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Abstract

Bayesian inference of hydrological model parameters is crucial for improving the accuracy
and reliability of hydrological model executions. This thesis presents the implementation
of the Markov Chain Monte Carlo (MCMC) approach to enhance the accuracy and the
efficiency of Bayesian parameter estimation, with a predominant focus on the parallel version
of the algorithms. Results regarding the accuracy and efficiency of the Bayesian inference
are analyzed through comparison metrics and displayed using detailed visualizations so
that the relationship between algorithm implementation variants and the results can be
comprehended. Besides, the relationship between the training time series for the Markov
chain Monte Carlo algorithms is also considered. By investigating these aspects of the
algorithms and the data set, more insights regarding the performance and the result of
Bayesian inference can be gained, enabling more practical and scalable applications in
hydrological modeling.
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Zusammenfassung

Das Verfahren der Bayesschen Inferenz für die Parameter der hydrologischen Modelle spielt
eine bedeutende Rolle bei der Ausführung der hydrologischen Modelle, vor allem bezüglich der
Genauigkeit und der Zuverlässigkeit. Dieses Thema wird in dieser Arbeit auseinandergesetzt,
indem man das Verfahren die Algorithmen zum Markov-Chain-Monte-Carlo-Verfahren
implementiert, vor allem mit der Eigenschaft von dem Parallelrechner, damit sich die
Genauigkeit und die Effizienz von der Bayesschen Schätzung der Parameter verbessern. Die
Ergebnisse bezüglich der Genauigkeit und der Effizienz der Bayesschen Inferenz werden
mithilfe der Vergleichsmetriken analysiert, wodurch sie ausführlich visualisiert werden,
sodass die Beziehungen zwischen den verschiedenen Implementierungsvarianten und den
Ergebnissen klar dargestellt werden können. Außerdem wird die Beziehung zwischen der Wahl
der Trainingsdatensätze in Form einer Zeitreihe und die Ergebnisse einer Bayesschen Inferenz
beobachtet. Durch die Analyse dieser Aspekte von den spezifischen Implementierungen
der Algorithmen und den Datensätzen erwirbt man Kenntnisse über die Leistung und die
Ergebnisse der Bayesschen Inferenz, sodass praktische und skalierbare Anwendung bei der
hydrologischen Modellierung angewendet werden können.
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1. Introduction

The hydrological model HBV-SASK is a computer simulation based on the complex numeric
model which is called HBV, also known as Hydrologiska Byr̊ans Vattenbalansavdelning
model. Inheriting the core idea of the HBV model which is used to analyze discharge [?], it
uses the data from Saskatchewan, Canada, as the name SASK suggests. The model has a few
parameters representing the hydrological processes specific to the Saskatchewan region [?].
The uncertainty quantification of these parameters has long been a topic for research, as the
parameters, which are important for reliable hydrological predictions, cannot be calibrated
exactly. A probabilistic calibration under uncertainty is therefore needed for the model to
better reflect local water characteristics and climatic conditions [?]. This is the focus of
this thesis, in which the primary objective is to use different approaches to calibrate the
input parameters of the hydrology model to determine the posterior distributions of these
parameters.

The calibration of these parameters requires a statistic inference method. In this thesis,
the Bayesian inference is selected to perform parameters uncertainty quantification, so that
the probability distributions of the model parameters can be estimated [?]. The Markov
Chain Monte Carlo (MCMC) method is deployed within the Bayesian framework, being
used to sample the posterior from the prior distributions of the parameters. This approach
allows for a more comprehensive understanding of the parameter uncertainties, leading to
more accurate and reliable hydrological predictions [?]. The exact process and algorithm
are discussed in the thesis in detail.

The Markov Chain Monte Carlo algorithm uses a Markov chain to perform Monte Carlo
simulation, repetitively sampling from the parameter space to approximate the posterior
distributions. By running multiple chains in parallel, the computational efficiency and
convergence rate of the sampling process can potentially be significantly improved. To
investigate this aspect, we emphasized the parallel implementation of the Markov chain
Monte Carlo algorithm. In this thesis, the following four versions of Markov chain Monte
Carlo algorithms are discussed and used:

• Metropolis-Hastings: The fundamental Metropolis-Hastings method generates the
posterior distribution by proposing a new point based on a chosen proposal distribution
and accepting or rejecting it with a probability that ensures detailed balance [?].

• Parallel Metropolis-Hastings: The parallel Metropolis-Hastings is a method that is
based on the fundamental Metropolis-Hastings algorithm, but uses multiple Markov
chains instead of one single Markov chain to run the algorithm in a parallel way to
enhance efficiency.

• General Parallel Metropolis-Hastings: The parallel Metropolis-Hastings algorithm
extends the fundamental Metropolis-Hastings method by generating multiple samples
in one iteration instead of one single sample.
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• DREAM: The Differential Evolution Adaptive Metropolis (DREAM) algorithm is an
advanced MCMC method that combines differential evolution with adaptive Metropolis
sampling to generate the posterior distribution. It deploys multiple chains in parallel
and proposes new points using the mutual information between different chains so
that the proposal distribution is adaptively updated over time [?].

The goal of implementing the four different algorithm versions is to observe the optimized
accuracy and efficiency performances of the algorithms. This is achieved by exploring
configurations of each of these algorithms are explored. For each algorithm, a set of
configurations can be tuned to have an impact on the sampling process of the algorithm.
These can be anything from the transition kernel, burn-in factors, and initial states, which
will be discussed later in detail. By tuning these configurations, results with different
accuracy and efficiency metrics are presented, allowing us to make better decisions regarding
how to use the algorithm for uncertainty quantification.
For the last part of the thesis, an overview of the selection of data for the training

purpose provided alongside the HBV-SASK model is given. A deep look into the different
characteristics and anomaly points throughout the entire time series is provided, allowing
readers to gain more insights about the provided data itself. Using different periods with
different properties for the Markov chain Monte Carlo algorithms to perform training, the
differences regarding the accuracy of the inferred result are analyzed.
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2. Introduction to Markov Chain Monte Carlo
and Bayesian Inference

In this chapter, the basic theory of Markov chain Monte Carlo algorithms will be introduced,
with an example provided alongside visualizations. Afterwards, the idea of Bayesian inference
will be explained, including the instantiation of this problem using the Markov chain Monte
Carlo algorithm.

2.1. The Idea of Markov Chain Monte Carlo

Markov chain Monte Carlo (abbr. MCMC) is an algorithm that performs sampling. General
usage of the Markov chain Monte Carlo algorithm started in the fields of chemistry, bio-
chemistry, and physics up until after 1990 when it was also adopted by the field of statistics
and scientific computing [?]. The general idea of the Markov chain Monte Carlo includes,
as its name suggests, a combination of the Monte Carlo methods and the usage of Markov
chains. The Monte Carlo methods solve numerical problems by repeatedly generating
random numbers [?], whereas the Markov chains provide this algorithm a property so that
each sample that is generated depends on the sample that is generated before [?].
The Markov chain Monte Carlo tries to sample an unknown target distribution using

a proposal distribution that completely lies above the target distribution. The selection
proposal distribution is crucial to the success of the algorithm, since it may lead to different
behaviors of convergence and acceptance probability [?]. The core of the Markov chain
Monte Carlo is the application of a Markov chain, where the Monte Carlo integration is used.
Given a distribution π(·) and its probability function f(·), a typical Monte Carlo simulation
would perform the following mathematical approximation:

E[f(X)] ≈ 1

n

n∑
i=1

f(Xi) (2.1)

where {Xi|i ∈ [1, n]} is the sample space that is drawn from the distribution π(·) [?].
Since this approximation is used on a Markov chain, each sample from the sample space is
dependent on the sample before. In Markov chain Monte Carlo, this dependence is given by
a transition kernel that is essentially a conditional distribution Pr[Xi+1|Xi] [?]. In other
words: After the last sample was generated, a distribution that takes this generated sample
as a parameter is created. The next sample is then generated based on this newly created
sample, which creates a dependence between both samples. Markov chains Monte Carlo
functions thanks to a property called ergodicity that is shared by all Markov chains. The
ergodic theorem states that the distribution of the states on the chain converges to a certain
stationary distribution regardless of the starting state, as time approaches infinity [?]. This
property could be applied in the case of Markov chain Monte Carlo as well. The starting
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2.2. The Metropolis-Hastings Algorithm

states that do not sample from the stationary distribution before the ergodic states can
be regarded as ”burn-in states” and should be discarded. Thus, the approximation of the
Monte Carlo simulation can be altered to

E[f(X)] ≈ 1

n− b

n∑
i=b+1

f(Xi) (2.2)

where b denotes the position of the last state in the burn-in phase that should be discarded [?].
The determination of the burn in phase plays an important part in terms of the sample
space accuracy and will be discussed later in this thesis in a more detailed manner.

A crucial prerequisite of the Markov chain Monte Carlo algorithm is the detailed balance
condition. The ergodicity property after the burn-in period for every Markov chain can be
mathematically defined as:

∀X,Y ∈ S. π(X) Pr[Y |X] = π(Y ) Pr[X|Y ] (2.3)

[?] where S is the set of the state of a Markov chain. From this equation, we can derive the
following property: ∫

π(X) Pr[Y |X]dX =

∫
π(Y ) Pr[X|Y ]dX = π(Xj) (2.4)

What this equation essentially points out is that if X is sampled from the stationary
distribution π(·), Y will also be from this stationary distribution [?]. This corresponds to the
idea of ergodicity and proves that using the detailed balance equation, all of the subsequent
samples will eventually connect stationary and target distribution from the very beginning.

2.2. The Metropolis-Hastings Algorithm

Metropolis-Hastings is a widely used algorithm that performs Markov chain Monte Carlo
sampling. It is extremely versatile and often used to sample multivariate distribution. It
was extensively used in the physics field, but later on also in the statistics field [?].

As mentioned before, the Markov chain Monte Carlo algorithms use a transition kernel to
create dependence between two states.
The main idea is that for each iteration, a sample is drawn from the target distribution.

For the generation of the next state, a distribution that takes the last sampled data point as
a parameter will be created so that the new sample can be drawn from the newly created
distribution [?]. An acceptance probability is then calculated using the following formula:

α(X,Y ) = min(
π(Y )q[Y |X]

π(X)q[X|Y ]
, 1) (2.5)

where q[X|Y ] denotes the proposal density from X to Y . With the proposal density
multiplied by the acceptance probability, the transition probability is derived:

Pr[X|Y ] = q(X|Y )A(Y,X) (2.6)

5



2. Introduction to Markov Chain Monte Carlo and Bayesian Inference

Due to the detailed balance equation [?]:

π(X)q(Y |X)A(X,Y ) = π(Y )q(X|Y )A(Y,X) (2.7)

Bringing the ratio of the acceptance probability to the left

A(Y,X)

A(X,Y )
=

π(Y )q[Y |X]

π(X)q[X|Y ]
:= α(X,Y ) (2.8)

As we can see, the acceptance probability of the Metropolis-Hastings algorithm is calculated
based on the ratio of the acceptance density from the old to the newly generated sample
point to the acceptance density from the newly to the old generated sample point. However,
since the probability space adds up to one, the maximum acceptance probability can not
exceed one. Therefore, a minimum condition must be added.
A special case of the Metropolis-Hastings algorithm is the Metropolis algorithm. The

Metropolis algorithm applies a symmetric distribution as the transition kernel, such as a
normal distribution [?]. Due to the symmetry, the proposal density q[Y |X] equals to q[X|Y ].
The idea is that the position of the density of the newly generated sample in the normal
distribution centering the last generated sample is at the same altitude as the density of the
last generated sample in the normal distribution centering the newly generated sample, as
the visualization in Figure 2.1 suggests.

Figure 2.1.: Metropolis-Hastings algorithm with symmetric distribution
as transition kernel

In this graph, we can see that the green point is the newly sampled point conditioned on
the distribution drawn by the last generated point. The red point denotes, on the contrary,
the last generated point conditioned on the distribution drawn by the newly generated
sample. These two points lie on the same level and share the equivalent value. Thus, the
term q[Y |X]

q[X|Y ] cancels out to 1. In this case, the acceptance probability becomes

α(X,Y ) = min(
π(Y )

π(X)
, 1) (2.9)

which is virtually the ratio of the probability density of the newly generated sample to the
probability density of the last generated sample. An illustration of this equation would be as
follows: if π(Y ) > π(X), which means that the probability density of the newly generated
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2.3. An example of the Metropolis-Hastings Algorithm

sample is greater than its of the last generated sample, π(Y )
π(X) is greater than 1 and the

acceptance of the newly generated point is guaranteed. Over time, the samples that are
generated will have greater and greater probability density, and eventually, the peak will be
reached. If π(X) > π(Y ), which means that the probability density of the newly generated

sample is less than it’s of the last generated sample, π(Y )
π(X) is greater than 1 and it is still

probable to accept the newly generated point, however a less probability that is calculated
equation [?].

2.3. An example of the Metropolis-Hastings Algorithm

In this section, an example of the Metropolis-Hastings algorithm will be given and visualized
to provide an illustrative comprehension of the different steps of the algorithm. In this
example, we want to sample an Erlang distribution from a normal distribution. We are
set to generate 100,000 samples to compare how the generated samples fit the Erlang
distribution. The Erlang distribution f(x) has a shape of 3 and a scale of 2, whereas the
normal distribution g(x) has a mean of 10 and a standard deviation of 1.

Figure 2.2.: Scaling of the proposal distribution in the Metropolis-Hastings
algorithm

As we can see from Figure 2.2, the normal distribution that is sampled does not lie above
the Erlang distribution. Therefore, we need to scale up the normal distribution. The scaled
up graph is then shown in the Figure 2.3.

7



2. Introduction to Markov Chain Monte Carlo and Bayesian Inference

Figure 2.3.: Scaling of the proposal distribution

The transition kernel is set to be a normal distribution that sets the mean as the last
generated sample and the standard deviation of 4. Since the normal distribution is symmetric,
the acceptance probability could be set to α(X,Y ) = min( π(Y )

π(X) , 1), as mentioned above.

The probability density function of the sampling distribution, π(·), is defined as follows:

π(x) =
1√

2π · σ
exp(−(x− µ)2

2σ2
) (2.10)

where µ denotes the mean and σ denotes the standard deviation of the normal distribu-
tion [?].
We select 0 as our starting point and start the iterations from there on. In the first

iteration, we acquire the random sample with the value of 1.5437347713886516. The
acceptance probability is then α(X,Y ) = min( π(Y )

π(X) , 1) = 1. In this case, since the acceptance
probability is 1, it is guaranteed that this sample is accepted. We append this sample to the
sample array and move on to the next iteration.

In the next iteration, we sample the value -1.802047900190033. The acceptance probability
is then α(X,Y ) = min( π(Y )

π(X) , 1) = 0. This means that this generated sample should by no
means be sampled and we should carry on with the last sample. In this case, we repeat our
old sample append it to the sample array, and continue.
We continue the rest of the iterations and draw a set of samples. If we plot the samples

out and compare them with the target Erlang distribution, it would look something that
the graph shown in Figure 2.4. As we can see, the samples that we generate resemble
the targeted Erlang distribution. We can conclude that Markov chain Monte Carlo works
perfectly in this specific example.
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2.4. Advantages of Markov Chain Monte Carlo Methods over Other Commonly-Used Sampling Methods

Figure 2.4.: Posterior distribution derived from the Erlang distribution as
proposal distribution

2.4. Advantages of Markov Chain Monte Carlo Methods over
Other Commonly-Used Sampling Methods

Markov chain Monte Carlo methods differ from other popular sampling methods and have
specific advantages over them. In this section, the rejection sampling and the importance
sampling are discussed and are compared to Markov chain Monte Carlo sampling.
Rejection sampling, also known as acceptance-rejection sampling, is a sampling method

that generates samples that are independent from one another. Instead of generating the
next sample from a newly created distribution that takes the last generated sample as input,
the samples are generated from a sampling distribution that lies above the target distribution.
The acceptance probability is than the ratio of the density of the target distribution over
the sampling distribution [?]. However, if the target distribution is complicated, especially
in multivariate cases, the ratio might be very low, causing the acceptance probability to be
low as well, which leads to inefficiency. By creating a dependency between samples, Markov
chain Monte Carlo methods avoid this inefficiency [?].
Importance sampling is a sampling method that is based on the calculation of weights.

A typical implementation includes the generation of samples, calculating the weights of all
of these samples, and calculating the expected value by summing them up together by the
weights [?]. The process of importance sampling is rather easy to implement. However, a
disadvantage is that the samples that have higher weights dominate the calculation of the
expected value, which essentially reduces the sample space since the samples that have lower
weights play almost no role in the calculation. Markov chain Monte Carlo methods, on the
other hand, eventually samples from the stationary distribution after the burn-in period,
resulting in consistency of the sampling [?].

2.5. The Idea of Parallel Implementation of Markov Chain Monte
Carlo

The objective of this thesis is to implement parallel versions of Markov chain Monte Carlo
algorithms for the Bayesian inverse problem. Therefore, paralleling Markov chain Monte

9



2. Introduction to Markov Chain Monte Carlo and Bayesian Inference

Carlo is a significant part of the thesis. The base idea is that instead of one single chain,
several chains are run simultaneously [?]. Since after the burn-in period, every single state
from each chain samples from the stationary distribution due to the ergodic property of the
Markov chains [?], all of the samples from different chains could be merged to present the
target stationary distribution. However, other variations involve generating multiple points
at the same time conditioned on the last generated sample and then evaluating the forward
model [?]. Since this chapter only provides an overview of the Markov chain Monte Carlo
algorithm, a following chapter that is specifically dedicated to the parallel of the algorithm
will be given.

2.6. Introduction to Bayesian Inference

The Bayesian inference problem is a method of statistical inference that is used to calculate
the probability estimate based on evidence and the likelihood of the set of parameters [?].
Given a prior distribution that provides information on the preexisting data, the Bayesian
inference problem uses the Bayes theorem to update the prior distribution using a likelihood
function and derives the actual possibility.
Given the Bayes theorem [?]:

Pr[B|A] =
Pr[B] · Pr[A|B]

Pr[A]
(2.11)

where A and B are two different incidents. This equation can than be formed into

Pr[B|A] =
Pr[B] · Pr[A|B]∫
Pr[B] · Pr[A|B]dB

(2.12)

Pr[A|B] is called the likelihood function, which is generated by a set of data to interpret
how likely a particular set of observations is [?]. The Pr[B] is called prior, since this is the
preexisting knowledge that is given [?]. The denominator of the equation is called evidence,
which is a constant that depicts the probability of observing the data across all values of the
model parameters [?]. The result of the above equation is the posterior, which is the object
of the Bayesian inference problem [?].
The different implementations of the Bayesian inference problem are versatile and vary

from one another. In this thesis, we implement the Bayesian inference problem using the
Metropolis-Hastings algorithm with a normal distribution transition kernel. The idea is that
we calculate the acceptance probability based on the posterior calculation. For revision,
the acceptance probability of the Metropolis-Hastings algorithm with a normal distribution
transition kernel is given by [?]:

α(X,Y ) = min(
π(Y )

π(X)
, 1) (2.13)

Replacing π(·) with the posterior distribution, we derive:

α(X,Y ) = min(
Pr[Y ] Pr[X|Y ]

Pr[X] Pr[Y |X]
, 1) (2.14)
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In plain language: The acceptance probability is calculated by the ratio of the prior and
likelihood of the newly proposed point over the prior and likelihood of the last generated
point. Since the evidence is a constant, they cancel each other out and will therefore not be
taken into account.

Different variants of implementations are used throughout this thesis to perform Bayesian
inference of the hydrological model. They will be discussed in later chapters. For now, we
will take a look at the hydrological model.
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3. The Use Case of Bayesian Inference in
Hydrological Model

In this chapter, we focus on the hydrological model that is used in this thesis. An overview
will be given, followed by the explanations of hyperparameters. In the last section, the
dataset used in this thesis is observed and visualized to provide a practical understanding
for the hydrological model.

3.1. Overview of the Hydrological Model

The HBV-SASK conceptual model is a renowned mathematical model that is commonly
used in the field of hydrology. HBV is a model that describes the subroutines for snow
accumulation and melts, for soil moisture accounting and river routing [?]. SASK stands for
the province of Saskatchewan, the province in Canada in which the model is developed. The
creation of the HBV-SASK model is therefore based on the HBV model but involves local
data calibration and integration with local water management needs [?].

The HBV-SASK model has twelve different hyperparameters, of which seven are relevant
to this thesis [?]. These include [?]:

• TT: Ranges from -4 to 4. It stands for the air temperature threshold in °C for
melting/freezing and separating rain and snow.

• C0: Ranges from 0 to 10. It describes the base melt factor in mm/°C per day.

• β (beta): Ranges from 0 to 3. It depicts the shape parameter (exponent) for the soil
release equation.

• ETF: Ranges from 0 to 1. It describes the temperature anomaly correction in 1/°C of
potential evapotranspiration.

• FC: Ranges from 50 to 500. It depicts the field capacity of soil in mm.

• FRAC: Ranges from 0.1 to 0.9. It stands for the fraction of soil release entering the
fast reservoir.

• K2: The slow reservoir coefficient ranges from 0 to 0.05, which determines what
proportion of the storage is released per day.

To run this model, these hyperparameters need to be determined. Since the only prior
information given is the lowest and the highest bound of each hyperparameter, uncertainty
quantification of these hyperparameters is, therefore, necessary to gain posterior information.
Apart from these hyperparameters, the starting and the end date of the period that is used
for uncertainty quantification are also required to be specified [?]. However, the very first
phase at the start is used for the spin-up phase, in which the model runs for some time
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using historical data. This phase stabilizes internal model states such as soil moisture and
groundwater levels, which are important for accurate simulation [?].

3.2. Overview of the Data Set

There are two existing data sets to the hydrological model, which are respectively called
Oldman Basin and Banff Basin, since they are each measured at the Oldman River and in
the town of Banff in Alberta, Canada [?]. The value that is measured is called streamflow.
It describes the movement of water within a river or stream channel and is the combined
result of all climatological and geographical factors that operate in a drainage basin [?].
Both of these data sets are presented in the format of a time series, in which the value of
each measurement is collected against the dates over a long period. The Oldman basin data
set is available from 1979 to 2008, whereas the Banff basin data set is available from 1950 to
2011 [?].

Since the data is presented in a format of time series, a time series decomposition is
required to present more information on trends, and seasonal and regression effects [?].
After the decomposition, the trend, seasonal, and residue of the dataset over the whole
period can be observed. For the time series decomposition in this section, the function
TSA.seasonal.seasonal decompose from the python framework stats models is used [?].

First, we take a look at the result of the decomposition of the Oldman basin data set.
It is shown in Figure 3.1. The seasonal component of this time series is regular over the
years. However, there were significant peaks around the early 1980s, mid-1990s, and around
2005. The streamflow in these periods is higher than anytime else, which indicates that
there might be possible heavy rainfalls, floods [?], or even ecologic disasters. Anomalies in
this period can be also found in the residue component, which confirms that there might be
odd behaviors happening in these periods. Therefore, quantifying the uncertainty of these
three periods would be a challenging task.
We then take a look at the result of the decomposition of the Banff basin data set. It

is shown in Figure 3.2. Similar to the case of Oldman Basin, it shows a regular seasonal
component. The trend, on the other hand, fluctuates across the entire measured period
but does not show a general upward or downward direction. This means, that the whole
measurement is indeed relatively stable. However, the fluctuation might still impose an
influence on the accuracy and stability of uncertainty quantification. The residuals of
the Banff basin data set are much more varied than the Oldman basin data set. There
are obvious clusters of high activity and anomalies, which confirms that the uncertainty
quantification of this data set might be a hard task to deal with.

3.3. Task of This Thesis

Since the task of this thesis is to caliber the input algorithm parameters of the hydrology
model, the ultimate goal is to acquire the posterior of the parameters. The main idea in
this use case is that we infer the posterior probability of each parameter using Markov
chain Monte Carlo. The exact process goes as follows: First, a model is created with
the configuration of the period and target distributions being given. Then, we select an
appropriate Markov chain Monte Carlo algorithm and perform sampling to solve the Bayesian
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Figure 3.1.: Time series decomposition of the Oldman dataset

Figure 3.2.: Time series decomposition of the Banff dataset
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inference. In this process, the output of each generated set of parameter arrays will be
calculated by the model. The output will be later compared to the measured data points,
which will provide the algorithm with an acceptance probability. In each iteration, the
algorithm decides whether to accept or reject this sample. After all these iterations, the
posterior probability is obtained and is prepared to be used on a testing data. Last but not
least, we compare the projected results that are calculated by the model to the measured
result. Since the posterior probability that is obtained is denoted in the form of a list of
sampled data, we can use the Monte Carlo simulation to generate a certain amount of
samples, pass them into the model and acquire the result. Then, we can either calculate the
mean of the results or sample the maximum of the result to compare them with the actual
data.

In order to operate the training and the testing data periods are needed to be determined
and extracted. For the Oldman Basin, the trend of the data from 1990 until 2000 remains
constantly fluctuated within a specific upper bound and a specific lower bound, which
indicates the stability of the record. Therefore, the posterior is inferred by the time period
of the entire 90s. An additional ten years beforehand, which is equivalent to the time period
on which the posterior is trained, is used for the spin up phase. The time period after 2000
is then used as the testing phase. Since there are some anomalies around 2005, any time
period that includes the year 2005 would be an excellent time period for testing. For the
Banff Basin data set, the recorded data is kept constant after the year 1970 and the year
1990. However, in order to use the data in the 2000s for testing purpose, the data before
1990s does not play such an important role. Therefore, we use the data in the time period
of the 1990s for training purpose, whereas the 10 years beforehand are used for the spin up
phase. The entire time period after the 2000s would be excellent for testing purpose, since
anomalies and extreme values can be found throughout the entire sequence.
To test the generalized application of the algorithm, we select three challenging yet

representative periods for testing, with one being long (5 years), another being medium
long (around 2 years) and the other being short (1 year). Due to the constant fluctuation
of the Banff basin data set, we could select a long period within it to perform uncertainty
quantification. Since the residue in the early 1970s seems to show extreme anomalies, we
select 1970 to 1974. The other two periods are both picked from the Oldman Basin data set.
The period from 1994 to 1996 is chosen, since there are apparent anomalies of the residue in
this period. Another period is the year 2005, since there are also anomalies being showcased
in this year.
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In the next four chapters, four different algorithms of Markov chain Monte Carlo are discussed
in this thesis. Different setups are going to be tested for different algorithms so that the
gathered results can be analyzed. However, certain common aspects are shared among the
background and analysis of all these four algorithms. These are detailed in this chapter.

4.1. Hardware Specification and Required Frameworks

All of the code that is run and tested in this thesis is run on a single computation machine,
namely the MacBook Pro 2021 by Apple Inc. It has an Apple M1 Pro chip, which has an
ARM architecture. It has 10 CPU cores, 8 of which are for performance and the rest are for
efficiency. It has a RAM of 32 GB and also 16 GPUs available1. The entire code is run on
macOS Sonama 14.4.1.

The software implementation of the fundamental Metropolis-Hastings algorithm is rather
basic. Since the sample space is multivariate, the calculation involves operation between
vectors. To ease the process of these calculations, the popular software package of Numpy
is used [?]. Additionally, the Tensorflow Probability package is used. It does not only
offer implemented probability distribution functions, but also randomness and sampling
functions [?]. To use the Tensorflow Probability framework, the software package Tensorflow
is required to be installed2. For the visualization part, standard data visualization libraries
including Matplotlib and Seaborn are used for the creation of histograms, kernel density
estimation, and boxplots [?].

4.2. Evaluation Metrics

To determine which configuration of the algorithm delivers better results, evaluation metrics
need to be set up. All of the algorithms run in this thesis are evaluated in accuracy and
efficiency. The accuracy measures how closely the outcome of the algorithm aligns with the
actual measured data, whereas the efficiency keeps track of the run time of each algorithm
run.
To quantify the accuracy, we need to introduce metrics that can calculate the accuracy

of the Bayesian inference results. First, we calculate the mean of the absolute difference
between the calculated time series run by the model and the measured time series. By
calculating the absolute difference, the similarity of the times series could be well quantified.
Afterward, two metrics that are used to test the goodness of fit are calculated, namely root
mean square error (RMSE) and mean absolute error (MAE). The RMSE is a metric that is

1https://support.apple.com/en-us/111902
2https://www.tensorflow.org/probability
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often used to evaluate the model performance in climate research studies and ecology. The
calculation is as follows:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.1)

The square root in RMSE plays an important role. On the one hand, RMSE penalizes
larger discrepancies more severely by squaring the errors [?]. Moreover, it helps to stabilize
the variance of the error terms, making it particularly useful in the use case of this thesis,
since the usage of standard deviation and variances are present in the implementation [?].

The MAE is another widely used metric for model performance evaluation [?].

MAE =
1

n

n∑
i=1

|yi − ŷi| (4.2)

Calculating the average of absolute errors means that it is easier to understand and
interpret the calculation directly. Besides, due to the less impact of anomalies on the
metric [?], MAE can offer a more robust estimate in contexts when extreme values are
expected to be anomalies.
The whole process of evaluation of the results is going to look like this. To collect this

result, we first randomly generate 1000 samples from the given posterior using the Monte
Carlo simulation [?] and take the mean. The results of the calculation are saved as ”posterior
mean”. Calculating the mean value, which generalizes the entire results, would allow us to
observe the actual accuracy of the result since every single individual time series contributes
to the calculation process. Next, the maximum value of each timestamp is also found, so
that we can observe how extreme the posterior samples could be. The result is then saved as
”posterior max”, which would indicate how stable the sampling process is. If the posterior
max does not differ much from the posterior mean, then the entire sampling space is stable.
Otherwise, the individual samples vary too much from each other, causing destabilization.
These two time series are then compared to the ”prior mean” time series, which is the mean
of all the calculated time series of the model that takes samples from prior as input, to
observe how much the prior distribution influences the result. After calculating all of the
above, a visualization is going to be done so that these results can be compared to each
other.
For simplicity, we only use the Oldman Basin dataset for the algorithm to perform

sampling. For the exploration phase, the model will be run and evaluated on the same
training dataset, so that we can observe how well the trained posterior fits the data on
which it is trained. For the actual evaluation, the model will be run on the training dataset,
whereas the accuracy score will be evaluated from a testing data set. The year 2005 of
the Oldman Basin dataset is selected, not only because the data is recent enough, but also
because the data contain both calm periods and anomalies.
Apart from the accuracy test, efficiency also plays an important role in the MCMC

algorithms [?]. To test the efficiency, the run times of different implementations are going to
be recorded, so that a comparison can be done later and we can infer which factors have
impacts on the computation time.
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4.3. Visualization

Visualizations directly improve our understanding of the results and play an indispensable
role in this thesis, where different plotting mechanisms are applied. In this section, all of
the plots that are used in this thesis are described.

For the use case of the Bayesian inference problem, two types of visualizations are necessary.
First, we need to know how the individual parameter distributes in the posterior probability.
The result of the Metropolis-Hastings is a multidimensional list of values, representing the
calculated posterior. For each parameter, a separate histogram is generated. Alongside
the histogram is the Kernel Density Estimation (KDE) graph. It is used to estimate the
probability density function of a random variable based on a data sample by averaging
contributions from specific kernel functions that are centered at each data point [?]. By
combining the histogram and the KDE graph, an overview of the general distribution of the
posterior can be understood.
However, if the histogram and the KDE plot resemble the prior distribution, little or no

useful information can be retrieved. Therefore, we can visualize the data using boxplots to
get specific information on the distributions of the posterior of each parameter. The data we
can read from the boxplot are the locations of different samples so that we can know how
many samples are located under the first quantile, above the third quantile, or the median.
It provides us with an easier understanding by explaining the locations of all of the samples
in the posterior distribution.
At the very end of the parameters visualization, the calculated results are going to be

compared. The four times series including posterior mean, posterior max, prior mean and
measured data, which are mentioned before, are going to be plotted on the same graph so
that the results can be visually compared.
The other type of visualization is presented during the exploration phase of the input

algorithm parameters. The charts present the relations between the input algorithm
parameter configurations and the metrics results. If the configuration is the form of numeric
values, the line plot is drawn, so that a possible existing trend could be detected. If the
configuration contains categorical values, then a bar chart is drawn instead. By plotting the
metrics against the configuration, a clear comparison of the results calculated by different
sets of input algorithm parameters is provided.
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In this chapter, a basic version of Metropolis-Hastings is implemented. Complications
including the parallel aspect, more complicated algorithms, and further enhancement are
not considered in this chapter. A general idea of the implementation is explained, with
specific sections contributing to possible issues with the general algorithm and the choice of
the likelihood function.

5.1. Basic Metropolis-Hastings and Evaluation Metrics

First of all, we take a look at the basic implementation of the Metropolis-Hastings algorithm.
This implementation applies the idea of the algorithm mentioned in the chapter above. It
takes the following required input algorithm parameters: the proposal distribution that
data points are sampled from, the sampling kernel for transition, the likelihood kernel for
calculation of the likelihood and acceptance probability, the initial state where the algorithm
starts, and the number of iterations. Since the prior distributions of the parameters that are
going to be calibrated are uniformly distributed, the boundaries need to be given as input
algorithm parameters, so that the algorithm can examine whether the generated samples
are out of bounds, which should be correctly handled. The sampling kernel that is used
throughout this thesis is the Gaussian normal distribution since it provides symmetry and
simplicity [?]. The concrete algorithm is listed below.

19



5. Fundamental Implementation

Algorithm 1: Basic Metropolis-Hastings Algorithm

Input: proposal distribution function, sampling kernel function, likelihood
kernel function, initial state, number of iterations

Output: list of sampled data points

1 Function MH(proposal dist, sampl kernel, likel kernel, init state, iterations):
// Initialize the samples list with the initial state

2 samples ← [init state]
3 for i ← 1 to iterations do

// Generate a new sample from the sampling kernel

4 old ← samples[i-1]
5 new ← sampl kernel(old)

// Calculate the acceptance probability

6 acceptance ratio ← proposal dist(new)
·likel kernel(new)proposal dist(old)·likel kernel(old)

7 acceptance probability ← min(1, acceptance ratio)
// Decide to accept or reject the new sample

8 if random() ≤ acceptance probability then
9 samples.append(new)

10 else
11 samples.append(old)

12 return samples
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There are two required kernels for the input algorithm parameters, namely the sampling
kernel and the likelihood kernel. The sampling kernel, as mentioned above, acts like the
transition of the Markov chain between two consecutive samples. It plays a critical role in
the performance and results of a Markov chain Monte Carlo simulation [?]. Due to the ease
and efficiency of calculation that is discussed above, symmetric distribution, notably normal
distribution, is used in this thesis [?]. However, the shape of the kernel is left unknown and
is to be determined by the standard deviation [?]. The choice of the standard deviation is
crucial. If the standard deviation is too wide, the generated samples will keep getting out of
bounds. If the standard deviation is too narrow, it will take too long time to explore the
whole distribution range, because it is more likely that the new sample generated is near the
mean.
The likelihood kernel also plays a crucial role in the Markov chain Monte Carlo. It

measures the probability of observing the data given the set of the generated parameters
under the model [?]. In this thesis, the likelihood function for the kernel is implemented as a
normal distribution probability function due to the Central Limit Theorem, which suggests
that the mean of a large amount of independent random variables will be approximately
normally distributed regardless of the underlying distribution [?]. In other words, the normal
distribution describes the noise of the data points around the mean, which is the sampled
value. The likelihood function of the Gaussian normal distribution is given by the product
of all of the probability densities of each point [?]:

L(µ, σ2;x1, ..., xn) =
n∏

j=1

1√
2πσ

e−
(xj−µ)2

2σ2 (5.1)

Given that the calculation process is numerically hard to solve, the log-likelihood function
is commonly used [?]. The log-likelihood function of the Gaussian normal distribution is
given by [?]:

log[L(µ, σ2;x1, ..., xn)] = −
n

2
ln(2πσ2)− 1

2σ2

n∑
j=1

(xj − µ)2 (5.2)

Both of these above equations are implemented as help functions in this thesis for easier
further applications. However, an easier way of implementation is to use a probability
modeling framework to create a multivariate normal distribution centered around the given
value, calculate the likelihood for each pair of points, and sum them up together. This version
is also implemented using the TensorFlow probability library and is mainly used throughout
this thesis. The only unknown thing is the standard deviation of the distribution. Similar
to the sampling distribution, the standard deviation is a left-to-be-determined variable
that describes the shape of the distribution. In the context of the likelihood function, the
standard deviation implies how concentrated the data are expected to be around the mean
value [?]. A smaller standard deviation suggests that the data points are expected to cluster
tightly around the mean and have less tolerance, whereas a larger standard deviation implies
a broader spread of data points and more tolerance.

Using the above-listed algorithm, we can perform Bayesian inference on the HBV-SASK
model. A problem to consider here is the acceptance probability calculation. The joint
probability of a seven-dimensional uniformly distributed parameter space is the product of
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all of the probabilities of each dimension, making the joint probability density to always be
a tiny number. In this case, the sample generated are likely to be rejected in every iteration,
which causes a acceptance probability that is closed to zero and does not allow the algorithm
to explore the entire parameter space. Therefore, an alternative way of calculating the
acceptance probability is needed.

One way of implementing an alternative is to take the mean of the probability distributions
across all dimensions as the final acceptance probability. For one, individual acceptance
probabilities can vary widely while handling the joint distribution. Averaging these rates
can give a more stable estimate of the overall acceptance behavior, making sure that the
acceptance probability is appropriate and meaningful. For another, equal contribution to the
proportional rate of each dimension is ensured, thus allowing the acceptance probability to
represent the generality of each dimension. Another option would be taking the maximum
value instead of the mean from the acceptance probabilities of each dimension, which ensures
that at least one dimension is being adequately sampled. Through the maximum selection
of the acceptance probability, sufficient attention to dimensions that are harder to sample
than others is also paid, so that the sampling efficiency would be higher than other ways of
implementation. Both variants of implementation are discussed later on in detail.

Another thing that needs to be done is to select meaningful values or instances to be input
algorithm parameters. In the following sections, we are going to discuss the choices of input
algorithm parameters based on two methods. First, the input algorithm parameters are
going to be selected using existing knowledge. Afterward, the input algorithm parameters
are going to be explored, in which models with different input values are going to be run
multiple times. Afterward, the accuracy tests that are mentioned above are going to be
carried out, so that an overview of the relation between different input algorithm parameters
and the accuracy and efficiency result can be visualized. An overview of which set of input
algorithm parameters delivers the best overall accuracy and efficiency is also going to be
shown later on. To test how well the posterior fits the data on which it is trained, the
evaluation part is going to be carried on the training data as well. In the end, the sets of
input algorithm parameters from both methods are going to be used for another run of the
algorithm, so that the results of the Bayesian inference problems can be compared with each
other. The evaluation, however, is going to be carried on on the testing data, so that we can
observe how well the posterior would perform in actual cases.

5.2. Knowledge-Based Input Algorithm Parameter Selection

Before exploring the model’s input algorithm parameters, we can determine the input
algorithm parameters by logic previous knowledge, and logical thinking. In this section, the
Bayesian inference problem will be directly executed, as well as the visualization part. First,
all different input algorithm parameters are going to be individually discussed.
The proposal distribution is, for the use case of the hydrological data set, relatively

straightforward. Since there is no further information regarding the shape and look of the
distribution other than the upper and the lower bound, a multivariate uniform distribution
that ranges from the lower and the upper bound could be modeled and used as the proposal
distribution.

The determination of the standard deviation of the sampling kernel is crucial to the result
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of the algorithm. Since the standard deviation should generally not be a bigger value than
1
4 of the range [?], we start to find a maximum value of the factor going down from there
so that the transition kernel of the algorithm does not go out of bounds too often, which
causes numerical errors. After several test runs of the model, we found out that the first
appropriate sampling kernel is a normal distribution with the standard deviation set as 1

6 of
the range, since it is neither too wide nor too narrow, which allows the algorithm to run
smoothly and effectively reduce the amount of sampling out of bounds. This value is thus
set as the default standard deviation.
The default standard deviation value is set to 1. The intention of setting the standard

deviation to a relatively low value is to expect better precision. Since normal distributions
with narrow standard deviations give out lower probabilities if the value is away from the
mean, the samples that are far away from the mean will receive more penalties, if the
standard deviation is set low. This results in a lower likelihood value, which might lead to a
lower acceptance probability.

For the rest of the attributes: The initial state does not affect the accuracy of the result [?].
Therefore, it is set as a random set of values within the uniform distribution for now. To
increase the random effect, we generate 1000 random samples and take the mean as the
random result. Optimization for efficiency is going to be performed later in this thesis. For
now, we simulate the Bayesian inference problem using Markov chain Monte Carlo for 10.000
iterations. As suggested, 20 percent of the data are discarded due to the burn-in phase [?].
We execute the algorithm with the above-suggested input algorithm parameters. The

execution was successful and produced decent results. Several graphs are produced to
provide a great visualization of the result.

First, we take a look into the posterior distribution of individual parameters. The graph
is shown in Figure 5.1. As we can see from the histogram and the KDE plot, the calculated
posterior does not resemble specific distributions. They share a similarity, that is the
probability of samples near the boundaries are relatively lower than the samples near the
center. All of these parameters also have several peak values, which are sampled in the
posterior distribution more than other values. All of the values are relatively widespread
and evenly distributed.
Since little information is gathered from the above plot, we can visualize the data using

boxplots to get specific information on the distributions of the posterior of each parameter.
As we can see from the boxplots that are shown in Figure 5.2, the boundaries of the posterior
distributions are retained. They share the same boundaries as the prior distribution. However,
the first and third quantile as well as the median of the posterior distribution. This gives
us a general idea of how the posterior would look like. For further application of Markov
chain Monte Carlo algorithms, the starting values could potentially be altered based on this
information to improve efficiency. This aspect will be discussed later in this chapter.
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Figure 5.1.: Overview of the posterior distribution of the parameters cali-
brated by the default Metropolis-Hastings algorithm

Figure 5.2.: Boxplots of the generated posterior samples of each parameter
calibrated by the default Metropolis-Hastings algorithm

After analyzing the parameters individually and as a group, the result that is computed
by the posterior of the Bayesian inference is revealed in Figure 5.3 and compared to the
observed data. The calculated result resembles the actual measured data, particularly the
posterior mean. It reaches its peak in the same period as the measured data, whereas it
shows stable behavior for the rest of the time, just like the the measured data. The posterior
max shows slightly more extreme behaviors at certain points. Both of the posterior time
series show significant improvement based on the prior mean.
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Figure 5.3.: Comparison of Bayesian inference results of the default
Metropolis-Hastings

After visualizing the parameters, we take a look at the accuracy of the data. For this part,
the RMSEs and MAEs are calculated. The RMSE of the posterior mean is 22.14475485613421
and the MAE of the posterior mean is 11.399487080387862. From the graph, we can see
that a significant difference in the results is shown around the peak, which might contribute
to the relatively high MAE and a decent value of RMSE. The RMSE of the posterior max
is 26.72454579307846 and the MAE of the posterior max is 13.196081237340492. They do
not show too many differences from the posterior means, which means that the posterior
distribution is relatively stable.
These values will be later compared to the results after the input algorithm parameters

exploration. In the following sections, we are going to explore specific parameters of the
Metropolis-Hastings algorithm to achieve maximum accuracy. Besides, the efficiency will also
be taken into account, where the run time of the algorithm will be observed and compared.

5.3. Input Algorithm Parameters Exploration

After finding the appropriate values by knowledge-based selection, all of the input algorithm
parameters will be explored in this section. By trying out different reasonable values as
input and interpreting the accuracy and efficiency results, we might be able to figure out
a specific relation between the different input values against the accuracy or the efficiency
score. Later on, the algorithm will be run using the set of input algorithm parameters which
delivers the best performance by accuracy and efficiency metrics and be compared with the
input algorithm parameters by knowledge-based selection on the testing data.

5.3.1. Sampling Out of Bounds

While executing this algorithm for the hydrological model, however, there is a certain issue.
Since no specific information regarding the distribution is given, we are required to use
the uniform distribution to describe the parameters that need to be calibrated. Since the
uniform distribution ranges from a certain lower bound to a certain upper bound, it does not
have an unlimited range. In this case, there is a possibility that the newly generated samples
are out of bounds, which is not helpful for the calibration. For example, if a generated point,
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which is accepted, is out of bounds, the p variable in the algorithm will be set to 0, which
causes invalid values like negative infinity to occur in the calculation while using logarithm
likelihood functions. If these values are sampled and carried on, values that are further from
the bounds may be going to be sampled, which leads to mistakes in the result. Therefore,
measures need to be taken to avoid these errors from happening. Three implementation
variants against this issue have come up. These are ignoring, boundary aggregation, and
reflecting boundary.

The ignoring method is the default method and the most straightforward: Any points that
are generated outside of the bound are going to be eliminated. It is extremely important to
mention that instead of taking another sample from the iteration, the last generated sample
needs to be carried on. Since the sample out of bounds is supposed to be an impossible
case, the acceptance probability in that point needs to be treated as 0, which means that
this point is directly rejected. For multivariate distribution, a set of data points needs to
be rejected entirely at once if one single data point is out of bounds since the acceptance
probability otherwise would be different. Otherwise, the detailed balanced condition could
be violated, as the transition probabilities would not be symmetric anymore for every single
parameter.
The boundary aggregation method is different in treating the out-of-bounds samples, in

which it transforms the sampled data that are out of bounds. We simply sample the upper
bound or the lower bound and carry on from there. If a new sample is generated based on
the normal distribution that is centered around the out-of-bounds sample, there is less or
equal to fifty percent chance that the newly generated point is inside the range [?]. The
main benefit of this method is that there is still a minimum of fifty percent chance that the
next sample is kept inside the bound in cases where the samples are out of bounds. For
multivariate distribution, a single data point in each dimension can be handled individually,
however, the acceptance probability needs to be calculated based on the transformed sample
points.
The posterior that is derived from the boundary aggregation method is shown in Figure

5.4. A few samples are getting aggregated on both sides of the boundaries. If we ignore
these two bars on both sides, the distributions of the rest of the samples of each parameter
still resemble uniform distributions, which does not provide a lot of information regarding
the actual distribution of the parameter.
The boxplot of these samples is shown in the Figure 5.5. An obvious takeaway from

this chart is that all of the boxplots have a lower first quantile and a higher third quantile,
whereas the median is retained almost at the same place. The disposition of both of these
quantiles is the result of the aggregation of samples on both sides of the boundaries.
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Figure 5.4.: Overview of the posterior distribution of the parameters cal-
ibrated by the Metropolis-Hastings algorithm that samples
the bound value if the sample is out of bounds

Figure 5.5.: Boxplots of the generated posterior samples of each parameter
calibrated by the Metropolis-Hastings algorithm that samples
the bound value if the sample is out of bounds

The reflect boundary method also transforms the data instead of ignoring it but in a
different way than the aggregation method. Due to the symmetry of the transition kernel,
the possibility of sampling an out-of-bounds sample is the same as the possibility of sampling
the point symmetric over the mean of the Gaussian normal transition kernel [?]. In this
case, the acceptance probability of the transformed sample point is not changed, which has
no interference with the algorithm itself and future samples. For multivariate distribution,
a single data point in each dimension can be handled individually and the acceptance
probability does not need to be recalculated due to the symmetry of the transition kernel
distribution.
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We now take a look at the posterior distribution of the samples. It is shown in Figure
5.6. From the graph, we can see that the posterior distributions sampled from this version
of Metropolis-Hastings look very much different from the others. All of these posterior
distributions resemble normal distributions, with one peak somewhere in the middle. For
some parameters like C0, beta, ETF, and TT, the boundary is shifted, which means that no
samples from the region near the boundaries are generated. Since all of the samples that are
out of bounds are reflected, the reflected samples compensate the holes of the non-reflected
samples, so that it gives rise to a normal distribution like posterior.

Figure 5.6.: Overview of the posterior distribution of the parameters cali-
brated by the Metropolis-Hastings algorithm that reflect the
samples into the inside of the range if the they are out of
bounds

The boxplots of the parameters are shown in Figure 5.7. Due to the normal distribution
like posterior, all of the boxplots shrink by a certain amount, with some having lower upper
bounds or upper lower bounds. This is an apparent result, since the shape of the normal
distribution focuses on the mean, whereas the sampling probabilities of samples that are
further from the mean are lower. This property can be presented by the boxplots.
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Figure 5.7.: Boxplots of the parameters calibrated by the Metropolis-
Hastings algorithm that reflect the samples into the inside of
the range if the they are out of bounds

To find out which of these three variants delivers the best result, each of these three
versions is separately executed, while all of the rest input algorithm parameters are set to
the same value or instance. The different metrics that are mentioned in the section above
are then calculated and visualized using a bar chart so that the values can be compared.
The result is shown in Figure 5.8. The first impression of the bar chart is that the accuracy
of the actual inferred results is pretty similar among all three versions, with the ignoring and
the aggregate methods performing only slightly better. For efficiency, however, the ignoring
performs better than both of the other methods by a huge margin. The reason behind
it is obvious: the ignoring operation is way more efficient than the reflecting boundary
and aggregation, which involves mathematical operations. Therefore, the default ignoring
method is the clear winner here and should be retained for further model executions.

Figure 5.8.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the technique of handling sam-
ples generated out of bounds
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5.3.2. Sampling Kernel

The sampling kernel plays a crucial role in the accuracy and efficiency of the performance.
Since we stick to the normal distribution in this thesis, the standard deviation is the only
value that needs to be explored. As suggested in the above section of 5.2, the default value
of the standard deviation is set to 6 because it is the largest possible number that fits in
the use case of the hydrology model. However, the final result would also be different if the
standard deviation is less than the optimal one. In this case, the movement of the samples
is going to be relatively centered local, since the points in the vicinity of the mean are more
likely to be sampled. To test multiple scenarios and their behaviors, three values for the
standard deviation are going to be tested in the following execution: the range interval over
8, over 10, over 12, over 18, and over 24.

Figure 5.9.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the sampling kernel standard
deviation

The result shows a certain level of dependency between the accuracy metric and the
input values. For both accuracy metrics, the accuracy scores the input value do not differ
that much from each other, which indicates that the sampling kernel factor is irrelevant for
the accuracy result. For the computation time, on the other hand, there is an exponential
relationship between the run time and the sampling kernel value, with an exception of the
test case 10 as anomaly. In conclusion, a lower value such as 6 for the sampling kernel factor
would be optimal due to the efficiency of the algorithm.

5.3.3. Likelihood Functions

At the start of the chapter, we have already discussed the importance of the role played by
standard deviations in the likelihood functions. As mentioned before, 1 is selected for the
default value. However, the choice of the standard deviation does impact the final result,
since it exerts an influence on the sampling probability of the values based on their distance
from the mean. If the standard deviation is set lower, the sample that is away from the mean
will receive less probability. If the standard deviation is set higher, that sample will not
receive that little probability, which allows more tolerance to be present in the calculation.
However, the value cannot be too large, otherwise, the tolerance level will be too high for the
likelihood function to give out a meaningful solution. Thus, for the test values, we go from 1
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down to 8, which is an interval of values that still might generate meaningful calculations.
The selected values for testing are 1, 3, 5 and 8.

As we can derive from Figure 5.10, the metrics for the mean also do not differ that much
from each other. In this case, the conclusion could be drawn that the standard deviation does
not have a huge impact on the actual inferred result. For the inferred maximum time series,
the discrepancy is also not obvious, even though the test case 5 shows the most instability
throughout the posterior. Nevertheless, using the test case 5 results in the most efficient
calculation, whereas using the test cases 1 and 2 will require slightly more computation time.

Figure 5.10.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the likelihood function stan-
dard deviation

The above-computed likelihood function takes in a value as the standard deviation so that
each sample is independently observed from another. Another alternative implementation to
the dependent likelihood function would be the dependent likelihood function, which takes in
the observed data as the standard deviation. This technique is common in the hydrological
field [?], which uses the observed data as the standard deviation for a better understanding
of the relationship between the inferred and observed data, therefore a precise likelihood
calculation. Since the observed data might be too large for the likelihood function to deliver
meaningful results, an alternative way is to take a certain factor of the observed data as
input. Here, several factors are going to be tested, including 0.2, 0.4, 0.6 and 0.8. The goal
is to observe the correlation between the accuracy and the value as it increases.
The result is shown in Figure 5.11, where we see a pattern: the accuracy of the inferred

data decreases as the factor increases. As for the computation time, the case of 0.6 requires
the most time to perform computation, and is, however, still pretty similar to the rest.
Therefore, the case 0.2 should be the optimal choice.
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Figure 5.11.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the dependent likelihood func-
tion standard deviation

Comparing the dependent and the independent version of the likelihood functions, the
dependent version with a standard deviation of 0.2 times the measured data outperforms
the independent version with a standard deviation of 5, despite a slightly longer run time,
which is reasonable due to the mathematical computation of the standard deviation. The
incorporation of exact data in the likelihood function does provide a more accurate result.

5.3.4. Alternative Implementation of Probability Acceptance Probability

After we explore both of the input algorithm parameters that are responsible for the
calculation of the acceptance probability, we move on to the selection of the acceptance
probability. As mentioned above, two choices are available for the acceptance probability
calculation: One option is that we take the mean of all the values as an acceptance probability,
so that the final acceptance probability could more generally represent all of the individual
acceptance probabilities by parameter. Another option is to take the maximum value of the
entire acceptance probability array. On the one hand, we can improve the efficiency of the
algorithm, since the calculation of the mean is avoided. On the other hand, some dimensions
might be easier to sample from than others due to less complexity. Using the maximum
acceptance probability gives us therefore the insight of the entire parameter space, where
the parameter with the best performance decides the acceptance probability. However, the
maximum acceptance probability might be misleading if the distribution of the acceptance
probability array is too widespread, which results in the complete opposite of efficiency and
accuracy.

We execute the algorithm in both versions, with the rest of the parameters being identical.
Figure 5.12 suggests that for the HBV-SASK model, the mean sampling method does not
only deliver a slightly better performance in accuracy but also more stability and most
importantly: better efficiency. This shows that the acceptance probability in each iteration
in the array might have far different values so the max sampling method cannot deliver good
enough results. Therefore, we stick to the original mean sampling method.
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Figure 5.12.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the implementation of proba-
bility acceptance probability calculation

5.3.5. Burn In Phase

Another crucial part of all Markov chain Monte Carlo algorithms is the discard of the burn-in
phase. For Metropolis-Hastings, it is no exception. Determining a general optimal burn in
phase leads to an optimization of the result since it is the process of removing generated
samples that do not follow the stationary distribution and are unstable. The algorithm
was previously executed with a burn-in phase of 20 percent, which means that the first
twenty percent of the generated sample data are discarded. However, a comparison to other
values of the burn-in phase would give us an overview of how effective the 20 percent is
and whether it is enough. The values that are used for comparison are 33 and 50 percent.
On the graph, the values 2, 3, and 5 denote the denominator of the burn in phase, as they
should be interpreted as 1

2 ,
1
3 and 1

5 .
Figure 5.13 infers that the case 50 percent and the case 20 percent show relatively similar

accuracy and efficiency. However, because removing half of the samples might be a bit too
much and the similarity in performance, 20 percent is a better choice. Therefore, for the
rest of the execution phase, we keep discarding the first 20 percent of the samples as the
burn-in phase.

Figure 5.13.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on length of burn in phase
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5.3.6. Effective Sampling Size

Effective sampling size is a new concept that has not been introduced in this thesis until
here. It generally indicates the number of samples that are independent from each other.
A basic way to implement an effective sampling size in the Markov chain Monte Carlo
algorithms is to skip a few samples and only regard every several samples in our sample
space. The reason to do this is that in Markov chain Monte Carlo algorithms, every sample
is dependent on the last sample generated. However, this dependency might have a higher
degree of influence, for instance: the newly generated sample is most likely to lie inside of a
certain range depending on the standard deviation. Therefore, not considering the sample
directly after another might lead to a certain level of independence, which gives rise to more
generalization of the sampling space.

For testing purposes, we compare the algorithm that does not include the effective sampling
size feature with algorithms that only consider every second, third, fourth, and fifth sample
for the sampling space. The result is shown in Figure 5.14. The efficiency is proportional
to the value set for the effective sample size, whereas no pattern could be found for the
accuracy aspect. Even though only considering the third sample is relatively less efficient
than considering every second sample or even not implementing this feature, it provides
better accuracy than all the other cases and relatively better stability due to the low RMSE
and MAE of the maximum time series. Therefore, it would be wise for us to keep retaining
only the third value from the sample space in the later execution of the Metropolis-Hastings
algorithm.

Figure 5.14.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the selection of effective sample
size

5.3.7. Iteration

Another crucial part of the Metropolis-Hastings algorithm is the amount of iterations. More
iterations mean that more samples are gathered. To understand whether the amount of
samples that are gathered is enough or not, comparing the accuracy with other numbers of
iterations is needed. Until now, we performed the Metropolis-Hastings algorithm with 10000
iterations. Now we compare this number to other iterations like 5000, 20000, 40000, and
80000 to find out which number of iterations would deliver the best result and give a decent
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efficiency.
The result is shown in Figure 5.15, where it is clear to observe that the computation

time grows proportionally to the number of iterations. The case of 5000 delivers the best
accuracy and efficiency but might lead to too small of a sample space due to the removal of
the burn in period and effective sample size. Of all of the rest cases, they share a similar
range of accuracy. However, due to the efficiency of run time, more than 10000 iterations
will be an overkill. Therefore, we continue to execute the algorithm with 10000 iterations.

Figure 5.15.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the number of iterations

5.3.8. Initial States

The last input algorithm parameter that needs to be explored is the initial states. The
initial states should not have that much of an effect on the accuracy, but rather a great
influence on the efficiency [?]. A better initial state would allow the algorithm to get rid
of the burn-in phase and sample from the stationary distribution sooner, which reduces
calculation burdens. It also allows the sampling kernel to discover more samples from the
optimal ranges.
Several possible initial states should be taken into consideration. The most general one

is the random initial state, which is used when there is little information regarding the
distribution available. To do this, we sample a random state from the posterior and start
from here. For testing purposes, however, we randomize 1000 samples and take the mean of
them to maximize generalization and randomization. The lower and the upper boundary
as the initial values would also work, which requires no initialization at all. Other possible
values are derived from prior and posterior distributions. We try the first quantile, the
mean, and the third quantile of the prior so that we can figure out whether an optimal
starting value is coincidentally near these points. However, the focus point should be on the
following three initial states: the first and the third quantile of the posterior distribution
as well as the median of the posterior distribution. In the third section of this chapter,
we generate a primary result that provides a general result of the posterior distribution.
To start the entire algorithm from an inferred posterior state might result in better entry
into the algorithm since the starting states are already proven to be very possible on the
stationary distribution. Instead of taking the mean of the posterior, we select the median
because it represents the half position of the entire posterior distribution, whereas the mean
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only represents the middle value. It is expected that the most desirable solution comes from
one of the proposals of the posterior.

We execute the model with all these different initial states and receive the results shown
in Figure 5.16. The RMSE and MAE of the mean time series over all of the test cases prove
that the performance is not influenced by the initial states. However, the efficiencies of
the algorithms with different initial states do have a massive difference between them. The
maximum initialization performs well, as well as the third quantile of the prior, the third
quantile of the posterior, and the median of the posterior. After checking the numerical
statistics, the median of the posterior delivers the most efficiency as expected. Therefore, it
will be set as the default initial state.

Figure 5.16.: Comparison of the accuracy and the efficiency of Metropolis-
Hastings algorithms based on the selection of initial states

5.4. Result Comparison

After evaluating all of the input algorithm parameters, we will compare both sets of input
algorithm parameters by using the Monte Carlo simulation. Using the set of input algorithm
parameters that deliver the best performance by accuracy metrics in the exploration phase,
which will, later on, be called the tuned input algorithm parameters, the model will be
executed 1000 times, where the RMSE and the MAE of the result time series mean and
maximum will be calculated. These results are going to be then compared to those of the
models that run on the knowledge-based set of input algorithm parameters so that the set
of input algorithm parameters that delivers better results will be selected to represent the
basic Metropolis-Hastings method.
We first draw the histogram and the KDE plot for all of the parameters. It is shown in

Figure 5.17. We can observe that the distributions fluctuate more than the parameters from
the model that uses the knowledge-based input algorithm parameters. In this case, some
of the parameters still show irregularity, whereas some of the distributions do show some
certain level of resemblance to normal distribution, such as C0, FC, FRAC, and K2. Similar
to the case before, the probability of sampling values near both boundaries is relatively low.

36



5.4. Result Comparison

Figure 5.17.: Overview of the posterior distribution of the parameters
calibrated by the Metropolis-Hastings algorithm with tuned
input algorithm parameters

The boxplots of these parameters are shown in Figure 5.18. We can see that the ranges of
most of the sampled parameters are different from the knowledge-based version. The beta
and the C0 parameters have moved completely towards the lower bound, whereas the FRAC
parameter has moved upwards. The ETF parameter retained its lower bound but had a
lower upper bound. In contrast, The TT parameter retained its upper bound, however had
a lower bound.

Figure 5.18.: Boxplots of the generated posterior samples of each param-
eter calibrated by the Metropolis-Hastings algorithm with
tuned input algorithm parameters

From these generated samples, we retrieve the following result of the Bayesian inference
problem shown in Figure 5.19.
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Figure 5.19.: Comparison of Bayesian inference results of the Metropolis-
Hastings with tuned input algorithm parameters

To evaluate the result, we keep using the metrics that were calculated before for the model
using the knowledged-based set of input algorithm parameters, namely RMSE and MAE.
The same calculations are executed on the mean and the maximum of the inferred time series.
The RMSE of the posterior mean is 21.974609013782757 and the MAE of the posterior mean
is 11.457657543376751, whereas the RMSE of the posterior max is 24.458078992931487 and
the MAE of the posterior max is 14.532783129590447. The model using the tuned input
algorithm parameters performs better than the model using the knowledge-based input
algorithm parameters in some metrics, but not the others. Besides, there is randomness in
the Monte Carlo algorithm [?], which contributes to slightly different values in every single
execution.
Therefore, to generalize the accuracy of the result, we run both models 100 times and

gather the mean of all the metrics of the results.

Metric Knowledge-Based Posterior Mean Tuned Posterior Mean
RMSE 22.122504129857315 22.124942509212538
MAE 11.400067417022779 11.600318945622558

From this table, the knowledge-based input algorithm parameters achieve an all-around
better performance, but not by much. While the RMSE does not differ from each other
that much, the knowledge-based input algorithm parameters provide a slightly lower MAE.
This might be the case that the inferred time series run by the model using the tuned input
algorithm parameters performs slightly poorer in predicting extreme data points.

Therefore, we select the knowledge-based input algorithm parameters as the default input
algorithm parameters for the Metropolis-Hastings algorithm for further usage in this thesis.
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In the chapter above, the fundamental Metropolis-Hastings were implemented and evaluated.
In this chapter, we modify the fundamental Metropolis-Hastings algorithm, so that it can
be run in a parallel way to optimize the run time.

6.1. General Idea of Parallel Metropolis-Hastings

In fundamental Metropolis-Hastings, we use a Markov chain to generate new samples.
However, it would be possible to fully exploit the parallel computing property and run the
algorithm with multiple Markov chains. The general idea would be to use multiple Markov
chains instead of one single chain to generate samples. For instance, instead of drawing
10000 samples from one single Markov chain, we draw 2000 samples from five Markov chains
simultaneously.
This modification leads to several aspects that should be discussed. For one, the combi-

nation of all of the samples could give rise to some problems. Since the Markov chain will
eventually generate a sample from a given stationary distribution, all the samples generated
across different chains will be sampled from the same stationary distribution. Therefore,
we can simply combine the results after the burn-in period that are derived from different
chains. Nevertheless, we need to make sure that all the samples that are generated from the
chain after the burn-in period need to be sampled from the stationary distribution. Since
each Markov chain from the parallel Metropolis-Hastings generates fewer samples than the
amounts of samples that are generated by the Markov chain in the fundamental algorithm,
it might be the case that some of the Markov chains do not reach the point where they
sample from the stationary distribution. To examine this, we can use the trace plot [?]. It
will be discussed in the section ”Trace Plot” in this chapter.

Another problem would be the convergence of each dimension. After obtaining the final
results, we need to make sure that each dimension of the Bayesian inferred result needs to
deliver a converged result, which means that the entire result after the combination is stable
and representative and reaches a stationary distribution. In a later section called ”Gelman
Rubin Convergence”, we use the metric of Gelman Rubin Convergence to examine whether
the Bayesian inferred result for the hydrological model using the parallel Metropolis-Hastings
reaches convergence.

6.2. Efficiency Analysis

Since the machine, on which the algorithm is run, has 10 cores of CPUs, we are going to
experiment with this algorithm with 10, 8, 5, 4, and 2 chains. These cases will be compared
with the fundamental Metropolis-Hastings algorithm, where only one single chain is run. To
analyze the algorithm concerning its efficiency, we record the run time of the algorithm using
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different numbers of chains. The result is represented in Figure 6.1. It is obvious to see that
the run time and the number of chains display an inverse proportional relationship. The
more chains that are used, the less time is required for the algorithm to run, and vice versa.

Figure 6.1.: Relationship between run time and chain numbers for parallel
Metropolis-Hastings algorithm

6.3. Trace Plot

Making sure that each Markov chain generates samples from the stationary distribution is
crucial in the parallel Metropolis-Hastings algorithm. The best way to examine this aspect
is to visualize the trace of each sample generated from the chain [?]. The trace plot tracks
each sample generated by the algorithm and plots the position of each sample by order. In
this case, we can observe which sample is generated based on the last sample.
As mentioned before, it is more likely that the parallel Metropolis-Hastings algorithm

with more chains shows less probability of sampling from stationary distribution than the
parallel Metropolis-Hastings algorithm with fewer chains. This aspect is going to be analyzed
now. We first select random chains from the algorithm run with the most number of chains,
namely 10, and the least number of chains, which is 2, to observe the two extreme cases.
Since 1000 samples are generated by each chain from the case of 10 chains, only 266 samples
are going to be recorded after discarding 20% of the burn-in and using 3 as the effective
sample size. With the case of 2 chains, the number of samples recorded has risen to 1333,
which is almost 5 times as much as the previous case. This shows a higher probability that
the samples are generated from the stationary distribution.
For both cases, two chains are selected for visualization to ensure the generality of the

analysis. The figures of the trace plots are displayed in Figures 6.2 to 6.5. One major
difference between the visualizations of both cases is that the chain for case 10 includes
more abrupt jumps throughout the entire sampling process, whereas abrupt jumps occur
less after the starting period is over for case 2. The longer chain in the case of 2 generally
provides better stability and convergence of the parameter estimates. With no obvious
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sampling trends and full exploration of the entire parameter space, it is observable that
every parameter for the chain has settled into a stationary distribution that covers the entire
parameter space. The shorter chain in the case of 10 may not enter the convergence and can
be more susceptible to initial conditions or random fluctuations. Therefore, observing the
trace plot for each chain after executing the algorithm is important, especially for algorithms
that are run with more chains, each of which generates fewer samples.

Figure 6.2.: Trace plot of the third chain from the parallel Metropolis-
Hastings algorithm with 10 chains

Figure 6.3.: Trace plot of the seventh chain from the parallel Metropolis-
Hastings algorithm with 10 chains
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Figure 6.4.: Trace plot of the first chain from the parallel Metropolis-
Hastings algorithm with 2 chains

Figure 6.5.: Trace plot of the second chain from the parallel Metropolis-
Hastings algorithm with 2 chains

6.4. Gelman Rubin Convergence

As we mentioned in the introduction of this chapter, the convergence of the result is an
aspect that we shall observe after combining all results altogether. This diagnostic helps to
determine whether the chains have reached a stationary distribution over time, which shows
whether the samples are representative of the target distribution [?].

The calculation of Gelman Rubin’s diagnostic looks as follows: We define m as the number
of chains and n as the number of iterations of each chain. sij is then the vector of parameters
in the ith iteration of from the jth chain. sj is the mean of vectors within the jth chain,
whereas s is the grand mean vector, calculating the mean of all of the sj [?].
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W is called the within-chain variance estimates, which estimate the variances of all sampled
points within chains. B is called the average of the between, which measures the variance of
the chain means around the overall mean of these means. V is the pooled variance estimate,
which is calculated by the weighted versions of B and W . Last but not least, the ratio
between the pooled an d within chain estimators is calculated and used as the Gelman-Rubin
diagnostic. If the diagnostic is close to 1, commonly less than 1.1, it suggests that the chains
have converged to the target distribution. A value greater than 1.1 indicates that additional
sampling may be necessary, or that the chains have not yet mixed well and may potentially
need more iterations [?]. For the case of MCMC, the threshold of 1.2 is also tolerated [?].
We now take a look at the performance of Gelman Rubin’s convergence in the parallel

Metropolis-Hastings algorithm. We take a look at the algorithms with different chain
numbers, They are displayed in Figures 6.6 to 6.10. All of these cases show a good enough
convergence to show compliance to the threshold of 1.1, even though a relationship between
the convergence level and the number of chains could be found: the more chains there are,
the less the result converges.
The reason behind this observation is that each chain generates fewer samples if more

chains are used in the parallel Metropolis-Hastings algorithm. In this case, it is more likely
that individual chains reach a low level of convergence since it does not generate enough
samples. For instance, even though it still satisfies the convergence threshold, the case of 10
chains shows the worst convergence level of all of the test cases, since it only generates 1000
samples instead of 2500 in the case of 4 chains. Another observation is that no patterns
can be found regarding the convergence behavior of individual dimensions. No parameter
performs the best or the worst in every single case, which means that further investigation
of individual parameters is not needed.
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Figure 6.6.: Gelman Rubin Convergence Diagnostic of the parallel
Metropolis-Hastings algorithm with 10 chains

Figure 6.7.: Gelman Rubin Convergence Diagnostic of the parallel
Metropolis-Hastings algorithm with 8 chains

Figure 6.8.: Gelman Rubin Convergence Diagnostic of the parallel
Metropolis-Hastings algorithm with 5 chains
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Figure 6.9.: Gelman Rubin Convergence Diagnostic of the parallel
Metropolis-Hastings algorithm with 4 chains

Figure 6.10.: Gelman Rubin Convergence Diagnostic of the parallel
Metropolis-Hastings algorithm with 2 chains

6.5. Autocorrelation Plot

An autocorrelation plot displays the correlation of a series with itself at different levels of
lags. In the context of MCMC, it shows the dependency of the current value in the chain
and its past values. This plot is crucial because samples that are generated by Markov chain
Monte Carlo algorithms are inherently sequential and may exhibit significant correlation
with previous samples, which is something that should be investigated.

In this section, the autocorrelation of each of the Metropolis-Hastings cases regarding the
number of chains is investigated. Since we draw the conclusion from the chapter above that
the most optimal effective sample size is 3, we keep using this number in these test cases.
We first take a look at the cases with the most and the least number of chains, namely

10 and 2. These can be found in Figures 6.11 and 6.12. Both autocorrelation graphs share
a characteristic that the autocorrelation drops to a low level quickly within a few lags.
This suggests that the influence of any given sample on future samples diminishes quickly,
which indicates good sampling efficiency. Afterwards, for both cases, the autocorrelation of
all dimensions oscillates around 0 and 0.2 positive and negative, which suggests that the
sampling shows stability and low correlation to past samples.
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Figure 6.11.: Autocorrelation plot of the parallel Metropolis-Hastings al-
gorithm with 10 chains

Figure 6.12.: Autocorrelation plot of the parallel Metropolis-Hastings al-
gorithm with 2 chains

However, both graphs do not display an extremely low level of autocorrelation at high lags.
For some parameters, the autocorrelation at high lags approaches 0.2, which is a relatively
high value, even though it is generally acceptable. After plotting graphs for more test cases
of the parallel Metropolis-Hastings algorithm using different chains, the autocorrelation
graph of the parallel Metropolis-Hastings algorithm using 8 chains delivers a more optimal
result. This can be seen in Figure 6.13. Autocorrelations around 20 lags approach closer to
zero or show minimal fluctuation around zero. However, the autocorrelation around 40 lags
shows a closer distance to 0, which is optimal for the independence property of Markov chain
sampling. Nevertheless, all of the other cases of chain numbers show a satisfying result, with
rapid diminishing in the first few lags, oscillation around zero, and a relatively low level of
autocorrelation for all of the lags apart from the first few.
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Figure 6.13.: Autocorrelation plot of the parallel Metropolis-Hastings al-
gorithm with 8 chains

6.6. Accuracy Analysis by the Chains

After all these analyses regarding the components of the algorithm, we shall determine the
number of chains that suit the algorithm the best. The accuracy metrics are kept the same
as the ones that are used in the chapters above the RMSE and MAE. From the graphs
shown in Figures 6.14 and 6.15, the parallel Metropolis-Hastings algorithm using 4 chains
shows the best level of accuracy in both metrics. Centered around 4, the further the number
of chains are, the less accurate they are, however not by a significant difference.

Figure 6.14.: Mean RMSE of the parallel Metropolis-Hastings algorithm
across test cases with different chains

47



6. Parallel Metropolis-Hastings

Figure 6.15.: Mean MAE of the parallel Metropolis-Hastings algorithm
across test cases with different chains

6.7. Parameter Overview

The last aspect that is focused on in this chapter is the inferred parameter. In the chapter
above, we visualized the inferred parameter by visualizing the distribution of the individual
parameters. For the case of parallel Metropolis-Hastings, we utilize multiple chains to sample.
Therefore, we shall not only just visualize the inferred parameter distribution of the entire
result, but also visualize the inferred parameter distribution of each chain and to compare
them with the result, to review the stability of the sampling of each chain and also finding
out similarities and patterns.
As usual, we first analyze the parameters by a chain for the two extreme cases, namely

parallel Metropolis-Hastings with 10 and with 2 chains. These can be found in Figures
6.16 and 6.18. From the case of 10 chains, we can see that the distribution of each chain
is relatively random. To compose the distribution of the combined results, each chain is
responsible for exploring a different region. For instance, for the parameter TT, the 9th
chain explores the side with lower values more, whereas the 10th chain is more responsible for
the side with higher values. Altogether, this property contributes to the relatively uniform
distribution of the combined result. However, there are still similarities to some extent that
can be found between the sample distribution of each chain and the sample distribution
of the combined result. In each distribution, there are two peaks, each located on the left
and the right side of a trough. This means that in each sampling process, two regions can
be found that aggregate the most sampling values. Besides, both regions on the left and
the right side of the interval acquire fewer samples than other regions, which contribute to
the same property of the final combined result. In the case of 2 chains, things are not so
complicated. Because each chain generated more samples than each chain does for the case
of 10 chains, the distribution of each chain looks highly similar to the distribution of the
combined result for most of the parameters. For the parameter of ETF, as an exception, it
shares the property as the case for 10 chains, namely that both of the chains are responsible
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for exploring two different areas, which are the left and the right sides of the entire interval.
Another plot that is used for visualizing the parameters is the boxplot, which is also

visualized here in the same way as above: each chain is visualized individually, where they
are compared to each other and the combined result boxplot afterward. The figures for cases
of 10 chains and 2 chains can be found below in Figures 6.17 and 6.19. The results that we
can draw from observing these boxplot graphs are the same as the conclusion that we have
drawn above for the case of more chains, the 1st quantile, the median and the 3 quantile all
vary from each other, which means that each chain is responsible for different regions. For
the case of fewer chains, however, the 1st quantile, the median, and the 3 quantile lie almost
on the same level or do not vary from each other that much, indicating that the samples
from each chain are more stabilized.

Figure 6.16.: Parameter overview by chain for parallel Metropolis-Hastings
using 10 chains
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Figure 6.17.: Boxplot by chain for parallel Metropolis-Hastings using 10
chains

Figure 6.18.: Parameter overview by chain for parallel Metropolis-Hastings
using 2 chains
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Figure 6.19.: Boxplot by chain for parallel Metropolis-Hastings using 2
chains

51



7. General Parallel Metropolis-Hastings

7.1. Introduction of the Algorithm

The general parallel Metropolis-Hastings algorithm is an algorithm that is based on the
fundamental Metropolis-Hastings algorithm with some more parallel modifications. Instead
of using different chains to make the algorithm run parallel, the general parallel Metropolis-
Hastings algorithm applies a different idea: it generates multiple samples instead of one
single sample in each iteration. This idea of parallel execution is inspired to avoid sequential
generation of data [?], which means that instead of accepting or denying the generated
sample, a different way to determine the acceptance of the generated sample points needs
to be come up. Since the last sample before the generated sample is carried on if the
newly generated sample is denied, we also take the last generated sample into account when
designing the general parallel Metropolis-Hastings. However, since an array of points is
generated, we will randomly select one of the samples as the starting point for the next
round of generation [?]. Suppose that we draw m samples in each iteration, we then have to
use m+ 1 samples to perform the acceptance or rejection. What we then do is to sample n
points from these m samples randomly. We construct a probability space by calculating
the likelihood for each sample point and sample a subset of these points as the points that
should be added to the results.
A detailed explanation of the calculation of acceptance probability is inspired by the

derivation from the GMH library of the MUQ framework.1 The first step is to construct the
acceptance matrix. This matrix has the dimension of the acceptance probability matrix A is
calculated as follows:

Aij =

{
min

(
1,

exp(rj−ri)
m+1

)
if i ̸= j and proposed state j is not None

1−
∑

k ̸=iAik if i = j
(7.1)

where rj is the log density of the jth proposed state.
We then calculate the stationary acceptance distribution. It is denoted as π, which is a

vector with a length of m+ 1. To calculate this, we construct the matrix M = AT − I, on
which an extra row of 1 is added at the very bottom that represents the weight of the last
generated sample. To calculate the stationary distribution, we create the b vector with 0
everywhere except for the last position, in which a 1 is set for the same reason mentioned
above [?]. The calculation is then listed as follows:

Mπ = b (7.2)

After acquiring the acceptance probability vector, we construct a probability space using
it, in which we calculate the sum of the vector and then normalize it. Using this vector, we

1https://bitbucket.org/mituq/muq2/src/d99f6124bf142922d7973cc60c25d7a518084d12/modules/

SamplingAlgorithms/src/GMHKernel.cpp?at=master#GMHKernel.cpp
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7.2. Evaluation

generate n samples from it, including the sample that was generated before. We iterate this
process for a certain amount of time and receive the result. To sum up the entire process,
we use pseudo-code to illustrate it.

Algorithm 2: General Parallel Metropolis-Hastings Algorithm

Input: proposal distribution function, sampling kernel function, likelihood
kernel function, initial state, number of iterations,
acceptance rate calculation, num proposals, num accepted

Output: list of sampled data points

1 Function GPMH(proposal dist, sampl kernel, likel kernel, init state, iterations,
acceptance rate calculation, num proposals, num accepted):

// Initialize the samples list with the initial state

2 samples ← [init state]
3 old ← init state
4 for i ← 1 to iterations do

// Generate a new sample from the sampling kernel

5 generated samples ← [old]
6 for j ← 1 to num proposals do
7 generated samples.append(sampl kernel(old))

// Calculate the acceptance probability

8 acceptance rates = acceptance rate calculation(generated samples)
// Decide to accept or reject the new sample

// random sampling is a function that takes two parameters,

sampling randomly the number of times given in the first

parameter from the array given in the second parameter using

the acceptance probability provided in the third parameter

9 res ← random sampling(num accepted, num proposed, acceptance rates)
10 samples.append(res)
11 old = random(res)

12 return samples

7.2. Evaluation

After discussing the algorithm itself, we run the algorithm and generate data that can be
used to analyze. In this section, we will first try to observe the algorithm regarding the
number of samples generated and accepted in each iteration through ratio and amount tests.
Afterward, further investigation regarding input algorithm parameters is conducted.

7.2.1. Ratio Test

The first test for evaluation is called the ratio test. In this test, we investigate the ratio
between the numbers generated and the numbers accepted. This test is conducted for us
to find the most optimal ratio of both parameters for the Bayesian inference problem. We
fix the number of accepted samples being five, while the number of generated samples is a
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variable. The tested scenarios include 5 generated samples for a ratio of 1, 10 generated
samples for a ratio of 2, 20 generated samples for a ratio of 4, 40 generated samples for a
ratio of 8, and 80 generated samples for a ratio of 10. As we can see from Figure 7.1, the
accuracy of the Bayesian inference goes up as the ratio of the generated sample amount
against the accepted sample amount goes up. The larger the ratio is, the more accurate the
Bayesian inference would be. However, the trade-off would be the run time, as the run time
grows. There is an obvious exponential relationship between the run time and the ratio.
Therefore, we need to consider the trade-off between accuracy and efficiency while selecting
an appropriate ratio.

Figure 7.1.: Comparison of the accuracy and the efficiency of general
parallel Metropolis-Hastings algorithms based on the ratio
between numbers generated and accepted for each iteration

7.2.2. Amount Test

We move on to the amount test, in which we investigate the optimal amount of samples that
need to be generated for each iteration. We fix the ratio between the generated samples and
the accepted samples being 2. The tested scenarios include 10 generated samples with 5
being accepted, 20 generated samples with 10 being accepted, 40 generated samples with 20
being accepted, 80 generated samples with 40 being accepted, and 100 generated samples
with 50 being accepted. In comparison with the ratio test, the differences are not that
obvious in this case. For the RMSE, better performances of the Bayesian inference are
delivered for higher amounts, whereas the MAE data do not differ too much from each other.
For efficiency, faster execution happens also in higher ranges of amount numbers. Therefore,
the more samples generated in each iteration, the faster and more accurate the algorithm
will be.
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Figure 7.2.: Comparison of the accuracy and the efficiency of general
parallel Metropolis-Hastings algorithms based on the amount
of technique of handling samples generated out of bounds

7.2.3. Sampling out of bounds

After investigating the relationship between generated sample numbers and the accuracy
and efficiency metrics, we now switch gears to the input algorithm parameters. For the first
input algorithm parameter, we take a look at the sampling out-of-bounds methods. As it
was mentioned before, we apply three methods when handling samples that are generated
out of bounds: ignoring, reflecting boundary, and aggregation. These three methods are also
used in the general parallel Metropolis-Hastings algorithm. The benchmark result is shown
in Figure 7.3. Unlike the case in the fundamental implementation, all three variants show
little difference from each other in terms of accuracy. In terms of efficiency, the ignoring
method still outperforms the other two methods just like the case for the fundamental
implementation, however not by a lot. The selection of the method usage is therefore not the
most relevant selection for the general parallel Metropolis-Hastings algorithm considering
the minimal impact on the accuracy and efficiency metrics.

Figure 7.3.: Comparison of the accuracy and the efficiency of general par-
allel Metropolis-Hastings algorithms based on the dependent
likelihood function standard deviation
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7.2.4. Initial States

Another input algorithm parameter that might impact the resulting outcome is the initial
states. The selection of the initial state does not result in a drastic difference in the accuracy
metrics for the fundamental Metropolis-Hastings, and this is exactly the case here. For both
metrics, the value for each input option of initial states does not vary much from each other.
For efficiency, on the other hand, the initial state had a drastic influence on the run time.
The fundamental algorithm with the best initial state could achieve less than twice the
time that with the worst initial state. This is the complete opposite of the general parallel
Metropolis-Hastings algorithm, in which algorithms with all different selections of initial
states deliver similar results, all with a run time of around 4000 seconds. This means that
the selection of the initial state does not have a big influence on the overall result of the
general parallel Metropolis-Hastings algorithm.

Figure 7.4.: Comparison of the accuracy and the efficiency of general
parallel Metropolis-Hastings algorithms based on the selection
of initial states

7.2.5. Dependent Likelihood Kernel Factor

The behavior of the dependent likelihood kernel factor for the general parallel Metropolis-
Hastings algorithm is far different from the one for the fundamental Metropolis-Hastings
algorithm. For the case here, the accuracy shows a certain level of irregularity, with the
value 0.6 delivering the most optimal result. For efficiency, on the other hand, every run
using different input values results in almost the same run time, except 0.8 as an anomaly,
requiring more time than any other input values. Therefore, the value 0.6 is the most optimal
choice for this case here.
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Figure 7.5.: Comparison of the accuracy and the efficiency of general par-
allel Metropolis-Hastings algorithms based on the dependent
likelihood function standard deviation

7.2.6. The Rest of Input Algorithm Parameters

For the rest of the input algorithm parameters, detailed explanations are spared for this
chapter, since they have similar results as the fundamental Metropolis-Hastings algorithm.
These are listed here as follows:

• Transition kernel factor: Not many differences in terms of accuracy. For the efficiency
part, the run time of the algorithm does not matter from each other too much, apart
from an anomaly point at the very last, which has also occurred in the fundamental
Metropolis-Hastings algorithm.

• Independent likelihood kernel factor: there is a peak on which the accuracy performance
is the worst, 3 in the case of general parallel Metropolis-Hastings. Centered from this
peak, the result gradually becomes more accurate. The run time for each run does not
differ from each other by much.

• Dependent likelihood kernel factor: No big differences of accuracy across different
input values. For the run time, both extreme input values (0.2, 0.8) provide the
best performances, while the overall differences between the performances are not
significant.

• Burn in: No big differences of both metrics across different input values.

• Effective Sample Size: No big differences of both metrics across different input values.

7.3. Parameter Overview and Comparison with the Fundamental
Implementation

After performing a detailed analysis, the general parallel Metropolis-Hastings algorithm is
run for one more time, so that the data output is gathered and used to be visualized. The
Bayesian inference is run on the same dataset as one of the fundamental Metropolis-Hastings
algorithms so that a direct comparison can be made.
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The first graph gives an overview of the posterior distribution after the calibration. More
information can be extracted from this posterior than one of the fundamental Metropolis-
Hastings since there are regions for each parameter that gather more samples than others.
Obvious peaks are presented so that the general shape of the posterior can be observed.
The boxplots of all dimensions also display an aggregation of values from certain regions,
making the parameters appear more concentrated and potentially indicating regions of higher
posterior density. Therefore, we can conclude that the general parallel Metropolis-Hastings
is a better choice than the fundamental Metropolis-Hastings in terms of the parameter
calibration under uncertainty.

Figure 7.6.: Overview of the posterior distribution of the parameters cali-
brated by the general parallel Metropolis-Hastings algorithm

Figure 7.7.: Boxplots of the generated posterior samples of each param-
eter calibrated by the general parallel Metropolis-Hastings
algorithm
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In terms of accuracy, the RMSE score of the algorithm is around 19 and the MAE score
is around 8.5 for most cases. This improves from the fundamental Metropolis-Hastings
algorithm to a certain extent, which delivers an RMSE score of around 22 and an MAE score
of around 11. However, the fastest run of the fundamental Metropolis-Hastings algorithm is
around 1400 seconds in comparison to around 4000 seconds of the general parallel Metropolis-
Hastings algorithm. Between better efficiency and better accuracy, there is a trade-off that
needs to be considered.

Figure 7.8.: Comparison of Bayesian inference results of the general paral-
lel Metropolis-Hastings with tuned input algorithm parame-
ters
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The DREAM algorithm is a Markov Chain Monte Carlo method that is designed for efficient
sampling from complex and high-dimensional probability distributions. In this chapter,
the algorithm is applied to the hydrological model. The output will then be analyzed and
compared to the models from the chapters above.

8.1. Algorithm Introduction

The DREAM algorithm is designed based on the fundamental Metropolis-Hastings algorithm
and the possibility of parallel execution of the algorithm. It applies differential evolution. It
utilizes multiple Markov chains running in parallel to explore the parameter space. Proposals
for new sample points are generated using the differences between pairs of chains. This
differential evolution property helps to enhance sampling efficiency and convergence.
In the first section, we break down the DREAM algorithm step by step with details

explained for individual components [?]. First, we take a look at the function header.
Information regarding input algorithm parameter requirements should be provided.

1 function [x, p X] ← DREAM(prior, pdf, N, n, T, d)

The DREAM algorithm takes in several parameters as input. These include:

• prior: The prior distribution of the parameter space.

• pdf : The probability density function.

• N : Number of chains.

• n: Number of generations.

• T : Thinning factor, which is the implementation of effective sample size in the DREAM
algorithm. Only the T -th sample will be retained in order to reduce autocorrelation [?].

• d: Dimension of the inferred parameter space.

The output would include x, which is the sampled chains positions, and their probabilities,
which is denoted by pX .

We move on to the next step, in which variables are initialized.
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1 [delta, c, c star, n CR, p g]← [3, 0.1, 1e− 12, 3, 0.2]
2 x← zeros(T,N, d)
3 p X ← zeros(T,N)
4 [J, id]← [zeros(1, N), 1 : N ]
5 for i← 1 N do
6 R(:, (i− 1) ∗N + (1 : N))← setdiff(1 : N, i)

7 CR← [1 : n CR]/n CR
8 pCR← ones(1, n CR)/n CR

In this part, most variables that are internally used in this algorithm and not passed as
the input algorithm parameters are initialized. These include:

• delta: Number chain pairs proposal. As mentioned in the introduction of this chapter,
this value is used for observing the differential evolution of the sample space.

• p g: The probability of selecting a specific number of pairs of chains for generating
the proposals.

• c: The scaling factor that controls the step size of the proposal distribution.

• c star: The parameter that is used to adaptively update the scaling factor c during
sampling, so that an optimal acceptance probability can be controlled.

• J : The jump rate. It measures the average distance between successive samples
in the parameter space and thus quantifies the effectiveness of the parameter space
exploration.

• id: Chain indices that correspond the jump rate.

• CR: The crossover rate. It is used to determine the proportion of dimensions in which
the state of the generated sample differs from the current state.

• n CR: The number of different crossover values. It allows for adaptive updating of
the crossover rates during sampling.

• pCR: The probability of each crossover rate being selected.

Next up, we initialize the sample states and probabilities.

1 X ← prior(X, d)
2 for i← 1 N do
3 p X(i, 1)← pdf(X(i, :))

4 x(1, :, 1 : d) = reshape(X ′, [1, N, d]); p X(1, 1 : N) = p X ′

In this segment, the initial states are generated from the prior distribution and stored in
X. The initial probability of each chain is also computed using the pdf function and stored
in p X. They are then reshaped correspondingly.
From now on, the algorithm enters the sample generation phase. It repeats itself until

the completion of sample generation. All of the segments below are wrapped inside of a for
loop that repeats until n cycles, which is the number of generation steps. The first segment
inside of the loop looks like this:
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1 draw ← sort(rand(N − 1, N))
2 dX = zeros(N, d)
3 lambda = unifrnd(−c, c,N, 1) std X = std(X)

The unifrnd function is a function that generates random numbers from a uniform
distribution. Here, we instantiated another few internal variables.

• draw: A list of random numbers. They are used to determine the order of chain
updates.

• dX: An array to store proposal differences.

• lambda: A random variable sampled from a uniform distribution between −c and c,
used for adaptive scaling of the proposal step size.

• std X: The standard deviation of X. It is used later for adaptive scaling.

Moving on to the next segment, we generate the proposals.

1 for i← 1N do
2 D ← randsample([1 : delta], 1)
3 a = R(i, draw(D, 1))
4 b = R(i, draw(D + 1 : 2 ∗D, 1))
5 d = randsample(1 : n CR, 1, pCR)
6 z = rand(1, d) A = find(z <= CR(d)) if len(A) == 0 then
7 A← min(z, c star = 1)

8 gamma d = 2.38/sqrt(2 ∗ len(A) ∗ p g ∗ (1− p g))

The algorithm loops through every single chain and draws proposals.

• D: Selects a number of differences for the proposal generation.

• a, b: Chain indices. They are used in the differential evolution proposal.

• d: Selects a crossover rate using probabilities pCR.

• A: Determines the dimensions that are involved in the crossover. If the dimension
turns out to be 0, we enforce 1 to be the minimum dimension size.

• gamma d: The scaling factor for the differential evolution proposal. The calculation
is based on the number of dimensions and a probability factor p g.

For the next step, the algorithm focuses on the differential evolution proposal. This is one
of the most crucial steps of the DREAM algorithm, making it different from other Markov
chain Monte Carlo algorithms.

1 g ← randsample([gamma d, 1], 1, [1− p g, p g])
2 dX(i, A) = c star+ randn(1, len(A))+ (1+ lambda(i)) ∗ g ∗ sum(X(a,A)−X(b, A))
3 Xp(i, 1 : d)← X(i, 1 : d) + dX(i, 1 : d)
4 p Xp(i, 1)← pdf(Xp(i, :))
5 p acc←min(1, p Xp(i, 1)/p X(i, 1))

In this segment, a few calculations is done to decide whether to accept the proposed
move. This is done by generating a uniformly distributed random number and accepting the
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proposed state if this number is less than or equal to the calculated acceptance probability,
namely pacc.

• g: Selects a number from gamma d or 1.

• dX: The actual differential evolution proposal, calculated based on the dimension
count of A, the variability term lambda that is defined above, and the g selected in
the row above.

• Xp: The newly proposed positions.

• p Xp: Density of the newly proposed positions.

• p acc: The acceptance probability, calculated based on the newly proposed positions
and their corresponding probabilities using the Metropolis criterion as the fundamental
Metropolis-Hastings algorithm.

Afterward, we accept or reject the samples that are generated, the same as any other
Markov chain Monte Carlo algorithm.

1 if rand < p acc then
2 x(i, 1, :)← Xp(i, :) p X(i, 1)← p Xp(i, 1)

3 else
4 dX(i, 1 : d)← 0

5 J(i)← J(i)sum((dX(i, 1 : d)./std X).2) id(i)← id(i) + 1

The process of this step is relatively straightforward. A random number is drawn, so
that the algorithm can decide if the proposal is accepted. If the proposal is accepted, the
position and density of the chain are updated. Otherwise, dX is reset to zero for that chain.
Afterwards, the jump rate J and chain index id are updated.

Before ending the repetition and continuing with the next step, there is an extra step in
the DREAM algorithm which involves chaining and mixing.

1 x(:, :, :)← reshape(X(:, 1 : d), [], N, d)
2 p X(:, 1 : N)← p X.transpose
3 if t < T/10 then
4 pCR← 1./J pCR← pCR/sum(pCR)

5 [x, p X] = check(X,mean(log(p X(ceil(T/2) : T, :))))

What the algorithm does in this part is to reshape and update the density of the chain’s
position for the next iteration. The crossover probabilities pCR are then updated based on
the jump rate J to enhance mixing. At the very end, a check function is used to perform
outlier detection based on the log probabilities of the chains, removing them and leaving the
valuable data inside of the variable.

The loop is then ended. The final step of the algorithm is self-explanatory, namely the
return phase. It returns the sampled values in the form of chains and ends itself.

1 return x, p X
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The algorithm itself is originally implemented using MATLAB, though it is later rewritten
and offered in multiple packages with different implementation variants. For this thesis,
the PyDREAM library1 is selected for use. The PyDREAM library brings the DREAM
algorithm to the platform of Python with easy installation and usage [?], which is optimal
for the use case of this thesis.

8.2. Evaluation Based on Chains

For the DREAM algorithm, there is a set of default input algorithm parameters. Therefore,
before exploring the influence of the input algorithm parameters on the actual output, we
first use this set of default input algorithm parameters to run the algorithm to observe
how the output of the Bayesian inference looks. Since it is an algorithm based on chains,
we analyze the sampled results both with and without regard to chains, analogous to the
parallel Metropolis-Hastings algorithm. For the test cases, we test the algorithm using 10, 8,
5, and 4 chains. Numbers of chains lower than 4 are not possible due to the policy of the
DREAM algorithm, stating that the chain amount must be greater than twice the value of
DEpairs + 1. The DEpairs parameter describes the pair of differential evolution and ensures
there are enough chains to form the required number of DEpairs for proposal generation.

8.2.1. Efficiency

First, we take a look at the efficiency of the algorithm. We measure the run time for
different test cases regarding chain amounts and compare them using graphics, which are
displayed below in Figure 8.1. Unlike the parallel Metropolis-Hastings algorithm, there is
no strict correlation that can be found between the number of chains and the run time of
the DREAM algorithm. The cause is that instead of treating different chains individually,
the DREAM algorithm uses cross-over calculations to track the relationships between the
different chains. Therefore, the additional calculation results in the irregularity of the
efficiency across different test cases of chain amounts.

Figure 8.1.: Relationship between run time and chain numbers for the
DREAM algorithm

1https://pydream.readthedocs.io/en/latest/index.html
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8.2.2. Trace Plot

Similar to the case for the parallel Metropolis-Hastings algorithm evaluation, we use the trace
plot to track the positioning of generated samples in each step. For the DREAM algorithm,
we also analyze the trace plot of both extreme cases, namely the DREAM algorithm run
with 10 chains and 4 chains. The trace plots of two random chains picked from both cases
are shown in Figures 8.2 to 8.5. Visualizations for both cases do not differ much from each
other in terms of sampling from the stationary distribution. All parameters in both graphs
show apparent convergence approaching the end, where the stationary distribution can
be easily observed. We could conclude that the property of sampling from the stationary
distribution of individual chains exists and does not need further investigation.

Unlike the observation made for the parallel Metropolis-Hastings algorithm, the DREAM
algorithm displays a heavy stationary distribution, where there are far fewer movements,
more rejections during the sampling process, and no obvious moving patterns of the traces.
Also, the visualizations show that the parameter space of the stationary distribution from
the DREAM algorithm is normally a subset of the entire parameter space, which provides a
more stable and consistent sampling, unlike the wide parameter sample space exploration
upon stationary distribution in the case of parallel Metropolis-Hastings. In conclusion, the
DREAM algorithm has a stronger convergence for the sampling process than other Markov
chain Monte Carlo algorithms.

Figure 8.2.: Trace plot of the third chain from the DREAM algorithm
with 10 chains
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Figure 8.3.: Trace plot of the seventh chain from the DREAM algorithm
with 10 chains

Figure 8.4.: Trace plot of the first chain from the DREAM algorithm with
4 chains

Figure 8.5.: Trace plot of the third chain from the DREAM algorithm
with 4 chains
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8.2.3. Gelman Rubin Convergence

The Gelman Rubin statistic in the case of DREAM is generally higher than the convergence
diagnostic of the general parallel Metropolis-Hastings algorithm, even though the convergence
statistic is generally in the acceptable range below 1.2. The figures for all test cases are
displayed in Figures 8.6 to 8.9. For the case of 10 chains, two parameters show relatively
high convergence diagnostic values that almost exceed the threshold. For other cases,
there are also some parameters that show higher convergence diagnostic values than others.
However, no specific patterns or regularities can be found for the Gelman-Rubin convergence
parameter.

Figure 8.6.: Gelman Rubin Convergence Diagnostic of the DREAM algo-
rithm with 10 chains

Figure 8.7.: Gelman Rubin Convergence Diagnostic of the DREAM algo-
rithm with 8 chains
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Figure 8.8.: Gelman Rubin Convergence Diagnostic of the DREAM algo-
rithm with 5 chains

Figure 8.9.: Gelman Rubin Convergence Diagnostic of the DREAM algo-
rithm with 4 chains

8.2.4. Autocorrelation Plot

We observe the autocorrelation plot for the DREAM algorithm to analyze the degree of
sampling independence. At first sight, we can detect drastic different behaviors among all
four cases. For the case of 10 chains in Figure 8.10, the descending of certain parameters
is faster than some others. However, the TT and the K2 parameters show a high level of
negative correlation, which means that the newly generated samples have potentially an
inverse relationship to the samples generated before, indicating the lack of randomness in
the sampling process. For the case of 5 in Figure 8.12 and 4 chains in Figure 8.13, the
final autocorrelation for higher latency is generally in a favorable range. However, most
parameters don’t display a rapid descending, which might lead to inefficient sampling and
longer convergence. The case of 8 chains displays the best autocorrelation plot among all
four, including fast decrement and low level of autocorrelation throughout the entire range
of latency.
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Figure 8.10.: Autocorrelation plot of the DREAM algorithm with 10 chains

Figure 8.11.: Autocorrelation plot of the DREAM algorithm with 8 chains

Figure 8.12.: Autocorrelation plot of the DREAM algorithm with 5 chains

Figure 8.13.: Autocorrelation plot of the DREAM algorithm with 4 chains
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8.2.5. Accuracy

The accuracy metrics including RMSE mean and MAE mean are also gathered for all test
cases. The line plot of the RMSE mean displayed in 7.14 shows irregularity of the accuracy
of the metric, with the accuracy scores for each test case being very close to each other. For
the line plot of the MAE mean displayed in 7.15, a clear ascending pattern can be found.
The more chains there are, the more accurate the Bayesian inference will be, though by a
small difference.

Figure 8.14.: Mean RMSE of the DREAM algorithm across test cases
with different chains

Figure 8.15.: Mean MAE of the DREAM algorithm across test cases with
different chains

8.2.6. Parameter Overview

Moving on to the last section of the chain analysis, which is the parameter overview. Like
the parallel Metropolis-Hastings algorithm, both distribution plots and boxplots are shown
here. The focus here is put on the case of 10 chains and 4 chains, both extreme cases.
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From the distribution visualization displayed in Figures 8.16 and 8.18, most of the chains
for the same parameter have a peak in the region where the most samples are generated in
the combined sample collection, with a few exceptions. For instance, for the TT parameter
of the case of 10 chains, all of the chains display a peak near the higher bound for its
sample space, which corresponds to the peak at the same position for the combined sample
space. This is also the case for the C0 parameter for the test case of 10 chains, with the
peak situated at around the position of 25% quantile. The exception here is the 7th chain,
which is the only chain among all that does not have a peak there. The above-described
scenario is opposite to the case of the parallel Metropolis-Hastings algorithm, in which each
chain explores different areas of the parameter space. We can therefore find out the strong
correlation between the sampling for each single chain and combined sample space.
For the boxplot displayed in Figures 8.17 and 8.19, however, the visualization shows no

pattern at all. For some parameters like ETF from the test case of 4 chains or K2 from
the test case of 10 chains, the medians across all chains are at around the same position.
However, for the majority of cases, absolutely no regularity can be found to show where
the positions of the 25% quantile, the median, and the 50% quantile are. Therefore, further
investigation of the boxplot is not necessary.
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Figure 8.16.: Parameter overview by chain for DREAM using 10 chains
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Figure 8.17.: Boxplot by chain for DREAM using 10 chains
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Figure 8.18.: Parameter overview by chain for DREAM using 4 chains

Figure 8.19.: Boxplot by chain for DREAM using 4 chains

8.3. Input Algorithm Parameters Exploration

The last part of this chapter is the input algorithm parameter exploration for the DREAM
algorithm. Being different from the other Markov chain Monte Carlo algorithms, the DREAM
algorithm has a few input algorithm parameters that are unique to itself, with another few
that are identical to the ones that the other Markov chain Monte Carlo algorithms possess.
Explanation alongside analysis of benchmark data are listed below in smaller sections.

8.3.1. Sampling out of Bounds

The first input algorithm parameter that is investigated is the handling of the sampling
out of bounds, which also exists for all of the other algorithms mentioned in this thesis.
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For the DREAM algorithm, this parameter is called HardBoundaries, which determines
whether the samples that are generated out of bounds are going to be reflected or ignored.
The result is listed in Figure 8.20, where both results show relatively close accuracy and
efficiency scores to each other. Even though not by much, the method of reflection performs
generally better than the method of ignoring, which makes it a better choice for most use
cases of the DREAM algorithm.

Figure 8.20.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the HardBoundaries parameter

8.3.2. Crossover

In the DREAM algorithm, the concept of crossover is adapted from evolutionary algorithms
and specifically implemented to enhance the proposal mechanism in comparison to other
Markov chain Metropolis-Hastings algorithms. It is a process of combining information from
multiple chains to create new proposal candidates, during which the components of the
proposal vector are selectively swapped with corresponding components from other chains
based on a crossover probability [?]. This method helps the algorithm explore the parameter
space more efficiently by utilizing differences between chains.
The crossover burn-in is one of the aspects of the crossover concept. It denotes the

number of iterations to fit the crossover values, ensuring the algorithm sufficiently adjusts
and optimizes the crossover probabilities for effective parameter space exploration. The
default value of this input algorithm parameter in PyDREAM is 10%. For testing purposes,
however, the algorithm is also run with 0% (which is denoted as NaN in PyDREAM), 20%,
and 50%. From the figure shown in 7.21, however, not much differences between the metric
scores of all of the configurations are shown, apart from the slightly worse efficiency score of
the 0% case against all of the other cases. This input algorithm parameter has, therefore,
not that much influence on the Bayesian inference result.
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Figure 8.21.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the crossover burn in parameter

Another aspect would be the adaptive crossover, which is responsible for the decision to
adjust the crossover probabilities based on the performance of the chains [?]. This adaptation
helps maintain an optimal balance between exploration and exploitation of the parameter
space. By default, this option is set, even though we can also turn it off. The algorithm is
therefore run in both variants, with the benchmark visualization displayed in Figure 8.22.
However, there is only minimal difference between the metric scores of both variants, which
is completely neglectable.

Figure 8.22.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the adaptive crossover parameter

For the last aspect of the cross-over, we observe the nCR input algorithm parameter,
which defines the number of crossover values to sample from during the run and to fit during
the crossover burn-in period. Its default value is set as 3 for PyDREAM, whereas we also
test two other cases, namely 1 and 3. From Figure 8.23, the differences between all these
three cases are also neglectable, just as adaptive crossover. However, the default value of 3
generally provides worse metric scores, both in terms of accuracy and efficiency.
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Figure 8.23.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the nCR parameter

8.3.3. Likelihood Kernel

The likelihood kernel function is manually defined for the DREAM algorithm, just as any
other Markov chain Monte Carlo algorithm. An investigation here is therefore also necessary.
We keep the likelihood kernel in the same format as the one used in other algorithms, with
two available options that include independent and dependent versions.

For the dependent version, the best accuracy performance happens at low likelihood kernel
factors, with the metric inaccuracy growing as the factor grows, even though the differences
are also neglectable. However, the computation time of the factor 5 is the most optimal,
being almost 20 seconds faster than other test cases. This efficiency difference could play an
important role in the selection of value.
For the independent version, the best accuracy performance happens at 0.6. There are,

however, no patterns that can be found. For the computation time, the efficiency grows as
the factor value grows. However, the independent version of the likelihood function performs
much worse than the dependent version of the likelihood function, both in RMSE and in
MAE metrics. Therefore, this version of the likelihood function is not considered in the case
of the DREAM algorithm.

Figure 8.24.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the independent likelihood kernel factor
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Figure 8.25.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the dependent likelihood kernel factor

8.3.4. Initialization

The initialization method is a big topic for efficiency enhancement. It is no exception for
the case of the DREAM algorithm. The same initialization methods as other algorithms are
proposed and used here. The visualization is then displayed in Figure 8.26. As expected,
the accuracy metrics do not differ much from each other. However, the most efficient
initialization methods according to the efficiency metrics are lower bound, upper bound, 1st
quantile of the prior distribution, the mean of the prior distribution, 3rd quantile of the
prior distribution, and the 1st quantile of the posterior distribution.

Figure 8.26.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the initialization method

8.3.5. Gamma

In the DREAM algorithm, the parameter gamma controls the step size in the proposal
generation process, which determines how far the new proposals can move from the last
sample. When gamma equals 1, the updates are larger, which enables the algorithm to make
broader moves, allowing the algorithm to avoid local extreme points and improve the chain
mixing. In PyDREAM, the parameter to adjust is called p gamma unity, which specifies
the probability that gamma will be set to 1 during the sample generation. By adjusting it,
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we can balance between exploration with larger steps and exploration with smaller steps,
making the sampling process able to be customized for specific use cases and requirements.
The default probability of p gamma level is 20%, whereas all values between 0 and 1 with a
distance of 0.2 are used for testing purposes. Figure 8.27 documents the benchmarked data
in a visual way, from which we can directly infer that the default value of 0.2 and the other
value of 0.8 deliver good RMSE scores, where 0.8 outperforms the 0.2 case by MAE, though
not by much. For the run time, however, there is indeed a noticeable difference, where the
configuration of 0, 0.2, and 1 all deliver a more ideal efficiency score than other test cases.

Figure 8.27.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the p gamma unity parameter

8.3.6. Differential Evolution

Differential Evolution (DE) is an optimization algorithm that iteratively enhances a popula-
tion of candidate solutions by generating new candidates through the weighted difference
between pairs of existing solutions (DEpairs) and combining them with a third solution. In
the DREAM algorithm, DEpairs ensure diverse and effective exploration of the parameter
space, while the snooker update further enhances exploration by projecting vector differences
onto the current state, helping to navigate complex, multimodal distributions. Together,
these mechanisms enable robust and efficient optimization in high-dimensional problems.

In the DREAM algorithm, differential evolution is an optimization method that improves
the sampling candidate solutions by generating new samples using the weighted difference
between pairs of existing samples and then using the crossover to mix components of these
solutions. Using this method, provides robustness for the algorithm, ensuring it can explore
complex and high-dimensional parameter spaces efficiently. To tune the DREAM algorithm
with respect to differential evolution, there are two input algorithm parameters available.
These are discussed in the following subsections.

DEpairs

In the introduction part, the concept of using the weighted difference between pairs of
existing samples is mentioned. The amount of sample pairs is called DEpairs, which is
responsible for generating new samples that keep maintain the diversity in the sample result
and the good mixing of the chains. By default, only one pair of existing samples is chosen
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for the calculation. For testing purposes, other values including 2 and 3 are tested, so that
we can observe to which extent the number of pairs affects the Bayesian inference result.
The benchmark data is recorded as visualization in Figure 8.28, where we can infer that
using 2 pairs of existing samples provides slightly better accuracy both in terms of RMSE
and MAE than the rest of the pair amounts. The computation time is, however, a complete
reflection of the accuracy metrics, where using 1 or 3 pairs of existing samples provides an
overall better efficiency than the case of 2. Thus, the selection of value here is a trade-off
between accuracy and efficiency.

Figure 8.28.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the DEpairs parameter

Snooker

Another mechanism in terms of differential evolution that is applied in the DREAM algorithm,
other than the above-mentioned pairs inference, is the snooker update. It further enhances
exploration by projecting vector differences between two chains onto the current state instead
of randomly selecting pairs for further sampling. In the DREAM algorithm, a probability
is set for the algorithm to determine whether to use a snooker update instead of a regular
update for the next iteration, since a snooker update is more compute-heavy. The default
probability is set as 10%, whereas we test different values including 20%, 50%, and 80%.
Besides, the two extreme cases are also tested, where we completely ditch the idea of snooker
update and only keep the regular updates based on randomly selecting pairs (0%), and
where we only use snooker update in each iteration (100%). The benchmark data is stored
in Figure 8.29. For efficiency, there is not much difference between the run time across all
configurations. For the accuracy metric, on the other hand, the extreme case of not using
the snooker update delivers the best performance in comparison with other cases, where the
snooker update is partially or completely used. The conclusion is then drawn, that for the
use case of the hydrological model, not using the snooker update delivers a more accurate
result.

80



8.3. Input Algorithm Parameters Exploration

Figure 8.29.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the snooker parameter

8.3.7. Burn In Phase

Burn-in phase is another crucial topic for all Markov chain Monte Carlo algorithms. From
the analysis in the chapters above, the burn-in phase poses a great influence on the outcome
of the Bayesian inference, therefore it is also investigated here. The benchmark result is
visualized in Figure 8.30. For the aspect of accuracy, we pick the factor over 5, which is the
20% burn-in phase. The relationship between the efficiency metrics and the configuration
is, on the other hand, the complete opposite of the relationship between accuracy metrics
and the configuration. The lower factor, which is the 50% burn-in phase, results in a more
efficient run time than the higher factor, which is the 20% burn-in phase. The selection of
the burn-in phase amount then also becomes a trade-off between accuracy and efficiency.

Figure 8.30.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the burn in factor

8.3.8. Effective Sample Size

Unlike the burn-in input algorithm parameter, the effective sample size shows no patterns
that can be found. From the graph shown in Figure 8.31, the only information that is
presented is the most optimal configuration for accuracy score, namely the effective sample
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size of 5, and also the best configuration in terms of efficiency, namely the effective sample
size of 2, 4 and 5.

Figure 8.31.: Comparison of the accuracy and the efficiency of DREAM
algorithms based on the effective sample size

8.4. Result and Comparison with Other Algorithms

Same as the case for the general parallel Metropolis-Hastings algorithm, the dream algorithm
is also run one more time, so that we can gather the data output for visualization. A
comparison with the other algorithms is going to be made, both in terms of accuracy and
efficiency.

The overview of the posterior distribution after the calibration is shown in the first graph,
where the generated samples are more concentrated than in the posterior generated by the
general parallel Metropolis-Hastings algorithm. This suggests that the DREAM algorithm
has a higher efficiency in exploring the parameter space, leading to more precise estimations
of the posterior distributions. The increased concentration of samples suggests a more
reliable convergence and leads to better efficiency of the calibration process. Altogether
with the concentration of the aggregation of generated samples from each dimension, the
DREAM algorithm is the best choice in terms of the parameter calibration under uncertainty,
exceeding the general parallel Metropolis-Hastings algorithm.
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Figure 8.32.: Overview of the posterior distribution of the parameters cali-
brated by the general parallel Metropolis-Hastings algorithm

Figure 8.33.: Boxplots of the generated posterior samples of each param-
eter calibrated by the general parallel Metropolis-Hastings
algorithm

In terms of accuracy, the RMSE score of the algorithm is around 20 and the MAE
score is around 9 for most cases, which is a slight downgrade from the general parallel
Metropolis-Hastings algorithm. Considering the extreme boost regarding the efficiency, with
an average runtime of around 400 seconds against 4000 seconds, the DREAM algorithm
would be an optimal choice for the uncertainty quantification.
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In this chapter, a deeper look into the time series is given. Different time series for training
and testing purposes are selected and used for the performance of Bayesian inference so that
the inferred results can be compared to each other and the measured data.

9.1. Sampling and Testing Time Series Selection

To set up the analysis, a range of time series that are used for sampling and testing need
to be selected. The sampling time series is used on which the Markov chain Monte Carlo
algorithms could perform sampling. In other words, the posterior, which is the result of
the Markov chain Monte Carlo sampling, is trained based on these data. The generated
posterior is then used for Bayesian inference, in which the Monte Carlo simulation is used
for random sampling and used as input for the HBV-SASK model. The result generated is
then compared with the measured data by visualization so that the differences between the
two time series can be observed.

The selection of these times series requires generality, which means that cases of different
scenarios need to be taken into consideration. Therefore, a deep look into both datasets
provided alongside the HBV-SASK model needs to be conducted. The visualization with
times series decomposition is displayed in Figures 3.1 and 3.2. From these visualizations,
we figure out that anomalies are integral parts of the entire time series, as they provide
valuable information that can be analyzed. These anomalies could be led by different reasons,
including climate changes, human activities, and seasonal variations. The predominant
reason, however, is flooding [?], which occurs now and then according to the visualizations.
They are therefore heavily taken into consideration in terms of sampling and testing times
series selection.

For the Oldman Basin, the anomalies are relatively apart from each other. From the trend,
we can see that relatively even intervals exist between different occurrences. The entire
time series is relatively calm and balanced in comparison to the Banff Basin, indicating the
seasons with high levels of discharge and raindrops are more predictable and less extreme.
Nevertheless, periods between the years 1992 and 1996 do have higher peaks across the
entire times series, with a significant peak presenting in June of 1995. Other small amounts
of lower peaks are distributed across the whole time series. The calmness with a certain
amount of anomalies makes the Oldman Basin data set an optimal choice for the testing
of generality. Therefore, most of the time series that are used for training and testing are
selected from the Oldman Basin dataset.
For the Banff Basin, a completely different scenario is presented. High peaks exist

everywhere and very often, causing the contrast between the flood period and the drought
period to be significant. The data is constantly fluctuating, showing active climate changes
and constant floods that are recorded in the area. The trend of the time series also displays
no patterns. These characteristics make it an optimal dataset for extreme case prediction, is
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therefore used for edge cases testing, and has less time series included for testing or training
purposes.
To cover the generality of the time series behavior, the following data sets are selected.

For training, the following time series are selected:

• Short and Calm (Oldman): A short and calm time series. We intend to observe
whether the lack of anomalies has an impact on the final inferred result.

• Short with Peaks (Oldman): A short time series with peaks that represent potential
anomalies. We intend to observe how the small amount of data with extreme anomalies
affects the outcome of the Bayesian inference.

• Long and Calm (Oldman): A short and calm time series. Alongside the lack of
anomalies, the necessity of having a huge amount of data is at the center of the
observation.

• Long with Peaks (Oldman): A long times series filled with anomalies. This data frame
represents the most generality, as it includes both calm periods and anomaly periods.

• 97-03 (Oldman): A time frame that lies inside of the Oldman Basin dataset to represent
generality. The years correspond to these of the time series ”97-03 (Banff)” for ease of
comparison.

• 97-03 (Banff): A time frame that lies inside of the Banff Basin dataset to represent
generality. The years correspond to these of the time series ”97-03 (Oldman)” for ease
of comparison.

For testing, the following time series are selected:

• Data containing floods (Oldman): The posterior is tested on a time series where
anomalies that represent floods are present. The ability to predict anomalies is tested.

• Data displaying calmness (Oldman): The posterior is tested on a calm time series.
The ability to cope with calm time regions with less fluctuations is tested.

• Banff: A general Banff sub time series with fluctuations that represent the generality
of the Banff time series is also used for testing, specifically for the posterior that is
trained using the Banff data set.

Another important factor for the execution of the HBV-SASK model is the spin-up phase.
The spin-up phase is performed before the actual execution of the model, where the model
performs execution based on the time series that are in other time frame than the time
frame of the actual data, usually a certain period before the period of the actual data. It is
performed to ensure the reduction of Initial Condition Bias and temporal consistency [?]. A
spin-up period of 400 cycles is suggested [?], however, we intend to test the impact of the
spin-up phase on efficiency and accuracy metrics, since the lengths of each time series that
are used for training are inconsistent. Therefore, 25%, 50%, and 100% of the time, which is
the time frame of the actual data, will be tested for the spin-up phase.

9.2. Result Interpretation

After extensive analysis, we conclude that the results of all different training data sets do
not show significant differences from each other. The same patterns are shown across all
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posterior samples from different training data sets. However, there are a few details that
show the characteristics of the training data set, which can be observed in the visualizations.
In the following paragraphs, the two testing scenarios are interpreted separately. The first
four training time series, namely short and calm, short with peaks, long and calm alongside
long with peaks are discussed to offer more insights into details, while the rest of the time
series are going to be discussed in the next chapter.
For the test case on data containing floods (Oldman), all inferred results shows decent

performance, particularly regarding trends. The posterior mean aligns well with the measured
data, since it closely follows the measured data throughout the entire period, both calm
periods and periods with high peaks. This indicates that the algorithm is capable of
accurately estimating flood activities and anomalies. On the other hand, the inferred result
shows more fluctuations than the measured data, suggesting that the algorithm is sensitive
to small changes in the input data or noises.

Figure 9.1.: The Bayesian inferred result of the posterior sampled using
the short and calm time series, testing on data containing
floods

Figure 9.2.: The Bayesian inferred result of the posterior sampled using
the short with peaks time series, testing on data containing
floods
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Figure 9.3.: The Bayesian inferred result of the posterior sampled using
the long and calm time series, testing on data containing
floods

Figure 9.4.: The Bayesian inferred result of the posterior sampled using
the long with peaks time series, testing on data containing
floods

A challenge here is the prediction of the peak in June 1995. The peak indicates a potential
strong flood, which is a significant anomaly across the entire time series. For comparison, the
exact predicted value is gathered manually from all of these scenarios. These are presented
in the table down below.

Training Data Short Data Frame Long Data Frame
Calmness 272.6607 272.9323
With Peaks 275.1849 277.3239

The measured result is 539, which is far away from the inferred data. Nevertheless, some
level of dependencies can be found here, as the training time series with peaks perform
better than the ones without peaks. This observation is logical since the posterior sampled
from the time series with peaks is more used to anomalies and peaks across the entire time
series. On the other hand, the inferred result from the long data frame performs slightly
better than the inferred result from the short data frame. This is potentially due to the
same reason, where the posterior sampled from the long period might be exposed to more
anomalies than the one sampled from the short period.

For the test case on data displaying calmness (Oldman), more discrepancies are shown in
the visualization due to the high scale-in level. The inferred results generally follow the trend
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of the measured data, especially in the calm periods. In fluctuating periods, the inferred
results also fluctuate, with peaks not being predicted as the exact measured value. This
high-variable property proves that the algorithm is susceptible to fluctuations, as inferred
in the test scenario above. A visualization of the first test case is displayed below. Other
scenarios offer similar results to the first test case in terms of visualization and are therefore
not presented here. Further comparisons regarding accuracy and efficiency metrics are
discussed in the next section, namely result comparison.

Figure 9.5.: The Bayesian inferred result of the posterior sampled using
the short and calm time series, testing on data displaying
calmness. All of the test cases on data displaying calmness
share similar results to this visualization

9.3. Result Comparison

After visualizing the results and comparing them with the measured data, we quantify the
accuracy and efficiency using metrics. In the last section, the test mentioned above scenarios
will be compared with each other in pairs, so that the dependency between metrics and
specific properties of training data sets can be visualized.
The first comparison takes place between the training time series of short periods. The

short and calm time series is compared with the short with peaks data frame, so that the
factor of including anomalies for the sampling phase of the Markov chain Monte Carlo
algorithm is investigated. From the bar chart, the short and calm time series seems to
deliver all-around better performance than the training dataset containing peaks. This could
be because the majority part of the time series is calm, and sampling the posterior from
the period that mostly comprises calmness allows the posterior to get accustomed to the
generality of the data during the sampling phase. On the other hand, the conclusion that
is drawn in the section above regarding the peak prediction is still valid. The posterior
sampled from the time series that contain peaks are more accustomed to the anomalies and
are therefore able to make better predictions for peak areas.
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Figure 9.6.: Comparison of metrics for the test case of short periods

The second comparison is between training time series of long periods. Logical relationships
are also derived in this case, where the posterior sampled from the long time series with
peaks, where anomalies occur now and then, delivers better performance. Having appropriate
amounts of anomalies in the training data set, the posterior can resemble the regularity of
presence in terms of patterns of anomalies, while it keeps the model robust and accurate
in predicting calm phases. This balance helps the model to better generalize and adapt to
unexpected variations in the data.

Figure 9.7.: Comparison of metrics for the test case of long periods

For the third comparison, we focus on periods with peaks. A short time series with
peaks is compared with a long time series with peaks so that the importance of the training
period length is focused. From the results, we can observe that the long training time series
generally delivers a better performance than the short training time series. This observation
is reasonable, since the long training time series contains more anomalies over time, allowing
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the posterior to learn and adapt to the pattern in the process of sampling. A longer period
for training time series here means that the posterior is exposed to more anomalies, allowing
the adaption to take place, thus potentially resulting in better accuracy scores.

Figure 9.8.: Comparison of metrics for the test case of periods with peaks

The fourth comparison is more generalized. Time series between 1997 and 2003 of both
Banff and Oldman basins, which contain both peak and calm phases, are used to generate
posteriors, where they are then tested on two testing data frames selected from both basins.
For the test data frame from the Oldman basin, the posterior sampled from the Oldman
basin achieved a better accuracy score than the posterior sampled from the Banff basin.
This is logical because the sampling process adapts itself to the behavior of the Oldman
basin. However, the posterior sample from the Oldman basin also performs better for the
test data frame from the Banff basin than the posterior sampled from the Banff basin. This
could be due to the same reason as mentioned in the first comparison since anomalies are
still. Being trained on the Oldman basin instead of the Banff basin, the posterior is more
accustomed to the calm periods, which still constitutes the majority part of the time series
from the Banff basin. Therefore, training on the Oldman basin is overall a better choice for
general Bayesian inference results.
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Figure 9.9.: Comparison of metrics for the test case of periods from differ-
ent basins

The spin-up phase is investigated for the last comparison. The efficiency is more optimized
for the models with shorter spin-up phases, which is logical since spin-up phases require
model executions and simulations as well. For the accuracy metrics, on the other hand, the
results show a certain complexity for analysis. Testing the sampled posterior on the short
test data frame results in a proportional relationship, in which shorter spin-up phases result
in better accuracy scores. This might be because longer spin-up phases consider too much
historical data, which might potentially be a disturbing factor for the Bayesian inference.
For the long test data frame, there is no pattern that can be distinguished regarding the
relationship between the accuracy score and the spin-up length. Since the longer data
frame contains more anomalies, the behavior of the posterior sampling can be unpredictable.
Therefore, the spin-up length may not consistently influence the accuracy score.

Figure 9.10.: Comparison of metrics for the observation of spin-up length
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In conclusion, sampling from data where more peaks are present allows the Markov chain
Monte Carlo algorithm to perform more precise predictions for anomalies, whereas sampling
from data that are calmer and contain fewer anomalies allows the Markov chain Monte Carlo
algorithm to perform generally better forecasts in terms of accuracy metrics. A selection of
training data that balances both aspects is crucial for optimal inferred results.
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In this chapter, a brief documentation of the software implementation of this thesis is given.
An overview of the structure will be documented, as well as how to use the implemented
framework to perform Bayesian inference using different algorithms.

10.1. Structure and Usage

The repository1 contains three main subfolders. ”Thesis” includes the source file of the
actual thesis and ”Results” includes the benchmarked data and visualization for the thesis.
The most important folder regarding the actual software is ”Implementation”, where the
implemented algorithm and the data are stored.

The structure of the algorithm is as follows: the main file that is executed is called ”run.py”
under the src subfolder. This file is responsible for calling the selected implemented algorithm
and executing the Bayesian inference with specified parameters. Specifying the arguments
that configure the run time environment can be done by editing the file ”run config.json” on
the root level. This file uses the JSON format to configure the run-time parameters of the
software. The requirements or options are documented below:

• configPath (required): The config file that is used for the model.

• basis (required): The basis of the data that is used for the model.

• mode (required): The mode of the algorithm. Options: mh, parallel mh, gpmh, dream.

• separate chains (optional, default=false): Determine whether the output file is sup-
posed to record the data separately by chains. They are only relevant for algorithms
that sample data using multiple chains, including parallel mh and dream.

• burnin fac (optional, default=5): The burn in factor that is used for the result of the
MCMC algorithm. The first 1/burnin fac percentage of the entire data is going to be
discarded.

• effective sample size (optional, default=1): Only the every n th data is going to be
collected. Default 1: no data point is going to be discarded.

• output file name (optional, default=”mcmc data.out”): The file name of the saved
output result.

• kwargs (optional): A dictionary in form of JSON that is used for specific algorithm
input parameters.

The first parameter, configPath, leads to another configuration file that is used for the
hydrological model instantiation. This configuration file for the hydrological model is
typically stored in the configuration subfolder under implementation.

1https://github.com/CJZbeastmode/HBV-SASK-Bayesian-Inference
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10. Description of Software Implementation

After configuring the configuration file, we execute the software by running ”run.py”.
The software then fetches the data from the configuration file, loading the model via
model initialization functions, which are implemented in ”construction model.py” and
”execute model.py”, and selecting the corresponding algorithm and likelihood function. The
algorithm initialization files are stored in the folder run mcmc, acting as a preparation for
executing the actual algorithms, all of which are stored in the dependencies subfolder on
the level before. The different implementations of likelihood functions are stored in the
likelihood subfolder. The samples that are generated will be stored as a CSV file as output.
For the visualization part, the Jupyter notebook file ”visualization.ipynb” is provided

under the ”src” folder. To configure the visualization, the file ”viz config.json” is used.
Individual parameters for configurations are listed below.

• configPath (required): The config file that is used for the model.

• basis (required): The basis of the data that is used for the model.

• input file (required): The data in the input file. It could be seperately recorded or
merged.

• sep viz (optional, default=False): The option to visualize the data by chains. If false,
then the entire dataframe is going to be visualized. If true, different chains are going
to be visualized individually, before a comparison visualization is going to be given.

• monte carlo repetition (optional, default=1000): The number of iterations for the
monte carlo method for the comparison of the Bayesian inference result.

10.2. Algorithm Specification

As mentioned in the parameter explanation in the last section, ”kwargs” indicate specific
configurations for the Markov chain Monte Carlo algorithms. In this section, details regarding
these specifications are documented.
Configurations for the fundamental Metropolis-Hastings algorithm include:

• version (optional, default=”ignoring”): Version of the MH algorithm. Options: ignor-
ing, refl bound, aggr.

• sd transition factor (optional, default=6): The standard deviation factor of the tran-
sition kernel. The standard deviation is given by (upper bound - lower bound) /
sd transition factor.

• likelihood sd (optional, default=1): The standard deviation parameter for independent
likelihood function, or the standard deviation parameter factor for dependent likelihood
function (standard deviation: likelihood sd * y error).

• likelihood dependence (optional, required if likelihood sd is present, default=False): To
select whether to use the dependent likelihood function or the independent likelihood
function.

• max probability (optional, default=False): The acceptance probability will take the
maximum probability value of the acceptance probability array if set true, otherwise
the mean.
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• iterations (optional, default=10000): Number of iterations.

• init method (optional, default=”random”): Specify the starting state of the Dream
MCMC algorithm. Options: random, min, max, q1 prior, mean prior, q3 prior,
q1 posterior, median posterior, q3 posterior.

Configurations for the parallel Metropolis-Hastings algorithm include:

• version (optional, default=”ignoring”): Version of the MH algorithm. Options: ignor-
ing, refl bound, aggr.

• chains (optional, default=4): Number of chains.

• sd transition factor (optional, default=6): The standard deviation factor of the tran-
sition kernel. The standard deviation is given by (upper bound - lower bound) /
sd transition factor.

• likelihood sd (optional, default=1): The standard deviation parameter for independent
likelihood function, or the standard deviation parameter factor for dependent likelihood
function (standard deviation: likelihood sd * y error).

• likelihood dependence (optional, required if likelihood sd is present, default=False):
Selects whether to use the dependent likelihood function or the independent likelihood
function.

• max probability (optional, default=False): The acceptance probability will take the
maximum probability value of the acceptance probability array if set true, otherwise
the mean.

• iterations (optional, default=2500): Number of iterations.

• init method (optional, default=”random”): Specify the starting state of the Dream
MCMC algorithm. Options: random, min, max, q1 prior, mean prior, q3 prior,
q1 posterior, median posterior, q3 posterior.

Configurations for the general parallel Metropolis-Hastings algorithm include:

• num proposals (optional, default=8): The numbers of proposal points in each iteration.

• num accepted (optional, default=4): The numbers of accepted points in each iteration.

• likelihood sd (optional, default=1): The standard deviation parameter for independent
likelihood function, or the standard deviation parameter factor for dependent likelihood
function (standard deviation: likelihood sd * y error).

• likelihood dependence (optional, required if likelihood sd is present, default=False):
Selects whether to use the dependent likelihood function or the independent likelihood
function.

• sd transition factor (optional, default=6): The standard deviation factor of the tran-
sition kernel. The standard deviation is given by (upper bound - lower bound) /
sd transition factor.

• version (optional, default=”ignoring”): Version of the MH algorithm. Options: ignor-
ing, refl bound, aggr.

• iterations (optional, default=2500): Number of iterations.
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• init method (optional, default=”random”): Specify the starting state of the Dream
MCMC algorithm. Options: random, min, max, q1 prior, mean prior, q3 prior,
q1 posterior, median posterior, q3 posterior.

Configurations for the DREAM algorithm include2:

• iterations (optional, default=1250): Number of iterations.

• chains (optional, default=8): Number of chains.

• DEpairs (optional, default=1): Number of chain pairs to use for crossover and selection
of next point.

• multitry (optional, default=False): Whether to utilize multi-try sampling. It takes
boolean or integer values.

• hardboundaries (optional, default=True): Whether to relect point back into bounds of
hard prior.

• crossover burnin (optional, default=0): Number of iterations to fit the crossover values.

• nCR (optional, default=3): Number of crossover values to sample from during run.

• snooker (optional, default=0): Probability of proposing a snooker update.

• p gamma unity (optional, default=0): Probability of proposing a point with gamma=unity.

• init method (optional, default=”random”): specify the starting state of the Dream
MCMC algorithm. Options: random, min, max, q1 prior, mean prior, q3 prior,
q1 posterior, median posterior, q3 posterior.

• likelihood sd (optional, default=1): the standard deviation parameter for independent
likelihood function, or the standard deviation parameter factor for dependent likelihood
function (standard deviation: likelihood sd * y error).

• likelihood dependence (optional, required if likelihood sd is present, default=False): to
select whether to use the dependent likelihood function or the independent likelihood
function.

2More information regarding specifications can be found on https://pydream.readthedocs.io/en/latest/

pydream.html
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11. Conclusion and Further Outlook

In this thesis, the Bayesian inference of hydrological model parameters is implemented.
Four versions of Markov chain Monte Carlo algorithms are used for performing Bayesian
inference, each delivering different results based on their unique properties. The input
algorithm parameter is then specified, in which the accuracy and efficiency metrics of
different input algorithm parameters are benchmarked. For some input algorithm parameters,
obvious relations between the configurations and the metrics can be found. For others, the
configurations do not make a huge difference, or there is a certain configuration that stands
out among all the different values of input algorithm parameters.

The first algorithm that is used is the fundamental Metropolis-Hastings, where one sample
is generated in each iteration and later on, accepted or rejected based on the calculated
acceptance probability using the likelihood function and sampling kernel. Therefore, the
sampling kernel and the likelihood kernel play important roles, in which they exert a great
impact on the acceptance or rejection.
The other three algorithms that are used all utilize the parallel aspect. The second

algorithm, parallel Metropolis-Hastings is the parallel version of the fundamental Metropolis-
Hastings algorithm, in which it uses multiple chains for sampling instead of one single chain.
The number of chains is, therefore, a relevant factor for the result, since the number of
samples generated in each chain is closely related to the convergence rate of the final result.

The third algorithm is the general parallel Metropolis-Hastings algorithm, in which multiple
samples are generated in each iteration rather than one single sample. The acceptance
probabilities are calculated in the form of a vector, which builds a probability space that
allows random sampling to take place. Here, the ratio between the number of samples
generated and accepted plays an indispensable role, as discussed in detail in the chapter.
Other input algorithm parameters including sampling and likelihood kernels are also relevant,
as they contribute to the calculation of the acceptance probability vector. In comparison to
the two algorithms above, this algorithm achieves higher accuracy due to the acceptance
mechanism, but potentially lower efficiency due to the complexity of acceptance calculation.
The final algorithm is the DREAM algorithm, which improves the sampling phase of

the algorithm by adapting the sampling behavior based on past samples and employing a
crossover mechanism from differential evolution to efficiently explore the parameter space.
Thus, the configurations that are related to crossover, DE (differential evolution), and snooker
are relevant for the performance of the result. The DREAM algorithm generally delivers the
most accurate and efficient result, achieved not only by running multiple parallel chains but
also by enhancing convergence and ensuring thorough exploration of the parameter space.
For the general implementation of Markov chain Monte Carlo algorithms, three other

factors are relevant, namely the burn-in phase, the effective sample size, and the initial
states. The burn-in phase discards the samples generated at the very start because the
Markov chain has not entered the stationary phase yet. The effective sample size allows the
algorithm to consider only every n-th sample in the result, allowing less dependency to form
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between samples in the result that are next to each other. A good choice of initial states
optimizes the efficiency of the sampling process by allowing the chains to quickly enter the
phase where they sample from the stationary distribution.

For the specific use case for the hydrological model, handling the cases where the samples
generated are out of bounds is also crucial. Since the prior parameters are uniformly
distributed, the out-of-bounds samples could cause odd behaviors. Using mechanisms such
as ignoring, reflection, and aggregation, these cases can be well handled.
Using the algorithms that are mentioned above, the parameters of the HBV-SASK

model are inferred, but each to a different extent. While the fundamental and the parallel
Metropolis-Hastings algorithms do not give out much information regarding the posterior,
the general parallel Metropolis-Hastings and the DREAM algorithms present obvious results,
both presented in the thesis. Both algorithms present similar posterior distributions for six
of the seven dimensions. This shows the consistency of the inferred results for most cases,
indicating the correctness of the inferred results. However, the samples generated by the
DREAM algorithms are more concentrated in the posterior distribution, implying a better
convergence of the generated samples. It is therefore the most optimal algorithm for the
quantification of parameters under uncertainty. Descriptions of the posterior distribution of
each dimension are listed below:

• TT: The distribution resembles a normal distribution with a peak around 2.8. The
values are clustered around this mean, suggesting a small standard deviation.

• C0: The distribution resembles a normal distribution with a sharp peak around 2.1,
with also a high concentration of values near the mean indicating a small standard
deviation.

• β (beta): The distribution is roughly normal with its peak centered around 2.0. The
values spread symmetrically from 1.5 to 2.5, indicating moderate variability.

• ETF: The distribution has a peak around 0.02 but with more spread, suggesting a
normal distribution with a higher standard deviation.

• FC: The distribution shows a peak of around 250. It also has a narrow spread, which
suggests a small standard deviation

• FRAC: The distribution appears to follow a normal distribution centered around 0.2.
The spread from 0.15 to 0.25 indicates moderate variability.

• K2: The distribution exhibits a peak around 0.048, which is on the upper edge of the
complete interval. Values spread narrowly on the left side of the peak.

Nevertheless, there is still plenty of work that can be done further regarding the topic
of the thesis. For one, the acceptance rate of each algorithm could be further investigated.
By tracking the percentage of iterations where the generated samples are accepted, the
acceptance rate of the algorithms can be determined, so further improvement regarding
sampling efficiency can be investigated and made. For another, the autocorrelation plots of
generated samples using algorithms with different effective sample sizes can be examined.
Effective sample size is a technique that is used to reduce the correlation between samples
that are generated behind each other. The autocorrelation plots can be used to assess
this aspect in a visual way, which is not conducted in this thesis. Besides, the DREAM
algorithm has the potential to deliver more precise inferred results. Even though the DREAM
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algorithm performs better than all other algorithms in terms of parameter quantification
under uncertainty, the Bayesian inferred result does not exceed the accuracy of the one from
the general parallel Metropolis-Hastings algorithm. Further tuning can be made around
the parameters so that a more precise inferred result could potentially be derived. Apart
from that, the anomaly of the testing data set is not well predicted. Even though we use
this aspect to determine the configuration of the time series, on which the Markov chain
Monte Carlo algorithms shall sample, the actual result of anomaly prediction is left to be
desired. Finding a set of input algorithm parameter configurations and training data sets
could be the key to a better result in terms of anomaly prediction. Last but not least, more
algorithms of Markov chain Monte Carlo sampling can be tried for the Bayesian inference
problem, so that algorithms with potential better performances in terms of the Bayesian
inference problem for the hydrological model could be exploited and invented.
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