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Abstract

In molecular dynamics, the Lennard Jones potential is a popular first choice for the
force calculation between particle pairs, but for some scenarios, such as supercooling of
Argon, the standard truncated Lennard Jones potential might introduce inaccuracies in
the simulation due to the sudden jump at the cutoff point[GKZ07]. This paper presents
the implementation of the vectorized smoothed Lennard Jones potential using three
different approaches: auto-vectorized, masked, and gather scatter. Furthermore, the
SIMD implementation done in this project is written using the SIMD wrapper library
Google Highway to provide a balance of portability and performance.
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Part I.

Introduction and Theoretical
background
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1. Introduction

Molecular dynamics (MD) simulations have become an important tool in scientific
research, as they can provide information on how atoms and molecules interact by
simulating their movements. This can help scientists prototype quickly without the
costs associated with physical experiments. MD is currently used in almost every
field of research, from materials science to physics; an example of their use is in
simulating experiments of phase transition in noble gases such as Argon[Rut+17]. The
traditional choice used to calculate the force exerted between particles is the Lennard-
Jones potential[Len31]. This potential describes the interaction between a pair of atoms
or molecules. It is characterized by a balance between attractive and repulsive forces,
with the attractive force caused by van der Waals interactions and the repulsive forces
arising from the Pauli exclusion principle at shorter distances.

The Lennard-Jones potential is a short-range potential, which means that it quickly
converges to zero and the greater the distance between the particles. Thus, the accuracy
gained by calculating the force exerted between these far-across particles provides a
diminishing return but has a great computational cost. The solution usually taken
is to provide a cutoff distance, a predetermined distance in which the force exerted
between particles exceeding this distance would be counted as 0. However, another
problem arises: there is now a discrete jump in force when approaching the cutoff
distance. This discrete jump in force can impact accuracy; the proposed solution is to
use a modified version of the Lennard Jones potential that smoothly goes to 0 at the
cutoff distance[GKZ07].

Furthermore, since the bulk of the runtime of a simulation is spent on the force
calculation, many optimization techniques have been used to reduce its computational
cost. One of the most common methods is single instruction multiple data (SIMD),
in which multiple data can be processed at once; this is very useful during force
calculation, as multiple particles can have their force calculated at once, massively
reducing the runtime.

In this work, we will discuss the proposed smoothed Lennard Jones potential and
three different vectorized implementations of this potential: auto-vectorized, masked,
and gather scatter and test them on CoolMuc4 to compare their performance.
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2. Theoretical Background

2.1. Molecular Dynamics

Molecular dynamics simulation is a powerful tool that is used to simulate interaction
between particles in a given time period, it simulates the movement of the particles
by calculating the force exerted on each particle by others in given set of time and
updates their positions. A popular choice for this force calculation is the Lennard-Jones
potential.

2.1.1. Lennard Jones

The Lennard-Jones potential[Len31] is a short-range potential that describes the change
in the force exerted between a particle pair given their distance. The following formula
defines this potential:

u(rij) = 4ϵ

[(
σ

rij

)12

−
(

σ

rij

)6]
(2.1)

Where rij is the distance between the particle pair, where σ and ε are parameters defined
by the model based on the type of particle. The Lennard-Jones potential converges
to zero quickly, continuing to calculate forces between particles that are far apart,
providing quickly diminishing returns on the accuracy. To reduce the computational
cost of the simulation, a cutoff radius is chosen, and only particle pairs within this
distance have their force calculated.

2.1.2. Smoothed Lennard Jones

A problem arising from the standard Lennard Jones potential is a sudden jump at the
cutoff distance. This discrete jump can cause inaccuracies in the simulation[GKZ07]; a
solution to this problem is to smoothen the curve of the Lennard Jones potential, thus
making it go to 0 at the cutoff distance without the sudden jump. This is achieved by
multiplying a smoothing factor by the original formula. This specific definition of the
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2. Theoretical Background

smoothed Lennard Jones potential was obtained from [GKZ07].

U(xi, xj) = 4ϵ · S(xi, xj) ·
[(

σ

xi − xj

)12

−
(

σ

xi − xj

)6]
(2.2)

S(xi, xj) =


1 : ||xi − xj||2 ≤ rl

1− (||xi−xj||2−rl)
2·(3rc−rl−2||xi−xj||2)
(rc−rl)3 : rl ≤ ||xi − xj||2 ≤ rc,

0 : ||xi − xj||2 ≥ rc

(2.3)

In this factor, the term rl denotes the inner cutoff, and rc the original cutoff distance.
Particle pairs below the inner cutoff would experience the normal Lennard Jones
potential, but for pairs that lie between the rl and rc, the smoothing factor would scale
down the potential such that it would smoothly go down to 0 at rc.

(a) Smoothed Lennard Jones (b) Standard Lennard Jones

Figure 2.1.: 2.1a shows the Lennard Jones that has been smoothed so that it goes to 0 at
rc, 2.1b shows the normal truncated LJ potential

2.1.3. Newton’s third law

According to Newtons third law of motion[New87], for every force exerted on a body i
by j, there must be an equal force exerted in the opposite direction on j. This fact can
be used in our simulation to halve the calculations needed to be done by subtracting
the force exerted on i from j, thus updating the force of two particles at once.
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2. Theoretical Background

2.2. Autopas

Autopas1 is a molecular dynamics library that provides runtime tuning for its simula-
tion. In molecular dynamics, there are many different configurations and algorithms
that have to be chosen to provide the optimal result for a given scenario[Gra+19].
Determining the optimal configuration for a scenario non-trivial and require extensive
knowledge in both computer science and physics, thus Autopas aims to solve this
problem by dynamically adjusting the configuration during runtime, even automatically
changing to the optimal configuration to adjust to the state of the simulation.

2.2.1. Data Layout

Autopas supports two data structures that are also dynamically adjusted during runtime.
These data structures contain information alike the particles position, velocity and force,
the difference between the two is how they are stored in memory.

1. AoS (Array of structure): In this data structure the data for a single particle is
packaged in a single particle data type, these particles are then stored inside an
array like container. This data structure is easier to navigate but is not optimal for
vectorization, as the data isn’t stored contiguously in memory.

2. SoA (Structure of Array): In this data structure, each data point for the particle is
stored in different array containers, and these arrays are stored in an overarching
SoA data structure. This layout provides good support for vectorization since the
attributes of the same type are stored contiguously in memory, making it easier
to load multiple values for vector instructions.

Figure 2.2.: AoS and SoA layout

1https://github.com/AutoPas/AutoPas
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2. Theoretical Background

2.2.2. Particle Container

In N body simulations, a problem arises with the exponential growth of the number
distance calculation with the number of particles. Autopas deals with this problem
by providing the user with multiple particle containers. Each container implements
different ways to determine which particle pairs are relevant to the force calculation.
This can provide huge performance increases in the simulation. In this project, we will
discuss two different containers in Autopas:

1. Direct sum: The simplest approach to this problem is to just to perform the
distance calculation for all particles in the container, although this approach
would have a time complexity of O(N2) as each particle has to have its distance to
every other particle calculated, despite the high computational cost, this approach
have the advantage of avoiding costly overheads and or storing complicated data
structure[Gra+19].

2. Linked cells: A way to avoid calculating the force for particles outside the cutoff
range is to divide the domains into distinct cells with widths bigger or equal to
the cutoff range. In this way, only neighboring cells needed to be included in
the force calculation. Because for each cell, there is a constant amount of cells
neighboring it, if the number of cells is chosen proportionally with the number of
particles, a computational complexity of O(N) can be achieved[Gra+19].

(a) Direct Sum (b) Linked Cells

Figure 2.3.: Relevant Autopas containers [Gra+19]

2.3. SIMD

SIMD stands for single instruction multiple data[Fly72]; it is a type of parallelization
method where a single instruction can be applied to multiple data points; another word
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2. Theoretical Background

for this type of operation is vectorization, as it can be visualized as doing mathematical
operations using vectors of numbers instead of individual numbers. In Autopas, SIMD
is implemented in multiple ways, one of them is to rely on the compiler to automatically
convert non-SIMD code into SIMD intrinsics. This is not ideal, as more complex data
flow makes it hard for the compiler to correctly vectorize the code. Another way to
implement SIMD is to write it directly using SIMD intrinsics

(a) SIMD (b) Scalar

Figure 2.4.: SIMD and Scalar addition

CPU designers like Intel and Arm provide built intrinsics that can be used to
implement vectorization into the code. Although code that is made using native SIMD
intrinsics tends to perform much better than auto-vectorized code, it is bound to a
specific CPU architecture since the intrinsics are architecture-specific, for example,
AVX2(x86), AVX512(x86), SVE(Arm). These SIMD intrinsics also have their nuances
and names, making it quite difficult to port programs made for a certain architecture
to another. One solution to this problem is SIMD wrappers; these SIMD wrappers
are libraries that provide a layer of abstraction above the native intrinsics, such that
code written using these wrappers would be able to run on other architecture while
preserving the performance gain you get from using explicit intrinsics.

2.3.1. SIMD Terms

Here are some commonly used SIMD terminologies used in this project.

• Mask: a binary array that is used as an extra input for some operations; the result
of these operations would change depending on whether the value of the mask at
that index is equal to 1.

• Compress: Compress operation applies a mask to a vector that stores all values
with a positive mask contiguously on the lower side and sets all remaining indices
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2. Theoretical Background

to 0.

• Align: Concatenate two vectors together, shift them by a given amount, and return
the lower half.

• Gather/Scatter: Gather and Scatter instructions allow the user to load or write
data in a nonaligned manner by providing a vector of indices that are used as an
offset to the base address of the data to be accessed.

2.3.2. Autovectorization

Modern C++ compilers like GCC utilize auto-vectorization to automatically turn scalar
code into vectorized code[Fou], improving performance greatly. By analyzing the
code, compilers can automatically identify vectorizable code segments and compile a
vectorized version of the segment[Jel23]. This can provide the user with the performance
benefits of SIMD while avoiding the complexities associated with it. It also helps with
portability across different architectures as the compiler uses the native SIMD intrinsics
available to the target architecture.

Auto-vectorization, however, has its drawbacks, as the developer does not have
complete control over which SIMD intrinsics are used to vectorize the code and which
code segments would even be vectorized[Jel23]. This may lead to sub-optimal perfor-
mance in some scenarios. The process is also highly compiler-dependent, with the
auto-vectorization process varying between different compilers. Moreover, debugging
the code generated by auto-vectorization can be difficult, as the transformations made
by the compiler obscure the original code’s logic.

Tools like OpenMP help alleviate some of these issues by using directives like
#pragma omp simd to tell the compiler that a loop segment can be vectorized[DM98].
This tool helps developers guide the compiler on which sections of the code can be
safely vectorized.

2.3.3. Google highway

The Google Highway SIMD wrapper[Goo24] is a C++ library that provides a layer of
abstraction to make SIMD code portable for multiple architectures. The library provides
functions that translate to the corresponding native SIMD intrinsics on the compiled
machine. This means that code written using Google Highway can be compiled into
multiple versions according to the chosen architecture.

For example the Highway instruction hwy::add(a,b) when adding 2 double vec-
tors would compile to _mm256_add_pd(a, b) for AVX2 and _mm512_add_pd(a, b) for

8



2. Theoretical Background

AVX512. This layer of abstraction makes it much easier to program in SIMD parallelism
while making the code generic enough to be able to be ported to multiple architectures.

Currently, Google Highway is able to be compiled into 24 different architectures;
some notable examples include x86 (SSE, SSE2, AVX2, AVX3, etc.), ARM(SVE, SVE2,
SVE_256, etc.), the complete list of targets is available here 8.1. Google Highway,
in particular, is chosen for this project due to its easy-to-read syntax and minimal
performance cost[Roc23].

2.3.4. Vectorization techniques

1. Masked: Masked vectorization is used in autopas to implement the cutoff me-
chanic discussed in 2.1.1. Since particle pairs with a distance more than the cutoff
shouldn’t be included in the force calculation, a binary mask calculated from
the distance of each pair is created and applied at the end to make the force
0 depending on the value in the mask at the corresponding indices. A major
drawback to this approach is that for lower hitrates, a lot of calculations are
wasted since the results would be masked away at the end.

Figure 2.5.: Masked Operation

2. Gather scatter: Gather scatter seeks to improve performance at lower hitrates
by storing relevant indices and only calculating their forces when the indices
vector is full; this way, only particle pairs inside the cutoff would have their force
calculated. This approach is not without downsides since there is significant
overhead with the gather and scatter instruction, and in general, the data flow is
more complex than the masked approach.

9



2. Theoretical Background

Figure 2.6.: Gather-Scatter operation
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3. Related Works

While there are many other works on the theme of vectorization of MD potentials, such
as [Eng24] for the Axilrod-Teller potential and [Col24] for the mie potential, [WN19]
for the standard 12,6 Lennard Jones potential with gather scatter, the vectorization of
the smoothed Lennard Jones functor that implements the gather scatter approach that
takes into account the piecewise nature of the function has not been found during the
literature search.

Unlike implementations of the smoothed Lennard Jones functor such as one made by
LAMMPS[Tho+22], we included a gather scatter approach, which we theorized would
be beneficial due to the higher computational cost of the smoothed LJ potential(2.1.2)
compared to the standard 12,6 LJ.

Additionally, previous implementations of the vectorized potentials are mostly writ-
ten in native intrinsics intended for a specific architecture. The usage of Google Highway
in this project also aims to make the code more portable and easily maintainable for
multiple platforms.
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4. Implementation of smoothed Lennard
Jones force

To implement the smoothed Lennard Jones force, we need to make a conditional branch
that applies the smoothed force exclusively on particle pairs with distances between
the inner cutoff and cutoff. Every functor has an SoA and AoS implementation of
the Lennard Jones force; we would start by describing how the conditional branch is
implemented in the AoS version. Below is a pseudocode representation of how the
force calculation is implemented in the AoS Functor. Throughout this paper, the term
rl denotes the inner cutoff and rc the normal cutoff.

Algorithm 1: Smoothed AoS Functor

1 displacement← xi − xj
2 distance2 ← displacement · displacement
3 if distance2 >= rc then
4 return
5 else if distance2 >= rl then
6 f ← calculateSmoothedForce(i, j, rc, rl)

7 else
8 f ← calculateStandardForce(i, j)
9 end if

This algorithm is based on the existing AoS functor, with the difference being the
difference force calculation depending on the distance of the particle pair between the
inner cutoff and cutoff. In contrast, due to the vectorized nature of the SoA functor,
adding an if statement inside that checks for each pair is not possible; thus, three
vectorization approaches are implemented in this project. The first one is the auto-
vectorized approach, where we rely on the compiler to automatically vectorize our
scalar code; the second is the masked vectorization approach; in this method, we make
a binary mask for each element pair that is set to one if the distance between them
is less than equal to the cutoff distance. The third one is the gather scatter approach
that stores indices falling inside the cutoff range and only sends full arrays to the SoA
kernel.

13



4. Implementation of smoothed Lennard Jones force

4.1. Autovectorized approach

The autovectorized approach is essentially a direct translation from the pre-existing
implementation of the Lennard-Jones Functor in LJFunctor.h provided by AutoPas. In
this implementation, no explicit SIMD intrinsics are used, and we rely on the compiler
to correctly generate vectorized code. We can also guide the compiler to vectorize
certain code segments using OpenMP[DM98] pragmas; these pragmas tell the compiler
how the code segment should be auto vectorized, for example, Algorithm 2 shows how
the SoAFunctorSingle functor processes the particles, the line #pragma omp simd tells
the compiler that the loop can be vectorized.

Algorithm 2: Main loop structure of the Autovectorized SoASingle Functor

1 for i = 0 to soa1.size()− 1 do
2 #pragma omp simd
3 for j = 0 to soa2.size()− 1 do
4 displacement← xi − xj
5 distance2 ← displacement · displacement
6 mask← distance2 <= rc

7 innerMask← distance2 >= rl & distance2 <= rc

8 f orce← mask ? calculateStandardForce(i, j) : 0
9 f orce← innerMask ? calculateSmoothedForce(i, j, rc, rl) : f orce

10 end for
11 end for

The primary modification involves the integration of a smoothing term within the
second loop. This is done by adding another variable called innerMask, which is
applied to the calculated smoothing value and makes it 1 if the distance is less than the
innerCutoff. The implementation details for the pair and verlet functors are analogous
to how the single functor.

Even though auto-vectorization works fine for simple code, as soon as the data and
control flow become more complex, the compiler may be unable to correctly identify
vectorizable code segments by itself. This can cause the code to run much slower than
explicitly vectorized code.

4.2. Masked approach

The masked implementation is, in principle, very similar to the auto-vectorized version,
the biggest difference is that here, we use Google Highway that maps directly to

14



4. Implementation of smoothed Lennard Jones force

native SIMD intrinsics for the target architecture instead of relying on the compiler to
auto-vectorize the code.

Previously, there were two major downsides of writing vectorized code using native
intrinsics, firstly it is much more difficult to write native vectorized code than the auto-
vectorized version due to the domain knowledge of the specific architecture required
to write correctly vectorized programs, secondly, the written program would only
be usable on the specific architecture it is written for and cannot be easily rewritten
for other architectures. However, by using Google Highway, the development cost of
writing explicitly vectorized programs is greatly reduced. The force calculation in the
SmoothedSoAKernel would be done similarly as in algorithm 2.

The main loop structure of the masked approach is as shown here:

Algorithm 3: Main loop structure of the Masked SoASingle Functor

1 for i = 0 to soa1.size()− 1 do
2 for j = 0 to (soa2.size() & ∼ (_vecLengthDouble− 1)) step _vecLengthDouble

do
3 SmoothedSoAKernel(i, j)
4 end for
5 SmoothedSoAKernelRest(i, j)
6 end for

Here, the variable _vecLengthDouble is automatically set by Highway as the target
architecture’s vector length. In this way, the algorithm would still work for different
vector lengths. Other highway variables are also used to automatically adjust to the
target architecture. For another example, listing 4.1 shows a generic double vector that
automatically adjusts itself for the target architecture.

1 const highway::ScalableTag<double> tag_double;
2 using VectorDouble = decltype(highway::Zero(tag_double));

Listing 4.1: Google Highway example of a generic double vector type

The SoA kernel is also written generically using Google Highway so that the code
can run on multiple architectures. To do this, we converted the SIMD intrinsics into its
highway equivalent. Listing 4.2 shows how the force calculation part of the SoA kernel
is written using Google Highway.

1 // compute LJ Potential
2 const VectorDouble invDr2 = highway::Div(_oneDouble, dr2);
3 const VectorDouble lj2 = highway::Mul(sigmaSquareds, invDr2);
4 const VectorDouble lj4 = highway::Mul(lj2, lj2);

15



4. Implementation of smoothed Lennard Jones force

5 const VectorDouble lj6 = highway::Mul(lj2, lj4);
6 const VectorDouble lj12 = highway::Mul(lj6, lj6);
7 const VectorDouble lj12m6 = highway::Sub(lj12, lj6);

Listing 4.2: Force calculation in the masked kernel

1 // compute LJ Potential
2 const SoAFloatPrecision invdr2 = 1. / dr2;
3 const SoAFloatPrecision lj2 = sigmaSquared * invdr2;
4 const SoAFloatPrecision lj6 = lj2 * lj2 * lj2;
5 const SoAFloatPrecision lj12 = lj6 * lj6;
6 const SoAFloatPrecision lj12m6 = lj12 - lj6;

Listing 4.3: Force calculation in the autovectorized kernel

In comparison to listing 4.3, 4.2 implements all operations directly as vectors while
the variables in 4.3 are written as scalar values that need to be vectorized by the
compiler. The highway functions used in 4.2 also directly translate to SIMD intrinsic
for the target architecture during compilation.

Both the Autovectorized and Masked versions use masking to implement the cutoff
mechanism. A problem with this approach is that the force and smoothing term still
have to be calculated, even for particle pairs that lie outside of either cutoff. In higher
hitrates, this would not cause a problem, but at lower hitrates, this algorithm would
perform many unnecessary calculations that would be masked away at the end.

4.3. Gather Scatter approach

The gather scatter approach provides various benefits compared to the standard masked
approach. One major difference is that in the masked implementation, the force and
smoothing factor would have to be calculated for each particle pair regardless of dis-
tance; this problem is even more important in the smoothed Lennard Jones potential
than in the standard implementation due to the additional cost of calculating the
smoothing term.
In this implementation of the gather scatter, the distance is pre-calculated before being
sent to the kernel, those that fall between the inner cutoff and cutoff would be collected
and sent to the smoothed kernel, and particle pairs that have a distance of less than
the inner cutoff would be sent to the normal kernel instead. This saves expensive
operations only for those particles that actually need it and avoids wasted operations.
This gathering of indices happens inside the second loop of the functor. Below is a
pseudocode describing how the indices are gathered.

16



4. Implementation of smoothed Lennard Jones force

Algorithm 4: Second loop for gathering separate Indices

1 indicesSmooth← ∅
2 indicesStandard← ∅
3 for j = 0 to soa2.size()− 1 do
4 if distance2 > rc then
5 continue
6 else if distance2 > rl then
7 indicesSmooth← indicesSmooth ∪ {j}
8 else
9 indicesStandard← indicesStandard ∪ {j}

10 end if
11 end for

To implement this, changes were made to the masks used for the inner and outer
cutoff. The Cutoff mask previously is a mask that is set to 1 if the distance < rc and
for innerCutoffMask id distance < rl. The modified mask would separate particles
that would experience exclusively the smoothed potential and the ones that would
exclusively experience the standard LJ potential. Since the we want particles that is
both greater than rl and less rc, the new InnerCutoffMask is simply the result of a
logical and operation with the old cutoffmask. Since rl is always smaller than rc, the
new cutoffMask can simply be all the particles with distance less than rl. With this, the
old cutoff mask can be split into two separate masks.

Figure 4.1.: New Masks

The masks are then applied to the current indices being loaded into the loop. In each
loop, the number of 1s in each mask is counted and added to the current number of
indices stored in the accumulator. This is then compared with the length of the vector
register to see enough indices has been gathered to be sent to the SoA kernel.

17



4. Implementation of smoothed Lennard Jones force

Algorithm 5 shows how the indices are gathered and sent to the appropriate SoA
kernel. With this. The masks used in this algorithm are the newly calculated masks
from figure 4.1.

Algorithm 5: Compress and align

1 popCountSmooth← countTrue(innerCutO f f Mask)
2 popCountStandard← countTrue(cutO f f Mask)
3 if numAssignedRegisters + popCountStandard < _vecLengthDouble then
4 newInteractionIndices← compress(...)
5 interactionIndices← alignr(...)
6 numAssignedRegisters← numAssignedRegisters + popCountStandard
7 else
8 newInteractionIndices← compress(...)
9 interactionIndices← alignr(...)

10 SoAKernelGS(interactionIndices, ...)
11 interactionIndices← mask already processed indices
12 interactionIndices← alignr(...)
13 numAssignedRegisters←

popCountStandard− _vecLengthDouble + numAssignedRegister
14 end if
15 if numAssignedSmoothRegisters + popCountSmooth < _vecLengthDouble then
16 newInteractionSmoothIndices← compress(...)
17 interactionSmoothIndices← alignr(...)
18 numAssignedSmoothRegisters←

numAssignedSmoothRegisters + popCountSmooth
19 else
20 newInteractionSmoothIndices← compress(...)
21 interactionSmoothIndices← alignr(...)
22 SoAKernelSmoothGS(interactionSmoothIndices, ...)
23 interactionSmoothIndices← mask already processed indices
24 interactionSmoothIndices← alignr(...)
25 numAssignedSmoothRegisters←

popCountSmooth− _vecLengthDouble + numAssignedSmoothRegister
26 end if
27 process rest...

One problem with Google Highway was the lack of an alignr function for AVX2. Thus

18



4. Implementation of smoothed Lennard Jones force

a custom alignr function was implemented for this project that emulates the behaviour
of _mm512_alignr_epi64. This alignr function would concatenate two vectors together,
shift the vector by shi f t elements, and return the lower half.

Algorithm 6: Alignr
Data: Vector a, Vector b, Int Shift
Result: Aligned Vector

1 concatenated[2 ∗ sizeo f VectorRegister]
2 Store(a, concatenated)
3 Store(b, concatenated + sizeo f VectorRegister)
4 Return Load(concatenated + shi f t)

Google Highway also allows the user to make conditional statements based on
the target architecture. We can use the highway-provided function call for alignr:
highway::detail::CombineShiftRightI64Lanes<x>(b,a) in targets where it is avail-
able instead of our custom implementation. Here x is how much the concatenated
vector is shifted to the right and b, and a are the hi and lo vector, respectively.

Algorithm 7: Target Detection
Data: Vector a, Vector b, Int Shift
Result: Aligned Vector

1 if HWY_TARGET <= HWY_AVX3_DL then
2 highway :: detail :: CombineShi f tRightI64Lanes < shi f t > (b, a);
3 else
4 alignr(a, b, shi f t) //Algorithm 6
5 end if
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4. Implementation of smoothed Lennard Jones force

Figure 4.2.: Visualization of the separated compress and align algorithm
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5. Results

5.1. Hardware

The tests were done on CoolMuc4 due the native support for gather scatter instrinsics
provided by AVX512. The commit id for the version tested is 59dbd56. The Hardware
specification of the cluster is as follows:

Table 5.1.: Hardware overview[Eng24].

CoolMUC-4

CPU Intel®Xeon®Platinum 8380
CPU Architecture Icelake
Frequency 2.3 GHz
Vector Extensions SSE, AVX, AVX2, AVX-512

5.1.1. Argon simulation

MD-Flexible is a molecular dynamics simulator provided by Autopas; in this test, a
modified MD-Flexible that includes a parameter for innerCutoff is used to perform
the simulation. The parameters of this experiment are obtained from the book cited
here [GKZ07]. For the base version of the experiment, we start with 8x8x8 Particles,
a cutoff distance set at 2.3, and an innerCutoff of 1.9. The container size is 9.2, and
particle spacing is set to 1.15. The temperature starts at 3 and goes down by 0.0025
per iteration, with a target temperature of 0.02 after 10000 iterations. A second version
of the experiment with 50x50x50 particles is done to see if more particles would give
different results. The YAML file used as a base for both experiments can be found in 8.2.

The results in 5.1a show the masked and gather scatter approach having significant
speedup compared to the auto vectorized approach, with the performance of the gather
scatter being slightly better than the masked approach. In 5.1b the result is quite similar
to 5.1a because the hitrate stays relatively low at around 4-3 percent in both scenarios
as MD-Flexible automatically adjust the container size.
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Figure 5.1.: Simulation of Supercooled Argon with different number of particles

5.1.2. Autopas Functor Benchmark

Autopasfunctorbenchmark1 is a tool made to measure the performance of the functor
by itself. This benchmarking tool also allows us to set a particular hitrate value to
compare the performance at different hitrates. All tests were done with 1000 iterations
and 2000 particles per cell and cutoff and innercutoff set to 3 and 1.5 respectively. The

1https://github.com/AutoPas/AutoPasFunctorBench
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5. Results

speedup is how much faster the implementations are compared to the auto-vectorized
version. Figure 5.2 shows that the masked approach is generally the best option
across multiple hitrates, with the gather scatter being only slightly worse at very low
hitrates and starts to fall off starting from a hitrate of 10 percent. Although the masked
approach maintains a significant speedup of around 5 up until 100 percent hitrate, the
gather scatter approach only shows minimal speedup at high hitrate levels. The other
configurations also exhibit a similar pattern, but with the pair simulation, disabling
newton3 optimization seems to have improved the speedup of the masked version.
Still, it seems to have no effect on gather scatter.
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Figure 5.2.: Newton3, Single
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6. Conclusion

In this Thesis, we have successfully implemented the Smoothed Lennard Jones potential
in three different approaches: autovectorized, masked, and gather scatter using Google
Highway. Although we hypothesize that the gather scatter approach would provide
significant speedup due to the increased computational cost of the modified potential,
the results have shown that the masked approach is still the best in this particular case.
Although the gather scatter does fare comparatively well with the masked approach at
very low hitrates (consistent with our results for the argon simulation 5.1); however, its
speedup rapidly drops at hitrates above 10 percent.

The worse performance of the gather scatter implementation can be due to the
unaligned nature of the memory access, causing slow memory access or the overhead
cost of gathering indices for the kernel[Pen+13]. The usage of Google Highway, however,
has been a success, as the gather scatter algorithm is heavily dependent on architecture-
specific details, such as vector length, etc. Google Highway makes this generic form
of the gather scatter algorithm easily adaptable for other architectures, as all three
implementations are able to run on AVX2 and AVX512 with minimal changes.
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7. Future Works

In the future, a comparison of how the the three different implementations would
perform in other target architectures, for example, SVE might be interesting. These
functors are written in Google Highway, and we expect it to run with minimal changes,
as different architecture may provide better performance for gather scatter instructions
than AVX512. Another thing that may be interesting to explore further is another
implementation of the smoothed Lennard Jones potential such as the polynomial
method used in LAMMPS[Tho+22], as there is no one standard version. This can
quickly be done as the force calculation is isolated in the kernel and can be changed
without much modification needed in the other parts of the program.

Modifying the Autopasfunctorbenchmark to distribute the particles with respect
to the inner cutoff may also give us more insight into how good the gather scatter
approach is compared with the masked when only a small amount of particles fall and
need smoothing. Currently, we are unable to set the exact ratio of the smoothed and
normal force calculation.

It might also be worthwhile to conduct a thorough profiling of the gather scatter
implementation to determine which parts need to be optimized. Profiling tools such as
Intel® VTune™ can provide vital information such as memory access and vectorization
usage of the code[Int], giving us important data to improve performance.
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8. Appendix

1. Any: EMU128, SCALAR;

2. Armv7+: NEON_WITHOUT_AES , NEON , NEON_BF16 , SVE , SVE2 ,
SVE_256 , SVE2_128

3. IBM Z: Z14, Z15

4. POWER: PPC8 (v2.07), PPC9 (v3.0), PPC10

5. RISC-V: RVV (1.0)

6. WebAssembly: WASM, WASM_EMU256

7. x86: SSE2, SSSE3, SSE4, AVX2, AVX3, AVX3_DL, AVX3_ZEN4, AVX3_SPR

Figure 8.1.: Supported Platforms for Google Highway
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8. Appendix

1 container : [LinkedCells]
2 verlet-rebuild-frequency : 10
3 verlet-skin-radius-per-timestep : 0.1
4 verlet-cluster-size : 4
5 selector-strategy : Fastest-Absolute-Value
6 data-layout : [SoA]
7 traversal : [lc_c08]
8 tuning-strategies : []
9 tuning-interval : 2500

10 tuning-samples : 5
11 tuning-max-evidence : 10
12 functor : smohwygs #this is changed depending on which

implementation is being used
13 newton3 : [enabled]
14 cutoff : 2.3
15 innerCutoff : 1.9
16 box-min : [0, 0, 0]
17 box-max : [9.2, 9.2, 9.2]
18 cell-size : [1]
19 deltaT : 0.000
20 iterations : 10000
21 boundary-type : [periodic, periodic, periodic]
22 globalForce : [0, 0, 0]
23 Sites:
24 0:
25 epsilon : 1.
26 sigma : 1.
27 mass : 1.
28 Objects:
29 CubeGrid:
30 0:
31 particles-per-dimension: [ 50, 50, 50 ]
32 particle-spacing: 1.15
33 bottomLeftCorner: [ 0.575, 0.575, 0.575 ]
34 velocity: [ 0, 0, 0 ]
35 particle-type-id: 0
36 thermostat:
37 initialTemperature : 3
38 targetTemperature : 0.02
39 deltaTemperature : 0.0025
40 thermostatInterval : 25
41 addBrownianMotion : true
42 vtk-filename : argoncoolOriginalLJ
43 vtk-write-frequency : 1000
44 vtk-output-folder : argoncoolOutput
45 no-flops : false
46 no-end-config : true
47 log-level : info

Figure 8.2.: YAML Input file
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