
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

Y-Vine Copula Based Structure Learning
for Continuous Bayesian Networks

Brian Zeiser Dietrich

Thesis for the attainment of the academic degree

Master of Science

at the TUM School of Computation, Information and Technology of the Technical University of Munich

Supervisor:
Prof. Claudia Czado, Ph.D.

Advisors:
Prof. Claudia Czado, Ph.D.

Submitted:
Munich, September 27, 2024

I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I

have only used the resources given in the list of references.

Munich, September 27, 2024 Brian Zeiser Dietrich

v

Abstract

Bayesian networks are powerful graphical models that capture the probabilistic dependencies between

random variables. Pair-copula Bayesian networks (Bauer et al. 2011) extend the well-known Gaussian

Bayesian networks by allowing for non-Gaussian distributions through the incorporation of bivariate cop-

ulas and univariate marginal distributions into the network structure.

A widely-used method for learning the structure of Bayesian networks is the constraint-based PC algo-

rithm (Spirtes et al. 1993), which employs conditional independence tests to identify the absence of edges

in an underlying directed acyclic graph (DAG). In the case of continuous data, Fisher’s Z-test of partial

correlation is commonly used as a benchmark for testing conditional independencies.

However, a significant limitation of this approach is its reliance on the assumption of a multivariate

Gaussian distribution, under which partial and conditional correlations coincide, and vanishing correla-

tions imply independence. To overcome this limitation, a novel conditional independence test based on

Y-vine copulas is introduced.

Y-vine copulas, a subclass of regular vine copulas introduced by Tepegjozova and Czado (2023), are de-

signed to model bivariate conditional distributions using only univariate distributions and bivariate cop-

ulas, thus avoiding the need for integration. Their inherent flexibility allows them to model data without

making assumptions about the underlying distribution.

The modified PC algorithm, utilizing Y-vines to facilitate conditional independence testing, will be eval-

uated against its traditional counterpart in a simulation study using both Gaussian and non-Gaussian data

generated from Bayesian networks. To produce non-Gaussian data, a new simulation procedure based on

D-vines is proposed, which enables approximate sampling from a pair-copula Bayesian network without

imposing constraints on the underlying structure or the order of the parent nodes. The results of the sim-

ulation study highlight that the Y-vine-based PC algorithm more accurately recovers the true underlying

graphical structure than the Z-test benchmark, albeit with significantly increased computational effort.

Finally, it will be demonstrated that univariate D-vine-based regression can effectively learn the parent

order of a node and parameters in pair-copula Bayesian networks. The combination of the Y-vine-based

PC algorithm and the D-vine-based parameter learning method will be applied to estimate pair-copula

Bayesian networks in real-world case studies.

vii

Contents

1 Introduction and Overview 1

2 Mathematical Foundations 3
2.1 Notation . 3

2.2 Graphical Models . 3

2.2.1 Graph Theory . 3

2.2.2 Bayesian Networks . 6

2.2.3 Gaussian Bayesian Networks . 9

2.2.4 Structure Learning . 11

2.2.5 Conditional Independence Tests . 21

2.2.6 PDAG Extension . 25

2.3 Vine Copulas . 25

2.3.1 Sklar’s Theorem . 25

2.3.2 Dependence Measures . 26

2.3.3 Bivariate Copula Classes . 27

2.3.4 Regular Vines . 29

2.3.5 Family Selection and Parameter Estimation . 33

3 Vine Copula Based Regression 35
3.1 Univariate D-Vine-Based Regression . 35

3.1.1 Kernel Density Estimation . 36

3.1.2 Sequential D-Vine Estimation . 36

3.1.3 Conditional Simulation . 38

3.2 Bivariate Y-Vine-Based Regression . 39

3.2.1 Y-Vine Copula Model . 40

3.2.2 Sequential Y-Vine Estimation . 43

3.2.3 Y-Vine Conditional Independence Test . 44

4 Pair-Copula Bayesian Networks 49
4.1 Model Framework . 49

4.2 Simulation Methods . 55

4.2.1 Exact Simulation . 55

4.2.2 Approximate Simulation Using D-Vines . 57

4.3 Maximum Likelihood Estimation and Parameter Learning 63

4.4 Selecting Parent Orders . 66

5 Simulation Study: Y-Vine-Based Structure Learning 67
5.1 Study Design . 67

5.2 Performance Measures . 70

5.3 Choice of Tuning Parameters . 75

5.4 Case 1: Four Dimensions . 77

5.5 Case 2: Six Dimensions . 80

5.6 Case 3: Eleven Dimensions . 81

5.7 Computational Performance . 88

Contents

viii

6 Data Application: Flight Data Analysis 91
6.1 Exploratory Data Analysis . 92

6.2 Model 1: Expert DAG . 95

6.3 Model 2: Y-DAG . 95

6.3.1 Determination of Edge Directions . 97

6.3.2 Parameter Learning . 99

6.4 Model 3: Z-DAG . 101

6.4.1 Determination of Edge Directions . 101

6.4.2 Parameter Learning . 102

6.5 Model Comparison . 104

7 Data Application: Sachs Data Analysis 107
7.1 Exploratory Data Analysis . 107

7.2 Model 1: Expert DAG . 110

7.3 Model 2: Y-DAG . 111

7.4 Model 3: Z-DAG . 114

7.5 Model Comparison . 118

8 Conclusion and Outlook 121

A Continuous Parametric Distributions 123
A.1 Univariate Distributions . 123

A.2 Multivariate Distributions . 126

B Bivariate Copulas 127
B.1 Elliptical Copulas . 127

B.2 Archimedean Copulas . 128

B.3 BB Copulas . 129

Bibliography 139

1

1 Introduction and Overview

In many fields, modeling the complex relationships between variables is essential for capturing both their

interdependencies and the inherent uncertainty in their interactions. To address this need, Bayesian net-

works offer a powerful approach. These graphical models are designed to represent the probabilistic re-

lationships among variables, allowing for a structured framework that reflects how variables influence

each other. By representing these dependencies visually and probabilistically, Bayesian networks enhance

decision-making and prediction capabilities. However, while they are effective in many scenarios, tradi-

tional continuous Bayesian networks often rely on Gaussian assumptions that may not capture all types

of real-world dependencies. This limitation has led to the development of more advanced models, such

as pair-copula Bayesian networks (PCBNs), which use copulas to model non-Gaussian dependencies and

better reflect complex, real-world interactions (Bauer et al. 2011).

A significant challenge with PCBNs is that they often involve conditional cumulative distribution func-

tions in the factorization of the network’s probability density function, which can only be computed

through integration (Bauer 2013). Consequently, not all PCBNs can be represented using regular vines,

and exact likelihood inference and sampling can become computationally intensive, particularly for large-

dimensional networks.

This thesis addresses these challenges by investigating an alternative approximatemethod for likelihood

inference and sampling through D-vine structural equation models (DV-SEMs) (Czado and Scharl 2021).

The approach involves constructing a D-vine for each node with multiple parents, where the node of

interest is treated as a leaf node followed by its parents in a specified order. In cases where the parent orders

and specific pair-copulas of a PCBN are unknown, D-vine-based regression (Kraus and Czado 2017) is

used to estimate all D-vines associated with the DV-SEM. This includes a forward selection algorithm that

sequentially determines the covariate order in the first D-vine tree based on importance. By estimating all

pair-copulas required for computing the density function of a specific node given its parents, this method

facilitates integration-free sampling from the PCBN and likelihood computation.

Learning the parameters of a PCBN using D-vine-based regression presupposes knowledge of the net-

work structure. While expert knowledge can sometimes provide this structure, it is not always available,

and proposed structures may not always fit the dataset. Therefore, efficient and accurate structure learning

algorithms are often necessary.

One commonly usedmethod for structure learning is the PC algorithm (Spirtes et al. 1993), which identi-

fies node relationships through conditional independence tests. Traditionally, Fisher’s Z-test (Fisher 1924)

has been used to assess conditional independence by analyzing partial correlations. However, this test

is constrained by its assumption of normally distributed data. Specifically, Fisher’s Z-test relies on the

alignment of partial and conditional correlations, with a partial correlation of zero indicating conditional

independence. This alignment is only guaranteed in Gaussian distributions (Baba et al. 2004). Conse-

quently, if a PCBN exhibits non-Gaussian dependencies, Fisher’s Z-test may not reliably detect conditional

independencies.

To address these limitations, this thesis introduces a novel structure learning method based on Y-vine

copulas (Tepegjozova and Czado 2023), a subclass of regular vine copulas. Y-vine copulas provide a more

flexible approach for modeling non-Gaussian dependencies in conditional independence tests used by the

PC algorithm. For testing conditional independence statements of the form 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS, Y-vine-based

regression is applied to data containing variables 𝑖 , 𝑗 , and S, with 𝑖 and 𝑗 as response variables and S as

covariates. The conditional copula𝐶𝑖, 𝑗 ;S is obtained from the final tree of the fitted Y-vine, and the Y-vine-

based conditional independence test uses a simple upper bound on the estimated 𝜏-value of this copula to

assess conditional independence.

1 Introduction and Overview

2

The thesis aims to evaluate whether Y-vine-based structure learning can outperform traditional Fisher’s

Z-test in both Gaussian and non-Gaussian data scenarios. This involves a simulation study across various

dimensions and PCBN specifications, where data is sampled using the approximate method introduced.

The fitted models are compared based on how closely their estimated structures match the true underly-

ing structure, and the models are further compared on probability levels using D-vine-based parameter

learning and approximate likelihood inference. The simulation results show that the PC algorithm incor-

porating Y-vine conditional independence testing more effectively recovers the true graphical structure

compared to the Z-test-based PC algorithm, especially in scenarios with strong non-Gaussian dependence

structures.

Ultimately, the PC algorithm, incorporating both the novel Y-vine-based conditional independence test

and Fisher’s Z-test for partial correlation, is applied to two real-world examples. The first example comes

from aviation and includes 711 observations across 12 variables related to Boeing 747-8 landings at a

specific airport. In this case, understanding the interdependencies among landing parameters is crucial

for improving flight safety. The second example is drawn from biology, utilizing data from the Sachs

dataset (Sachs et al. 2005), which comprises 911 observations of 11 variables. This experiment aims to

investigate the causal relationships between various molecular entities in human cells. In both cases, the

learned structures are compared to expert-knowledge-based models. After fitting the parameters of both

the learned and expert Bayesian networks, it will be shown that the fitted, sparser structures achieve better

penalized fit statistics, indicating that model complexity can be significantly reduced. Moreover, for the

Sachs dataset, the Y-vine-based model outperforms the Z-test-based approach in terms of AIC and BIC.

3

2 Mathematical Foundations

2.1 Notation

• Random variables will be denoted by capital letters such as 𝑋 , 𝑌 , and 𝑍 , and their realizations will

be denoted by lowercase letters such as 𝑥 , 𝑦, and 𝑧.

• All random variables are assumed to be absolutely continuous, and therefore all (conditional) den-

sities exist.

• The letter 𝑓 is used to denote a probability density function (pdf), and the corresponding cumulative

distribution function (cdf) is denoted by the letter 𝐹 .

• Random vectors in 𝑑 dimensions will be denoted in bold letters such as X = (𝑋1, . . . , 𝑋𝑑)⊤, and
subsets of random vectors will have a subscript likeX𝑆 , where 𝑆 ⊆ {1, . . . , 𝑑}. Similarly, observations

of random vectors will be in bold lowercase letters such as x = (𝑥1, . . . , 𝑥𝑑)⊤.

• Marginal distributions will have a subscript that refers to the random variable. For example, 𝑓𝑗 (𝑥 𝑗)
is the marginal density function of 𝑋 𝑗 in X = (𝑋1, . . . , 𝑋𝑑)⊤, 𝑗 = 1, . . . , 𝑑 .

• Conditional densities and distribution functions use subscripts of the form 𝑗 | 𝑘 to indicate the con-

ditional distribution of 𝑋 𝑗 given 𝑋𝑘 for 𝑗 ≠ 𝑘 (e.g., 𝑓𝑗 |𝑘 (𝑥 𝑗 | 𝑥𝑘) is the conditional density function).

• If it is not clear from the context which distribution is being referred to, joint densities and dis-

tribution functions may contain multiple subscripts. For example, 𝑓1234(𝑥1, 𝑥2, 𝑥3, 𝑥4) is the density
function of (𝑋1, 𝑋2, 𝑋3, 𝑋4)⊤, and 𝐹134(𝑥1, 𝑥3, 𝑥4) is the cdf of (𝑋1, 𝑋3, 𝑋4)⊤.

• The independence of two random variables 𝑋 and 𝑌 is denoted by 𝑋 ⊥⊥ 𝑌 . Similarly, dependence is

denoted by 𝑋 ̸⊥⊥ 𝑌 .

• Conditional independence is denoted by 𝑋 ⊥⊥ 𝑌 | Z, where Z is a possibly empty set of random

variables. In the case of Z = ∅, 𝑋 ⊥⊥ 𝑌 | Z corresponds to the ordinary independence 𝑋 ⊥⊥ 𝑌 .

2.2 Graphical Models

In graphical models, the graph’s structure expresses the probabilistic dependencies among the variables

it represents. Analyzing the graphical structure using tools from graph theory can reveal much about a

model’s properties. To facilitate this analysis, it is necessary to introduce some basic terminology, which

will be sufficient for this thesis. This terminology is mainly adapted from Nagarajan et al. (2014) and

Edwards (2000).

2.2.1 Graph Theory

Definition 2.2.1 (Graph). A graph, G = (V, E), consists of a finite setV of nodes and a finite set E of

edges, where E ⊆ V ×V , and (𝐴,𝐴) ∉ E for all 𝐴 ∈ V . A graph is said to be 𝑛-dimensional, 𝑛 ∈ ℕ, if it

contains exactly 𝑛 nodes.

Definition 2.2.2 (Undirected/directed). An edge (𝐴, 𝐵) ∈ E is called undirected if (𝐵,𝐴) ∈ E holds

as well. In this case, the notation 𝐴 − 𝐵 is used to show that the order of the nodes is interchangeable.

Similarly, an edge (𝐴, 𝐵) ∈ E is called directed if (𝐵,𝐴) ∉ E. This is denoted by 𝐴→ 𝐵. A graph is called

2 Mathematical Foundations

4

undirected (resp. directed) if it contains only undirected (resp. directed) edges. A graph that may contain

both undirected and directed edges is referred to as partially directed.

Definition 2.2.3 (Skeleton). A skeleton is an undirected graph obtained from a (partially) directed graph

by replacing all directed edges with undirected edges.

A

B C

D

(a) A directed graph in four dimensions

A

B C

D

(b) The skeleton of the graph in (a)

Figure 2.1 Comparison of a directed graph and its skeleton

Figure 2.1a depicts a directed graph in four dimensions, while Figure 2.1b illustrates its skeleton, which

is defined as an undirected graph.

Definition 2.2.4 (Path, trail). Let G = (V, E) be a graph and 𝑛 ≥ 2.

i) A path of length n from A0 to An is a sequence of edges 𝑃 (𝐴0;𝐴𝑛) =
(
(𝐴𝑖−1, 𝐴𝑖)

)
𝑖=1,...,𝑛

connecting

the nodes 𝐴0, 𝐴1, . . . , 𝐴𝑛 ∈ V such that

• (𝐴𝑖−1, 𝐴𝑖) ∈ E for all 𝑖 = 1, . . . , 𝑛.

• All edges in 𝑃 (𝐴0;𝐴𝑛) are unique (both directed and undirected).

ii) A trail of length n from A0 to An is a path where the direction of the edges is ignored, i.e., a

sequence of edges 𝑇 (𝐴0;𝐴𝑛) = (𝑒𝑖)𝑖=1,...,𝑛 such that

• 𝑒𝑖 ∈ {(𝐴𝑖−1, 𝐴𝑖), (𝐴𝑖 , 𝐴𝑖−1)} for all 𝑖 = 1, . . . , 𝑛.

• 𝑒𝑖 ∈ E for all 𝑖 = 1, . . . , 𝑛.

• All edges in 𝑇 (𝐴0;𝐴𝑛) are unique (both directed and undirected).

In an undirected graph, a path from 𝐴0 to 𝐴𝑛 may also be denoted as 𝐴0 − 𝐴1 − · · · − 𝐴𝑛 . In a directed

graph, it can be represented as 𝐴0 → 𝐴1 → · · · → 𝐴𝑛 . Additionally, in both cases, the sequence of nodes

𝐴0, 𝐴1, . . . , 𝐴𝑛 may simply be used as another notation.

Definition 2.2.5 (v-structure, diverging structure). LetG = (V, E) be a𝑛-dimensional graphwhere𝑛 ≥ 3,

and let 𝐴, 𝐵,𝐶 ∈ V . A v-structure is a trail of the form 𝐴→ 𝐵 ← 𝐶 , and a diverging structure is a trail
of the form𝐴← 𝐵 → 𝐶 . In these cases, the trail is said to contain a v-structure (or diverging structure)
around B.

Note that from the definition of a path, it follows that all directed edges forming the path must point in

the same direction along the sequence; thus, diverging structures and v-structures cannot be part of the

path. For this reason, there is, for example, no path from node B to node C or vice versa in Figure 2.1a.

In contrast, trails do not impose any restrictions on the directions of the edges. They can be viewed as

paths in the skeleton of a graph where the edge directions are inherited from the original graph. In the

skeleton shown in Figure 2.1b, for instance, there exists the path 𝐵 −𝐷 −𝐶 , which corresponds to the trail

𝐵 → 𝐷 ← 𝐶 in Figure 2.1a.

Definition 2.2.6 (Cycle). Let G = (V, E) be a graph. A cycle is a path of length 𝑛 ≥ 3 where the starting

node and end node are identical, i.e., a path of the form 𝐴1, . . . , 𝐴𝑛, 𝐴1. A graph is called acyclic if it

contains no cycles.

2.2 Graphical Models

5

A

B C

D

E

Figure 2.2 A five dimensional DAG. Node A blocks the trail 𝐵 ← 𝐴→ 𝐶 and node E activates 𝐵 → 𝐷 ← 𝐶

Throughout this thesis, the focus will be on a special class of graphs that serve as the foundation for

Bayesian networks.

Definition 2.2.7 (Directed acyclic graph). A graph G = (V, E) is called a directed acyclic graph (DAG)
if it is directed and acyclic.

The directed graph in Figure 2.2 is acyclic and therefore a DAG.

Definition 2.2.8 (Ancestral relations). Let G = (V, E) be a DAG. For any node 𝐴 ∈ V , consider the

following ancestral relations:

i) Parents of A: 𝑝𝑎(𝐴) ≔ {𝐵 ∈ V | (𝐵,𝐴) ∈ E}.

ii) Ancestors of A: 𝑎𝑛(𝐴) ≔ 𝑝𝑎(𝐴) ∪ {𝐵 ∈ V | ∃ a path from 𝐵 to 𝐴}.

iii) Children of A: 𝑐ℎ(𝐴) ≔ {𝐵 ∈ V | (𝐴, 𝐵) ∈ E}.

iv) Descendants of A: 𝑑𝑒𝑠 (𝐴) ≔ 𝑐ℎ(𝐴) ∪ {𝐵 ∈ V | ∃ a path from 𝐴 to 𝐵}.

v) Non-descendants of A: 𝑛𝑑 (𝐴) ≔ V \ (𝑑𝑒𝑠 (𝐴) ∪ {𝐴}).

vi) Neighbors/Adjacencies of A: 𝑎𝑑 𝑗 (𝐴) ≔ 𝑝𝑎(𝐴) ∪ 𝑐ℎ(𝐴).

Example 2.2.1. Consider the DAG in Figure 2.2. Its ancestral relations are given in Table 2.1.

Node 𝑖 ∈ V 𝑝𝑎(𝑖) 𝑎𝑛(𝑖) 𝑐ℎ(𝑖) 𝑑𝑒𝑠 (𝑖) 𝑛𝑑 (𝑖) 𝑎𝑑 𝑗 (𝑖)
A ∅ ∅ {𝐵,𝐶} {𝐵,𝐶, 𝐷, 𝐸} ∅ {𝐵,𝐶}
B {𝐴} {𝐴} {𝐷} {𝐷, 𝐸} {𝐴,𝐶} {𝐴, 𝐷}
C {𝐴} {𝐴} {𝐷} {𝐷, 𝐸} {𝐴, 𝐵} {𝐴, 𝐷}
D {𝐵,𝐶} {𝐵,𝐶,𝐴} {𝐸} {𝐸} {𝐴, 𝐵,𝐶} {𝐵,𝐶, 𝐸}
E {𝐷} {𝐷, 𝐵,𝐶,𝐴} ∅ ∅ {𝐴, 𝐵,𝐶, 𝐷} {𝐷}

Table 2.1 Ancestral Relations of the five dimensional DAG in Figure 2.2

An important characteristic of DAGs is that their structure inherently defines a topological order of the

nodes.

Definition 2.2.9 (Topological order). Let G = (V, E) be a 𝑛-dimensional DAG. A topological order is a
total ordering of all nodes 𝐴1, 𝐴2, . . . , 𝐴𝑛 , such that for every edge (𝐴𝑖 , 𝐴 𝑗) ∈ E, it holds that 𝑖 < 𝑗 , where

𝑖, 𝑗 ∈ {1, . . . , 𝑛}.

2 Mathematical Foundations

6

Bang-Jensen and Gutin (2008) note that every DAG has a topological order of its nodes and provide

an algorithm that can be used to determine such an order in linear time. The topological order is not

necessarily unique, as illustrated in Figure 2.1a. Both the order 𝐴 < 𝐵 < 𝐶 < 𝐷 and 𝐴 < 𝐶 < 𝐵 < 𝐷 are

valid topological orders since, by definition, it only needs to hold that 𝐴 < {𝐵,𝐶} and {𝐵,𝐶} < 𝐷 .

To conclude this section on definitions from graph theory, the concept of d-separation as stated in Pearl

(1988) will now be introduced. This conceptwill prove to be an important connection between the structure

of a Bayesian network and the dependence relationships it exhibits.

Definition 2.2.10 (d-separation). Let G = (V, E) be a DAG and X,Y, and Z be three disjoint subsets of

V . Z d-separates X from Y in G, denoted by < X | Z | Y >G , if for all trails between a node in X and a

node in Y, there exists a node 𝑣 satisfying one of the following conditions:

i) The trail contains a v-structure around 𝑣 , and for all𝑤 ∈ {𝑣} ∪ 𝑑𝑒𝑠 (𝑣), it holds that𝑤 ∉ Z.

ii) The trail does not contain a v-structure around 𝑣 , and 𝑣 ∈ Z.

If a trail satisfies these conditions, it is said to be blocked by Z; otherwise, it is referred to as activated
by Z.

Example 2.2.2. Consider the DAG directly taken from Pearl (1988) in Figure 2.2 and the sets X = {𝐵},
Y = {𝐶}, Z = {𝐴}, and Z′ = {𝐴, 𝐸}. Suppose one wants to check if < X | Z | Y >G and < X | Z′ | Y >G
hold. First, note that there are two trails from X to Y, namely 𝐵 ← 𝐴→ 𝐶 and 𝐵 → 𝐷 ← 𝐶 .

i) 𝐵 ← 𝐴→ 𝐶:

• Diverging structure around 𝐴 and 𝐴 ∈ Z⇒ trail is blocked by Z.

• Diverging structure around 𝐴 and 𝐴 ∈ Z′⇒ trail is blocked by Z′.

ii) 𝐵 → 𝐷 ← 𝐶:

• v-structure around 𝐷 and for all 𝑤 ∈ {𝐷} ∪ 𝑑𝑒𝑠 (𝐷) = {𝐷, 𝐸} it holds that 𝑤 ∉ Z ⇒ trail is

blocked by Z.

• v-structure around𝐷 but for 𝐸 ∈ {𝐷}∪𝑑𝑒𝑠 (𝐷) = {𝐷, 𝐸} it holds that 𝐸 ∈ Z′⇒ trail is activated

by Z′.

Since both trails are blocked by Z, the d-separation < X | Z | Y >G holds. However, since one trail is

activated by Z′, the sets X and Y are not d-separated by Z′ in G.

2.2.2 Bayesian Networks

Throughout this thesis, the focus will be on a special class of graphical models known as Bayesian net-

works. Bayesian networks display the probabilistic dependencies between a set of random variables

X = {𝑋1, . . . , 𝑋𝑑 } using a 𝑑-dimensional DAG G = (V, E), where each node 𝑖 ∈ V , 𝑖 = 1, . . . , 𝑑 , rep-

resents a variable 𝑋𝑖 ∈ X. More details on the content of this chapter can be found in Nagarajan et al.

(2014), Lauritzen (1996), Pearl (1988) and Edwards (2000).

Definition 2.2.11 (Maps). A 𝑑-dimensional DAG, G = (V, E),V = {1, . . . , 𝑑}, is an independence map
(I-map) of the distribution P of a 𝑑-dimensional random vector X = (𝑋𝑣)𝑣∈V if for every three disjoint

subsets 𝐴, 𝐵,𝐶 ⊆ V it holds that

< A | C | B >G =⇒ XA ⊥⊥ XB | XC. (2.1)

An I-map isminimal if no edge in E can be removed without violating the property of being an I-map.

Further, G is a dependence map (D-map) of P if

XA ⊥⊥ XB | XC =⇒ < A | C | B >G .

holds. If G is an I-map and a D-map of P, P is said to be faithful to G, and G is said to be a perfect map
of P.

2.2 Graphical Models

7

The Equation (2.1) is also widely known as the global Markov property (global MP) of a distribution
P in relation to a DAG G. The global MP states that d-separation in the graphical sense implies conditional

independence in the probabilistic sense. In other words, this means that the DAG encodes all dependencies

of P. However, if the DAG is only an I-map and not a perfect map, there might still be independencies of

random variables that are not represented by d-separation in the graph.

The following formal definition of a Bayesian network is according to Pearl (1988).

Definition 2.2.12 (Bayesian network). Given a probability distribution P on a set of variables X, G =

(V, E) is a Bayesian network of P if and only if G is a minimal I-map of P.

While Pearl (1988) defines a Bayesian network via the global Markov property, it is interesting to note

that there are different characterizations of Bayesian networks, as will be shown now.

Definition 2.2.13 (Local Markov Property). A probability distribution P obeys the local Markov prop-
erty (local MP) with respect to a DAG G = (V, E),V = {1, . . . , 𝑑}, if for all 𝑣 ∈ V , it holds that

𝑋𝑣 ⊥⊥ X𝑛𝑑 (𝑣) | X𝑝𝑎 (𝑣) . (2.2)

In fact, the global MP and the local MP are equivalent, as shown in Lauritzen (1996). A central result

that will be used extensively in this thesis is the following:

Lemma 2.2.14 (Factorization). A probability distribution P factorizes over a DAG G = (V, E) if its density
satisfies

𝑓 (x) =
∏
𝑣∈V

𝑓𝑣 |𝑝𝑎 (𝑣) (𝑥𝑣 | x𝑝𝑎 (𝑣)) . (2.3)

If G is a Bayesian network of P, then P admits (2.3).

Proof. By definition, a Bayesian network obeys the global MP.

i) Global MP =⇒ Local MP

Consider w.l.o.g. a 𝑑-dimensional Bayesian network with the topological order 1 < 2 < · · · < 𝑑 . For
any {𝑖} ∈ V , it is evident that < {𝑖} | 𝑝𝑎(𝑖) | 𝑛𝑑 (𝑖) \ 𝑝𝑎(𝑖) >G holds because all trails from {𝑖} to
𝑛𝑑 (𝑖) \ 𝑝𝑎(𝑖) contain a node 𝑣 ∈ 𝑝𝑎(𝑖) with no v-structure around it, thereby blocking all the above

trails. Therefore, by the global MP of a Bayesian network:

𝑋𝑖 ⊥⊥ X𝑛𝑑 (𝑖)\𝑝𝑎 (𝑖) | X𝑝𝑎 (𝑖)

which directly implies the local MP.

ii) Local MP =⇒ Factorization

Using the chain rule and the specific topological order of the 𝑑-dimensional Bayesian network, the

density 𝑓 of X can be expressed as

𝑓 (x) = 𝑓1(𝑥1) · 𝑓2 |1(𝑥2 | 𝑥1) · · · · · 𝑓𝑑 |1...𝑑−1(𝑥𝑑 | 𝑥1, . . . , 𝑥𝑑−1). (2.4)

Define 𝐿 := {1, . . . , 𝑘 − 1} for 𝑘 = 2, . . . , 𝑑 . The function 𝑓𝑘 |𝐿 represents the conditional pdf of 𝑋𝑘
given X𝐿 . By the topological order of the DAG, it is clear that 𝑝𝑎(𝑘) ⊆ 𝐿 ⊆ 𝑛𝑑 (𝑘). According

to the local MP, 𝑋𝑘 ⊥⊥ X𝑛𝑑 (𝑘) | X𝑝𝑎 (𝑘) , which implies 𝑋𝑘 ⊥⊥ X𝐿 | X𝑝𝑎 (𝑘) . Therefore, it holds

that 𝑓𝑘 |𝐿 (𝑥𝑘 | x𝐿) = 𝑓𝑘 |𝑝𝑎 (𝑘) (𝑥𝑘 | x𝑝𝑎 (𝑘)). Substituting this expression back into Equation (2.4)

demonstrates that the factorization holds.

□

In fact, it even holds the following equivalence:

Theorem 2.2.15. Let G be a DAG and P be a probability distribution with a density with respect to a product
measure. It holds that

2 Mathematical Foundations

8

Global MP⇐⇒ Local MP⇐⇒ Factorization.

To complete the proof, it remains to show that factorization implies the global MP, as detailed in Lau-

ritzen (1996, p. 51).

To understand Bayesian networks better, it is important to explore the concept of Markov equivalence,

which identifies networks with the same patterns of independence.

Definition 2.2.16 (Markov equivalence). Two DAGs, G1 = (V, E1) and G2 = (V, E2), are calledMarkov
equivalent if they represent the same independence structure. This means that for every three disjoint

subsets 𝐴, 𝐵,𝐶 ⊆ V , G1 and G2 satisfy the same d-separation criteria:

< 𝐴 | 𝐶 | 𝐵 >G1
⇐⇒ < 𝐴 | 𝐶 | 𝐵 >G2

.

The set of all DAGs that are Markov equivalent to each other is known asMarkov equivalence class.

1

2

3

(a)

1

2

3

(b)

1

2

3

(c)

1

2

3

(d)

Figure 2.3 Comparison of various structures found in Bayesian networks

Example 2.2.3. Consider now the four different Bayesian networks in Figure 2.3, directly taken from

Verma and Pearl (1990). Using the factorization (2.3), it holds that

(a) 𝑓 (x) = 𝑓1(𝑥1) · 𝑓2 |1(𝑥2 | 𝑥1) · 𝑓3 |2(𝑥3 | 𝑥2).

(b) 𝑓 (x) = 𝑓2(𝑥2) · 𝑓1 |2(𝑥1 | 𝑥2) · 𝑓3 |2(𝑥3 | 𝑥2).

(c) 𝑓 (x) = 𝑓3(𝑥3) · 𝑓2 |3(𝑥2 | 𝑥3) · 𝑓1 |2(𝑥1 | 𝑥2).

(d) 𝑓 (x) = 𝑓1(𝑥1) · 𝑓3(𝑥3) · 𝑓2 |13(𝑥2 | 𝑥1, 𝑥3).

It is straightforward to see that models (a) to (c) are equivalent regarding the independence information

encoded in the different DAGs. In all these DAGs, nodes 1 and 3 are d-separated given 2, hence𝑋1 ⊥⊥ 𝑋3 | 𝑋2

holds. However, Bayesian network (d) is different from the others as it represents the relationship𝑋1 ⊥⊥ 𝑋3.

In other words, only the Bayesian networks (a) to (c) belong to the same Markov equivalence class.

In Example 2.2.3 it becomes clear that v-structures play an important role when it comes to determining

whether two Bayesian networks are Markov equivalent. The following result is due to Verma and Pearl

(1990):

Lemma 2.2.17. Two DAGs are Markov equivalent if and only if they have the same skeleton and v-structures.

The Markov equivalence class of a DAG can be visualized by a graph that shares the same skeleton as

all DAGs in the equivalence class. In this graph, edges are directed only if they have consistent directions

across every DAG in the equivalence class. Such a graph is known as a completed partially directed
acyclic graph (CPDAG). Directed edges in a CPDAG either belong to v-structures or would introduce

additional v-structures or cycles if their direction were altered. Later, when algorithms are introduced to

recover the structure of a Bayesian network by testing for conditional independencies, it is important to

note that such algorithms cannot determine the underlying DAG uniquely, but only the corresponding

equivalence class.

2.2 Graphical Models

9

2.2.3 Gaussian Bayesian Networks

So far, the specific distribution of the random variables in a Bayesian network has not been of particular

interest. The following subsection will therefore focus on the Gaussian distribution. For further details,

readers are referred to Koller and Friedman (2009). Note that the univariate and multivariate normal

distribution, as well as any other continuous distribution that may appear in this thesis, are defined in

Appendix A.

Definition 2.2.18 (Gaussian Bayesian network). A Gaussian Bayesian network (GBN) is a Bayesian

network where all conditional pdfs are linear Gaussians. More specifically, it holds that

𝑋𝑖 | X𝑝𝑎 (𝑖) ∼ 𝑁
(
𝛽0 + 𝜷⊤X𝑝𝑎 (𝑖) , 𝜎

2

𝑖

)
,

for all 𝑖 = 1, . . . , 𝑑 , where 𝛽0, 𝜷 and 𝜎𝑖 are constants.

This special class of Bayesian networks is essentially another representation for multivariate Gaussian

distributions, as will be demonstrated now.

Theorem 2.2.19. If 𝑋𝑖 | X𝑝𝑎 (𝑖) ∼ 𝑁
(
𝛽0 + 𝜷⊤X𝑝𝑎 (𝑖) , 𝜎

2

𝑖

)
, for 𝑖 = 1, . . . , 𝑑 , and if X𝑝𝑎 (𝑖) ∼ 𝑁

(
𝝁, 𝚺), then the

following properties hold:

i) 𝑋𝑖 is normally distributed with mean 𝜇𝑋𝑖
= 𝛽0 + 𝜷⊤𝝁 and variance 𝜎2

𝑋𝑖
= 𝜎2

𝑖 + 𝜷
⊤
𝚺𝜷 .

ii) The joint distribution of {X𝑝𝑎 (𝑖) , 𝑋𝑖} is also normal, with covariance given by

𝐶𝑜𝑣 (𝑋 𝑗 , 𝑋𝑖) =
|𝑝𝑎 (𝑖) |∑︁
𝑘=1

𝛽𝑘Σ 𝑗,𝑘 , 𝑗 = 1, . . . , |𝑝𝑎(𝑖) |.

Proof. Only property (ii) will be proven. Consider 𝑗 ∈ 𝑝𝑎(𝑖) for some 𝑖 ∈ {1, . . . , 𝑑}. Note that, by property
(i), 𝑋𝑖 can be written as a linear combination of its parents:

𝑋𝑖 = 𝛽0 +
|𝑝𝑎 (𝑖) |∑︁
𝑘=1

𝛽𝑘𝑋𝑘 + 𝜖𝑖 ,

where 𝜖𝑖 ∼ 𝑁 (0, 𝜎2

𝑖) is independent of Xpa(i) . Then the covariance between 𝑋 𝑗 and 𝑋𝑖 is given by the

following:

Cov(𝑋 𝑗 , 𝑋𝑖) = Cov

(
𝑋 𝑗 , 𝛽0 +

|𝑝𝑎 (𝑖) |∑︁
𝑘=1

𝛽𝑘𝑋𝑘 + 𝜖
)

𝑋 𝑗⊥⊥𝜖𝑖
= Cov

(
𝑋 𝑗 ,

|𝑝𝑎 (𝑖) |∑︁
𝑘=1

𝛽𝑘𝑋𝑘

)
=

|𝑝𝑎 (𝑖) |∑︁
𝑘=1

𝛽𝑘Cov(𝑋 𝑗 , 𝑋𝑘)

=

|𝑝𝑎 (𝑖) |∑︁
𝑘=1

𝛽𝑘Σ 𝑗,𝑘 .

□

The theorem establishes well-known properties of the normal distribution applied to the conditional

distributions in a Bayesian network. By induction, it follows that a GBN defines a joint distribution that

is multivariate Gaussian. It is important to recall that the converse is also true: the normal distribution is

closed under conditioning.

2 Mathematical Foundations

10

Theorem 2.2.20. Let {X, 𝑌 }, X ∈ ℝ𝑛, 𝑌 ∈ ℝ, have a joint normal distribution given by the mean vector

𝝁 =

[
𝝁𝑿

𝜇𝑌

]
and covariance matrix 𝚺 =

[
𝚺𝑿𝑿 𝚺𝑿𝒀

𝚺𝒀𝑿 Σ𝑌𝑌

]
,

then the conditional density of 𝑌 | X is normal with mean

𝜇 = 𝛽0 + 𝜷⊤X, where 𝛽0 = 𝜇𝑌 − 𝚺𝒀𝑿𝚺𝑿𝑿
−1𝝁𝑿 and 𝜷 = 𝚺𝑿𝑿

−1
𝚺𝒀𝑿 ,

and variance
𝜎2 = Σ𝑌𝑌 − 𝚺𝒀𝑿𝚺𝑿𝑿

−1
𝚺𝑿𝒀 .

Theorems (2.2.19) and (2.2.20) establish the interchangeability between a GBN and a joint Gaussian

distribution, offering a concise representation. Specifically, they illustrate that a GBN can be constructed

from multivariate Gaussian data by establishing a topological order, defining parent-child relationships

for each variable, and computing the corresponding conditional distributions.

The next results are particularly beneficial when conducting independence tests in constraint-based

structure learning, especially within the context of Gaussian distributions.

Definition 2.2.21 (Partial correlation). Let X = (𝑋1, . . . , 𝑋𝑑)⊤ be a 𝑑-dimensional random vector. Further,

for distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑑}, define S ≔ {1, . . . , 𝑑} \ {𝑖, 𝑗} and XS̃ ≔ (1,XS
⊤)⊤. The (𝑑 − 1)-dimensional

partial regression coefficients 𝜷∗𝑖 and 𝜷∗𝑗 are given by

𝜷∗𝑖 = (𝛽∗𝑖,0, . . . , 𝛽∗𝑖,𝑑−2
)⊤ = arg min

𝜷
𝔼

((
𝑋𝑖 − X⊤

S̃
𝜷
)2
)
,

𝜷∗𝑗 = (𝛽∗𝑗,0, . . . , 𝛽∗𝑗,𝑑−2
)⊤ = arg min

𝜷
𝔼

((
𝑋 𝑗 − X⊤

S̃
𝜷
)2
)
.

The corresponding residuals of the linear regression are then given by

𝑅𝑖 = 𝑋𝑖 − X⊤
S̃
𝜷∗i ,

and

𝑅 𝑗 = 𝑋 𝑗 − X⊤
S̃
𝜷∗j .

Finally, the partial correlation of (𝑋𝑖 , 𝑋 𝑗) given XS is defined as the ordinary correlation of the residuals

𝑅𝑖 and 𝑅 𝑗 , i.e.,

𝜌𝑖, 𝑗 ;S ≔
Cov(𝑅𝑖 , 𝑅 𝑗)√︁

Var(𝑅𝑖)
√︁
Var(𝑅 𝑗)

.

Definition 2.2.21 is taken from Whittaker (1990). It establishes the connection between the partial cor-

relation and linear regression. In simpler terms, 𝜌𝑖 𝑗 ;𝐾 measures the dependence between two random

variables 𝑋𝑖 and 𝑋 𝑗 after removing the effect of X𝐾 , where 𝐾 ⊆ {1, . . . , 𝑑}\{𝑖, 𝑗}. This can be efficiently

computed using the following recursion, introduced by Yule (1917):

𝜌𝑖 𝑗 ;𝐾 =
𝜌𝑖 𝑗 ;𝐾\{𝑘0} − 𝜌𝑖𝑘0;𝐾\{𝑘0}𝜌𝑘0 𝑗 ;𝐾\{𝑘0}√︃

1 − 𝜌2

𝑖𝑘0;𝐾\{𝑘0}

√︃
1 − 𝜌2

𝑘0 𝑗 ;𝐾\{𝑘0}

, (2.5)

where 𝑘0 ∈ 𝐾 and the initial values are given by the ordinary correlation coefficients 𝜌𝑖 𝑗 , 𝜌𝑖𝑘0
, and 𝜌𝑘0 𝑗 .

Definition 2.2.22 (Conditional correlation). Let 𝑋1, . . . , 𝑋𝑑 be random variables. The conditional corre-
lation 𝜌𝑖 𝑗 |𝐾 measures the dependence between two random variables 𝑋𝑖 and 𝑋 𝑗 after conditioning on the

remaining variables X𝐾 , where 𝐾 ⊆ {1, . . . , 𝑑}\{𝑖, 𝑗}. It is defined as

𝜌𝑖 𝑗 |𝐾 =
𝔼(𝑋𝑖𝑋 𝑗 | X𝐾) − 𝔼(𝑋𝑖 | X𝐾)𝔼(𝑋 𝑗 | X𝐾)√︁

Var(𝑋𝑖 | X𝐾)
√︁
Var(𝑋 𝑗 | X𝐾)

.

2.2 Graphical Models

11

Baba et al. (2004) demonstrate that partial and conditional correlation do not generally coincide. How-

ever, there exists a certain class of distributions, including elliptical distributions, where they do align.

They further show that the multivariate normal distribution is the only known distribution within the

family of elliptical distributions where a partial correlation of zero indicates conditional independence.

Consequently, in the special case of Gaussianity, it is reasonable to identify conditional independencies by

testing for vanishing partial correlations.

2.2.4 Structure Learning

In practice, Bayesian networks are often constructed using an i.i.d. sample from amultivariate distribution.

This process, known as learning, primarily involves two tasks: structure learning and parameter learning.
The main objective of structure learning is to identify a directed acyclic graph (DAG) that best represents

the independencies within the distribution P of the data. There are various algorithms designed for this

purpose, which can be broadly categorized as constraint-based, score-based, or hybrid algorithms. This

thesis focuses on constraint-based algorithms.

Constraint-based algorithms aim to identify theMarkov equivalence class of a Bayesian network’s struc-

ture by performing conditional independence tests. These algorithms rely on the faithfulness assumption,

which posits that conditional independence and d-separation are equivalent. This assumption ensures

that the conditional independence tests accurately reflect the underlying causal structure. Specifically, it

assumes that all conditional independencies are captured by the Bayesian network’s structure. Although

this assumption might seem strong, Pearl (1988) demonstrated that for any DAG, there exists a distribution

that is faithful to it. Additionally, Meek (1995) and Spirtes et al. (1993) showed that, in a measure-theoretic

sense, almost all multinomial and normal distributions are faithful. The latter authors even suggest that

faithfulness can only be violated, if at all, by a very specific choice of functional dependency between the

random variables.

IC Algorithm

The IC (Inductive Causation) algorithm, introduced by Verma and Pearl (1990), serves as a foundational

framework for various subsequent constraint-based algorithms. The associated pseudo-code is given in

Algorithm 1. In the following, it is assumed that all conditional independence information among all

variables is available, referred to as the oracle version of an algorithm. However, in practice, the oracle is

replaced by statistical tests for conditional independence. Algorithms that use statistical testing based on

i.i.d. observations will be referred to as the empirical version.
In Step 1 of Algorithm 1, the skeleton is identified by performing a series of conditional independence

queries. Recall that two nodes can only be adjacent in the DAG if the two variables they represent are not

independent given any other variables. If X is 𝑑-dimensional, there are

(
𝑑
2

)
=

𝑑 (𝑑−1)
2

pairs of variables.

Additionally, there are 2
𝑑−2

possible subsets of the remaining 𝑑 − 2 variables, including the empty set.

Thus, a total of 𝑁 = 𝑑 (𝑑 − 1) · 2𝑑−1
independence queries are performed in this step.

Step 2 of the IC algorithm identifies the v-structures. As shown in Figure 2.3, a v-structure is unique

because it is the only structure where two non-adjacent nodes are not conditionally independent given a

common neighbor.

Step 3 concludes the algorithm by orienting all edges that can be oriented without introducing cycles

or additional v-structures. After this step, the CPDAG representing the Markov equivalence class is fully

identified (see Lemma 2.2.17).

As previously noted, the IC algorithm conducts an exponential search in the first step. In the worst

case, this cannot be avoided to produce reliable results, as two variables can be conditionally dependent

on some set but independent on a superset or subset of that set. Consequently, it is necessary to consider

all 2
𝑑−2

subsets in the worst case. Additionally, in the empirical version of the algorithm, it is required

to test higher-order conditional independencies up to order 𝑑 − 2. Determining higher-order conditional

independencies is less reliable than determining lower-order conditional independencies (Spirtes et al.

1993). For these reasons, a practical implementation of the IC algorithm seems infeasible.

2 Mathematical Foundations

12

Algorithm 1 IC Algorithm (Inductive Causation), Oracle Version

1: Input: 𝑑-dimensional set of variables X, conditional independence information among all variables.

2: Output: CPDAG [G]
3: Step 1: Skeleton identification

4: Initialize an undirected graph G where each node represents a variable in X and each pair of nodes is

connected by an edge.

5: for each pair of variables 𝑋𝑖 and 𝑋 𝑗 , 𝑖 ≠ 𝑗 ∈ {1, . . . , 𝑑} do
6: if there exists a set 𝑆 ⊆ {1, . . . , 𝑑}\{𝑖, 𝑗} including the empty set such that𝑋𝑖 and𝑋 𝑗 are conditionally

independent given X𝑆 then
7: Remove the edge between 𝑖 and 𝑗 in G
8: end if
9: end for
10: Step 2: v-structure identification
11: for each pair of non-adjacent variables 𝑋𝑖 and 𝑋 𝑗 with a common neighbor 𝑋𝑘 , 𝑖 ≠ 𝑗 ≠ 𝑘 ∈ {1, . . . , 𝑑}

do
12: if 𝑘 ∉ 𝑆 from Step 1 then
13: Orient 𝑖 → 𝑘 ← 𝑗

14: end if
15: end for
16: Step 3: Orientation of remaining edges

17: for each pair of variables 𝑋𝑖 and 𝑋 𝑗 do
18: Apply recursively the orientation rules:

19: if 𝑖 is adjacent to 𝑗 and there is a path containing only directed edges from 𝑖 to 𝑗 then
20: Orient 𝑖 → 𝑗

21: end if
22: if 𝑖 is not adjacent to 𝑗 but it exists a 𝑘 such that 𝑖 → 𝑘 and 𝑘 − 𝑗 then
23: Orient 𝑘 → 𝑗

24: end if
25: end for
26: Set [G] = G and return the CPDAG [G].

2.2 Graphical Models

13

The PC Algorithm: Skeleton Estimation and Complexity

A more practical application of the ideas presented by the IC algorithm was developed by Spirtes et al.

(1993) and is known as the PC algorithm. As noted by Spirtes et al. (1993), the sample version of their

algorithm is sensitive to the order in which variables are given. An order-independent variant called PC-
stablewas subsequently introduced by Colombo andMaathuis (2014). It is important to note that while the

PC-stable algorithm achieves order independence in its initial step of skeleton estimation, as detailed later,

subsequent steps still rely on variable ordering. Thus, the empirical version of the PC-stable algorithm,

despite its name, does not achieve complete stability across all aspects. To avoid confusion, the PC-
stable algorithm will simply be referred to as the PC algorithm hereafter, acknowledging that
its skeleton estimation is based on an order-independent approach.

Algorithm 2 Step 1 of PC Algorithm, Oracle Version

1: Input: 𝑑-dimensional set of variables X, conditional independence information among all variables,

ordering 𝑜𝑟𝑑𝑒𝑟 (X) on the variables.

2: Output: Skeleton G𝑠𝑘𝑒𝑙 , Separation sets 𝑠𝑒𝑝𝑠𝑒𝑡

3: Initialize G = (V, E) to the complete undirected graph on the set of variables X.

4: Let 𝑙 = −1

5: repeat
6: Let 𝑙 = 𝑙 + 1

7: for each node 𝑖 ∈ V do
8: Let 𝑎(𝑖) = 𝑎𝑑 𝑗 (𝑖), where the adjacencies are with respect to the current graph G at this stage.

9: end for
10: repeat
11: Select a (new) ordered pair of adjacent nodes (𝑖, 𝑗) satisfying |𝑎(𝑖) \ { 𝑗}| ≥ 𝑙 , using 𝑜𝑟𝑑𝑒𝑟 (X);
12: repeat
13: Select a (new) S ⊆ 𝑎(𝑖) \ { 𝑗} with |S| = 𝑙 , using 𝑜𝑟𝑑𝑒𝑟 (X)
14: if 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS then
15: Remove the edge 𝑖 − 𝑗 from E
16: Set 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑗, 𝑖) = S
17: end if
18: until (𝑖, 𝑗) are no longer adjacent in G or all S ⊆ 𝑎(𝑖) \ { 𝑗} with |S| = 𝑙 have been considered

19: until all pairs of adjacent nodes (𝑖, 𝑗) in G with |𝑎(𝑖) \ { 𝑗}| ≥ 𝑙 have been considered

20: until all pairs of adjacent nodes (𝑖, 𝑗) in G satisfy |𝑎(𝑖) \ { 𝑗}| ≤ 𝑙
21: Let G𝑠𝑘𝑒𝑙 = G
22: return G𝑠𝑘𝑒𝑙 , 𝑠𝑒𝑝𝑠𝑒𝑡

The order-independent procedure, according to Colombo and Maathuis (2014), for finding a skeleton

using known independence relations is detailed in Algorithm 2. It operates as follows:

𝑙 = 0: All pairs of nodes are queried for marginal independence. If𝑋𝑖 ⊥⊥ 𝑋 𝑗 holds, the edge 𝑖− 𝑗 is removed,

and sepset(𝑖, 𝑗) = sepset(𝑗, 𝑖) = ∅.

𝑙 = 1: Pairs of adjacent nodes (𝑖, 𝑗) are considered. The algorithm checks if 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS holds for subsets

S of size 𝑙 = 1 from 𝑎(𝑖) \ { 𝑗}. If such a subset is found, the edge 𝑖 − 𝑗 is removed, and sepset(𝑖, 𝑗) =
sepset(𝑗, 𝑖) = S. Once all ordered pairs of adjacent nodes have been examined and conditional

independencies for all subsets of size 𝑙 = 1 have been queried, 𝑙 is incremented by one.

𝑙 > 1: The algorithm continues similarly to the case of 𝑙 = 1 until all adjacency sets in the DAG are smaller

than 𝑙 .

Example 2.2.4 (Skeleton Estimation using the PC-stable algorithm). Consider the six dimensional exam-

ple DAG G = (V, E) in Figure 2.4, which will be utilized throughout this thesis.

2 Mathematical Foundations

14

1 2

3

4

6 5

Figure 2.4 A six dimensional DAG

Node 𝑖 ∈ V pa(i) adj(i)
1 ∅ {3, 6}
2 ∅ {3, 6}
3 {1, 2} {1, 2, 4}
4 {3} {3, 6}
5 ∅ {6}
6 {1, 2, 4, 5} {1, 2, 4, 5}

Table 2.2 Parents and adjacency sets of the DAG in

Figure 2.4

Assume that the distribution of X is faithful to the DAG in Figure 2.4, and that all conditional indepen-

dencies are known. They can be determined using the R-package dagitty (Textor et al. 2023) and the

function within the package impliedConditionalIndependencies with the setting type="all". In
total, there are 45 implied conditional independencies, which are specified as follows:

i) 𝑋1 ⊥⊥ 𝑋2 | XS, where 𝑆 ∈ {∅, {5}}.

ii) 𝑋1 ⊥⊥ 𝑋4 | XS, where 𝑆 ∈ {{3}, {2, 3}, {3, 5}, {2, 3, 5}}.

iii) 𝑋1 ⊥⊥ 𝑋5 | XS, where 𝑆 ∈ {∅, {2}, {3}, {4}, {2, 3}, {2, 4}, {3, 4}, {2, 3, 4}}.

iv) 𝑋2 ⊥⊥ 𝑋4 | XS, where 𝑆 ∈ {{3}, {1, 3}, {3, 5}, {1, 3, 5}}.

v) 𝑋2 ⊥⊥ 𝑋5 | XS, where 𝑆 ∈ {∅, {1}, {3}, {4}, {1, 3}, {1, 4}, {3, 4}, {1, 3, 4}}.

vi) 𝑋3 ⊥⊥ 𝑋5 | XS, where 𝑆 ∈ {∅, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}, {1, 2, 4, 6}}.

vii) 𝑋3 ⊥⊥ 𝑋6 | XS, where 𝑆 ∈ {{1, 2, 4}, {1, 2, 4, 5}}.

viii) 𝑋4 ⊥⊥ 𝑋5 | XS, where 𝑆 ∈ {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

Now, with the order of the variables set as 𝑜𝑟𝑑𝑒𝑟 (X) = (1, 2, . . . , 6), Algorithm 2 is applied to estimate the

skeleton.

0.) Initialization:

1

23

4

5 6

Figure 2.5 Complete undirected graph in six dimen-

sions G0 = (V, E0)

Node 𝑖 ∈ V a(i)
1 {2, 3, 4, 5, 6}
2 {1, 3, 4, 5, 6}
3 {1, 2, 4, 5, 6}
4 {1, 2, 3, 5, 6}
5 {1, 2, 3, 4, 6}
6 {1, 2, 3, 4, 5}

Table 2.3 Adjacency sets of the graph in Figure 2.5

Figure 2.5 shows the initial complete undirected graph on all six nodes and the corresponding adja-

cency sets for the first iteration are given in Table 2.3.

1.) l = 0 : Set E = E0. In this iteration, the condition |𝑎(𝑖) \ { 𝑗}| ≥ 𝑙 holds for all 𝑖 ≠ 𝑗 , ensuring that all

pairs are considered. The conditioning set S is always the empty set since |S| = 𝑙 must be satisfied.

Once an edge 𝑖− 𝑗 (where 𝑖 < 𝑗) is deleted, the statement𝑋 𝑗 ⊥⊥ 𝑋𝑖 is not queried again, but otherwise
it is.

2.2 Graphical Models

15

• Set 𝑖 = 1, 𝑗 = 2: 𝑋1 ⊥⊥ 𝑋2 holds⇒ remove 1 − 2 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (1, 2) = 𝑠𝑒𝑝𝑠𝑒𝑡 (2, 1) = ∅.
• Set 𝑖 = 1, 𝑗 = 3: 𝑋1 ⊥⊥ 𝑋3 does not hold.

• Set 𝑖 = 1, 𝑗 = 4: 𝑋1 ⊥⊥ 𝑋4 does not hold.

• Set 𝑖 = 1, 𝑗 = 5: 𝑋1 ⊥⊥ 𝑋5 holds⇒ remove 1 − 5 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (1, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 1) = ∅.
• Set 𝑖 = 1, 𝑗 = 6: 𝑋1 ⊥⊥ 𝑋6 does not hold.

• Set 𝑖 = 2, 𝑗 = 3: 𝑋2 ⊥⊥ 𝑋3 does not hold.

• Set 𝑖 = 2, 𝑗 = 4: 𝑋2 ⊥⊥ 𝑋4 does not hold.

• Set 𝑖 = 2, 𝑗 = 5: 𝑋2 ⊥⊥ 𝑋5 holds⇒ remove 2 − 5 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (2, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 2) = ∅.
• Set 𝑖 = 2, 𝑗 = 6: 𝑋2 ⊥⊥ 𝑋6 does not hold.

• Set 𝑖 = 3, 𝑗 = 1: 𝑋3 ⊥⊥ 𝑋1 does not hold.

• Set 𝑖 = 3, 𝑗 = 2: 𝑋3 ⊥⊥ 𝑋2 does not hold.

• Set 𝑖 = 3, 𝑗 = 4: 𝑋3 ⊥⊥ 𝑋4 does not hold.

• Set 𝑖 = 3, 𝑗 = 5: 𝑋3 ⊥⊥ 𝑋5 holds⇒ remove 3 − 5 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (3, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 3) = ∅.
• Set 𝑖 = 3, 𝑗 = 6: 𝑋3 ⊥⊥ 𝑋6 does not hold.

• Set 𝑖 = 4, 𝑗 = 1: 𝑋4 ⊥⊥ 𝑋1 does not hold.

• Set 𝑖 = 4, 𝑗 = 2: 𝑋4 ⊥⊥ 𝑋2 does not hold.

• Set 𝑖 = 4, 𝑗 = 3: 𝑋4 ⊥⊥ 𝑋3 does not hold.

• Set 𝑖 = 4, 𝑗 = 5: 𝑋4 ⊥⊥ 𝑋5 holds⇒ remove 4 − 5 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (4, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 4) = ∅.
• Set 𝑖 = 4, 𝑗 = 6: 𝑋4 ⊥⊥ 𝑋6 does not hold.

• Set 𝑖 = 5, 𝑗 = 6: 𝑋5 ⊥⊥ 𝑋6 does not hold.

• Set 𝑖 = 6, 𝑗 = 1: 𝑋6 ⊥⊥ 𝑋1 does not hold.

• Set 𝑖 = 6, 𝑗 = 2: 𝑋6 ⊥⊥ 𝑋2 does not hold.

• Set 𝑖 = 6, 𝑗 = 3: 𝑋6 ⊥⊥ 𝑋3 does not hold.

• Set 𝑖 = 6, 𝑗 = 4: 𝑋6 ⊥⊥ 𝑋4 does not hold.

• Set 𝑖 = 6, 𝑗 = 5: 𝑋6 ⊥⊥ 𝑋5 does not hold.

All ordered pairs have been checked and the output after the first iteration is shown in Figure 2.6

and Table 2.4.

1

23

4

5 6

Figure 2.6 G1 = (V, E1) after the first iteration of

the PC algorithm

Node 𝑖 ∈ V a(i)
1 {3, 4, 6}
2 {3, 4, 6}
3 {1, 2, 4, 6}
4 {1, 2, 3, 6}
5 {6}
6 {1, 2, 3, 4, 5}

Table 2.4 Adjacency sets of the graph in Figure 2.6

2.) l = 1 : Set E = E1. In this iteration, the condition |𝑎(𝑖) \ { 𝑗}| ≥ 𝑙 holds for all 𝑖 ≠ 𝑗 with the exception

of 𝑖 = 5, 𝑗 = 6. To shorten notation, some statements will be summarized in the following and the

number of statements will always be given in brackets.

• Set 𝑖 = 1, 𝑗 = 3, 𝑆 = 4: 𝑋1 ⊥⊥ 𝑋3 | 𝑋4 does not hold.

2 Mathematical Foundations

16

• Set 𝑖 = 1, 𝑗 = 3, 𝑆 = 6: 𝑋1 ⊥⊥ 𝑋3 | 𝑋6 does not hold.

• Set 𝑖 = 1, 𝑗 = 4, 𝑆 = 3: 𝑋1 ⊥⊥ 𝑋4 | 𝑋3 holds ⇒ remove 1 − 4 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (1, 4) =
𝑠𝑒𝑝𝑠𝑒𝑡 (4, 1) = {3}.
• Set 𝑖 = 1, 𝑗 = 6, 𝑆 = 3: 𝑋1 ⊥⊥ 𝑋6 | 𝑋3 does not hold.

• Set 𝑖 = 1, 𝑗 = 6, 𝑆 = 4: 𝑋1 ⊥⊥ 𝑋6 | 𝑋4 does not hold.

• Set 𝑖 = 2, 𝑗 = 3, 𝑆 = 4: 𝑋2 ⊥⊥ 𝑋3 | 𝑋4 does not hold.

• Set 𝑖 = 2, 𝑗 = 3, 𝑆 = 6: 𝑋2 ⊥⊥ 𝑋3 | 𝑋6 does not hold.

• Set 𝑖 = 2, 𝑗 = 4, 𝑆 = 3: 𝑋2 ⊥⊥ 𝑋4 | 𝑋3 holds ⇒ remove 2 − 4 from E. Define 𝑠𝑒𝑝𝑠𝑒𝑡 (2, 4) =
𝑠𝑒𝑝𝑠𝑒𝑡 (4, 2) = {3}.
• Set 𝑖 = 2, 𝑗 = 6, 𝑆 = 3: 𝑋2 ⊥⊥ 𝑋6 | 𝑋3 does not hold.

• Set 𝑖 = 2, 𝑗 = 6, 𝑆 = 4: 𝑋2 ⊥⊥ 𝑋6 | 𝑋4 does not hold.

• Set 𝑖 = 3, 𝑗 ∈ {1, 2, 4, 6}, 𝑆 ∈ {1, 2, 4, 6} \ { 𝑗}: 𝑋3 ⊥⊥ 𝑋 𝑗 | 𝑋𝑆 does not hold. (4
(
3

1

)
= 12 Statements)

• Set 𝑖 = 4, 𝑗 ∈ {3, 6}, 𝑆 ∈ {1, 2, 3, 6} \ { 𝑗}: 𝑋4 ⊥⊥ 𝑋 𝑗 | 𝑋𝑆 does not hold. (2
(
3

1

)
= 6 Statements)

• Set 𝑖 = 6, 𝑗 ∈ {1, 2, 3, 4, 5}, 𝑆 ∈ {1, 2, 3, 4, 5} \ { 𝑗}: 𝑋6 ⊥⊥ 𝑋 𝑗 | 𝑋𝑆 does not hold. (5

(
4

1

)
= 20

Statements)

All ordered pairs have been checked and the output after the second iteration is shown in Figure 2.7

and Table 2.5.

1

23

4

5 6

Figure 2.7 G2 = (V, E2) after the second iteration

of the PC algorithm

Node 𝑖 ∈ V a(i)
1 {3, 6}
2 {3, 6}
3 {1, 2, 4, 6}
4 {3, 6}
5 {6}
6 {1, 2, 3, 4, 5}

Table 2.5 Adjacency sets of the graph in Figure 2.7

3.) l = 2 : Set E = E2. In this iteration, the condition |𝑎(𝑖) \{ 𝑗}| ≥ 𝑙 holds only for 𝑖 ∈ {3, 6} and 𝑗 ∈ 𝑎(𝑖).
• Set 𝑖 = 3, 𝑗 ∈ {1, 2, 4, 6}, 𝑆 ∈ {𝑀 ⊆ {1, 2, 4, 6} \ { 𝑗} | |𝑀 | = 2}: 𝑋6 ⊥⊥ 𝑋 𝑗 | XS does not hold.

(4

(
3

2

)
= 12 Statements)

• Set 𝑖 = 6, 𝑗 ∈ {1, 2, 3, 4, 5}, 𝑆 ∈ {𝑀 ⊆ {1, 2, 3, 4, 5} \ { 𝑗} | |𝑀 | = 2}: 𝑋6 ⊥⊥ 𝑋 𝑗 | XS does not hold.

(5

(
4

2

)
= 30 Statements)

During the third iteration, although 42 statements were queried, no edges were removed, and the

graph along with its adjacency sets remain unchanged from those depicted in Figure 2.7 and Table

2.5 (G3 = G2).

4.) l = 3 : In this iteration, the condition |𝑎(𝑖) \ { 𝑗}| ≥ 𝑙 holds again only for 𝑖 ∈ {3, 6} and 𝑗 ∈ 𝑎(𝑖).
• Set 𝑖 = 3, 𝑗 = 1, 𝑆 = {2, 4, 6}: 𝑋3 ⊥⊥ 𝑋1 | 𝑋2, 𝑋4, 𝑋6 does not hold.

• Set 𝑖 = 3, 𝑗 = 2, 𝑆 = {1, 4, 6}: 𝑋3 ⊥⊥ 𝑋2 | 𝑋1, 𝑋4, 𝑋6 does not hold.

• Set 𝑖 = 3, 𝑗 = 4, 𝑆 = {1, 2, 6}: 𝑋3 ⊥⊥ 𝑋4 | 𝑋1, 𝑋2, 𝑋6 does not hold.

• Set 𝑖 = 3, 𝑗 = 6, 𝑆 = {1, 2, 4}: 𝑋3 ⊥⊥ 𝑋6 | 𝑋1, 𝑋2, 𝑋4 holds ⇒ remove 3 − 6 from E. Define

𝑠𝑒𝑝𝑠𝑒𝑡 (3, 6) = 𝑠𝑒𝑝𝑠𝑒𝑡 (6, 3) = {1, 2, 4}
• Set 𝑖 = 6, 𝑗 ∈ {1, 2, 4, 5}, 𝑆 ∈ {𝑀 ⊆ {1, 2, 3, 4, 5} \ { 𝑗} | |𝑀 | = 3}: 𝑋6 ⊥⊥ 𝑋 𝑗 | XS does not hold.

(4

(
4

3

)
= 16 Statements)

2.2 Graphical Models

17

All ordered pairs have been checked and the output after the fourth iteration is shown in Figure 2.8

and Table 2.6.

1

23

4

5 6

Figure 2.8 G4 = (V, E4) after the fourth iteration of

the PC algorithm

Node 𝑖 ∈ V a(i)
1 {3, 6}
2 {3, 6}
3 {1, 2, 4}
4 {3, 6}
5 {6}
6 {1, 2, 4, 5}

Table 2.6 Adjacency sets of the graph in Figure 2.8

5.) l = 4 : Set E = E4. In this iteration, |𝑎(𝑖) \ { 𝑗}| ≥ 𝑙 does not hold for any 𝑖 ∈ V and 𝑗 ∈ 𝑎(𝑖).
Therefore, Step 1 of the PC algorithm terminates and returns the skeleton G𝑠𝑘𝑒𝑙 = G4 along with the

separation sets in 𝑠𝑒𝑝𝑠𝑒𝑡 .

The output in Figure 2.8 of Example 2.2.4 represents the correct skeleton of the underlying DAG depicted

in Figure 2.4. Now, using the results from Example 2.2.4 and comparing them to a worst case scenario, the

computational complexity of the first step of the PC algorithmwill be analyzed. Theworst case corresponds

to a fully connected DAG, where there is a directed edge between each pair of nodes such that no cycles are

formed. One can construct such a DAG by setting a directed edge 𝑖 → 𝑗 if and only if 𝑖 < 𝑗 , for example. In

this scenario, the adjacency set of each node is of maximal size 𝑑−1. Furthermore, there are no conditional

independencies present, and the PC algorithm will query the maximum number of statements.

From Example 2.2.4, it becomes evident that in the skeleton estimation only conditional independencies

of order up to 𝑘 − 1 are queried, where 𝑘 is the maximum size of adjacency sets in the true underlying

DAG. In the worst case, 𝑘 = 𝑑 − 1, and in the example, 𝑘 = 𝑑 − 2 = 4. Initially, the algorithm considers

all ordered pairs of variables and tests them for ordinary independence, reducing the set only if edges are

removed. In the worst case, all 2

(
𝑑
2

)
statements are queried. In Example 2.2.4, not all 2

(
6

2

)
= 30 statements

for ordinary independence are checked, but only 25, as five edges are removed at this stage. In the second

step of the algorithm, conditional independencies of order up to 𝑙 = 1 are checked. In the worst case,

there are again 2

(
𝑑
2

)
pairs of variables, and since the sets 𝑎(𝑖) \ { 𝑗} will always have size 𝑑 − 2, there are(

𝑑−2

1

)
possibilities to choose one-dimensional subsets as conditioning sets. Therefore, in total, a maximum

of 2

(
𝑑
2

) (
𝑑−2

1

)
statements are queried at this stage. This number decreases if edges were removed in the

previous or same iteration of the algorithm. In Example 2.2.4, 48 conditional independencies are queried,

compared to a worst-case scenario of 120. In the subsequent stages where 1 < 𝑙 ≤ 𝑑 − 2, the maximum

number of checks, analogous to 𝑙 = 0, 1, is given by 2

(
𝑑
2

) (
𝑑−2

𝑙

)
. This yields the following result on the

computational complexity of the skeleton estimation in the PC algorithm.

Lemma 2.2.23 (Complexity of the first step of the PC algorithm). In the worst case, the number of inde-
pendence statements queried by the PC algorithm is bounded by

𝑁𝑚𝑎𝑥 = 2

(
𝑑

2

) 𝑑−2∑︁
𝑙=0

(
𝑑 − 2

𝑙

)
=

(
𝑑

2

)
· 2𝑑−1 = 𝑑 · (𝑑 − 1) · 2𝑑−2.

Lemma 2.2.23 shows that the computational requirements of the PC algorithm can grow exponentially

with the number of nodes. In contrast to the IC algorithm, Spirtes et al. (1993) argue that this worst

case is rarely realized because it requires that no two variables are independent given a set of variables

that has cardinality less than 𝑘 . In most practical cases, the average number of conditional independence

queries is expected to be much smaller, allowing the algorithm to recover sparse graphs even in higher

2 Mathematical Foundations

18

dimensions. This is confirmed by Example 2.2.4, where 135 conditional independence statements were

queried compared to the worst case of 480 statements for 𝑑 = 6. While conducting a complexity analysis

for the average case is challenging, Kalisch and Bühlmann (2007) argue that if the true underlying DAG is

sparse, the computational complexity of the PC algorithm reduces to polynomial time.

The PC Algorithm: Edge Orientations

After obtaining the skeleton and separation sets in the first step of the PC algorithm, the subsequent steps

focus on identifying v-structures and orienting edges. Algorithm 3 illustrates the second and third steps

Algorithm 3 Step 2 and 3 of the PC algorithm, Oracle Version

1: Input: Skeleton G𝑠𝑘𝑒𝑙 , Separation sets 𝑠𝑒𝑝𝑠𝑒𝑡

2: Output: CPDAG [G]
3: Let G = G𝑠𝑘𝑒𝑙 .
4: Step 2: v-structure identification
5: for each pair of non-adjacent nodes 𝑖 and 𝑗 with a common neighbor 𝑘 do
6: if 𝑘 ∉ sepset(𝑖, 𝑗) from Step 1 then
7: Orient 𝑖 → 𝑘 ← 𝑗

8: end if
9: end for
10: Step 3: Orientation of remaining edges

11: Orient as many edges as possible by repeatedly applying one of the following rules:

12: R1: Orient 𝑗 − 𝑘 into 𝑗 → 𝑘 whenever there is an edge 𝑖 → 𝑗 such that 𝑖 and 𝑘 are non-adjacent.

13: R2: Orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there is a structure 𝑖 → 𝑘 → 𝑗 .

14: R3: Orient 𝑖 − 𝑗 into 𝑖 → 𝑗 whenever there are two structures 𝑖 −𝑘 → 𝑗 and 𝑖 − 𝑙 → 𝑗 such that 𝑘 and

𝑙 are non-adjacent.

15: Set [G] = G
16: return [G].

of the PC algorithm. It is worth noting that both steps bear similarity to those found in Algorithm 1.

Example 2.2.5 (Example 2.2.4 continued). Consider now the skeleton and separation sets that were pro-

duced in Example 2.2.4.

1 2

3

4

6 5

Figure 2.9 The skeleton of the DAG in Figure 2.4

Node 𝑖 ∈ V adj(i)
1 {3, 6}
2 {3, 6}
3 {1, 2, 4}
4 {3, 6}
5 {6}
6 {1, 2, 4, 5}

Table 2.7 Adjacency sets of the skeleton in Figure

2.9

The separation sets are the following:

• 𝑠𝑒𝑝𝑠𝑒𝑡 (1, 2) = 𝑠𝑒𝑝𝑠𝑒𝑡 (2, 1) = ∅.

• 𝑠𝑒𝑝𝑠𝑒𝑡 (1, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 1) = ∅.

• 𝑠𝑒𝑝𝑠𝑒𝑡 (2, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 2) = ∅.

2.2 Graphical Models

19

• 𝑠𝑒𝑝𝑠𝑒𝑡 (3, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 3) = ∅.

• 𝑠𝑒𝑝𝑠𝑒𝑡 (4, 5) = 𝑠𝑒𝑝𝑠𝑒𝑡 (5, 4) = ∅.

• 𝑠𝑒𝑝𝑠𝑒𝑡 (1, 4) = 𝑠𝑒𝑝𝑠𝑒𝑡 (4, 1) = {3}.

• 𝑠𝑒𝑝𝑠𝑒𝑡 (2, 4) = 𝑠𝑒𝑝𝑠𝑒𝑡 (4, 2) = {3}.

• 𝑠𝑒𝑝𝑠𝑒𝑡 (3, 6) = 𝑠𝑒𝑝𝑠𝑒𝑡 (6, 3) = {1, 2, 4}.

Step 2: v-structure identification. Common neighbors of two non-adjacent nodes 𝑖 and 𝑗 are given by

𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗).

• 𝑖 = 1, 𝑗 = 2, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = ∅ and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {3, 6}.
– 𝑘 = 3: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 1→ 3← 2.

– 𝑘 = 6: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 1→ 6← 2.

• 𝑖 = 1, 𝑗 = 4, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = {3} and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {3, 6}.
– 𝑘 = 3: 𝑘 ∈ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗).
– 𝑘 = 6: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 1→ 6← 4.

• 𝑖 = 1, 𝑗 = 5, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = ∅ and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {6}.
– 𝑘 = 6: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 1→ 6← 5.

• 𝑖 = 2, 𝑗 = 4, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = {3} and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {3, 6}.
– 𝑘 = 3: 𝑘 ∈ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗).
– 𝑘 = 6: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 2→ 6← 4 (already present).

• 𝑖 = 2, 𝑗 = 5, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = ∅ and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {6}.
– 𝑘 = 6: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 2→ 6← 5 (already present).

• 𝑖 = 3, 𝑗 = 5, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = ∅ and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = ∅.

• 𝑖 = 3, 𝑗 = 6, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = {1, 2, 4} and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {1, 2, 4}.
– For all 𝑘 ∈ {1, 2, 4}: 𝑘 ∈ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗).

• 𝑖 = 4, 𝑗 = 5, 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = ∅ and 𝑎𝑑 𝑗 (𝑖) ∩ 𝑎𝑑 𝑗 (𝑗) = {6}.
– 𝑘 = 6: 𝑘 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) ⇒ v-structure 4→ 6← 5 (already present).

1 2

3

4

6 5

Figure 2.10 Estimated CPDAG of the DAG in Figure

2.4 after step 2 of the PC algorithm

Node 𝑖 ∈ V pa(i) adj(i)
1 ∅ {3, 6}
2 ∅ {3, 6}
3 {1, 2} {1, 2, 4}
4 ∅ {3, 6}
5 ∅ {6}
6 {1, 2, 4, 5} {1, 2, 4, 5}

Table 2.8 Parents and adjacency sets of the PDAG

in Figure 2.10

2 Mathematical Foundations

20

Figure 2.10 and Table 2.8 show the resulting estimated CPDAG after Step 2 of the PC algorithm.

Step 3: Orientation of the remaining edges. As depicted in Figure 2.10, the only edge that remains undi-

rected is 3 − 4. Rules R1-R3 are now applied to determine if this edge can be directed.

R1: 𝑗 = 3, 𝑘 = 4.

– 𝑖 = 1: the edge 𝑖 → 𝑗 exists and 𝑖 and 𝑘 are non-adjacent⇒ Orient 3→ 4.

1 2

3

4

6 5

Figure 2.11 Estimated CPDAG of the DAG in Figure

2.4 after Step 3 of the PC algorithm

Node 𝑖 ∈ V pa(i) adj(i)
1 ∅ {3, 6}
2 ∅ {3, 6}
3 {1, 2} {1, 2, 4}
4 {3} {3, 6}
5 ∅ {6}
6 {1, 2, 4, 5} {1, 2, 4, 5}

Table 2.9 Parents and adjacency sets of the CPDAG

in Figure 2.11

There are no remaining undirected edges in this scenario, indicating the completion of the PC algorithm.

It returns the estimated CPDAG [G], pictured in Figure 2.11 and detailed in Table 2.9.

The output in Example 2.2.5 corresponds to the true CPDAG of the underlying DAG in Figure 2.4. This is

evident because changing any edge directions in the CPDAG or leaving some edges undirected would lead

to additional v-structures. Therefore, in this specific case, the CPDAG precisely matches the underlying

DAG. In other words, there are no other DAGs within the Markov equivalence class.

The skeleton estimation and edge orientation in Examples 2.2.4 and 2.2.5 yielded correct results, assum-

ing faithfulness and complete information about all independence relations. The following general result

was mentioned in Colombo and Maathuis (2014) and formally proven in Spirtes et al. (1993).

Theorem 2.2.24. Let the distribution P of X be faithful to a DAG G = (V, E). Further, assume that
all conditional independence relations are known. Then the output of the PC algorithm is the CPDAG that
represents the Markov equivalence class of G.

In this context, the oracle version of the PC algorithm can be considered sound and complete. However,

as mentioned earlier, true independence relations among variables are seldom known in practice. There-

fore, in general, the empirical version of the PC algorithm cannot guarantee a correct estimation of the

equivalence class corresponding to the true underlying distribution of observed values. A more detailed

discussion will follow now.

Stability of the PC Algorithm

Consider the empirical version of the PC algorithm, where the oracle is replaced by a test for conditional

independence. Specifically, the null hypothesis 𝐻0 : 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS is tested against the alternative given

by 𝐻1 : 𝑋𝑖 ̸⊥⊥ 𝑋 𝑗 | XS for distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑑} and S ⊆ {1, . . . , 𝑑} \ {𝑖, 𝑗}. Let 𝑇𝛼 (𝑖, 𝑗, S) ∈ {𝐻0, 𝐻1}
denote the test decision at significance level 𝛼 . A common example for such a test in the continuous case

is Fisher’s Z-test, which will be defined in Section 2.2.5. The test decision primarily influences the skeleton

estimation, as depicted in Algorithm 2. If 𝑇𝛼 (𝑖, 𝑗, S) = 𝐻0, the edge 𝑖 − 𝑗 is removed from the undirected

graph, and the separation sets are defined by 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑗) = 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑗, 𝑖) = S.
A Type I error in the test decision can lead to falsely including edges in the skeleton, whereas a Type

II error can result in falsely removing edges. The following example is directly taken from Spirtes et al.

(1993) and shows how erroneously deleting an edge can lead to mistakenly including another edge.

2.2 Graphical Models

21

Example 2.2.6. Consider the true underlying DAG depicted in Figure 2.12.

1 2 3 4

5

Figure 2.12 Example DAG in five dimensions

The only conditional independencies of order zero are given by 𝑋1 ⊥⊥ 𝑋5 and 𝑋2 ⊥⊥ 𝑋5. Suppose these

are correctly identified by the test, but the test incorrectly concludes that𝑇𝛼 (4, 5, ∅) = 𝐻0, i.e., 𝑋4 ⊥⊥ 𝑋5. As

a result, the edges 1−5, 2−5, and 4−5 are removed at stage 𝑙 = 0. In subsequent stages, node 5 is no longer

in the adjacency sets of node 1, 2, and 4. If the test procedure correctly identifies all other independencies

and dependencies, the edge 2 − 4 will not be removed at any stage because it holds that 𝑋2 ̸⊥⊥ 𝑋4 | XS for

any S that does not contain node 5. Since node 5 is no longer in the adjacency sets, the algorithm will not

conclude that the edge 2 − 4 should be removed. Hence, an error in removing 4 − 5 leads to an error in

keeping 2 − 4.

Errors in the skeleton estimation can directly impact subsequent edge orientations. Incorrectly including

or excluding edges in the skeleton can result in missing or newly appearing v-structures. Type I and Type

II errors may cause instabilities in the second step of the PC algorithm, even if the skeleton is correct

initially. This can occur due to deviations from the true separation sets. Additionally, sampling errors or

hidden variables may lead to conflicting information about edge directions.

For example, suppose the algorithm determines that 1 − 2 − 3 and 2 − 3 − 4 should be v-structures.

Consequently, the edge direction of 2 − 3 becomes ambiguous. In this thesis, such conflicts are resolved

by overwriting the edge direction according to the most recent information. However, this introduces

order-dependence in the v-structure estimation. Separating sets can also be order-dependent, varying

based on the order in which conditional independencies are checked. This directly affects the v-structure

estimation since separating sets determine v-structures. Moreover, orientation rules might depend on the

order of variables and errors made in independence tests.

As alreadymentioned, Algorithm 2 shows an order-independent version of the skeleton estimation. This

is achieved by lines 7 to 9, which ensure adjacency sets are saved before each new iteration (i.e., before

incrementing 𝑙). The original version does not contain these lines and updates adjacency sets immediately

after each edge removal, influencing other decisions within the same iteration. Colombo and Maathuis

(2014) also developed order-independent versions for the other steps of the PC algorithm. However, these

versions are impractical for this thesis’s application as they could result in non-extendable CPDAGs by
marking some edges as ambiguous in their direction. A non-extendable CPDAG is a PDAG, where direct-

ing some of the undirected edges would introduce cycles or additional v-structures. Later, when fitting

different Bayesian networks to simulated data using copula-based regression, complete parent-child rela-

tionships are needed, requiring extendable CPDAGs.

2.2.5 Conditional Independence Tests

Conditional independence tests are crucial for estimating the skeleton and v-structures in the empirical

version of the PC algorithm. Stability analysis shows that accurately estimating the Markov equivalence

class of the true underlying DAG necessitates a highly precise method for testing conditional independen-

cies. For continuous data, the most commonly used statistical test relies on the classical asymptotic result

of the sample correlation, introduced by Fisher (1915) and known as Fisher’s Z-transformation.

Definition 2.2.25 (Fisher’s Z-transformation). Let (x, y) be a 𝑛-dimensional sample drawn from the bi-

variate random vector (𝑋,𝑌). The sample correlation coefficient between 𝑋 and 𝑌 is computed as

𝑟 := 𝑟 (x, y) =
∑𝑛
𝑖=1
(𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︁∑𝑛

𝑖=1
(𝑥𝑖 − 𝑥)2

√︁∑𝑛
𝑖=1
(𝑦𝑖 − 𝑦)2

,

2 Mathematical Foundations

22

where 𝑥 = 1

𝑛

∑𝑛
𝑖=1
𝑥𝑖 denotes the sample mean of 𝑋 and 𝑦 = 1

𝑛

∑𝑛
𝑖=1
𝑦𝑖 denotes the sample mean of 𝑌 .

Fisher’s Z-transformation is then defined as

𝑧 =
1

2

ln

(
1 + 𝑟
1 − 𝑟

)
= artanh(𝑟) . (2.6)

Theorem 2.2.26 (Asymptotic distribution of Fisher’s Z-transformation). Consider an i.i.d. sequence of
random variables {(𝑋𝑖 , 𝑌𝑖)}𝑖=1,...,𝑛 , where each (𝑋𝑖 , 𝑌𝑖) follows a bivariate normal distribution with correlation
given by Cor(𝑋𝑖 , 𝑌𝑖) = 𝜌 for all 𝑖 = 1, . . . , 𝑛. Further, let the (random) sample correlation be given by

𝑅𝑛 :=

∑𝑛
𝑖=1
(𝑋𝑖 − 𝑋) (𝑌𝑖 − 𝑌)√︁∑𝑛

𝑖=1
(𝑋𝑖 − 𝑋)2

√︁∑𝑛
𝑖=1
(𝑌𝑖 − 𝑌)2

,

where𝑋 = 1

𝑛

∑𝑛
𝑖=1
𝑋𝑖 and𝑌 = 1

𝑛

∑𝑛
𝑖=1
𝑌𝑖 . Consequently, a random version of Fisher’s Z-transformation is given

by

𝑍𝑛 =
1

2

ln

(
1 + 𝑅𝑛
1 − 𝑅𝑛

)
= artanh(𝑅𝑛).

It follows that the sequence of random variables {𝑍𝑛}𝑛∈ℕ converges in distribution to a normally distributed
random variable:

𝑍𝑛
𝑑−→ 𝑁

(
1

2

ln

(
1 + 𝜌
1 − 𝜌

)
,

1

𝑛 − 3

)
as 𝑛 →∞. (2.7)

In particular, if 𝜌 = 0, it holds that

√
𝑛 − 3 · 𝑍𝑛

𝑑−→ 𝑁 (0, 1) as 𝑛 →∞.

A derivation of the results presented in Theorem 2.2.26 can be found in Anderson (2003). Equation (2.7)

demonstrates that Fisher’s Z-transformation stabilizes the variance of the correlation coefficient. Further,

the asymptotic normality facilitates statistical inference.

To apply Fisher’s Z-transformation in the context of structure learning, the following proposition offers

an alternative definition of the partial correlation, which is commonly used for estimating partial correla-

tions in sample data.

Proposition 2.2.27. Let X = (𝑋1, . . . , 𝑋𝑑)⊤ be a 𝑑-dimensional random vector with positive definite covari-
ance matrix Σ = (𝜎𝑘𝑙)𝑘,𝑙=1,...,𝑑 . Further, let the concentration matrix be given by 𝑃 = Σ−1 = (𝑝𝑘𝑙)𝑘,𝑙=1,...,𝑑 , and
define the set S = {1, . . . , 𝑑} \ {𝑖, 𝑗}. Then the partial correlation of (𝑋𝑖 , 𝑋 𝑗) given XS is given by

𝜌𝑖 𝑗 ;S = −
𝑝𝑖 𝑗√
𝑝𝑖𝑖𝑝 𝑗 𝑗

.

Proof. Using Definition 2.2.21, it holds that

𝜌𝑖 𝑗 ;S =
Cov(𝑅𝑖 , 𝑅 𝑗)√︁

Var(𝑅𝑖)
√︁
Var(𝑅 𝑗)

,

where

𝑅𝑖 = 𝑋𝑖 − X⊤
S̃
𝜷∗i

𝑅 𝑗 = 𝑋 𝑗 − X⊤
S̃
𝜷∗j ,

with 𝜷∗𝑖 (resp. 𝜷
∗
𝑗) being the least squares estimator of the linear regression of 𝑋𝑖 (resp. 𝑋 𝑗) on XS, and

XS̃ being the random vector XS augmented by 1 to allow for a constant term in the regression. After

reordering the variables, the covariance matrix of (𝑋𝑖 , 𝑋 𝑗 ,X⊤S̃)
⊤
is given by

Σ =

Σ𝑖𝑖 Σ𝑖 𝑗 Σ𝑖S̃
Σ 𝑗𝑖 Σ 𝑗 𝑗 Σ 𝑗 S̃
ΣS̃𝑖 ΣS̃𝑗 ΣS̃S̃

 =
[
𝐶11 𝐶12

𝐶21 𝐶22

]
,

2.2 Graphical Models

23

where

𝐶11 =

[
Σ𝑖𝑖 Σ𝑖 𝑗
Σ 𝑗𝑖 Σ 𝑗 𝑗

]
, 𝐶12 =

[
Σ𝑖S̃
Σ 𝑗 S̃

]
, 𝐶21 =

[
ΣS̃𝑖 ΣS̃𝑗

]
, 𝐶22 = ΣS̃S̃.

Further, by the standard results on the ordinary least square estimator, the residuals are given by

𝑅𝑖 = 𝑋𝑖 − X⊤
S̃
𝜷∗i = Xi − X⊤

S̃
(ΣS̃S̃)

−1ΣS̃i,

𝑅 𝑗 = 𝑋 𝑗 − X⊤
S̃
𝜷∗
𝒋 = Xj − X⊤

S̃
(ΣS̃S̃)

−1ΣS̃j.

Assume w.l.o.g. that X is centered. Using that 𝔼(𝑅𝑖) = 𝔼(𝑅 𝑗) = 0, and 𝔼(X) = 0, the covariance of the
residuals can be expressed as

Cov(𝑅𝑖 , 𝑅 𝑗) = 𝔼(𝑅𝑖𝑅 𝑗) = · · · = Σ𝑖 𝑗 − Σ𝑖S̃(ΣS̃S̃)
−1ΣS̃𝑗 . (2.8)

Finally, let the concentration matrix be denoted by

Σ−1 = 𝑃 =

𝑃𝑖𝑖 𝑃𝑖 𝑗 𝑃𝑖S̃
𝑃 𝑗𝑖 𝑃 𝑗 𝑗 𝑃 𝑗 S̃
𝑃S̃𝑖 𝑃S̃𝑗 𝑃S̃S̃

 =
[
𝐾11 𝐾12

𝐾21 𝐾22

]
,

where

𝐾11 =

[
𝑃𝑖𝑖 𝑃𝑖 𝑗
𝑃 𝑗𝑖 𝑃 𝑗 𝑗

]
.

Using Schur’s formula for matrix inversion and Equation (2.8), the inverse of 𝐾11 is given by

𝐾−1

11
= 𝐶11 −𝐶12𝐶

−1

22
𝐶21 =

[
Σ𝑖𝑖 Σ𝑖 𝑗
Σ 𝑗𝑖 Σ 𝑗 𝑗

]
−
[
Σ𝑖S̃
Σ 𝑗 S̃

]
(ΣS̃S̃)

−1
[
ΣS̃𝑖 ΣS̃𝑗

]
=

[
Cov(𝑅𝑖 , 𝑅𝑖) Cov(𝑅𝑖 , 𝑅 𝑗)
Cov(𝑅 𝑗 , 𝑅𝑖) Cov(𝑅 𝑗 , 𝑅 𝑗)

]
.

Further,

𝐾−1

11
=

1

det(𝐾11)

[
[𝐾11]22 −[𝐾11]12

−[𝐾11]21 [𝐾11]11

]
=

1

det(𝐾11)

[
𝑃 𝑗 𝑗 −𝑃𝑖 𝑗
−𝑃 𝑗𝑖 𝑃𝑖𝑖

]
.

Lastly, combining the results yields

𝜌𝑖 𝑗 ;S =
Cov(𝑅𝑖 , 𝑅 𝑗)√︁

Var(𝑅𝑖)
√︁
Var(𝑅 𝑗)

=
− 1

det(𝐾11) 𝑃𝑖 𝑗√︃
1

det(𝐾11) 𝑃 𝑗 𝑗
√︃

1

det(𝐾11) 𝑃𝑖𝑖
= −

𝑃𝑖 𝑗√
𝑃𝑖𝑖

√︁
𝑃 𝑗 𝑗

.

□

The proof is taken from Lauritzen (1996) andmodified to handle non-Gaussian distributions. Proposition

2.2.27 provides an additional method (besides linear regression and the recursive formula) for computing

partial correlations by inverting the covariance matrix. This approach is particularly computationally

efficient in practice, especially when the number of conditioning variables is large, as it requires only a

single matrix inversion. In the R-package pcalg (Kalisch et al. 2024), sample partial correlations are
derived using the recursive formula (see Equation (2.5)) with ordinary sample correlations as initial values

if the conditioning set contains only one variable. For larger conditioning sets, thematrix inversionmethod

(see Proposition 2.2.27) is applied to the sample correlation matrix to compute partial correlations.

Theorem 2.2.28 (Distribution of the sample partial correlation). Let X = (𝑋1, . . . , 𝑋𝑑)⊤ ∼ 𝑁 (𝝁𝑿 , 𝚺𝑿) be a
random vector that follows a multivariate normal distribution. For 𝑖, 𝑗 ∈ {1, . . . , 𝑑} and S ⊆ {1, . . . , 𝑑} \ {𝑖, 𝑗},
let the (random) sample partial correlation of 𝑋𝑖 and 𝑋 𝑗 after removing the effect of XS, based on a sample
size of 𝑛, be denoted by 𝑅𝑖 𝑗 ;S(X;𝑛).
Further, let the true partial correlation coefficient be denoted by 𝜌 = 𝜌𝑖 𝑗 ;S. Suppose additionally Y =

(𝑌1, 𝑌2)⊤ ∼ 𝑁 (𝝁𝒀 , 𝚺𝒀) follows a bivariate normal distribution with correlation 𝜌 . Then, for the (random)
sample correlation of 𝑌1 and 𝑌2 based on 𝑛 − |S| observations, denoted by 𝑅12(Y;𝑛 − |S|), it follows that it has
the same distribution as 𝑅𝑖 𝑗 ;S(X;𝑛) independently of which observations are removed:

𝑅𝑖 𝑗 ;S(X;𝑛) 𝑑= 𝑅12(Y;𝑛 − |S|) . (2.9)

2 Mathematical Foundations

24

The result in Theorem 2.2.28 was first derived by Fisher (1924) and suggests that the asymptotic behavior

of Fisher’s Z-transformation is similar for both partial and ordinary correlations. A detailed derivation can

be found in Anderson (2003).

Corollary 2.2.29 (Asymptotic distribution of Fisher’s Z-transformation of the partial correlation). Let
{X(𝑖) }𝑖=1,...,𝑛 = {(𝑋 (𝑖)

1
, . . . , 𝑋

(𝑖)
𝑑
)⊤}𝑖=1,...,𝑛 be an i.i.d. sequence of random variables, where each X(𝑖) follows

a multivariate normal distribution with partial correlations 𝜌𝑖 𝑗 ;S, for all 𝑖, 𝑗 ∈ {1, . . . , 𝑑} and S ⊆ {1, . . . , 𝑑} \
{𝑖, 𝑗}. Let the (random) sample partial correlations based on 𝑛 observations be denoted by 𝑅𝑖, 𝑗 ;S(X;𝑛). Conse-
quently, a random version of Fisher’s Z-transformation of the partial correlation is given by

𝑍
𝑝𝑎𝑟
𝑛 =

1

2

ln

(
1 + 𝑅𝑖, 𝑗 ;S(X;𝑛)
1 − 𝑅𝑖, 𝑗 ;S(X;𝑛)

)
= artanh(𝑅𝑖, 𝑗 ;S(X;𝑛)) .

It then follows that the sequence of random variables {𝑍𝑝𝑎𝑟𝑛 }𝑛∈ℕ converges in distribution to a normally
distributed random variable:

𝑍
𝑝𝑎𝑟
𝑛

𝑑−→ 𝑁

(
1

2

ln

(
1 + 𝜌𝑖 𝑗 ;S
1 − 𝜌𝑖 𝑗 ;S

)
,

1

𝑛 − |S| − 3

)
as 𝑛 →∞.

In particular, if 𝜌𝑖 𝑗 ;S = 0, it holds that√︁
𝑛 − |S| − 3 · 𝑍𝑝𝑎𝑟𝑛

𝑑−→ 𝑁 (0, 1) as 𝑛 →∞. (2.10)

Clearly, Equation (2.10) is useful in the context of testing a hypothesis of the form 𝐻0 : 𝜌𝑖 𝑗 ;S = 0 against

its two sided alternative for some 𝑖, 𝑗 , and S.

Definition 2.2.30 (Fisher’s Z-test of the partial correlation). Consider a continuous𝑑-dimensional random

vector X = (𝑋1, . . . , 𝑋𝑑)⊤ with a 𝑛-dimensional realization x. Let 𝑖, 𝑗 ∈ {1, . . . , 𝑑} and S ⊆ {1, . . . , 𝑑} \ {𝑖, 𝑗}.
Denote by 𝜌𝑖 𝑗 ;S the true underlying partial correlation of 𝑋𝑖 , 𝑋 𝑗 given XS, and by 𝑟𝑖 𝑗 ;S the sample partial

correlation based on the sample x. Further, let Fisher’s Z-transformation of the sample partial correlation

be given by

𝑧𝑝𝑎𝑟 =
1

2

ln

(
1 + 𝑟𝑖 𝑗 ;S
1 − 𝑟𝑖 𝑗 ;S

)
.

Consider now the hypotheses

𝐻0 : 𝜌𝑖 𝑗 ;S = 0 vs. 𝐻1 : 𝜌𝑖 𝑗 ;S ≠ 0.

The null hypothesis can be tested against its alternative using the following test, called Fisher’s Z-test:
Reject 𝐻0 vs. 𝐻1 at level 𝛼 if and only if√︁

𝑛 − |S| − 3 · 𝑧𝑝𝑎𝑟 > Φ−1(1 − 𝛼/2),

where |S| ≤ 𝑑 − 2 is the cardinality of the set S, Φ−1
denotes the quantile function of the standard normal

distribution, 𝛼 is the significance level, and 𝑛 is the number of observations.

As mentioned earlier in Section 2.2.3, in the special case where X follows a multivariate normal distri-

bution, the partial correlation 𝜌𝑖 𝑗 ;S is equal to zero if and only if the conditional correlation 𝜌𝑖 𝑗 |S is equal
to zero. Furthermore, a conditional correlation of zero is equivalent to conditional independence in the

case of the Gaussian distribution. Therefore, in this specific case, or when the data is at least approxi-

mately normal distributed, Fisher’s Z-Test for vanishing partial correlations can be used as a conditional

independence test.

While the Z-test application within the PC algorithm is highly computationally efficient, relying on

Gaussian assumptions poses a significant drawback. When the dependence structure in the data deviates

strongly from normality, it is anticipated that the test may yield misleading results. In subsequent sections

of this thesis, a novel and more flexible copula-based method for conditional independence testing will be

introduced and compared against the Z-test within the PC algorithm. This comparison will involve both

Gaussian and non-Gaussian simulation setups, highlighting the method’s robustness across different data

distributions.

2.3 Vine Copulas

25

2.2.6 PDAG Extension

In practice, once the CPDAG is obtained using the empirical version of the PC algorithm, it often needs to

be extended to fully fit a Bayesian network to the given data. Typically, undirected edges in the CPDAG

can be oriented as long as they do not create new v-structures or cycles.

Algorithm 4 Extension of a Partially Directed Acyclic Graph (PDAG)

1: Input: PDAG G
2: Output: Extended PDAG G′
3: Initialize G′ := G, A := G
4: while A is not empty do
5: Select a node 𝑖 which satisfies the following properties in subgraph A:

a) No edge (𝑖, 𝑗) in A is directed outward from 𝑖 .

b) For every node 𝑗 adjacent to 𝑖 with 𝑖 − 𝑗 undirected in A, 𝑗 is adjacent to all other nodes

adjacent to 𝑖 .

6: if such 𝑖 is not found then
7: Stop and return a negative answer (graph G does not admit any extension).

8: end if
9: Direct all edges incident to 𝑖 (meaning all edges containing the node 𝑖) in A toward 𝑖 in G′.
10: A := A − 𝑖 (remove 𝑖 and all edges incident to 𝑖 from A).

11: end while
12: return G′ (an extension of the input PDAG G)

Algorithm 4, introduced by Dor and Tarsi (1992), aims to extend a PDAG to a DAG while preserving the

PDAG’s structure and avoiding the creation of new v-structures, provided the PDAG admits an extension.

The fundamental idea of the algorithm is that every DAG contains a sink, i.e., a node with no outward-

directed edges. Property a) in line 5 aims to identify a sink. Property b) ensures that directing edges

towards the sink does not create a new v-structure. Thus, both properties are necessary for the existence

of an extension. For a more detailed justification of the recursion, refer to Dor and Tarsi (1992). Lastly, it

is worth noting that the algorithm runs in polynomial time, as the number of iterations equals the number

of nodes, and each edge is examined at most twice.

2.3 Vine Copulas

Copulas are mathematical functions used to describe the dependency structure between random variables,

allowing for the separation of marginal distributions from their joint behavior. Originating from Sklar’s
Theorem, copulas enable precise modeling of complex, non-linear dependencies and tail behaviors in mul-

tivariate data. This thesis explores the theoretical foundations of copulas, their various types, and their

applications in pair-copula Bayesian networks. The primary source for this section’s content is Czado

(2019), with additional insights drawn from Joe (2014), Kurowicka (2006), and Kurowicka and Joe (2011),

among others.

2.3.1 Sklar’s Theorem

Definition 2.3.1 (Copula, copula density). A 𝑑-dimensional copula𝐶 is a multivariate distribution func-

tion 𝐶 : [0, 1]𝑑 → [0, 1] with uniformly distributed marginals. In the case of absolute continuity, the

copula density is given by

𝑐 (𝑢1, . . . , 𝑢𝑑) =
𝜕𝑑

𝜕𝑢1 . . . 𝜕𝑢𝑑
𝐶 (𝑢1, . . . , 𝑢𝑑),

for all u ∈ [0, 1]𝑑 .

2 Mathematical Foundations

26

A frequently used transformation in the context of copulas is given by the following:

Theorem 2.3.2 (Probability Integral Transform). Let 𝑋 be a continuous random variable with cdf 𝐹𝑋 . Then
the random variable𝑈 = 𝐹𝑋 (𝑋) follows a standard uniform distribution. Conversely, let𝑈 follow a standard
uniform distribution. Then the random variable 𝐹 −1

𝑋
(𝑈), where 𝐹 −1

𝑋
is the quantile function of X, has the same

distribution as 𝑋 .

The following foundational result in the theory of copulas, first proven by Sklar (1959), provides the key

link between multivariate distribution functions, their marginal distributions, and dependence structure.

Theorem 2.3.3 (Sklar’s Theorem). Let X be a 𝑑-dimensional random vector with joint distribution function
𝐹 and marginal distribution functions 𝐹1, . . . , 𝐹𝑑 . Then there exists a 𝑑-dimensional copula 𝐶 with density 𝑐
such that for all x ∈ ℝ𝑑 ,

𝐹 (𝑥1, . . . , 𝑥𝑑) = 𝐶 (𝐹1(𝑥1), . . . , 𝐹𝑑 (𝑥𝑑)) . (2.11)

Further, the joint density function of X can be expressed as

𝑓 (𝑥1, . . . , 𝑥𝑑) = 𝑐 (𝐹1(𝑥1), . . . , 𝐹𝑑 (𝑥𝑑)) · 𝑓1(𝑥1) · · · 𝑓𝑑 (𝑥𝑑). (2.12)

If the marginal distributions are absolutely continuous, then 𝐶 is unique.

Proof. In the case of absolute continuity, consider the probability integral transform (PIT)𝑈 𝑗 = 𝐹 𝑗 (𝑋 𝑗), for
𝑗 = 1, . . . , 𝑑 . Clearly, the copula𝐶 (𝑢1, . . . , 𝑢𝑑) represents the joint distribution function of U = (𝑈1, . . . ,𝑈𝑑).

□

Theorem 2.3.3 can be employed to independently model marginal distributions and the dependence

structure. For instance, given an i.i.d. sample x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑑)⊤, for 𝑖 = 1, . . . , 𝑛, the pseudo-copula data
𝑢𝑖 𝑗 = 𝐹 𝑗 (𝑥𝑖 𝑗), where 𝐹 𝑗 is an estimate for the marginal distribution of 𝑗 , for 𝑗 = 1, . . . , 𝑑 , can be utilized to

model the copula 𝐶 . Later in this thesis, an estimate 𝐹 𝑗 for the 𝑗-th margin is obtained via kernel density
estimation. Further, by applying Equations (2.11) and (2.12) to arbitrarymarginal distributions and a chosen

copula 𝐶 , one can construct a new multivariate distribution known as meta distribution.

2.3.2 Dependence Measures

A frequently usedmeasure of linear dependence is the Pearson product-moment correlation. For two random
variables 𝑋 and 𝑌 with finite second moments, it is defined by

𝜌 := 𝜌 (𝑋,𝑌) := Cor(𝑋,𝑌) = Cov(𝑋,𝑌)√︁
Var(𝑋)

√︁
Var(𝑌)

.

In Section 2.2.5, for example, its empirical version was used to define Fisher’s Z-transformation. Despite

its popularity, however, Pearson’s product-moment correlation possesses significant drawbacks. First,

it is not defined for distributions with non-finite second moments. Second, and more importantly, it is

not invariant under monotone increasing transformations of the margins, and its value might depend on

the marginal distributions of 𝑋 and 𝑌 . Hence, in most cases, there is no direct relationship between the

bivariate copula and Pearson’s correlation.

An alternative measure is provided byKendall’s tau, denoted simply by 𝜏 . It is invariant under monotone

transformations of the marginals and can be expressed solely in terms of the associated copula, as its value

remains independent of the marginal distributions.

Definition 2.3.4 (Kendall’s 𝜏). The Kendall’s 𝜏 between two continuous random variables 𝑋 and 𝑌 is

defined as the difference between the probability of concordance and the probability of discordance:

𝜏 (𝑋,𝑌) = ℙ((𝑋1 − 𝑋2) (𝑌1 − 𝑌2) > 0) − ℙ((𝑋1 − 𝑋2) (𝑌1 − 𝑌2) < 0),

where (𝑋1, 𝑌1) and (𝑋2, 𝑌2) are i.i.d. copies of (𝑋,𝑌).

2.3 Vine Copulas

27

Assume now that an i.i.d. sample of (𝑋,𝑌) is given by (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, . . . , 𝑛. In total, there are
𝑛 (𝑛−1)

2

unordered pairs (𝑥𝑖 , 𝑦𝑖), (𝑥 𝑗 , 𝑦 𝑗), where 𝑖, 𝑗 = 1, . . . , 𝑛 and 𝑖 ≠ 𝑗 . A pair is called concordant if (𝑥𝑖 − 𝑥 𝑗) (𝑦𝑖 −
𝑦 𝑗) > 0 and discordant if (𝑥𝑖 − 𝑥 𝑗) (𝑦𝑖 − 𝑦 𝑗) < 0. Note that in the continuous case, (𝑥𝑖 − 𝑥 𝑗) (𝑦𝑖 − 𝑦 𝑗) ≠ 0

almost surely (ℙ-a.s.), i.e., ties occur with probability zero.

Definition 2.3.5 (Estimate of Kendall’s 𝜏). Let𝑁𝑐 be the number of concordant pairs and𝑁𝑑 be the number

of discordant pairs from a sample (𝑥𝑖 , 𝑦𝑖), 𝑖 = 1, . . . , 𝑛, from the joint distribution of (𝑋,𝑌). An estimate
of Kendall’s 𝜏 is then given by

𝜏𝑛 :=
2(𝑁𝑐 − 𝑁𝑑)
𝑛(𝑛 − 1) .

The number of concordant and discordant pairs can be computed using only the ranks of the observa-

tions. Thus, Kendall’s 𝜏 is a rank-based dependence measure that does not rely on themarginal distributions.

Theorem 2.3.6 (Kendall’s 𝜏 in terms of the copula). Let (𝑋1, 𝑋2) be continuous random variables with
associated copula 𝐶 . Then Kendall’s 𝜏 can be expressed as

𝜏 = 4

∫
[0,1]2

𝐶 (𝑢1, 𝑢2)d𝐶 (𝑢1, 𝑢2) − 1.

A proof of Theorem 2.3.6 can be found in Czado (2019). While Kendall’s 𝜏 measures the overall strength

and direction of the dependence structure, it does not explicitly provide insights into the behavior of

the joint distribution in the tails. Specifically, the strength of dependence may increase in the tails, and

furthermore, it may not be symmetric between its upper and lower tail.

Definition 2.3.7 (Tail dependence). Let (𝑋,𝑌) be random variables following a bivariate distribution with

copula 𝐶 . The upper tail dependence coefficient of (𝑋,𝑌) is given by

𝜆𝑢 = lim

𝑡→1
−
ℙ(𝑌 > 𝐹 −1

𝑌 (𝑡) | 𝑋 > 𝐹 −1

𝑋 (𝑡)) = lim

𝑡→1
−

1 − 2𝑡 +𝐶 (𝑡, 𝑡)
1 − 𝑡 ,

where 𝐹𝑋 is the marginal distribution of 𝑋 , and 𝐹𝑌 is the marginal distribution of 𝑌 . The lower tail
dependence coefficient of (𝑋,𝑌) is defined as

𝜆𝑙 = lim

𝑡→0
+
ℙ(𝑌 ≤ 𝐹 −1

𝑌 (𝑡) | 𝑋 ≤ 𝐹 −1

𝑋 (𝑡)) = lim

𝑡→0
+

𝐶 (𝑡, 𝑡)
𝑡

.

2.3.3 Bivariate Copula Classes

Throughout this thesis, two classes of bivariate copulas will be considered: elliptical and Archimedean
copulas. Elliptical copulas arise from applying the probability integral transform to the margins of well-

known multivariate distributions such as the Gaussian or Student’s t-distribution. Archimedean copulas

are constructed using generator functions. A special subclass of the Archimedean copulas is the BB cop-

ulas, which blend the properties from multiple simpler copulas and are characterized by two parameters.

All copulas used in this thesis are defined in Appendix B. This section will provide basic properties of these

copulas, with a detailed overview available in Joe (2014).

Table 2.10 demonstrates that for many copula families, simple expressions for Kendall’s 𝜏 in terms of

the copula parameters exist. However, not all copula families can directly model negative dependence, i.e.,

negative values of 𝜏 . One possible solution to expand the range of dependence is through rotations.

Definition 2.3.8 (Rotated copulas). A rotated copula is constructed by a counterclockwise rotation of

the underlying copula density 𝑐 (·, ·):

i) 90°: 𝑐90(𝑢1, 𝑢2) := 𝑐 (1 − 𝑢2, 𝑢1).

ii) 180°: 𝑐180(𝑢1, 𝑢2) := 𝑐 (1 − 𝑢1, 1 − 𝑢2).

iii) 270°: 𝑐270(𝑢1, 𝑢2) := 𝑐 (𝑢2, 1 − 𝑢1).

2 Mathematical Foundations

28

Family Kendall’s 𝜏 Range of 𝜏

Independence 𝜏 = 0 0

Gaussian 𝜏 = 2

𝜋
arcsin(𝜌) [−1, 1]

t 𝜏 = 2

𝜋
arcsin(𝜌) [−1, 1]

Clayton 𝜏 = 𝛿
𝛿+2 [0, 1]

Gumbel 𝜏 = 1 − 1

𝛿
[0, 1]

Frank 𝜏 = 1 − 4

𝛿

(
1 − 1

𝛿

∫ 𝛿
0

𝑡
𝑒𝑡−1

𝑑𝑡

)
[−1, 1]

Joe 𝜏 = 1 + 2

2−𝛿 (𝜓 (2) −𝜓 (
2

𝛿
+ 1)), where𝜓 denotes the digamma function [0, 1]

BB1 𝜏 = 1 − 2

𝛿 (𝜃+2) [0, 1]
BB6 No simple closed-form formula [0, 1]
BB7 𝜏 = 1− 2

𝛿 (2−𝜃) +
4

𝜃 2𝛿
𝐵(2−2𝜃

𝜃
+ 1, 𝛿 + 2) for 1 < 𝜃 < 2 and beta function 𝐵 [0, 1]

BB8 No simple closed-form formula [0, 1]

Table 2.10 Kendall’s 𝜏 as a function of the copula parameters for different bivariate families

Family Upper Tail Dependence 𝜆𝑢 Lower Tail Dependence 𝜆𝑙

Independence 0 0

Gaussian 0 0

t 2𝑡𝜈+1

(
−
√︃
(𝜈+1) (1−𝜌)

1+𝜌

)
2𝑡𝜈+1

(
−
√︃
(𝜈+1) (1−𝜌)

1+𝜌

)
Clayton 0 2

−1/𝛿

Gumbel 2 − 2
1/𝛿

0

Frank 0 0

Joe 2 − 2
1/𝛿

0

BB1 2 − 2
1/𝛿

2
−1/(𝛿𝜃)

BB6 2 − 2
1/(𝛿𝜃)

0

BB7 2 − 2
1/𝜃

2
−1/𝛿

BB8

{
2 − 2

1/𝜗 , if 𝛿 = 1

0, else

0

Table 2.11 Upper and lower tail dependence as a function of copula parameters for different bivariate families

2.3 Vine Copulas

29

Table 2.11 presents upper and lower tail dependence formulas for various copula families, each charac-

terized by a simple closed-form expression. The copulas exhibit significant differences in their tail behavior.

For instance, copulas like the Gaussian and Frank copulas exhibit no tail dependence. In contrast, the t-

copula displays symmetric tail dependencies, while copulas such as the Clayton or Gumbel copulas feature

asymmetric tail dependencies. This demonstrates the versatility of copulas in modeling multivariate dis-

tributions compared to traditional approaches like the multivariate Gaussian or Student’s t-distribution.

Additionally, rotations of copulas not only extend the range of 𝜏 but also provide options for modeling tail

dependencies. For example, a 180-degree rotation of the Clayton copula shifts tail dependency from the

lower to the upper tail.

The dependence structure of a specific bivariate copula can be visualized using normalized contour plots.
These plots are generated by transforming the marginal distributions to standard normal distributions

and adjusting the copula density accordingly. Normalized contour plots for various copula families and

parameters are provided in Appendix B. Typically, three different scales are employed throughout this

thesis.

Definition 2.3.9 (Variable scales). Consider the following variable scales:

i) x-scale: Original scale (𝑋1, 𝑋2) with density 𝑓 (𝑥1, 𝑥2).

ii) u-scale: Copula scale (𝑈1,𝑈2), where𝑈𝑖 := 𝐹𝑖 (𝑋𝑖), 𝑖 = 1, 2, and copula density 𝑐 (𝑢1, 𝑢2).

iii) z-scale: Marginal normalized scale (𝑍1, 𝑍2), where𝑍𝑖 := Φ−1(𝑈𝑖) = Φ−1(𝐹𝑖 (𝑋𝑖)), 𝑖 = 1, 2, and density

given by

𝑔(𝑧1, 𝑧2) = 𝑐 (Φ(𝑧1),Φ(𝑧2))𝜙 (𝑧1)𝜙 (𝑧2),

where Φ(·) denotes the cdf of the standard normal distribution, and 𝜙 (·) its pdf.

2.3.4 Regular Vines

Regular vines (R-vines) are a flexible class of multivariate copula models that decompose the dependence

structure of high-dimensional data into a cascade of bivariate copulas. The first R-vine was introduced by

Joe (1996) and belongs to the subclass of D-vines (drawable vines). The hierarchical approach of R-vines

allows for the modeling of complex dependencies using bivariate building blocks, making R-vines partic-

ularly useful for high-dimensional applications. To illustrate, consider the following three-dimensional

example:

Example 2.3.1. Let𝑋1,𝑋2, and𝑋3 be three random variables with joint density function 𝑓 (·). The density
can be factorized as follows:

𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑓1(𝑥1) · 𝑓2 |1(𝑥2 | 𝑥1) · 𝑓3 |12(𝑥3 | 𝑥1, 𝑥2). (2.13)

The factorization is unique up to a reordering of the variables. According to Sklar’s Theorem (2.12), it

holds for the bivariate distribution of (𝑋1, 𝑋2):

𝑓12(𝑥1, 𝑥2) = 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) · 𝑓1(𝑥1) · 𝑓2(𝑥2) .

Applying (2.12) to the bivariate distribution of (𝑋1, 𝑋3) given 𝑋2 yields

𝑓13 |2(𝑥1, 𝑥3 | 𝑥2) = 𝑐13;2(𝐹1 |2(𝑥1 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2);𝑥2) · 𝑓1 |2(𝑥1 | 𝑥2) · 𝑓3 |2(𝑥3 | 𝑥2),

where 𝑐13;2(·, ·;𝑥2) denotes the copula associated with the distribution of (𝑋1, 𝑋3) given 𝑋2. Using

𝑓2 |1(𝑥2 | 𝑥1) =
𝑓12(𝑥1, 𝑥2)
𝑓1(𝑥1)

= 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) · 𝑓2(𝑥2),

𝑓3 |12(𝑥3 | 𝑥1, 𝑥2) =
𝑓13 |2(𝑥1, 𝑥3 | 𝑥2)
𝑓1 |2(𝑥1 | 𝑥2)

= 𝑐13;2(𝐹1 |2(𝑥1 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2);𝑥2) · 𝑓3 |2(𝑥3 | 𝑥2),

2 Mathematical Foundations

30

and

𝑓3 |2(𝑥3 | 𝑥2) =
𝑓23(𝑥2, 𝑥3)
𝑓2(𝑥2)

= 𝑐23(𝐹2(𝑥2), 𝐹3(𝑥3)) · 𝑓3(𝑥3),

the three-dimensional joint density 𝑓 (·) can be expressed in terms of bivariate copulas and conditional

distribution functions as follows:

𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑐13;2(𝐹1 |2(𝑥1 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2);𝑥2) ·𝑐23(𝐹2(𝑥2), 𝐹3(𝑥3)) ·𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) ·
3∏
𝑖=1

𝑓𝑖 (𝑥𝑖) . (2.14)

Equation (2.14) is referred to as a pair copula decomposition. It is important to note that in this decom-

position, the copula 𝑐13;2(·, ·;𝑥2) may depend on the conditioning value 𝑥2. Throughout this thesis, it is

assumed that this dependence can be ignored, i.e., 𝑐13;2(·, ·;𝑥2) = 𝑐13;2(·, ·) holds. This assumption is known

as the simplifying assumption, and under this condition, Equation (2.14) is termed pair copula construction
(PCC). Since the variables in (2.13) can be reordered, the decomposition (2.14) is not unique. For examples

of PCCs in higher dimensions, readers are referred to Aas et al. (2009). The number of possible PCCs grows

significantly with increasing dimensions; while there are only three possibilities in the three-dimensional

example, there are 240 different ways to construct a five-dimensional density. To organize and visualize

different PCCs in higher dimensions, Bedford and Cooke (2002) introduced a graphical model known as

regular vine (R-vine). Further definitions from graph theory are necessary to fully define this model.

Definition 2.3.10 (Tree). A tree is an undirected graph 𝑇 = (𝑉 , 𝐸) that is connected, meaning there is a

path between every pair of nodes, and acyclic.

Since trees only contain undirected edges, the notation {𝑎, 𝑏} may be used to represent an edge 𝑎 − 𝑏,
instead of using (𝑎, 𝑏) together with (𝑏, 𝑎).

Definition 2.3.11 (R-vine tree sequence). A R-vine tree sequence on 𝑑 elements is a sequence of trees

T = (𝑇𝑖)𝑖=1,...,𝑑−1 such that:

i) 𝑇1 = (𝑁1, 𝐸1) is a tree with 𝑁1 = {1, . . . , 𝑑}.

ii) For 𝑗 ≥ 2, 𝑇𝑗 = (𝑁 𝑗 , 𝐸 𝑗) is a tree with 𝑁 𝑗 = 𝐸 𝑗−1.

iii) Proximity condition: For 𝑗 ≥ 2 and {𝑎, 𝑏} ∈ 𝐸 𝑗 , it must hold that |𝑎 ∩ 𝑏 | = 1, meaning 𝑎 and 𝑏 share

a common node in 𝑇𝑗−1.

The objective is to associate each edge with a pair copula. This necessitates the following definition:

Definition 2.3.12 (Complete union and conditioned sets). Let 𝑒 = {𝑎, 𝑏} ∈ 𝐸𝑖 be an edge in the 𝑖-th tree

of a R-vine tree sequence. Define the complete union of 𝑒 as

𝐴𝑒 ≔

{
𝑗 ∈ 𝑁1 | ∃𝑒1 ∈ 𝐸1, . . . , 𝑒𝑖−1 ∈ 𝐸𝑖−1 such that 𝑗 ∈ 𝑒1 ∈ · · · ∈ 𝑒𝑖−1 ∈ 𝑒

}
.

The conditioning set of 𝑒 is given by

𝐷𝑒 ≔ 𝐴𝑎 ∩𝐴𝑏,

and the conditioned sets are defined as

C𝑒,𝑎 ≔ 𝐴𝑎 \ 𝐷𝑒 and C𝑒,𝑏 ≔ 𝐴𝑏 \ 𝐷𝑒 .

The edge 𝑒 = (C𝑒,𝑎, C𝑒,𝑏 ;𝐷𝑒) may be abbreviated as

𝑒 = (𝑎𝑒 , 𝑏𝑒 ;𝐷𝑒),

and if 𝐷𝑒 = ∅, simply as 𝑒 = (𝑎𝑒 , 𝑏𝑒).

The next definition will bridge the gap between purely graphical R-vine tree sequences and their appli-

cation in constructing multivariate distributions using pair copulas.

2.3 Vine Copulas

31

Definition 2.3.13 (R-vine distribution). A 𝑑-dimensional random vector X follows a regular vine dis-
tribution if a triplet (F ,T ,B) can be specified as follows:

i) Margins: F = (𝐹1, . . . , 𝐹𝑑) is a vector of continuous marginal distributions, where 𝐹𝑖 corresponds

to the marginal distribution of 𝑋𝑖 for 𝑖 = 1, . . . , 𝑑 .

ii) R-vine tree sequence: T is a R-vine tree sequence on 𝑑 elements.

iii) Bivariate copulas: B = {𝐶𝑒 | 𝑒 ∈ 𝐸𝑖 , 𝑖 = 1, . . . , 𝑑} is a set of symmetric bivariate copulas, where 𝐸𝑖
denotes the edge set in tree 𝑇𝑖 , 𝑖 = 1, . . . , 𝑑 − 1.

iv) Link between T and B: For each 𝑒𝑖 ∈ 𝐸𝑖 , 𝑖 = 1, . . . , 𝑑 − 1, 𝐶𝑒 corresponds to the copula associated

with the conditional distribution of (𝑋𝑎𝑒 , 𝑋𝑏𝑒) given 𝑋𝐷𝑒
. The simplifying assumption is assumed to

hold, and the copula 𝐶𝑒 will be denoted by 𝐶𝑎𝑒 ,𝑏𝑒 ;𝐷𝑒
and its density by 𝑐𝑎𝑒 ,𝑏𝑒 ;𝐷𝑒

.

Definition 2.3.13 is restricted to symmetric copulas, i.e., copulas for which 𝑐 (𝑢1, 𝑢2) = 𝑐 (𝑢2, 𝑢1) holds.
Many copulas, especially when considering rotations, are non-symmetric. However, the same principle

applies to these types of copulas. In practical applications, special attention needs to be given to the order

of (𝑎𝑒 , 𝑏𝑒) in the context of non-symmetric copulas. A regular vine distribution with uniformly distributed

margins is referred to as a regular vine copula.
Bedford and Cooke (2002) show the existence and uniqueness of a regular vine distribution given a

triplet (F ,T ,B).

Theorem 2.3.14 (Existence of a R-vine distribution). Given a triplet (F ,T ,B) satisfying the conditions
stated in Definition 2.3.13, there exists a unique 𝑑-dimensional distribution 𝐹 with density

𝑓 (𝑥1, . . . , 𝑥𝑑) =
(𝑑∏
𝑖=1

𝑓𝑖 (𝑥𝑖)
) (𝑑−1∏

𝑖=1

∏
𝑒∈𝐸𝑖

𝑐𝑎𝑒 ,𝑏𝑒 ;𝐷𝑒

(
𝐹𝑎𝑒 |𝐷𝑒

(𝑥𝑎𝑒 | x𝐷𝑒
), 𝐹𝑏𝑒 |𝐷𝑒

(𝑥𝑏𝑒 | x𝐷𝑒
)
))
. (2.15)

Theorem 2.3.14 proves to be very useful as it states that regular vine distributions can be defined by

specifying a triplet (F ,T ,B). The resulting joint density can then be computed using Equation (2.15).

To evaluate this density, it is essential to determine the univariate conditional distributions 𝐹C𝑒,𝑎 |𝐷𝑒
and

𝐹C𝑒,𝑏 |𝐷𝑒
. Following the chain rule of differentiation, Joe (1996) provided the following recursion:

Lemma 2.3.15 (Recursion for the conditional distribution functions). Let 𝐾 ⊂ 𝑉1 = {1, . . . , 𝑑}, 𝑣 ∈ 𝑉1 \ 𝐾 ,
and 𝐾−𝑤 = 𝐾 \ {𝑤}. Then, for all𝑤 ∈ 𝐾 , the conditional distribution of 𝑋𝑣 given X𝐾 is given by

𝐹𝑣 |𝐾 (𝑥𝑣 | x𝐾) =
𝜕𝐶𝑣,𝑤;𝐾−𝑤

(
𝐹𝑣 |𝐾−𝑤 (𝑥𝑣 | x𝐾−𝑤), 𝐹𝑤 |𝐾−𝑤 (𝑥𝑤 | x𝐾−𝑤)

)
𝜕𝐹𝑤 |𝐾−𝑤 (𝑥𝑤 | x𝐾−𝑤)

.

Using a bottom-up approach, the copulas 𝐶𝑣,𝑤;𝐾−𝑤 can always be chosen such that they are included

in B, thereby eliminating the need for integration. A more concise notation for evaluating conditional

distribution functions was introduced in Aas et al. (2009).

Definition 2.3.16 (h-function). The h-functions corresponding to a bivariate copula 𝐶12 are defined as

follows:

ℎ1 |2(𝑢1, 𝑢2) :=
𝜕

𝜕𝑢2

𝐶12(𝑢1, 𝑢2),

ℎ2 |1(𝑢2, 𝑢1) :=
𝜕

𝜕𝑢1

𝐶12(𝑢1, 𝑢2),

where (𝑢1, 𝑢2) ∈ [0, 1]2.

Before presenting an explicit example of a R-vine distribution, consider the following subclass of R-vines

that holds particular importance in this thesis:

2 Mathematical Foundations

32

1 2 3 4

12 23 34

13;2 24;3

12 23 34

13;2 24;3

14;23

𝑇1

𝑇2

𝑇3

Figure 2.13 D-vine tree sequence on 𝑑 = 4 elements

Definition 2.3.17 (D-vine tree sequence). A regular vine tree sequence on 𝑑 elements T = (𝑇𝑖)𝑖=1,...,𝑑−1 is

termed a drawable vine (D-vine) tree sequence if, for each node 𝑛 ∈ 𝑁𝑖 , it holds that

|{𝑒 ∈ 𝐸𝑖 | 𝑛 ∈ 𝑒}| ≤ 2.

In other words, D-vine tree sequences are a subclass of R-vine tree sequences where each node has at

most two neighbors. From the proximity condition of R-vine tree sequences, it follows that the first tree

of a D-vine tree sequence completely determines all other trees. A regular vine distribution with a D-vine

tree structure will be referred to as a drawable vine (D-vine) distribution.

Example 2.3.2 (Four dimensional D-vine distribution). Consider the D-vine tree sequence on 𝑑 = 4 ele-

ments in Figure 2.13. The D-vine density corresponding to the tree structure in Figure 2.13 is given by

𝑓 (𝑥1, . . . , 𝑥4) = 𝑐14;23(𝐹1 |23(𝑥1 | 𝑥2, 𝑥3), 𝐹4 |23(𝑥4 | 𝑥2, 𝑥3)) · 𝑐24;3(𝐹2 |3(𝑥2 | 𝑥3), 𝐹4 |3(𝑥4 | 𝑥3))
· 𝑐13;2(𝐹1 |2(𝑥1 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2)) · 𝑐34(𝐹3(𝑥3), 𝐹4(𝑥4)) · 𝑐23(𝐹2(𝑥2), 𝐹3(𝑥3)) (2.16)

· 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) · 𝑓4(𝑥4) · 𝑓3(𝑥3) · 𝑓2(𝑥2) · 𝑓1(𝑥1).

Further, the conditional cdfs are given by the recursion

𝐹1 |2(𝑥1 | 𝑥2) =
𝜕𝐶12(𝐹1(𝑥1), 𝐹2(𝑥2))

𝜕𝐹2(𝑥2)
=: ℎ1 |2(𝐹1(𝑥1) | 𝐹2(𝑥2)),

𝐹3 |2(𝑥3 | 𝑥2) =
𝜕𝐶23(𝐹2(𝑥2), 𝐹3(𝑥3))

𝜕𝐹2(𝑥2)
=: ℎ3 |2(𝐹3(𝑥3) | 𝐹2(𝑥2)),

𝐹2 |3(𝑥2 | 𝑥3) =
𝜕𝐶23(𝐹2(𝑥2), 𝐹3(𝑥3))

𝜕𝐹3(𝑥3)
=: ℎ2 |3(𝐹2(𝑥2) | 𝐹3(𝑥3)),

𝐹4 |3(𝑥4 | 𝑥3) =
𝜕𝐶34(𝐹3(𝑥3), 𝐹4(𝑥4))

𝜕𝐹3(𝑥3)
=: ℎ4 |3(𝐹4(𝑥4) | 𝐹3(𝑥3)),

𝐹1 |23(𝑥1 | 𝑥2, 𝑥3) =
𝜕𝐶13;2(𝐹1 |2(𝑥1 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2))

𝐹3 |2(𝑥3 | 𝑥2)
=: ℎ1 |3;2(ℎ1 |2(𝐹1(𝑥1) | 𝐹2(𝑥2)) | ℎ3 |2(𝐹3(𝑥3) | 𝐹2(𝑥2))),

𝐹4 |23(𝑥1 | 𝑥2, 𝑥3) =
𝜕𝐶24;3(𝐹2 |3(𝑥2 | 𝑥3), 𝐹4 |3(𝑥4 | 𝑥3))

𝐹2 |3(𝑥2 | 𝑥3)
=: ℎ4 |2;3(ℎ4 |3(𝐹4(𝑥4) | 𝐹3(𝑥3)) | ℎ2 |3(𝐹2(𝑥2) | 𝐹3(𝑥3))).

2.3 Vine Copulas

33

2.3.5 Family Selection and Parameter Estimation

The goal of this section is to estimate the families and parameters for a fixed tree structure given an i.i.d.

𝑑-dimensional sample of size 𝑛 from a R-vine copula

u := (u⊤
1
, . . . , u⊤𝑛), where u𝑘 := (𝑢𝑘,1, . . . , 𝑢𝑘,𝑑)⊤ for 𝑘 = 1, . . . , 𝑛.

Equation (2.15), transformed to the u-level, can be readily used to compute the likelihood of the simplified

R-vine copula.

Definition 2.3.18 (Likelihood of a simplified R-vine copula). The likelihood of a simplified R-vine
copula with parameter set 𝜽 = {𝜃𝑒 , 𝑒 ∈ 𝐸} and sample u is given by

ℓ (𝜽 ; u) =
𝑛∏
𝑘=1

𝑑−1∏
𝑖=1

∏
𝑒∈𝐸𝑖

𝑐𝑎𝑒 ,𝑏𝑒 ;𝐷𝑒

(
𝐶𝑎𝑒 |𝐷𝑒

(𝑢𝑘,𝑎𝑒 | u𝑘,𝐷𝑒
),𝐶𝑏𝑒 |𝐷𝑒

(𝑢𝑘,𝑏𝑒 | u𝑘,𝐷𝑒
);𝜃𝑎𝑒 ,𝑏𝑒 ;𝐷𝑒

)
. (2.17)

Note that in Equation (2.17), not only does the pair copula 𝑐𝑎𝑒 ,𝑏𝑒 ;𝐷𝑒
depend on a parameter from 𝜽 , but

also its arguments 𝐶𝑎𝑒 |𝐷𝑒
and 𝐶𝑏𝑒 |𝐷𝑒

. In fact, they depend on all parameters of the pair copulas needed to

recursively define them. To simplify notation, this dependence is omitted in (2.17).

For a 𝑑-dimensional vine copula with a fixed tree structure T , there are 𝑑 (𝑑 − 1)/2 bivariate copula

families B(T) to estimate. Let B𝑎𝑙𝑙 denote the set of all bivariate copulas that are considered in the

estimation process for each edge. Unless stated otherwise, in this thesis, B𝑎𝑙𝑙 includes all copulas defined
in Appendix B, including rotated versions. The parameters estimated are denoted by Θ(B(T)), and the

number of parameters ranges from 0 (for only independence copulas) to𝑑 (𝑑−1) (for only copulas with two
parameters each). To estimate the family and parameters for each edge, a sequential approach based on

the Akaike information criterion (AIC) (Akaike 1998) will be employed. Alternatively, the Bayesian
information criterion (BIC) (Schwarz 1978) could also be used. The methodology is outlined as follows:

1.) Consider tree 𝑇1 = (𝑉1, 𝐸1) of the tree structure T . For any edge 𝑒 = (𝑎𝑒 , 𝑏𝑒) ∈ 𝐸1, fit a copula 𝐶
𝐵

from B𝑎𝑙𝑙 using the copula data u𝑒 := {𝑢𝑘,𝑎𝑒 , 𝑢𝑘,𝑏𝑒 ;𝑘 = 1, . . . , 𝑛}. This is done for all copulas in B𝑎𝑙𝑙
using maximum likelihood estimation, i.e.,

ℓ𝐵 (𝜽𝐵 ; u𝑒) =
𝑛∏
𝑘=1

𝑐𝐵 (𝑢𝑘,𝑎𝑒 , 𝑢𝑘,𝑏𝑒 ;𝜽𝐵)

is maximized for each 𝐶𝐵 ∈ B𝑎𝑙𝑙 , yielding an estimate
ˆ𝜽
𝐵
. In the next step, the AIC for each 𝐶𝐵 and

corresponding
ˆ𝜽
𝐵
is computed as:

AIC
𝐵 (ˆ𝜽𝐵 ; u𝑒) ≔ −2

𝑛∑︁
𝑘=1

ln(𝑐𝐵 (𝑢𝑘,𝑎𝑒 , 𝑢𝑘,𝑏𝑒 ;
ˆ𝜽
𝐵)) + 2𝑘𝐵,

where 𝑘𝐵 ≔ | ˆ𝜽𝐵 | denotes the number of estimated parameters. Finally, for edge 𝑒 , the copula 𝐶𝑒

with parameter 𝜽𝑒 is chosen that minimizes AIC
𝐵 (ˆ𝜽𝐵 ; u𝑒) over B𝑎𝑙𝑙 .

2.) Consider tree 𝑇𝑖 = (𝑉𝑖 , 𝐸𝑖) for 𝑖 > 1. Suppose that all families and parameters for trees 𝑇1, . . . ,𝑇𝑖−1

have already been estimated. The collection of parameter estimates is denoted by 𝜽 (𝑇1,...,𝑖−1). Fur-
ther, for edge 𝑒 = (𝑎𝑒 , 𝑏𝑒 ;𝐷𝑒) ∈ 𝐸𝑖 , define the pseudo-observations by

𝑢𝑘,𝑎𝑒 |𝐷𝑒
≔ 𝑢

𝑘,𝑎𝑒 |𝐷𝑒 ,𝜽 (𝑇1,...,𝑖−1) ≔ 𝐶𝑎𝑒 |𝐷𝑒
(𝑢𝑘,𝑎𝑒 | u𝑘,𝐷𝑒

;𝜽 (𝑇1,...,𝑖−1)),

𝑢𝑘,𝑏𝑒 |𝐷𝑒
≔ 𝑢

𝑘,𝑏𝑒 |𝐷𝑒 ,𝜽 (𝑇1,...,𝑖−1) ≔ 𝐶𝑏𝑒 |𝐷𝑒
(𝑢𝑘,𝑏𝑒 | u𝑘,𝐷𝑒

;𝜽 (𝑇1,...,𝑖−1)),

2 Mathematical Foundations

34

for 𝑘 = 1, . . . , 𝑛. Using the pseudo-copula data u𝑒 = {𝑢𝑘,𝑎𝑒 |𝐷𝑒
, 𝑢𝑘,𝑏𝑒 |𝐷𝑒

;𝑘 = 1, . . . , 𝑛}, the estimation

procedure is done analogously to step 1. First, the likelihood

ℓ𝐵 (𝜽𝐵 ; u𝑒) =
𝑛∏
𝑘=1

𝑐𝐵 (𝑢𝑘,𝑎𝑒 |𝐷𝑒
, 𝑢𝑘,𝑏𝑒 |𝐷𝑒

;𝜽𝐵)

is maximized to find
ˆ𝜽
𝐵
for each element in 𝐵𝑎𝑙𝑙 . Then, the AIC

AIC
𝐵 (ˆ𝜽𝐵 ; u𝑒) := −2

𝑛∑︁
𝑘=1

ln(𝑐𝐵 (𝑢𝑘,𝑎𝑒 |𝐷𝑒
, 𝑢𝑘,𝑏𝑒 |𝐷𝑒

;
ˆ𝜽
𝐵)) + 2𝑘𝐵,

is minimized over 𝐵𝑎𝑙𝑙 to finally determine the family and parameter(s) used for edge 𝑒 .

35

3 Vine Copula Based Regression

In this chapter, two regression methods based on vine copulas will be presented. The first method is

designed for univariate responses and employs D-vine tree structures. Using a D-vine structure where

the response variable is positioned as the leaf node in the initial tree facilitates integration-free quantile

computation. This capability will be leveraged for conditional simulation, and the sequential estimation

procedure will be utilized for parameter learning in pair-copula Bayesian networks. The second method

addresses bivariate responses, employing the Y-vine tree structure and a forward-looking algorithm to

model the conditional distribution of two responses given a set of covariates. This method will introduce a

new conditional independence test, which will be applied in subsequent chapters within the PC algorithm

to learn the structure of Bayesian networks.

3.1 Univariate D-Vine-Based Regression

Kraus and Czado (2017) introduced a method for modeling the dependence between a univariate response

and a set of covariates using D-vines. They developed an algorithm that sequentially fits a D-vine to the

data by adding covariates one at a time, maximizing the conditional likelihood at each step. This process

continues until no further improvement in the conditional likelihood is possible, effectively incorporating

automatic variable selection. When applied to quantile regression, their method successfully addresses

common issues of traditional approaches, such as quantile crossings.

To illustrate the concept, consider a univariate response 𝑌 with distribution function 𝐹𝑌 and a set of

covariates X = (𝑋1, . . . , 𝑋𝑝)⊤, where each covariate 𝑋 𝑗 has a marginal distribution function 𝐹 𝑗 for 𝑗 =

1, . . . , 𝑝 . The objectives of this section are the following:

i) Obtain an estimate of 𝐹𝑌 |𝑋1,...,𝑋𝑝
, denoted by 𝐹𝑌 |𝑋1,...,𝑋𝑝

, assuming a D-vine structure.

ii) Use the inverse 𝐹 −1

𝑌 |𝑋1,...,𝑋𝑝
to simulate values of 𝑌 given the fixed values (𝑋1, . . . , 𝑋𝑝) = (𝑥1, . . . , 𝑥𝑝).

Consider the probability integral transforms 𝑉 ≔ 𝐹𝑌 (𝑌) and 𝑈 𝑗 ≔ 𝐹 𝑗 (𝑋 𝑗), with corresponding values

𝑣 ≔ 𝐹𝑌 (𝑦) and 𝑢 𝑗 ≔ 𝐹 𝑗 (𝑢 𝑗). Then, it follows that

𝐹𝑌 |𝑋1,...,𝑋𝑝
(𝑦 | 𝑥1, . . . , 𝑥𝑝) = ℙ(𝑌 ≤ 𝑦 | 𝑋1 = 𝑥1, . . . , 𝑋𝑝 = 𝑥𝑝)

= ℙ(𝑉 ≤ 𝑣 | 𝑈1 = 𝑢1, . . . ,𝑈𝑝 = 𝑢𝑝)
= 𝐶𝑉 |𝑈1,...,𝑈𝑝

(𝑣 | 𝑢1, . . . , 𝑢𝑝),

where𝐶𝑉 |𝑈1,...,𝑈𝑝
denotes the conditional distribution of𝑉 given𝑈1, . . . ,𝑈𝑝 . Inverting this expression yields

𝐹 −1

𝑌 |𝑋1,...,𝑋𝑝
(𝛼 | 𝑥1, . . . , 𝑥𝑝) = 𝐹 −1

𝑌

(
𝐶−1

𝑉 |𝑈1,...,𝑈𝑝
(𝛼 | 𝑢1, . . . , 𝑢𝑝)

)
,

for some 𝛼 ∈ (0, 1). Thus, the estimation process can be split into two tasks:

i) Estimation of the marginal distributions 𝐹𝑌 , and 𝐹1, . . . , 𝐹𝑝 .

ii) Estimation of 𝐶𝑉 |𝑈1,...,𝑈𝑝
, and 𝐶−1

𝑉 |𝑈1,...,𝑈𝑝
.

3 Vine Copula Based Regression

36

3.1.1 Kernel Density Estimation

A non-parametric and particularly flexible approach to estimate the marginal distributions was introduced

by Parzen (1962) and is known as kernel density estimation when applied to probability density functions.

Definition 3.1.1 (Univariate local polynomial kernel density estimator). Let 𝑋 be a continuous random

variable with distribution function 𝐹 , and let x = (𝑥1, . . . , 𝑥𝑛) be a sample of 𝑋 of size 𝑛. The univariate
local polynomial kernel density estimator of 𝑋 given the sample x is defined as

𝐹𝑋 (𝑥0) =
1

𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

(𝑥0 − 𝑥𝑖
ℎ

)
, 𝑥 ∈ ℝ,

where thekernel is given by𝐾 (𝑥) ≔
∫ 𝑥
−∞ 𝑘 (𝑡)d𝑡 , with𝑘 (·) being a symmetric probability density function,

and the bandwidth is given by ℎ > 0.

While there are several choices for the kernel 𝐾 , this thesis will exclusively use the Gaussian kernel,
defined as

𝐾 (𝑥) = 1

√
2𝜋
𝑒−𝑥

2/2.

The bandwidth parameter ℎ > 0 controls the smoothness of the estimated probability density function.

Smaller bandwidths capture more detail but increase variance, while larger bandwidths produce smoother

estimates at the cost of increased bias, highlighting the crucial bias-variance trade-off. Sheather and Jones

(1991) developed a data-based method for selecting an optimal bandwidth ℎ∗, which is used in all practi-

cal applications throughout this thesis. The described kernel density estimator is implemented in the R

package kde1d (Nagler and Vatter 2024).

3.1.2 Sequential D-Vine Estimation

Let y = (𝑦𝑖)𝑖=1,...,𝑛 and x = (x⊤
1
, . . . , x⊤𝑝), where x𝑘 = (𝑥𝑘,1, . . . , 𝑥𝑘,𝑝)⊤ for 𝑘 = 1, . . . , 𝑛, be an i.i.d. sample of

size 𝑛 from the random vector (𝑌,𝑋1, . . . , 𝑋𝑝)⊤. The observed data is transformed to pseudo-copula data

by setting 𝑣𝑖 ≔ 𝐹𝑌 (𝑦𝑖) and 𝑢𝑖, 𝑗 = 𝐹 𝑗 (𝑥𝑖, 𝑗) for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑝 , where kernel density estimation

is used to estimate the marginals. The pseudo-copula data, v̂ = (𝑣𝑖)𝑖=1,...,𝑛 and û = (û⊤
1
, . . . , û⊤𝑝), where

û𝑘 = (𝑢𝑘,1, . . . , 𝑢𝑘,𝑝)⊤ for 𝑘 = 1, . . . , 𝑛, is then approximately an i.i.d. sample from the random vector

(𝑉 ,𝑈1, . . . ,𝑈𝑝)⊤.
The objective is to fit a D-vine with order𝑉 −𝑈𝑙1−· · ·−𝑈𝑙𝑝 to the pseudo-copula data. As will be demon-

strated, choosing a D-vine with leaf node 𝑉 is particularly advantageous, as it enables an integration-free

computation of 𝑐𝑉 |𝑈1,...,𝑈𝑝
.

Proposition 3.1.2. For an estimated D-vine copula with order ℓ , parametric pair-copula families ˆF , corre-
sponding parameters 𝜽 given the pseudo-copula data (v̂, û), the conditional density 𝑐𝑉 |𝑈1,...,𝑈𝑝

can be expressed
as the product over all pair-copula densities of the D-vine that contain 𝑉 :

𝑐𝑉 |𝑈1,...,𝑈𝑝
(𝑣𝑖 | û𝑖 ; ℓ, ˆF , 𝜽) = 𝑐𝑉𝑈𝑙

1

(
𝑣𝑖 , 𝑢𝑖,𝑙1 ;

ˆF𝑉𝑈𝑙
1

, ˆ𝜃𝑉𝑈𝑙
1

)
·
𝑝∏
𝑗=2

𝑐𝑉𝑈𝑙 𝑗
;𝑈𝑙

1
,...,𝑈𝑙 𝑗−1

(
𝐶𝑉 |𝑈𝑙

1
,...,𝑈𝑙 𝑗−1

(
𝑣𝑖 | 𝑢𝑖,𝑙1, . . . , 𝑢𝑖,𝑙 𝑗−1

)
,

𝐶𝑈𝑙 𝑗
|𝑈𝑙

1
,...,𝑈𝑙 𝑗−1

(
𝑢𝑖,𝑙 𝑗 | 𝑢𝑖,𝑙1, . . . , 𝑢𝑖,𝑙 𝑗−1

)
;

ˆF𝑉𝑈𝑙 𝑗
;𝑈𝑙

1
,...,𝑈𝑙 𝑗−1

, ˆ𝜃𝑉𝑈𝑙 𝑗
;𝑈𝑙

1
,...,𝑈𝑙 𝑗−1

)
.

A general proof of Proposition 3.1.2 can be found in Appendix 1 of Killiches et al. (2018). To illustrate

the idea behind the proof, consider the following example:

Example 3.1.1 (Example 2.3.2 continued). Suppose the response variable is 𝑈1 and the covariates are

(𝑈2,𝑈3,𝑈4)⊤. The conditional density of the response given the covariates is given by

𝑐1 |234(𝑢1 | 𝑢2, 𝑢3, 𝑢4) =
𝑐1234(𝑢1, 𝑢2, 𝑢3, 𝑢4)
𝑐234(𝑢2, 𝑢3, 𝑢4)

.

3.1 Univariate D-Vine-Based Regression

37

An expression for 𝑐1234 is given by Equation (2.16) transformed to the u-level. According to Dißmann et al.

(2013), Property 2.8 (ii), 𝑐234 can be expressed using the D-vine copula with the order𝑈2−𝑈3−𝑈4 as follows:

𝑐234(𝑢2, 𝑢3, 𝑢4) = 𝑐24;3(𝐶2 |3(𝑢2 | 𝑢3),𝐶4 |3(𝑢4 | 𝑢3)) · 𝑐34(𝑢3, 𝑢4) · 𝑐23(𝑢2, 𝑢3) .

Thus, the conditional density 𝑐1 |234 can be written as:

𝑐1 |234(𝑢1 | 𝑢2, 𝑢3, 𝑢4) = 𝑐14;23(𝐶1 |23(𝑢1 | 𝑢2, 𝑢3),𝐶4 |23(𝑢4 | 𝑢2, 𝑢3))·𝑐13;2(𝐶1 |2(𝑢1 | 𝑢2),𝐶3 |2(𝑢3 | 𝑢2))·𝑐12(𝑢1, 𝑢2).

This expression allows for an evaluation without integration, as all required components are derived re-

cursively from the D-vine with order𝑈1 −𝑈2 −𝑈3 −𝑈4.

Instead of assuming a fixed order ℓ = (𝑙1, . . . , 𝑙𝑝)⊤, let ℓ be a free parameter in the model. The goal is

to select the order ℓ that maximizes the explanatory power of the D-vine copula model. To evaluate the

model’s fit, consider the conditional log-likelihood (cll), defined as:

cll (ℓ, ˆF , 𝜽 ; v̂, û) ≔
𝑛∑︁
𝑖=1

ln 𝑐𝑉 |𝑈1,...,𝑈𝑝
(𝑣𝑖 | û𝑖 ; ℓ, ˆF , 𝜽) . (3.1)

In total, there are 𝑝! possible orders for the 𝑝 covariates, making it impractical to fit and compare all of

them. To address this, a step-wise approach is employed, where the D-vine is constructed incrementally by

adding the most influential covariate at each step. The D-vine regression algorithm is outlined as follows:

i) Step 1: Start with the set of candidate covariates {𝑈𝑖1, . . . ,𝑈𝑖𝑘 } where 𝐾1 = {𝑖1, . . . , 𝑖𝑘 } and initially

𝑘 = 𝑝 , meaning no variables have been selected yet. In this step, for any 𝑐 ∈ 𝐾1, adding the variable

𝑈𝑐 to the D-vine introduces the structure 𝑉 −𝑈𝑐 and, consequently, the copula 𝐶𝑉𝑈𝑐
. The goal is to

select 𝑐 ∈ 𝐾1 that maximizes the conditional log-likelihood given the pseudo-copula data. The cll

for any 𝑐 ∈ 𝐾1 is given by

cll (ˆF , 𝜽 ; v̂, û, 𝑐) =
𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑈𝑐
(𝑣𝑖 , 𝑢𝑖,𝑐 ; 𝐹𝑉𝑈𝑐

, ˆ𝜃𝑉𝑈𝑐
) .

The maximum cll in the first step is denoted as cll
1 ≔ max𝑐∈𝐾1

cll (ˆF , 𝜽 ; v̂, û, 𝑐), and the correspond-
ing index is given by 𝑙1 ≔ arg max𝑐∈𝐾1

cll (ˆF , 𝜽 ; v̂, û, 𝑐). Thus,𝑈𝑙1 is added to the D-vine and removed

from the set of candidate covariates.

ii) Step r: After completing the (𝑟 − 1)-th step of the algorithm, the D-vine tree structure has the order

𝑉 −𝑈𝑙1−· · ·−𝑈𝑙𝑟−1
. At this stage, the set of candidate covariates is {𝑈𝑖1, . . . ,𝑈𝑖𝑘 }with𝐾𝑟 = {𝑖1, . . . , 𝑖𝑘 }

and 𝑘 = 𝑝 − (𝑟 − 1), since 𝑟 − 1 variables have already been selected. The maximal conditional log-

likelihood from the (𝑟 − 1)-th step is denoted by cll
𝑟−1

, and the current order is ℓ𝑟−1 = (𝑙1, . . . , 𝑙𝑟−1).
For any 𝑐 ∈ 𝐾𝑟 , adding the variable𝑈𝑐 to the D-vine introduces the structure𝑉 −𝑈𝑙1 −· · ·−𝑈𝑙𝑟−1

−𝑈𝑐 .
The index 𝑐 ∈ 𝐾𝑟 is determined in such a way that the conditional log-likelihood given the pseudo-

copula data is maximized. The cll for any 𝑐 ∈ 𝐾𝑟 is given by

cll (ℓ𝑟−1, ˆF , 𝜽 ; v̂, û, 𝑐) = cll
𝑟−1 +

𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑈𝑐 ;𝑈𝑙
1
,...,𝑈𝑙𝑟−1

(
𝐶𝑉 |𝑈𝑙

1
,...,𝑈𝑙𝑟−1

(
𝑣𝑖 | 𝑢𝑖,𝑙1, . . . , 𝑢𝑖,𝑙𝑟−1

)
,

𝐶𝑈𝑐 |𝑈𝑙
1
,...,𝑈𝑙𝑟−1

(
𝑢𝑖,𝑐 | 𝑢𝑖,𝑙1, . . . , 𝑢𝑖,𝑙𝑟−1

)
;

ˆF𝑉𝑈𝑐 ;𝑈𝑙
1
,...,𝑈𝑙𝑟−1

, ˆ𝜃𝑉𝑈𝑐 ;𝑈𝑙
1
,...,𝑈𝑙𝑟−1

)
.

Themaximum cll after the 𝑟 -th step is denoted by cll𝑟 ≔ max𝑐∈𝐾𝑟
cll (ℓ𝑟−1, ˆF , 𝜽 ; v̂, û, 𝑐). The variable

𝑈𝑙𝑟 is added to the order, where 𝑙𝑟 ≔ arg max𝑐∈𝐾𝑟
cll (ℓ𝑟−1, ˆF , 𝜽 ; v̂, û, 𝑐).

It is important to note that the algorithm may terminate at the 𝑟 -th step if adding any additional variables

does not increase the conditional log-likelihood. This situation occurs when𝐶𝑉𝑈𝑙𝑟 ;𝑈𝑙
1
,...,𝑈𝑙𝑟−1

is fitted as the

independence copula, hence having a log-likelihood of zero. To potentially obtain evenmore parsimonious

3 Vine Copula Based Regression

38

models, alternative approaches using AIC- or BIC-corrected versions of the conditional log-likelihood can

be employed:

cll
AIC(ℓ, ˆF , 𝜽 ; v̂, û) ≔ −2 cll (ℓ, ˆF , 𝜽 ; v̂, û) + 2|𝜽 |,

cll
BIC(ℓ, ˆF , 𝜽 ; v̂, û) ≔ −2 cll (ℓ, ˆF , 𝜽 ; v̂, û) + ln(𝑛) |𝜽 |,

where |𝜽 | denotes the number of estimated parameters, and 𝑛 is the sample size. The one-step ahead

algorithm for sequentially fitting a D-vine, as described in this section, is implemented in the R-package

vinereg (Nagler and Kraus 2024). Additionally, Tepegjozova (2019) developed a less greedy selection

procedure using a two-step ahead forward-looking algorithm and demonstrated in a case study that this

approach can significantly improve the model fit compared to the one-step-ahead algorithm.

3.1.3 Conditional Simulation

Assume now that a D-vine copula model is fully specified, with the order ℓ , the families
ˆF , and the param-

eters 𝜽 all known. These may have been fixed or estimated, for example, using D-vine-based regression.

Without loss of generality, assume that the order of the D-vine is given by𝑉 −𝑈𝑝−· · ·−𝑈1. The objective is

to simulate from the conditional distribution of𝑉 given the fixed values𝑈1 = 𝑢
∗
1
, . . . ,𝑈𝑝 = 𝑢∗𝑝 . To generate

samples from 𝐶𝑉 |U=u∗ , the following transformations, introduced by Rosenblatt (1952), are utilized:

Definition 3.1.3 (Rosenblatt transform and its inverse). Let X = (𝑋1, . . . , 𝑋𝑝)⊤ be a random vector with

distribution function 𝐹 . The Rosenblatt transform z = 𝑇 (x) is defined as:

𝑧1 = 𝐹1(𝑥1), 𝑧2 = 𝐹2 |1(𝑥2 | 𝑥1), . . . , 𝑧𝑝 = 𝐹𝑝 |1,...,𝑝−1(𝑥𝑝 | 𝑥1, . . . , 𝑥𝑝−1) .

The random variables Z = (𝑍1, . . . , 𝑍𝑝)⊤ = 𝑇 (X) are mutually independent and follow a standard uniform

distribution. Conversely, the inverse Rosenblatt transform x = 𝑇 −1(z) is given by

𝑥1 = 𝐹
−1

1
(𝑧1), 𝑥2 = 𝐹

−1

2 |1 (𝑧2 | 𝑧1), . . . , 𝑥𝑝 = 𝐹 −1

𝑝 |1,...,𝑝−1
(𝑧𝑝 | 𝑧1, . . . , 𝑧𝑝−1).

For any joint distribution 𝐹 , if Z is a vector of independent random variables each following a standard

uniform distribution, then X = 𝑇 −1(Z) has distribution 𝐹 .

The Rosenblatt transform and its inverse are implemented in the R-package rvinecopulib (Nagler
and Vatter 2023). Following Aas et al. (2021), the procedure to generate the 𝑖-th sample of𝐶𝑉 |𝑈1=𝑢

∗
1
,...,𝑈𝑝=𝑢

∗
𝑝

is described as follows:

i) Let𝑤 be a sample from a standard uniform distribution. Set v = (𝑢∗
1
, . . . , 𝑢∗𝑝 ,𝑤).

ii) Apply the Rosenblatt transform to v, i.e., set u = 𝑇 (v):

𝑢1 = 𝐶𝑈1
(𝑢∗

1
) = 𝑢∗

1

𝑢2 = 𝐶𝑈2 |𝑈1
(𝑢∗

2
| 𝑢∗

1
)

. . .

𝑢𝑝 = 𝐶𝑈𝑝 |𝑈𝑝−1,...,𝑈1
(𝑢∗𝑝 | 𝑢∗𝑝−1

, . . . , 𝑢∗
1
)

𝑢𝑝+1 = 𝐶𝑉 |𝑈𝑝 ,...,𝑈1
(𝑤 | 𝑢∗𝑝 , . . . , 𝑢∗1).

iii) Obtain a sample 𝑧 from the standard uniform distribution and set u = (𝑢1, . . . , 𝑢𝑝 , 𝑧).

iv) Apply the inverse Rosenblatt to u and set v = 𝑇 −1(u):

𝑣1 = 𝐶
−1

𝑈1

(𝑢1) = 𝑢1 = 𝑢
∗
1

𝑣2 = 𝐶
−1

𝑈2 |𝑈1

(𝑢2 | 𝑢1) = 𝐶−1

𝑈2 |𝑈1

(𝐶𝑈2 |𝑈1
(𝑢∗

2
| 𝑢∗

1
) | 𝑢∗

1
) = 𝑢∗

2

. . .

𝑣𝑝 = 𝐶−1

𝑈𝑝 |𝑈𝑝−1,...,𝑈1

(𝑢𝑝 | 𝑢𝑝−1, . . . , 𝑢1) = 𝐶−1

𝑈𝑝 |𝑈𝑝−1,...,𝑈1

(𝐶𝑈𝑝 |𝑈𝑝−1,...,𝑈1
(𝑢∗𝑝 | 𝑢∗𝑝−1

, . . . , 𝑢∗
1
) | 𝑢𝑝−1, . . . , 𝑢1) = 𝑢∗𝑝

𝑣𝑝+1 = 𝐶
−1

𝑉 |𝑈𝑝 ,...,𝑈1

(𝑧 | 𝑢𝑝 , . . . , 𝑢1).

3.2 Bivariate Y-Vine-Based Regression

39

Thus, a sample from𝑉 given the fixed values𝑈1 = 𝑢
∗
1
, . . . ,𝑈𝑝 = 𝑢∗𝑝 is given by 𝑣𝑝+1. Step ii) of the procedure

is necessary to ensure that the values of the conditional variables are consistent in all samples.

3.2 Bivariate Y-Vine-Based Regression

Many data applications require joint modeling of bivariate responses given a set of covariates. The method

of D-vine-based regression, as introduced in Section 3.1, can model the dependence between the covari-

ates and between the response and the covariates. Tepegjozova and Czado (2023) extended the univariate

case by introducing a novel vine tree structure, termed Y-vine, which is designed to model the dependence

between two response variables. Using Y-vines, it has been demonstrated that the associated bivariate

conditional density of the responses given the covariates can be expressed as a product of pair copulas in-

volving at least one of the responses. Moreover, all pair copulas involved can be directly obtained from the

vine structure, eliminating the need for integration. Additionally, Y-vine regression allows for symmetric

treatment of the responses, which is crucial for ensuring consistent results across different response sets.

Unless otherwise stated, the content of this section is based on Tepegjozova (2024).

To illustrate, consider the bivariate response vector Y = (𝑌1, 𝑌2)⊤ with corresponding marginal distri-

bution functions 𝐹𝑌𝑖 for 𝑖 = 1, 2, and the 𝑝-dimensional covariate vector X = (𝑋1, . . . , 𝑋𝑝)⊤ with marginal

distribution functions denoted as 𝐹𝑋𝑖
for 𝑖 = 1, . . . , 𝑝 .

Proposition 3.2.1. Using the probability integral transforms, let V = (𝑉1,𝑉2)⊤ ≔ (𝐹𝑌1
(𝑌1), 𝐹𝑌2

(𝑌2))⊤ and
U = (𝑈1, . . . ,𝑈𝑝)⊤ ≔ (𝐹𝑋1

(𝑋1), . . . , 𝐹𝑋𝑝
(𝑋𝑝))⊤. The conditional distribution of Y given X can be expressed as

𝐹𝑌1,𝑌2 |X(𝑦1, 𝑦2 | x) = 𝐶𝑉1,𝑉2 |U(𝑣1, 𝑣2 | u),

where v = (𝑣1, 𝑣2)⊤ = (𝐹𝑌1
(𝑦1), 𝐹𝑌2

(𝑦2))⊤ and u = (𝑢1, . . . , 𝑢𝑝)⊤ = (𝐹𝑋1
(𝑥1), . . . , 𝐹𝑋𝑝

(𝑥𝑝))⊤.
Proof.

𝐹𝑌1,𝑌2 |X(𝑦1, 𝑦2 | x) =
∫ 𝑦1

−∞

∫ 𝑦2

−∞
𝑓𝑌1,𝑌2 |X(𝑦′1, 𝑦′2 | x) d𝑦′2 d𝑦′

1

=

∫ 𝑦1

−∞

∫ 𝑦2

−∞

𝑓𝑌1,𝑌2,X(𝑦′1, 𝑦′2, x)
𝑓X(x)

d𝑦′
2

d𝑦′
1

=
1

𝑓X(x)

∫ 𝑦1

−∞

∫ 𝑦2

−∞

𝜕𝑝+2

𝜕𝑦1𝜕𝑦2𝜕𝑥1 . . . 𝜕𝑥𝑝
𝐹𝑌1,𝑌2,X(𝑦1, 𝑦2, x)

����
𝑦1=𝑦

′
1
,𝑦2=𝑦

′
2

d𝑦′
2

d𝑦′
1

=
1

𝑓X(x)
· 𝜕𝑝

𝜕𝑥1 . . . 𝜕𝑥𝑝
𝐹𝑌1,𝑌2,X(𝑦1, 𝑦2, x)

=
1

𝑓X(x)
· 𝜕𝑝

𝜕𝑥1 . . . 𝜕𝑥𝑝
𝐶𝑉1,𝑉2,U

(
𝐹𝑌1
(𝑦1), 𝐹𝑌2

(𝑦2), 𝐹𝑋1
(𝑥1), . . . , 𝐹𝑋𝑝

(𝑥𝑝)
)

=
1

𝑓X(x)
· 𝜕𝑝

𝜕𝑢1 . . . 𝜕𝑢𝑝
𝐶𝑉1,𝑉2,U(𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑝)

����
𝑣𝑗=𝐹𝑌𝑗 (𝑦 𝑗),𝑢𝑖=𝐹𝑋𝑖

(𝑥𝑖)
·
𝜕𝑢1 . . . 𝜕𝑢𝑝

𝜕𝑥1 . . . 𝜕𝑥𝑝

=
1

𝑓X(x)
· 𝜕𝑝

𝜕𝑢1 . . . 𝜕𝑢𝑝
𝐶𝑉1,𝑉2,U(𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑝)

����
𝑣𝑗=𝐹𝑌𝑗 (𝑦 𝑗),𝑢𝑖=𝐹𝑋𝑖

(𝑥𝑖)
·
𝑝∏
𝑖=1

𝑓𝑋𝑖
(𝑥𝑖)

=
𝜕𝑝

𝜕𝑢1 . . . 𝜕𝑢𝑝
𝐶𝑉1,𝑉2,U(𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑝)

����
𝑣𝑗=𝐹𝑌𝑗 (𝑦 𝑗),𝑢𝑖=𝐹𝑋𝑖

(𝑥𝑖)
· 1

𝑐U(u)
(Sklar’s Theorem)

=
1

𝑐U(u)

∫ 𝑣1

0

∫ 𝑣2

0

𝜕𝑝+2

𝜕𝑣1𝜕𝑣2𝜕𝑢1 . . . 𝜕𝑢𝑝
𝐶𝑉1,𝑉2,U(𝑣1, 𝑣2, 𝑢1, . . . , 𝑢𝑝)

����
𝑣1=𝑣

′
1
,𝑣2=𝑣

′
2

d𝑣 ′
2

d𝑣 ′
1

=

∫ 𝑣1

0

∫ 𝑣2

0

𝑐𝑉1,𝑉2 |U(𝑣 ′1, 𝑣 ′2 | u) d𝑣 ′2 d𝑣 ′
1

= 𝐶𝑉1,𝑉2 |U
(
𝑣1, 𝑣2 | u

)
.

□

3 Vine Copula Based Regression

40

From Proposition 3.2.1, it follows that to model the bivariate distribution 𝐹𝑌1,𝑌2 |X, one needs to obtain

the marginal distributions 𝐹𝑌𝑖 for 𝑖 = 1, 2, 𝐹𝑋 𝑗
for 𝑗 = 1, . . . , 𝑝 , and the bivariate conditional distribution

𝐶𝑉1,𝑉2 |U. Similar to the univariate case, the marginal distributions are estimated non-parametrically using

kernel density estimation, as described in Section 3.1.1. Finally, it should be noted that the conditional

distribution𝐶𝑉1,𝑉2 |U is different from𝐶𝑉1,𝑉2;U, as the latter denotes the copula associated with the bivariate

conditional distribution of (𝑌1, 𝑌2) given X.

3.2.1 Y-Vine Copula Model

In the following, let X−𝑖 ≔ (𝑋1, . . . , 𝑋𝑖−1, 𝑋𝑖+1, . . . , 𝑋𝑝)⊤ denote the (𝑝 − 1)-dimensional vector obtained

by removing the 𝑖-th variable from X, for 𝑖 = 1, . . . , 𝑝 . Additionally, define the (𝑘 + 1)-dimensional vector

X𝑖:𝑖+𝑘 ≔ (𝑋𝑖 , . . . 𝑋𝑖+𝑘)⊤, where 𝑘 = 0, 1, . . . , 𝑝−𝑖 . This indexing convention also applies to all other random
variables and observations used.

Definition 3.2.2 (Y-vine tree sequence). Given the transformed response variables V = (𝑉1,𝑉2)⊤ and the

transformed covariates U = (𝑈1, . . . ,𝑈𝑝)⊤, the Y-vine tree sequence consists of the following 𝑝 + 1 trees:

𝑇1 with 𝑁1 = {𝑉1,𝑉2,𝑈1, . . . ,𝑈𝑝 } and 𝐸1 = {{𝑉1,𝑈1}, {𝑉2,𝑈1}} ∪
𝑝−1⋃
𝑖=1

{{𝑈𝑖 ,𝑈𝑖+1}}.

𝑇2 with 𝑁2 = {𝑉1𝑈1,𝑉2𝑈1,𝑈1𝑈2, . . . ,𝑈𝑝−1𝑈𝑝 }

and 𝐸2 = {{𝑉1𝑈1,𝑈1𝑈2}, {𝑉2𝑈1,𝑈1𝑈2}} ∪
𝑝−2⋃
𝑖=1

{{𝑈𝑖𝑈𝑖+1,𝑈𝑖+1𝑈𝑖+2}}.

𝑇𝑘 for 3 ≤ 𝑘 ≤ 𝑝 with 𝑁𝑘 =
⋃
𝑗=1,2

{𝑉𝑗𝑈𝑘−1;𝑈1:𝑘−2} ∪
𝑝−𝑘+1⋃
𝑖=1

{𝑈𝑖𝑈𝑖+𝑘−1;𝑈𝑖+1:𝑖+𝑘−2}

and 𝐸𝑘 =
⋃
𝑗=1,2

{{𝑉𝑗𝑈𝑘−1;𝑈1:𝑘−2,𝑈1𝑈𝑘 ;𝑈2:𝑘−1}} ∪
𝑝−𝑘⋃
𝑖=1

{{𝑈𝑖𝑈𝑖+𝑘−1;𝑈𝑖+1:𝑖+𝑘−2,𝑈𝑖+1𝑈𝑖+𝑘 ;𝑈𝑖+2:𝑖+𝑘−1}}.

𝑇𝑝+1 with 𝑁𝑝+1 =
⋃
𝑗=1,2

{𝑉𝑗𝑈𝑝 ;𝑈1:𝑝−1} and 𝐸𝑝+1 = {{𝑉1𝑈𝑝 ;𝑈1:𝑝−1,𝑉2𝑈𝑝 ;𝑈1:𝑝−1}}.

Figure 3.1 depicts a Y-vine tree sequence with 𝑝 = 3 covariates. The figure illustrates that the covariate

nodes are structured similarly to those in a D-vine, while the nodes corresponding to the responses are

leaf nodes at one end of the tree. Removing a response node, either 𝑉1 or 𝑉2, in the first tree results in the

same structure as the univariate D-vine regression model. Importantly, the Y-vine tree sequence in Figure

3.1 is indeed an R-vine tree sequence. This property holds for any 𝑝 ∈ ℕ:

Proposition 3.2.3. A Y-vine tree sequence satisfies the conditions i)-iii) from Definition 2.3.11, and thus, it is
a valid R-vine tree sequence.

Proof. Condition i) is trivial and follows simply from the definition of𝑇1. Condition ii) states that𝑁 𝑗 = 𝐸 𝑗−1

for 𝑗 ≥ 2. For 𝑗 = 2, it is evident from Definition 3.2.2 that 𝑁2 = 𝐸1. For 𝑗 = 𝑘 > 2:

𝑁𝑘 =
⋃
𝑗=1,2

{𝑉𝑗𝑈𝑘−1;𝑈1:𝑘−2} ∪
𝑝−𝑘+1⋃
𝑖=1

{𝑈𝑖𝑈𝑖+𝑘−1;𝑈𝑖+1:𝑖+𝑘−2}

𝐸𝑘−1 =
⋃
𝑗=1,2

{{𝑉𝑗𝑈𝑘−2;𝑈1:𝑘−3,𝑈1𝑈𝑘−1;𝑈2:𝑘−2}} ∪
𝑝−(𝑘−1)⋃
𝑖=1

{{𝑈𝑖𝑈𝑖+𝑘−2;𝑈𝑖+1:𝑖+𝑘−3,𝑈𝑖+1𝑈𝑖+𝑘−1;𝑈𝑖+2:𝑖+𝑘−2}}

The edges {𝑉𝑗𝑈𝑘−2;𝑈1:𝑘−3,𝑈1𝑈𝑘−1;𝑈2:𝑘−2} in 𝑇𝑘−1 correspond to the nodes {𝑉𝑗𝑈𝑘−1;𝑈1:𝑘−2} in 𝑇𝑘 , for 𝑗 =
1, 2. Further, the edges {𝑈𝑖𝑈𝑖+𝑘−2;𝑈𝑖+1:𝑖+𝑘−3,𝑈𝑖+1𝑈𝑖+𝑘−1;𝑈𝑖+2:𝑖+𝑘−2} in 𝑇𝑘−1 are associated with the nodes

{𝑈𝑖𝑈𝑖+𝑘−1;𝑈𝑖+1:𝑖+𝑘−2} in 𝑇𝑘 . Hence, condition ii) holds as well. Condition iii), known as the proximity

3.2 Bivariate Y-Vine-Based Regression

41

𝑉1

𝑉2

𝑈1 𝑈2 𝑈3

𝑉1𝑈1

𝑉2𝑈1

𝑈1𝑈2 𝑈2𝑈3

𝑉1𝑈2;𝑈1

𝑉2𝑈2;𝑈1

𝑈1𝑈3;𝑈2

𝑉1𝑈3;𝑈1:2 𝑉2𝑈3;𝑈1:2

𝑉1𝑈1

𝑉2𝑈1

𝑈1𝑈2 𝑈2𝑈3

𝑉1𝑈2;𝑈1

𝑉2𝑈2;𝑈1

𝑈1𝑈3;𝑈2

𝑉1𝑈3;𝑈1:2

𝑉2𝑈3;𝑈1:2

𝑉1𝑉2;𝑈1:3

𝑇1

𝑇2

𝑇3

𝑇4

Figure 3.1 Y-vine tree sequence for 𝑝 = 3 covariates

3 Vine Copula Based Regression

42

condition, states that for 𝑗 ≥ 2, any two nodes connected by an edge in 𝑇𝑗 must share a common node in

𝑇𝑗−1. Considering only the nodes and edges corresponding to the covariates (𝑈1, . . . ,𝑈𝑝)⊤, the proximity

condition is clearly fulfilled as these nodes and edges alone form a D-vine tree sequence. Considering the

remaining nodes and edges, involving the covariates, first note that, for 𝑇2, 𝑉𝑗𝑈1, 𝑗 = 1, 2, is connected to

𝑈1𝑈2. Therefore, they share the common node 𝑈1 in 𝑇1. For 𝑗 = 𝑘 > 2, the nodes 𝑉𝑗𝑈𝑘−1; U1:𝑘−2, 𝑗 = 1, 2,

are connected to𝑈1𝑈𝑘 ; U2:𝑘−1 in 𝑇𝑘 , sharing the common node𝑈1𝑈𝑘−1; U2:𝑘−2 in 𝑇𝑘−1. □

A Y-vine distribution is a regular vine distribution associated with a Y-vine tree sequence. To express

the joint density of a Y-vine copula, Equation (2.15) is applied. The joint density is given by:

𝑐𝑉1,𝑉2,U(𝑣1, 𝑣2, u) =
𝑝−1∏
𝑘=1

(𝑝−𝑘∏
𝑖=1

𝑐𝑈𝑖 ,𝑈𝑖+𝑘 ;Ui+1:i+k−1

(
𝐶𝑈𝑖 |Ui+1:i+k−1 (𝑢𝑖 |ui+1:i+k−1),𝐶𝑈𝑖+𝑘 |Ui+1:i+k−1 (𝑢𝑖+𝑘 |ui+1:i+k−1)

))
·
𝑝∏
𝑖=1

(∏
𝑗=1,2

𝑐𝑉𝑗 ,𝑈𝑖 ;U1:i−1

(
𝐶𝑉𝑗 |U1:i−1 (𝑣 𝑗 |u1:i−1),𝐶𝑈𝑖 |U1:i−1 (𝑢𝑖 |u1:i−1)

))
(3.2)

· 𝑐𝑉1,𝑉2;U
(
𝐶𝑉1 |U(𝑣1 |u),𝐶𝑉2 |U(𝑣2 |u)

)
.

In this formula,𝑈𝑎:𝑏 ≔ ∅ if 𝑎 > 𝑏. For example,

𝑐𝑈1,𝑈2;𝑈2:1

(
𝐶𝑈1 |𝑈2:1

(𝑢1 |𝑢2:1),𝐶𝑈2 |𝑈2:1
(𝑢2 |𝑢2:1)

)
= 𝑐𝑈1,𝑈2

(
𝐶𝑈1
(𝑢1),𝐶𝑈2

(𝑢2)
)
= 𝑐𝑈1,𝑈2

(𝑢1, 𝑢2) .

Note that the first line of Equation (3.2) represents the density of a D-vine copulawith structure𝑈1−· · ·−𝑈𝑝 ,
denoted by 𝑐U.

Theorem 3.2.4 (Bivariate conditional density of a Y-vine copula). The conditional density of V = (𝑉1,𝑉2)⊤
given the covariates U = (𝑈1, . . . ,𝑈𝑝)⊤ in a Y-vine copula is expressed as:

𝑐𝑉1,𝑉2 |U(𝑣1, 𝑣2 | u) =
𝑝∏
𝑖=1

(∏
𝑗=1,2

𝑐𝑉𝑗 ,𝑈𝑖 ;U1:i−1

(
𝐶𝑉𝑗 |U1:i−1 (𝑣 𝑗 |u1:i−1),𝐶𝑈𝑖 |U1:i−1 (𝑢𝑖 |u1:i−1)

))
· 𝑐𝑉1,𝑉2;U

(
𝐶𝑉1 |U(𝑣1 |u),𝐶𝑉2 |U(𝑣2 |u)

)
Proof. Using the definition of the conditional density, it holds that

𝑐𝑉1,𝑉2 |U(𝑣1, 𝑣2 | u) =
𝑐𝑉1,𝑉2,U(𝑣1, 𝑣2, u)

𝑐U(u)
. (3.3)

Here, the joint density 𝑐𝑉1,𝑉2,U(𝑣1, 𝑣2, u) is given by Equation (3.2). Further, using Sklar’s Theorem, the joint

density of the covariates is given by 𝑐U and corresponds to the density of the D-vine involving only the

covariates. It is given by the first line of Equation (3.2), as stated before. By substituting both joint densities

into Equation (3.3) and simplifying the term, the result is obtained. □

To derive the conditional density 𝑐𝑉1,𝑉2 |U, Theorem 3.2.4 shows that the result mirrors the univariate

case. Specifically, the conditional density of the responses given the covariates is expressed as a product

of pair copulas involving at least one of the responses. Additionally, similar to the univariate scenario, the

conditional densities of individual responses given the covariates can be obtained in closed form, without

requiring integration.

Theorem 3.2.5 (Univariate conditional densities of a Y-vine copula). The conditional density of 𝑉𝑗 , for
𝑗 = 1, 2, given the covariates U = (𝑈1, . . . ,𝑈𝑝)⊤ in a Y-vine copula is given by

𝑐𝑉𝑗 |U(𝑣 𝑗 | u) =
𝑝∏
𝑖=1

𝑐𝑉𝑗 ,𝑈𝑖 ;U1:i−1

(
𝐶𝑉𝑗 |U1:i−1 (𝑣 𝑗 |u1:i−1),𝐶𝑈𝑖 |U1:i−1 (𝑢𝑖 |u1:i−1)

)
.

3.2 Bivariate Y-Vine-Based Regression

43

Proof. Again, it clearly holds that

𝑐𝑉𝑗 |U(𝑣 𝑗 | u) =
𝑐𝑉𝑗 ,U(𝑣 𝑗 , u)
𝑐U(u)

, for 𝑗 = 1, 2. (3.4)

As before, 𝑐U(u) is given by the first line in Equation (3.2). To obtain 𝑐𝑉𝑗 ,U, consider the Y-vine where all

edges and nodes involving 𝑉𝑘 for 𝑘 ≠ 𝑗 are removed. This simplifies to a D-vine structure of the form

𝑉𝑗 −𝑈1 − · · · −𝑈𝑝 . Thus, the joint density is given by:

𝑐𝑉𝑗 ,U(𝑣 𝑗 , u) =
𝑝−1∏
𝑘=1

(𝑝−𝑘∏
𝑖=1

𝑐𝑈𝑖 ,𝑈𝑖+𝑘 ;Ui+1:i+k−1

(
𝐶𝑈𝑖 |Ui+1:i+k−1 (𝑢𝑖 |ui+1:i+k−1),𝐶𝑈𝑖+𝑘 |Ui+1:i+k−1 (𝑢𝑖+𝑘 |ui+1:i+k−1)

))
·
𝑝∏
𝑖=1

𝑐𝑉𝑗 ,𝑈𝑖 ;U1:i−1

(
𝐶𝑉𝑗 |U1:i−1 (𝑣 𝑗 |u1:i−1),𝐶𝑈𝑖 |U1:i−1 (𝑢𝑖 |u1:i−1)

)
.

Substituting both joint densities into (3.4) and simplifying the term yields the result. □

It is important to note that the univariate conditional density of a single response given all covariates

can be expressed as a product of pair copulas involving only the response variable of interest.

3.2.2 Sequential Y-Vine Estimation

The objective of this section is to fit a Y-vine with covariate order 𝑈𝑙1 − · · · −𝑈𝑙𝑝 to a given data set. The

order itself is a free parameter that influences the model fit. Computing all 𝑝! permutations of the order is

computationally expensive. Therefore, a sequential algorithm is employed to add covariates step by step

to the model. As in the univariate case, the conditional log-likelihood (cll) can be used as a criterion for

model fitting.

To illustrate, let yj = (𝑦𝑖, 𝑗)𝑖=1,...,𝑛 for 𝑗 = 1, 2, and x = (x⊤
1
, . . . , x⊤𝑝), where x𝑘 = (𝑥𝑘,1, . . . , 𝑥𝑘,𝑝)⊤ for

𝑘 = 1, . . . , 𝑛, be an i.i.d. sample of size 𝑛 from the random vector (𝑌1, 𝑌2, 𝑋1, . . . , 𝑋𝑝)⊤. The observed

data is transformed to pseudo-copula data by setting 𝑣𝑖, 𝑗 ≔ 𝐹𝑌𝑗 (𝑦𝑖, 𝑗) and 𝑢𝑖, 𝑗 = 𝐹𝑋𝑘
(𝑥𝑖,𝑘) for 𝑖 = 1, . . . , 𝑛,

𝑗 = 1, 2, and 𝑘 = 1, . . . , 𝑝 , where kernel density estimation is used to estimate the marginals. The pseudo-

copula data v̂𝑗 = (𝑣𝑖, 𝑗)𝑖=1,...,𝑛 , 𝑗 = 1, 2, and û = (û⊤
1
, . . . , û⊤𝑝), where û𝑘 = (𝑢𝑘,1, . . . , 𝑢𝑘,𝑝)⊤ for 𝑘 = 1, . . . , 𝑛, is

approximately an i.i.d. sample from the random vector (𝑉1,𝑉2,𝑈1, . . . ,𝑈𝑝)⊤. The conditional log-likelihood
for a given covariate order ℓ , estimated copula families

ˆF , and parameters 𝜽 is defined as:

cll (ℓ, ˆF , 𝜽 ; v̂, û) ≔
𝑛∑︁
𝑖=1

ln 𝑐𝑉1,𝑉2 |U(𝑣𝑖,1, 𝑣𝑖,2 | û𝑖 ; ℓ, ˆF , 𝜽)

=

𝑛∑︁
𝑖=1

ln 𝑐𝑉1,𝑉2;U(𝐶𝑉1 |U(𝑣𝑖,1 | û𝑖),𝐶𝑉2 |U(𝑣𝑖,2 | û𝑖); ˆF𝑉1𝑉2;U, ˆ𝜃𝑉1𝑉2;U)

+
𝑛∑︁
𝑖=1

ln 𝑐𝑉1 |U(𝑣𝑖,1 | û𝑖 ; ℓ, ˆF , 𝜽) +
𝑛∑︁
𝑖=1

ln 𝑐𝑉2 |U(𝑣𝑖,2 | û𝑖 ; ℓ, ˆF , 𝜽)

=

𝑛∑︁
𝑖=1

ln 𝑐𝑉1,𝑉2;U(𝐶𝑉1 |U(𝑣𝑖,1 | û𝑖),𝐶𝑉2 |U(𝑣𝑖,2 | û𝑖); ˆF𝑉1𝑉2;U, ˆ𝜃𝑉1𝑉2;U) (3.5)

+
∑︁
𝑗=1,2

(𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑗 ,𝑈𝑙
1

(𝑣𝑖, 𝑗 , 𝑢𝑖,𝑙1 ;
ˆF𝑉𝑗𝑈1

, ˆ𝜃𝑉𝑗𝑈1
)

+
𝑝∑︁
𝑘=2

𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

(𝐶𝑉𝑗 |U𝑙
1

:𝑙𝑘−1

(𝑣𝑖, 𝑗 | û𝑖,𝑙1:𝑙𝑘−1
),𝐶𝑈𝑙𝑘

|U𝑙
1

:𝑙𝑘−1

(𝑢𝑙𝑘 | û𝑖,𝑙1:𝑙𝑘−1
);

ˆF𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

, ˆ𝜃𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

)
)

3 Vine Copula Based Regression

44

The copula 𝑐𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

represents the distribution of (𝑉𝑗 ,𝑈𝑙𝑘) given that the effects of 𝑈𝑙1, . . . ,𝑈𝑙𝑘−1
are

adjusted. Therefore, a large value of the corresponding log-likelihood indicates that 𝑈𝑙𝑘 has an influence

on the response 𝑉𝑗 after accounting for𝑈𝑙1:𝑙𝑘−1
. In contrast, the pair copula 𝑐𝑉1,𝑉2;U does not have a similar

interpretation, as it represents the copula associated with the conditional distribution of (𝑉1,𝑉2) given
the effects 𝑈𝑙1, . . . ,𝑈𝑙𝑘 . Neither an increase nor a decrease in the corresponding log-likelihood can be

interpreted as an increase in influence for a single covariate. Therefore, to use the cll as a measure of fit,

appropriate adjustments need to be made.

Definition 3.2.6 (Adjusted conditional log-likelihood). The adjusted conditional log-likelihood (acll)
of a Y-vine copula model is defined as

acll (ℓ, ˆF , 𝜽 ; v̂, û) ≔
𝑛∑︁
𝑖=1

ln 𝑐𝑉1,𝑉2 |U(𝑣𝑖,1, 𝑣𝑖,2 | û𝑖 ; ℓ, ˆF , 𝜽)

−
𝑛∑︁
𝑖=1

ln 𝑐𝑉1,𝑉2;U(𝐶𝑉1 |U(𝑣𝑖,1 | û𝑖),𝐶𝑉2 |U(𝑣𝑖,2 | û𝑖); ˆF𝑉1𝑉2;U, ˆ𝜃𝑉1𝑉2;U)

=

𝑛∑︁
𝑖=1

ln 𝑐𝑉1 |U(𝑣𝑖,1 | û𝑖 ; ℓ, ˆF , 𝜽) +
𝑛∑︁
𝑖=1

ln 𝑐𝑉2 |U(𝑣𝑖,2 | û𝑖 ; ℓ, ˆF , 𝜽)

=
∑︁
𝑗=1,2

(𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑗 ,𝑈𝑙
1

(𝑣𝑖, 𝑗 , 𝑢𝑖,𝑙1 ;
ˆF𝑉𝑗𝑈1

, ˆ𝜃𝑉𝑗𝑈1
) (3.6)

+
𝑝∑︁
𝑘=2

𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

(𝐶𝑉𝑗 |U𝑙
1

:𝑙𝑘−1

(𝑣𝑖, 𝑗 | û𝑖,𝑙1:𝑙𝑘−1
),𝐶𝑈𝑙𝑘

|U𝑙
1

:𝑙𝑘−1

(𝑢𝑙𝑘 | û𝑖,𝑙1:𝑙𝑘−1
);

ˆF𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

, ˆ𝜃𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

)
)

Assume that a Y-vine copula with covariate order 𝑈𝑙1, . . . ,𝑈𝑙𝑘−1
has already been fitted. To evaluate

whether including a further variable 𝑈𝑙𝑘 from the candidate set improves the model fit, let the adjusted

conditional log-likelihood with covariate order given by ℓ𝑘−1 = (𝑙1, . . . , 𝑙𝑘−1) be denoted by

acll (ℓ𝑘−1, ˆF 𝑘−1, 𝜽
𝑘−1

; v̂, û𝑙1:𝑙𝑘−1
) .

The acll after adding𝑈𝑙𝑘 to the model is then given by

acll (ℓ𝑘 , ˆF 𝑘 , 𝜽𝑘 ; v̂, û𝑙1:𝑙𝑘) = acll (ℓ𝑘−1, ˆF 𝑘−1, 𝜽
𝑘−1

; v̂, û𝑙1:𝑙𝑘−1
)

+
∑︁
𝑗=1,2

𝑛∑︁
𝑖=1

ln 𝑐𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

(
𝐶𝑉𝑗 |U𝑙

1
:𝑙𝑘−1

(𝑣𝑖, 𝑗 | û𝑖,𝑙1:𝑙𝑘−1
),𝐶𝑈𝑙𝑘

|U𝑙
1

:𝑙𝑘−1

(𝑢𝑙𝑘 | û𝑖,𝑙1:𝑙𝑘−1
);

ˆF𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

, ˆ𝜃𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

)
. (3.7)

The sequential estimation process closely resembles the method outlined in Section 3.1.2. At each step,

the covariate from the candidate set that maximizes the increase in the adjusted conditional log-likelihood

(acll) is added to the model. The algorithm terminates either when all covariates have been added or when

no additional covariate from the candidate set improves the acll. The latter situation occurs when the

densities 𝑐𝑉𝑗 ,𝑈𝑙𝑘
;U𝑙

1
:𝑙𝑘−1

(for 𝑗 = 1, 2) from Equation (3.7) correspond to independence copulas, resulting in a

log-likelihood of zero. This approach ensures an automatic forward selection process, including only those

covariates that have an impact on at least one of the response variables. For increased model parsimony,

one can further adjust the acll using AIC or BIC penalization. Additionally, the algorithm can be extended

to a two-step-ahead forward-looking procedure for potentially improved results.

3.2.3 Y-Vine Conditional Independence Test

This section presents a new Y-vine-based conditional independence test. The goal is to test the hypothesis

𝐻0 : 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS against its alternative𝐻1 : 𝑋𝑖 ̸⊥⊥ 𝑋 𝑗 | XS by modeling a Y-vine with (𝑋𝑖 , 𝑋 𝑗) as responses

3.2 Bivariate Y-Vine-Based Regression

45

and XS as covariates. The approach is appealing because Y-vines provide a symmetric treatment of the

responses and do not require the assumption of joint Gaussian distributions. Additionally, their flexibility

eliminates the need for asymptotic results.

Later, the proposed conditional independence test will be employed in the PC algorithm to learn the

structure of a Bayesian network. The performance of this method will be compared to that of the PC

algorithm using Fisher’s Z-test through simulations involving both Gaussian and non-Gaussian data.

Bauer and Czado (2016) introduced a R-vine-based conditional independence test. Their approach in-

volved estimating a R-vine structure under the constraint that neither 𝑋𝑖 nor 𝑋 𝑗 could be part of an inner

node (a node with at least two neighbors) in any of the trees in the R-vine sequence. This construction

ensures that the copula 𝐶𝑖 𝑗 ;S is always present in the last tree of the R-vine. They then applied ordinary

independence tests based on the pseudo-observations 𝑢𝑖 |S ≔ 𝐶𝑖 |S(𝑢𝑖 | u𝑆 ;𝜽) and 𝑢 𝑗 |S ≔ 𝐶 𝑗 |S(𝑢 𝑗 | u𝑆 ;𝜽)
using a sample size of 𝑛.

Let X = (𝑋1, . . . , 𝑋𝑑)⊤ be a 𝑑-dimensional random vector with marginal distribution functions 𝐹 𝑗 for𝑋 𝑗 ,

𝑗 = 1, . . . , 𝑑 . A sample of size 𝑛 from X is given by

x := (x⊤
1
, . . . , x⊤𝑛), where x𝑘 := (𝑥𝑘,1, . . . , 𝑥𝑘,𝑑)⊤ for 𝑘 = 1, . . . , 𝑛.

Proposition 3.2.7. Two random variables 𝑋𝑖 and 𝑋 𝑗 are conditionally independent given a random vector
XS, where 𝑆 ⊆ {1, . . . , 𝑑} \ {𝑖, 𝑗}, if and only if 𝐶𝑖 𝑗 ;S is the independence copula.

Proof. Note that 𝐶𝑖 𝑗 ;S is the copula corresponding to the bivariate distribution of (𝑋𝑖 , 𝑋 𝑗) given XS. By

Sklar’s Theorem, it holds that

𝐹𝑖, 𝑗 |S(𝑥𝑖 , 𝑥 𝑗 | xs) = 𝐶𝑖 𝑗 ;S(𝐹𝑖 |S(𝑥𝑖 | xs), 𝐹 𝑗 |S(𝑥 𝑗 | xs); xs) .

"⇒" Assume that 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS holds. Then,

𝐹𝑖, 𝑗 |S(𝑥𝑖 , 𝑥 𝑗 | xs) = 𝐹𝑖 |S(𝑥𝑖 | xs) · 𝐹 𝑗 |S(𝑥 𝑗 | xs), for all 𝑥𝑖 ∈ 𝔻𝐹𝑖 , 𝑥 𝑗 ∈ 𝔻𝐹 𝑗 , (3.8)

where 𝔻𝐹𝑘 denotes the domain of 𝐹𝑘 , 𝑘 = 𝑖, 𝑗 . Since the range of 𝐹𝑘 |S is [0, 1], by Sklar’s Theorem, it must

hold that 𝐶𝑖 𝑗 ;S(𝑢1, 𝑢2; xs) = 𝑢1 · 𝑢2, for all 𝑢1, 𝑢2 ∈ [0, 1], which is by definition the independence copula.

"⇐" Conversely, assume that 𝐶𝑖 𝑗 ;S is the independence copula, i.e.,

𝐶𝑖 𝑗 ;S(𝑢1, 𝑢2; xs) = 𝑢1 · 𝑢2, for all 𝑢1, 𝑢2 ∈ [0, 1] .

Setting 𝑢1 = 𝐹𝑖 |S(𝑥𝑖 | xs) and 𝑢2 = 𝐹 𝑗 |S(𝑥 𝑗 | xs) and using Sklar’s Theorem, it is evident that Equation (3.8)

holds. □

Note that the proof of Proposition 3.8 assumes the use of non-simplified conditional copulas for Sklar’s

Theorem to apply. However, throughout the applications in this thesis, a simplifying assumption is em-

ployed. Under this assumption, Proposition 3.8 is only approximately valid. Therefore, to assess whether

𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS holds, it is still reasonable to evaluate if the simplified 𝐶𝑖 𝑗 ;S is close to the independence

copula.

Fitting a Y-vine with responses (𝑋𝑖 , 𝑋 𝑗) and covariates XS is particularly appealing because it allows for

a symmetric treatment of the responses. Additionally, the sequential one-step ahead estimation method

attempts to order the covariates to maximize the explanatory power of the model. Generally, the copula

𝐶𝑖 𝑗 ;S is obtained in the last tree of the Y-vine.

However, the algorithm also includes a variable selection. Consider the case where 𝑘 − 1 variables

from S have been added as covariates to the model. The candidate set S(𝑘) now contains |S| − (𝑘 − 1)
remaining variables. Assume that for any 𝑙𝑘 ∈ S(𝑘) , the copulas 𝐶𝑉𝑗 ,𝑈𝑙𝑘

;U𝑙
1

:𝑙𝑘−1

, 𝑗 = 1, 2, from Equation (3.7)

are estimated as independence copulas, where {𝑙1, . . . , 𝑙𝑘−1} = S \ S(𝑘) . If this occurs, the algorithm stops

and no additional variables are added. In this case, the copula in the last tree of the fitted Y-vine is given

by 𝐶𝑖, 𝑗 ;S\S(𝑘) , resulting in a reduced conditioning set. The question then arises: can it still be assumed that

𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS holds if𝐶𝑖, 𝑗 ;S\S(𝑘) is estimated as the independence copula? The answer is affirmative, as will

be demonstrated now.

3 Vine Copula Based Regression

46

Proposition 3.2.8. Let S ⊆ {1, . . . , 𝑑} \ {𝑖, 𝑗} for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑}. Further, let S(𝑘) ⊆ S, where |S(𝑘) | =
|S| − (𝑘 − 1), and 1 ≤ 𝑘 ≤ |S| + 1. If, for all 𝑙𝑘 ∈ S(𝑘) , the copulas 𝐶𝑖,𝑙𝑘 ;S\S(𝑘) , 𝐶 𝑗,𝑙𝑘 ;S\S(𝑘) , and 𝐶𝑖, 𝑗 ;S\S(𝑘) are
independence copulas, then 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS holds.

Proof. By Proposition 3.2.7 and the fact that 𝐶𝑖,𝑙𝑘 ;S\S(𝑘) and 𝐶 𝑗,𝑙𝑘 ;S\S(𝑘) are independence copulas, it follows

that 𝑋𝑖 ⊥⊥ 𝑋𝑙𝑘 | XS\S(𝑘) and 𝑋 𝑗 ⊥⊥ 𝑋𝑙𝑘 | XS\S(𝑘) for all 𝑙𝑘 ∈ S(𝑘) . Therefore, it holds that

(𝑋𝑖 , 𝑋 𝑗) ⊥⊥ XS(𝑘) | XS\S(𝑘) . (3.9)

Additionally, by using Proposition 3.2.7 and the fact that 𝐶𝑖, 𝑗 ;S\S(𝑘) is the independence copula, it follows
that

𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS\S(𝑘) . (3.10)

To show that 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS holds, consider:

ℙ(𝑋𝑖 , 𝑋 𝑗 | XS) = ℙ(𝑋𝑖 , 𝑋 𝑗 | XS(k) ,XS\S(𝑘))
(3.9)
= ℙ(𝑋𝑖 , 𝑋 𝑗 | XS\S(𝑘))

(3.10)
= ℙ(𝑋𝑖 | XS\S(𝑘)) · ℙ(𝑋 𝑗 | XS\S(𝑘))
(3.9)
= ℙ(𝑋𝑖 | XS\S(𝑘) ,XS(k)) · ℙ(𝑋 𝑗 | XS\S(𝑘) ,XS(k))
= ℙ(𝑋𝑖 | XS) · ℙ(𝑋 𝑗 | XS)

□

Proposition 3.2.8 confirms that the variable selection process does not interfere with the method of

testing for conditional independencies by examining whether the copula in the last tree corresponds to

the independence copula. This is because the conditioning set is reduced only by excluding variables that

are not found to influence any response variables. Furthermore, when integrated into the PC algorithm, a

reduction of the conditioning set is uncommon. The PC algorithm tests for conditional independencies in

increasing order, and when edges are removed, subsequent conditioning sets are automatically reduced.

For example, if the PC algorithm accurately identifies the conditional independencies in Equation (3.9),

then instead of testing 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS later, only 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS\S(𝑘) will be tested.
To formally define the Y-vine-based conditional independence test, assume there are𝑛 i.i.d. observations

from X = (𝑋1, . . . , 𝑋𝑑)⊤ available. For distinct 𝑖, 𝑗 ∈ {1, . . . , 𝑑}, let y1 = (𝑥𝑘,𝑖)𝑘=1,...,𝑛 and y2 = (𝑥𝑘,𝑗)𝑘=1,...,𝑛

be realizations from (𝑋𝑖 , 𝑋 𝑗). Additionally, xS = (x⊤
𝑙1
, . . . , x⊤

𝑙𝑝
) represents the observations from XS, where

S = {𝑙1, . . . , 𝑙𝑝 } ⊆ {1, . . . , 𝑑} \ {𝑖, 𝑗}. For now, assume that |S| ≥ 1 since Y-vines are undefined for the

case of zero covariates. Using kernel density estimation, the observations are transformed to the u-level:

v̂1 ≔ 𝐹𝑖 (𝑥𝑘,𝑖)𝑘=1,...,𝑛 and v̂2 ≔ 𝐹 𝑗 (𝑥𝑘,𝑗)𝑘=1,...,𝑛 , where 𝐹𝑖 and 𝐹 𝑗 are the estimated marginal distributions of𝑋𝑖
and 𝑋 𝑗 . A similar transformation is performed for the covariates: û𝑙𝑚 ≔ 𝐹𝑙𝑚 (𝑥𝑘,𝑙𝑚)𝑘=1,...,𝑛 for𝑚 = 1, . . . , 𝑝 ,

and ûS ≔ (û⊤
𝑙1
, . . . , û⊤

𝑙𝑝
), where 𝐹𝑙𝑚 is the estimated marginal distribution of 𝑋𝑙𝑚 . A Y-vine is then fitted to

the pseudo-copula data, with response variables (𝑉1,𝑉2) and covariatesUS, by sequentially adding variables

to the covariate order and maximizing the adjusted conditional log-likelihood as described in Section 3.2.2.

Denote by S̃ ⊆ S the potentially reduced conditioning set after the algorithm terminates. The copula in

the final tree is then given by

𝐶𝑉1𝑉2;US̃

(
𝐶𝑉1 |US̃

(𝑣1 | uS̃),𝐶𝑉2 |US̃
(𝑣2 | uS̃); ˆF𝑉1𝑉2;US̃

, 𝜃𝑉1𝑉2;US̃

)
.

The estimated Kendall’s 𝜏 of the copula in the final tree depends on the estimated copula family and

parameters and is denoted by

𝜏 last ≔ 𝜏 (𝜃𝑉1𝑉2;US̃
;

ˆF𝑉1𝑉2;US̃
) . (3.11)

Definition 3.2.9 (Y-vine-based conditional independence test). Consider the hypotheses

𝐻0 : 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS vs. 𝐻1 : 𝑋𝑖 ̸⊥⊥ 𝑋 𝑗 | XS,

3.2 Bivariate Y-Vine-Based Regression

47

where XS ≠ ∅ (or, equivalently |S| ≥ 1). The null hypothesis can be tested against its alternative using the

following Y-vine-based conditional independence test:
Reject 𝐻0 vs. 𝐻1 at level 𝑘 ∈ (0, 1) if and only if

|𝜏 last | > 𝑘,

where 𝜏 last is the Kendall’s 𝜏 of the last copula in a fitted Y-vine given by Equation (3.11), and 𝑘 is a tuning

parameter.

As outlined in the definition, the test decision does not rely on asymptotic results; instead, it uses a

simple upper bound 𝑘 on the absolute value of the estimated Kendall’s 𝜏 . Nagler et al. (2019) used a similar

threshold on Kendall’s 𝜏 for the construction of sparse regular vine copulas which they termed thresholded
vine copulas. Notably, only 𝜏 last = 0 corresponds to the independence copula. However, focusing solely

on independence copulas may be overly restrictive and could result in failing to detect many underlying

conditional independencies. By increasing the upper bound 𝑘 , the test is more likely to accept 𝐻0, leading

to more conditional independencies being identified. In the context of the PC algorithm, a larger 𝑘 would

lead to more edges being removed, resulting in sparser Bayesian network structures. Therefore, 𝑘 serves

as a tuning parameter for controlling the sparsity of the network structure.

In contrast to a simple upper bound, Bauer and Czado (2016) utilized an asymptotic result for Kendall’s

𝜏 . Specifically, under the null hypothesis of independence between two random variables 𝑋 and 𝑌 , it is

known that √︄
9𝑛(𝑛 − 1)
2(2𝑛 + 5) 𝜏𝑛 (𝑋,𝑌)

𝑑→ 𝑁 (0, 1) as 𝑛 →∞.

The variance of 𝜏𝑛 (𝑋,𝑌) is derived in Valz and McLeod (1990) and its asymptotic normality is established

by the results in Hoeffding (1948). However, since the pseudo-copula data used to estimate 𝜏 last results

from multiple estimation steps, the asymptotic normality may not hold even with large sample sizes. Ad-

ditionally, due to the inherent flexibility of the Y-vine estimation procedure, reliance on asymptotic results

becomes less critical, making a straightforward upper bound more appropriate. Therefore, independence

testing based on the asymptotic properties of Kendall’s 𝜏 will be applied only to ordinary independence

cases, as Y-vines cannot be defined in such instances.

Definition 3.2.10 (Ordinary independence test based on Kendall’s 𝜏). Let 𝜏𝑛 be an estimate of Kendall’s 𝜏 ,

assuming no ties, based on the observations (𝐹𝑖 (𝑥𝑘,𝑖), 𝐹 𝑗 (𝑥𝑘,𝑗)), 𝑘 = 1, . . . , 𝑛, as defined in Definition 2.3.5.

Consider the hypotheses

𝐻0 : 𝑋𝑖 ⊥⊥ 𝑋 𝑗 vs. 𝐻1 : 𝑋𝑖 ̸⊥⊥ 𝑋 𝑗 .
The null hypothesis can be tested against its alternative using the following ordinary independence test
based on Kendall’s 𝜏 (Hollander et al. 2014, p. 367):

Reject 𝐻0 vs. 𝐻1 at level 𝛼 ∈ (0, 1) if and only if√︄
9𝑛(𝑛 − 1)
2(2𝑛 + 5) · 𝜏𝑛 > Φ−1(1 − 𝛼/2),

where Φ−1
denotes the quantile function of the standard normal distribution, 𝛼 is the significance level,

and 𝑛 is the number of observations.

The estimation of Kendall’s 𝜏 is based on the observations transformed to the u-level using kernel density

estimation, which facilitates computations in R. Since Kendall’s 𝜏 is rank-based and invariant to marginal

transformations, this approach does not affect its validity. It is also crucial to distinguish that 𝛼 represents

the significance level and should not be confused with the tuning parameter 𝑘 used in Y-vine-based con-

ditional independence testing. Therefore, when using both tests within the PC algorithm, two separate

parameters need to be chosen. For simplicity, the combination of the ordinary independence test based on

Kendall’s 𝜏 and the Y-vine-based conditional independence test for non-empty conditioning sets will be

referred to as the Y-test.

49

4 Pair-Copula Bayesian Networks

Bayesian networks are powerful graphical models that are frequently applied in a broad range of areas.

In the continuous case, modeling has mainly been limited to Gaussian Bayesian networks, as introduced

in Section 2.2.3. In a Gaussian Bayesian network all conditional distributions can be derived analytically

and the equivalence to a joint multivariate normal distribution facilitates tasks such as statistical inference

and model simulation. However, restricting to the multivariate normal distribution lacks the flexibility to

incorporate often observed features such as heavy-tailedness, tail dependence, or nonlinear and asymmet-

ric dependence. Kurowicka and Cooke (2005) therefore first introduced a copula based approach to model

Bayesian networks. They subsequently extended their method to allow for faster updating (Hanea et al.

2006) and mixed continuous and discrete data (Hanea and Kurowicka 2008). Their approach focuses on

copula families with the property of zero rank correlation implying independence, and non-parametric

inference. Extending the idea, Bauer et al. (2011) showed that every pdf corresponding to a continuous

Bayesian network can be decomposed into univariate marginal distributions and pair-copulas. Hereby,

each pair-copula is associated with a specific edge in the underlying DAG and no family restrictions are

made. They termed this type of model pair-copula Bayesian network and showed it suitability to parametric

likelihood inference.

4.1 Model Framework

Let X = (𝑋1, . . . , 𝑋𝑑)⊤ be a 𝑑-dimensional random vector with probability distribution P and let G =

(V, E) be a Bayesian network of P. The goal is to derive a pair-copula decomposition of the pdf corre-

sponding to G, i.e., a pair-copula decomposition of

𝑓 (x) =
∏
𝑣∈V

𝑓𝑣 |𝑝𝑎 (𝑣) (𝑥𝑣 | x𝑝𝑎 (𝑣)) .

Example 4.1.1 (Example 2.3.1 continued). Consider the Bayesian network depicted in Figure 4.1. The

corresponding pdf is given by

𝑓 (x) = 𝑓1(𝑥1) · 𝑓2 |1(𝑥2 | 𝑥1) · 𝑓3 |12(𝑥3 | 𝑥1, 𝑥2) . (4.1)

A pair-copula decomposition of (4.1) was derived in Example 2.3.1, and is expressed as

𝑓 (x) = 𝑐13;2(𝐹1 |2(𝑥1 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2);𝑥2) · 𝑐23(𝐹2(𝑥2), 𝐹3(𝑥3)) · 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) ·
3∏
𝑖=1

𝑓𝑖 (𝑥𝑖) .

The decomposition reveals that each edge in the Bayesian network can be associated with a specific pair-

copula: 𝑐12 corresponds to the edge 1→ 2, 𝑐23 to the edge 2→ 3, and 𝑐13;2 to the edge 1→ 3. Figure 4.2a

graphically illustrates this decomposition by labeling the copula subscripts on the corresponding edges.

1

2

3

Figure 4.1 A three dimensional Bayesian network corresponding to a D-vine

4 Pair-Copula Bayesian Networks

50

1

2

3

1
2

2
3

13;2

(a)

1

2

3

1
2

2
3
;1

13

(b)

Figure 4.2 Two different pair-copula Bayesian networks associated with the DAG in Figure 4.1

As previously mentioned, the decomposition is not unique. For instance, by following the same reasoning

as in Example 2.3.1, but choosing to derive 𝑓3 |12 by computing 𝑓23 |1 instead of 𝑓13 |2, the pdf can alternatively
be decomposed as

𝑓 (x) = 𝑐23;1(𝐹2 |1(𝑥2 | 𝑥1), 𝐹3 |1(𝑥3 | 𝑥1);𝑥1) · 𝑐13(𝐹1(𝑥1), 𝐹3(𝑥3)) · 𝑐12(𝐹1(𝑥1), 𝐹2(𝑥2)) ·
3∏
𝑖=1

𝑓𝑖 (𝑥𝑖) .

This alternative decomposition is graphically represented in Figure 4.2b. While both decompositions are

mathematically equivalent, they correspond to different D-vines: Figure 4.2a corresponds to a D-vine with

order 3 − 2 − 1 and Figure 4.2b corresponds to a D-vine with order 3 − 1 − 2. Importantly, under the

simplifying assumption, the estimators obtained from these decompositions through statistical inference

can differ significantly.

Example 4.1.1 demonstrates that to fully specify a Bayesian network using pair-copulas, it is essential

to define which copulas are employed in the decomposition of the pdf. Furthermore, it raises the question

of whether every Bayesian network defined through its pair-copulas is equivalent to an R-vine. As will be

shown later, this is generally not the case.

Notably, the decomposition of 𝑓𝑣 |𝑝𝑎 (𝑣) for any node 𝑣 ∈ V is not unique if |𝑝𝑎(𝑣) | > 1. To clarify which

copulas are used in the decomposition, an ordering of the parents for each node with multiple parents will

now be introduced.

Definition 4.1.1 (Parent order). Let G = (V, E) be a Bayesian network. The parent order of a node

𝑣 ∈ V is a strict total order <𝑣 on the parents of 𝑣 . The set O ≔ {<𝑣 | 𝑣 ∈ V} is called a set of parent
orderings of G. Moreover, for all 𝑣 ∈ V and𝑤 ∈ 𝑝𝑎(𝑣),

𝑝𝑎(𝑣 ;𝑤) ≔ {𝑢 ∈ 𝑝𝑎(𝑣) | 𝑢 <𝑣 𝑤}

is the set of parents of 𝑣 that have a lower order than𝑤 .

The following theorem is adapted from Bauer (2013). It establishes the fundamental connection between

the set of parent orderings and the decomposition of the pdf of a Bayesian network.

Theorem 4.1.2. Let G = (V, E) be a Bayesian network of P, and define 𝑑 ≔ |V|. Then P is uniquely
determined by its univariate margins and the pair copulas𝐶𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) , where 𝑣 ∈ V and𝑤 ∈ 𝑝𝑎(𝑣). The pdf
of P is given by

𝑓 (x) =
∏
𝑣∈V

𝑓𝑣 (𝑥𝑣)
∏

𝑤∈𝑝𝑎 (𝑣)
𝑐𝑣,𝑤;𝑝𝑎 (𝑣;𝑤)

(
𝐹𝑣 |𝑝𝑎 (𝑣;𝑤) (𝑥𝑣 | x𝑝𝑎 (𝑣;𝑤)), 𝐹𝑤 |𝑝𝑎 (𝑣;𝑤) (𝑥𝑤 | x𝑝𝑎 (𝑣;𝑤)) | x𝑝𝑎 (𝑣;𝑤)

)
, (4.2)

where x = (𝑥𝑣)𝑣∈V ∈ ℝ𝑑 .

Proof. The proof proceeds by induction and relies solely on graph-theoretical considerations. For 𝑑 = 1,

the claim is trivial. Now consider the case where 𝑑 > 1. Since G is acyclic, there exists a maximal vertex

4.1 Model Framework

51

in G, i.e., a𝑚 ∈ V with 𝑑𝑒 (𝑚) = ∅. DefineV′ ≔ V \ {𝑚} and E′ ≔ E ∩ (V′ ×V′). Since G is a Bayesian

network of P, it factorizes according to

𝑓 (x) =
∏
𝑣∈V

𝑓𝑣 |𝑝𝑎 (𝑣) (𝑥𝑣 | x𝑝𝑎 (𝑣))

= 𝑓𝑚 |𝑝𝑎 (𝑚) (𝑥𝑚 | x𝑝𝑎 (𝑚))
∏
𝑣∈V′

𝑓𝑣 |𝑝𝑎 (𝑣) (𝑥𝑣 | x𝑝𝑎 (𝑣)) .

Since𝑚 is a maximal vertex in G, the sets 𝑝𝑎(𝑣) and 𝑛𝑑 (𝑣) remain unchanged for all 𝑣 ∈ V′. Therefore,
the probability distribution P′ ≔ P |V′ satisfies the local MP with respect to the DAG G′ = (V′, E′).
Consequently, G′ factorizes as

𝑓V′ (xV′) =
∏
𝑣∈V′

𝑓𝑣 |𝑝𝑎 (𝑣) (𝑥𝑣 | x𝑝𝑎 (𝑣)) .

Assume the decomposition (4.2) holds for the Bayesian network G′. It remains to show that including the

marginal density 𝑓𝑚 and the pair-copula densities 𝑐𝑚,𝑤 ;𝑝𝑎 (𝑚;𝑤) ,𝑤 ∈ 𝑝𝑎(𝑚), yields a unique decomposition

of the Bayesian network G.
Let 𝑘 ≔ |𝑝𝑎(𝑚) |. For 𝑘 = 0, the claim is trivial. For 𝑘 > 0, let 𝑤1 <𝑚 · · · <𝑚 𝑤𝑘 denote the elements of

𝑝𝑎(𝑚) and let𝑊 ≔ 𝑝𝑎(𝑚;𝑤𝑘). By Sklar’s Theorem and the fact that𝑊 = 𝑝𝑎(𝑚) \ {𝑤𝑘 }, it holds that:

𝑓𝑚 |𝑝𝑎 (𝑚) (𝑥𝑚 | x𝑝𝑎 (𝑚)) =
𝑓{𝑚}∪𝑝𝑎 (𝑚) (x{𝑚}∪𝑝𝑎 (𝑚))

𝑓𝑊 (x𝑊)
· 𝑓𝑊 (x𝑊)
𝑓𝑝𝑎 (𝑚) (x𝑝𝑎 (𝑚))

=
𝑓𝑚,𝑤𝑘 |𝑊 (𝑥𝑚, 𝑥𝑤𝑘

| x𝑊)
𝑓𝑤𝑘 |𝑊 (𝑥𝑤𝑘

| x𝑊)
= 𝑐𝑚,𝑤𝑘 ;𝑊

(
𝐹𝑚 |𝑊 (𝑥𝑚 | x𝑊), 𝐹𝑤𝑘 |𝑊 (𝑥𝑤𝑘

| x𝑊) | x𝑊
)
· 𝑓𝑚 |𝑊 (𝑥𝑚 | x𝑊) .

Since 𝑝𝑎(𝑚) ⊆ V′, the conditional cdf 𝐹𝑤𝑘 |𝑊 (· | x𝑊) is completely determined by P′. Furthermore, 𝑓𝑚 |𝑊
can be iteratively computed using the same reasoning. For instance, if𝑊2 ≔ 𝑝𝑎(𝑚;𝑤𝑘−1), it holds that

𝑓𝑚 |𝑊 (𝑥𝑚 | x𝑊) = 𝑐𝑚,𝑤𝑘−1;𝑊2

(
𝐹𝑚 |𝑊2

(𝑥𝑚 | x𝑊2
), 𝐹𝑤𝑘−1 |𝑊2

(𝑥𝑤𝑘−1
| x𝑊2
) | x𝑊2

)
· 𝑓𝑚 |𝑊2

(𝑥𝑚 | x𝑊2
) .

Finally, for𝑊𝑘 ≔ 𝑝𝑎(𝑚;𝑤1) = ∅,

𝑓𝑚 |𝑊𝑘−1
(𝑥𝑚 | x𝑊𝑘−1

) = 𝑐𝑚,𝑤1

(
𝐹𝑚 (𝑥𝑚), 𝐹𝑤1

(𝑥𝑤1
)
)
· 𝑓𝑚 (𝑥𝑚).

Combining the results yields

𝑓𝑚 |𝑝𝑎 (𝑚) (𝑥𝑚 | x𝑝𝑎 (𝑚))
= 𝑓𝑚 (𝑥𝑚) ·

∏
𝑤∈𝑝𝑎 (𝑚)

𝑐𝑚,𝑤;𝑝𝑎 (𝑚;𝑤)
(
𝐹𝑚 |𝑝𝑎 (𝑚;𝑤) (𝑥𝑚 | x𝑝𝑎 (𝑚;𝑤)), 𝐹𝑤 |𝑝𝑎 (𝑚;𝑤) (𝑥𝑤 | x𝑝𝑎 (𝑚;𝑤)) | x𝑝𝑎 (𝑚;𝑤)

)
,

which establishes the claim. □

Definition 4.1.3 (Pair-copula Bayesian network). LetG = (V, E) be a Bayesian network of the probability
distribution P, and let O ≔ {<𝑣 | 𝑣 ∈ V} denote the set of parent orderings of G. For each 𝑣 ∈ V and

𝑤 ∈ 𝑝𝑎(𝑣), let 𝑝𝑎(𝑣 ;𝑤) = {𝑢 ∈ 𝑝𝑎(𝑣) | 𝑢 <𝑣 𝑤} be the set of parents of 𝑣 with lower order than𝑤 . For each

edge (𝑤, 𝑣) ∈ E, let 𝐶𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) be the copula associated with that edge. Then, the pair (G,O) is called a

pair-copula Bayesian network (PCBN) of P and the pdf of P is given by Equation (4.2).

Pair-copula Bayesian networks combine the strengths of causal graphical models in capturing condi-

tional independencies with the flexibility of copulas to model complex, non-linear dependencies inde-

pendently of marginal distributions. Unlike R-vines, however, PCBNs allow for conditional cdfs in the

decomposition of the pdf that cannot be obtained through the recursive computation of h-functions, as

described in Lemma 2.3.15.

4 Pair-Copula Bayesian Networks

52

1

2 3

4

3
1

2
1

4
3
;24

2

Figure 4.3 A four-dimensional PCBN with parent order 2 <4 3

Definition 4.1.4 (Specified pair-copulas). Let (G,O) be a pair-copula Bayesian network, where G =

(V, E). For any 𝑣,𝑤 ∈ V and S ⊆ V\{𝑣,𝑤}, the copula𝐶𝑣,𝑤;S is specified by the pair-copula Bayesian
network if one of the following conditions hold:

i) 𝑤 ∈ 𝑝𝑎(𝑣) and S = 𝑝𝑎(𝑣 ;𝑤).

ii) 𝑣 ∈ 𝑝𝑎(𝑤) and S = 𝑝𝑎(𝑤 ; 𝑣).

iii) < {𝑣} | S | {𝑤} >G .

It is important to note that Conditions i) and ii) in Definition 4.1.4 correspond to the pair-copulas that

appear in the decomposition of the pdf. These copulas will be referred to as specified by decomposition.
Condition iii) is related to the graphical structure of the underlying DAG. If this condition holds, then 𝑋𝑣
and𝑋𝑤 are independent given XS, and therefore the copula𝐶𝑣,𝑤;S is known to be the independence copula.

These independence copulas will be referred to as specified by d-separation. The question of whether a

conditional cdf can only be obtained via integration is directly related to which copulas are specified by a

PCBN, as the following example, taken from Bauer (2013), will demonstrate.

Example 4.1.2. Consider the four-dimensional pair-copula Bayesian network shown in Figure 4.3. The

implied conditional independence statements are 𝑋2 ⊥⊥ 𝑋3 | 𝑋1 and 𝑋1 ⊥⊥ 𝑋4 | 𝑋2, 𝑋3. The only node

with more than one parent is node 4, and its parent order is 2 <4 3. Consequently, the following sets are

defined:

𝑝𝑎(1; ∅) = 𝑝𝑎(2; 1) = 𝑝𝑎(3; 1) = 𝑝𝑎(4; 2) = ∅, 𝑝𝑎(4; 3) = {2}.

Applying Equation (4.2) yields the following decomposition of the pdf:

𝑓 (x) =
(4∏
𝑖=1

𝑓𝑖 (𝑥𝑖)
)
· 𝑐21(𝐹2(𝑥2), 𝐹1(𝑥1)) · 𝑐31(𝐹3(𝑥3), 𝐹1(𝑥1)) · 𝑐42(𝐹4(𝑥4), 𝐹2(𝑥2))

· 𝑐43;2(𝐹4 |2(𝑥4 | 𝑥2), 𝐹3 |2(𝑥3 | 𝑥2) | 𝑥2), x ∈ ℝ4.

The conditional cdf 𝐹4 |2 can be directly obtained because the copula 𝐶42 is specified by the PCBN:

𝐹4 |2(𝑥4 | 𝑥2) = ℎ4 |2(𝐹4(𝑥4) | 𝐹2(𝑥2)) .

The conditional cdf 𝐹3 |2, however, cannot be obtained in a similar manner because the copula 𝐶23 is not

specified by the PCBN. This is due to the fact that𝐶23 does not appear in the decomposition and node 3 is

4.1 Model Framework

53

not d-separated from node 2 given the empty set. Nevertheless, 𝐹3 |2 can be derived through integration,

utilizing the fact that 𝑋3 ⊥⊥ 𝑋2 | 𝑋1 (∗):

𝑓2(𝑥2) · 𝑓3(𝑥3) · 𝑐23(𝐹2(𝑥2), 𝐹3(𝑥3)) = 𝑓23(𝑥2, 𝑥3)

=

∫
ℝ

𝑓123(𝑥1, 𝑥2, 𝑥3) d𝑥1

=

∫
ℝ

𝑓23 |1(𝑥2, 𝑥3 | 𝑥1) · 𝑓1(𝑥1) d𝑥1

=

∫
ℝ

𝑓2 |1(𝑥2 | 𝑥1) · 𝑓3 |1(𝑥3 | 𝑥1) · 𝑓1(𝑥1) d𝑥1 (∗)

=

∫
ℝ

𝑓21(𝑥2, 𝑥1) · 𝑓31(𝑥3, 𝑥1) · 𝑓 −1

1
(𝑥1) d𝑥1

=

∫
ℝ

𝑓1(𝑥1) · 𝑓2(𝑥2) · 𝑓3(𝑥3) · 𝑐21(𝐹2(𝑥2), 𝐹1(𝑥1)) · 𝑐31(𝐹3(𝑥3), 𝐹1(𝑥1)) d𝑥1

= 𝑓2(𝑥2) · 𝑓3(𝑥3) ·
∫
[0,1]

𝑐21(𝐹2(𝑥2), 𝑢1) · 𝑐31(𝐹3(𝑥3), 𝑢1) d𝑢1︸ ︷︷ ︸
𝑐23 (𝐹2 (𝑥2),𝐹3 (𝑥3))

.

Hence,

𝐹3 |2(𝑥3 | 𝑥2) =
𝜕𝐶23(𝐹2(𝑥2), 𝐹3(𝑥3))

𝜕𝐹2(𝑥2)

=

𝜕

(∫ 𝐹2 (𝑥2)
0

∫ 𝐹3 (𝑥3)
0

𝑐23(𝑢2, 𝑢3) d𝑢3d𝑢2

)
𝜕𝐹2(𝑥2)

=

∫ 𝐹3 (𝑥3)

0

𝑐23(𝐹2(𝑥2), 𝑢3) d𝑢3

=

∫ 𝐹3 (𝑥3)

0

(∫ 1

0

𝑐21(𝐹2(𝑥2), 𝑢1) · 𝑐31(𝑢3, 𝑢1) d𝑢1

)
d𝑢3

=

∫
1

0

𝑐21(𝐹2(𝑥2), 𝑢1) ·
(∫ 𝐹3 (𝑥3)

0

𝑐31(𝑢3, 𝑢1) d𝑢3

)
d𝑢1

=

∫
1

0

𝑐21(𝐹2(𝑥2), 𝑢1) ·
(∫ 𝐹3 (𝑥3)

0

𝜕𝐶31(𝑢3, 𝑢1)
𝜕𝑢3𝜕𝑢1

d𝑢3

)
d𝑢1

=

∫
1

0

𝑐21(𝐹2(𝑥2), 𝑢1) ·
𝜕𝐶31(𝐹3(𝑥3), 𝑢1)

𝜕𝑢1

d𝑢1

=

∫
1

0

𝑐21(𝐹2(𝑥2), 𝑢1) · ℎ3 |1(𝐹3(𝑥3) | 𝑢1) d𝑢1.

The last integral does not generally admit a closed-form solution. Selecting the parent order 3 <4 2 instead

of 2 <4 3 results in a similar outcome, with the roles of nodes 2 and 3 swapped.

Example 4.1.2 demonstrates that not all PCBNs can be represented by R-vines. In this specific four-

dimensional case, obtaining the conditional cdf 𝐹3 |2 involves evaluating a single one-dimensional integral,

while all other conditional cdfs can be computed recursively using h-functions. Despite this particular case

beingmanageable due to the limited number of integrals, the situation generally becomesmore challenging

as the dimension of the underlying DAG increases. This complexity can impede exact likelihood inference

and simulation from such PCBNs. Moreover, deriving the integral representation of conditional cdfs in

terms of specified pair-copulas can be complex, as it requires utilizing specific conditional independence

statements implied by the Bayesian network. An algorithm developed by Bauer and Czado (2016) provides

a solution by deriving a pair-copula decomposition, which may involve integration, for all conditional cdfs

in a PCBN.

4 Pair-Copula Bayesian Networks

54

𝑡𝑖

𝑡𝑖−1

. . .

𝑡𝑖+1

. . .

w z

v

𝑇 (𝑤 ; 𝑧)

(a) Active cycle

𝑣1

𝑣3

𝑣2

𝑣4 𝑣5

(b) Interfering v-structure

Figure 4.4 Illustration of active cycles and interfering v-structures

Given that the primary difficulty with PCBNs lies in evaluating conditional cdfs, it is pertinent to ex-

plore whether certain conditions could eliminate the need for integration. Horsman (2023) identified two

graphical structures associated with integration-free PCBNs.

Definition 4.1.5 (Active cycle). Let G = (V, E) be a DAG. For 𝑣 ∈ V , let 𝑤, 𝑧 ∈ 𝑝𝑎(𝑣) be two distinct

parents of 𝑣 such that there is a trail 𝑇 (𝑤 ; 𝑧) from𝑤 to 𝑧 satisfying the following conditions:

i) 𝑇 (𝑤 ; 𝑧) contains no v-structures.

ii) 𝑇 (𝑤 ; 𝑧) contains no chords, meaning there is no edge between two non-consecutive nodes within

the trail.

Then, the trail 𝑣 ← 𝑇 (𝑤 ; 𝑧) → 𝑣 forms an active cycle.

Definition 4.1.6 (Interfering v-structure). Let G = (V, E) be a DAG with |V| ≥ 5, and let (𝑣𝑖)𝑖=1,...,5 ∈ V
be five nodes that satisfy the following conditions:

i) 𝑣3 ∈ 𝑝𝑎(𝑣4) ∩ 𝑝𝑎(𝑣5).

ii) 𝑣1 ∈ 𝑝𝑎(𝑣3) ∩ 𝑝𝑎(𝑣4) and 𝑣1 ∉ 𝑝𝑎(𝑣5).

iii) 𝑣2 ∈ 𝑝𝑎(𝑣3) ∩ 𝑝𝑎(𝑣5) and 𝑣2 ∉ 𝑝𝑎(𝑣4).

Then, the nodes (𝑣𝑖)𝑖=1,...,5 are said to form an interfering v-structure.

Figure 4.4 illustrates the graphical structures of active cycles and interfering v-structures. According

to Horsman (2023), if a DAG G does not contain any active cycles or interfering v-structures — referred

to as a restricted DAG — then there exists a parent order O such that the joint density of the PCBN

(G,O) can be computed without the need for integration. In contrast, if the DAG contains either an active

cycle or an interfering v-structure, then it is impossible to compute the joint density without performing

some integration, regardless of the chosen parent order. Additionally, the author provided an algorithm to

determine a parent order that ensures integration-free computations for restricted DAGs.

In Example 4.1.2, the trail 4 ← 2 ← 1 → 3 → 4 forms an active cycle. This is because 2 ← 1 → 3 is

not a v-structure, and there is no edge between nodes 2 and 3. Therefore, the DAG is not restricted, and,

as observed, integration is necessary to compute the joint density. It is worth noting that introducing an

edge 2 → 3 could break the active cycle. In this scenario, node 3 would have two parents, necessitating

4.2 Simulation Methods

55

the definition of a parent order for node 3. Setting 1 <3 2 specifies the copulas𝐶31 and𝐶32;1. However, 𝐹3 |2
or 𝐹2 |3 which appear as an argument in either 𝐶43;2 or 𝐶42;3, depending on the parent order of node 4, can

still not be obtained without integration, as the copula 𝐶23 is not specified by the PCBN. Thus, only the

parent order 2 <3 1 results in an integration-free decomposition, as it specifies the pair-copula 𝐶23.

This illustrates that both the underlying graphical structure and the chosen parent order influence

whether evaluating a joint density in a PCBN requires integration. Relying solely on restricted DAGs

and specific parent orders can be problematic, especially in high-dimensional settings. If the true under-

lying DAG is sparse, it may include many active cycles. Therefore, restricting the search, such as through

structure learning, to only restricted DAGs might not yield a DAG that closely approximates the true

structure. Moreover, as will be discussed in the next section, in a regression context, the parent order is

related to the strength of dependence between covariates and the response variable, as well as among the

covariates themselves. Consequently, it may be undesirable to limit the set of possible parent orders in

practical applications. For these reasons, this thesis does not assume that PCBNs are restricted in gen-

eral and will introduce approximate methods for sampling and likelihood inference that do not require

numerical integration.

4.2 Simulation Methods

This section will provide two methods for sampling from any pair-copula Bayesian network. The first

is an exact method that uses the precise inverse of the conditional distribution for each node given its

parents. The exact method may require numerical integration, as generally not all conditional cdfs can be

derived from the pair-copulas specified by the PCBN. The second method is new and approximates the

joint distribution of each node and its parents using a D-vine structural equation model, where the node

is positioned as a leaf in the first tree, followed by its parents in their specified order. This approach is

particularly appealing because the conditional distribution and its inverse of the node given its parents

are easily obtained. However, as detailed in Section 4.2.2, this method may require the estimation of some

copulas that involve only the parents of a node.

4.2.1 Exact Simulation

The aim of the exact simulation method is to generate samples from the exact probability distribution of a

pair-copula Bayesian network. The results presented here are adapted from Bauer et al. (2011). Consider a

𝑑-dimensional PCBN (G,O) with node setV = {1, . . . , 𝑑}, and let a topological order of the nodes be given
by ℓ = (𝑙1, . . . , 𝑙𝑑). Define ℓ1:𝑖 ≔ (𝑙1, . . . , 𝑙𝑖) as the first 𝑖 elements of the topological order, for 𝑖 = 1, . . . , 𝑑 .

Assume that all copulas in the PCBN are parametric, with families and parameters denoted by (F , 𝜽) =
(F𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) , 𝜃𝑣,𝑤;𝑝𝑎 (𝑣;𝑤))𝑣∈V,𝑤∈𝑝𝑎 (𝑣) . Although this parametric assumption is not strictly necessary for the

simulation routine, in practical applications of this thesis only parametric copulas𝐶𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) will be used.
For simplicity, the equationswill use only the parameter vector, while keeping inmind that the copulas also

depend on the chosen family and rotation. To obtain a 𝑑-dimensional sample u𝑠 = (𝑢𝑠
𝑙1
, . . . , 𝑢𝑠

𝑙𝑑
) ∈ [0, 1]𝑑

from the PCBN on the u-level, the following steps are performed:

i) Sample𝑤𝑖
i.i.d.∼ 𝑈 [0, 1], 𝑖 = 1, . . . , 𝑑 .

ii) Apply the inverse Rosenblatt transform (see Definition 3.1.3):

𝑢𝑠
𝑙1
≔ 𝑤1

𝑢𝑠
𝑙2
≔ 𝐶−1

𝑙2 |𝑙1 (𝑤2 | 𝑢𝑠𝑙1 ;𝜽)
𝑢𝑠
𝑙3
≔ 𝐶−1

𝑙3 |𝑙1:2

(𝑤3 | u𝑠𝑙1:2

;𝜽)
...

𝑢𝑠
𝑙𝑑
≔ 𝐶−1

𝑙𝑑 |𝑙1:(𝑑−1)
(𝑤𝑑 | u𝑠𝑙

1:(𝑑−1)
;𝜽) .

4 Pair-Copula Bayesian Networks

56

Sampling according to the topological order of the nodes is necessary because, based on the Markov prop-

erties of a Bayesian network, the conditioning set for each node can be reduced to only its parents:

𝑤𝑘 = 𝐶𝑙𝑘 |𝑙1:(𝑘−1) (𝑢
𝑠
𝑙𝑘
| u𝑠

𝑙
1:(𝑘−1)

;𝜽) = 𝐶𝑙𝑘 |𝑝𝑎 (𝑙𝑘) (𝑢𝑠𝑙𝑘 | u
𝑠
𝑝𝑎 (𝑙𝑘) ;𝜽), 𝑘 = 2, . . . , 𝑑 .

Further, assume that 𝑝𝑎(𝑙𝑘) ≠ ∅ and let 𝑣 be the last parent in the parent order of 𝑙𝑘 , meaning 𝑝𝑎(𝑙𝑘 ; 𝑣) =
𝑝𝑎(𝑙𝑘) \ {𝑣}. Then, by applying Lemma 2.3.15 it holds that

𝑤𝑘 = ℎ𝑙𝑘 |𝑣 ;𝑝𝑎 (𝑙𝑘 ;𝑣)
(
𝐶𝑙𝑘 |𝑝𝑎 (𝑙𝑘 ;𝑣) (𝑢𝑠𝑙𝑘 | u

𝑠
𝑝𝑎 (𝑙𝑘 ;𝑣) ;𝜽) | 𝐶𝑣 |𝑝𝑎 (𝑙𝑘 ;𝑣) (𝑢𝑠𝑣 | u𝑠𝑝𝑎 (𝑙𝑘 ;𝑣) ;𝜽);𝜽

)
, (4.3)

where

ℎ𝑙𝑘 |𝑣 ;𝑝𝑎 (𝑙𝑘 ;𝑣) (𝑢1 | 𝑢2) ≔
𝜕𝐶𝑙𝑘 ,𝑣 ;𝑝𝑎 (𝑙𝑘 ;𝑣) (𝑢1, 𝑢2)

𝜕𝑢2

.

In Equation (4.3), only the first argument, 𝐶𝑙𝑘 |𝑝𝑎 (𝑙𝑘 ;𝑣) , depends on 𝑢
𝑠
𝑙𝑘
, and it can be determined using the

same reasoning as before. Iteratively, the necessary inverse h-functions for sampling are ℎ−1

𝑙𝑘 |𝑣∗ ;𝑝𝑎 (𝑙𝑘 ,𝑣∗) ,

for 𝑣∗ ∈ 𝑝𝑎(𝑙𝑘). However, the second argument in Equation (4.3) may often require integration, as demon-

strated in the subsequent example.

Example 4.2.1 (Example 4.1.2 continued). Consider again the four-dimensional PCBN illustrated in Figure

4.3, with the parent order 2 <4 3. As shown in Example 4.1.2, the conditional distribution of 𝑋3 given 𝑋2

is expressed as:

𝐹3 |2(𝑥3 | 𝑥2) =
∫

1

0

𝑐21(𝐹2(𝑥2), 𝑢1) · ℎ3 |1(𝐹3(𝑥3) | 𝑢1) d𝑢1.

Therefore, the conditional distribution of𝑈3 = 𝐹3(𝑋3) given𝑈2 = 𝐹2(𝑋2) can be obtained by:

𝐶3 |2(𝑢3 | 𝑢2) =
∫

1

0

𝑐21(𝑢2, 𝑢1) · ℎ3 |1(𝑢3 | 𝑢1) d𝑢1.

Given that𝑤1, . . . ,𝑤4 are independently drawn from the standard uniform distribution, the sampling equa-

tions are derived for the topological order 1 < 2 < 3 < 4 as follows:

𝑢𝑠
1
≔ 𝑤1,

𝑢𝑠
2
≔ ℎ−1

2 |1(𝑤2 | 𝑢𝑠1;𝜃21),
𝑢𝑠

3
≔ ℎ−1

3 |1(𝑤3 | 𝑢𝑠1;𝜃31).

To sample from𝑈4 given𝑈2 = 𝑢
𝑠
2
, 𝑈3 = 𝑢

𝑠
3
, consider the following:

𝑤4 = 𝐶4 |23(𝑢𝑠4 | 𝑢𝑠2, 𝑢𝑠3;𝜽)
= ℎ4 |3;2

(
𝐶4 |2(𝑢𝑠4 | 𝑢𝑠2;𝜽) | 𝐶3 |2(𝑢𝑠3 | 𝑢𝑠2;𝜽);𝜃43;2

)
= ℎ4 |3;2

(
ℎ4 |2(𝑢𝑠4 | 𝑢𝑠2;𝜃42)

��� ∫ 1

0

𝑐21(𝑢𝑠2, 𝑢1) · ℎ3 |1(𝑢𝑠3 | 𝑢1;𝜃31) d𝑢1;𝜃43;2

)
.

Inverting this expression leads to the following sampling equation:

𝑢𝑠
4
≔ ℎ−1

4 |2

(
ℎ−1

4 |3;2

(
𝑤4

��� ∫ 1

0

𝑐21(𝑢𝑠2, 𝑢1) · ℎ3 |1(𝑢𝑠3 | 𝑢1;𝜃31) d𝑢1;𝜃43;2

) ��� 𝑢𝑠
2
;𝜃42

)
.

Example 4.2.1 demonstrates that, due to the presence of an active cycle, numerical integration is required

to simulate from the exact distribution of𝑈4 given its parents.

4.2 Simulation Methods

57

4.2.2 Approximate Simulation Using D-Vines

This section introduces a novel approach to approximately simulate from the distribution of any pair-

copula Bayesian network will be presented. The core idea is to model the joint distribution of a node and

its parents using a D-vine. The structure of the D-vine can be designed to specify the same copulas as

those in the underlying PCBN, as demonstrated in the following proposition.

Proposition 4.2.1. Let (G,O) be a PCBN with node setV = {1, . . . , 𝑑}. For any node 𝑣 ∈ V with 𝑝𝑎(𝑣) ≠ ∅,
let ℓ = (𝑙1, . . . , 𝑙𝑘), where 𝑘 < 𝑑 , present the tuple of the parents of 𝑣 , with the elements arranged according
the parent order <𝑣 . Denote the first𝑚 elements of ℓ as ℓ1:𝑚 ≔ (𝑙1, . . . , 𝑙𝑚) for 1 ≤ 𝑚 ≤ 𝑘 . Then, the simplified
conditional pdf of𝑈𝑣 = 𝐹𝑣 (𝑋𝑣) given U𝑝𝑎 (𝑣) can be expressed as:

𝑐𝑣 |𝑝𝑎 (𝑣) (𝑢𝑣 | u𝑝𝑎 (𝑣)) =
∏

𝑤∈𝑝𝑎 (𝑣)
𝑐𝑣,𝑤;𝑝𝑎 (𝑣;𝑤)

(
𝐶𝑣 |𝑝𝑎 (𝑣;𝑤) (𝑢𝑣 | u𝑝𝑎 (𝑣;𝑤)),𝐶𝑤 |𝑝𝑎 (𝑣;𝑤) (𝑢𝑤 | u𝑝𝑎 (𝑣;𝑤))

)
= 𝑐𝑣,𝑙1 (𝑢𝑣, 𝑢𝑙1) ·

𝑘∏
𝑖=2

𝑐𝑣,𝑙𝑖 ;ℓ1:(𝑖−1)

(
𝐶𝑣 |ℓ

1:(𝑖−1) (𝑢𝑣 | uℓ1:(𝑖−1)),𝐶𝑙𝑖 |ℓ1:(𝑖−1) (𝑢𝑙𝑖 | uℓ1:(𝑖−1))
)

Specifying a D-vine with structure 𝑣 − 𝑙1 − · · · − 𝑙𝑘 yields the same decomposition of 𝑐𝑣 |𝑝𝑎 (𝑣) .

Proof. The first statement follows from Theorem 4.1.2 and the general factorization of Bayesian networks

as expressed in Equation (2.3). To prove the second statement, consider a D-vine with structure 𝑣 − 𝑙1 −
· · ·−𝑙𝑘 . In this D-vine, the edges in the first tree are {𝑣, 𝑙1}, {𝑙1, 𝑙2}, . . . , {𝑙𝑘−1, 𝑙𝑘 }. The edges in tree 𝑗 , for 1 <

𝑗 < 𝑘 , are {𝑣, 𝑙 𝑗 ; ℓ1:(𝑗−1) }, {𝑙1, 𝑙 𝑗+1; ℓ2:𝑗 }, . . . , {𝑙𝑘− 𝑗 , 𝑙𝑘 ; ℓ(𝑘− 𝑗+1) :(𝑘−1) }, and the edge in tree 𝑘 is {𝑣, 𝑙𝑘 ; ℓ1:(𝑘−1) }.
Therefore, the joint density of (𝑈𝑣,Uℓ) is given by

𝑐𝑢𝑣,𝑙1,...,𝑙𝑘 (𝑣, uℓ) = 𝑐𝑣,𝑙1 (𝑢𝑣, 𝑢𝑙1) ·
(𝑘∏
𝑗=2

𝑐𝑣,𝑙 𝑗 ;ℓ1:(𝑗−1)

(
𝐶𝑣 |ℓ

1:(𝑖−1) (𝑢𝑣 | uℓ1:(𝑖−1)),𝐶𝑙𝑖 |ℓ1:(𝑖−1) (𝑢𝑙𝑖 | uℓ1:(𝑖−1))
))

·
(𝑘−1∏
𝑖=1

𝑐𝑙𝑖 ,𝑙𝑖+1 (𝑢𝑙𝑖 , 𝑢𝑙𝑖+1)
)

·
(𝑘−1∏
𝑗=2

𝑘− 𝑗∏
𝑖=1

𝑐𝑙𝑖 ,𝑙𝑖+𝑗 ;ℓ(𝑖+1) :(𝑖+𝑗−1)

(
𝐶𝑙𝑖 |ℓ(𝑖+1) :(𝑖+𝑗−1) (𝑢𝑙𝑖 | uℓ(𝑖+1) :(𝑖+𝑗−1)),𝐶𝑙𝑖+𝑗 |ℓ(𝑖+1) :(𝑖+𝑗−1) (𝑢𝑙𝑖+𝑗 | uℓ(𝑖+1) :(𝑖+𝑗−1))

))
.

Given that the joint distribution of Uℓ follows a D-vine with tree structure 𝑙1 − · · · − 𝑙𝑘 , the joint pdf of the
parents of 𝑣 is given by

𝑐𝑙1,...,𝑙𝑘 (uℓ) =
(𝑘−1∏
𝑖=1

𝑐𝑙𝑖 ,𝑙𝑖+1 (𝑢𝑙𝑖 , 𝑢𝑙𝑖+1)
)

·
(𝑘−1∏
𝑗=2

𝑘− 𝑗∏
𝑖=1

𝑐𝑙𝑖 ,𝑙𝑖+𝑗 ;ℓ(𝑖+1) :(𝑖+𝑗−1)

(
𝐶𝑙𝑖 |ℓ(𝑖+1) :(𝑖+𝑗−1) (𝑢𝑙𝑖 | uℓ(𝑖+1) :(𝑖+𝑗−1)),𝐶𝑙𝑖+𝑗 |ℓ(𝑖+1) :(𝑖+𝑗−1) (𝑢𝑙𝑖+𝑗 | uℓ(𝑖+1) :(𝑖+𝑗−1))

))
.

Substituting these terms into the following equality yields the result:

𝑐𝑣 |𝑝𝑎 (𝑣) (𝑢𝑣 | u𝑝𝑎 (𝑣)) = 𝑐𝑣 |𝑙1,...,𝑙𝑘 (𝑢𝑣 | uℓ)

=
𝑐𝑣,𝑙1,...,𝑙𝑘 (𝑢𝑣, uℓ)
𝑐𝑙1,...,𝑙𝑘 (uℓ)

.

□

Proposition 4.2.1 establishes that the conditional distribution of each node given its parents in a PCBN

can be modeled using a D-vine, where in the first tree, the node of interest serves as a leaf, followed by

4 Pair-Copula Bayesian Networks

58

𝑣 𝑙1 𝑙2 𝑙3 · · · 𝑙𝑘

𝑣𝑙1 𝑙1𝑙2 𝑙2𝑙3 . . . 𝑙𝑘−1𝑙𝑘

. . .

𝑣, 𝑙 𝑗−1; ℓ1:(𝑗−2) 𝑙1, 𝑙 𝑗 ; ℓ2:(𝑗−1) . . . 𝑙𝑘− 𝑗+1, 𝑙𝑘 ; ℓ(𝑘− 𝑗+2) :(𝑘−1)

. . .

𝑣𝑙𝑘−1; ℓ1:(𝑘−2) 𝑙1𝑙𝑘 ; ℓ2:(𝑘−1)

𝑣𝑙1 𝑙1𝑙2 𝑙2𝑙3 𝑙3𝑙4 𝑙𝑘−1𝑙𝑘

𝑣𝑙2; 𝑙1 𝑙1𝑙3; 𝑙2 𝑙2𝑙4; 𝑙3 𝑙𝑘−2𝑙𝑘 ; 𝑙𝑘−1

𝑣, 𝑙 𝑗 ; ℓ1:(𝑗−1) 𝑙1, 𝑙 𝑗+1; ℓ2:𝑗 𝑙𝑘− 𝑗 , 𝑙𝑘 ; ℓ(𝑘− 𝑗+1) :(𝑘−1)

𝑣, 𝑙𝑘 ; ℓ1:(𝑘−1)

𝑇1

𝑇2

...

𝑇𝑗

...

𝑇𝑘

Figure 4.5 D-vine tree sequence with node 𝑣 as a leaf, followed by its parents in their specified parent order. Edges

in green represent copulas specified by the decomposition of the underlying PCBN

its parents in their specified order. The copulas specified by the PCBN’s decomposition are represented in

the first edge of each tree, as shown in Figure 4.5.

The D-vine formed solely by the parents of a node 𝑣 , arranged in their parent order, is referred to as

the parental D-vine of 𝑣 . Additionally, a model in which the conditional distribution of each node given

its parents is derived from a D-vine with this specific structure, combined with the factorization of the

underlying Bayesian network as expressed in Equation 2.3, is called aD-vine structural equationmodel
(DV-SEM). If all copulas in the DV-SEM are directly obtained from the PCBN, the DV-SEM and the PCBN

are distributionally equivalent. However, depending on the DAG structure and the chosen parent order,

not all copulas in the parental D-vines may be specified by the PCBN. If a copula is not specified by the

PCBN, it must be obtained through integration. Since samples are generated according to the topological

order, a node’s parents are always simulated before the node itself. Any unspecified copula will appear

only in the parental D-vine and can be estimated from the parent samples, thus avoiding the need for

integration.

The approximate simulation procedure can be outlined as follows: Let (G,O) be a PCBN with node

set V = {1, . . . , 𝑑} and let t = (𝑡1, . . . , 𝑡𝑑) represent a topological order of the nodes. A 𝑑-dimensional

approximate sample û𝑠 = (𝑢𝑠
1
, . . . , 𝑢𝑠

𝑑
) from the PCBN on the u-level is obtained through the following

steps:

i) Sample𝑤𝑖
i.i.d.∼ 𝑈 [0, 1], 𝑖 = 1, . . . , 𝑑 .

ii) Utilizing the topological order t:

a) If 𝑡𝑖 has no parents, i.e., 𝑝𝑎(𝑡𝑖) = ∅, 𝑖 = 1, . . . , 𝑑 , set

𝑢𝑠𝑡𝑖 ≔ 𝑤𝑖 .

b) If 𝑡𝑖 does have parents, i.e., 𝑝𝑎(𝑡𝑖) ≠ ∅, 𝑖 = 1, . . . , 𝑑 , proceed as follows:

1.) Construct a D-vine tree sequence T , where 𝑡𝑖 is the leaf node followed by its parents

ordered according to their parent order <𝑡𝑖 denoted by ℓ = (𝑙1, . . . , 𝑙𝑘). According to the

topological order, it holds that 𝑙 𝑗 ∈ {𝑡1, . . . , 𝑡𝑖−1} for 𝑗 = 1, . . . , 𝑘 .

2.) Assign the pair-copulas that correspond to the first edge in each tree according to the

decomposition of the PCBN. This set of specified pair-copulas is denoted by B (𝑠𝑝𝑒𝑐) .

4.2 Simulation Methods

59

3.) Estimate the families and parameters of the pair-copulas in the parental D-vine using the

previously simulated data (𝑢𝑠
𝑙1
, . . . , 𝑢𝑠

𝑙𝑘
). This estimation process follows the general proce-

dure described in Section 2.3.5. The resulting set of estimated bivariate copulas is denoted

by B (𝑒𝑠𝑡) .
4.) Combine the specified and estimated copulas into a single set, denoted by B = B (𝑠𝑝𝑒𝑐) ∪
B (𝑒𝑠𝑡) . Then, using the conditional simulation procedure described in Section 3.1.3, obtain

the sample 𝑢𝑠𝑡𝑖 from the D-vine copula (T ,B).

Since the copulas in the parental D-vines are estimated rather than directly specified by the PCBN, the

DV-SEM serves as an approximation of the underlying PCBN. However, unlike the exact simulation from

the PCBN, sampling from the DV-SEM does not require numerical integration, as demonstrated in the

following example.

Example 4.2.2 (Example 4.1.2 continued). Consider again the four-dimensional PCBN depicted in Figure

4.3, with the parent order 2 <4 3. Let 𝑤𝑖 𝑗 ∼ 𝑈 [0, 1], for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 4 be an i.i.d. sample of

size 𝑛 from the standard uniform distribution. Using the topological order 1 < 2 < 3 < 4, the approximate

simulation proceeds with the following steps:

• Node 1: 𝑝𝑎(1) = ∅. Therefore, 𝑢𝑖1 = 𝑤𝑖1 for 𝑖 = 1, . . . , 𝑛.

• Node 2: 𝑝𝑎(2) = {1}. Define a D-vine tree sequence with the structure 2 − 1. Since node 2 has

only one parent, the D-vine consists of a single edge, specified by decomposition of the PCBN. No

estimation is required, and the conditional simulation procedure described in Section 3.1.3 yields the

following for 𝑖 = 1, . . . , 𝑛:

i) Apply the Rosenblatt transform:

𝑢𝑖1 ≔ 𝐶1(𝑢𝑖1) = 𝑢𝑖1,
𝑢𝑖2 ≔ ℎ2 |1(𝑤𝑖2 | 𝑢𝑖1;𝜃21) .

ii) Independently sample 𝑧𝑖2 from the standard uniform distribution.

iii) Apply the inverse Rosenblatt transform:

𝑣𝑖1 ≔ 𝐶−1

1
(𝑢𝑖1) = 𝑢𝑖1,

𝑣𝑖2 ≔ ℎ−1

2 |1(𝑧𝑖2 | 𝑢𝑖1;𝜃21) = ℎ−1

2 |1(𝑧𝑖2 | 𝑢𝑖1;𝜃21).

iv) Set 𝑢𝑖2 ≔ 𝑣𝑖2.

• Node 3: 𝑝𝑎(3) = {1}. Similarly to node 2, define the D-vine tree sequence 3 − 1. For 𝑖 = 1, . . . , 𝑛:

i) Apply the Rosenblatt transform:

𝑢𝑖1 ≔ 𝐶1(𝑢𝑖1) = 𝑢𝑖1,
𝑢𝑖2 ≔ ℎ3 |1(𝑤𝑖3 | 𝑢𝑖1;𝜃31) .

ii) Independently sample 𝑧𝑖3 from the standard uniform distribution.

iii) Apply the inverse Rosenblatt transform:

𝑣𝑖1 ≔ 𝐶−1

1
(𝑢𝑖1) = 𝑢𝑖1,

𝑣𝑖2 ≔ ℎ−1

3 |1(𝑧𝑖3 | 𝑢𝑖1;𝜃31) = ℎ−1

3 |1(𝑧𝑖3 | 𝑢𝑖1;𝜃31).

iv) Set 𝑢𝑖3 ≔ 𝑣𝑖2.

4 Pair-Copula Bayesian Networks

60

Edge Family Rotation Parameters 𝜏

21 Gaussian 0° -0.84 -0.64

31 Gumbel 90° 1.27 -0.21

42 Gumbel 0° 3.26 0.69

43;2 Joe 180° 2.03 0.36

Table 4.1 A selection of copulas specifying the PCBN displayed in Figure 4.3

Edge Family Rotation Parameters 𝜏

32 BB1 180° (0.07, 1.14) 0.16

Table 4.2 Estimated 𝐶32 based on 𝑛 = 1000 samples from the PCBN specified by the copulas in Table 4.1

• Node 4: 𝑝𝑎(4) = {2, 3}. Since the parent order is given by 2 <4 3, define a D-vine tree sequence with

the structure 4 − 2 − 3. The edges in the first tree are {42, 23}, and in the second tree, {43; 2}. The
copulas 𝐶42 and 𝐶43;2 are specified by decomposition, while the copula 𝐶23 in the parental D-vine

(with structure 2 − 3) is estimated using the procedure described in Section 2.3.5. The conditional

simulation method then yields the following:

i) Apply the Rosenblatt transform:

𝑢𝑖1 ≔ 𝐶3(𝑢𝑖3) = 𝑢𝑖3,
𝑢𝑖2 ≔ ℎ2 |3(𝑢𝑖2 | 𝑢𝑖3;

ˆ𝜃23)
𝑢𝑖3 ≔ 𝐶4 |23(𝑤𝑖4 | 𝑢𝑖2, 𝑢𝑖3)

= ℎ4 |3;2(ℎ4 |2(𝑤𝑖4 | 𝑢𝑖2;𝜃42) | ℎ3 |2(𝑢𝑖3 | 𝑢𝑖2;
ˆ𝜃23);𝜃43;2) .

ii) Independently sample 𝑧𝑖4 from the standard uniform distribution.

iii) Apply the inverse Rosenblatt transform:

𝑣𝑖1 ≔ 𝐶−1

3
(𝑢𝑖1) = 𝑢𝑖3,

𝑣𝑖2 ≔ ℎ−1

2 |3(𝑢𝑖2 | 𝑢𝑖1;
ˆ𝜃23) = ℎ−1

2 |3(ℎ2 |3(𝑢𝑖2 | 𝑢𝑖3;
ˆ𝜃23) | 𝑢𝑖3;

ˆ𝜃23) = 𝑢𝑖2,

𝑣𝑖3 ≔ ℎ−1

4 |2

(
ℎ−1

4 |3;2

(
𝑧𝑖4

�� ℎ3 |2(𝑢𝑖3 | 𝑢𝑖2;
ˆ𝜃23);𝜃43;2

) ��� 𝑢𝑖2;𝜃42

)
iv) Set 𝑢𝑖4 ≔ 𝑣𝑖3.

Comparing the approximate simulation in Example 4.2.2 to the exact method shown in Example 4.2.1

reveals that the sampling procedures differ only at node 4. In the approximate simulation, the random

variables (𝑈1,𝑈2,𝑈3) are sampled from their exact joint distribution. If the same random seed is used in

both procedures, then it holds that𝑢𝑠𝑖 𝑗 = 𝑢
𝑠
𝑖 𝑗 for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, 2, 3. More generally, the approximate

and exact simulation methods produce identical results for a random variable 𝑈𝑣 if |𝑝𝑎(𝑣) | ≤ 1, as the

parental D-vine is undefined in these cases, eliminating the need for estimation.

The approximate simulationmethod leverages the fact that samples of (𝑈2,𝑈3) are generated before sam-

pling𝑈4. Based on a sample of size 𝑛, the copula𝐶23 is estimated, and the resulting h-function ℎ3 |2(·, ·; ˆ𝜃23)
is used instead of the integral required in the exact simulation method. Consequently, in general, 𝑢𝑠𝑖4 ≠ 𝑢

𝑠
𝑖4,

even if the same seed is used in both procedures.

To illustrate, consider the specification provided in Table 4.1. Based on a sample of size 𝑛 = 1000, an

estimate of 𝐶32, denoted by 𝐶32, is given in Table 4.2. The true copula 𝐶32 can only be obtained through

integration, as described in Example 2.3.2. A comparison between the true𝐶32 and the estimated𝐶32 for the

specific case considered is shown in Figure 4.6. The figure indicates that both copulas are highly similar,

exhibiting only lower tail dependence.

4.2 Simulation Methods

61

(a) True 𝐶32 obtained via integration (b) Estimated 𝐶32 as given in Table 4.2

Figure 4.6 Comparison between the normalized contour plots of the true𝐶32 and the estimated𝐶32 using a DV-SEM

modeling approach

1 2

3

4

6 5

32
31;2

4
3

6
4
;
5
2
1

65

6
1
;5
2 6

2
;5

Figure 4.7 A six-dimensional PCBN with parent orders 2 <3 1 and 5 <6 2 <6 1 <6 4

The approximate simulation method estimates all copulas involved in the parental D-vine of each node

𝑣 ∈ V with |𝑝𝑎(𝑣) | > 1. It is noteworthy that the number of parameters requiring estimation can be

reduced since some of these pair-copulas might be specified by d-separation and are thus known to be

independence copulas, as demonstrated in the following example:

Example 4.2.3. Consider the six-dimensional PCBN with the parent orders 2 <3 1 and 5 <6 2 <6 1 <6

4, as illustrated in Figure 4.7. The underlying DAG and its 45 implied conditional independencies were

previously presented in Example 2.2.4 to demonstrate the PC algorithm’s functionality. Due to the active

cycles 6 ← 1 → 3 → 4 → 6 and 6 ← 2 → 3 → 4 → 6, the copula density of the PCBN cannot be

obtained without integration. A topological order of the underlying DAG is 5 < 2 < 1 < 3 < 4 < 6. The

only nodes with no parents are nodes 1, 2, and 5. Consequently, the DV-SEM associated with this PCBN

is represented by the following three D-vines:

• Node 3:

4 Pair-Copula Bayesian Networks

62

23 1

32 21

32 21

31;2

• Node 4:

34

43

• Node 6:

6 5 2 1 4

65 52 21 14

62;5 51;2 24;1

61;52 54;21

65 52 21 14

62;5 51;2 24;1

61;52 54;21

64;521

The edges highlighted in green represent copulas that are directly specified by decomposition of the PCBN.

Edges marked in orange correspond to copulas specified by d-separation, and thus they are associated with

independence copulas. Only the pair-copulas linked to the blue edges remain unspecified.

Example 4.2.3 suggests a potential improvement for the approximate simulation procedure described in

this section. Currently, the procedure estimates all parental D-vines in full, including copulas associated

with edges marked in orange and blue. However, to avoid integration, it is sufficient to estimate only the

unspecified copulas, corresponding to the edges marked in blue, while the others can be set to indepen-

dence copulas based on d-separation. This approach can significantly reduce the number of parameters to

be estimated. For instance, in the example provided, the number of copula parameters required would be

reduced from seven to two.

At present, there is no available implementation in R that supports partial vine estimation — where

some copulas in a vine tree sequence are specified by the user and others are estimated. Manually estimat-

ing the unspecified copulas is computationally challenging in higher dimensions, as it relies on pseudo-

observations computed from preceding trees. Consequently, in this thesis, all samples based on the ap-

proximate method will involve estimating both, the copulas specified by d-separation and the unspecified

pair-copulas. Future developments should aim to implement algorithms for partial D-vine estimation, as

this could enhance the accuracy of approximation methods based on D-vine structural equation models.

To assess whether the estimation of the parental D-vines aligns with the implied conditional indepen-

dencies, consider the orange-colored edges in Example 4.2.3, which correspond to the copulas𝐶21,𝐶52,𝐶51;2,

and 𝐶54;21. Note that 𝐶21 appears in both the D-vine of node 3 and the D-vine of node 6. Since the estima-

tion of 𝐶21 in both cases is based on the same samples (𝑢𝑠𝑖2, 𝑢𝑠𝑖1), 𝑖 = 1, . . . , 𝑛, the results will be identical.

In general, if the same copula appears in different D-vines corresponding to different nodes, it will be

estimated consistently across all D-vines, as the estimation relies on the same sample data.

4.3 Maximum Likelihood Estimation and Parameter Learning

63

Quantile |𝜏21 | |𝜏52 | |𝜏51;2 | |𝜏54;21 |
50% 0 0 0 0

62.5% 0 0.0156 0 0.0124

75% 0.0190 0.0277 0.0223 0.0261

87.5% 0.0314 0.0324 0.0307 0.0352

95% 0.0396 0.0394 0.0377 0.0396

Max 0.0558 0.0520 0.0578 0.0565

Table 4.3 Quantiles of the estimated absolute 𝜏-values for copulas specified by d-separation in the DV-SEM from

Example 4.2.3

To verify that the four copulas specified by d-separation are indeed independence copulas, the following

simulation setup was used: For 𝑁 = 100 repetitions and a sample size of 𝑛 = 1000, the copulas speci-

fied by decomposition (colored in green) were randomly selected from the set of one-parameter copulas,

with random rotations and 𝜏-values independently drawn from the uniform distribution over the interval

(−0.9,−0.1) ∪ (0.1, 0.9). For each of the 𝑁 = 100 different specifications, samples were generated using

the approximate simulation method, and all parental D-vines were estimated in full. Table 4.3 shows the

quantiles of the estimated absolute 𝜏-values for the copulas 𝐶21,𝐶52,𝐶51;2, and 𝐶54;21. The results reveal

that the quantiles are highly consistent across all four copulas. Additionally, the independence copula

was correctly identified in approximately 60% of the cases. In instances where the independence copula

was not identified, the estimated 𝜏-value was always less than 0.06 in absolute terms, which supports the

robustness of the procedure.

4.3 Maximum Likelihood Estimation and Parameter Learning

Let x = (x⊤
1
, . . . , x⊤

𝑑
) be an i.i.d. sample of size 𝑛 from the random vector (𝑋1, . . . , 𝑋𝑑)⊤, where x𝑘 =

(𝑥𝑘,1, . . . , 𝑥𝑘,𝑑)⊤ for 𝑘 = 1, . . . , 𝑛. Further, let (G,O) be a PCBN with node set V = {1, . . . , 𝑑} specifying
the pair-copulas {𝐶𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) (·, · ; 𝜽) | 𝑣 ∈ V,𝑤 ∈ 𝑝𝑎(𝑣), 𝜽 ∈ Θ} by decomposition.

Definition 4.3.1 (Exact log-likelihood). Following Equation (4.2), the exact log-likelihood function

takes the form

ℓ (𝜽 ; x) =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑓𝑗 (𝑥𝑖 𝑗) (4.4)

+
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

∑︁
𝑤∈𝑝𝑎 (𝑗)

ln

(
𝑐 𝑗,𝑤;𝑝𝑎 (𝑗 ;𝑤)

(
𝐹 𝑗 |𝑝𝑎 (𝑗 ;𝑤) (𝑥𝑖 𝑗 | x𝑖,𝑝𝑎 (𝑗 ;𝑤) ;𝜽), 𝐹𝑤 |𝑝𝑎 (𝑗 ;𝑤) (𝑥𝑖𝑤 | x𝑖,𝑝𝑎 (𝑗 ;𝑤) ;𝜽);𝜽

))
.

The first line on the right-hand side of Equation (4.4) is known as the marginal log-likelihood and the

second part is referred to as the copula log-likelihood.

Similar to R-vines, parameter estimation for a PCBN can be performed using maximum likelihood esti-

mation (MLE). The process involves first iterating over the nodes and their parents in both the topological

and parental order to obtain sequential ML estimates. These preliminary estimates are then used to infer

the joint ML estimates, denoted by 𝜽 𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) , as described by Bauer (2013). Unlike R-vines, the main

challenge with PCBNs often lies in evaluating the conditional distribution functions, which frequently

require numerical integration for their computation.

4 Pair-Copula Bayesian Networks

64

Example 4.3.1 (Example 4.1.2 continued). The exact copula log-likelihood of the PCBN in Example 4.1.2

is given by

ℓ (𝜽 ; u) =
𝑛∑︁
𝑖=1

[
ln

(
𝑐21(𝑢𝑖2, 𝑢𝑖1;𝜃21)

)
+ ln

(
𝑐31(𝑢𝑖3, 𝑢𝑖1;𝜃31)

)
+ ln

(
𝑐42(𝑢𝑖4, 𝑢𝑖2;𝜃42)

)
+ ln

(
𝑐43;2

(
ℎ4 |2(𝑢𝑖4 | 𝑢𝑖2;𝜃42),

∫
1

0

𝑐21(𝑢𝑖2,𝑤1;𝜃21) · ℎ3 |1(𝑢𝑖3 | 𝑤1;𝜃31) d𝑤1;𝜃43;2

))]
.

In higher-dimensional settings, evaluating the exact log-likelihood function for each possible choice

of bivariate copulas often requires computing several, potentially multi-dimensional integrals, which is

computationally intensive. An alternative approach is needed.

As discussed in Section 4.2.2, one such alternative is to approximate the PCBN using a DV-SEM, which

allows for an integration-free estimation of the log-likelihood function. Let D = {(T𝑣,B𝑣)𝑣∈V ; 𝜽 (𝐷𝑉) ∈
Θ,O} represent a DV-SEM corresponding to the PCBN (G,O). Here, D is a collection of D-vines where,

for each node 𝑣 ∈ V with |𝑝𝑎(𝑣) | > 0, the structure T𝑣 is defined as the node 𝑣 followed by its parents

𝑝𝑎(𝑣) in their parent order as specified in O. The bivariate copulas B𝑣 in each D-vine are associated with

a subset of the parameters 𝜽 (𝐷𝑉) . These parameters differ from those of the pair-copulas specified by the

decomposition of the PCBN, denoted by 𝜽 in Equation (4.4), as 𝜽 (𝐷𝑉) also includes the parameters of the

pair-copulas in the parental D-vines, denoted by
ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉)

. Thus, it holds that

𝜽 (𝐷𝑉) = 𝜽 ∪ ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉)

.

Therefore, the DV-SEM approximation introduces | ˆ𝜽 (𝑝𝑎𝑟𝐷𝑉) | additional degrees of freedom to the model.

This number of parameters can potentially be reduced by incorporating the independence information

implied by d-separation and by employing partial D-vine estimation, which remains an area for further

research.

Definition 4.3.2 (Approximate log-likelihood). Following Equation (4.2), the approximate log-likelihood
function takes the form

ℓ̂ (𝜽 (𝐷𝑉) ; x) =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑓𝑗 (𝑥𝑖 𝑗) +
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

∑︁
𝑤∈𝑝𝑎 (𝑗)

ln

(
𝑐 𝑗,𝑤;𝑝𝑎 (𝑗 ;𝑤)

(
𝐹 𝑗 |𝑝𝑎 (𝑗 ;𝑤) (𝑥𝑖 𝑗 | x𝑖,𝑝𝑎 (𝑗 ;𝑤) ;𝜽 (𝐷𝑉)), (4.5)

𝐹𝑤 |𝑝𝑎 (𝑗 ;𝑤) (𝑥𝑖𝑤 | x𝑖,𝑝𝑎 (𝑗 ;𝑤) ;𝜽 (𝑝𝑎𝑟𝐷𝑉));𝜃 𝑗,𝑤;𝑝𝑎 (𝑗 ;𝑤)
))
.

To differentiate between the true log-likelihood function ℓ and its approximate counterpart, the nota-

tion ℓ̂ is used. The DV-SEM facilitates integration-free computation of conditional distribution functions

because 𝜽 (𝐷𝑉) includes parameter estimates for copulas that are not specified by the PCBN.

Example 4.3.2 (Example 4.1.2 continued). The approximate copula log-likelihood of the PCBN in Example

4.1.2 is given by

ℓ̂ (𝜽 (𝐷𝑉) ; u) =
𝑛∑︁
𝑖=1

[
ln

(
𝑐21(𝑢𝑖2, 𝑢𝑖1;𝜃21)

)
+ ln

(
𝑐31(𝑢𝑖3, 𝑢𝑖1;𝜃31)

)
+ ln

(
𝑐42(𝑢𝑖4, 𝑢𝑖2;𝜃42)

)
+ ln

(
𝑐43;2

(
ℎ4 |2(𝑢𝑖4 | 𝑢𝑖2;𝜃42), ℎ3 |2(𝑢𝑖3 | 𝑢𝑖2;

ˆ𝜃23);𝜃43;2

))]
.

In this case, one extra parameter
ˆ𝜽
(𝑝𝑎𝑟𝐷)

= ˆ𝜃23 needs to be estimated.

Assuming a DV-SEM, the estimation of the families and parameters for the pair-copulas specified by

the decomposition of the PCBN becomes straightforward. For a given DAG G = (V,O) and parent orders
O, one can fit a D-vine for each node 𝑣 ∈ V . In this D-vine, the node 𝑣 is a leaf node in the first tree,

4.3 Maximum Likelihood Estimation and Parameter Learning

65

Edge Family Rotation Parameters 𝜏

21 Gaussian 0° -0.92 -0.74

31 Frank 0° -5.14 -0.47

42 Frank 0° 1.03 0.11

43;2 Joe 0° 8.07 0.78

Table 4.4 A further selection of copulas specifying the PCBN displayed in Figure 4.3

Figure 4.8 Comparison of the log-likelihood based on simulations from the PCBN defined by the pair-copulas in Ta-

ble 4.4. Here, ℓ denotes the exact log-likelihood function, u𝑠 is the exactly simulated data, ℓ̂ denotes the approximate

log-likelihood function, and û𝑠 is the approximately simulated data

followed by its parents in their parent order as specified in O. The families and parameters of the pair-

copulas are estimated using the general procedure for R-vines as described in Section 2.3.5. The families

and parameters of the pair-copulas specified by the PCBN decomposition are then represented by the first

edge in each tree of each estimated D-vine.

To illustrate the difference between the approximate and exact log-likelihood function, consider the

setup shown in Table 4.4. For each of the 𝑁 = 100 repetitions, two datasets on the u-level were simulated:

One using exact simulation and the other using approximate simulation, with a sample size of 𝑛 = 1000.

To ensure comparability, the same seed was used to generate both datasets, so the only difference between

them lies in node 4; all other nodes were simulated exactly.

Figure 4.8 presents box plots of the following three log-likelihoods from left to right:

i) Exact log-likelihood ℓ computed from the exactly simulated data u𝑠 .

ii) Exact log-likelihood ℓ computed from the approximately simulated data û𝑠 .

iii) Approximate log-likelihood ℓ̂ derived using a DV-SEM approach applied to the approximately sim-

ulated data û𝑠 .

The figure demonstrates that the approximately simulated data û𝑠 has a lower true log-likelihood compared

to the exactly simulated data u𝑠 . Specifically, the average exact log-likelihood for û𝑠 was approximately

2394.85, while for u𝑠 it was 2433.72. This indicates that, on average, the approximate simulation reduced

the log-likelihood by about 1.6%. Although the third case cannot be directly compared to the first two

due to differences between ℓ̂ and ℓ , the figure shows that the quantiles of the log-likelihood are very close

to each other. This suggests that estimating the log-likelihood function using a DV-SEM is a reasonable

approach.

4 Pair-Copula Bayesian Networks

66

4.4 Selecting Parent Orders

In the previous section, it was assumed that the set of parent ordersOwas known, allowing for the straight-

forward construction of a DV-SEM by building D-vines according to this order. In practice, however, O is

often an unknown parameter that needs to be estimated from the data. Bauer (2013) proposed a method

for sequentially determining each parent order <𝑣 , for 𝑣 ∈ V , by assigning weights to the edges 𝑤 → 𝑣 ,

where 𝑤 ∈ 𝑝𝑎(𝑣). These weights could be, for example, the absolute values of Kendall’s 𝜏 estimates or

AIC/BIC values for selected pair-copula families. The parent order is then selected based on these weights

in descending order.

This thesis introduces a new approach for sequentially estimating the parent orders and parameters

of a PCBN by using a DV-SEM approximation and the sequential D-vine estimation method described in

Section 3.1.2: Let G = (V, E) be a DAG. For each node 𝑣 ∈ V with |𝑝𝑎(𝑣) | ≥ 1, perform a univariate

D-vine regression with 𝑣 as the response and 𝑝𝑎(𝑣) as the covariates. Specifically, during the regression

procedure, a D-vine is constructed sequentially, with 𝑣 as a leaf node and the covariates from 𝑝𝑎(𝑣) are
added to the order by maximizing the conditional log-likelihood at each step as first proposed by Kraus

and Czado (2017).

By applying this regression method to each node 𝑣 ∈ V with |𝑝𝑎(𝑣) | ≥ 1, one obtains a DV-SEM that

corresponds to the PCBN. The estimated parent orders are given by the orders derived from the D-vines.

The parameters of the copulas specified by decomposition are represented by the estimated copulas in the

first edge of each tree within each D-vine. Therefore, performing D-vine-based regression on each node of

a fully specified DAG can be utilized to estimate the parameters of the PCBN. Additionally, incorporating

a two-step ahead forward-looking procedure, as proposed by Tepegjozova et al. (2022), could potentially

enhance the estimation method.

67

5 Simulation Study: Y-Vine-Based Structure
Learning

In this chapter, simulation studies are conducted to assess the performance of the Y-vine-based PC algo-

rithm in comparison to its benchmark, which utilizes Fisher’s Z-test of partial correlation. These studies

are carried out on simulated data from various PCBNs, including both non-Gaussian and fully Gaussian

specifications. Bauer (2013) performed a similar study, employing R-vine-based conditional independence

tests with different vine structures and asymptotic tests on pseudo-observations for structure learning

within the PC algorithm. However, the analysis was confined to different specifications of a PCBN based

on the same four-dimensional DAG shown in Figure 4.3, with comparisons of the fitted CPDAGs to the

true CPDAG made only in a graph-theoretical sense.

This thesis extends existing research by incorporating six- and eleven-dimensional PCBNs. The newly

introduced Y-test, which utilizes an upper bound on Kendall’s 𝜏 , along with the Z-test for partial correla-

tions, is applied within the PC algorithm to estimate the CPDAG based on simulated data. Additionally,

rather than solely comparing the structure of the fitted CPDAGs, these models are extended with DV-SEM-

based parameter estimation to fully specified PCBNs. Finally, the fitted PCBNs are evaluated against the

true underlying PCBN using probabilistic measures such as the log-likelihood, AIC, and BIC.

5.1 Study Design

Figure 5.1 outlines the steps involved in performing the simulation studies. The procedure is as follows:

1) Definition of the true PCBN: A fixed PCBN (G (True) ,O (True)), denoted as PCBN
(True)

, is defined

by specifying:

i) A DAG G (True) = (V, E (True)), whereV = {1, . . . , 𝑑}. The cases considered include 𝑑 = 4, 6, 11.

ii) A set of parent orders O (True) .

iii) The copulas 𝐶𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) for 𝑣 ∈ V and 𝑤 ∈ 𝑝𝑎(𝑣), specified by decomposition. If all pair-

copulas are Gaussian, the PCBN
(True)

is referred to as a fully Gaussian setup; otherwise, it is
termed a non-Gaussian setup.

2) DV-SEM Approximation: The PCBN from Step 1 is approximated by a DV-SEM. This involves

defining a separate D-vine for each 𝑣 ∈ V with 𝑝𝑎(𝑣) > 0. Each D-vine structure is specified by the

node 𝑣 followed by its parents in their parent order as defined in O (True) . The resulting DV-SEM is

denoted as DV-SEM
(True)

.

3) Simulation of u-data: 𝑛 = 1000 observations on the u-level are simulated from the DV-SEM
(True)

,

corresponding to the approximate simulation method described in Section 4.2.2. Each parental D-

vine is fully estimated based on the simulated data, with bivariate families and their parameters

selected by the lowest AIC-value. In a non-Gaussian setup, the estimation procedure considers all

parametric families defined in Appendix B; in a Gaussian setup, it is limited to the Gaussian family.

The simulation is repeated 𝑁 = 100 times (or 𝑁 = 50 times in the 11-dimensional case), with the

resulting approximately simulated data denoted by û𝑠 . The superscript 𝑠 indicates that the data was
simulated. For simplicity, the notation does not explicitly show the dependence of the dataset on

each specific repetition.

5 Simulation Study: Y-Vine-Based Structure Learning

68

1) Fixed PCBN
(True)

2) DV-SEM
(True)

3) Simulated data û𝑠

4) Simulated data x̂𝑠

5) Scaled data x̂(scaled)

6a) CPDAG
(𝑌)

6b) CPDAG
(𝑍)

7a) DAG
(𝑌)

7b) DAG
(𝑍)

8a) DV-SEM
(𝑌)

8b) DV-SEM
(𝑍)

9a) PCBN
(𝑌)

9b) PCBN
(𝑍)

DV-SEM approximation

Simulation (𝑁 repetitions, 𝑛 observations)

Parametric margins

Scaling

PC algorithm (Y-test) PC algorithm (Z-test)

PDAG extension PDAG extension

D-vine regression D-vine regression

PCBN approximation PCBN approximation

SHD comparison

AIC/BIC comparison

Figure 5.1 Simplified flowchart of the simulation study design

5.1 Study Design

69

4) Transformation to the x-level: The simulated data is transformed to the x-level using the inverse

probability integral transform, 𝑥𝑠𝑖 𝑗 ≔ 𝐹 −1

𝑗 (𝑢𝑠𝑖 𝑗) for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑑 . For each 𝑗 = 1, . . . , 𝑑 ,

a parametric distribution 𝐹 𝑗 is randomly selected if the setup is non-Gaussian from the following:

– Normal distribution with 𝜇 = 𝜎 = 1.

– Student’s t-distribution with 𝜈 = 5.

– Beta distribution with shape parameters 𝛼 = 𝛽 = 0.5.

– Gamma distribution with shape 𝑘 = 2 and scale 𝜃 = 2.

– Lognormal distribution with 𝜇 = 0 and 𝜎 = 1.

In the Gaussian setup, each parametric margin is set to the Normal distribution with 𝜇 = 𝜎 = 1,

making PCBN
(True)

a Gaussian Bayesian network.

5) Scaling the Data: Before learning the structure, the data is scaled as follows:

x̂(scaled)
𝑖 𝑗

≔
𝑥𝑠𝑖 𝑗 − 𝜇 𝑗
�̂� 𝑗

,

for 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑑 , where

𝜇 𝑗 ≔
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑠𝑖 𝑗 , and �̂� 𝑗 ≔

√√
1

𝑛 − 1

𝑛∑︁
𝑖=1

(𝑥𝑠
𝑖 𝑗
)2.

6) Structure Learning: Two versions of the PC algorithm, as stated in Algorithm 2 and 3, are applied

to the observations x̂(scaled) . These versions differ only in the conditional independence test used:

a) Y-vine-based conditional independence test (Y-test) as described in Definitions 3.2.9 and 3.2.10,

using the adjusted conditional log-likelihood (acll) for selection. The value of the significance

level 𝛼𝑌 , for ordinary independence testing, and the tuning parameter 𝑘𝑌 , which serves as an

upper bound for the Kendall’s 𝜏 in the last tree of the fitted Y-vine in cases involving non-empty

conditioning sets, are set to 0.05. A detailed explanation for the parameter choice is given in

Section 5.3.

b) Fisher’s Z-test of the partial correlation (Z-test) as described in Definition 2.2.30. The value

of the significance level 𝛼𝑍 is set to 0.05. The PC algorithm using Fisher’s Z-test serves as a

benchmark.

As a result, two (possibly identical) CPDAGs, denoted by CPDAG
(𝑌)

and CPDAG
(𝑍)

, are obtained.

The following steps are applied separately to each fitted CPDAG.

7) PDAG Extension: The CPDAGs from Step 6 are extended to DAGs using the PDAG extension

described in Section 2.2.6. The two fitted DAGs are denoted by DAG
(𝑌)

and DAG
(𝑍)

and are given

by G (𝑌) = (V, E (𝑌)) and G (𝑍) = (V, E (𝑍)).

8) Construction ofDV-SEMs: UsingDAG(𝑌) andDAG(𝑍) , the DV-SEMsDV-SEM
(𝑌)

andDV-SEM
(𝑍)

are constructed by performing univariate D-vine-based regression as described in Section 3.1.2. For

each DAG and each node 𝑣 ∈ V , a D-vine is built sequentially by setting 𝑣 as the response and 𝑝𝑎(𝑣)
as the covariates, where 𝑝𝑎(·) depends on the specific DAG. The conditional log-likelihood (cll) is

used as the selection criterion. If the underlying DAGs are identical, i.e., E (𝑌) = E (𝑍) , only a single

DV-SEM is estimated for computational efficiency.

9) Translation into PCBNs: The DV-SEMs from Step 8 are translated into PCBNs as follows: For

each DV-SEM, the parent order of each node 𝑣 ∈ V is given by the order of the parents in the

respective D-vine. Thus, the sets of parent orders O (𝑌) and O (𝑍) are derived from the respective D-

vine structures. Additionally, the copulas in the decomposition of the PCBN are defined by the first

edge of each tree in each D-vine. These are denoted by𝐶
(𝑌)
𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) and𝐶

(𝑍)
𝑣,𝑤;𝑝𝑎 (𝑣;𝑤) , where𝑤 ∈ 𝑝𝑎(𝑣),

and 𝑝𝑎(·) and 𝑝𝑎(·; ·) are functions depending on the estimated edge set and parent order.

5 Simulation Study: Y-Vine-Based Structure Learning

70

The simulation study is conducted across four different setups for each dimension 𝑑 ∈ {4, 6, 11}. Thus,
the procedure outlined in Figure 5.1 is repeated 12 times, with 𝑁 = 100 repetitions (or 𝑁 = 50 in the

11-dimensional case) and 𝑛 = 1000 observations. The setups considered are as follows:

i) Mixture of Elliptical andArchimedeanCopulas: The copulas selected in Step 1 of the procedure
include the elliptical and Archimedean families listed in Appendix B. For the Student’s 𝑡 copula,

which is the only copula with two parameters, the degrees of freedom are set to 𝜈 = 5. The 𝜏-

values are chosen from the interval (−0.9,−0.1) ∪ (0.1, 0.9), and the corresponding parameters are

computed using Kendall’s 𝜏 inversion.

ii) Only Archimedean Copulas: The copulas selected in Step 1 of the procedure include only the

Archimedean families listed in Appendix B. The 𝜏-values and parameters are chosen as in Setup i).

iii) Only Elliptical Copulas: The copulas selected in Step 1 of the procedure include only the elliptical

families listed in Appendix B. For the Student’s 𝑡 copula, the degrees of freedom are again set to

𝜈 = 5. The 𝜏-values and parameters are chosen as in Setup i).

iv) Only Gaussian Copulas: The copulas selected in Step 1 of the procedure include only the Gaussian
family listed in Appendix B. The 𝜏-values and parameters are chosen as in Setup i).

Specifications i) to iii) represent non-Gaussian setups, while Specification iv) represents a Gaussian setup.

In the first three setups, the family set of copulas that are part of the parental D-vines and require estima-

tion includes all copula families (including the BB copulas) listed in Appendix B. In the fourth setup, the

family set is limited to Gaussian copulas. In all setups, the D-vines are fully parametric, but the marginal

distributions are estimated non-parametrically using kernel density estimation.

5.2 Performance Measures

To assess the fit of the models generated by the two different conditional independence tests within the PC

algorithm, two distinct measures of fit are employed. These measures are applied at the levels indicated

by the blue edges in Figure 5.1. The first measure is purely graph-theoretical, used to compare the fitted

CPDAGs to the true underlying CPDAG. This measure is adapted from Tsamardinos et al. (2006, p.53) and

implemented in the R-package pcalg (Kalisch and Bühlmann 2007).

Definition 5.2.1 (Structural Hamming Distance (SHD)). Let G1 = (V, E1) and G2 = (V, E2) be two

PDAGs with the same set of nodesV = {1, . . . , 𝑑}. Denote their respective adjacency matrices as𝑀 (1) and
𝑀 (2) , defined by

𝑀
(1)
𝑖 𝑗

≔ 1{(𝑖, 𝑗) ∈ E1}, and 𝑀
(2)
𝑖 𝑗

≔ 1{(𝑖, 𝑗) ∈ E2}

for 𝑖, 𝑗 = 1, . . . , 𝑑 , where 1(·) is the indicator function. The adjacency matrices for the skeletons of G1 and

G2 are given by 𝑆 (1) and 𝑆 (2) , respectively, where

𝑆
(1)
𝑖 𝑗

= 1{𝑀 (1)
𝑖 𝑗
+𝑀 (1)

𝑗𝑖
= 2} + 1{𝑀 (1)

𝑖 𝑗
+𝑀 (1)

𝑗𝑖
≠ 2}(𝑀 (1)

𝑖 𝑗
+𝑀 (1)

𝑗𝑖
),

𝑆
(2)
𝑖 𝑗

= 1{𝑀 (2)
𝑖 𝑗
+𝑀 (2)

𝑗𝑖
= 2} + 1{𝑀 (2)

𝑖 𝑗
+𝑀 (2)

𝑗𝑖
≠ 2}(𝑀 (2)

𝑖 𝑗
+𝑀 (2)

𝑗𝑖
),

for 𝑖, 𝑗 = 1, . . . , 𝑑 . The difference between the skeletons of G1 and G2 is represented by the matrix 𝐷 (𝑠𝑘𝑒𝑙) ,
defined by the elements

𝐷
(𝑠𝑘𝑒𝑙)
𝑖 𝑗

≔ 𝑆
(1)
𝑖 𝑗
− 𝑆 (2)

𝑖 𝑗
,

for 𝑖, 𝑗 = 1, . . . , 𝑑 . Entries in 𝐷 (𝑠𝑘𝑒𝑙) with a value of 1 correspond to edges that are present in the skeleton

of G1 but missing in the skeleton of G2, while entries with a value of -1 indicate extra edges in the skeleton

of G2 compared to the skeleton of G1. Define the 𝑑 × 𝑑-matrices𝑀 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔) and𝑀 (𝑒𝑥𝑡𝑟𝑎) as

𝑀
(𝑚𝑖𝑠𝑠𝑖𝑛𝑔)
𝑖 𝑗

≔ 1{𝐷 (𝑠𝑘𝑒𝑙)
𝑖 𝑗

= 1}, and 𝑀
(𝑒𝑥𝑡𝑟𝑎)
𝑖 𝑗

≔ 1{𝐷 (𝑠𝑘𝑒𝑙)
𝑖 𝑗

= −1},

5.2 Performance Measures

71

3

1

2

4

5

(a) G1 = (V, E1)

3

1

2

4

5

(b) G2 = (V, E2)

Figure 5.2 Two different PDAGs with the same node set

for 𝑖, 𝑗 = 1, . . . , 𝑑 . The total number of missing and extra edges are calculated as

𝑁 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔) =
1

2

·
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑀
(𝑚𝑖𝑠𝑠𝑖𝑛𝑔)
𝑖 𝑗

, and 𝑁 (𝑒𝑥𝑡𝑟𝑎) =
1

2

·
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝑀
(𝑒𝑥𝑡𝑟𝑎)
𝑖 𝑗

,

where the factor 1/2 prevents double counting of undirected edges. The adjacency matrix 𝑀 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) is
constructed to represent the DAG obtained by modifying G1 by removing missing edges and adding extra

edges from E2:

𝑀
(𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)
𝑖 𝑗

≔ 𝑀
(1)
𝑖 𝑗
(1 −𝑀 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔)

𝑖 𝑗
) + 1{𝑀 (2)

𝑖 𝑗
+𝑀 (𝑒𝑥𝑡𝑟𝑎)

𝑖 𝑗
= 2},

for 𝑖, 𝑗 = 1, . . . , 𝑑 . The matrix 𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) is then defined as the adjacency matrix of the DAG consisting of

edges present in both G1 and G2 but with differing directions:

𝐷
(𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑖 𝑗

≔ |𝑀 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑)
𝑖 𝑗

−𝑀 (2)
𝑖 𝑗
|,

for 𝑖, 𝑗 = 1, . . . , 𝑑 . The number of edges with different directions is given by

𝑁 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) =
1

2

·
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

1{𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑖 𝑗

+ 𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑗𝑖

> 0}.

Finally, the Structural Hamming Distance between G1 and G2 is defined as

SHD(G1,G2) ≔ 𝑁 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔) + 𝑁 (𝑒𝑥𝑡𝑟𝑎) + 𝑁 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) .

In simple terms, the Structural Hamming Distance (SHD) quantifies the number of edge additions, dele-

tions, or reversals required to transform one PDAG into another. The following example illustrates the

computation of the SHD for two PDAGs with the same set of nodes.

Example 5.2.1. Consider the PDAGs depicted in Figure 5.2. Both PDAGs share the same node set, V =

{1, . . . , 5}, with their respective edge sets given by:

E1 = {(1, 2), (1, 3), (2, 4), (4, 2), (3, 5), (4, 5)},
E2 = {(1, 2), (1, 3), (2, 3), (3, 2), (2, 4), (5, 4)}.

The corresponding adjacency matrices are:

𝑀 (1) =

©«
0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 1

0 0 0 0 0

ª®®®®®¬
, 𝑀 (2) =

©«
0 1 1 0 0

0 0 1 1 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

ª®®®®®¬
.

5 Simulation Study: Y-Vine-Based Structure Learning

72

The adjaceny matrices for the skeletons of the PDAGs are:

𝑆 (1) =

©«
0 1 1 0 0

1 0 0 1 0

1 0 0 0 1

0 1 0 0 1

0 0 1 1 0

ª®®®®®¬
, 𝑆 (2) =

©«
0 1 1 0 0

1 0 1 1 0

1 1 0 0 0

0 1 0 0 1

0 0 0 1 0

ª®®®®®¬
.

The difference between the skeletons is:

𝐷 (𝑠𝑘𝑒𝑙) = 𝑆 (1) − 𝑆 (2) =
©«
0 0 0 0 0

0 0 −1 0 0

0 −1 0 0 1

0 0 0 0 0

0 0 1 0 0

ª®®®®®¬
.

From 𝐷 (𝑠𝑘𝑒𝑙) , the matrices for missing and extra edges are:

𝑀 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔) =

©«
0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

ª®®®®®¬
, 𝑀 (𝑒𝑥𝑡𝑟𝑎) =

©«
0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

ª®®®®®¬
.

The number of missing edges is:

𝑁 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔) =
1

2

·
5∑︁
𝑖=1

5∑︁
𝑗=1

𝑀
(𝑚𝑖𝑠𝑠𝑖𝑛𝑔)
𝑖 𝑗

= 1.

This value corresponds to the directed edge (3, 5) ∈ E1. The number of extra edges is:

𝑁 (𝑒𝑥𝑡𝑟𝑎) =
1

2

·
5∑︁
𝑖=1

5∑︁
𝑗=1

𝑀
(𝑒𝑥𝑡𝑟𝑎)
𝑖 𝑗

= 1.

This value corresponds to the undirected edge {(2, 3), (3, 2)} ∈ E2. Note that undirected edges are counted

only once, similar to directed edges.

Next, consider the adjacency matrix 𝑀 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) for the DAG obtained by removing edges not present

in E2 and adding the extra edges from E2:

𝑀 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) =

©«
0 1 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 0 1

0 0 0 0 0

ª®®®®®¬
.

Comparing 𝑀 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) to 𝑀 (1) reveals that the directed edge (3,5) is removed and the undirected edge

{(2, 3), (3, 2)} is added. The comparison between𝑀 (𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑) and𝑀 (2) is reflected in thematrix𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) :

𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) =

©«
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 1

0 0 0 1 0

ª®®®®®¬
.

5.2 Performance Measures

73

The number of edges with different directions is:

𝑁 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) =
1

2

·
𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

1{𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑖 𝑗

+ 𝐷 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛)
𝑗𝑖

> 0} = 2.

This includes the edge (2, 4), which is directed in E2 but undirected in E1, and the edge (4, 5), which exists

in E1 but is reversed in E2.

Finally, the SHD between G1 and G2 is:

SHD(G1,G2) = 𝑁 (𝑚𝑖𝑠𝑠𝑖𝑛𝑔) + 𝑁 (𝑒𝑥𝑡𝑟𝑎) + 𝑁 (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛) = 1 + 1 + 2 = 4.

Throughout the simulation studies, the SHD will be used for model comparison as follows: For each of

the 𝑁 repetitions, two fitted CPDAGs, denoted as CPDAG
(𝑌)

and CPDAG
(𝑍)

, are obtained by applying the

PC algorithm (see Step 6 in Figure 5.1). For each fitted CPDAG, the SHD between the fitted CPDAG and

the true CPDAG will be calculated and compared:

SHD
(𝑌)
𝑖

≔ SHD([G (true)], [G (𝑌)
𝑖
]),

SHD
(𝑍)
𝑖

≔ SHD([G (true)], [G (𝑍)
𝑖
]),

for 𝑖 = 1, . . . , 𝑁 , where [G (true)] represents the true CPDAG, and [G (𝑌)
𝑖
] and [G (𝑍)

𝑖
] denote the fitted

CPDAGs in the 𝑖-th repetition. Generally, a lower SHD for one of the fitted models compared to the

other indicates that it is closer to the true model in terms of its structure. Therefore, the distributions of

(SHD(𝑌)
𝑖
)𝑖=1,...,𝑁 and (SHD(𝑍)

𝑖
)𝑖=1,...,𝑁 will be compared. However, it is important to note that SHD alone

does not provide a probabilistic interpretation. A lower SHD does not guarantee that one model fits the

distribution better than the other. Consequently, an additional measure is needed to evaluate the models’

performance more comprehensively.

A widely used measure for evaluating the goodness-of-fit of statistical models is the likelihood. In Sec-

tion 4.3, it was shown that the true log-likelihood of a PCBN can often only be computed using numerical

integration. However, an integration-free approximation of the log-likelihood can be derived from the

estimated DV-SEM.

Consider the DV-SEM
(true)

, which is obtained from the true, underlying PCBN (G (true) ,O (true)). The
approximated copula log-likelihood of the true model is given by:

ℓ̂ (𝜽 (𝐷𝑉,true)
𝑘

; u) =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

∑︁
𝑤∈𝑝𝑎 (𝑗)

ln

(
𝑐 𝑗,𝑤;𝑝𝑎 (𝑗 ;𝑤)

(
𝐶 𝑗 |𝑝𝑎 (𝑗 ;𝑤) (𝑢𝑖 𝑗 | u𝑖,𝑝𝑎 (𝑗 ;𝑤) ;𝜽 (𝐷𝑉,true)𝑘

),

𝐶𝑤 |𝑝𝑎 (𝑗 ;𝑤) (𝑢𝑖𝑤 | u𝑖,𝑝𝑎 (𝑗 ;𝑤) ; ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,true)
𝑘);𝜃 𝑗,𝑤;𝑝𝑎 (𝑗 ;𝑤)

))
,

where 𝑘 = 1, . . . , 𝑁 , and

𝜽 (𝐷𝑉,true)
𝑘

= 𝜽 (true) ∪ ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,true)
𝑘 ,

denotes the parameters of DV-SEM
(true)

. The parameters 𝜽 (true) are fixed values determined for the simu-

lation and remain constant across all repetitions, whereas
ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,true)
𝑘 refers to the parameters estimated

from the parental D-vines, which vary with each simulated sample. Consequently, the log-likelihood

function also depends on the sample through the conditional distribution functions, as indicated by the

subscript 𝑘 .

For the fitted DV-SEMs, denoted as DV-SEM
(𝑌)

and DV-SEM
(𝑍)

, the log-likelihood are defined as fol-

lows:

ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑌)𝑘 ; u) =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

∑︁
𝑤∈𝑝𝑎 (𝑌,𝑘) (𝑗)

ln

(
𝑐 𝑗,𝑤;𝑝𝑎 (𝑌,𝑘) (𝑗 ;𝑤)

(
𝐶 𝑗 |𝑝𝑎 (𝑌,𝑘) (𝑗 ;𝑤) (𝑢𝑖 𝑗 | u𝑖,𝑝𝑎 (𝑌,𝑘) (𝑗 ;𝑤) ; ˆ𝜽

(𝐷𝑉,𝑌)
𝑘),

𝐶𝑤 |𝑝𝑎 (𝑌,𝑘) (𝑗 ;𝑤) (𝑢𝑖𝑤 | u𝑖,𝑝𝑎 (𝑌,𝑘) (𝑗 ;𝑤) ; ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,𝑌)
𝑘); ˆ𝜃 𝑗,𝑤;𝑝𝑎 (𝑌,𝑘) (𝑗 ;𝑤)

))
,

5 Simulation Study: Y-Vine-Based Structure Learning

74

and

ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑍)𝑘 ; u) =
𝑛∑︁
𝑖=1

𝑑∑︁
𝑗=1

∑︁
𝑤∈𝑝𝑎 (𝑍,𝑘) (𝑗)

ln

(
𝑐 𝑗,𝑤;𝑝𝑎 (𝑍,𝑘) (𝑗 ;𝑤)

(
𝐶 𝑗 |𝑝𝑎 (𝑍,𝑘) (𝑗 ;𝑤) (𝑢𝑖 𝑗 | u𝑖,𝑝𝑎 (𝑍,𝑘) (𝑗 ;𝑤) ; ˆ𝜽

(𝐷𝑉,𝑍)
𝑘),

𝐶𝑤 |𝑝𝑎 (𝑍,𝑘) (𝑗 ;𝑤) (𝑢𝑖𝑤 | u𝑖,𝑝𝑎 (𝑍,𝑘) (𝑗 ;𝑤) ; ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,𝑍)
𝑘); ˆ𝜃 𝑗,𝑤;𝑝𝑎 (𝑍,𝑘) (𝑗 ;𝑤)

))
,

for 𝑘 = 1, . . . , 𝑁 . In contrast to ℓ̂ (𝜽 (𝐷𝑉,true)
𝑘

; u), where only the parameters in the parental D-vines are

estimated, the fitted DV-SEMs estimate the entire D-vine structure. This distinction is denoted by the hat

symbol on 𝜽 :

ˆ𝜽
(𝐷𝑉,𝑌)
𝑘 ≔ ˆ𝜽

(𝑌)
𝑘 ∪ ˆ𝜽

(𝑝𝑎𝑟𝐷𝑉 ,𝑌)
𝑘 ,

ˆ𝜽
(𝐷𝑉,𝑍)
𝑘 ≔ ˆ𝜽

(𝑍)
𝑘 ∪ ˆ𝜽

(𝑝𝑎𝑟𝐷𝑉 ,𝑍)
𝑘 .

Here,
ˆ𝜽
(𝑌)
𝑘 (and similarly,

ˆ𝜽
(𝑍)
𝑘) represents the parameters of the copulas that are specified by the decom-

position of the fitted PCBN. These parameters correspond to the fitted copulas for the first edge in each

tree of each D-vine. Additionally,
ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,𝑌)
𝑘 (and similarly,

ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,𝑍)
𝑘) denotes the parameters of the fit-

ted parental D-vines. The functions 𝑝𝑎(·) and 𝑝𝑎(·; ·) depend not only on the conditional independence

tests employed but also on the specific sample in each repetition, as indicated by the superscript 𝑘 .

Example 5.2.2 (Example 4.2.3 continued). Consider the six-dimensional PCBN shown in Figure 4.7 and its

corresponding DV-SEM as presented in Example 4.2.3. Assume this model represents the true underlying

structure from which 𝑛 observations are simulated 𝑁 times. The copula log-likelihood of the true model

is calculated using the parameters:

𝜽 (𝐷𝑉,true)
𝑘

= 𝜽 (true) ∪ ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,true)
𝑘 ,

where,

𝜽 (true) ≔ {𝜃32, 𝜃31;2, 𝜃43, 𝜃65, 𝜃62;5, 𝜃61;52, 𝜃64;521}

are the fixed copula parameters specified by the decomposition of the PCBN (highlighted in green in

Example 4.2.3). Furthermore,

ˆ𝜽
(𝑝𝑎𝑟𝐷𝑉 ,true)
𝑘 ≔ { ˆ𝜃𝑘

21
, ˆ𝜃𝑘

52
, ˆ𝜃𝑘

14
, ˆ𝜃𝑘

51;2
, ˆ𝜃𝑘

24;1
, ˆ𝜃𝑘

54;21
}

represents the parameters of the parental D-vines, which may vary with each simulation run, 𝑘 = 1, . . . , 𝑁 ,

as these are estimated based on the simulated sample. The approximated log-likelihood for some simula-

tion run 𝑘 ∈ {1, . . . , 𝑁 } is then given by:

ℓ̂ (𝜽 (𝐷𝑉,true)
𝑘

; u) =
𝑛∑︁
𝑖=1

[
ln

(
𝑐32

(
𝑢𝑖3, 𝑢𝑖2;𝜃32

))
+ ln

(
𝑐31;2

(
𝐶3 |2(𝑢𝑖3 | 𝑢𝑖2;𝜃32),𝐶1 |2(𝑢𝑖1 | 𝑢𝑖2;

ˆ𝜃𝑘
21
);𝜃31;2

))
+ ln

(
𝑐43

(
𝑢𝑖4, 𝑢𝑖3;𝜃43

))
+ ln

(
𝑐65

(
𝑢𝑖6, 𝑢𝑖5;𝜃65

))
+ ln

(
𝑐62;5

(
𝐶6 |5(𝑢𝑖6 | 𝑢𝑖5;𝜃65),𝐶2 |5(𝑢𝑖2 | 𝑢𝑖5;

ˆ𝜃𝑘
52
);𝜃62;5

))
+ ln

(
𝑐61;52

(
𝐶6 |52(𝑢𝑖6 | 𝑢𝑖5, 𝑢𝑖2;𝜃62;5, 𝜃65, ˆ𝜃𝑘

52
),𝐶1 |52(𝑢𝑖1 | 𝑢𝑖5, 𝑢𝑖2;

ˆ𝜃𝑘
51;2
, ˆ𝜃𝑘

52
, ˆ𝜃𝑘

21
);𝜃61;52

))
+ ln

(
𝑐64;521

(
𝐶6 |521(𝑢𝑖6 | 𝑢𝑖5, 𝑢𝑖2, 𝑢𝑖1;𝜃61;52, 𝜃62;5, ˆ𝜃𝑘

51;2
, 𝜃65, ˆ𝜃𝑘

52
, ˆ𝜃𝑘

21
),

𝐶4 |521(𝑢𝑖4 | 𝑢𝑖5, 𝑢𝑖2, 𝑢𝑖1;
ˆ𝜃𝑘
54;21

, ˆ𝜃𝑘
51;2
, ˆ𝜃𝑘

24;1
, ˆ𝜃𝑘

52
, ˆ𝜃𝑘

21
, ˆ𝜃𝑘

14
);𝜃64;521

))]
.

5.3 Choice of Tuning Parameters

75

For each repetition 𝑘 = 1, . . . , 𝑁 , the copula log-likelihoods for all three models will be computed using

the simulated sample û𝑠 (see Step 3 in Figure 5.1). Directly comparing ℓ̂ (𝜽 (𝐷𝑉,true)
𝑘

; û𝑠), ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑌)𝑘 ; û𝑠), and
ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑍)𝑘 ; û𝑠) for each 𝑘 might be inconclusive, as there is no guarantee that the models are nested. To

address this, the log-likelihood is penalized according to the number of parameters in the copulas specified

by each model’s decomposition.

The penalization parameter, which varies with each repetition 𝑘 = 1, . . . , 𝑁 , is denoted by 𝑝𝑘 . For each

model, it is defined as follows:

𝑝
(true)
𝑘

≔ |𝜽 (true) |,

𝑝
(𝑌)
𝑘

≔ | ˆ𝜽 (𝑌)𝑘 |,

𝑝
(𝑍)
𝑘

≔ | ˆ𝜽 (𝑍)𝑘 |,

where 𝑝
(true)
𝑘

is constant across repetitions, as the true copulas are fixed.

The AIC and BIC for each model are computed as follows:

AIC
(true)
𝑘

≔ AIC(𝜽 (𝐷𝑉,true)
𝑘

; û𝑠) ≔ 2 · 𝑝 (true)
𝑘

− 2 · ℓ̂ (𝜽 (𝐷𝑉,true)
𝑘

; û𝑠),

AIC
(𝑌)
𝑘

≔ AIC(ˆ𝜽 (𝐷𝑉,𝑌)𝑘 ; û𝑠) ≔ 2 · 𝑝 (𝑌)
𝑘
− 2 · ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑌)𝑘 ; û𝑠),

AIC
(𝑍)
𝑘

≔ AIC(ˆ𝜽 (𝐷𝑉,𝑍)𝑘 ; û𝑠) ≔ 2 · 𝑝 (𝑍)
𝑘
− 2 · ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑍)𝑘 ; û𝑠),

and

BIC
(true)
𝑘

≔ BIC(𝜽 (𝐷𝑉,true)
𝑘

; û𝑠) ≔ ln(𝑛) · 𝑝 (true)
𝑘

− 2 · ℓ̂ (𝜽 (𝐷𝑉,true)
𝑘

; û𝑠),

BIC
(𝑌)
𝑘

≔ BIC(ˆ𝜽 (𝐷𝑉,𝑌)𝑘 ; û𝑠) ≔ ln(𝑛) · 𝑝 (𝑌)
𝑘
− 2 · ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑌)𝑘 ; û𝑠),

BIC
(𝑍)
𝑘

≔ BIC(ˆ𝜽 (𝐷𝑉,𝑍)𝑘 ; û𝑠) ≔ ln(𝑛) · 𝑝 (𝑍)
𝑘
− 2 · ℓ̂ (ˆ𝜽 (𝐷𝑉,𝑍)𝑘 ; û𝑠),

where 𝑛 is the number of simulated observations (typically 𝑛 = 1000 in this study). Unlike the Structural

Hamming Distance (SHD), which assesses model fit from a structural perspective, AIC and BIC offer a

probabilistic evaluation of the goodness-of-fit.

5.3 Choice of Tuning Parameters

When estimating graphical structures using the PC algorithm, it is essential to set the significance level

and tuning parameters, depending on the conditional independence test used. If Fisher’s Z-test of partial

correlation is applied, the only required parameter is 𝛼𝑍 , which defines the significance level for the null

hypothesis of (conditional) independence. Alternatively, if the Y-vine-based conditional independence test

is employed, two parameters must be set: 𝛼𝑌 , the significance level for testing ordinary independence, and

𝑘𝑌 , which acts as an upper bound on the estimated absolute 𝜏-value of the last copula in a fitted Y-vinewhen

the conditioning set is non-empty. If the estimated 𝜏-value exceeds 𝑘𝑌 , the null hypothesis of conditional

independence is rejected.

Both 𝛼𝑍 and 𝛼𝑌 are traditional significance levels, associated with asymptotic tests, allowing them to

be interpreted in terms of type I error (the probability of falsely rejecting a true null hypothesis), typically

set at 𝛼 = 0.05. Therefore, throughout the simulations, both 𝛼𝑌 and 𝛼𝑍are set to 0.05. In Chapter 7, other

specific values will also be examined.

Unlike the significance levels, 𝑘𝑌 is a tuning parameter with no probabilistic interpretation. It serves

as an upper threshold on the estimated absolute 𝜏-value of the final copula in the Y-vine. Setting 𝑘𝑌 ∈
[0, 1] involves a trade-off: higher values accept the null hypothesis more frequently, leading to more edge

5 Simulation Study: Y-Vine-Based Structure Learning

76

(𝒊, 𝒋) 𝑺 𝑿 𝒊 ⊥⊥ 𝑿𝒋 | XS ? 𝒌𝒀 = 0.01 𝒌𝒀 = 0.025 𝒌𝒀 = 0.05 𝒌𝒀 = 0.075 𝒌𝒀 = 0.1
(3,6) 1,2,4 TRUE 0.12 0.64 0.84 0.96 0.98

(1,4) 2,3,5 TRUE 0.26 0.58 0.94 0.96 0.96

(3,6) 4,5 FALSE 0.98 0.94 0.90 0.80 0.78

(2,3) 1,6 FALSE 0.98 0.98 0.98 0.98 0.98

(5,6) 1,2,4 FALSE 1.00 1.00 1.00 1.00 1.00

(1,3) 4 FALSE 1.00 1.00 0.96 0.88 0.78

(2,4) 3 TRUE 0.18 0.56 0.86 0.94 0.98

(2,3) 1,5,6 FALSE 1.00 1.00 0.98 0.98 0.98

(2,3) 6 FALSE 1.00 1.00 1.00 0.96 0.94

(3,4) 1,2,5,6 FALSE 0.98 0.94 0.92 0.82 0.76

(4,6) 2,3,5 FALSE 1.00 1.00 0.96 0.90 0.82

(1,4) 3 TRUE 0.16 0.66 0.94 1.00 1.00

(2,4) 1,3,5,6 FALSE 0.98 0.96 0.82 0.76 0.64

(3,5) 1,2 TRUE 0.14 0.58 0.98 0.98 1.00

(2,6) 1 FALSE 1.00 1.00 1.00 0.94 0.88

(3,6) 1,4 FALSE 0.98 0.90 0.78 0.70 0.60

(2,3) 1,4 FALSE 1.00 1.00 1.00 0.98 0.96

(4,5) 3 TRUE 0.22 0.60 0.98 1.00 1.00

(5,6) 4 FALSE 1.00 1.00 1.00 1.00 1.00

(4,5) 1,2,6 FALSE 1.00 1.00 0.92 0.88 0.84

Table 5.1 Comparison of the percentage of correctly estimated (in-)dependence statements over 𝑁 = 100 repetitions

using the Y-vine-based conditional independence test with varying 𝑘𝑌 values

Statement Type 𝒌𝒀 = 0.01 𝒌𝒀 = 0.025 𝒌𝒀 = 0.05 𝒌𝒀 = 0.075 𝒌𝒀 = 0.1
All 0.748 0.867 0.938 0.921 0.894

Independence 0.180 0.603 0.923 0.973 0.987

Dependence 0.993 0.980 0.944 0.899 0.854

Table 5.2 Comparison of the average percentage of correctly estimated (in-)dependence statements over 𝑁 = 100

repetitions based on the results illustrated in Table 5.1

5.4 Case 1: Four Dimensions

77

removals but increasing the risk of type II errors (false negatives). Conversely, lower 𝑘𝑌 values lead to

more edge retention, increasing the chance of type I errors (false positives). As there is no distributional

result for the true 𝜏-value of the last tree in a Y-vine, these errors cannot be quantified.

An experimental study is conducted to balance this trade-off. Simulating 𝑛 = 1000 observations for

𝑁 = 100 repetitions from the PCBN in Figure 4.7, pair-copulas are randomly selected from one-parametric

families (Appendix B), including the t-copula with degrees of freedom set to 5. Kendall’s 𝜏-values are

sampled from the interval (−0.8,−0.1) ∪ (0.1, 0.8) and transformed into copula parameters. The approx-

imate simulation procedure from Section 4.2.2 is applied, followed by parametric margins and scaling, as

described on page 69.

The Y-vine conditional independence test is applied with 𝑘𝑌 ∈ {0.01, 0.025, 0.05, 0.075, 0.1}. Out of

the 240 statements associated with the DAG in Figure 4.7, 45 are independent. Given the computational

demands of testing all statements across 100 repetitions, a random subset of 20 statements is analyzed, 6

being independent and 14 dependent.

Table 5.1 shows the frequencies of correctly estimated dependence relations for different 𝑘𝑌 values.

As expected, low 𝑘𝑌 values accurately estimate dependence but struggle with conditional independence,

while high 𝑘𝑌 values detect independence well but often miss dependencies.

Table 5.2 compares average correct frequencies across the varying 𝑘𝑌 values. The Y-test with 𝑘𝑌 =

0.01 achieves a high 99.3% accuracy in estimating dependence but only identifies 18% of independence

statements correctly. In contrast, the test with 𝑘𝑌 = 0.1 correctly identifies 98.7% of independence but

only 85.4% of dependence statements. The test with 𝑘𝑌 = 0.05 performs best overall, correctly estimating

over 90% of both dependence and independence statements, with an average accuracy of 93.8%. It appears

to best balance detecting both dependencies and independencies.

Therefore, the simulation study in the following section will use the Y-vine test with 𝛼𝑌 = 𝑘𝑌 = 0.05.

Other values of 𝑘𝑌 will be further explored in Chapter 7.

5.4 Case 1: Four Dimensions

Consider the four-dimensional PCBN depicted in Figure 4.3. Here, 𝑑 = 4, and the graph is represented as

G (true) = (V, E (true)) where V ≔ {1, . . . , 4} and E (true) ≔ {(1, 2), (1, 3), (2, 4), (3, 4)}. Additionally, the
ordering of the parents is O (true) ≔ {2 <4 3}. The implied conditional independencies are 𝑋2 ⊥⊥ 𝑋3 | 𝑋1

and 𝑋1 ⊥⊥ 𝑋4 | 𝑋2, 𝑋3. The joint density factorizes as follows:

𝑓 (x) =
(4∏
𝑖=1

𝑓𝑖

)
· 𝑐21 · 𝑐31 · 𝑐42 · 𝑐43;2, x ∈ ℝ4,

where the arguments of the functions are omitted for simplicity.

Table 5.3 presents the specified pair-copulas for each setup described on page 70. The fixed parametric

marginal distributions associated with these setups are detailed in Table 5.4. For each of the four setups,

the procedure outlined in Figure 5.1 is executed 𝑁 = 100 times, with each repetition involving 𝑛 = 1000

observations. The tuning parameters and significance levels for each (conditional) independence test are

set to 𝛼𝑍 = 𝛼𝑌 = 𝑘𝑌 = 0.05.

Figure 5.3 illustrates the observed relative frequencies of SHD
(𝑌)
𝑖

and SHD
(𝑍)
𝑖

for 𝑖 = 1, . . . , 𝑁 . The

results indicate that CPDAGs based on the Y-vine approach generally exhibit lower SHD values compared

to those obtained using the Z-test within the PC algorithm. This trend is further supported by the lower

average SHDvalues reported in the "Y" column of Table 5.5, particularly in Setups 1 to 3, which involve non-

Gaussian copulas. Overall, this suggests that Y-vine-based models are structurally closer to the true model

than their Z-test based counterparts. For instance, in Setup 2, Y-vine-based conditional independence tests

recover the true CPDAG in 68% of cases, whereas the Z-test based PC algorithm fails to recover the correct

CPDAG in any of the cases. The smallest difference between SHD
(𝑌)

and SHD
(𝑍)

is observed in Setup 4,

which involves a Gaussian Bayesian network.

Similarly, Figure 5.4 shows box plots of the AIC and BIC values, revealing that the goodness-of-fit mea-

sures for the true and fitted models differ more in the first three setups, with the Y-vine-based approach

5 Simulation Study: Y-Vine-Based Structure Learning

78

Setup Edge Family Rotation Parameters 𝝉

1

21 Gaussian 0° -0.57 -0.39

31 Frank 0° 12.23 0.72

42 t 0° (0.4, 5) 0.27

43;2 Joe 270° 2.85 -0.50

2

21 Joe 180° 1.83 0.31

31 Frank 0° -7.85 -0.60

42 Gumbel 180° 2.32 0.57

43;2 Joe 90° 1.74 -0.29

3

21 Gaussian 0° -0.36 -0.24

31 t 0° (0.78, 5) 0.57

42 t 0° (-0.31, 5) -0.20

43;2 t 0° (-0.85, 5) -0.65

4

21 Gaussian 0° -0.23 -0.15

31 Gaussian 0° -0.91 -0.73

42 Gaussian 0° 0.78 0.57

43;2 Gaussian 0° 0.97 0.83

Table 5.3 Overview of pair-copulas for all setups in the case 𝑑 = 4

Setup Node Marginal Distribution Parameters

1

1 Normal 𝜇 = 𝜎 = 1

2 Normal 𝜇 = 𝜎 = 1

3 Beta 𝛼 = 𝛽 = 0.5

4 Lognormal 𝜇 = 0, 𝜎 = 1

2

1 Lognormal 𝜇 = 0, 𝜎 = 1

2 Normal 𝜇 = 𝜎 = 1

3 Beta 𝛼 = 𝛽 = 0.5

4 t 𝜈 = 5

3

1 Lognormal 𝜇 = 0, 𝜎 = 1

2 Beta 𝛼 = 𝛽 = 0.5

3 Beta 𝛼 = 𝛽 = 0.5

4 Normal 𝜇 = 𝜎 = 1

4

1 Normal 𝜇 = 𝜎 = 1

2 Normal 𝜇 = 𝜎 = 1

3 Normal 𝜇 = 𝜎 = 1

4 Normal 𝜇 = 𝜎 = 1

Table 5.4 Overview of marginal distributions for all setups in the case 𝑑 = 4

Setup SHD Log-Likelihood AIC BIC
Y Z True Y Z True Y Z True Y Z

1 1.30 2.67 1535 1424 1418 -3060 -2838 -2823 -3035 -2813 -2791

2 0.66 3.17 1330 1227 1122 -2653 -2438 -2231 -2633 -2401 -2198

3 0.17 3.96 1294 1239 1217 -2575 -2462 -2412 -2541 -2422 -2360

4 1.06 1.08 2729 2689 2693 -5450 -5371 -5378 -5430 -5353 -5359

Table 5.5 Rounded average values of different performance measures for the case 𝑑 = 4. Column "True" serves as a

benchmark. Highest log-likelihood and lowest SHD, AIC, and BIC value between Y and Z is colored in blue

5.4 Case 1: Four Dimensions

79

(a) Setup 1: Mixture of Elliptical and Archimedean (b) Setup 2: Only Archimedean

(c) Setup 3: Only Elliptical (d) Setup 4: Only Gaussian

Figure 5.3 Relative frequency of observed SHD values between the Expert CPDAG and the fitted Y-CPDAG (blue),

and between the Expert CPDAG and the fitted Z-CPDAG (orange) across different setups for 𝑑 = 4

(a) Setup 1: Mixture of Elliptical and Archimedean (b) Setup 2: Only Archimedean

(c) Setup 3: Only Elliptical (d) Setup 4: Only Gaussian

Figure 5.4 Box plots of estimated AIC/BIC values for the different setups in the case 𝑑 = 4

5 Simulation Study: Y-Vine-Based Structure Learning

80

outperforming the Z-test benchmark, most notably in Setup 2 and 3. In Setup 4, the fitted models align

more closely with the true model in terms of AIC and BIC. Here, the Z-test based model shows a slightly

better fit compared to the Y-vine model. This is corroborated by Table 5.5, which shows a marginally

higher average log-likelihood and lower average AIC and BIC values for the Z-test based PCBNs in Setup

4, and the opposite trend in Setups 1 to 3.

5.5 Case 2: Six Dimensions

Consider the six-dimensional PCBN depicted in Figure 4.7. Here, 𝑑 = 6, and the graph is represented as

G (true) = (V, E (true)) where V ≔ {1, . . . , 6} and E (true) ≔ {(1, 3), (1, 6), (2, 3), (2, 6), (3, 4), (4, 6), (5, 6)}.
Additionally, the ordering of the parents is given by

2 <3 1,

5 <6 2 <6 1 <6 4.

The implied conditional independencies are listed on page 14. The joint density factorizes as follows:

𝑓 (x) =
(4∏
𝑖=1

𝑓𝑖

)
· 𝑐32 · 𝑐31;2 · 𝑐43 · 𝑐65 · 𝑐62;5 · 𝑐61;52 · 𝑐64;521, x ∈ ℝ6,

where the arguments of the functions are omitted for simplicity.

Table 5.6 presents the specified pair-copulas for each setup described on page 70. The fixed parametric

marginal distributions associated with these setups are detailed in Table 5.7. For each of the four setups,

the procedure outlined in Figure 5.1 is executed 𝑁 = 100 times, with each repetition involving 𝑛 = 1000

observations. The tuning parameters and significance levels for each (conditional) independence test are

set to 𝛼𝑍 = 𝛼𝑌 = 𝑘𝑌 = 0.05.

Figure 5.5 illustrates the observed relative frequencies of SHD
(𝑌)
𝑖

and SHD
(𝑍)
𝑖

for 𝑖 = 1, . . . , 𝑁 . The

results indicate that CPDAGs based on the Y-vine approach generally exhibit lower SHD values compared

to those obtained using the Z-test within the PC algorithm. This trend is further supported by the lower

average SHD values reported in the "Y" column of Table 5.8, particularly in Setups 1 and 2, which involve

non-elliptical copulas. Overall, this suggests that Y-vine-based models are structurally closer to the true

model than their Z-test based counterparts as already observed in the four-dimensional case. For instance,

in Setup 2, Y-vine-based conditional independence tests recover the true CPDAG up to a SHD of one in

56% of cases, whereas the Z-test based PC algorithm only yields a CPDAG with a SHD lower or equal

to one in 4% of all cases. The smallest difference between SHD
(𝑌)

and SHD
(𝑍)

is observed in Setup 4,

which involves a Gaussian Bayesian network. Here, the average SHD is practically identical for both

methods. This result is expected, as Fisher’s Z-test for partial correlation is asymptotically exact for testing

conditional independence in the Gaussian setting.

Figure 5.6 shows box plots of the AIC and BIC values, revealing that the goodness-of-fit measures for the

true and fitted models are highly similar across all setups, with the Y-vine-based approach outperforming

the Z-test benchmark notably only in Setup 2. This is corroborated by Table 5.8, which shows similar

average log-likelihoods and average AIC and BIC values for Z-test based PCBNs in all setups except for

Setup 2.

5.6 Case 3: Eleven Dimensions

81

Setup Edge Family Rotation Parameters 𝝉

1

32 t 0° (0.62, 5) 0.43

31;2 Clayton 90° 5.07 -0.72

43 Joe 90° 2.63 -0.47

65 Joe 90° 3.82 -0.60

62;5 Frank 0° -1.62 -0.18

61;52 Gumbel 180° 1.24 0.19

64;521 Gaussian 0° 0.55 0.37

2

32 Joe 180° 2.88 0.50

31;2 Gumbel 180° 1.38 0.27

43 Gumbel 180° 1.14 0.12

65 Clayton 90° 0.61 -0.23

62;5 Joe 270° 5.45 -0.70

61;52 Frank 0° -5.24 -0.47

64;521 Gumbel 270° 1.18 -0.15

3

32 Gaussian 0° 0.39 0.26

31;2 t 0° (-0.98, 5) -0.87

43 t 0° (-0.20, 5) -0.13

65 t 0° (0.48, 5) 0.32

62;5 t 0° (0.45, 5) 0.30

61;52 Gaussian 0° 0.80 0.59

64;521 t 0° (0.88, 5) 0.69

4

32 Gaussian 0° -0.53 -0.35

31;2 Gaussian 0° 0.36 0.23

43 Gaussian 0° 0.90 0.72

65 Gaussian 0° 0.73 0.52

62;5 Gaussian 0° 0.38 0.25

61;52 Gaussian 0° -0.68 -0.48

64;521 Gaussian 0° 0.57 0.39

Table 5.6 Overview of pair-copulas for all setups in the case 𝑑 = 6

5.6 Case 3: Eleven Dimensions

1

2

3

4

5

6

7

8

9

10

11

Figure 5.7 An 11-dimensional Bayesian network

with 16 edges

Node 𝑖 ∈ V Parent order of 𝑖
1 -

2 -

3 1

4 -

5 2 <5 1

6 -

7 -

8 7 <8 6 <8 1

9 3

10 7 <10 6 <10 4 <10 1 <10 3

11 7 <11 6 <11 1 <11 9

Table 5.9 Selection of the parent orders of the

Bayesian network depicted in Figure 5.7

5 Simulation Study: Y-Vine-Based Structure Learning

82

Setup Node Marginal Distribution Parameters

1

1 Normal 𝜇 = 𝜎 = 1

2 t 𝜈 = 5

3 Lognormal 𝜇 = 0, 𝜎 = 1

4 t 𝜈 = 5

5 Beta 𝛼 = 𝛽 = 0.5

6 Lognormal 𝜇 = 0, 𝜎 = 1

2

1 Lognormal 𝜇 = 0, 𝜎 = 1

2 Beta 𝛼 = 𝛽 = 0.5

3 Beta 𝛼 = 𝛽 = 0.5

4 Beta 𝛼 = 𝛽 = 0.5

5 Lognormal 𝜇 = 0, 𝜎 = 1

6 Gamma 𝑘 = 𝜃 = 2

3

1 t 𝜈 = 5

2 Gamma 𝑘 = 𝜃 = 2

3 Gamma 𝑘 = 𝜃 = 2

4 t 𝜈 = 5

5 Normal 𝜇 = 𝜎 = 1

6 Normal 𝜇 = 𝜎 = 1

4

1 Normal 𝜇 = 𝜎 = 1

2 Normal 𝜇 = 𝜎 = 1

3 Normal 𝜇 = 𝜎 = 1

4 Normal 𝜇 = 𝜎 = 1

5 Normal 𝜇 = 𝜎 = 1

6 Normal 𝜇 = 𝜎 = 1

Table 5.7 Overview of marginal distributions for all setups in the case 𝑑 = 6

Setup SHD Log-Likelihood AIC BIC
Y Z True Y Z True Y Z True Y Z

1 2.27 4.33 2531 2209 2208 -5046 -4400 -4392 -5007 -4354 -4334

2 1.69 2.94 1919 1509 1447 -3824 -2996 -2868 -3790 -2941 -2805

3 1.14 1.66 3310 3094 3105 -6595 -6166 -6185 -6536 -6111 -6125

4 1.24 1.23 2059 1859 1864 -4104 -3703 -3711 -4069 -3664 -3672

Table 5.8 Rounded average values of different performance measures for the case 𝑑 = 6. Column "True" serves as a

benchmark. Highest log-likelihood and lowest SHD, AIC, and BIC value between Y and Z is colored in blue

Consider the 11-dimensional Bayesian network depicted in Figure 5.7. Here, 𝑑 = 11, and the graph is

represented as G (true) = (V, E (true)) whereV ≔ {1, . . . , 11} and

E (true) ≔{(1, 3), (1, 5), (1, 8), (1, 10), (1, 11), (2, 5), (3, 9), (3, 10), (4, 10), (6, 8), (6, 10), (6, 11), (7, 8),
(7, 10), (7, 11), (9, 11)}.

Additionally, a topological order of the nodes is given by

7 < 6 < 4 < 2 < 1 < 8 < 5 < 3 < 9 < 11 < 10

and the fixed parent orders O (true) are illustrated in Table 5.9. In total, there are 9344 implied conditional

independence statements. The following list depicts only the conditional independencies associated with

missing edges in their most compact form, where the conditioning sets are as small as possible:

5.6 Case 3: Eleven Dimensions

83

(a) Setup 1: Mixture of Elliptical and Archimedean (b) Setup 2: Only Archimedean

(c) Setup 3: Only Elliptical (d) Setup 4: Only Gaussian

Figure 5.5 Relative frequency of observed SHD values between the Expert CPDAG and the fitted Y-CPDAG (blue),

and between the Expert CPDAG and the fitted Z-CPDAG (orange) across different setups for 𝑑 = 6

(a) Setup 1: Mixture of Elliptical and Archimedean (b) Setup 2: Only Archimedean

(c) Setup 3: Only Elliptical (d) Setup 4: Only Gaussian

Figure 5.6 Box plots of estimated AIC/BIC values for the different setups in the case 𝑑 = 6

5 Simulation Study: Y-Vine-Based Structure Learning

84

i) 𝑋1 ⊥⊥ 𝑋 𝑗 , where 𝑗 ∈ {2, 4, 6, 7}.

ii) 𝑋1 ⊥⊥ 𝑋9 | 𝑋3.

iii) 𝑋2 ⊥⊥ 𝑋 𝑗 , where 𝑗 ∈ {3, 4, 6, 7, 8, 9, 10, 11}.

iv) 𝑋3 ⊥⊥ 𝑋 𝑗 , where 𝑗 ∈ {4, 6, 7}.

v) 𝑋3 ⊥⊥ 𝑋 𝑗 | 𝑋1, where 𝑗 ∈ {5, 8}.

vi) 𝑋3 ⊥⊥ 𝑋11 | 𝑋1, 𝑋9.

vii) 𝑋4 ⊥⊥ 𝑋 𝑗 , where 𝑗 ∈ {5, 6, 7, 8, 9, 11}.

viii) 𝑋5 ⊥⊥ 𝑋 𝑗 , where 𝑗 ∈ {6, 7}.

ix) 𝑋5 ⊥⊥ 𝑋 𝑗 | 𝑋1, where 𝑗 ∈ {8, 9, 10, 11}.

x) 𝑋5 ⊥⊥ 𝑋9 | 𝑋3.

xi) 𝑋6 ⊥⊥ 𝑋 𝑗 , where 𝑗 ∈ {7, 9}.

xii) 𝑋7 ⊥⊥ 𝑋9.

xiii) 𝑋8 ⊥⊥ 𝑋9 | 𝑋𝑆 , where 𝑆 ∈ {1, 3}.

xiv) 𝑋8 ⊥⊥ 𝑋 𝑗 | 𝑋1, 𝑋6, 𝑋7, where 𝑗 ∈ {10, 11}.

xv) 𝑋9 ⊥⊥ 𝑋10 | 𝑋3.

xvi) 𝑋10 ⊥⊥ 𝑋11 | 𝑋1, 𝑋6, 𝑋7, 𝑋9.

xvii) 𝑋10 ⊥⊥ 𝑋11 | 𝑋1, 𝑋3, 𝑋6, 𝑋7.

The joint density factorizes as follows:

𝑓 (x) =
(11∏
𝑖=1

𝑓𝑖

)
· 𝑐31 · 𝑐52 · 𝑐51;2 · 𝑐87 · 𝑐86;7 · 𝑐81;76 · 𝑐93 · 𝑐10,7 · 𝑐10,6;7 · 𝑐10,4;76 · 𝑐10,1;764 · 𝑐10,3;7641

· 𝑐11,7 · 𝑐11,6;7 · 𝑐11,1;76 · 𝑐11,9;761, x ∈ ℝ11,

where the arguments of the functions are omitted for simplicity.

Tables 5.10 and 5.11 present the specified pair-copulas for each setup described on page 70. The fixed

parametric marginal distributions associated with these setups are detailed in Table 5.12. For each of the

four setups, the procedure outlined in Figure 5.1 is executed only 𝑁 = 50 instead of 100 times due to the

increased computational demand. Each repetition involves 𝑛 = 1000 observations. The tuning parameters

and significance levels for each (conditional) independence test are set to 𝛼𝑍 = 𝛼𝑌 = 𝑘𝑌 = 0.05.

Figure 5.8 shows the observed relative frequencies of SHD
(𝑌)
𝑖

and SHD
(𝑍)
𝑖

for 𝑖 = 1, . . . , 𝑁 . Across

all setups, the Y-vine-based CPDAGs are structurally closer to the true CPDAG than those fitted using

the Z-test, as reflected by the lower average SHD values listed in Table 5.13. The smallest difference in

average SHD occurs in Setup 4, corresponding to a Gaussian Bayesian network. Notably, unlike the lower-

dimensional cases with 𝑑 = 4 and 𝑑 = 6, neither the Y-vine nor Z-test approaches successfully identify the

correct CPDAG in any case, as indicated by the 0% relative frequency for SHD = 0.

Figure 5.9 presents box plots of the AIC and BIC values for each fitted PCBN, compared to the true AIC

and BIC values. The averages are provided in Table 5.13. The Y-vine-based models generally yield better

fit statistics, with higher average log-likelihoods and lower AIC and BIC values, except in Setup 3. In

this setup, despite the Y-vine-based models being structurally closer to the true CPDAG, the Z-test-based

PCBNs achieve lower AIC and BIC values. The Y-vine approach notably outperforms the Z-test approach

in Setup 2, which involves only Archimedean copulas. However, the box plot in Figure 5.9 reveals that for

this specific setup, the lower and upper quartiles of the AIC and BIC values are quite similar.

5.6 Case 3: Eleven Dimensions

85

Setup Edge Family Rotation Parameters 𝝉

1

31 Gaussian 0° -0.45 -0.29

52 Joe 0° 2.82 0.50

51;2 Gaussian 0° 0.85 0.65

87 Clayton 90° 4.08 -0.67

86;7 Clayton 270° 1.48 -0.42

81;76 t 0° (-0.90, 5) -0.71

93 t 0° (0.31, 5) 0.20

10,7 Clayton 0° 0.28 0.12

10,6;7 Frank 0° 3.20 0.32

10,4;76 Gumbel 0° 1.36 0.26

10,1;764 Gaussian 0° -0.79 -0.58

10,3;7641 Clayton 270° 3.26 -0.62

11,7 Frank 0° 10.99 0.69

11,6;7 Frank 0° 2.39 0.25

11,1;76 Gumbel 90° 1.44 -0.31

11,9;761 Gumbel 0° 3.86 0.74

2

31 Gumbel 270° 1.15 -0.13

52 Frank 0° -15.70 -0.77

51;2 Clayton 270° 2.40 -0.55

87 Gumbel 90° 3.82 -0.74

86;7 Frank 0° 4.45 0.42

81;76 Joe 0° 3.65 0.58

93 Gumbel 270° 1.74 -0.42

10,7 Gumbel 180° 1.66 0.40

10,6;7 Frank 0° 7.12 0.57

10,4;76 Clayton 90° 1.13 -0.36

10,1;764 Frank 0° -2.11 -0.22

10,3;7641 Gumbel 270° 3.02 -0.67

11,7 Gumbel 180° 1.55 0.35

11,6;7 Gumbel 180° 4.86 0.79

11,1;76 Gumbel 0° 3.16 0.68

11,9;761 Clayton 270° 7.30 -0.78

Table 5.10 Overview of pair-copulas for Setups 1 and 2 in the case 𝑑 = 11

5 Simulation Study: Y-Vine-Based Structure Learning

86

Setup Edge Family Rotation Parameters 𝝉

3

31 Gaussian 0° -0.79 -0.58

52 Gaussian 0° 0.32 0.20

51;2 t 0° (0.85, 5) 0.65

87 Gaussian 0° -0.61 -0.42

86;7 Gaussian 0° 0.51 0.34

81;76 t 0° (0.57, 5) 0.39

93 t 0° (0.40, 5) 0.26

10,7 Gaussian 0° -0.50 -0.34

10,6;7 t 0° (-0.94, 5) -0.77

10,4;76 Gaussian 0° 0.41 0.27

10,1;764 Gaussian 0° -0.68 -0.47

10,3;7641 Gaussian 0° -0.20 -0.13

11,7 t 0° (0.50, 5) 0.33

11,6;7 t 0° (-0.43, 5) -0.28

11,1;76 t 0° (-0.59, 5) -0.40

11,9;761 Gaussian 0° -0.91 -0.72

4

31 Gaussian 0° -0.66 -0.45

52 Gaussian 0° 0.61 0.42

51;2 Gaussian 0° 0.66 0.46

87 Gaussian 0° 0.40 0.26

86;7 Gaussian 0° 0.45 0.30

81;76 Gaussian 0° -0.54 -0.37

93 Gaussian 0° -0.33 -0.21

10,7 Gaussian 0° -0.87 -0.68

10,6;7 Gaussian 0° -0.74 -0.53

10,4;76 Gaussian 0° 0.93 0.76

10,1;764 Gaussian 0° -0.74 -0.53

10,3;7641 Gaussian 0° 0.87 0.67

11,7 Gaussian 0° -0.76 -0.55

11,6;7 Gaussian 0° -0.39 -0.26

11,1;76 Gaussian 0° 0.80 0.59

11,9;761 Gaussian 0° -0.86 -0.66

Table 5.11 Overview of pair-copulas for Setups 3 and 4 in the case 𝑑 = 11

5.6 Case 3: Eleven Dimensions

87

Setup Node Marginal Distribution Parameters

1

1 t 𝜈 = 5

2 Lognormal 𝜇 = 0, 𝜎 = 1

3 Normal 𝜇 = 𝜎 = 1

4 Lognormal 𝜇 = 0, 𝜎 = 1

5 t 𝜈 = 5

6 t 𝜈 = 5

7 Gamma 𝑘 = 𝜃 = 2

8 Gamma 𝑘 = 𝜃 = 2

9 Lognormal 𝜇 = 0, 𝜎 = 1

10 Gamma 𝑘 = 𝜃 = 2

11 Beta 𝛼 = 𝛽 = 0.5

2

1 Beta 𝛼 = 𝛽 = 0.5

2 Gamma 𝑘 = 𝜃 = 2

3 Beta 𝛼 = 𝛽 = 0.5

4 Lognormal 𝜇 = 0, 𝜎 = 1

5 t 𝜈 = 5

6 Lognormal 𝜇 = 0, 𝜎 = 1

7 Lognormal 𝜇 = 0, 𝜎 = 1

8 t 𝜈 = 5

9 Lognormal 𝜇 = 0, 𝜎 = 1

10 t 𝜈 = 5

11 Normal 𝜇 = 𝜎 = 1

3

1 Normal 𝜇 = 𝜎 = 1

2 Beta 𝛼 = 𝛽 = 0.5

3 Lognormal 𝜇 = 0, 𝜎 = 1

4 Beta 𝛼 = 𝛽 = 0.5

5 Beta 𝛼 = 𝛽 = 0.5

6 t 𝜈 = 5

7 Normal 𝜇 = 𝜎 = 1

8 Lognormal 𝜇 = 0, 𝜎 = 1

9 Beta 𝛼 = 𝛽 = 0.5

10 Normal 𝜇 = 𝜎 = 1

11 Lognormal 𝜇 = 0, 𝜎 = 1

4

1 Normal 𝜇 = 𝜎 = 1

2 Normal 𝜇 = 𝜎 = 1

3 Normal 𝜇 = 𝜎 = 1

4 Normal 𝜇 = 𝜎 = 1

5 Normal 𝜇 = 𝜎 = 1

6 Normal 𝜇 = 𝜎 = 1

7 Normal 𝜇 = 𝜎 = 1

8 Normal 𝜇 = 𝜎 = 1

9 Normal 𝜇 = 𝜎 = 1

10 Normal 𝜇 = 𝜎 = 1

11 Normal 𝜇 = 𝜎 = 1

Table 5.12 Overview of marginal distributions for all setups in the case 𝑑 = 11

5 Simulation Study: Y-Vine-Based Structure Learning

88

Setup SHD Log-Likelihood AIC BIC
Y Z True Y Z True Y Z True Y Z

1 4.88 6.75 6544 5125 5103 -13052 -10206 -10157 -12964 -10095 -10036

2 5.06 6.44 8592 5107 5021 -17153 -10162 -9986 -17074 -10037 -9851

3 2.76 3.34 4901 4343 4451 -9756 -8636 -8848 -9643 -8515 -8714

4 4.75 5.00 6113 4604 4580 -12195 -9172 -9124 -12116 -9085 -9036

Table 5.13 Rounded average values of different performance measures for the case 𝑑 = 11. Column "True" serves as

a benchmark. Highest log-likelihood and lowest SHD, AIC, and BIC value between Y and Z is colored in blue

(a) Setup 1: Mixture of Elliptical and Archimedean (b) Setup 2: Only Archimedean

(c) Setup 3: Only Elliptical (d) Setup 4: Only Gaussian

Figure 5.8 Relative frequency of observed SHD values between the Expert CPDAG and the fitted Y-CPDAG (blue),

and between the Expert CPDAG and the fitted Z-CPDAG (orange) across different setups for 𝑑 = 11

5.7 Computational Performance

Table 5.14 presents the average computational times in seconds for each dimension considered in the

simulation studies, detailing the following procedures:

• Simulation: Generating observations from a PCBN at the u-level using the approximate simulation

method.

• PC algorithm:

– Y: A single run of the PC algorithm employing the Y-vine-based conditional independence test

to estimate the CPDAG from the simulated data.

– Z: A single run of the PC algorithm using Fisher’s Z-test of the partial correlation to estimate

the CPDAG from the simulated data.

• DV-SEM Fitting: Estimating a DV-SEM for parameter learning, based on a fitted DAG obtained

from the PC algorithm and subsequent PDAG extension.

5.7 Computational Performance

89

(a) Setup 1: Mixture of Elliptical and Archimedean (b) Setup 2: Only Archimedean

(c) Setup 3: Only Elliptical (d) Setup 4: Only Gaussian

Figure 5.9 Box plots of estimated AIC/BIC values for the different setups in the case 𝑑 = 11

Dimension Simulation PC algorithm DV-SEM FittingY Z
4 1.76 118.42 0.04 4.91

6 8.46 207.56 0.05 7.44

11 17.82 2528.97 0.50 35.93

Table 5.14 Average computational times in seconds for different steps involved in the simulation studies

The average times were computed for each dimension and averaged across all setups. All computations

were performed on a system with the following specifications:

• Processor (CPU): Intel Core i5-7200U @ 2.50GHz (2 cores, up to 2.70 GHz).

• Memory (RAM): 8 GB.

• Operating System: Windows 10, 64-bit.

• Graphics: Intel HD Graphics 620 (Integrated GPU).

• Software Environment: R version 4.3.2.

The results in Table 5.14 show that the Y-vine-based method requires significantly more time, particularly

as the dimensionality increases, with computation times rising from 118 seconds for dimension 4 to 2529

seconds for dimension 11. In contrast, the Z-test approach remains computationally efficient, with times

increasing only slightly from 0.04 seconds to 0.50 seconds across the same dimensions. The parameter

learning method employing D-vine-based regression demonstrates a moderate increase in computation

time as dimensionality grows, but it remains much faster than the structure learning using Y-vines, par-

ticularly for larger datasets. Furthermore, the table highlights the computational efficiency of the approx-

5 Simulation Study: Y-Vine-Based Structure Learning

90

imate simulation method, even in higher dimensions, making it a preferable alternative to exact methods

that often require computationally expensive multidimensional numerical integration.

91

6 Data Application: Flight Data Analysis

Aviation safety depends on the continuous monitoring and analysis of flight operations to detect and mit-

igate potential risks, such as mechanical failures, environmental hazards, and human errors. To enhance

safety standards, the International Civil Aviation Organization (ICAO) Annex 6 mandates that airlines

implement a flight data analysis program to systematically review flight performance and identify safety

concerns. As part of this program, a Quick Access Recorder (QAR) records a comprehensive set of flight

parameters—such as altitude, speed, heading, pilot control inputs, engine performance, and the status of

critical onboard systems—during each flight (Drees 2016).

This thesis analyzes data from 711 Boeing 747-8 landings at a specific airport, integrating Quick Access

Recorder (QAR) data with weather information from METeorological Aerodrome Reports (METAR). The

focus is on 12 continuous variables, as detailed in Table 6.1. This dataset has previously been used in Drees

(2016) and Wang et al. (2020), who applied physics-based deterministic models to assess runway overrun

risks. Additionally, Alnasser andCzado (2022) employedD-vine quantile regression, as discussed in Section

3.1, to model the probability of th80 exceeding a certain threshold based on other landing parameters.

Although Zwirglmaier and Straub (2016) used a Bayesian network for runway overrun prediction, their

approach required discretization of continuous data.

This thesis advances existing research by utilizing a pair-copula Bayesian network model with Y-vine

structure estimation to identify critical factors affecting flight safety. The proposedmodel will be evaluated

against one derived using Fisher’s Z-test within the PC algorithm and another based on expert knowledge

of the underlying structure.

Number Variable Definition
1 th80 Distance from the touchdown point to reach 80 knots in m.

2 hws Headwind speed measured at td in m/s.
3 temp Temperature in Kelvin provided by the METeorological Aerodrome Report

(METAR).

4 refAP Reference air pressure in hPa.
5 asd Deviation in speed between target approach speed and the actual true airspeed

at td in m/s.
6 trd Time reversers deployed after td in seconds s.
7 tsd Time spoilers deployed after td in s.
8 lm Landing weight taken at td in kg.
9 tbs Time brakes started after td in s.
10 bd Brake duration until 80 kts in s.
11 td Distance from touchdown zone to touchdown point in m.

12 ea Constant deceleration from td to 80 kts in m/s2.

Table 6.1 Variable definitions for landing parameters

6 Data Application: Flight Data Analysis

92

Variable Min Max Median Mean Standard Deviation Skewness Kurtosis
th80 -3.65 3.34 0.03 0 1 -0.29 3.27

hws -3.57 4.18 -0.10 0 1 0.27 3.41

temp -2.10 3.45 -0.02 0 1 0.41 2.79

refAP -3.66 2.80 0.02 0 1 -0.29 3.37

asd -3.47 2.73 -0.10 0 1 0.04 3.07

trd -1.85 4.68 -0.20 0 1 1.46 5.86

tsd -3.31 4.60 -0.15 0 1 0.33 5.03

lm -3.00 1.35 0.09 0 1 -0.58 2.72

tbs -0.88 5.27 -0.42 0 1 1.98 6.99

bd -3.22 2.25 0.17 0 1 -0.79 3.42

td -2.33 3.41 -0.02 0 1 0.28 2.98

ea -4.27 3.14 -0.06 0 1 -0.29 4.22

Table 6.2 Descriptive statistics of the scaled flight variables. Skewness values outside the range of -0.5 to 0.5 and

kurtosis values outside the range of 2 to 4 are highlighted in red

6.1 Exploratory Data Analysis

Let the flight data be presented by x = (x⊤
1
, . . . , x⊤

711
), where each x𝑘 = (𝑥𝑘,1, . . . , 𝑥𝑘,12)⊤ for 𝑘 = 1, . . . , 711.

Prior to fitting graphical models, the data is standardized by:

𝑥
(scaled)
𝑖 𝑗

≔
𝑥𝑖 𝑗 − 𝜇 𝑗
�̂� 𝑗

,

where 𝑖 = 1, . . . , 711 and 𝑗 = 1, . . . , 12. The mean 𝜇 𝑗 and standard deviation �̂� 𝑗 for each variable 𝑗 are

computed as:

𝜇 𝑗 ≔
1

711

711∑︁
𝑖=1

𝑥𝑖 𝑗 , and �̂� 𝑗 ≔

√√√
1

710

711∑︁
𝑖=1

𝑥2

𝑖 𝑗
.

Table 6.2 presents the descriptive statistics for the scaled flight variables. The variables trd, lm, tbs, and
bd exhibit skewness that deviates from normality, while trd, tsd, tbs, and ea display kurtosis that is not

consistent with a normal distribution.

Furthermore, Figure 6.1 shows the histograms for each variable, overlaid with the fitted kernel density

estimation (KDE) and the standard normal distribution. Both the descriptive statistics and the margin plots

indicate that the marginal distributions of these variables generally do not follow a normal distribution.

Consequently, non-parametric KDE margins, as described in Section 3.1.1, are fitted to the flight data.

These margins are then used to transform the scaled data from the x-level to the u-level using the proba-

bility integral transform:

𝑢𝑖 𝑗 ≔ 𝐹 𝑗 (𝑥 (scaled)𝑖 𝑗
), for 𝑖 = 1, . . . , 711, 𝑗 = 1, . . . , 12,

where 𝐹 𝑗 represents the fitted KDE margin for the 𝑗-th variable. The variable numbering is detailed in

Table 6.1, and the fit statistics are provided in Table 6.3.

Figure 6.2 illustrates the pair plots of the transformed data û. Many of the contour plots show deviations

from an elliptical shape, suggesting that a Gaussian dependence structure may not be appropriate. For

instance, the dependence structure between tbs and bd exhibits asymmetric tail dependencies. Overall, the

data do not appear to follow a multivariate Gaussian distribution, indicating that a pair-copula Bayesian

network approach may be more suitable than a classical Gaussian Bayesian network.

6.1 Exploratory Data Analysis

93

Figure 6.1 Histograms, fitted KDE margins (blue) and fitted Gaussian margins (red) of the scaled flight data

Variable Log-Likelihood df AIC BIC
th80 -999.98 8.14 2016.23 2053.38

hws -998.01 7.71 2011.45 2046.65

temp -971.47 6.52 1955.98 1985.78

refAP -1000.84 5.09 2011.85 2035.10

asd -1003.01 4.21 2014.43 2033.66

trd -890.42 14.22 1809.27 1874.20

tsd -955.26 10.85 1932.22 1981.77

lm -893.52 6.34 1799.72 1828.67

tbs -560.88 13.01 1147.78 1207.18

bd -955.04 6.13 1922.34 1950.34

td -1000.83 4.48 2010.62 2031.06

ea -983.03 11.29 1988.65 2040.23

SUM -11212.29 97.99 22620.55 23068.02

Table 6.3 Fit statistics of the KDE margins for the flight data. The column df shows the degrees of freedom

6 Data Application: Flight Data Analysis

94

Figure 6.2 Pair plots of the flight data at the u-level using KDE-based marginal distributions

Figure 6.3 Expert DAG for the flight data

6.2 Model 1: Expert DAG

95

Number Variable Parent Order
1 th80 lm <1 td <1 hws <1 ea <1 tsd <1 trd
2 hws -

3 temp -

4 refAP -

5 asd hws
6 trd tsd <6 td <6 asd <6 refAP
7 tsd td <7 temp <7 asd
8 lm -

9 tbs asd <9 lm
10 bd tbs <10 lm <10 hws <10 temp <10 asd <10 refAP <10 td
11 td asd <11 lm
12 ea tbs <12 lm <12 bd

Table 6.4 Estimated parent orders for the PCBN fitted to the Expert DAG for the flight data

6.2 Model 1: Expert DAG

Consider the DAG shown in Figure 6.3. This graph was developed using expert knowledge from the Flight

Dynamics Group of Prof. Holzapfel at the Technical University of Munich. It consists of 28 edges and will

be referred to as the Expert DAG.
The objective is to fit a pair-copula Bayesian network to the scaled flight data using the Expert DAG. This

requires estimating a parent order for each node with multiple parents, as well as determining a bivariate

copula associated with each edge in the DAG. To accomplish this, a DV-SEM is constructed sequentially

by performing D-vine-based regression for each node, given its parents, as introduced in Section 3.1. In

this process, each node serves as the response variable, while its parents act as covariates. The margins

are fitted using kernel density estimation, as shown in Figure 6.1.

The construction of the D-vines employs the conditional log-likelihood as the selection criterion, with

the family set including all parametric bivariate copulas defined in Appendix B. After fitting each D-vine,

the estimated parent order for a node 𝑣 is determined by the order of its parents in the first tree of the

D-vine where 𝑣 is the response variable. The estimated parent orders are presented in Table 6.4.

Additionally, the pair-copulas used in the decomposition of the estimated PCBN are those found in the

first edge of each tree of the fitted D-vines. These pair-copulas are listed in Table 6.5. The product of the

28 pair-copula densities corresponding to the edges in Table 6.5 forms the copula density of the estimated

Bayesian network.

It is worth noting that many of the estimated bivariate copulas have a low estimated Kendall’s 𝜏-value

and consequently a low log-likelihood. If model selection criteria such as AIC or BIC had been used instead

of the conditional log-likelihood in the D-vine regression, some variables might not have been selected,

suggesting that the parental sets could potentially be reduced, leading to sparser DAGs.

The overall model fit will be presented in Section 6.5 and compared, node-by-node, to the models ob-

tained by applying structure learning algorithms using the Y-test and Z-test, respectively.

6.3 Model 2: Y-DAG

Instead of relying on expert knowledge, the objective is now to learn the structure of the Bayesian network

directly from the data. In this section, the Y-vine conditional independence test is employed within the

PC algorithm to perform structure learning based on the scaled data. As before, marginal distributions

are fitted using kernel density estimation. The significance level, denoted as 𝛼𝑌 , for testing ordinary

independence, and the tuning parameter 𝑘𝑌 , used for testing conditional independence with non-empty

6 Data Application: Flight Data Analysis

96

Edge 𝒊, 𝒋; S Family Rotation Parameters df 𝝉 Log-Likelihood
lm→ th80 1,8 BB8 180° (3.56, 0.84) 2 0.45 198.23

td → th80 1,11 ; 8 Frank 0° 4.35 1 0.41 149.12

hws→ th80 1,2 ; 8,11 Gaussian 0° -0.49 1 -0.33 96.12

ea→ th80 1,12 ; 8,11,2 BB1 180° (0.31, 1.20) 2 0.28 78.31

tsd → th80 1,7 ; 8,11,2,12 BB8 0° (1.07, 1.00) 2 0.04 3.68

trd → th80 1,6 ; 8,11,2,12,7 Gaussian 0° 0.06 1 0.04 1.10

hws→ asd 5,2 BB8 0° (1.46, 0.87) 2 0.12 14.86

tsd → trd 6,7 BB1 180° (0.05, 1.14) 2 0.15 23.03

td → trd 6,11 ; 7 t 0° (0.08, 14.13) 2 0.05 3.56

asd → trd 6,5 ; 7,11 Gaussian 0° -0.07 1 -0.05 1.93

refAP → trd 6,4 ; 7,11,5 BB8 0° (1.60, 0.35) 2 0.03 0.83

td → tsd 7,11 BB7 270° (1.14, 0.18) 2 -0.15 25.31

temp→ tsd 7,3 ; 11 BB1 0° (0.03, 1.04) 2 0.05 4.67

asd → tsd 7,5 ; 11,3 BB1 90° (0.05, 1.02) 2 -0.04 2.03

asd → tbs 9,5 t 0° (0.07, 17.28) 2 0.04 2.21

lm→ tbs 9,8 ; 5 BB8 270° (1.21, 0.68) 2 -0.03 0.96

tbs→ bd 10,9 BB6 90° (1.76, 1.16) 2 -0.40 192.19

lm→ bd 10,8 ; 9 BB1 0° (0.57, 1.29) 2 0.40 169.47

hws→ bd 10,2 ; 9,8 BB1 270° (0.06, 1.33) 2 -0.27 68.36

temp→ bd 10,3 ; 9,8,2 BB8 0° (1.49, 0.90) 2 0.14 17.27

asd → bd 10,5 ; 9,8,2,3 BB8 0° (1.41, 0.93) 2 0.14 17.11

refAP → bd 10,4 ; 9,8,2,3,5 Gaussian 0° -0.11 1 -0.07 4.19

td → bd 10,11 ; 9,8,2,3,5,4 Gaussian 0° -0.09 1 -0.06 3.05

asd → td 11,5 BB7 90° (1.02, 0.12) 2 -0.07 6.15

lm→ td 11,8 ; 5 Joe 180° 1.03 1 0.02 1.11

tbs→ ea 12,9 BB8 0° (1.38, 1.00) 2 0.17 49.90

lm→ ea 12,8 ; 9 BB8 90° (1.14, 0.99) 2 -0.07 5.86

bd → ea 12,10 ; 9,8 t 0° (0.20, 6.04) 2 0.13 21.95

Table 6.5 Summary of estimated pair-copulas associated with the 28 edges of the Expert DAG fitted to the flight data.

The numbering of the variables is according to Table 6.1. 𝜏-values outside the range of -0.1 and 0.1 are highlighted

in blue

6.3 Model 2: Y-DAG

97

conditioning sets, are both set to 0.05. The selection criterion for fitting Y-vines is the adjusted conditional

log-likelihood, and the family set includes all parametric bivariate copulas as defined in Appendix B.

Applying the PC algorithm directly to the data may yield edges or edge directions that are not plausible

given the underlying reality represented by the data. Therefore, it is prudent to impose some constraints

on the algorithm. This is accomplished by incorporating a blacklist — a set of edges that are prohibited

from appearing in the final DAG due to their lack of interpretability. For the flight data, the blacklist

consists of the following constraints:

i) th80 cannot have outgoing edges.

ii) hws, temp, refAP and lm cannot have incoming edges.

The first constraint is justified because th80 represents an outcome variable used to assess the risk of a run-

way overrun. The variables hws (headwind speed), temp (temperature), refAP (reference air pressure), and

lm (landing weight) cannot have incoming edges as they represent external conditions or initial settings

that influence the landing process but are not themselves influenced by other variables in the network.

Consequently, there can also not be any edges between these four variables.

A blacklisted version of the PC algorithm is implemented in the R-package pcalg (Kalisch and Bühlmann

2007). However, this package only allows for blacklists that specify the complete absence of certain edges,

not constraints on specific edge directions. When an edge is included in the blacklist, it is entirely removed

from the initial graph, which typically corresponds to a fully connected undirected graph among all nodes.

Other R-packages, such as bnlearn (Scutari and Silander 2024), permit directional blacklists within the

PC algorithm but do not offer an interface for including user-specified conditional independence tests.

To address these limitations, the first step of the PC algorithm (skeleton estimation) is performed using

the pcalg package, where the blacklist specifies that no edges are allowed between hws, temp, refAP, and
lm. The second and third steps of the PC algorithm (identification of v-structures and remaining edge

directions) are conducted manually to account for the blacklisted edge directions.

6.3.1 Determination of Edge Directions

The estimated skeleton obtained after applying the PC algorithmwith the Y-vine conditional independence

test is shown in Figure 6.4. It consists of 18 undirected edges. To manually determine all edge directions,

the following heuristics are applied in sequence:

(H1) Edges constrained by the blacklist: Set the directions of edges that are limited to a single possible

direction by the blacklist.

(H2) Alignment with the Expert DAG: For edges also present in the Expert DAG, assign the same

direction as specified in the Expert DAG. If this introduces a new v-structure, verify whether the

d-separation sets obtained from the skeleton estimation support the new v-structure. A v-structure

𝑖 → 𝑗 ← 𝑘 is only plausible if 𝑗 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑖, 𝑘).

(H3) Remaining edges: Direct any remaining edges, attempting to introduce new v-structures where

feasible.

(H1) applies to 11 of the 18 edges. These edges are directed as follows:

• hws→ th80.

• hws→ ea.

• hws→ bd.

• hws→ tsd.

• hws→ asd.

6 Data Application: Flight Data Analysis

98

Figure 6.4 Estimated skeleton for the flight data using Y-vine-based conditional independence testing with 𝛼𝑌 =

𝑘𝑌 = 0.05

• temp→ tsd.

• lm→ th80.

• lm→ ea.

• lm→ bd.

• tbs→ th80.

• td → th80.

(H2) applies to 5 of the remaining 7 undirected edges:

• td→ tsd:

– New v-structure td → tsd ← hws. It holds that tsd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑑, ℎ𝑤𝑠) = {𝑎𝑠𝑑} ⇒ v-structure
possible.

– New v-structure td → tsd ← temp. It holds that tsd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑑, 𝑡𝑒𝑚𝑝) = ∅ ⇒ v-structure
possible.

⇒ Direction td → tsd is set.

• tbs→ bd:

– New v-structure tbs→ bd← lm. It holds that bd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑏𝑠, 𝑙𝑚) = ∅ ⇒ v-structure possi-
ble.

– New v-structure tbs → bd ← hws. It holds that bd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑏𝑠, ℎ𝑤𝑠) = ∅ ⇒ v-structure
possible.

⇒ Direction tbs→ bd is set.

• asd→ td: No new v-structure.

⇒ Direction asd → td is set.

6.3 Model 2: Y-DAG

99

Figure 6.5 Fitted DAG based on the Y-vine conditional independence test for the flight data

• tbs→ ea:

– New v-structure tbs→ ea← lm. It holds that ea ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑏𝑠, 𝑙𝑚) = ∅⇒ v-structure possible.

– New v-structure tbs → ea ← hws. It holds that ea ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑏𝑠, ℎ𝑤𝑠) = ∅ ⇒ v-structure
possible.

⇒ Direction tbs→ ea is set.

• tsd→ trd: No new v-structure.

⇒ Direction tsd → trd is set.

After applying (H2), the remaining undirected edges are asd − ea and trd − ea. Considering the variable

definitions, the only reasonable directions are asd → ea and trd → ea. It remains to verify whether the

new v-structure asd → ea← trd is possible. Since 𝑒𝑎 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑎𝑠𝑑, 𝑡𝑟𝑑) = {ℎ𝑤𝑠}, this is indeed the case,

and these edges are directed accordingly.

Figure 6.5 illustrates the final DAG after all edges have been directed. This DAG will henceforth be

referred to as the Y-DAG, as its skeleton estimation is based on Y-vine independence testing.

6.3.2 Parameter Learning

The next objective is to estimate the pair-copulas corresponding to the 18 edges of the fitted Y-DAG. The

procedure follows the same steps as those used for the Expert DAG described in Section 6.2. Specifically,

a DV-SEM will be fitted to the Y-DAG by applying D-vine-based regression for each node conditional on

its parents.

The resulting estimated parent order for each node is provided in Table 6.6, while the estimated pair-

copulas associatedwith each edge are detailed in Table 6.7. Compared to the expertmodel, the Y-vine-based

model is more parsimonious, featuring fewer edges and fitting fewer copulas with small absolute 𝜏-values.

A comprehensive comparison of all models will be presented in Section 6.5.

6 Data Application: Flight Data Analysis

100

Number Variable Parent Order
1 th80 lm <1 td <1 hws <1 tbs
2 hws -

3 temp -

4 refAP -

5 asd hws
6 trd tsd
7 tsd td <7 hws <7 temp
8 lm -

9 tbs -

10 bd tbs <10 lm <10 hws
11 td asd
12 ea tbs <12 asd <12 trd <12 hws <12 lm

Table 6.6 Estimated parent orders for the PCBN fitted to the estimated Y-DAG for the flight data

Edge 𝒊, 𝒋; S Family Rotation Parameters df 𝝉 Log-Likelihood
lm→ th80 1,8 BB8 180° (3.56, 0.84) 2 0.45 198.23

td → th80 1,11 ; 8 Frank 0° 4.35 1 0.41 149.12

hws→ th80 1,2 ; 8,11 Gaussian 0° -0.49 1 -0.33 96.12

tbs→ th80 1,9 ; 8,11,2 BB1 180° (0.40, 1.08) 2 0.23 56.69

hws→ asd 5,2 BB8 0° (1.46, 0.87) 2 0.12 14.86

tsd → trd 6,7 BB1 180° (0.05, 1.14) 2 0.15 23.03

td → tsd 7,11 BB7 270° (1.14, 0.18) 2 -0.15 25.31

hws→ tsd 7,2 ; 11 BB8 90° (1.32, 0.90) 2 -0.09 9.16

temp→ tsd 7,3 ; 11,2 BB1 0° (0.03, 1.04) 2 0.05 4.45

tbs→ bd 10,9 BB6 90° (1.76, 1.16) 2 -0.40 192.19

lm→ bd 10,8 ; 9 BB1 0° (0.57, 1.29) 2 0.40 169.47

hws→ bd 10,2 ; 9,8 BB1 270° (0.06, 1.33) 2 -0.27 68.36

asd → td 11,5 BB7 90° (1.02, 0.12) 2 -0.07 6.15

tbs→ ea 12,9 BB8 0° (1.38, 1.00) 2 0.17 49.90

asd → ea 12,5 ; 9 BB8 270° (3.27, 0.48) 2 -0.18 24.28

trd → ea 12,6 ; 9,5 BB8 0° (2.20, 0.56) 2 0.12 12.00

hws→ ea 12,2 ; 9,5,6 Clayton 0° 0.19 1 0.09 9.93

lm→ ea 12,8 ; 9,5,6,2 BB8 90° (1.30, 0.83) 2 -0.07 4.98

Table 6.7 Summary of estimated pair-copulas associated with the 18 edges of the Y-DAG fitted to the flight data.

The numbering of the variables is according to Table 6.1. 𝜏-values outside the range of -0.1 and 0.1 are highlighted

in blue

6.4 Model 3: Z-DAG

101

Figure 6.6 Estimated skeleton for the flight data using Fisher’s Z-test with 𝛼𝑍 = 0.05

6.4 Model 3: Z-DAG

The PC algorithm is applied again to learn the structure of the Bayesian network using the scaled flight

data, but this time, Fisher’s Z-test for partial correlation is used to assess conditional independence. The

significance level for the Z-test is set to 𝛼𝑍 = 0.05. The same blacklist as in the previous section is utilized.

As before, the directions of the edges must be determined manually after estimating the skeleton.

6.4.1 Determination of Edge Directions

Figure 6.6 shows the estimated skeleton after applying the first step of the PC algorithm using Fisher’s Z-

test for conditional independence. The graph contains 19 undirected edges. The same heuristics outlined

in Section 6.3.1 are now applied to determine the edge directions.

(H1) applies to 10 of the 19 edges, which are directed as follows:

• hws→ th80.

• hws→ bd.

• hws→ tsd.

• hws→ asd.

• temp→ th80.

• temp→ tsd.

• lm→ th80.

• lm→ bd.

• tbs→ th80.

• td → th80.

6 Data Application: Flight Data Analysis

102

(H2) is then applied to 6 of the remaining 9 undirected edges:

• tsd→ trd: No new v-structure.

⇒ Direction tsd → trd is set.

• td→ tsd:

– New v-structure td → tsd ← hws. It holds that tsd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑑, ℎ𝑤𝑠) = {𝑎𝑠𝑑} ⇒ v-structure
possible.

– New v-structure td → tsd ← temp. It holds that tsd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑑, 𝑡𝑒𝑚𝑝) = ∅ ⇒ v-structure
possible.

⇒ Direction td → tsd is set.

• tbs→ bd:

– New v-structure tbs→ bd← lm. It holds that bd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑏𝑠, 𝑙𝑚) = ∅ ⇒ v-structure possi-
ble.

– New v-structure tbs→ bd ← hws. It holds that bd ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑏𝑠, ℎ𝑤𝑠) = {𝑒𝑎} ⇒ v-structure
possible.

⇒ Direction tbs→ bd is set.

• asd→ td: No new v-structure.

⇒ Direction asd → td is set.

• tbs→ ea: No new v-structure.

⇒ Direction tbs→ ea is set.

• bd→ ea: No new v-structure.

⇒ Direction bd → ea is set.

After applying (H2), the remaining undirected edges are asd − ea, trd − ea, and trd − tbs. First, note that
the v-structure 𝑡𝑟𝑑 → 𝑒𝑎 ← 𝑎𝑠𝑑 is not possible since 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑡𝑟𝑑, 𝑎𝑠𝑑) = {𝑒𝑎}. Additionally, setting 𝑡𝑟𝑑 →
𝑒𝑎 → 𝑎𝑠𝑑 would create a directed cycle. Therefore, 𝑡𝑟𝑑 ← 𝑒𝑎 must be assigned. This leaves two possible

configurations: 𝑒𝑎 ← 𝑎𝑠𝑑 or 𝑒𝑎 → 𝑎𝑠𝑑 . In both scenarios, the direction 𝑡𝑏𝑠 → 𝑡𝑟𝑑 must be set to avoid

creating a directed cycle. The direction 𝑒𝑎 ← 𝑎𝑠𝑑 appears more plausible. It introduces the v-structures

𝑎𝑠𝑑 → 𝑒𝑎 ← 𝑡𝑏𝑠 and 𝑎𝑠𝑑 → 𝑒𝑎 ← 𝑏𝑑 . These are valid because 𝑒𝑎 ∉ 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑎𝑠𝑑, 𝑡𝑏𝑠) = 𝑠𝑒𝑝𝑠𝑒𝑡 (𝑎𝑠𝑑, 𝑏𝑑) = ∅.
Thus, the final directions for these edges are:

• 𝑎𝑠𝑑 → 𝑒𝑎.

• 𝑒𝑎 → 𝑡𝑟𝑑 .

• 𝑡𝑏𝑠 → 𝑡𝑟𝑑 .

Figure 6.7 shows the final DAG after all edges have been assigned directions. This DAG will be referred to

as the Z-DAG, reflecting that its skeleton was estimated using Fisher’s Z-test for partial correlation.

6.4.2 Parameter Learning

As with the previous two models, the pair-copulas associated with the 19 edges of the fitted Z-DAG are

estimated. The estimation procedure follows the same steps outlined for the Expert DAG in Section 6.2.

In particular, a DV-SEM is fitted to the Z-DAG using D-vine-based regression for each node, given its

parent nodes. The estimated parent order for each node is shown in Table 6.8, and the corresponding

pair-copulas for each edge are listed in Table 6.9. Like the Y-vine-based model, the Z-test-based model is

more parsimonious than the expert model, containing fewer edges and fitting fewer copulas with small

absolute 𝜏-values.

6.4 Model 3: Z-DAG

103

Figure 6.7 Fitted DAG based on Fisher’s Z-test for the flight data

Number Variable Parent Order
1 th80 lm <1 td <1 hws <1 tbs <1 temp
2 hws -

3 temp -

4 refAP -

5 asd hws
6 trd tsd <6 tbs <6 ea
7 tsd td <7 hws <7 temp
8 lm -

9 tbs -

10 bd tbs <10 lm <10 hws
11 td asd
12 ea tbs <12 asd <12 bd

Table 6.8 Estimated parent orders for the PCBN fitted to the estimated Z-DAG for the flight data

6 Data Application: Flight Data Analysis

104

Edge 𝒊, 𝒋; S Family Rotation Parameters df 𝝉 Log-Likelihood
lm→ th80 1,8 BB8 180° (3.56, 0.84) 2 0.45 198.23

td → th80 1,11 ; 8 Frank 0° 4.35 1 0.41 149.12

hws→ th80 1,2 ; 8,11 Gaussian 0° -0.49 1 -0.33 96.12

tbs→ th80 1,9 ; 8,11,2 BB1 180° (0.40, 1.08) 2 0.23 56.69

temp→ th80 1,3 ; 8,11,2,9 Gaussian 0° 0.29 1 0.19 30.73

hws→ asd 5,2 BB8 0° (1.46, 0.87) 2 0.12 14.86

tsd → trd 6,7 BB1 180° (0.05, 1.14) 2 0.15 23.03

tbs→ trd 6,9 ; 7 BB8 90° (1.56, 0.80) 2 -0.12 12.74

ea→ trd 6,12 ; 7,9 BB8 0° (2.89, 0.43) 2 0.13 12.63

td → tsd 7,11 BB7 270° (1.14, 0.18) 2 -0.15 25.31

hws→ tsd 7,2 ; 11 BB8 90° (1.32, 0.90) 2 -0.09 9.16

temp→ tsd 7,3 ; 11,2 BB1 0° (0.03, 1.04) 2 0.05 4.45

tbs→ bd 10,9 BB6 90° (1.76, 1.16) 2 -0.40 192.19

lm→ bd 10,8 ; 9 BB1 0° (0.57, 1.29) 2 0.40 169.47

hws→ bd 10,2 ; 9,8 BB1 270° (0.06, 1.33) 2 -0.27 68.36

asd → td 11,5 BB7 90° (1.02, 0.12) 2 -0.07 6.15

tbs→ ea 12,9 BB8 0° (1.38, 1.00) 2 0.17 49.90

asd → ea 12,5 ; 9 BB8 270° (3.27, 0.48) 2 -0.18 24.28

bd → ea 12,10 ; 9,5 t 0° (0.11, 8.99) 2 0.07 8.50

Table 6.9 Summary of estimated pair-copulas associated with the 19 edges of the Z-DAG fitted to the flight data.

The numbering of the variables is according to Table 6.1. 𝜏-values outside the range of -0.1 and 0.1 are highlighted

in blue

6.5 Model Comparison

Finally, this section compares the expert, Y-, and Z-models. Unlike in the simulation studies, the true

underlying DAG is unknown here, making it difficult to determine which structure is closest to the true

one using standard measures like the Structural Hamming Distance. Therefore, the SHD can only be used

to compare the models relative to each other. The SHD values are as follows:

• SHD(Expert DAG, Y-DAG)= 21.

• SHD(Expert DAG, Z-DAG)= 22.

• SHD(Y-DAG, Z-DAG)= 6.

(a) Expert DAG (28 edges) (b) Y-DAG (18 edges) (c) Z-DAG (19 edges)

Figure 6.8 Comparison of the Expert DAG, Y-DAG, and Z-DAG

6.5 Model Comparison

105

Variable Parent Order Expert Parent Order Y Parent Order Z
th80 lm, td, hws, ea, tsd, trd lm, td, hws, tbs lm, td, hws, tbs, temp
hws - - -

temp - - -

refAP - - -

asd hws hws hws
trd tsd, td, asd, refAP tsd tsd, tbs, ea
tsd td, temp, asd td, hws, temp td, hws, temp
lm - - -

tbs asd, lm - -

bd tbs, lm, hws, temp, asd, refAP, td tbs, lm, hws tbs, lm, hws
td asd, lm asd asd
ea tbs, lm, bd tbs, asd, trd, hws, lm tbs, asd, bd

Table 6.10 Comparison of the parent orders for the Expert DAG, Y-DAG, and Z-DAG of the flight data

Variable Conditional Log-Likelihood df
Expert Y Z Expert Y Z

th80 526.57 500.16 530.89 9 6 7

hws - - - - - -

temp - - - - - -

refAP - - - - - -

asd 14.86 14.86 14.86 2 2 2

trd 29.36 23.03 48.41 7 2 6

tsd 32.01 38.92 38.92 6 6 6

lm - - - - - -

tbs 3.17 - - 4 - -

bd 471.64 430.02 430.02 12 6 6

td 7.27 6.15 6.15 3 2 2

ea 77.70 101.09 82.68 6 9 6

SUM 1162.57 1114.24 1151.94 49 33 35

Table 6.11 Comparison of the conditional copula log-likelihood and degrees of freedom for each variable across the

Expert, Y-, and Z-model of the flight data

These values indicate that the Y-DAG and Z-DAG are structurally more similar to each other than to the

Expert DAG. Both Y- and Z-DAGs have significantly fewer edges than the Expert DAG, as illustrated in

Figure 6.8. Notably, in both the Y-DAG and Z-DAG, the node refAP is isolated, suggesting that refAP
is independent of all other nodes in the network. This outcome reflects the results of the conditional

independence tests.

Table 6.10 compares the estimated parent orders across all three models. Overall, these orders exhibit

some similarities, but there are notable exceptions, such as for the nodes tbs and bd. In the DAGs where the
PC algorithm was applied, tbs has no parents, unlike in the Expert DAG. Additionally, in the Expert DAG,

the node bd has seven incoming edges, whereas in the Y-DAG and Z-DAG, only the first three parents

from the Expert DAG’s parent order are retained.

Table 6.11 provides the conditional copula log-likelihood for each node given its parents in all three

models, along with the respective degrees of freedom. Table 6.12 presents the conditional AIC and BIC

values. Overall, the PCBN model fitted to the Expert DAG shows the highest estimated log-likelihood,

while the PCBN model fitted to the Z-DAG exhibits the lowest AIC and BIC values. The Y-DAG model

6 Data Application: Flight Data Analysis

106

Variable Conditional AIC Conditional BIC
Expert Y Z Expert Y Z

th80 -1035.13 -988.33 -1047.79 -994.03 -960.93 -1015.82

hws - - - - - -

temp - - - - - -

refAP - - - - - -

asd -25.72 -25.72 -25.72 -16.58 -16.58 -16.58

trd -44.71 -42.07 -84.83 -12.74 -32.93 -57.43

tsd -52.02 -65.85 -65.85 -24.62 -38.45 -38.45

lm - - - - - -

tbs 1.67 - - 19.93 - -

bd -919.29 -848.04 -848.04 -864.49 -820.64 -820.64

td -8.53 -8.30 -8.30 5.17 0.83 0.83

ea -143.41 -184.19 -153.36 -116.00 -143.09 -125.96

SUM -2227.14 -2162.49 -2233.87 -2003.37 -2011.79 -2074.04

Table 6.12 Comparison of the conditional AIC and BIC for each variable across the Expert, Y- and Z-model

shows a better conditional fit than the other two models only for the node ea, but it lags behind for the

node th80.
Comparing the Z-DAG to the Y-DAG suggests that including the edge temp→ th80 could improve the

overall fit of the Y-vine-based model. Notably, the Expert DAG is the only model in which the node tbs has
parents, but this does not appear to be supported by the data, as the conditional AIC and BIC for this node

are positive. Overall, after accounting for the degrees of freedom, the more parsimonious models based on

the Y- or Z-tests are favored over the expert model due to their simplicity and better penalized fit statistics.

107

7 Data Application: Sachs Data Analysis

The Sachs dataset is a benchmark dataset widely used in causal inference and graphical modeling. It

originates from a study by Sachs et al. (2005), which aimed to explore the causal relationships between

various molecular entities in human cells. This dataset contains observations on protein expression levels

under different experimental conditions, offering insights into the interactions and causal dependencies

among these proteins. One notable experiment, "CD3CD28+AktInhib", involves stimulating T cells with

antibodies against CD3 and CD28 to mimic an activation signal, combined with the application of an Akt

inhibitor to examine how inhibiting the Akt signaling pathway affects cellular responses in activated T

cells (Sachs et al. 2005).

The dataset from this experiment comprises 𝑛 = 911 observations (cells) and 𝑑 = 11 variables (proteins).

It was previously analyzed by Czado and Scharl (2021), who fitted a DV-SEM to an expert DAG using

D-vine-based regression for each node conditional on its parents. Their approach utilized the BIC for

model selection, which led to some parents not being included in the D-vines and resulted in fewer edges

compared to the expert DAG.

This thesis builds on that research by applying the PC algorithm, utilizing the Y-vine conditional inde-

pendence test and Fisher’s Z-test for partial correlation, to determine the structure of the Bayesian net-

work without relying on expert knowledge. Additionally, D-vine-based regression will be employed, as

done with the flight data, for parameter learning. Various choices for tuning parameters and significance

levels for conditional independence testing will be compared. The expert DAG from Sachs et al. (2005) will

be used as a traditional benchmark to evaluate and compare the fitted structures.

7.1 Exploratory Data Analysis

Let the Sachs data be presented by x = (x⊤
1
, . . . , x⊤

911
), where each x𝑘 = (𝑥𝑘,1, . . . , 𝑥𝑘,11)⊤ for 𝑘 = 1, . . . , 911.

Prior to fitting graphical models, the data is log transformed and standardized by:

𝑥
(log,scaled)
𝑖 𝑗

≔
ln(𝑥𝑖 𝑗) − 𝜇log𝑗

�̂�
log

𝑗

,

where 𝑖 = 1, . . . , 911 and 𝑗 = 1, . . . , 11. The mean 𝜇
log

𝑗
and standard deviation �̂�

log

𝑗
for each variable 𝑗 are

computed as:

𝜇
log

𝑗
≔

1

911

911∑︁
𝑖=1

ln(𝑥𝑖 𝑗), and �̂�
log

𝑗
≔

√√√
1

910

911∑︁
𝑖=1

ln(𝑥𝑖 𝑗)2.

Figure 7.1 shows the histograms for each variable, overlaid with the fitted kernel density estimation (KDE)

and the standard normal distribution. The margin plots indicate that the marginal distributions of these

variables generally do not follow a normal distribution as first observed by Czado and Scharl (2021).

Consequently, non-parametric KDEmargins, as described in Section 3.1.1, are fitted to the log-transformed

and scaled Sachs data. These margins are then used to transform the data from the x-level to the u-level

using the probability integral transform:

𝑢𝑖 𝑗 ≔ 𝐹 𝑗 (𝑥 (log,scaled)𝑖 𝑗
), for 𝑖 = 1, . . . , 911, 𝑗 = 1, . . . , 11,

where 𝐹 𝑗 represents the fitted KDE margin for the 𝑗-th variable. The variable numbering and the fit statis-

tics are provided in Table 7.1.

7 Data Application: Sachs Data Analysis

108

Figure 7.1 Histograms, fitted KDE margins (blue) and fitted Gaussian margins (red) of the log-transformed and

scaled Sachs data

Number Variable Log-Likelihood df AIC BIC
1 raf -1228.56 7.23 2471.57 2506.38

2 mek -1220.18 11.07 2462.50 2515.82

3 plc -1236.08 6.70 2485.56 2517.79

4 pip2 -1155.21 8.65 2327.71 2369.35

5 pip3 -1179.64 11.69 2382.65 2438.93

6 erk -1283.88 7.77 2583.29 2620.69

7 akt -1228.90 12.88 2483.56 2545.55

8 pka -1177.20 12.67 2379.74 2440.75

9 pkc -1007.29 6.83 2028.25 2061.13

10 p38 -1032.90 8.51 2082.81 2123.79

11 jnk -1192.28 10.68 2405.92 2457.34

𝚺 SUM -12942.11 104.67 26093.56 26597.52

Table 7.1 Variable numbering and fit statistics of the KDE margins for the Sachs data. The column df shows the

degrees of freedom

7.1 Exploratory Data Analysis

109

Figure 7.2 Pair plots of the Sachs data on the u-level based on KDE margins

7 Data Application: Sachs Data Analysis

110

Figure 7.3 Expert DAG for the Sachs data

Figure 7.2 illustrates the pair plots of the transformed data û. Many of the contour plots show deviations

from an elliptical shape, suggesting that a Gaussian dependence structure may not be appropriate. This

was again first observed by Czado and Scharl (2021).

7.2 Model 1: Expert DAG

Consider the DAG shown in Figure 7.3. This graph relies on expert knowledge and was first introduced

in Figure 3 in Sachs et al. (2005). It consists of 20 edges and will be referred to as the Expert DAG for the

remainder of this chapter.

The objective is to fit a pair-copula Bayesian network to the Sachs data using the Expert DAG. This

requires estimating a parent order for each node with multiple parents, as well as determining a bivariate

copula associated with each edge in the DAG. To accomplish this, a DV-SEM is constructed sequentially

by performing D-vine-based regression for each node, given its parents, as introduced in Section 3.1. In

this process, each node serves as the response variable, while its parents act as covariates. The margins

are fitted using kernel density estimation, as shown in Figure 7.1.

The construction of the D-vines employs the conditional log-likelihood as the selection criterion, with

the family set including all parametric bivariate copulas defined in Appendix B. After fitting each D-vine,

the estimated parent order for a node 𝑣 is determined by the order of its parents in the first tree of the

D-vine where 𝑣 is the response variable. The estimated parent orders are presented in Table 7.2.

Additionally, the pair-copulas used in the decomposition of the estimated PCBN are those found in the

first edge of each tree of the fitted D-vines. These pair-copulas are listed in Table 7.3. The product of the

20 pair-copula densities corresponding to the edges in Table 7.3 forms the copula density of the estimated

Bayesian network.

It is worth noting that many of the estimated bivariate copulas have a low estimated Kendall’s 𝜏-value

and consequently a low log-likelihood. If model selection criteria such as AIC or BIC had been used instead

of the conditional log-likelihood in the D-vine regression, some variables might not have been selected.

The overall copula log-likelihood of the PCBN fitted to the Expert DAG is 2042.86, which is the sum of the

7.3 Model 2: Y-DAG

111

Number Variable Parent Order
1 raf pka <1 pkc
2 mek raf <2 pkc <2 pka
3 plc pip3
4 pip2 pip3 <4 plc
5 pip3 -

6 erk pka <6 mek
7 akt erk <7 pka <7 pip3
8 pka pkc
9 pkc pip2 <9 plc
10 p38 pkc <10 pka
11 jnk pkc <11 pka

Table 7.2 Estimated Parent Orders for the Expert DAG of the Sachs data

log-likelihoods of each edge depicted in Table 7.3. It can be observed that the copulas associated with the

five edges raf → mek, pip3→ pip2, erk→ akt, pka→ akt, and pkc→ p38 contribute to

290.70 + 141.93 + 663.26 + 136.00 + 549.20

2042.86

≈ 87.2%

of the overall copula log-likelihood suggesting that the parental sets could potentially be reduced, leading

to sparser DAGs. Czado and Scharl (2021) identified three edges that can be removed from the Expert DAG

by performing D-vine-based regression with a penalized criterion. Namely, these are mek → erk, plc →
pkc, pip3→ akt. This is confirmed by Table 7.3 as the copulas associated with these edges show the lowest

log-likelihood values.

The overall model fit will be presented in Section 7.5 and compared, node-by-node, to the models ob-

tained by applying structure learning algorithms using the Y-test and Z-test, respectively.

7.3 Model 2: Y-DAG

In this section, the Y-vine conditional independence test is integrated into the PC algorithm to perform

structure learning using log-transformed and scaled data. As before, marginal distributions are estimated

using kernel density estimation. The adjusted conditional log-likelihood serves as the selection criterion

for fitting Y-vines, with the family set encompassing all parametric bivariate copulas as outlined in Ap-

pendix B.

Unlike the analysis of the flight data, the significance level for testing ordinary independence, denoted as

𝛼𝑌 , and the tuning parameter 𝑘𝑌 , used for testing conditional independence with non-empty conditioning

sets, are varied and set to different parameters. Additionally, no blacklists are specified for the Sachs data,

and the PC algorithm estimates not only the skeletons but the complete CPDAGs. If the estimated CPDAG

is not already a DAG, the remaining edge directions are manually assigned based on the Expert DAGwhere

applicable.

When choosing different values for 𝛼𝑌 and 𝑘𝑌 , it is important to note that increasing or decreasing

both values simultaneously has opposite effects on the estimated structure. Increasing 𝑘𝑌 , which serves

as an upper bound for the copula in the last tree of the fitted Y-vine, results in higher fitted 𝜏-values being

interpreted as independence copulas, leading to less frequent rejection of the null hypothesis 𝐻0 : 𝑋𝑖 ⊥⊥
𝑋 𝑗 | XS. Consequently, increasing 𝑘

𝑌
leads to more edge removals and sparser fitted graphs. Conversely,

𝛼𝑌 serves as the significance level in testing the ordinary independence hypothesis 𝐻0 : 𝑋𝑖 ⊥⊥ 𝑋 𝑗 , where
the null hypothesis is rejected if and only if:√︄

9𝑛(𝑛 − 1)
2(2𝑛 + 5) · 𝜏𝑛 > Φ−1(1 − 𝛼𝑌 /2) .

7 Data Application: Sachs Data Analysis

112

Edge 𝒊, 𝒋; S Family Rotation Parameters df 𝝉 Log-Likelihood
pka→ raf 1,8 Clayton 180° 0.09 1 0.04 3.16

pkc→ raf 1,9 ; 8 BB8 180° (1.09, 0.94) 2 0.03 1.73

raf → mek 2,1 Gaussian 0° 0.69 1 0.48 290.70

pkc→ mek 2,9 ; 1 Gaussian 0° -0.11 1 -0.07 5.16

pka→ mek 2,8 ; 1,9 BB8 90° (1.10, 0.90) 2 -0.03 1.37

pip3→ plc 3,5 BB8 0° (1.70, 0.98) 2 0.25 99.93

pip3→ pip2 4,5 BB7 0° (1.54, 0.30) 2 0.31 141.93

plc→ pip2 4,3 ; 5 BB8 270° (1.33, 1.00) 2 -0.16 52.82

pka→ erk 6,8 BB7 180° (1.07, 0.34) 2 0.17 52.84

mek→ erk 6,2 ; 8 BB8 180° (1.05, 0.66) 2 0.01 0.05

erk→ akt 7,6 BB1 0° (0.00, 3.00) 2 0.67 663.26

pka→ akt 7,8 ; 6 BB8 0° (2.62, 0.84) 2 0.33 136.00

pip3→ akt 7,5 ; 6,8 BB8 0° (1.06, 0.83) 2 0.01 0.28

pkc→ pka 8,9 BB8 90° (1.19, 0.74) 2 -0.03 1.31

pip2→ pkc 9,4 Clayton 0° 0.07 1 0.03 2.14

plc→ pkc 9,3 ; 4 BB7 90° (1.00, 0.03) 2 -0.02 0.45

pkc→ p38 10,9 BB1 0° (0.29, 2.31) 2 0.62 549.20

pka→ p38 10,8 ; 9 BB8 0° (1.05, 1.00) 2 0.03 3.00

pkc→ jnk 11,9 BB1 0° (0.15, 1.11) 2 0.17 35.84

pka→ jnk 11,8 ; 9 t 0° (-0.01, 17.63) 2 -0.01 1.69

Table 7.3 Summary of estimated pair-copulas associated with the 20 edges of the Expert DAG fitted to the Sachs data.

The numbering of the variables is according to Table 7.1. 𝜏-values outside the range of -0.1 and 0.1 are highlighted

in blue

If 𝛼𝑌 is increased, then both 1 − 𝛼𝑌 /2 and Φ−1(1 − 𝛼𝑌 /2) decrease due to the monotonicity of the quan-

tile function. This leads to more frequent rejection of the null hypothesis, even for smaller values of 𝜏𝑛 ,

resulting in fewer edges being removed. Thus, to increase the sparsity of the resulting model, one should

increase the tuning parameter 𝑘𝑌 while decreasing the significance level 𝛼𝑌 .

In the following, the values for the tuning parameter and significance level are chosen from

(𝑘𝑌 , 𝛼𝑌) ∈ {(0.05, 0.05), (0.025, 0.075), (0.01, 0.09)}.

The fitted CPDAG for each configuration is referred to as a Y-CPDAG, indicating that the estimation

procedure is based on Y-vines. The specific configuration is indicated by a superscript corresponding

to the value of (𝑘𝑌 , 𝛼𝑌); for example, Y-CPDAG
0.025,0.075

represents the fitted CPDAG for the configura-

tion (𝑘𝑌 , 𝛼𝑌) = (0.025, 0.075). The resulting Y-CPDAGs are shown in Figure 7.4, where bi-directed edges

represent undirected edges. The Y-CPDAG
0.05,0.05

contains a total of 9 edges, 7 of which are undirected.

In general, these undirected edges can be oriented in any direction, provided that no new v-structures or

directed cycles are created. To determine the direction of the edges, the following heuristic will be applied:

(H1) Alignment with the Expert DAG: An undirected edge is oriented to match the direction of the

corresponding edge in the Expert DAG, if such an edge exists, and provided that this orientation

does not introduce any new v-structures or directed cycles.

This heuristic (H1) applies to 6 of the 7 undirected edges:

• mek − raf : Set direction raf → mek.

• pkc − p38: Set direction pkc→ p38.

• pkc − jnk: Set direction pkc→ jnk.

7.3 Model 2: Y-DAG

113

(a) 𝑘𝑌 = 𝛼𝑌 = 0.05 (b) 𝑘𝑌 = 0.025, 𝛼𝑌 = 0.075 (c) 𝑘𝑌 = 0.01, 𝛼𝑌 = 0.09

Figure 7.4 Comparison of the fitted Y-CPDAGs for the Sachs data and different values of the tuning parameter 𝑘𝑌

(higher order) and significance level 𝛼𝑌 (order zero)

(a) 𝑘𝑌 = 𝛼𝑌 = 0.05 (b) 𝑘𝑌 = 0.025, 𝛼𝑌 = 0.075 (c) 𝑘𝑌 = 0.01, 𝛼𝑌 = 0.09

Figure 7.5 Comparison of the fitted Y-DAGs for the Sachs data and different values of the tuning parameter 𝑘𝑌

(higher order) and significance level 𝛼𝑌 (order zero)

• pka − erk: Set direction pka→ erk.

• erk − akt: Set direction erk→ akt.

• pka − akt: Set direction pka→ akt.

After applying heuristic (H1), Y-CPDAG
0.05,0.05

has only one remaining undirected edge, which is p38 −
jnk. This edge can be oriented in either direction, and the chosen direction is p38→ jnk.

The Y-CPDAG
0.025,0.075

contains 13 edges, with 2 of them undirected. Heuristic (H1) is applied to the

edge erk − akt, setting the direction to erk→ akt. The remaining undirected edge is again p38 − jnk, which
is directed as p38→ jnk.

The Y-CPDAG
0.01,0.09

contains 16 edges, all of which are directed. Therefore, this CPDAG is already a

DAG. The resulting Y-DAGs, after setting all edge directions, are shown in Figure 7.5. The SHDs between

the Expert DAG and each of the fitted Y-DAGs are as follows:

SHD(Expert DAG, Y-DAG0.05,0.05) = 17,

SHD(Expert DAG, Y-DAG0.025,0.075) = 22,

SHD(Expert DAG, Y-DAG0.01,0.09) = 24.

Thus, although Y-DAG
0.05,0.05

has the fewest edges, it is the most structurally similar to the Expert DAG.

Table 7.4 presents the conditional AIC and BIC values for each node across the fitted Y-DAGs, using dif-

ferent combinations of significance levels and tuning parameters. Among these, the Y-DAG fitted with

parameters 𝛼𝑌 = 0.09 and 𝑘𝑌 = 0.01 has the lowest AIC value, while the Y-DAG fitted with 𝛼𝑌 = 0.075

7 Data Application: Sachs Data Analysis

114

Variable Conditional AIC Conditional BIC
𝛼𝑌 = 0.05

𝑘𝑌 = 0.05

𝛼𝑌 = 0.075

𝑘𝑌 = 0.025

𝛼𝑌 = 0.09

𝑘𝑌 = 0.01

𝛼𝑌 = 0.05

𝑘𝑌 = 0.05

𝛼𝑌 = 0.075

𝑘𝑌 = 0.025

𝛼𝑌 = 0.09

𝑘𝑌 = 0.01

raf - - - - - -

mek -579.40 -579.40 -579.40 -574.59 -574.59 -574.59

plc - -1.30 -1.30 - 8.32 8.32

pip2 - - - - - -

pip3 -452.55 -453.42 -453.42 -433.29 -424.54 -424.54

erk -101.68 - - -92.05 - -

akt -1590.51 -1322.52 -1322.59 -1571.25 -1312.89 -1303.33

pka - -413.96 -410.72 - -389.89 -377.01

pkc - -1131.00 -67.97 - -1102.11 -48.71

p38 -1094.40 - -1203.98 -1084.77 - -1179.91

jnk -170.11 -132.04 - -150.85 -122.41 -

SUM -3988.65 -4033.65 -4039.38 -3906.80 -3918.10 3899.76

Table 7.4 Comparison of the conditional AIC and BIC for each variable of the Sachs data across the fitted Y-models

under different choices of 𝛼𝑌 and 𝑘𝑌

and 𝑘𝑌 = 0.025 achieves the lowest BIC value. There are notable differences in the fit statistics for certain

nodes due to variations in edge direction across the DAGs. For instance, the edge 𝑝𝑘𝑐 → 𝑝38 is present in

both Y-DAG
0.05,0.05

and Y-DAG
0.01,0.09

, whereas in Y-DAG
0.025,0.075

, the direction is reversed to 𝑝𝑘𝑐 ← 𝑝38.

As a result, the first two DAGs have lower AIC and BIC values for the node p38, while Y-DAG
0.025,0.075

shows lower AIC and BIC values for the node pkc.
The fitted pair-copulas for each edge of the Y-DAG

0.025,0.075
are depicted in Table 7.5. Compared to the

Expert DAG, less copulas with low absolute 𝜏-values were fitted in this case. However, 5 of the 13 edges

still exhibit low log-likelihood values indicating that a removal of these edges may be feasible.

7.4 Model 3: Z-DAG

The PC algorithm is applied again to learn the structure of the Bayesian network using the log-transformed

and scaled Sachs data, but this time, Fisher’s Z-test for partial correlation is used to assess conditional

independence. The significance level for the Z-test, 𝛼𝑍 , is varied across the values {0.05, 0.09, 0.13}. Similar

to the significance level 𝛼𝑌 used for ordinary independence testing in the Y-test, increasing 𝛼𝑍 results in

the null hypothesis of (conditional) independence being rejected more frequently, leading to less sparse

graphical structures.

As before, the fitted CPDAG for each configuration is referred to as a Z-CPDAG, reflecting that the

estimation procedure is based on Fisher’s Z-test. The specific configuration is denoted by a superscript

indicating the value of 𝛼𝑍 ; for instance, Z-CPDAG0.05
corresponds to the fitted CPDAG with 𝛼𝑍 = 0.05.

The resulting Z-CPDAGs are depicted in Figure 7.6, where bi-directed edges represent undirected edges.

To determine the edge directions, the heuristic (H1) will be applied again. The Z-DAG
0.05

consists of 8

edges in total, all of which are initially undirected. The heuristic (H1) is applicable to 7 of these edges:

• mek − raf : Set direction raf → mek.

• pkc − p38: Set direction pkc→ p38.

• pka − erk: Set direction pka→ erk.

• erk − akt: Set direction erk→ akt.

• pka − akt: Set direction pka→ akt.

7.4 Model 3: Z-DAG

115

Edge 𝒊, 𝒋; S Family Rotation Parameters df 𝝉 Log-Likelihood
raf → mek 2,1 Gaussian 0° 0.69 1 0.48 290.70

mek→ plc 3,2 BB8 180° (1.14, 0.91) 2 0.04 2.65

pip2→ pip3 5,4 BB7 0° (1.54, 0.30) 2 0.31 141.93

plc→ pip3 5,3 ; 4 BB8 0° (1.87, 0.93) 2 0.26 88.35

raf → pip3 5,1 ; 4 t 0° (0.04, 15.68) 2 0.03 2.44

erk→ akt 7,6 BB1 0° (0.00, 3.00) 2 0.67 663.26

akt→ pka 8,7 BB7 180° (1.13, 0.66) 2 0.28 129.61

erk→ pka 8,6 ; 7 BB8 270° (2.28, 0.81) 2 -0.25 78.48

raf → pka 8,1 ; 7,6 Clayton 180° 0.09 1 0.05 3.89

p38→ pkc 9,10 BB1 0° (0.29, 2.31) 2 0.62 549.20

jnk→ pkc 9,11 ; 10 BB8 90° (1.14, 1.00) 2 -0.08 21.07

mek→ pkc 9,2 ; 10,11 BB8 270° (1.13, 0.83) 2 -0.03 1.23

p38→ jnk 11,10 BB1 0° (0.05, 1.26) 2 0.22 68.02

Table 7.5 Summary of estimated pair-copulas associated with the 13 edges of the Y-DAG fitted to the Sachs data

with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025. The numbering of the variables is according to Table 7.1. 𝜏-values outside the range

of -0.1 and 0.1 are highlighted in blue

(a) 𝛼𝑍 = 0.05 (b) 𝛼𝑍 = 0.09 (c) 𝛼𝑍 = 0.13

Figure 7.6 Comparison of the fitted Z-CPDAGs for the Sachs data and different values of the significance level 𝛼𝑍

7 Data Application: Sachs Data Analysis

116

(a) 𝛼𝑍 = 0.05 (b) 𝛼𝑍 = 0.09 (c) 𝛼𝑍 = 0.13

Figure 7.7 Comparison of the fitted Z-DAGs for the Sachs data and different values of the significance level 𝛼𝑍

• pip2 − pip3: Set direction pip3→ pip2.

• pip3 − plc: Set direction pip3→ plc.

The remaining edge, jnk−p38, is oriented as p38→ jnk to prevent the formation of the v-structure pkc→
p38← jnk.

The Z-DAG
0.09

consists of 9 edges in total, with 4 initially undirected. All of these edges are directed by

applying heuristic (H1):

• mek − raf : Set direction raf → mek.

• pka − erk: Set direction pka→ erk.

• pip2 − pip3: Set direction pip3→ pip2.

• pip3 − plc: Set direction pip3→ plc.

The Z-DAG
0.13

contains 10 edges in total, with 3 of them being undirected. All of these edges are directed

after applying the heuristic:

• mek − raf : Set direction raf → mek.

• pka − erk: Set direction pka→ erk.

• pip3 − plc: Set direction pip3→ plc.

The resulting Z-DAGs, after setting all edge directions, are displayed in Figure 7.7. The SHDs between the

Expert DAG and each of the fitted Y-DAGs are as follows:

SHD(Expert DAG,Z-DAG0.05) = 16,

SHD(Expert DAG,Z-DAG0.025) = 18,

SHD(Expert DAG,Z-DAG0.01) = 18.

The Z-DAGs are structurally closer to the Expert DAG than the fitted Y-DAGs. However, even with a

significantly increased significance level 𝛼𝑍 , the Z-DAGs have fewer edges.

Table 7.6 presents the conditional AIC and BIC values for each node across the fitted Z-DAGs. Since the

fitted models are structurally very similar, the differences between them are minimal. For nodes where

differences are notable, they arise from varying edge directions across the models. For instance, the Z-

DAG
0.05

features the structure pkc → p38 → jnk, while the other two DAGs display the structure pkc
← p38 ← jnk. Among the models fitted using Fisher’s Z-test, Z-DAG

0.13
exhibits the lowest AIC value,

whereas Z-DAG
0.09

has the lowest BIC value. The fitted pair-copulas for each edge of the Z-DAG
0.09

are

shown in Table 7.7. Compared to the Expert DAG, only one copula, associated with the edge akt → p38,
has a low absolute 𝜏-value in this case.

7.4 Model 3: Z-DAG

117

Variable Conditional AIC Conditional BIC
𝛼𝑍 = 0.05 𝛼𝑍 = 0.09 𝛼𝑍 = 0.13 𝛼𝑍 = 0.05 𝛼𝑍 = 0.09 𝛼𝑍 = 0.13

raf - - - - - -

mek -579.40 -579.40 -579.40 -574.59 -574.59 -574.59

plc -195.85 -195.85 -195.85 -186.22 -186.22 -186.22

pip2 -279.85 -279.85 -279.85 -270.22 -270.22 -270.22

pip3 - - - - - -

erk -101.68 -101.68 -101.68 -92.05 -92.05 -92.05

akt -1590.51 -1590.51 -1590.51 -1571.25 -1571.25 -1571.25

pka - - - - - -

pkc - -1094.40 -1097.85 - -1084.77 -1078.59

p38 -1094.40 -139.52 -139.52 -1084.77 -125.07 -125.07

jnk -132.04 - - -122.42 - -

SUM -3973.74 -3981.22 -3984.66 -3901.53 -3904.18 -3898.00

Table 7.6 Comparison of the conditional AIC and BIC for each variable of the Sachs data across the fitted Z-models

under different choices of 𝛼𝑍

Edge 𝒊, 𝒋; S Family Rotation Parameters df 𝝉 Log-Likelihood
raf → mek 2,1 Gaussian 0° 0.69 1 0.48 290.70

pip3→ plc 3,5 BB8 0° (1.70, 0.98) 2 0.25 99.93

pip3→ pip2 4,5 BB7 0° (1.54, 0.30) 2 0.31 141.93

pka→ erk 6,8 BB7 180° (1.07, 0.34) 2 0.17 52.84

erk→ akt 7,6 BB1 0° (0.00, 3.00) 2 0.67 663.26

pka→ akt 7,8 ; 6 BB8 0° (2.62, 0.84) 2 0.33 136.00

jnk→ p38 10,11 BB1 0° (0.05, 1.26) 2 0.22 68.02

akt→ p38 10,7 ; 11 Clayton 0° 0.11 1 0.05 4.74

p38→ pkc 9,10 BB1 0° (0.29, 2.31) 2 0.62 549.20

Table 7.7 Summary of estimated pair-copulas associated with the 9 edges of the Z-DAG fitted to the Sachs data with

𝛼𝑍 = 0.09. The numbering of the variables is according to Table 7.1. 𝜏-values outside the range of -0.1 and 0.1 are

highlighted in blue

7 Data Application: Sachs Data Analysis

118

(a) Expert DAG (b) Y-DAG with 𝛼𝑌 = 0.075, 𝑘𝑌 = 0.025 (c) Z-DAG with 𝛼𝑍 = 0.09

Figure 7.8 Comparison of the Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and the fitted Z-DAG

with 𝛼𝑍 = 0.09 for the Sachs data

Number Variable Expert Y Z
1 raf pka <1 pkc - -

2 mek raf <2 pkc <2 pka raf raf
3 plc pip3 mek pip3
4 pip2 pip3 <4 plc - pip3
5 pip3 - pip2 <5 plc <5 raf -

6 erk pka <6 mek - pka
7 akt erk <7 pka <7 pip3 erk erk <7 pka
8 pka pkc akt <8 erk <8 raf -

9 pkc pip2 <9 plc p38 <9 jnk <9 mek p38
10 p38 pkc <10 pka - jnk <10 akt
11 jnk pkc <11 pka p38 -

Table 7.8 Comparison of parent orders for the Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and

the fitted Z-DAG with 𝛼𝑍 = 0.09 for the Sachs data

7.5 Model Comparison

In this section, the PCBN fitted to the Expert DAG is compared node-by-node to the PCBNs fitted to

estimated structures derived using the PC algorithm. The comparisons are based on the Y-vine conditional

independence test with parameters 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025, and Fisher’s Z-test for partial correlation

with 𝛼𝑍 = 0.09. These specific models were selected for the overall comparison as they exhibit the lowest

BIC among the models fitted with varying significance levels and tuning parameters.

Figure 7.8 presents the three graphical structures side-by-side. Notably, the Expert DAG contains more

edges than the estimated DAGs, with the Z-DAG
0.09

having the fewest (9 edges).

Table 7.8 compares the estimated parent sets and their order for each node across the different DAGs.

It is clear that not only the parent sets but also the order of the parents differs significantly between the

models. For instance, in the Expert DAG, pka is a child of pkc, while in the Y-DAG
0.025,0.075

, pka has three
parents, none of which is pkc. In contrast, the Z-DAG

0.09
shows pka as having no parents at all. These

differences arise from the varying edge directions across the models. Both the Expert DAG and the Z-DAG

contain the triangular structure pka→ erk→ akt← pka, while the Y-DAG represents a different structure:

pka← erk→ akt→ pka. Without expert knowledge, it is challenging to assess whether the substructure

proposed by the Y-DAG is a plausible alternative. This highlights the importance of incorporating expert-

based constraints (e.g., blacklists) during structure estimation, as demonstrated in Chapter 6 with the flight

data.

The differences in parent sets across the three models are further reflected in Tables 7.9 and 7.10, which

show the conditional log-likelihoods, degrees of freedom, and the conditional AIC and BIC values for each

7.5 Model Comparison

119

Variable Conditional Log-Likelihood df
Expert Y Z Expert Y Z

raf 4.89 - - 3 - -

mek 297.23 290.70 290.70 4 1 1

plc 99.93 2.65 99.93 2 2 2

pip2 194.75 - 141.93 4 - 2

pip3 - 232.71 - - 6 -

erk 52.89 - 52.84 4 - 2

akt 799.53 663.26 799.25 6 2 4

pka 1.31 211.98 - 2 5 -

pkc 2.59 571.50 549.20 3 6 2

p38 552.20 - 72.76 4 - 3

jnk 37.53 68.02 - 4 2 -

SUM 2042.83 2040.82 2006.61 36 24 16

Table 7.9 Comparison of the conditional copula log-likelihood and degrees of freedom for each variable across the

Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and the fitted Z-DAG with 𝛼𝑍 = 0.09 for the Sachs

data

Variable Conditional AIC Conditional BIC
Expert Y Z Expert Y Z

raf -3.77 - - 10.67 - -

mek -586.45 -579.40 -579.40 -567.20 -574.59 -574.59

plc -195.85 -1.30 -195.85 -186.22 8.32 -186.22

pip2 -381.49 - -279.85 -362.24 - -270.22

pip3 - -453.42 - - -424.54 -

erk -97.78 - -101.68 -78.52 - -92.05

akt -1587.07 -1322.59 -1590.51 -1558.18 -1312.89 -1571.25

pka 1.39 -413.96 - 11.02 -389.89 -

pkc 0.82 -1131.00 -1094.40 15.27 -1102.11 -1084.77

p38 -1096.39 - -139.52 -1077.13 - -125.07

jnk -67.05 -132.04 - -47.79 -122.42 -

SUM -4013.66 -4033.65 -3981.22 -3840.33 -3918.10 -3904.18

Table 7.10 Comparison of the conditional AIC and BIC for each variable of the Sachs data across the Expert DAG,

the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and the fitted Z-DAG with 𝛼𝑍 = 0.09

7 Data Application: Sachs Data Analysis

120

node at the copula level. In the Y-DAG
0.025,0.075

, pka has multiple parents, resulting in the highest log-

likelihood and the lowest AIC and BIC for that node. However, because these results are driven by the

reversed edges erk→ pka and akt→ pka, the log-likelihoods for nodes erk and akt are significantly lower
compared to the Expert DAG and the Z-DAG. A similar pattern emerges in other triangular structures,

such as those involving pip2, pip3, and plc, or the trio of pkc, p38, and jnk, where edge directions vary

between models.

Overall, the PCBN fitted to the Expert DAG yields the highest log-likelihood, closely followed by the

PCBN fitted to the Y-DAG
0.025,0.075

. After penalizing for the number of parameters, the best-fitting model

in terms of both AIC and BIC is the PCBN fitted to the Y-DAG
0.025,0.075

. Interestingly, both data-driven

models based on the PC algorithm exhibit lower overall BIC values than the Expert Model, suggesting that

the data supports a sparser graphical structure than the one proposed by experts.

121

8 Conclusion and Outlook

This thesis has shown that Y-vines can be effectively utilized for testing conditional independence state-

ments of the form 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS by treating 𝑋𝑖 and 𝑋 𝑗 as response variables and XS as covariates. In this

framework, the response variables are treated symmetrically, and there is no need for integration to obtain

the conditional copula density of the responses given the covariates. Furthermore, the flexibility inherent

in the Y-vine estimation process reduces reliance on asymptotic results. As a result, a simple upper bound

𝑘𝑌 on the estimated Kendall’s 𝜏 of the copula in the final Y-vine tree, 𝐶𝑖 𝑗 ;S, proves to be highly efficient.

Incorporating Y-vine-based conditional independence testing into the PC algorithm led to promising

results, as demonstrated in simulation studies across both Gaussian and non-Gaussian settings with di-

mensions 𝑑 = 4, 6, and 11. These studies showed that the Y-vine-based PC algorithm more accurately re-

covers the true underlying structure of Bayesian networks compared to the standard PC algorithm, which

uses Fisher’s Z-test for partial correlations. This is evidenced by consistently lower SHD values across all

setups and dimensions. However, in the case of Gaussian Bayesian networks, the Y-vine-based method

does not significantly outperform its benchmark. This result is expected because Fisher’s Z-test assumes

a multivariate Gaussian distribution, where partial and conditional correlations coincide, and vanishing

partial correlations indicate true independence.

A major limitation of the Y-vine-based PC algorithm is the significantly increased computational cost,

especially in higher dimensions. The computational complexity of the PC algorithm is driven by the num-

ber of conditional independence queries, which can grow exponentially with dimensionality in the worst

case. Using Y-vine-based regression for each query is computationally intensive, particularly as the condi-

tioning sets grow larger, given that the regressionmethod incorporates a one-step-ahead forward-selection

algorithm for ordering covariates. Thus, reducing computational complexity is a key direction for future

work. For example, the current PC algorithm implementation in the R package pcalg introduces ineffi-

ciencies by sometimes querying both 𝑋𝑖 ⊥⊥ 𝑋 𝑗 | XS and 𝑋 𝑗 ⊥⊥ 𝑋𝑖 | XS within the same iteration. As these

statements are equivalent, reusing the result from the first test would eliminate the need to recompute the

second.

Other promising avenues for future research include comparing the Y-vine-based PC algorithm with

alternative structure learning methods used for continuous Bayesian networks, such as score-based or

hybrid approaches. Additionally, exploring the use of a two-step-ahead forward-selection algorithm in Y-

vine-based regression could potentially improve structure learning, although this would further increase

computational costs, which are already a bottleneck.

Another key finding of this thesis is that D-vine structural equation models (DV-SEMs) can be employed

to approximate pair-copula Bayesian networks. In this approach, a D-vine is constructed for each node

with multiple parents, where the node of interest is set as a leaf node in the first tree, followed by its

parents in their given order. While some copulas in the D-vine that involve only the parents of a node may

require integration, in the DV-SEM approximation, these copulas are estimated directly from the data.

This approach facilitates both sampling and likelihood inference for pair-copula Bayesian networks, as it

avoids integration and imposes no restrictions on the structure or the parent ordering of a node.

In this thesis, the complete D-vine substructure involving only the parents of a node was estimated.

While this approach is computationally efficient, it does not exploit the d-separation properties of the

underlying Bayesian network. Specifically, if d-separation shows that two nodes 𝑖 and 𝑗 are d-separated

given a set of nodes S, then the copula𝐶𝑖 𝑗 ;S is known to be the independence copula. When such a copula

appears in a parental D-vine, it can be directly set as the independence copula, eliminating the need for

estimation. The challenge, however, lies in identifying the position of these independence copulas within

the D-vine structure, as there is currently no algorithm for partial D-vine estimation that allows only

8 Conclusion and Outlook

122

certain specific copulas to be estimated. Developing such an algorithm would likely enhance the accuracy

of the pair-copula Bayesian network approximation through a DV-SEM.

Finally, this thesis has demonstrated that the DV-SEM approximation is also useful for learning the

parameters of a PCBN. This was first noted by Czado and Scharl (2021). Specifically, combining Y-vine-

based structure learning with D-vine-based parameter learning offers great flexibility in estimating the

entire network, including its conditional independencies, parent orders, and the underlying probability

distribution. In this context, penalized selection criteria could be applied in D-vine-based regression to

further reduce the structure estimated by the PC algorithm. Additionally, while this thesis focused solely

on parametric pair-copulas, incorporating non-parametric bivariate copulas could increase the model’s

flexibility. Moreover, a two-step-ahead forward-selection D-vine regression approach, as introduced by

Tepegjozova et al. (2022), might improve model fit, albeit at the cost of increased computational effort.

In practical applications, it is advisable to combine Y-vine-based structure learning and D-vine-based

parameter learning for continuous Bayesian networks with expert knowledge. Specifically, expert knowl-

edge could be used to create blacklists that specify infeasible edges before applying the learning algorithms.

Currently, no R package exists that allows for both user-specified conditional independence tests and the

creation of edge-direction blacklists. Future work should aim to integrate these functionalities into a single

package to reduce manual effort.

123

A Continuous Parametric Distributions

The following appendix contains definitions for univariate and multivariate distributions used in this the-

sis. Each introduction to a distribution includes definitions of its parameters, probability density function,

moments, and moment generating function. The content is taken from the appendix in Czado 2022.

A.1 Univariate Distributions

Definition A.1.1 (Uniform distribution). A random variable 𝑋 is said to follow a uniform distribution
over [𝑎, 𝑏], denoted by 𝑋 ∼ 𝑈 (𝑎, 𝑏), if its pdf is given by

𝑓 (𝑥) = 1

𝑏 − 𝑎 , 𝑥 ∈ [𝑎, 𝑏],

where 𝑎, 𝑏 ∈ ℝ, 𝑎 < 𝑏, are boundary parameters. The moments of 𝑋 are given by

𝔼[𝑋] = 𝑎 + 𝑏
2

, and Var[𝑋] = (𝑏 − 𝑎)
2

12

.

Further, the moment generating function of 𝑋 is given by

𝑚𝑋 (𝑡) =
𝑒𝑡𝑏 − 𝑒𝑡𝑎
𝑡 (𝑏 − 𝑎) , 𝑡 ∈ ℝ \ {0}.

Figure A.1 Density of the uniform distribution for different values of 𝑎 and 𝑏

Definition A.1.2 (Normal distribution). A random variable 𝑋 is said to follow a normal distribution
with mean 𝜇 ∈ ℝ and variance 𝜎2 > 0, denoted by 𝑋 ∼ 𝑁 (𝜇, 𝜎2), if its pdf is given by

𝑓 (𝑥) = 1

√
2𝜋𝜎2

exp

(
− 1

2𝜎2
(𝑥 − 𝜇)2

)
, 𝑥 ∈ ℝ.

The moments of 𝑋 are given by

𝔼[𝑋] = 𝜇, and Var[𝑋] = 𝜎2.

Further, the moment generating function of 𝑋 is given by

𝑚𝑋 (𝑡) = exp(𝜇𝑡 + 1

2

𝜎2𝑡2), 𝑡 ∈ ℝ.

A Continuous Parametric Distributions

124

Figure A.2 Density of the normal distribution for different values of 𝜇 and 𝜎

Definition A.1.3 (𝑡-distribution). A random variable 𝑋 is said to follow a 𝑡-distribution with 𝜈 > 0

degrees of freedom, denoted by 𝑋 ∼ 𝑡 (𝜈), if its pdf is given by

𝑓 (𝑥) =
Γ
(
𝜈+1

2

)
√
𝜈𝜋 · Γ

(
𝜈
2

) (1 + 𝑥2

𝜈

)− 𝜈+1
2

, 𝑥 ∈ ℝ,

where Γ(·) denotes the gamma function. The moments of 𝑋 are given by

𝔼[𝑋] = 0 for 𝜈 > 1, and Var[𝑋] =
{

𝜈
𝜈−2

, for 𝜈 > 2,

∞, for 1 < 𝜈 ≤ 2.
.

The moment generating function of 𝑋 is not defined.

Figure A.3 Density of the t-distribution for different values of 𝜈

Definition A.1.4 (Beta distribution). A random variable 𝑋 is said to follow a beta distribution with

shape parameters 𝛼 > 0 and 𝛽 > 0, denoted by 𝑋 ∼ Beta(𝛼, 𝛽), if its pdf is given by

𝑓 (𝑥) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝑥

𝛼−1(1 − 𝑥)𝛽−1, 𝑥 ∈ [0, 1],

where Γ(·) denotes the gamma function. The moments of 𝑋 are given by

𝔼[𝑋] = 𝛼

𝛼 + 𝛽 , and Var[𝑋] = 𝛼𝛽

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1) .

The moment generating function of 𝑋 is not generally expressible in a simple form.

A.1 Univariate Distributions

125

Figure A.4 Density of the beta distribution for different values of 𝛼 and 𝛽

Definition A.1.5 (Gamma distribution). A random variable 𝑋 is said to follow a gamma distribution
with shape parameter 𝑘 > 0 and scale parameter 𝜃 > 0, denoted by 𝑋 ∼ Gamma(𝑘, 𝜃), if its pdf is given
by

𝑓 (𝑥) = 1

Γ(𝑘)𝜃𝑘
𝑥𝑘−1𝑒−

𝑥
𝜃 , 𝑥 ≥ 0,

where Γ(·) denotes the gamma function. The moments of 𝑋 are given by

𝔼[𝑋] = 𝑘𝜃 and Var[𝑋] = 𝑘𝜃 2.

The moment generating function of 𝑋 is given by

𝑚𝑋 (𝑡) =
(

1

1 − 𝜃𝑡

)𝑘
, 𝑡 <

1

𝜃
.

Figure A.5 Density of the gamma distribution for different values of 𝑘 and 𝜃

Definition A.1.6 (Lognormal distribution). A random variable𝑋 is said to follow a lognormal distribu-
tion with parameters 𝜇 ∈ ℝ and 𝜎 > 0, denoted by 𝑋 ∼ 𝐿𝑁 (𝜇, 𝜎2), if its pdf is given by

𝑓 (𝑥) = 1

𝑥𝜎
√

2𝜋
exp

(
− (ln(𝑥) − 𝜇)

2

2𝜎2

)
, 𝑥 > 0.

The moments of 𝑋 are given by

𝔼[𝑋] = 𝑒𝜇+𝜎
2

2 and 𝑉𝑎𝑟 [𝑋] =
(
𝑒𝜎

2 − 1

)
𝑒2𝜇+𝜎2

.

A Continuous Parametric Distributions

126

The moment generating function of 𝑋 is not defined.

Figure A.6 Density of the lognormal distribution for different values of 𝜇 and 𝜎

A.2 Multivariate Distributions

Definition A.2.1 (Multivariate normal distribution). A random vector X = (𝑋1, . . . , 𝑋𝑑)⊤ is said to follow
a multivariate normal distribution with mean vector 𝝁 ∈ ℝ𝑑 and positive-definite covariance matrix

𝚺 ∈ ℝ𝑑×𝑑 , denoted by X ∼ 𝑁 (𝝁, 𝚺), if its pdf is given by

𝑓 (x) = 1

(2𝜋)𝑑/2 |𝚺|1/2
exp

(
−1

2

(x − 𝝁)⊤𝚺−1(x − 𝝁)
)
, x = (𝑥1, . . . , 𝑥𝑑)⊤ ∈ ℝ𝑑 ,

where |𝚺| denotes the determinant of 𝚺, and 𝚺
−1

denotes the inverse of 𝚺. The mean vector and covariance

matrix are given by

𝔼[X] = 𝝁 and Cov[X] = 𝚺.

The moment generating function of X is given by

𝑚X(t) = exp

(
𝝁⊤t + 1

2

t⊤𝚺t
)
, t ∈ ℝ𝑑 .

Figure A.7 Density of the bivariate normal distribution for 𝝁 =

(
0

0

)
and 𝚺 =

(
1 0.5

0.5 1

)

127

B Bivariate Copulas

In the following section, all parametric bivariate copulas used in this thesis will be defined. For each copula,

the parameter ranges, and different rotations will be provided, along with normalized contour plots. For

further details, readers are referred to Joe (2014).

Definition B.0.1 (Independence copula). The bivariate independence copula is given by

𝐶 (𝑢1, 𝑢2) = 𝑢1 · 𝑢2, 𝑢1, 𝑢2 ∈ [0, 1]2.

Figure B.1 Normalized contour plot of the independence copula density

B.1 Elliptical Copulas

Definition B.1.1 (Gaussian copula). The bivariate Gaussian copula is given by

𝐶 (𝑢1, 𝑢2; 𝜌) = Φ2(Φ−1(𝑢1),Φ−1(𝑢2)), 𝑢1, 𝑢2 ∈ (0, 1),

where 𝜌 ∈ [−1, 1] is the correlation parameter, Φ2 is the cdf of the bivariate standard normal distribution,

and Φ−1
the quantile function of the univariate standard normal distribution.

Definition B.1.2 (Student’s 𝑡 copula). The density of the bivariate Student’s t copula is given by

𝑐 (𝑢1, 𝑢2;𝜈, 𝜌) =
𝑡 (𝑇 −1

𝜈 (𝑢1),𝑇 −1

𝜈 (𝑢2);𝜈, 𝜌)
𝑡𝜈 (𝑇 −1

𝜈 (𝑢1))𝑡𝜈 (𝑇 −1

𝜈 (𝑢2))
, 𝑢1, 𝑢2 ∈ (0, 1),

where 𝑡𝜈 is the pdf of the univariate 𝑡-distribution with 𝜈 > 0 degrees of freedom, 𝑇 −1

𝜈 is the quantile

function of the univariate 𝑡-distribution, and 𝑡 is the pdf of the bivariate 𝑡-distribution given by

𝑡 (𝑥1, 𝑥2;𝜈, 𝜌) =
Γ(𝜈+2

2
) (1 − 𝜌2)−1/2

Γ(𝜈
2
)𝜈𝜋

(
1 + 1

𝜈

𝑥2

1
− 2𝑥1𝑥2𝜌 + 𝑥2

2

1 − 𝜌2

)− 𝜈+2
2

with scale parameter 𝜌 ∈ (−1, 1).

B Bivariate Copulas

128

Figure B.2 Normalized contour plots of the Gaussian copula density for 𝜌 = 0.5, 0.8,−0.3 yielding 𝜏 ≈
0.33, 0.59,−0.19 (left to right)

Figure B.3 Normalized contour plots of the Student’s t copula density for (𝜈, 𝜌) = (4, 0.5), (4, 0.8), (4,−0.3) yielding
𝜏 ≈ 0.33, 0.59,−0.19 (left to right)

B.2 Archimedean Copulas

Definition B.2.1 (Clayton copula). The bivariate Clayton copula is given by

𝐶 (𝑢1, 𝑢2) = (𝑢−𝛿1
+ 𝑢−𝛿

2
− 1)− 1

𝛿 , 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 ∈ (0,∞) is a parameter controlling the degree of dependence.

Definition B.2.2 (Gumbel copula). The bivariate Gumbel copula is given by

𝐶 (𝑢1, 𝑢2) = exp

(
−
(
(−ln 𝑢1)𝛿 + (−ln 𝑢2)𝛿

) 1

𝛿

)
, 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 ∈ [1,∞) is a parameter controlling the degree of dependence.

Definition B.2.3 (Frank copula). The bivariate Frank copula is given by

𝐶 (𝑢1, 𝑢2) = −
1

𝛿
ln

(
1 − 𝑒−𝛿 − (1 − 𝑒−𝛿𝑢1) (1 − 𝑒−𝛿𝑢2)

1 − 𝑒−𝛿

)
, 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 ∈ [−∞,∞] \ {0} is a parameter controlling the degree of dependence.

Definition B.2.4 (Joe copula). The bivariate Joe copula is given by

𝐶 (𝑢1, 𝑢2) = 1 −
(
(1 − 𝑢1)𝛿 + (1 − 𝑢2)𝛿 − (1 − 𝑢1)𝛿 (1 − 𝑢2)𝛿

) 1

𝛿 , 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 ∈ [1,∞) is a parameter controlling the degree of dependence.

B.3 BB Copulas

129

Figure B.4 Normalized contour plots of the Clayton copula density for 𝛿 = 1, 3, 8 and rotations 0°, 90°, 180° yielding

𝜏 ≈ 0.33,−0.6, 0.8 (left to right)

Figure B.5Normalized contour plots of the Gumbel copula density for 𝛿 = 1.5, 3, 6 and rotations 0°, 90°, 180° yielding

𝜏 ≈ 0.33,−0.67, 0.83 (left to right)

Figure B.6 Normalized contour plots of the Frank copula density for 𝛿 = 2, 6,−10 and rotation 0° yielding 𝜏 ≈
0.21, 0.51,−0.67 (left to right)

B.3 BB Copulas

Definition B.3.1 (BB1 copula). The bivariate BB1 copula is given by

𝐶 (𝑢1, 𝑢2) =
(
1 +

(
(𝑢−𝜃

1
− 1)𝛿 + (𝑢−𝜃

2
− 1)𝛿

) 1

𝛿

)−1/𝜃
, 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 ≥ 1 and 𝜃 > 0.

B Bivariate Copulas

130

Figure B.7 Normalized contour plots of the Joe copula density for 𝛿 = 2, 4, 8 and rotations 0°, 90°, 180° yielding

𝜏 ≈ 0.36,−0.61, 0.78 (left to right)

Figure B.8 Normalized contour plots of the BB1 copula density for (𝛿, 𝜃) = (1, 2), (1, 5), (2.5, 2) and rotations 0°, 90°,
180° yielding 𝜏 ≈ 0.5,−0.71, 0.8 (left to right)

Definition B.3.2 (BB6 copula). The bivariate BB6 copula is given by

𝐶 (𝑢1, 𝑢2) = 1 −
(
1 − exp

(
−
(
(−ln(1 − 𝑢𝜃

1
))𝛿 + (−ln(1 − 𝑢𝜃

2
))𝛿

) 1

𝛿

))1/𝜃
, 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿, 𝜃 ≥ 1 and 𝑢𝑖 = 1 − 𝑢𝑖 , for 𝑖 = 1, 2.

Figure B.9 Normalized contour plots of the BB6 copula density for (𝛿, 𝜃) = (1, 2), (1, 4), (4, 1) and rotations 0°, 90°,

180° yielding 𝜏 ≈ 0.36,−0.61, 0.75 (left to right)

B.3 BB Copulas

131

Definition B.3.3 (BB7 copula). The bivariate BB7 copula is given by

𝐶 (𝑢1, 𝑢2) = 1 −
(
1 −

(
(1 − 𝑢𝜃

1
)−𝛿 + (1 − 𝑢𝜃

2
)−𝛿 − 1

)− 1

𝛿

)
1/𝜃
, 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 > 0, 𝜃 ≥ 1, and 𝑢𝑖 = 1 − 𝑢𝑖 , for 𝑖 = 1, 2.

Figure B.10 Normalized contour plots of the BB7 copula density for (𝛿, 𝜃) = (1, 1), (1, 2), (3, 1) and rotations 0°, 90°,

180° yielding 𝜏 ≈ 0.33,−0.5, 0.6 (left to right)

Definition B.3.4 (BB8 copula). The bivariate BB8 copula is given by

𝐶 (𝑢1, 𝑢2) =
1

𝛿

(
1 −

(
1 − 𝜂−1

(
1 − (1 − 𝛿𝑢1)𝜗

) (
1 − (1 − 𝛿𝑢2)𝜗

))1/𝜗
)
, 𝑢1, 𝑢2 ∈ [0, 1],

where 𝛿 ∈ (0, 1], 𝜗 ≥ 1, and 𝜂 = 1 − (1 − 𝛿)𝜗 .

Figure B.11 Normalized contour plots of the BB8 copula density for (𝛿, 𝜗) = (0.5, 5), (0.5, 8), (0.9, 5) and rotations

0°, 90°, 180° yielding 𝜏 ≈ 0.31,−0.46, 0.61 (left to right)

133

List of Figures

2.1 Comparison of a directed graph and its skeleton . 4

2.2 A five dimensional DAG. Node A blocks the trail 𝐵 ← 𝐴 → 𝐶 and node E activates 𝐵 →
𝐷 ← 𝐶 . 5

2.3 Comparison of various structures found in Bayesian networks 8

2.4 A six dimensional DAG . 14

2.5 Complete undirected graph in six dimensions G0 = (V, E0) 14

2.6 G1 = (V, E1) after the first iteration of the PC algorithm 15

2.7 G2 = (V, E2) after the second iteration of the PC algorithm 16

2.8 G4 = (V, E4) after the fourth iteration of the PC algorithm 17

2.9 The skeleton of the DAG in Figure 2.4 . 18

2.10 Estimated CPDAG of the DAG in Figure 2.4 after step 2 of the PC algorithm 19

2.11 Estimated CPDAG of the DAG in Figure 2.4 after Step 3 of the PC algorithm 20

2.12 Example DAG in five dimensions . 21

2.13 D-vine tree sequence on 𝑑 = 4 elements . 32

3.1 Y-vine tree sequence for 𝑝 = 3 covariates . 41

4.1 A three dimensional Bayesian network corresponding to a D-vine 49

4.2 Two different pair-copula Bayesian networks associated with the DAG in Figure 4.1 50

4.3 A four-dimensional PCBN with parent order 2 <4 3 . 52

4.4 Illustration of active cycles and interfering v-structures . 54

4.5 D-vine tree sequence with node 𝑣 as a leaf, followed by its parents in their specified parent

order. Edges in green represent copulas specified by the decomposition of the underlying

PCBN . 58

4.6 Comparison between the normalized contour plots of the true 𝐶32 and the estimated 𝐶32

using a DV-SEM modeling approach . 61

4.7 A six-dimensional PCBN with parent orders 2 <3 1 and 5 <6 2 <6 1 <6 4 61

4.8 Comparison of the log-likelihood based on simulations from the PCBN defined by the pair-

copulas in Table 4.4. Here, ℓ denotes the exact log-likelihood function, u𝑠 is the exactly sim-

ulated data, ℓ̂ denotes the approximate log-likelihood function, and û𝑠 is the approximately

simulated data . 65

5.1 Simplified flowchart of the simulation study design . 68

5.2 Two different PDAGs with the same node set . 71

5.3 Relative frequency of observed SHD values between the Expert CPDAG and the fitted Y-

CPDAG (blue), and between the Expert CPDAG and the fitted Z-CPDAG (orange) across

different setups for 𝑑 = 4 . 79

5.4 Box plots of estimated AIC/BIC values for the different setups in the case 𝑑 = 4 79

5.7 An 11-dimensional Bayesian network with 16 edges . 81

5.5 Relative frequency of observed SHD values between the Expert CPDAG and the fitted Y-

CPDAG (blue), and between the Expert CPDAG and the fitted Z-CPDAG (orange) across

different setups for 𝑑 = 6 . 83

5.6 Box plots of estimated AIC/BIC values for the different setups in the case 𝑑 = 6 83

List of Figures

134

5.8 Relative frequency of observed SHD values between the Expert CPDAG and the fitted Y-

CPDAG (blue), and between the Expert CPDAG and the fitted Z-CPDAG (orange) across

different setups for 𝑑 = 11 . 88

5.9 Box plots of estimated AIC/BIC values for the different setups in the case 𝑑 = 11 89

6.1 Histograms, fitted KDEmargins (blue) and fitted Gaussianmargins (red) of the scaled flight

data . 93

6.2 Pair plots of the flight data at the u-level using KDE-based marginal distributions 94

6.3 Expert DAG for the flight data . 94

6.4 Estimated skeleton for the flight data using Y-vine-based conditional independence testing

with 𝛼𝑌 = 𝑘𝑌 = 0.05 . 98

6.5 Fitted DAG based on the Y-vine conditional independence test for the flight data 99

6.6 Estimated skeleton for the flight data using Fisher’s Z-test with 𝛼𝑍 = 0.05 101

6.7 Fitted DAG based on Fisher’s Z-test for the flight data . 103

6.8 Comparison of the Expert DAG, Y-DAG, and Z-DAG . 104

7.1 Histograms, fitted KDEmargins (blue) and fittedGaussianmargins (red) of the log-transformed

and scaled Sachs data . 108

7.2 Pair plots of the Sachs data on the u-level based on KDE margins 109

7.3 Expert DAG for the Sachs data . 110

7.4 Comparison of the fitted Y-CPDAGs for the Sachs data and different values of the tuning

parameter 𝑘𝑌 (higher order) and significance level 𝛼𝑌 (order zero) 113

7.5 Comparison of the fitted Y-DAGs for the Sachs data and different values of the tuning

parameter 𝑘𝑌 (higher order) and significance level 𝛼𝑌 (order zero) 113

7.6 Comparison of the fitted Z-CPDAGs for the Sachs data and different values of the signifi-

cance level 𝛼𝑍 . 115

7.7 Comparison of the fitted Z-DAGs for the Sachs data and different values of the significance

level 𝛼𝑍 . 116

7.8 Comparison of the Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and the

fitted Z-DAG with 𝛼𝑍 = 0.09 for the Sachs data . 118

A.1 Density of the uniform distribution for different values of 𝑎 and 𝑏 123

A.2 Density of the normal distribution for different values of 𝜇 and 𝜎 124

A.3 Density of the t-distribution for different values of 𝜈 . 124

A.4 Density of the beta distribution for different values of 𝛼 and 𝛽 125

A.5 Density of the gamma distribution for different values of 𝑘 and 𝜃 125

A.6 Density of the lognormal distribution for different values of 𝜇 and 𝜎 126

A.7 Density of the bivariate normal distribution for specific values of 𝝁 and 𝚺 126

B.1 Normalized contour plot of the independence copula density 127

B.2 Normalized contour plots of the Gaussian copula density for 𝜌 = 0.5, 0.8,−0.3 yielding

𝜏 ≈ 0.33, 0.59,−0.19 (left to right) . 128

B.3 Normalized contour plots of the Student’s t copula density for (𝜈, 𝜌) = (4, 0.5), (4, 0.8),
(4,−0.3) yielding 𝜏 ≈ 0.33, 0.59,−0.19 (left to right) . 128

B.4 Normalized contour plots of the Clayton copula density for 𝛿 = 1, 3, 8 and rotations 0°, 90°,

180° yielding 𝜏 ≈ 0.33,−0.6, 0.8 (left to right) . 129

B.5 Normalized contour plots of the Gumbel copula density for 𝛿 = 1.5, 3, 6 and rotations 0°,

90°, 180° yielding 𝜏 ≈ 0.33,−0.67, 0.83 (left to right) . 129

B.6 Normalized contour plots of the Frank copula density for 𝛿 = 2, 6,−10 and rotation 0°

yielding 𝜏 ≈ 0.21, 0.51,−0.67 (left to right) . 129

B.7 Normalized contour plots of the Joe copula density for 𝛿 = 2, 4, 8 and rotations 0°, 90°, 180°

yielding 𝜏 ≈ 0.36,−0.61, 0.78 (left to right) . 130

List of Figures

135

B.8 Normalized contour plots of the BB1 copula density for (𝛿, 𝜃) = (1, 2), (1, 5), (2.5, 2) and
rotations 0°, 90°, 180° yielding 𝜏 ≈ 0.5,−0.71, 0.8 (left to right) 130

B.9 Normalized contour plots of the BB6 copula density for (𝛿, 𝜃) = (1, 2), (1, 4), (4, 1) and
rotations 0°, 90°, 180° yielding 𝜏 ≈ 0.36,−0.61, 0.75 (left to right) 130

B.10 Normalized contour plots of the BB7 copula density for (𝛿, 𝜃) = (1, 1), (1, 2), (3, 1) and
rotations 0°, 90°, 180° yielding 𝜏 ≈ 0.33,−0.5, 0.6 (left to right) 131

B.11 Normalized contour plots of the BB8 copula density for (𝛿, 𝜗) = (0.5, 5), (0.5, 8), (0.9, 5)
and rotations 0°, 90°, 180° yielding 𝜏 ≈ 0.31,−0.46, 0.61 (left to right) 131

137

List of Tables

2.1 Ancestral Relations of the five dimensional DAG in Figure 2.2 5

2.2 Parents and adjacency sets of the DAG in Figure 2.4 . 14

2.3 Adjacency sets of the graph in Figure 2.5 . 14

2.4 Adjacency sets of the graph in Figure 2.6 . 15

2.5 Adjacency sets of the graph in Figure 2.7 . 16

2.6 Adjacency sets of the graph in Figure 2.8 . 17

2.7 Adjacency sets of the skeleton in Figure 2.9 . 18

2.8 Parents and adjacency sets of the PDAG in Figure 2.10 . 19

2.9 Parents and adjacency sets of the CPDAG in Figure 2.11 . 20

2.10 Kendall’s 𝜏 as a function of the copula parameters for different bivariate families 28

2.11 Upper and lower tail dependence as a function of copula parameters for different bivariate

families . 28

4.1 A selection of copulas specifying the PCBN displayed in Figure 4.3 60

4.2 Estimated𝐶32 based on 𝑛 = 1000 samples from the PCBN specified by the copulas in Table

4.1 . 60

4.3 Quantiles of the estimated absolute 𝜏-values for copulas specified by d-separation in the

DV-SEM from Example 4.2.3 . 63

4.4 A further selection of copulas specifying the PCBN displayed in Figure 4.3 65

5.1 Comparison of the percentage of correctly estimated (in-)dependence statements over 𝑁 =

100 repetitions using the Y-vine-based conditional independence test with varying 𝑘𝑌 values 76

5.2 Comparison of the average percentage of correctly estimated (in-)dependence statements

over 𝑁 = 100 repetitions based on the results illustrated in Table 5.1 76

5.3 Overview of pair-copulas for all setups in the case 𝑑 = 4 . 78

5.4 Overview of marginal distributions for all setups in the case 𝑑 = 4 78

5.5 Rounded average values of different performance measures for the case 𝑑 = 4. Column

"True" serves as a benchmark. Highest log-likelihood and lowest SHD, AIC, and BIC value

between Y and Z is colored in blue . 78

5.6 Overview of pair-copulas for all setups in the case 𝑑 = 6 . 81

5.9 Selection of the parent orders of the Bayesian network depicted in Figure 5.7 81

5.7 Overview of marginal distributions for all setups in the case 𝑑 = 6 82

5.8 Rounded average values of different performance measures for the case 𝑑 = 6. Column

"True" serves as a benchmark. Highest log-likelihood and lowest SHD, AIC, and BIC value

between Y and Z is colored in blue . 82

5.10 Overview of pair-copulas for Setups 1 and 2 in the case 𝑑 = 11 85

5.11 Overview of pair-copulas for Setups 3 and 4 in the case 𝑑 = 11 86

5.12 Overview of marginal distributions for all setups in the case 𝑑 = 11 87

5.13 Rounded average values of different performance measures for the case 𝑑 = 11. Column

"True" serves as a benchmark. Highest log-likelihood and lowest SHD, AIC, and BIC value

between Y and Z is colored in blue . 88

5.14 Average computational times in seconds for different steps involved in the simulation studies 89

6.1 Variable definitions for landing parameters . 91

List of Tables

138

6.2 Descriptive statistics of the scaled flight variables. Skewness values outside the range of

-0.5 to 0.5 and kurtosis values outside the range of 2 to 4 are highlighted in red 92

6.3 Fit statistics of the KDE margins for the flight data. The column df shows the degrees of

freedom . 93

6.4 Estimated parent orders for the PCBN fitted to the Expert DAG for the flight data 95

6.5 Summary of estimated pair-copulas associated with the 28 edges of the Expert DAG fitted

to the flight data. The numbering of the variables is according to Table 6.1. 𝜏-values outside

the range of -0.1 and 0.1 are highlighted in blue . 96

6.6 Estimated parent orders for the PCBN fitted to the estimated Y-DAG for the flight data . . 100

6.7 Summary of estimated pair-copulas associated with the 18 edges of the Y-DAG fitted to the

flight data. The numbering of the variables is according to Table 6.1. 𝜏-values outside the

range of -0.1 and 0.1 are highlighted in blue . 100

6.8 Estimated parent orders for the PCBN fitted to the estimated Z-DAG for the flight data . . 103

6.9 Summary of estimated pair-copulas associated with the 19 edges of the Z-DAG fitted to

the flight data. The numbering of the variables is according to Table 6.1. 𝜏-values outside

the range of -0.1 and 0.1 are highlighted in blue . 104

6.10 Comparison of the parent orders for the Expert DAG, Y-DAG, and Z-DAG of the flight data 105

6.11 Comparison of the conditional copula log-likelihood and degrees of freedom for each vari-

able across the Expert, Y-, and Z-model of the flight data 105

6.12 Comparison of the conditional AIC and BIC for each variable across the Expert, Y- and

Z-model . 106

7.1 Variable numbering and fit statistics of the KDE margins for the Sachs data. The column

df shows the degrees of freedom . 108

7.2 Estimated Parent Orders for the Expert DAG of the Sachs data 111

7.3 Summary of estimated pair-copulas associated with the 20 edges of the Expert DAG fitted

to the Sachs data. The numbering of the variables is according to Table 7.1. 𝜏-values outside

the range of -0.1 and 0.1 are highlighted in blue . 112

7.4 Comparison of the conditional AIC and BIC for each variable of the Sachs data across the

fitted Y-models under different choices of 𝛼𝑌 and 𝑘𝑌 . 114

7.5 Summary of estimated pair-copulas associated with the 13 edges of the Y-DAG fitted to the

Sachs data with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025. The numbering of the variables is according

to Table 7.1. 𝜏-values outside the range of -0.1 and 0.1 are highlighted in blue 115

7.6 Comparison of the conditional AIC and BIC for each variable of the Sachs data across the

fitted Z-models under different choices of 𝛼𝑍 . 117

7.7 Summary of estimated pair-copulas associated with the 9 edges of the Z-DAG fitted to

the Sachs data with 𝛼𝑍 = 0.09. The numbering of the variables is according to Table 7.1.

𝜏-values outside the range of -0.1 and 0.1 are highlighted in blue 117

7.8 Comparison of parent orders for the Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and

𝑘𝑌 = 0.025 and the fitted Z-DAG with 𝛼𝑍 = 0.09 for the Sachs data 118

7.9 Comparison of the conditional copula log-likelihood and degrees of freedom for each vari-

able across the Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and the

fitted Z-DAG with 𝛼𝑍 = 0.09 for the Sachs data . 119

7.10 Comparison of the conditional AIC and BIC for each variable of the Sachs data across the

Expert DAG, the fitted Y-DAG with 𝛼𝑌 = 0.075 and 𝑘𝑌 = 0.025 and the fitted Z-DAG with

𝛼𝑍 = 0.09 . 119

139

Bibliography

Aas, K. et al. (2021). “Explaining Predictive Models Using Shapley Values and Non-Parametric Vine Copu-

las”. In: Dependence Modeling 9, pp. 62–81.

Aas, K. et al. (2009). “Pair-copula constructions of multiple dependence”. In: Insurance: Mathematics and
Economics 44.2, pp. 182–198.

Akaike, H. (1998). “Information Theory and an Extension of the Maximum Likelihood Principle”. In: Se-
lected Papers of Hirotugu Akaike. Ed. by E. Parzen, K. Tanabe, and G. Kitagawa. Berlin: Springer, pp. 199–
213.

Alnasser, H. H. and C. Czado (2022). An Application of D-Vine Regression for the Identification of Risky
Flights in Runway Overrun. Preprint. Munich, Germany: Faculty of Mathematics, Technical University

of Munich.

Anderson, T. (2003). An Introduction to Multivariate Statistical Analysis. 3rd ed. John Wiley & Sons.

Baba, K., R. Shibata, and M. Sibuya (2004). “Partial correlation and conditional correlation as measures of

conditional independence”. In: Australian & New Zealand Journal of Statistics 46.4, pp. 657–664.
Bang-Jensen, J. and G. Z. Gutin (2008). Digraphs: Theory, Algorithms and Applications. 2nd. Springer.
Bauer, A. and C. Czado (2016). “Pair-Copula Bayesian Networks”. In: Journal of Computational and Graph-
ical Statistics 25.4, pp. 1248–1271.

Bauer, A., C. Czado, and T. Klein (2011). “Pair-copula constructions for non-Gaussian DAG models”. In:

Proceedings of the 58th World Statistical Congress, 2011, Dublin (Session CPS057). International Statistical
Institute. Dublin.

Bauer, A. X. (2013). “Pair-copula constructions for non-Gaussian Bayesian networks”. Doktorarbeit. Mu-

nich, Germany: Technische Universität München.

Bedford, T. and R. M. Cooke (2002). “Vines: A new graphical model for dependent random variables”. In:

Annals of Statistics 30.4, pp. 1031–1068.
Colombo, D. andM. H.Maathuis (2014). “Order-Independent Constraint-Based Causal Structure Learning”.

In: Journal of Machine Learning Research 15. Ed. by P. Spirtes. Submitted 9/13; Revised 7/14; Published

11/14, pp. 3921–3962.

Czado, C. (2019). Analyzing Dependent Data with Vine Copulas: A Practical Guide with R. Springer Series in
Statistics. Cham, Switzerland: Springer. isbn: 978-3-030-13785-6.

– (2022). “Generalized Linear Models with Applications”. Lecture Notes.

Czado, C. and S. Scharl (2021). “Analysis of an interventional protein experiment using a vine copula based

structural equation model”. Version v1. In: arXiv preprint arXiv:2111.10113.
Dißmann, J. et al. (2013). “Selecting and estimating regular vine copulae and application to financial re-

turns”. In: Computational Statistics and Data Analysis 59, pp. 52–69.
Dor, D. and M. Tarsi (1992). A simple algorithm to construct a consistent extension of a partially oriented

graph. Technical Report R-185. Tel-Aviv, Israel and Los Angeles, CA: Tel-Aviv University and University
of California, Los Angeles.

Drees, L.-W. A. (2016). “Predictive Analysis: Quantifying Operational Airline Risks”. Dissertation. Munich,

Germany: Technische Universität München, Institute of Flight System Dynamics.

Edwards, D. (2000). Introduction to Graphical Modelling. Second Edition. Springer. isbn: 978-0-387-98976-4.
Fisher, R. A. (1924). “The distribution of the partial correlation coefficient”. In: Metron 3, pp. 329–332.

Fisher, R. A. (1915). “Frequency distribution of the values of the correlation coefficient in samples from an

indefinitely large population”. In: Biometrika 10.4, pp. 507–521.
Hanea, A. M., D. Kurowicka, and R. M. Cooke (2006). “Hybrid Method for Quantifying and Analyzing

Bayesian Belief Nets”. In: Quality and Reliability Engineering International 22.6, pp. 709–729.

Bibliography

140

Hanea, A. and D. Kurowicka (2008). “Mixed Non-Parametric Continuous and Discrete Bayesian Belief

Nets”. In: Advances in Mathematical Modeling for Reliability. Ed. by T. Bedford et al. Amsterdam, Nether-

lands: IOS Press, pp. 9–16.

Hoeffding, W. (1948). “A Class of Statistics with Asymptotically Normal Distribution”. In: The Annals of
Mathematical Statistics 19.3, pp. 293–325.

Hollander, M., D. A. Wolfe, and E. Chicken (2014). Nonparametric Statistical Methods. Third. Hoboken, NJ:
Wiley.

Horsman, N. (2023). “On the Restrictions of Pair-Copula Bayesian Networks for Integration-Free Compu-

tations”. Master’s Thesis. Delft, The Netherlands: Delft University of Technology.

Joe, H. (2014). Dependence Modeling with Copulas. Chapman and Hall/CRC.

– (1996). “Families of m-Variate Distributions with Given Margins and m(m-1)/2 Bivariate Dependence

Parameters”. In:Distributions with FixedMarginals and Related Topics. Vol. 28. Lecture Notes-Monograph

Series. Institute of Mathematical Statistics, pp. 120–141.

Kalisch, M. and P. Bühlmann (2007). “Estimating High-Dimensional Directed Acyclic Graphs with the PC-

Algorithm”. In: Journal of Machine Learning Research 8. Submitted 9/06; Revised 1/07; Published 3/07,

pp. 613–636.

Kalisch, M. et al. (2024). Package ’pcalg’: Methods for Graphical Models and Causal Inference. R package

version 2.7-11.

Killiches, M., D. Kraus, and C. Czado (2018). “Model distances for vine copulas in high dimensions”. In:

Statistics and Computing 28, pp. 323–341.

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Kraus, D. and C. Czado (2017). “D-vine copula based quantile regression”. In: Computational Statistics and
Data Analysis 110, pp. 1–18.

Kurowicka, D. (2006). Uncertainty Analysis with High Dimensional Dependence Modelling. Chichester: Wi-

ley, pp. VIII, 284. isbn: 978-0-470-01477-2.

Kurowicka, D. and R. M. Cooke (2005). “Distribution-Free Continuous Bayesian Belief Nets”. In: Modern
Statistical and Mathematical Methods in Reliability. Ed. by A. Wilson et al. Vol. 28. Series on Quality,

Reliability and Engineering Statistics. Singapore: World Scientific, pp. 309–323.

Kurowicka, D. and H. Joe (2011). Dependence Modeling: Vine Copula Handbook. Singapore: World Scientific.

isbn: 978-981-4366-94-4.

Lauritzen, S. L. (1996). Graphical Models. Oxford: Clarendon Press.

Meek, C. (1995). Strong completeness and faithfulness in Bayesian networks. Technical Report. Pittsburgh,
PA: Department of Philosophy, Carnegie Mellon University.

Nagarajan, R., M. Scutari, and S. Lèbre (2014). Bayesian Networks in R: with Applications in Systems Biology.
Use R! Springer. isbn: 978-1-4614-6445-2.

Nagler, T., C. Bumann, and C. Czado (2019). “Model selection in sparse high-dimensional vine copula mod-

els with an application to portfolio risk”. In: Journal of Multivariate Analysis 172, pp. 180–192.
Nagler, T. and D. Kraus (2024). D-Vine Quantile Regression. R package version 0.10.0.

Nagler, T. and T. Vatter (2024). Package ‘kde1d‘. R package version 1.0.7.

– (2023). Package ’rvinecopulib’: High Performance Algorithms for Vine Copula Modeling. R package version

0.6.3.1.1.

Parzen, E. (1962). “On Estimation of a Probability Density Function and Mode”. In: Annals of Mathematical
Statistics 33.3, pp. 1065–1076.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kauf-

mann.

Rosenblatt, M. (1952). “Remarks on a Multivariate Transformation”. In: The Annals of Mathematical Statis-
tics 23.3, pp. 470–472.

Sachs, K. et al. (2005). “Causal protein signaling networks derived from multiparameter single-cell data”.

In: Science 308, pp. 523–529.
Schwarz, G. (1978). “Estimating the Dimension of a Model”. In: Annals of Statistics 6.2, pp. 461–464.

Bibliography

141

Scutari, M. and T. Silander (2024). Package ’bnlearn’: Bayesian Network Structure Learning, Parameter Learn-
ing and Inference. R package version 5.0.1.

Sheather, S. J. and M. C. Jones (1991). “A Reliable Data-Based Bandwidth Selection Method for Kernel

Density Estimation”. In: Journal of the Royal Statistical Society: Series B (Methodological) 53.3, pp. 683–
690.

Sklar, A. (1959). “Fonctions de répartition à n dimensions et leurs marges”. In: Publications de l’Institut de
Statistique de l’Université de Paris 8, pp. 229–231.

Spirtes, P., C. Glymour, and R. Scheines (1993). Causation, Prediction, and Search. Vol. 81. Lecture Notes in
Statistics. Springer-Verlag.

Tepegjozova, M. (2019). “D- and C-vine Quantile Regression for Large Data Sets”. Master’s Thesis. Munich,

Germany: Technische Universität München, Department of Mathematics.

– (2024). “Statistical learning with vine copulas in regression settings”. Doktorarbeit. Munich, Germany:

TUM School of Computation, Information and Technology, Technische Universität München.

Tepegjozova, M. and C. Czado (2023). “Bivariate vine copula based regression, bivariate level and quantile

curves”. Version v2. In: arXiv preprint arXiv:2205.02557.
Tepegjozova, M. et al. (2022). “Nonparametric C- and D-vine-based quantile regression”. In: Dependence

Modeling 10.1, pp. 1–21.

Textor, J., B. van der Zander, and A. Ankan (2023). Package ‘dagitty‘. R package version 0.3-4.

Tsamardinos, I., L. E. Brown, and C. F. Aliferis (2006). “The max-min hill-climbing Bayesian network struc-

ture learning algorithm”. In: Machine Learning 65.1, pp. 31–78.

Valz, P. D. and A. I. McLeod (1990). “A Simplified Derivation of the Variance of Kendall’s Rank Correlation

Coefficient”. In: The American Statistician 44.1, pp. 39–40.

Verma, T. S. and J. Pearl (1990). “Equivalence and Synthesis of Causal Models”. In: Proceedings of the 6th
Conference on Uncertainty in Artificial Intelligence (UAI ’90). Elsevier, pp. 255–270.

Wang, X. et al. (2020). “Calibration of Contributing Factors for Model-Based Predictive Analysis Algorithm

Using Polynomial Chaos Expansion Methods”. In: Proceedings of the 30th European Safety and Reliability
Conference and the 15th Probabilistic Safety Assessment and Management Conference. Ed. by P. Baraldi,

F. D. Maio, and E. Zio. Singapore: Research Publishing, pp. 2968–2975.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley & Sons.

Yule, G. U. (1917). An Introduction to the Theory of Statistics. 4th. Charles Griffin & Company, Limited.

Zwirglmaier, K. and D. Straub (2016). “A Discretization Procedure for Rare Events in Bayesian Networks”.

In: Reliability Engineering & System Safety 153, pp. 96–109.

	1 Introduction and Overview
	2 Mathematical Foundations
	2.1 Notation
	2.2 Graphical Models
	2.2.1 Graph Theory
	2.2.2 Bayesian Networks
	2.2.3 Gaussian Bayesian Networks
	2.2.4 Structure Learning
	2.2.5 Conditional Independence Tests
	2.2.6 PDAG Extension

	2.3 Vine Copulas
	2.3.1 Sklar's Theorem
	2.3.2 Dependence Measures
	2.3.3 Bivariate Copula Classes
	2.3.4 Regular Vines
	2.3.5 Family Selection and Parameter Estimation

	3 Vine Copula Based Regression
	3.1 Univariate D-Vine-Based Regression
	3.1.1 Kernel Density Estimation
	3.1.2 Sequential D-Vine Estimation
	3.1.3 Conditional Simulation

	3.2 Bivariate Y-Vine-Based Regression
	3.2.1 Y-Vine Copula Model
	3.2.2 Sequential Y-Vine Estimation
	3.2.3 Y-Vine Conditional Independence Test

	4 Pair-Copula Bayesian Networks
	4.1 Model Framework
	4.2 Simulation Methods
	4.2.1 Exact Simulation
	4.2.2 Approximate Simulation Using D-Vines

	4.3 Maximum Likelihood Estimation and Parameter Learning
	4.4 Selecting Parent Orders

	5 Simulation Study: Y-Vine-Based Structure Learning
	5.1 Study Design
	5.2 Performance Measures
	5.3 Choice of Tuning Parameters
	5.4 Case 1: Four Dimensions
	5.5 Case 2: Six Dimensions
	5.6 Case 3: Eleven Dimensions
	5.7 Computational Performance

	6 Data Application: Flight Data Analysis
	6.1 Exploratory Data Analysis
	6.2 Model 1: Expert DAG
	6.3 Model 2: Y-DAG
	6.3.1 Determination of Edge Directions
	6.3.2 Parameter Learning

	6.4 Model 3: Z-DAG
	6.4.1 Determination of Edge Directions
	6.4.2 Parameter Learning

	6.5 Model Comparison

	7 Data Application: Sachs Data Analysis
	7.1 Exploratory Data Analysis
	7.2 Model 1: Expert DAG
	7.3 Model 2: Y-DAG
	7.4 Model 3: Z-DAG
	7.5 Model Comparison

	8 Conclusion and Outlook
	A Continuous Parametric Distributions
	A.1 Univariate Distributions
	A.2 Multivariate Distributions

	B Bivariate Copulas
	B.1 Elliptical Copulas
	B.2 Archimedean Copulas
	B.3 BB Copulas

	Bibliography

