x x x

Methodology 37

tural walls during an operation, further confirmation may be necessary before proceed-

ing. Specifically, inserting a new structural wall that overlaps with an existing one will

require an approval from designer: the operation will continue if the response is affirm-

ative, or be canceled if it is negative.

Figure 13: Significance Matrix (indicates the existence of dependencies between two building compo-

nents and controls the extent of change propagation)

Table 3: Different constraints for different operations (based on topological constraints and the signifi-
cance matrix)

Notes: S stands for structural, A stands for architectural

 S-wall A-wall S-column A-column Slab Room Door Stair

S-wall

Add
CON
CLA

CLA CON SUP ROO
CLA
CLE

CLA
CLE

Delete CON CON ROO

S-column

Add CON
CON
CLA
SUR

CLA
SUR

SUP
CLA
CLE

CLA
CLE

Delete CON CON

Stair

Add
CLA
CLE

CLA
CLE

CLA
CLE

CLA
CLE

SUP
OPE

 CLE CLA

Delete OPE

Methodology 38

Additionally, a summary table (Table 3) is defined to represent the dependencies and

topological constraints between various building components for different design revi-

sion operations, as outlined in Table 1 and Table 2, and illustrated in Figure 13. This

table reflects that constraints are only partially considered for each operation, as dif-

ferent constraints are activated depending on the specific operation and building com-

ponents involved. For example, two relevant constraints (CON and CLA) must be

checked between two structural walls during an ADD operation, while only one con-

straint (CON) needs to be examined for a DELETE operation, specifically to determine

if any structural walls are connected to the one being deleted.

3.5.2 Change Propagation Hierarchy

Design changes can lead to modifications in related building components, and im-

proper management of change propagation can result in extensive redesign or even

design failure. To address integrity violations during change propagation, two critical

aspects must be considered. First, the path of change propagation needs to be identi-

fied, which has already been effectively addressed in Table 3.

Changes can only propagate along constraints that establish dependencies between

discrete building components. Second, it is essential to define the scope of change

propagation to enable automatic propagation. According to Eastman's theory (Figure

5), which conceptualizes change propagation as a cone, an initial change will continue

to propagate as long as there are existing dependencies, as illustrated in Figure 14;

this implies that change propagation can potentially be infinite.

In this paper, change propagation is generally limited to four levels, as the number of

constraints considered is finite, preventing a highly complex dependency network. The

naming principle for different levels is as follows: "No-Propagation" signifies that a

change has no impact on other components, while the level of change propagation is

denoted by incremental numbers. The "First-Propagation" occurs when changes affect

directly connected building components. As detailed in Table 3, this can be achieved

by simply checking the corresponding constraints during an operation on a specific

component.

Methodology 39

Figure 14: Change Propagation Hierarchy

The significance matrix (Figure 13) not only illustrates the connections between com-

ponents but also indicates the potential for further propagation, namely Second-Prop-

agation and Third-Propagation. Typically, propagation is feasible only if a dependency

exists between two components. Furthermore, changes can only propagate to compo-

nents of equal or lesser significance, which helps clearly define and limit the scope of

change propagation. Second-Propagation concludes reached once it has checked the

constraints on the first set of indirectly connected components. For instance, as shown

in Figure 15, deleting a structural wall requires identifying its connected structural walls

(the CON constraint), resulting in First-Propagation. Subsequently, it must be deter-

mined whether the identified connected structural walls are structurally stand-alone. At

this stage, in addition to the directly connected structural walls, the first level of indi-

rectly connected structural walls is evaluated, achieving Second-Propagation. Finally,

Third-Propagation involves identifying affected and invalidated rooms, which must be

deleted if the corresponding structural walls are stand-alone and have been removed

in previous propagation stages. It is important to note that while First-Propagation can

result in either DELETE or ADD operations, only deletion is considered in any subse-

quent propagations.

Methodology 40

Figure 15: Example of Change Propagation Hierarchy

3.6 Database Schema

Default design operations in BIM authoring tools primarily handle common, cross-

disciplinary low-level constraints in engineering design, as discussed in Chapter 3.3.

These built-in commands facilitate modifications to documents through transactions,

which ensure database consistency by managing changes. Each transaction results in

a new data state that represents the design product. A key advantage of transactions

is their ability to be rolled back after successful execution, allowing users to access

both the previous state and the latest version of the design. The proposed operations

can similarly be implemented using transactions. However, access to historical

transactions is limited, as the database of BIM authoring tools only partially grants

access. Transactions remain valid only during an active session, meaning all records

are lost once the current document is closed. Understanding historical design changes

is crucial for further improvements, highlighting the need for a dedicated database to

track and document transactions throughout the design process.

The database schema is specifically developed for documenting and managing

building design revisions initiated by the operations proposed in Chapter 3.4.

Consequently, the corresponding data model must accurately represent the state of

the design and its evolution over time. Representing a design state necessitates

information about both the identities of building components involved in the project and

the active dependencies among them. Based on Table 1, Figure 13, and Table 3, eight

Entity-Relationship (ER) models are proposed. Seven ER models, illustrated in Figures

15 to 21, represent the identities and active topological constraints of seven categories

of building components, reflecting the design state of each. Additionally, an additional

Methodology 41

ER model named Revision (Figure 23) is designed to record executed operations,

detailing when and how design revisions are performed and their side effects.

Unnecessary relationships are omitted for clarity. For instance, architectural walls

share the same relationships as structural walls (Figure 16). However, according to the

significance matrix (Figure 13), architectural walls can only propagate changes to

components of equal or lesser significance, including architectural walls, architectural

columns, rooms, and doors. Furthermore, operations cannot be directly performed on

architectural walls; they can only be deleted during the First-Propagation and then

propagate further changes. Therefore, the active constraints for architectural walls

should include only rooms and doors. Additionally, only relationships derived from

topological constraints are illustrated in the ER models, omitting properties of entities

to simplify representation, as the relationships are already complex. In this research,

two properties are utilized: the identifier and the version number of building

components. The identifier serves as a reference for modeling dependencies and

relationships between components, akin to a foreign key in a relational database, while

the version number aids in tracking and recording design revisions. More details can

be found in the software implementation section (Chapter 4).

Figure 16: ER model of structural wall

Methodology 42

Figure 17: ER model of architectural wall

Figure 18: ER model of architectural column

Figure 19: ER model of structural column

Methodology 43

Figure 20: ER model of room

Figure 21: ER model of door

Figure 22: ER model of stair

Methodology 44

Figure 23: ER model of revision

Prototype Implementation 45

4.1 Test Data

The design operations defined in Chapter 3.4 can only be executed on a model that

adheres to established design norms, codes, and best practices in building design. In

the early stages of design, floor plans serve as the primary documents. Any alterations

to these floor plans can lead to significant differences in both quantity and cost. For

this research, a floor plan that includes structural and architectural walls, columns,

stairs, slabs, and doors is used for modeling, as changes to these elements can impact

the overall plan. Additionally, rooms, though non-physical entities, are also modeled

due to the ROO constraint. The test model was developed using Autodesk Revit 2023.

Figure 24: Floor plans of the test model
(the floor plan on the left is the ground floor and the one on the right is the first floor)

4 Prototype Implementation

Prototype Implementation 46

Figure 25: Test model (3D view)

4.2 Implementation of Operations

Structural walls, structural columns and stairs are considered as subjects, on which the

operations of design revision are to be performed, namely delete and add operations,

while the other building components in the BIM model take part only in the subsequent

change propagation processes. The workload of the implementation of operations can

be divided into two parts. The first part is to implement the simple delete and add func-

tionalities for the three components without any consideration of topological constraints

via the Application Programming Interface (API) of Autodesk Revit 2023. Further is to

incorporate topological constraints into the commands, resulting in change propagation

to a desired extent. The implementation of propagation is based on Figure 13 and Ta-

ble 3. The active constraints indicate the potential directions of propagation, whereas

the significance matrix (Figure 13) gives information regarding the possibility of propa-

gating a change, namely changes are allowed to solely propagate to less or at least

the same important building components. The following is the implementation of the

six proposed operations. A text description and a flow-chart are provided for each of

the commands to elaborate the logic and its full functionalities. Red fonts in the illus-

tration of active constraints indicate how far the given constraint propagates. Addition-

ally, this research considers only rational operations and design revisions, which are

to be performed under the assumption that the given BIM model is well constructed by

following codes and good practices in building design. Furthermore, Revit Lookup

(Tammik et al. 2023), which is an interactive Revit RFA and RVT project database

exploration tool to view and navigate BIM element parameters, properties and relation-

ships, is most often used to help with the implementation.

Prototype Implementation 47

4.2.1 User Input

There are four critical conditions for the following six operations, namely the number of

vertically connected structural walls for deleting structural wall, the number of vertically

connected structural columns for deleting structural column, the number of non-

standalone surrounding structural columns for adding structural column, and the num-

ber of intersecting structural components (walls and columns) for adding stair. Critical

conditions are responsible for determining whether to continue with the current opera-

tion or not. The numbers for the conditions are stored in a text file, whose content can

be easily read (Figure 26). Instead of hard-coded conditions, the user can set the crit-

ical conditions manually as desired with the help of this input file. More flexibility is

achieved.

Figure 26: Input file

Figure 27: Read critical conditions from input file

4.2.2 Structural Wall Deletion

According to the significance matrix, changes caused by operations on structural walls

can propagate to all the eight components. However, only the evaluation of the struc-

tural constraint (CON) and the spatial layout constraint (ROO) is relevant for deleting

structural walls (Table 3) in First-Propagation. CON refers to both horizontally and ver-

tically connected structural walls and structural columns. The connected structural

components can result in Second-Propagation. Namely, connected structural walls

from other stories and any other connected structural components, which appear to be

structurally stand-alone after executing the deleting command, are taken into consid-

eration. In addition, structural walls deleted in Second-Propagation can trigger Third-

Propagation due to their related rooms. The number of vertically connected structural

walls, which is required as user input, are viewed as critical condition, since violating

Prototype Implementation 48

this constraint can result in termination of the current operation. Moreover, the deletion

of the structurally stand-alone structural components in Second-Propagation requires

confirmation. All rooms related to the walls, which are to be deleted during the opera-

tion (First-Propagation and Third-Propagation), are to be deleted by default as well.

As illustrated in Figure 28, before deleting the structural wall, it needs to be checked if

there are connecting structural components, resulting in First-Propagation. Further-

more, the connecting structural walls need to be checked if they are structurally stand-

alone components, which then results in Second-Propagation. Thereafter, deleting

some walls in the Second-Propagation can lead to the deletion of some rooms, result-

ing in Third-Propagation. For ROO constraints, only First-Propagation is possible since

rooms cannot propagate changes further.

Figure 28: Constraints for Structural Wall Deletion

Figure 29: Structural Wall Deletion

Prototype Implementation 49

To examine if a structural wall is structurally stand-alone, the class LocationCurve in

the Revit API is of importance, as illustrated in Figure 32 using Revit Lookup. The

location curves of structural walls below or above should have the same direction, and

the length of these walls should be approximately the same, if the walls are to be rec-

ognized and classified as structurally connected. A method called IsStandAloneStruc-

turalWall is implemented accordingly. The logic of the function is illustrated in Figure

30. In the examination, structural walls from levels both above and below are consid-

ered, whereas only structural columns from the same level are relevant. Namely, the

walls from the same level are considered for finding intersecting walls, while walls from

the other levels are for finding walls at the same location in terms of the x-y plane.

Moreover, detection of intersecting columns is implemented by using the get_Bound-

ingBox and the BoundingBoxIntersectsFilter methods from the Revit API, which is ba-

sically to check if there’s an intersection between the bounding boxes (Figure 31) of

the given elements.

Figure 30: Workflow of the method IsStandAloneStructuralWall

Figure 31: BoundingBoxXYZ class in Revit API

Prototype Implementation 50

Figure 32: LocationCurve of wall

4.2.3 Structural Column Deletion

Similarly, structural columns can propagate changes to all other building components

as well. However, rooms are not considered, since they are not dependent on columns.

Structural connections can trigger Second-Propagation and therefore, are important

for deleting a structural column (Table 3). Connected structural walls can trigger Third-

Propagation due to relations to rooms. Vertical connections between structural col-

umns (CON) are significant. Namely, the number of structural columns, which are at

the same location point in terms of the x-y plane, but from different levels, is the critical

condition for this operation. User input is required to set this number and to decide if to

delete the structurally stand-alone structural components as well. Deleting the rooms

dependent on the affected walls (ROO) during the operation is only possible in the

Third-Propagation, since columns and rooms are not directly related.

As illustrated in Figure 33, First-Propagation can be achieved by checking if the to-be

deleted structural column is structurally stand-alone. Following is the Second-Propa-

gation, which is to check if there are further structural connections to the connected

structural components found in the First-Propagation. The connecting Structural walls

can lead to Third-Propagation because some rooms might be removed due to the de-

letion of walls in the Second-Propagation.

Prototype Implementation 51

Figure 33: Constraints for Structural Column Deletion

Figure 34: Structural Column Deletion

Figure 35: Workflow of the method IsStandAloneStructuralColumn

Structural columns below and above can be found by comparing the location points.

Revit API provides a class called LocationPoint for accessing the location point of a

column, which is similar to the LocationCurve. If the location points stay the same, two

columns are at the same location in terms of the x-y plane. Similar to structural wall, a

Prototype Implementation 52

method named IsStandAloneStructuralColumn is implemented as well, which takes

both structural columns from different levels and structural walls only from the same

level into consideration (Figure 35).

4.2.4 Stair Deletion

Stairs can only propagate changes mostly to architectural components (Figure 13). In

terms of deleting stairs, the accessibility constraint (OPE) is considered, which is to

basically delete the opening of the slab right above the deleted stair. There could be

openings at the base level of the deleted stair as well. Though, openings from the base

level are usually meant for the stair below.

Figure 36: Constraints for Stair Deletion

Figure 37: Stair Deletion

4.2.5 Structural Wall Addition

Compared to the delete operation, adding a structural wall requires an evaluation of

more active constraints, namely CON, CLA, CLE, ROO, and SUP. Since a wall is cre-

ated in Autodesk Revit in such a way that it has both the top level and the base level

constraints, a wall is not necessarily supported by (SUP) a structural slab anymore.

Besides, there are no rules of thumb for the SUR constraint. Namely, SUR and SUP

Prototype Implementation 53

are not considered in the implementation. The constraints, namely CON and CLA, are

viewed as critical conditions here. User input is required to decide if to cancel the op-

eration if the new structural wall is either a stand-alone building component or a struc-

turally stand-alone structural component (CON). Additionally, an overlapping structural

wall (CLA), which is not structurally stand-alone (Second-Propagation), can result in

cancelation of the current operation. An auto-alignment of the inserted wall is per-

formed if there is at least one vertically connected structural wall (CON). Other compo-

nents, which directly clash with the inserted wall, are to be deleted as well. In terms of

the CLE constraint, the accessibility of rooms and stairs are checked. Namely, only

rooms that have at least one door, or at least one of the boundary lines is not a wall,

are viewed as accessible. Namely, deleting clashing doors can lead to Second-Propa-

gation. For stairs, a clearance area of at least one square meter in front of the exit or

entrance should be guaranteed, meaning that the inserted wall should not be in this

clearance area. Moreover, ROO is implemented to delete all the rooms dependent on

the affected or modified walls during the operation.

Different from DELETE operations, CON constraints in ADD operations can only result

in First-Propagation, meaning that it only needs to be checked if the inserted structural

wall is structurally stand-alone. In addition, stairs and rooms do not propagate changes

further and therefore can only cause First-Propagation. Doors, however, can have im-

pacts on rooms (Second-Propagation), which means that some rooms might become

inaccessible if their doors are deleted. Moreover, First-Propagation can be achieved

by searching for overlapping walls. Though, only overlapping structural walls can lead

to Second-Propagation since they need to be checked if structurally independent.

Figure 38: Constraints for Structural Wall Addition

Prototype Implementation 54

Figure 39: Structural Wall Addition

The creation of a wall instance is based on the method Create (Figure 40), which lies

in the DB namespace of Revit API. The method requires a location curve and the base

level along with the height of the wall as parameters. Therefore, this operation is im-

plemented in such a way that the user is allowed to create a wall by simply picking two

points in a floor plan. The picked two points are automatically aligned and the resulting

location curve is always parallel to the x-axis or the y-axis. Besides, a newly inserted

structural wall is automatically aligned to the connected structural walls from levels

below or above. Furthermore, an overlapping wall can be identified through a compar-

ison of the location curves and the levels in which the walls reside (Figure 41). The

method SameLocWalls, which is to find the walls with the same location curve but from

different levels, is also used in the implementation of IsStandAloneStructuralWall.

Clashing components can be identified by checking if there’s an intersection between

the bounding boxes of two building components. In terms of inaccessible rooms, a

method called IsRoomAccessible (Figure 42) is implemented based on the GetBound-

arySegments method of the Autodesk.Revit.DB.Architecture.Room class. Given a

room, it can tell if the room is accessible or not. Namely, a room is accessible if it has

at least one door or at least one of the room boundary lines is a room separation line

(a built-in category in Autodesk Revit) instead of a solid wall instance.

Figure 40: Autodesk.Revit.DB.Create method

Prototype Implementation 55

Figure 41: Workflow of the method FindOverlappingWall

Figure 42: Workflow of the method IsRoomAccessible

4.2.6 Structural Column Addition

The following five constraints are considered for change propagation processes in-

duced by adding a structural column, namely CON, CLA, SUR, SUP, CLE. The exist-

ence of surrounding structural columns within 1 meter (SUR), including structural col-

umns from levels below and above, can lead to Second-Propagation and termination

of the current operation. One of the critical conditions is still to check if the newly in-

serted structural column is structurally stand-alone (CON). The procedure in terms of

handling overlapping structural columns is similar to that of handling overlapping struc-

tural walls. Therefore, overlapping structural columns can result in Second-Propaga-

tion as well. What’s more, the operation deletes surrounding stand-alone structural col-

umns (Second-Propagation) and any other clashing or surrounding architectural com-

ponents, including overlapping (CLA) and nearby architectural columns (SUR), clash-

ing doors and stairs (CLA), and stairs, whose clearance area is blocked by the newly

inserted structural column (CLE). The accessibility of the rooms, which are related to

the deleted doors, is checked in Second-Propagation as well. Since columns and walls

are automatically joined and connected in Autodesk Revit, the corresponding clashing

constraint CLA can be omitted. In addition, SUP is resolved by the top level and base

level constraint.

Prototype Implementation 56

Similar to structural walls, CON constraints and stairs here are also only for First-Prop-

agation. The evaluation of overlapping structural columns is based on the same prin-

ciple as that of overlapping structural walls, involving First- and Second-Propagation.

There is no big difference in terms of evaluating the propagation levels of doors as well.

What’s more, the surrounding columns need to be considered as First-Propagation.

Especially for the surrounding structural columns, their further structural connections

need to be evaluated in the Second-Propagation.

Figure 43: Constraints for Structural Column Addition

The creation of a structural column is implemented based on the method Auto-

desk.Revit.Creation.Document.NewFamilyInstance (Figure 45), which requires a loca-

tion point and a base level of the column as parameters. Not only to find the overlapping

columns at the same location point (Figure 46), but this operation takes also surround-

ing columns into consideration. When the distance between the location points of two

columns are less than one meter, the two columns can be identified as mutually sur-

rounding (NearbyColumns in Figure 47).

Figure 44: Structural Column Addition

Prototype Implementation 57

Figure 45: Autodesk.Revit.Creation.Document.NewFamilyInstance

Figure 46: Workflow of the method FindOverlappingColumn

Figure 47: The implementation of the method NearbyColumns

4.2.7 Stair Addition

For adding a stair, the clearance area (CLE) and the clashing (CLA) components are

relevant dependencies. According to the significance matrix, structural components are

relatively more significant than stairs, whereas stairs are of greater importance than

architectural components. Therefore, clashing structural walls or structural columns

can result in Second-Propagation and termination of the operation. Clashing structural

walls have the potential to trigger Third-Propagation due to their related rooms. On the

contrary, clashing architectural columns, walls, doors, and stairs are to be deleted di-

rectly, causing only First-Propagation. Though, deleting architectural walls and doors

can lead to Second-Propagation as well, since the deleted walls can be a part of room

Prototype Implementation 58

boundaries. All affected rooms during the operation are to be deleted. OPE is a con-

straint specific for stairs. Namely, an opening above the newly inserted stair is to be

created after the insertion operation. It guarantees the accessibility of stairs.

First-Propagation applies to overlapping stairs, architectural columns and openings of

slabs, since they do not propagate changes further. Because of the structural connec-

tions, structural walls can always propagate one level further than the architectural

ones. Take a clashing structural wall for an example, detecting the clashing wall itself

is the result of First-Propagation. Then this clashing structural wall needs to be checked

if it’s structurally stand-alone, resulting in Second-Propagation. If the clashing wall is

structurally stand-alone and is deleted at the end, some rooms that are dependent on

it also need to be deleted, which is Third-Propagation. In addition, doors can propagate

changes to rooms, which makes Second-Propagation possible.

This operation allows the user to create a stair by picking two points (Figure 51), which

can result in a location line with a direction, namely the center line of a stair. Though,

the length of the stair run is 17 feet by default, which is suitable for a floor-to-floor height

of 4 meters. Additionally, the default width of stair run is ca. 1.2 meters. The implemen-

tation is based on the StairsRun.CreateStraightRun method. In addition, clashing com-

ponents can be identified by checking if there’s an intersection between the bounding

boxes of components. Based on the concept of bounding box, two methods are imple-

mented to guarantee the accessibility of stairs, as illustrated in Figure 50.

Figure 48: Constraints for Stair Addition

Prototype Implementation 59

Figure 49: Stair Addition

Figure 50: Methods for checking the accessibility of stairs

Figure 51: Implementation of the method CreateSingleStraightRunStair

Prototype Implementation 60

4.3 Implementation of Database Schema

This section is to describe the database schema proposed in chapter 3.6, aiming at

recording design revision operations throughout the entire design process. The tools

used for the implementation are Microsoft C# (.Net framework), Revit API 2023, and

MongoDB, which uses a flexible way of storing data called documents and collections.

A document can represent a single object, e.g. wall, door, column and so on, whereas

a collection is to represent a set of objects. As illustrated in Figure 52, six collections

are involved in the database for design revision, corresponding to the eight ER-dia-

grams in chapter 3.6, since walls and columns can represent both the structural and

non-structural ones by simply adding an attribute to indicate whether a component is

structural or not (Figure 53 & Figure 54). Each document in MongoDB must be as-

signed with a unique identifier. In this research, we use the Globally Unique Identifier

(GUID) of building components obtained from the Revit model to initialize the identifier

of documents (BsonId in Figure 53 & Figure 54 & Figure 55). GUIDs are used as ref-

erence to build relationships as well.

Figure 52: Documents and collections in MongoDB

Based on the relationship that a room can have multiple doors (Figure 20), we assign

a property to the data model of room to indicate whether a room is accessible or not,

which can be simply checked by the method IsRoomAccessible (Figure 42). Namely,

a room is accessible if it has at least one door or at least one of the room boundary

lines is a room separation line instead of a wall. The data model of door is assigned

Prototype Implementation 61

with a property to store the rooms that it connects (Figure 55). Besides, it stores the

GUID of its host wall as well. In terms of the data model of stair, a property is similarly

assigned to indicate the accessibility of stairs, which is typically based on the methods

in Figure 50. Moreover, it takes the opening above the stair into consideration as well

(Figure 56). Regarding the implementation of the revision data model (Figure 59) stays

the same as described in Figure 23.

Figure 53: Data model of wall

Figure 54: Data model of column

Prototype Implementation 62

Figure 55: Data model of door

Figure 56: Check the accessibility of stairs

To implement a versioning system, a version number, whose initial value is set to 0 if

no operations have been performed yet, is assigned to each building component at the

point of its creation, representing the current version of the design. The current version

number automatically increments itself by one when an operation is performed. For

newly inserted components, the version number is synchronized with the current ver-

sion of the database, while the version number of deleted items stops updating itself

anymore. For example, the current version number for all existing components in the

database should be five, if five operations have already been performed. Now, if a new

wall needs to be inserted, the version of the wall should be six, meaning that this wall

was created in the sixth operation. In addition, all other existing components in the

database should increase their version numbers to six. Upon both creation and dele-

tion, the version number of a component is to be recorded in a different property,

namely the RevisionCycle property. The version property and the RevisionCycle prop-

erty together can serve as a versioning system (Figure 57). Moreover, an additional

property is assigned to components, indicating whether a component is currently de-

leted or not. The three versioning properties are often used in the implementation sim-

ultaneously as a means of double check, as illustrated in Figure 58. For instance, if a

component is to be deleted in the upcoming operation, the database first increments

Prototype Implementation 63

its version number by one and then marks it as deleted and thereafter, adds the version

number to its RevisionCycle property, whereas no updates are possible anymore if it

is already marked as deleted before an operation.

Figure 57: Versioning system for design revision

Based on the versioning system, it is now possible to keep track of design revisions.

As illustrated in Figure 59, the identifier of documents in the revisions collection is still

the GUID of building components from Revit. Namely, the identifier indicates the sub-

ject, on which the corresponding operation was performed. Additionally, the version

property tells when the operation was conducted. The affected components in a revi-

sion are also easy to track with their stored GUIDs as reference.

Figure 58: Using multiple versioning properties simultaneously in queries

Prototype Implementation 64

Figure 59: Track design revisions throughout the design process

4.4 Design Revision Manager (DRM)

A graphical user interface (GUI)-based Design Revision Manager (DRM) is imple-

mented to realize a better interaction with the user while executing operations. The

implementation was based on XAML, which is a declarative markup language used for

creating user interface (UI) for .Net applications.

Figure 60: Design Revision Manager (design operations)

Prototype Implementation 65

As illustrated in Figure 60, there are six gray buttons for performing revisions, corre-

sponding to the six operations in Chapter 4.2. Before a command can be executed, the

properties of the element and its pre-constraints, which are typically the relationships

to other building components, are to be displayed, so that the user can gain knowledge

of relevant dependencies before making modifications on the current BIM model.

These relationships are based on the ER models proposed in Chapter 3.6. After the

execution of an operation, the post-constraints of the component are to be displayed.

Nevertheless, post-constraints only make sense for performing add-operations, since

deleted components do not have constraints anymore. In addition, the results, namely

the side effects of change propagation processes, will be shown as well. Moreover, it’s

allowed to set the reasons for the performed operation, which are to be written in the

corresponding revision in the database.

Figure 61: Design Revision Manager (topological constraint-based commands)

The DRM provides another three topological constraint-based commands, which are

implemented through querying the relevant data from the design revision database. In

other words, it allows a quick search for components which satisfy certain topological

constraints. The commands are meant for providing information that’s relevant for the

design process, namely more of such commands can be implemented for various pur-

Prototype Implementation 66

poses and projects. As illustrated in Figure 61, the structurally stand-alone compo-

nents, inaccessible rooms and inaccessible stairs can be quickly found just with one

click. These topological constraints are often easily overlooked since they need to be

checked manually and BIM models from real projects are complex. With the found

GUIDs, one can use the command “Look up constraints” to find the constraints of the

corresponding problematic component. In addition, it’s also convenient to locate the

component in a complex BIM model with its GUID. All in all, with this prototype, design-

ers can find the components with “ill” topological constraints swiftly at any time. Be-

sides, topological constraints of components can be looked up with their GUIDs.

Results and Discussion 67

5.1 Test Results of Design Revision Operations

This chapter presents the test results for both the proposed change management

framework and the various functionalities of the developed prototype. Multiple ADD

and DELETE operations were conducted, and their outcomes were evaluated to con-

firm that the Design Revision Manager (DRM) supports decision-making in building

design revisions. Additionally, the complete workflow for each operation tested is illus-

trated with accompanying test data. Furthermore, we examined the effectiveness of

the proposed versioning system.

5.1.1 Initial Test Model

The prerequisite for running the prototype is a BIM model, as stated before in Chapter

4.1. Since there’s no existing database for the current BIM project, the prototype first

creates a new database in MongoDB locally based on the database schema proposed

previously and then exports the data of relevant building components from the BIM

model to the database. The first time when the prototype is fired up, five collections are

to be created, corresponding to the five categories of building components involved in

change propagation, namely columns, walls, stairs, doors, and rooms. For columns

and walls, both structural and architectural ones are considered. Nevertheless, no op-

erations have been performed till this point yet. Besides, every document from the col-

lections, namely every building component with its topological constraints as attributes,

has the same version number of 0, as illustrated in both Figure 62 and Table 4. It is

namely the initial state of the BIM model for testing, based on which several operations

are to be performed in the following steps.

Table 4: The number of building components (initial state of the test model)

 Structural
wall

Architectural
wall

Structural
column

Architectural
column

Door Room Stair

Version 0 19 11 24 1 15 16 1

5 Results and Discussion

Results and Discussion 68

Figure 62: Initial state (version 0) of test model

5.1.2 Structural Wall Deletion

Figure 63: First operation – Structural Wall Deletion (the deleted wall resides in Level 1, the figure on
the left is the original status, while the one on the right is the status after the DELETE operation)

Results and Discussion 69

The first operation was to delete a structural wall based on the default critical conditions

(Figure 26 & Figure 63). The critical condition for the deletion of a structural wall is the

number of vertically connecting structural walls, which is 2 by default. Namely, if there

are at least two connecting structural walls below or above from other levels, the dele-

tion operation is not possible, and the operation will be therefore terminated. Since

there are only two floors in the test model, meaning that there is maximum only one

vertically connecting structural wall, the deletion of the selected structural wall is per-

mitted by default. Before the command is executed, the DRM can give us an overview

of the current constraints of the target wall (pre-constraints), which can help to decide

if to continue with the operation or not (Figure 65). After performing the operation, a

new collection named Revisions is created in the database (Figure 64), aiming at re-

cording the latest operation and the effects of change propagation, e.g. three rooms

were deleted in this test case. The results of change propagation are also to be dis-

played on the DRM by simply querying data that’s stored in the Revisions collection

and also related to the first revision, as illustrated in the section of Change Propagation

Results in Figure 65. Additionally, the reasons for the revision were recorded in the

database by using the SetReasons command as well. For the deleted structural wall

here, its version number stops updating ever since. Moreover, the wall was marked as

deleted and the version number, in which the wall was deleted, was documented in the

RevisionCycle property as well, representing that the wall was created at version 0 and

then deleted at version 1 (Figure 64).

Figure 64: 1st version of test model (the left figure presents that the operation is documented in the Re-
visions collection, while the right one shows the updates of the deleted wall’s properties)

Results and Discussion 70

Figure 65: Design Revision Manager – Structural Wall Deletion (pre-constraints are the dependencies
of building components before the operation is performed)

5.1.3 Structural Column Deletion

Figure 66: Second operation – Structural Column Deletion (the to-be-deleted structural column from
different views, namely Level 1 in the left figure and Level 2 in the right one)

The second operation aimed to delete a structural column, whose execution was sub-

jected to one of the critical conditions as well. However, different from the condition for

deleting structural walls, the number was set to 1 by default. Namely, if there is at least

Results and Discussion 71

one connecting structural column below or above, the intended operation will be auto-

matically terminated, and no change propagation is possible. Since the to-be-deleted

structural column at level 1 had a connection to one structural column from level 2

(Figure 66), it’s not possible to perform the deletion operation. Therefore, the test model

itself as well as the data stored in the database stayed unchanged, meaning that no

updates of the test model were possible regardless of all other pre-constraints.

5.1.4 Stair Deletion & Addition

In this test, we intended to first relocate an existing stair, which comprises a DELETE

and an ADD operation. Afterwards we inserted a new stair, resulting in 2 stairs in total

in the project.

Figure 67: Third operation – Stair Deletion (the figure on the left is the original status, containing the to-
be-deleted stair with an opening on top, the right one is the updated status after the DELETE opera-

tion)

Figure 68: 2nd version of test model (the left figure presents that the operation is documented in the
Revisions collection, while the right one shows the updates of the deleted stair’s properties)

For relocating a stair, we first deleted the target stair in the project. Since there’s no

significant violation of pre-constraints, the deletion operation can be performed. As a

result of change propagation, the opening of the floor above the stair was deleted by

choice as well (Figure 67). Consequently, an update of the version number to 2 was

committed for every existing building component in the database (Figure 68). After the

Results and Discussion 72

deletion, the IsDeleted and RevisionCycle properties of the deleted stair were updated

accordingly, which is similar to the deletion of structural walls. With the updated prop-

erties, the stair is prevented from any further updates. The 2nd revision was also added

to the Revisions collection (Figure 68). In addition, there’s no stair that can establish a

connection between the ground floor and the 1st floor, resulting in inaccessible areas.

Figure 69: Fourth operation – Stair Addition (the left figure shows an intended insertion of a stair at a
desired location by picking two points, the right one shows the updated status after adding the stair)

Following is the fourth operation, which is to add a stair by directly picking two points

on the ground floor. Since the stair was added at the 3rd version, the first entry of the

RevisionCycle property is 3 (Figure 70). In addition, the direction of the new stair can

be determined ourselves, namely the first picked point is to be located at the base level

while the second picked point is at the top level. As illustrated in Figure 69, the to-be-

inserted stair has conflicts with an architectural wall and an architectural column re-

spectively. Since it’s of greater importance to guarantee the accessibility of stairs, the

obstacles were deleted automatically, meaning that the clashing components are of

less significance compared to stairs and therefore, can be deleted without confirmation.

This information can be utilized by the DRM to help with decision-making.

Because of the existence of clashing components, which block the exit or entrance of

the stair, the IsAccessible property was marked as False (Figure 70). With the pre-

constraints provided by the DRM, which indicates that there’s no conflict or connection

between the new stair and structural components, a conclusion can be drawn. Namely,

the clashes result from conflicts with non-structural components, which normally re-

quire no further confirmation to resolve these conflicts. As a result, the clashes were

Results and Discussion 73

addressed automatically, and the accessibility of the new stair can be maintained after

the ADD operation. In addition, the effects resulting from the operation were also pro-

vided by the DRM, namely the operation resulted in the deletion of one architectural

wall and one architectural column (Figure 71). What’s more, the accessibility between

two floors was evaluated as well by counting the existing stairs which are supposed to

connect the two stories.

Figure 70: 3rd version of test model (the left figure presents that the operation is documented in the Re-
visions collection, while the right one shows the updates of the inserted stair’s properties)

Figure 71: Design Revision Manager – Stair Addition (change propagation results)

The next operation was to insert a new stair at a desired location. However, this ADD

operation had conflicts with two structural walls, which had the same location line but

reside in different stories, as illustrated in Figure 72. Since the maximum number of

intersecting structural components allowed for an ADD operation was set to 2 (Figure

26), the operation was automatically denied and no changes were committed as a re-

sult, neither in the test model nor in the design revision database. Therefore, the in-

tended insertion of the marked stair in Figure 72 was discarded by the DRM.

Results and Discussion 74

Figure 72: Fifth operation – Stair Addition

Table 5: The number of building components (3rd version)

 Structural
wall

Architectural
wall

Structural
column

Architectural
column

Door Room Stair

Version 0 19 11 24 1 15 16 1

Version 1 18 11 24 1 15 13 1

Version 2 18 11 24 1 15 13 0

Version 3 18 10 24 0 15 13 1

5.2 Test Results of Topological Constraint-based Commands

We performed two more operations so that the test model is more suitable for testing

the three topological constraint-based commands (Figure 61), which are based on que-

rying data stored in the design revision database.

Different from the change propagation results, which present themselves as various

numbers of different types of building component, the constraint-based commands ra-

ther consider multiple topological constraints simultaneously. With the DRM, we can

easily find the structurally stand-alone structural components, inaccessible rooms and

inaccessible stairs. The results are based on queries on the database and therefore

totally independent from the test model itself. Namely, the dependencies are separated

from the test model to a certain extent. In addition, the active constraints of a specific

Results and Discussion 75

component can be queried by using the Look-up-constraints command. As illustrated

in Figure 74, one inaccessible stair was found through the quick commands and then

its constraints were queried from the database with its GUID. The post-constraints,

namely the currently active ones, indicate that a structural wall or a structural column

blocks the stair. Since connections between components are established by referenc-

ing their GUIDs, we can easily locate this problematic dependency in the design revi-

sion database (Figure 75). Similarly, we can find this conflict in the BIM model easily

with GUIDs and then find out how to resolve the conflict.

Figure 73: The latest state of test model (5th version of test model on the left and the corresponding
database on the right)

Table 6: The number of building components (5th version)

 Structural
wall

Architectural
wall

Structural
column

Architectural
column

Door Room Stair

Version 0 19 11 24 1 15 16 1

Version 1 18 11 24 1 15 13 1

Version 2 18 11 24 1 15 13 0

Version 3 18 10 24 0 15 13 1

Version 4 18 10 25 0 14 13 1

Version 5 19 10 25 0 14 13 1

Results and Discussion 76

Figure 74: Test results of topological constraint-based commands

Figure 75: Find the problematic dependency with GUID (the red marked GUID refers to the inaccessi-
ble stair found in Fig. 73, the blue marked GUID is the structural wall or column that blocks the exit or

entrance of the stair)

Results and Discussion 77

5.3 Key Findings

The proposed BIM-based change management framework has been tested and

demonstrated its effectiveness in supporting building design revisions. A core

component of this system is the change propagation mechanism, which outlines the

operational principles of the Design Revision Manager (DRM). This mechanism can be

tailored to different projects, accommodating varying requirements for change

propagation based on specific design contexts.

Moreover, the system exhibits a high degree of adaptability, as the change propagation

mechanism can be applied to most BIM-based building design processes. The

definitions of these mechanisms rely on common engineering knowledge in building

design, ensuring that many relationships between building components are universally

applicable. The change propagation mechanism primarily aids decision-making

regarding design revisions by evaluating the potential impacts on components affected

by an initial change. Consequently, designers can determine whether to proceed with

a proposed revision based on the severity of its effects on related building components.

An additional significant feature of the framework is the versioning system, which

functions as an engineering database designed to track the current state of a BIM

project. This system provides crucial information about the existence and topological

constraints of building components within a BIM model, ensuring that designers always

have access to relevant dependencies among components. Furthermore, design

revisions throughout the entire design process can be documented in the database,

allowing past revisions and their propagation outcomes to inform decision-making for

similar design revisions in the future.

In summary, the proposed framework serves as a comprehensive change

management system that enhances decision-making in building design revisions by

supplying pertinent information regarding change propagation results, topological con-

straints of building components, and historical design revisions. Additionally, the

prototype illustrates how to leverage engineering knowledge—specifically, the

dependencies between building components—to achieve design automation.

Conclusion 78

Building design is inherently complex and uncertain, making design revisions an

unavoidable aspect of the process. Specifically, revisions in Building Information

Modeling (BIM)-based design are significantly more intricate due to the rich information

embedded in BIM models. This study proposes a novel change management

framework to support revisions in BIM-based building design, providing a

comprehensive solution for managing change propagation.

The findings of this research validate several key aspects of the proposed change

management system. Firstly, it has been confirmed that expert knowledge in building

design can be effectively translated into topological constraints, which govern the

direction of change propagation. Furthermore, change propagation processes,

facilitated by these topological constraints, can be integrated into BIM-based design

operations through a dedicated change propagation mechanism. This mechanism

consists of a set of pre-defined topological constraints and a significance matrix that

dictates the extent of change propagation, enabling prior evaluation of potential

propagation processes while conducting design operations.

Secondly, the change propagation mechanisms exhibit flexibility, allowing them to be

defined and adjusted according to various design contexts. The complexity of these

mechanisms correlates with the number of building components and their respective

dependencies involved in the propagation process. Nevertheless, these mechanisms

are broadly applicable across most building design projects, as they typically share

common disciplinary knowledge. Lastly, having access to the dependency network of

building components and evaluating potential change propagation processes prior to

executing design operations significantly enhances decision-making capabilities.

This research also contributes to the field of building design automation by addressing

change propagation dynamically during design operations. The outcomes of

propagation processes can be implemented automatically with a single click by the

designer. However, a notable limitation of this study is that the proposed approach is

restricted to Autodesk Revit and the Revit API, with a limited scope of considered

topological constraints.

6 Conclusion

Conclusion 79

6.1 Contribution

This research contributes significantly to the field of change management in BIM-based

building design. The proposed BIM-based change management system introduces a

change propagation mechanism that aids decision-making throughout the building

design process. The mechanism primarily facilitates the integration of change

propagation processes into design operations within BIM authoring tools. Additionally,

it serves as a tool for tracking design revisions throughout the entire design lifecycle.

Its inherent flexibility and adaptability stem from its reliance on topological constraints

and a corresponding significance matrix, both derived from expert knowledge in

building design. This means that the behavior of change propagation can be tailored

to suit different design contexts.

Furthermore, the Design Revision Manager serves as the practical implementation of

the proposed change management framework. Overall, the prototype enhances

decision-making in BIM-based building design revisions by providing insights into the

dependencies between building components, the effects of change propagation

resulting from intended design operations, and records of past revisions. By presenting

the potential consequences of each decision in advance, the system enables more

informed and rational decision-making.

6.2 Limitation

This research has not yet fully investigated the dependencies among building

components, as it focused on a limited set of components. An increased number of

components could yield a more complex network of dependencies, resulting in more

sophisticated change propagation processes and potentially additional levels of

change propagation.

Additionally, the range of design operations implemented in the prototype is limited.

Currently, the system only supports the addition and deletion of individual building

components. More complex design operations, such as rotation or modification of

semantic properties, are not yet available. These functionalities could be realized by

considering a broader spectrum of dependencies among building components.

Furthermore, the design process experiences interruptions due to user interactions

required during the execution of design operations. To enhance the efficiency of the

design workflow, the change propagation mechanism could be refined to allow

Conclusion 80

operations to run in the background, thereby facilitating a more seamless design

experience.

Finally, the versioning system is restricted to maintaining records of the latest design

version, with no access to previous versions. The ability to compare different versions

could significantly contribute to change management. Moreover, the current versioning

system operates only on a local host, limiting collaborative efforts among team

members via a server connection.

6.3 Future Work

Based on the findings of this research, several recommendations can be made for

future enhancements in this field. First, it is essential to conduct a more comprehensive

investigation into the dependency network of building components. Specifically, a

broader range of building components and their interrelationships should be

considered in the context of change propagation. This expanded scope would facilitate

a more thorough understanding of the factors influencing building design revisions,

ultimately leading to more accurate and desired outcomes in change propagation

processes. However, it is important to note that as the number of components and

dependencies increases, the complexity of the corresponding change propagation

mechanism will also rise, necessitating greater effort in its development.

Second, there is potential for further refinement of the proposed change propagation

mechanism. This research currently focuses on two fundamental design revision

operations: ADD and DELETE. Furthermore, the effects of change propagation

primarily pertain to the deletion of components. Future research should explore the

implementation of additional operations, such as modifying component attributes rather

than solely deleting or adding components. Additionally, various methods of

propagating changes should be examined, including the relocation of components and

the modification of geometric or semantic properties.

Lastly, the database infrastructure should be enhanced in alignment with the increased

number of building components and dependencies. Furthermore, the versioning

system could be improved to maintain records of every version of a BIM project. Given

that BIM projects typically involve numerous participants from diverse disciplines,

establishing a central server for the database becomes critical. This can be effectively

accomplished using Node.js, a cross-platform and open-source JavaScript runtime

environment suitable for developing servers and web applications.

Bibliography 81

Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building information modeling:

Why? what? how? (pp. 1-24). Springer International Publishing.

https://doi.org/10.1007/978-3-319-92862-3_1

Borrmann, A., & Rank, E. (2009). Specification and implementation of directional op-

erators in a 3D spatial query language for building information models. Ad-

vanced Engineering Informatics, 23(1), 32-44.

https://doi.org/10.1016/j.aei.2008.06.005

National Institute of Building Sciences. (2015). National BIM Standard United States

version 3. Washington, DC: National Institute of Building Sciences.

http://www.nationalbimstandard.org / (Accessed December 9, 2017).

Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for

existing buildings—Literature review and future needs. Automation in construc-

tion, 38, 109-127. https://doi.org/10.1016/j.autcon.2013.10.023

Eastman, C. M. (2011). BIM handbook: A guide to building information modeling for

owners, managers, designers, engineers and contractors. John Wiley & Sons.

https://www.academia.edu/download/31053339/BIM_Handbook_1st.pdf

Wong, J., & Yang, J. (2010). Research and application of building information model-

ling (BIM) in the architecture, engineering and construction (AEC) industry: a

review and direction for future research. In Proceedings of the 6th International

Conference on Innovation in Architecture, Engineering and Construction

(AEC) (pp. 356-365). Department of Civil and Building Engineering, Loughbor-

ough University. https://eprints.qut.edu.au/38333/1/38333.pdf

Eastman, C. M. (2018). Building product models: computer environments, supporting

design and construction. CRC press. https://doi.org/10.1201/9781315138671

Penttilä, H., Rajala, M., & Freese, S. (2007). Building information modelling of modern

historic buildings. Predicting the Future, 25th eCAADe Konferansı, Frankfurt am

Main, Germany, 607-613. https://papers.cumin-

cad.org/data/works/att/ecaade2007_124.content.pdf

Bibliography

Bibliography 82

Cross, N. (2021). Engineering design methods: strategies for product design. John

Wiley & Sons. https://www.academia.edu/download/37650372/engineering_de-

sign_methods.pdf

Machairas, V., Tsangrassoulis, A., & Axarli, K. (2013). Algorithms for optimization of

building design. Renewable & Sustainable Energy Reviews, (IKEEART-2014-

804). https://doi.org/10.1016/j.rser.2013.11.036

Jarratt, T. A. W., Eckert, C. M., Caldwell, N. H., & Clarkson, P. J. (2011). Engineering

change: an overview and perspective on the literature. Research in engineering

design, 22, 103-124. https://doi.org/10.1007/s00163-010-0097-y

De Wit, S., & Augenbroe, G. (2002). Analysis of uncertainty in building design evalua-

tions and its implications. Energy and buildings, 34(9), 951-958.

https://doi.org/10.1016/S0378-7788(02)00070-1

Jarratt, T., Clarkson, J., & Eckert, C. (2005). Engineering change. In Design process

improvement: a review of current practice (pp. 262-285). London: Springer Lon-

don. https://doi.org/10.1007/978-1-84628-061-0_11

Koh, E. C., Caldwell, N. H., & Clarkson, P. J. (2012). A method to assess the effects

of engineering change propagation. Research in Engineering Design, 23, 329-

351. https://doi.org/10.1007/s00163-012-0131-3

Ahmad, N., Wynn, D. C., & Clarkson, P. J. (2013). Change impact on a product and its

redesign process: a tool for knowledge capture and reuse. Research in Engi-

neering Design, 24, 219-244. https://doi.org/10.1007/s00163-012-0139-8

Eckert, C., Clarkson, P. J., & Zanker, W. (2004). Change and customisation in complex

engineering domains. Research in engineering design, 15, 1-21.

https://doi.org/10.1007/s00163-003-0031-7

Clarkson, P. J., Simons, C., & Eckert, C. (2004). Predicting change propagation in

complex design. J. Mech. Des., 126(5), 788-797.

https://doi.org/10.1115/1.1765117

Giffin, M., De Weck, O., Bounova, G., Keller, R., Eckert, C., & Clarkson, P. J. (2009).

Change propagation analysis in complex technical systems.

https://doi.org/10.1115/1.3149847

Bibliography 83

Keller, R., Eckert, C. M., & Clarkson, P. J. (2005, July). Multiple views to support engi-

neering change management for complex products. In Coordinated and Multiple

Views in Exploratory Visualization (CMV'05) (pp. 33-41). IEEE.

10.1109/CMV.2005.11

Eastman, C., Parker, D. S., & Jeng, T. S. (1997). Managing the integrity of design data

generated by multiple applications: The principle of patching. Research in engi-

neering design, 9, 125-145. https://doi.org/10.1007/BF01596599

Reddi, K. R., & Moon, Y. B. (2009). A framework for managing engineering change

propagation. International Journal of Innovation and Learning, 6(5), 461-476.

https://doi.org/10.1504/IJIL.2009.02506

Katz, R. H. (1990). Toward a unified framework for version modeling in engineering

databases. ACM Computing Surveys (CSUR), 22(4), 375-409.

https://dl.acm.org/doi/pdf/10.1145/98163.98172

Brahma, A., & Wynn, D. C. (2023). Concepts of change propagation analysis in engi-

neering design. Research in Engineering Design, 34(1), 117-151.

https://doi.org/10.1007/s00163-022-00395-y

Saoud, L. A., Omran, J., Hassan, B., Vilutienė, T., & Kiaulakis, A. (2017). A method to

predict change propagation within building information model. Journal of Civil

Engineering and Management, 23(6), 836-846.

https://doi.org/10.3846/13923730.2017.1323006

Beitz, G. P. W., Wallace, K., Blessing, L., & Bauert, F. (1996). Engineering Design: A

Systematic Approach. MRS BULLETIN, 71.

https://doi.org/10.1557/S0883769400035776

Ma, S., Song, B., Lu, W. F., & Zhu, C. F. (2003, January). A knowledge-supported

system for engineering change impact analysis. In International Design Engi-

neering Technical Conferences and Computers and Information in Engineering

Conference (Vol. 37009, pp. 439-447).

https://doi.org/10.1115/DETC2003/DAC-48749

Rutka, A., Guenov, M. D., Lemmens, Y., Schmidt-Schäffer, T., Coleman, P., & Riviere,

A. (2006). Methods for engineering change propagation analysis.

http://dspace.lib.cranfield.ac.uk/handle/1826/2621

Bibliography 84

Jacobsen, K., Eastman, C., & Jeng, T. S. (1997). Information management in creative

engineering design and capabilities of database transactions. Automation in

Construction, 7(1), 55-69. https://doi.org/10.1016/S0926-5805(97)00052-6

Pilehchian, B., Staub-French, S., & Nepal, M. P. (2015). A conceptual approach to

track design changes within a multi-disciplinary building information modeling

environment. Canadian Journal of Civil Engineering, 42(2), 139-152.

https://doi.org/10.1139/cjce-2014-0078

Wynn, D. C., Caldwell, N. H., & John Clarkson, P. (2014). Predicting change propaga-

tion in complex design workflows. Journal of Mechanical Design, 136(8),

081009. https://doi.org/10.1115/1.4027495

Li, Y., Zhao, W., & Shao, X. (2012). A process simulation based method for scheduling

product design change propagation. Advanced Engineering Informatics, 26(3),

529-538. https://doi.org/10.1016/j.aei.2012.04.006

Moayeri, V. (2017). Design change management in construction projects using Build-

ing Information Modeling (BIM). Canada: Concordia University. https://spec-

trum.library.concordia.ca/id/eprint/983221/1/Moayeri_PhD_S2018.pdf

Jeng, T. S., & Eastman, C. M. (1998). A database architecture for design collabora-

tion. Automation in Construction, 7(6), 475-483. https://doi.org/10.1016/S0926-

5805(98)00056-9

Whyte, J., Soman, R., Sacks, R., Mohammadi, N., Naderpajouh, N., Hong, W. T., &

Lee, G. (2024). How digital twins provide new opportunities for managing

change in complex projects. arXiv preprint arXiv:2402.00325.

https://doi.org/10.48550/arXiv.2402.00325

Huang, G. Q., & Mak, K. L. (1999). Current practices of engineering change manage-

ment in UK manufacturing industries. International Journal of Operations & Pro-

duction Management, 19(1), 21-37.

https://doi.org/10.1108/01443579910244205

Yin, L., Tang, D., Kang, Y., & Leng, S. (2016). Topology face–based change propaga-

tion analysis in aircraft-assembly tooling design. Proceedings of the Institution

of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(1),

120-135. https://doi.org/10.1177/095440541455869

Bibliography 85

Masmoudi, M., Leclaire, P., Zolghadri, M., & Haddar, M. (2017). Change propagation

prediction: A formal model for two-dimensional geometrical models of prod-

ucts. Concurrent Engineering, 25(2), 174-189.

https://doi.org/10.1177/1063293X17698192

Chen, J., Zhang, S., Wang, M., & Xu, C. (2017). A novel change feature-based ap-

proach to predict the impact of current proposed engineering change. Advanced

Engineering Informatics, 33, 132-143. https://doi.org/10.1016/j.aei.2017.06.002

Regli, W. C., & Cicirello, V. A. (2000). Managing digital libraries for computer-aided

design. Computer-Aided Design, 32(2), 119-132.

https://doi.org/10.1016/S0010-4485(99)00095-0

Szykman, S., Sriram, R. D., Bochenek, C., Racz, J. W., & Senfaute, J. (2000). Design

repositories: next-generation engineering design databases. IEEE Intelligent

Systems, 15(3), 48-55. https://www.researchgate.net/profile/Rdhanapal-R/pub-

lication/2807188_Design_Repositories_Next-Generation_Engineering_De-

sign_Databases/links/09e415099c6e321096000000/Design-Repositories-

Next-Generation-Engineering-Design-Databases.pdf

Zahedi, A., Abualdenien, J., Petzold, F., & Borrmann, A. (2022). BIM-based design

decisions documentation using design episodes, explanation tags, and con-

straints. J. Inf. Technol. Constr., 27, 756-780. https://www.seman-

ticscholar.org/reader/48a5d9bede2a0ef910a4b8daaf6592f81eb79bb4

Zahedi, A., & Petzold, F. (2022). REVIT ADD-IN FOR DOCUMENTING DESIGN DE-

CISIONS AND RATIONALE. https://papers.cumincad.org/data/works/att/caa-

dria2022_76.pdf

Martin, W. M., Heylighen, A., & Cavallin, H. (2003, April). Building stories. A herme-

neutic approach to studying design practice. In Proceedings of the 5th european

academy of design conference, Barcelona, Spain (pp. 28-30). https://www.aca-

demia.edu/download/31905565/MartinCH.pdf

Xue, D., Yang, H., & Tu, Y. L. (2005, January). Modeling of evolutionary design data-

base. In International Design Engineering Technical Conferences and Comput-

ers and Information in Engineering Conference (Vol. 4739, pp. 109-122).

https://doi.org/10.1115/DETC2005-84956

Bibliography 86

Voropajev, V. (1998). Change management—A key integrative function of PM in tran-

sition economies. International Journal of Project Management, 16(1), 15-19.

https://doi.org/10.1016/S0263-7863(97)00010-0

Antill, J. M., & Woodhead, R. W. (1991). Critical path methods in construction practice.

John Wiley & Sons.

Cox, I. D., Morris, J. P., Rogerson, J. H., & Jared, G. E. (1999). A quantitative study of

post contract award design changes in construction. Construction Management

& Economics, 17(4), 427-439. https://doi.org/10.1080/014461999371358

Rahmani Mirshekarlou, B. (2012). A taxonomy for causes of changes in construc-

tion (Master's thesis, Middle East Technical University).

http://etd.lib.metu.edu.tr/upload/12614692/index.pdf

MacLeamy, P. (2004). Collaboration, integrated information and the project lifecycle in

building design, construction and operation. WP-1202, The construction users

roundtable. https://kcuc.org/wp-content/uploads/2013/11/Collaboration-Inte-

grated-Information-and-the-Project-Lifecycle.pdf

Murdock, J. W., Szykman, S., & Sriram, R. D. (1997, September). An information mod-

eling framework to support design databases and repositories. In International

Design Engineering Technical Conferences and Computers and Information in

Engineering Conference (Vol. 80463, p. V004T31A042). American Society of

Mechanical Engineers. https://doi.org/10.1115/DETC97/DFM-4373

Tammik, J., & Contributors. (2023). Revit Lookup [Software]. Version 2023.0.1.

GitHub. https://github.com/jeremytammik/RevitLookup

Ullman, J.D. (1988). Principles Of Database And Knowledge-Base Systems.

Kim, I., Lee, M., Choi, J., & Kim, G. (2016). Development of an application to generate

2D drawings in automation using open BIM technologies. Korean Journal of

Computational Design and Engineering, 21(4), 417-425.

https://doi.org/10.7315/cde.2016.417

Beach, T., Petri, I., Rezgui, Y., & Rana, O. (2017). Management of collaborative BIM

data by federating distributed BIM models. Journal of Computing in Civil Engi-

neering, 31(4), 04017009. https://doi.org/10.1061/(ASCE)CP.1943-

5487.0000657

Bibliography 87

Oh, M., Lee, J., Hong, S. W., & Jeong, Y. (2015). Integrated system for BIM-based

collaborative design. Automation in construction, 58, 196-206.

https://doi.org/10.1016/j.autcon.2015.07.015

Hiermit erkläre ich, dass ich die vorliegende Bachelor-Thesis selbstständig angefertigt

habe. Es wurden nur die in der Arbeit ausdrücklich benannten Quellen und Hilfsmittel

benutzt. Wörtlich oder sinngemäß übernommenes Gedankengut habe ich als solches

kenntlich gemacht.

Ich versichere außerdem, dass die vorliegende Arbeit noch nicht einem anderen

Prüfungsverfahren zugrunde gelegen hat.

München, 11. Oktober 2024

Lingyun Yan

Lingyun Yan

Heiglhofstr. 66

D-81377 München

lingyun.yan@tum.de

Erklärung

Lingyun Yan
Highlight

