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Abstract

This thesis focuses on modelling and forecasting the yield curves and economic factors using
vine, factor copula models and factor models. To remove serial dependencies, time series
models were employed. The autoregressive moving average model was initially considered,
which was then extended by the GARCH model with skew Student’s t innovation. The
standardized residuals were then formed and transformed into copula data using the
probability integral transform. The dependencies were then modelled using the vine copula
models, the regular, canonical and drawable vine copula, the one- and two-factor copula
model, the Student’s t copula and finally the one- and two-factor Gaussian model. The
resulting models were compared to determine the best one, which was then used to simulate
the forecasts. The modelling and forecasting were performed on two case studies. The first
case study considered German yield curves with maturities of 1, 5, 10, 15 and 20 years. The
second case study considered the same yield curves as in the first case and in addition the
German inflation rate. The vine copula models produced the most accurate results when
modelling and forecasting yield curves and the inflation rate.

Keywords: Modelling, forecasting, copula model, regular vine, canonical vine, drawable
vine, factor copula model, factor Gaussian model, yield curves, economic factors, inflation
rate.
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1 Introduction

The importance of copulas in the financial and insurance sectors has been steadily grow-
ing, driven by their critical role in several key areas: risk management, financial product
valuation and portfolio optimization. The primary challenge in these sectors is modelling
the dependencies between risk factors or assets. Conventional methods often fail to capture
the complexity of these relationships, which is where copulas come in. Copulas offer a
significant advantage by effectively visualizing non-linear dependencies. They enable the
decomposition of a multivariate distribution into its marginal distributions and its depen-
dency structure. This separation is crucial for understanding and managing the intricate
interrelations in financial markets.
Although the multivariate normal distribution has been commonly used to model depen-
dencies, it is increasingly recognized that it has limitations, particularly it’s inability to
account for asymmetries and heavy tails in data distributions. This is a crucial shortfall,
as financial markets often exhibit such characteristics. To address these limitations, vine
copula models have been introduced. These models use different bivariate copula families to
increase flexibility, allowing for a more accurate representation of complex dependencies.
Another innovative approach is the factor copula model. Distinctive for its ability to han-
dle asymmetries and heavy tails, this model does not rely on the assumption of normally
distributed data. This model is particularly relevant in scenarios where dependencies in
observable variables are driven by multiple unobserved (latent) variables. In finance, latent
variables often correspond to underlying economic factors that are not directly observable
but have a significant impact on financial instruments and markets.

The aim of this thesis is to apply these advanced copula models - vine copulas and factor
copulas - to model the dependence structure between yield curves and an economic factor.
Yield curves are a fundamental tool in financial analysis as they represent the interest rates
of bonds with different maturities. It is important to understand their relationship with
key economic factors for market analysis and prediction. Additionally to modelling, future
movements of these curves and factors are also predicted.

This Master’s thesis is divided into two parts, each contributing to a comprehensive under-
standing of copula models and their applications. We commence with an exploration of the
economic factors central to our analysis: yield curves and inflation rate. These two variables
form the foundation upon which we build our models and insights. The mathematical
background is the cornerstone of our work. Within this section, we delve into univariate
parametric distributions and explore various time series models that underpin the subse-
quent application of copulas. Furthermore, we introduce statistical tests and model selection
criteria to ensure the robustness of our analysis. Copula models take centre stage in this
thesis, with a detailed examination of vine copulas, factor copulas and the Gaussian factor
model. To demonstrate the practicality and effectiveness of copula models, we present two
comprehensive case studies. The first case study focuses on modelling yield curves, while the
second extends our analysis to encompass the interplay between yield curves and inflation.

1



1 Introduction

These case studies serve as real-world applications, illustrating how copula models can be
employed to analyse and forecast financial variables in a complex and dynamic environment.

2



2 Economic Factors

Economic factors have an impact on not only individual companies but also the economy
as a whole. Economic factors encompass several indicators such as interest rates, exchange
rates, inflation rates, unemployment rates, tax rates, law and policies, supply and demand,
and Gross Domestic Product (GDP). Some of these economic factors are interconnected, like
how interest rates affect inflation rates, which then impact unemployment rates. This thesis
will focus on interest rates and inflation rates, as well as their interdependencies. These
factors are now defined in detail, referring to the book by Hull (2015), Kwok (2008), Brigo
and Mercurio (2007) and Conrad (2017).

2.1 Yield curves

An interest rate establishes the amount of money that a borrower promises to give to a lender.
Various types of interest rates are determined according to the circumstances. Treasury rates,
London Interbank Offered Rate (LIBOR), Fed Funds rates and the repo interest rate are
distinguished.

Treasury Rates are the interest rates received by an investor for investments in Treasury
Bills and Treasury Bonds. The government uses this type of interest rate to borrow in their
own currency. A US Treasury rate denotes the interest rate at which the US government can
borrow dollars. Since the government does not default on its obligations the Treasury rates
can be considered completely risk free.

The London Interbank Offered Rate is a non-securitized short-term lending rate between
banks. LIBOR rates are quoted for ten currencies and 15 different periods per trading day.
These interest rates are published by the British Bankers’ Association (BBA). However, prior
to publication, the BBA conducted a survey among various banks to determine the interest
rate at which the banks could obtain a loan. The upper and lower quartiles were disregarded,
the remaining interest rates were averaged to determine the LIBOR for the day.

Federal Funds Rates are non-securitized credit interest rates. In the USA, a financial
institution must have a certain amount of reserves on deposit at the US Federal Reserve.
These institutions may have an excess or shortfall of funds at the Federal Reserve. If there
is a shortfall, the financial institution must make up for it.This compensation then leads to
overnight lending transactions, employing the UK Federal Funds Rate as the interest rate.

Collateralised loan interest rates are referred to as repo rates. A repurchase agreement,
commonly known as a repo, is a contractual agreement where a financial institution sells its
securities and repurchases them at a later stage for a higher value. The institution receives a
loan where the interest rate, also known as the repo rate, is the difference between the sale
price and the repurchase price. The repurchase agreement typically entails minimal default
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2 Economic Factors

risk. If the securities owner fails to uphold the agreement, the company retains the securities.
Alternatively, in case of a lending company’s failure to honour the agreement, the holder
receives the lender’s funds.

As we have presented various types of interest rates and will discuss yield curves (al-
ternative: interest rate curves) in this paper, we will now define yield curves.

The yield curve is the graphical representation of the so-called yield to maturity, where
the yield to maturity represents the total interest rate that an investor will receive if the
purchased bond is held until maturity. Mathematically, the yield curve may be defined as
follows.

Definition 2.1 (Yield curve) The yield curve at time t represents the graph of the function

T 7→ P(t, T), T > t

in which the function P(t, T) is the zero coupon bond. The yield curve is a T decreasing function
starting from P(t, t) = 1 due to the positive interest rates.

The yield curve is also referred to as term structure of discount factors.

2.2 Inflation rate

Inflation refers to the continuing rise in the price level. This means that an average of many
prices must rise and this increase should not decline, i.e. the increase should be permanent.
This is intended to exclude constant fluctuations in individual prices. To determine the
inflation rate, the sustainable change in the general price level must be calculated.
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Mathematical Background

This chapter outlines fundamental definitions important for time series analysis and copula
modelling. The essential univariate distributions are elucidated, followed by clarifications of
time series and copula models.

3 Parametric Univariate Distribution

As previously stated, we will provide a comprehensive explanation of significant univariate
distributions. In this part for univariate distributions, we will use uppercase letters to
denote random variables X and lowercase letters for the realizations x, i.e. X = x. We
will use F and f to denote the probability mass function and density and these exist as we
consider absolutely continuous or discrete distributions. So let us introduce some important
continuous distributions. The following definitions are based on the book by Czado (2019)
and Rigby et al. (2019).

Definition 3.1 (Uniform distribution) An absolutely continuous random variable X is uniformly
distributed in the interval [a, b] with the density

f (x) :=


1

b−a x ∈ [a, b]

0 else
. (3.1)

The uniformly distributed random variable is then denoted by X ∼ U(a, b).

Definition 3.2 (Normal distribution) An absolutely continuous random variable X is normally
distributed with mean µ ∈ R, variance σ2 > 0 and density

f (x; µ, σ2) :=
1√

2πσ2
e−

(x−µ)2

2σ2 . (3.2)

The normally distributed random variable X is then denoted by X ∼ N(µ, σ2). The standard normal
distribution is given by X ∼ N(0, 1) and we denote the density and distribution function as φ(·)
and Φ(·), respectively.

Definition 3.3 (Student’s t distribution) An absolutely continuous random variable X is Student’s t
distributed with mean µ ∈ R, scale parameter σ2 > 0, degree of freedom ν > 0 and density

fν(x; µ, σ2) :=
γ
(

ν+1
2

)
γ
(

ν
2

)√
(2πν)σ

{
1 +

(
x− µ

σ

)2 1
ν

}− ν+1
2

. (3.3)
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3 Parametric Univariate Distribution

The Student’s t distributed random variable is then denoted by X ∼ tν(µ, σ2). The density for the
Student’s t distribution in the d-dimensional case for a random vector X = (X1, ..., Xd) with ν > 0
degrees of freedom, expectation vector µ ∈ Rd, and scale parameter matrix Σ = cor(Xi, Xj) =
(ρij)i,j=1,...,d is given by

ft(x1, ..., xd; ν; µ; Σ) =
Γ
(

ν+d
2

)
Γ
(

ν
2

)
(νπ)

d
2
|Σ|−1

{
1 +

1
ν
(x− µ)TΣ−1(x− µ)

}− ν+d
2

.

The multivariate Student’s t distribution is abbreviated by td(ν, µ, Σ).

The definitions of the following distributions are based on Rigby et al. (2019).

Definition 3.4 (Skew t type 4 distribution) A random variable X is skew t type 4 (short ST4(µ, σ, ν, τ))
distributed with density

f (x; µ, σ, ν, τ) =


c
σ

[
1 + z2

ν

]−−(ν+1)
2 if x < µ

c
σ

[
1 + z2

τ

]−−(τ+1)
2 if x ≥ µ

,

where x, µ ∈ R, σ > 0, ν > 0, τ > 0, z = x−µ
σ and c = 2

[
ν

1
2 B
( 1

2 , ν
2

)
+ τ

1
2 B
( 1

2 , τ
2

)]−1
.

The first moment, variance, kurtosis, and skewness of a skew t type 4 distribution can be
calculated as follows:

E(X) = µ + σE(Z) = µ + σc
[

τ

τ − 1
− ν

ν− 1

]
for ν > 1, τ > 1 where c = [ν

1
2 B
( 1

2 , 1
2

)
+ τ

1
2 B
( 1

2 , τ
2

)
]−1.

Var(X) = σ2Var(Z) = σ2 (E(Z2)− E(Z)2)
where E(Z2) =

cτ
3
2 B( 1

2 , τ
2 )

2(τ−2) +
cν

3
2 B( 1

2 , ν
2 )

2(ν−2) .

Kurt(X) = 3 + 3c

[
τ

1
2 B
( 1

2 , τ
2

)
τ − 4

+
ν

1
2 B
( 1

2 , ν
2

)
ν− 4

]

for ν > 4 and τ > 4.

Skew(X) = 2c
[

τ2

(τ − 1)(τ − 3)
− ν2

(ν− 1)(τ − 3)

]
for ν > 3 and τ > 3.

Definition 3.5 (Logistic distribution) An absolutely continuous random variable X is logistic
(L0(µ, σ)) distributed with mean µ and scale σ. Its density is given by

f (x; µ, σ) =
1
σ

{
exp
[
− x− µ

σ

]}{
1 + exp

[
− x− µ

σ

]}−2

. (3.4)
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3 Parametric Univariate Distribution

The first moment and variance of a logistic distribution can be determined as follows

E(X) = µ and Var(X) =
π2σ2

3
.

Kurtosis and skewness are already known and are provided by

Kurt(X) = 1.2 and Skew(X) = 0.

Definition 3.6 (Generalized t distribution) An random variable X is generalized t (GT(µ, σ, ν, τ))
distributed with density

f (x; µ, σ, ν, τ) = τ

{
2σν

1
τ B
(

1
τ

, ν

) [
1 +
|z|τ

ν

]ν+ 1
τ

}−1

, (3.5)

where x, µ ∈ R, σ > 0, ν > 0, τ > 0, z = x−µ
σ . The generalized t distribution is symmetric about

x = µ.

Expectation of a type generalized t distribution is given by

E(X) =

{
µ ντ > 1
undefined ντ ≤ 1

.

The variance, kurtosis and skewness of a generalized t distribution are calculated in the
following way

Var(X) =

{
σ2ν

2
τ B(3τ−1,ν−2τ−1)

B(τ−1,ν) ντ > 2
∞ ντ ≤ 2

,

Kurt(X) =

{
σ4ν

4
τ B(5τ−1,ν−4τ−1)

B(τ−1,ν) ντ > 4
∞ ντ ≤ 4

,

Skew(X) =

{
0 ντ > 3
undefined ντ ≤ 3

.

Definition 3.7 (Skew normal type 2 distribution) The skew normal type 2 distribution is denoted by
SN2(µ, σ, ν) and its probability density function is expressed as follows

fX(x|µ, σ, ν) =


c
σ exp

[
− 1

2 (νz)2] x < µ

c
σ exp

[
− 1

2

( z
ν

)2
]

x ≥ µ
,

where x ∈ (−∞, ∞), µ ∈ (−∞, ∞), σ > 0, ν > 0, z = x−µ
σ and c =

√
2ν√

π(1+ν2)
.
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Figure 3.1 Graphical representation of the generalized t distribution, the logistic distribution, the
skew t type 4 distribution, skew normal type 2 distribution and the standard normal distribution.

The expected value, variance, kurtosis and skewness of the skew normal type 2 distribution
can be determined using the following functions

E(X) = µ + σE(Z) = µ + σ

√
2√
π
(ν− ν−1),

Var(X) = σ2Var(Z) = σ2
[
(ν2 + ν−2 − 1)− 2

π
(ν1 − ν−1)2

]
,

Kurt(X) = σ3

[
2
√

2(ν4 − ν−4)√
π(ν + ν−1)

− 3Var(Z)E(Z)− [E(Z)]3
]

,

Skew(X) = σ4

[
3(ν5 + ν−5)

(ν + ν−1)
− 4

2
√

2(ν4 − ν−4)√
π(ν + ν−1)

E(Z) + 6Var(Z)[E(Z)]2 + 3[E(Z)]4
]

,

where Z = X−µ
σ .

Figure 3.1 shows the densities of the skew t type 4, logistic, skew normal type 2 and
generalized t distributions compared to the standard normal distribution.
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3 Parametric Univariate Distribution

So far, we have only considered univariate distributions. In comparison, the multivariate
distribution considers the behavior of several random variables simultaneously. In multivari-
ate distribution, we distinguish between marginal, joint and conditional distribution. The
densities and the distribution function for these three groups have been summarized in the
Table 3.1.

Definition 3.8 (Marginal, joint and conditional distributions) Let X = (X1, ..., Xd)
T be a d-

dimensional random vector. For the marginal, joint and conditional densities and distributions
the following notation is used.

Table 3.1 Marginal, joint and conditional densities and distributions

density function distribution function

marginal fi(xi), i ∈ {1, ..., d} Fi(xi), i ∈ {1, ..., d}

joint f (x1, ..., xd) F(x1, ..., xd)

conditional fi|k(xi|xk), i 6= k Fi|k(xi|xk), i 6= k

Another significant definition is presented below and is crucial if one wants to transform
random variables with an underlying distribution into the standard uniform distribution.

Definition 3.9 (Probability integral transform) Let X ∼ F be a continuous random variable and x
the realization of X, then the transformation u := F(x) is called the probability integral transform
(short PIT) at x.

Remark 3.1 (Distribution of the probability integral transform)
Assume X ∼ F then U := F(X) is uniformly distributed in interval [0, 1]. This can be shown by

P(U ≤ u) = P(F(x) ≤ u) = P(X ≤ F−1(u)) = F(F−1(u)) = u, ∀u ∈ [0, 1].

where F−1 is the quantile function.
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4 Time Series Models

In this section, a general setup is given. The second section deals with statistical time series
models and describes the most important ones in detail. The following definitions are based
on the book by Shumway and Stoffer (2017).

4.1 Set up

Definition 4.1 (Time series) Time series contain data that have been observed and collected over a
certain period of time. Consider the time series as a stochastic process

{Xt}, t = 0,±1,±2, ...

or as a sequence of random variables
X1, X2, X3, ...

The observed values of a stochastic process are called realization and are denoted by xt, t = 1, 2, . . ..

An example for a stochastic process would be the so called white noise.

Definition 4.2 (White noise) A white noise process Wt is a collection of uncorrelated random
variables with E(Wt) = 0 and Var(Wt) = σ2

w ∈ (0, ∞). We denote the white noise process by
Wt ∼ wn(0, σ2

w). Is Wt independet and identically normally distributed with mean 0 and variance

σ2
w, so we call this process Gaussian white noise and we will denote this by Wt

i.i.d∼ N(0, σ2
w).

Time series analysis is based on the idea that the realizations of a stochastic process depend
on each other at different points in time. This relationship can be described by a model or
simply by covariance or correlation. Since one does not have only one realization, one has
accordingly not only one covariance or correlation, but a whole sequence of covariances or
correlations, which one calls autocovariance function or autocorrelation function.

Definition 4.3 (Autocovariance function) The autocovariance function measures the linear de-
pendence between two points on a time series at different times and is defined by

γ(s, t) = cov(Xs, Xt) = E[(Xs − µs)(Xt − µt)] ∀s, t, (4.1)

where µs, µt are the mean for the time series at time s and t. For s = t we get the variance

γ(t, t) = E[(Xt − µt)
2] = var(Xt)

and if γ(s, t) = 0, Xs and Xt are not linearly related but there must be some dependence structure
between the time series.
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Definition 4.4 (Autocorrelation function) With the autocorrelation function (ACF), the linear
predictability of a time series at time t is determined by considering the time series at time s. The
autocorrelation function is defined as follows

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
. (4.2)

The autocorrelation function ρ(s, t) take values between −1 and 1.

Definition 4.5 (Partial autocorrelation function) Let {Xt, t = 1, ..., T} be a stationary time series.
The partial autocorrelation function (PACF) is the correlation between the time series Xt+h and
Xt and is denoted by φhh, h = 1, 2, ... with

φ11 = cor(Xt+1, Xt) = ρ(1, 1)

φhh = cor(Xt+h − X̂t+h, Xt − X̂t)

where X̂t+h is linearly regressed on Xt+h−1, ..., Xt+1. X̂t+h is then denoted by

X̂t+h = β1Xt+h−1 + β2Xt+h−2 + ... + βh−1Xt+1

and X̂t is the linear regression on Xt+1, ..., Xt+h−1. Linear regression of X̂t is then given by

X̂t = β1Xt+1 + β2Xt+2 + ... + βh−1Xt+h−1.

Until now, no assumptions have been made about the behavior of time series. It might
well be the case that some kind of regularity is present in the time series. This regularity is
introduced with the following definition.

Definition 4.6 (Stationarity) A strictly stationary time series is one where the probabilistic be-
havior of every collection of values {Xt1 , Xt2 , ..., Xtk} is identical to that of the time shifted set
{Xt1+h, Xt2+h, ..., Xtk+h}. So we get

P(Xt1 ≤ c1, ..., Xtk ≤ ck) = P(Xt1+h ≤ c1, ..., Xtk+h ≤ ck) (4.3)

with time points t1, ..., tk, constants c1, ..., ck and time shifts h = 0,±1,±2, ...∀k = 1, 2, ...

This version of the definition is too strong for some applications, so a weak version of
stationarity is needed. We present this in the following.

Definition 4.7 (Weak Stationarity) A weakly stationary time series {Xt, t = 1, ..., T} is a process
with finite variance, for which holds

1. the mean value function µt is constant and does not depend on time t,

2. the autocovariation function γ(s, t) depends on time s and t only through their difference
|s− t|.

Now that important definitions of time series analysis have been introduced, we proceed to
examine time series models that attempt to explain complex processes using simpler ones,
such as white noise. The autoregressive, moving average and autoregressive moving average
models are potential candidates, and we delve into them in greater detail below. The ensuing
definitions are derived from the book by Shumway and Stoffer (2017) and Brockwell and
Davis (2016).

12



4 Time Series Models

4.2 Statistical time series models

In this section, statistical time series models are defined. We will begin by examining the
autoregressive model, the moving average model and the autoregressive moving average
model, which combines the previous two models. Generalized autoregressive conditionally
heteroskedastic models are also discussed in detail.

4.2.1 Autoregressive model

Definition 4.8 (Autoregressive model) An autoregressive model of order p (short AR(p)) for a
stationary time series {Xt, t = 1, ..., T} is given by

Xt =
p

∑
i=1

φiXt−i + Wt, (4.4)

where Wt
i.i.d.∼ wn(0, σ2

w) is a white noise with zero mean and constant variance σ2
w and φ1, ..., φp

constant model parameters with φp 6= 0. Is the mean µ of time series not equal to zero, then replace
the time series Xt with Xt − µ and one gets

Xt = α +
p

∑
i=1

φiXt−i + Wt,

where α = µ(1− φ1 − ...− φp).

For a better understanding of AR models, let’s consider the model of order one AR(1) with
the form Xt = φXt−1 + Wt. Figure 4.1 shows a path of an autoregressive process of order
one with parameter φ = 0.6. Iterating backwards in time, the autoregressive model with
order one can be represented as a linear process, provided |φ| < 1 and sup

t
var(Xt) < ∞.

Xt = φXt−1 + Wt

= φ (φXt−2 + Wt−1) + Wt

... (4.5)

=
∞

∑
j=0

φjWt−j

Using (4.5) we now can calculate the mean

E(Xt) =
∞

∑
j=0

φjE(Wt−j) = 0,

the autocovariance

γ(t + h, t) = cov(Xt+h, Xt)

= E

[(
∞

∑
j=0

φjWt+h−j

)(
∞

∑
k=0

φkWt−k

)]

= σ2
w

∞

∑
j=0

φh+jφj

=
σ2

wφh

1− φ2 , h ≥ 0
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Figure 4.1 A realized path of an autoregressive model of order one AR(1) (Source: Based on Shumway
and Stoffer (2017))

and the ACF of the AR(1) process

ρ(t + h, t) =
γ(t + h, t)

γ(t, t)
= φh, h ≥ 0.

4.2.2 Moving average model (MA)

Definition 4.9 (Moving average models) The moving average (MA) model of order q for a stationary
time series {Xt, t = 1, ..., T} is defined by

Xt = Wt +
q

∑
i=1

θiWt−i (4.6)

with white noise Wt
i.i.d.∼ wn(0, σ2

w) and constant model parameters θ1, ..., θq with θq 6= 0. We
abbreviate the moving average model of order q by MA(q).

Let’s consider the first order model MA(1) to get a better insight. The first order moving
average model can be represented by the following formula: Xt = Wt + θWt−1. We can then
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Figure 4.2 A realized path of an moving average model of order one MA(1) with θ = 0.6. (Source:
Based on Shumway and Stoffer (2017))

use this representation to calculate the moments of the time series.

E(Xt) = E(Wt) + θE(Wt−1) = 0,

γ(t + h, t) = cov(Xt+h, Xt)

=


(1 + θ2)σ2

w h = 0,

θσ2
w h = 1,

0 h > 1.

The autocorrelation function is given by

ρ(t + h, t) =


θ

(1+θ2)
h = 1,

0 h > 1.

A realized path of the MA model of order one with θ = 0.6 is shown in Figure 4.2.

Combining an autoregressive and moving average model then one gets an autoregres-
sive moving average model with order p and q. We abbreviate the autoregressive moving
average model by ARMA(p,q).
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Figure 4.3 A realized path of an autoregressie moving average model of order p = 1 and q = 1
ARMA(1, 1) with φ = 0.9, θ = 0.6. (Source: Based on Shumway and Stoffer (2017))

4.2.3 Autoregressive moving average model (ARMA)

Definition 4.10 (Autoregressive moving average model) An autoregressive moving average (ARMA)
model of order p and q for a stationary time series {Xt, t = 1, ..., T} is given by

Xt =
p

∑
i=1

φiXt−i + Wt +
q

∑
j=1

θjWt−j (4.7)

with the white noise Wt ∼ wn(0, σ2
w) and parameters φp 6= 0 and θq 6= 0. Note again, if the mean is

not zero, we replace the time series Xt by Xt − µ and we obtain

Xt = α +
p

∑
i=1

φiXt−i + Wt +
q

∑
j=1

θjWt−j

where α is defined by µ(1− φ1 − ...− φp).

Choosing order p equal to zero, one obtains a moving average model with order q. Taking q
equal to zero, one receives an autoregressive model with order p. An autoregressive moving
average model with order p = 1 and q = 1 and parameters φ = 0.9 and θ = 0.6 is shown in
Figure 4.3.
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Order selection AR and MA model

In order to fit an ARMA model, the orders must first be determined. The orders can be
obtained using the autocorrelation function and the partial autocorrelation function. The
order p is given if the ACF tails off and the PACF cuts off after lag p. If the ACF cuts off after
lag q and PACF tails off, the order q is obtained. For orders p and q in the ARMA model,
ACF and PACF must tail off. The behavior of the ACF and PACF is summarized in Table 4.1.

Table 4.1 Illustration the behavior of the ACF and PACF for ARMA models. (Source: Shumway and
Stoffer (2017)[page 99])

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off

after lag q
Tails off

PACF Cuts off
after lag p

Tails off Tails off

In Figure 4.4 the order q can be read from the ACF and p from the PACF plot. In AR(1)
the ACF tails off and PACF is close to zero for lag greater than one. In MA(1) the ACF and
PACF is close to zero for lag greater than one. The ARMA tails off in the ACF and PACF is
close to zero for lag greater than one.

4.2.4 Multiplicative seasonal autoregressive moving average model (SARMA)

For some time series, dependence on the past is often strongest at multiples of the underlying
seasonal lag. The presented ARMA model must therefore be modified. In the following, an
autoregressive and moving average model that identify with the seasonal lags s is introduced.

Definition 4.11 (Multiplicative seasonal autoregressive moving average model) An pure seasonal
autoregressive moving average (SARMA) model (short ARMA(P, Q)s) for a stationary time
series {Xt, t = 1, ..., T} is defined by

ΦP(Bs)Xt = ΘQ(Bs)Wt (4.8)

with the operators

ΦP(Bs) = 1−Φ1Bs −Φ2(B2s)− ...−ΦP(B2P)

and

ΘQ(Bs) = 1 + Θ1Bs + Θ2(B2s) + ... + ΘQ(B2Q),

where B is the backshift operator and is defined by

BXt = Xt−1.

If we consider the power of two, the backshift operator is then given by B2Xt = B(BXt) = BXt−1 =
Xt−2. In general the backshift-opertor for the k-th power has the following form

BkXt = Xt−k.

17



4 Time Series Models

−
0

.2
0

.2
0

.6

Lag

A
C

F

AR(1)   φ = 0.6

5 10 15 20

−
0

.2
0

.2
Lag

P
a

r
ti
a

l 
A

C
F

AR(1)   φ = 0.6

5 10 15 20

−
0

.2
0

.2
0

.6

Lag

A
C

F

MA(1)   θ = 0.6

5 10 15 20

−
0

.3
0

.0
0

.3

Lag

P
a

r
ti
a

l 
A

C
F

MA(1)   θ = 0.6

5 10 15 20

−
0

.2
0

.4
0

.8

Lag

A
C

F

ARMA(1, 1)   φ = 0.6  θ = 0.6

5 10 15 20

−
0

.2
0

.4
0

.8

Lag

P
a

r
ti
a

l 
A

C
F

ARMA(1, 1)   φ = 0.6  θ = 0.6

5 10 15 20

Figure 4.4 Illustration of the behavior of the ACF and PACF for AR(1), MA(1) and ARMA(1, 1).
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Generally, it is possible to combine the seasonal and non-seasonal operators into a multiplicative
seasonal autoregressive moving average model and one gets an ARMA(p, q)× (P, Q)s with
the model formula

ΦP(Bs)φ(B)Xt = ΘQ(Bs)θ(B)Wt. (4.9)

Order selection SARMA model

As with the ARMA models, the order must also be determined for the pure SARMA models.
We have already determined the orders for the non-seasonal part in Table 4.1. So it remains
to specify the seasonal orders. We obtain the order P if the ACF tails off at lags ks and PACF
cuts off after lag Ps and further we get the order Q if ACF cuts off after lag Qs and PACF
tails off at lags ks. If ACF tails off and PACF tails off at lags ks, we get order Q and P. Again,
the results have been summarized in Table 4.2.

Table 4.2 Illustration of the behavior of the ACF and PACF for SARMA models. (Source: Shumway
and Stoffer (2017)[page 148])

AR(P)s MA(Q)s ARMA(P, Q)s
ACF∗ Tails off at lags

ks, k = 1, 2, ....
Cuts off after
lag Qs

Tails off at lags
ks

PACF∗ Cuts off after
lag Ps

Tails off at lags
ks, k = 1, 2, ...

Tails off at lags
ks

∗ The value at non-seasonal lags h 6= ks, for k = 1, 2, ... are zero

Figure 4.5 depicts the autocorrelation function and partial autocorrelation function plots for
the seasonal AR(1)

(1−Φ1B12)Xt = Wt

Xt = Φ1Xt−12 + Wt,

MA(1)

Xt = (1 + Θ1B12)Wt

Xt = Wt + Θ1Wt−12,

and ARMA(1,1)

(1−Φ1B12)Xt = (1 + Θ1B12)Wt

Xt = Φ1Xt−12 + Wt + Θ1Wt−12

models. We have chosen a seasonal period of s = 12. For the seasonal AR(1), the ACF tails
off after lag 12 and the PACF cuts off after lag 12. In contrast, for the seasonal MA(1) model,
the ACF cuts off after lag 12 and the PACF tails off after lag 12. The seasonal ARMA(1, 1)
model shows that the ACF and PACF approach zero for lag greater than 12.

So far in the ARMA models, we have assumed the conditional variance to be constant.
However, this assumption is not always accurate. Therefore, we need a model that takes the
variability into account. Such a model has been introduced by Engle and later extended by
Bollerslev, which is described in the next definition.
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Figure 4.5 Illustration of the behavior of the ACF and PACF for an seasonal AR(1), MA(1) and
ARMA(1, 1) with s = 12.
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4.2.5 Generalized autoregressive conditionally heteroscedastic model (GARCH)

Definition 4.12 (Generalized autoregressive conditionally heteroscedastic models) In the general-
ized autoregressive conditional heteroskedasticity (GARCH) model, the conditional variance of the
disturbance term is assumed to follow an autoregressive moving average ARMA(p, q) process. The
GARCH(P, Q) model can therefore be defined as follows

Wt = σtεt

σ2
t = α0 +

P

∑
i=1

αiW2
t−i +

Q

∑
j=1

β jσ
2
t−j (4.10)

with white noise εt
i.i.d.∼ wn(0, 1), parameters α0, ..., αp, β1, ..., βq where αp 6= 0 and βq 6= 0.

Combining the above described models we obtain the ARMA-GARCH model with orders
p, q and P, Q.

4.2.6 ARMA-GARCH model

Definition 4.13 (ARMA-GARCH models) The ARMA-GARCH model of order p, q, P and Q for a
stationary time series {Xt, t = 1, ..., T} has the following representation

ARMA(p, q) : Xt =
p

∑
i=1

φiXt−i + Wt +
q

∑
j=1

θjWt−j

GARCH(P, Q) : Wt = σtεt, σ2
t = α0 +

P

∑
k=1

αkW2
t−k +

Q

∑
l=1

βlσ
2
t−l

ARMA(p, q)−GARCH(P, Q) : Xt =
p

∑
i=1

φiXt−i +

√√√√α0 +
P

∑
k=1

αkW2
t−k +

Q

∑
l=1

βlσ
2
t−l · εt

+
q

∑
j=1

θj

√√√√α0 +
P

∑
k=1

αkW2
(t−j)−k +

Q

∑
l=1

βlσ
2
(t−j)−l · εt−j (4.11)

with εt
i.i.d.∼ wn(0, 1) and model parameters φ1, ..., φp, θ1, ..., θq and α0, ..., αp, β1, ..., βq with φp 6=

0, θq 6= 0, αp 6= 0 and βq 6= 0.
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4.3 Parameter estimation

The models presented consist of parameters such as φ1, . . . , φp, θ1, . . . , θq, and σ2
w, which

need to be estimated. The model parameters may be estimated through either maximum
likelihood or least squares techniques. In the following, the parameter estimation for the
AR(1) model is derived with the maximum likelihood method, whereas the parameter
estimation for the ARMA (p, q) model is only briefly described.
The estimation of parameters for the AR(1) model is now derived. An AR(1) model is
defined by

Xt = µ + φ(Xt−1 − µ) + Wt,

where Wt is independently and identically normally distributed with a mean of zero and
a variance of σ2

w and |φ| < 1.The likelihood function for the observations x1, . . . , xn is then
given by

L(µ, φ, σ2
w) = f (x1, x2, . . . , xn; µ, φ, σ2

w).

For the special case AR(1), the likelihood function is given by

L(µ, φ, σ2
w) = f (x1) f (x2|x1) · · · f (xn|xn−1) = f (x1)

n

∏
t=2

f (xt|xt−1). (4.12)

Since Xt|Xt−1 follows a normal distribution and has a mean µ + φ(xt−1 − µ) and variance
σ2

w, the density of xt given xt−1 can be written by

f (xt|xt−1) = fw((xt − µ)− φ(xt−1 − µ))

utilizing fw, which is the density of the white noise Wt ∼ N(0, σ2
w). The likelihood function

expressed in Equation (4.12) can be written as

L(µ, φ, σ2
w) = f (x1)

n

∏
t=2

fw((xt − µ)− φ(xt−1 − µ)).

To determine the distribution of X1, the following representation

X1 = µ +
∞

∑
j=0

φjW1−j (4.13)

must be considered. According to the Equation (4.13), X1 follows a normal distribution with
mean µ and variance σ2

w
(1−φ2)

. Finally, the likelihood function is given by

L(µ, φ, σ2
w) =

1√
(2πσ2

w)
n

√
1− φ2exp

(
− S(µ,φ)

2σ2
w

)
, (4.14)

where S(µ, φ), the unconditional sum of squares, is defined by

S(µ, φ) = (1− φ2)(x1 − µ)2 +
n

∑
t=2

((xt − µ)− φ(xt−1 − µ))2.

To obtain the parameters, it is necessary to take the logarithm of the Equation (4.14). The
partial derivative with respect to σ2

w is performed and set to zero. The maximum likelihood
estimator for σ2

w is then given by

σ̂2
w =

S(µ̂, φ̂)

n
, (4.15)
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where µ̂, φ̂ are the maximum likelihood estimators of µ and φ. To estimate the parameters
of µ and φ, the function S(µ, φ) needs to be minimized. By replacing n with n − 2 in
the Equation (4.15), an unconditional least squares estimate of σ2

w can be obtained. After
replacing σ2

w with σ̂2
w in the log-likelihood function, the estimators µ̂ and φ̂ can be obtained

through minimizing the equation

l(µ, φ) = log
(

S(µ, φ)

n

)
− 1

n
log(1− φ2),

where l(µ, φ) ∝ −2logL(µ, φ, σ̂2
w).

To estimate the parameters for the ARMA(p, q) model, the likelihood function needs
to be established first. The ARMA model has p + q + 1 parameters, defined by β :=
(µ, φ1, . . . , φp, θ1, . . . , θq)t. The likelihood function is given by

L(β, σ2
w) =

n

∏
t=1

f (xt|xt−1, . . . , x1).

The conditional distribution of Xt|Xt−1, · · · , X1 is the normal distribution with mean xt−1
t

and variance Pt−1
t , where Pt−1

t = γ(t, t)
t−1
∏
j=1

(1− φ2
jj). Now we can follow the same steps as

the AR(1) model and derive the parameter σ2
w through maximization and the estimator for β

through minimization.

To estimate the parameters of the GARCH model using the maximum likelihood method,
the steps previously outlined for the AR(1) model must be replicated.
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5 Statistical Tests

The purpose of this chapter is to define some statistical hypothesis tests which will be used
later. These are tests that check the sample for the presence of a normal distribution, for
autocorrelation coefficients and for ARCH effects. The Jarque-Bera and the Shapiro-Wilk
test are used to test the sample for normal distribution. The autocorrelation coefficients
are checked using the Ljung-Box test. Finally, we test for the presence of ARCH effects on
the given data using the LM ARCH test. The definitions presented are based on the books
by Shapiro (1964), Neusser (2011), Tsay (2009) and the papers by Engle (1982), Catani and
Ahlgren (2017), GEL and CHEN (2012) and Lee (1991).

Definition 5.1 (Jarque-Bera Test) The Jarque-Bera Test is carried out to assess whether the provided
i.i.d sample (xi)i=1,...,n from a random variable X follows a normal distribution.

Hypothesis: H0 : X ∼ N(µ, σ2) vs. H1 : X 6∼ N(µ, σ2)

Test statistic: JB = n
6

(
S2 + 1

4 (K− 3)2) under H0∼ χ2
2,

where n is the number of observations,

S =

1
n

n
∑

i=1
(Xi − X̄)3

(
1
n

n
∑

i=1
(Xi − X̄)2

) 3
2

is the estimated random skewness and

K =

1
n

n
∑

i=1
(Xi − X̄)4

(
1
n

n
∑

i=1
(Xi − X̄)2

)2

the estimated random kurtosis.

Rejection rule: If JB > χ2
1−α,2, the null hypothesis is rejected, where χ2

1−α,2 is the (1− α)-quantile
of the χ2

2 distribution.

Definition 5.2 (Shapiro-Wilk Test) The Shapiro-Wilk Test determines if the sample data (xi)i=1,...,n
is compatible with a normal distribution with unknown mean µ and unknown variance σ2.

Hypothesis: H0 : X ∼ N(µ, σ2) vs. H1 : X 6∼ N(µ, σ2)

Test statistic: W = b2

S2 = b2
n
∑

i=1
(Xi−X̄)2

.
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For even sample size n = 2k, then we define b =
k
∑

i=1
an−i+1(xn−i+1 − xi). If n = 2k + 1 is

odd, then b = an(xn − x1) + . . . + ak+2(xk+2 − xk). Coefficients ai are approximated and given in
tables in Shapiro (1964)[page 603 f].

Rejection rule: If the value of W exceeds a critical threshold Wcritical , the null hypothesis will
not be rejected. Approximations of Wcritical can be found in tables provided on page 605 of Shapiro
(1964).

Definition 5.3 (Ljung-Box Test) The Ljung-Box Test is used to test whether the correlation coeffi-
cients differ significantly from zero.

Hypothesis: H0 : ρ(1) = . . . = ρ(N) = 0 vs. H1 : ρ(1) = . . . = ρ(N) 6= 0, for N = 1, 2, . . .,
where ρ(l) is the autocorrelation of lag l, l = 1, ..., N and for a weakly stationary time series
{Xt, t = 1, ..., T} is defined by

ρ(l) =
cov(Xt, Xt−l)√

var(Xt)var(Xt−l)
.

Test statistic: Q = T(T + 2)
N
∑

h=1

ρ̂2(h)
T−h

under H0∼ χ2
N

with T the sample size, ρ̂(h) the estimated autocorrelation at lag h and N the number of auto-
correlations to test.

Rejection rule: We reject the null hypothesis at level α if test statistic Q > χ2
α,N , where χ2

α,N
is the α-quantile of the χ2

N distribution.

Definition 5.4 (LM ARCH Test) The LM ARCH Test studies the presence of ARCH effects in the
data.

Hypothesis: H0 : α1 = ... = αp = β1 = ... = βq = 0 vs. H1 : At least one αi 6= 0 and
βi 6= 0 , i = 1, ..., p, where α1, ..., αp, β1, ..., βq represent the constant parameters of the GARCH
model.

Test statistic: Q = T · R2 under H0∼ χ2
p,

where T is the number of observations and R2 := f0′z(z′z)−1z
′
f0/f0′f0 the squared multiple correla-

tion, where

z =


1 1 . . . 1
e2

p e2
p+1 . . . e2

T−1
...

... . . .
...

e2
p e2

p+1 . . . . . . e2
T−1

 ,

et the residuals and f0′ =

(
e2

p+1

σ̂2 − 1,
e2

p+2

σ̂2 − 1, ..., e2
T

σ̂2 − 1
)

, where σ̂2 = 1
T−m

T
∑

t=m+1
e2

t is the maxi-

mum likelihood estimate of σ2 from the GARCH model, with m = max(p, q), where p and q are the
orders from the GARCH model.
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Rejection rule: We reject null hypothesis at level α if Q > χ2
α,p,where χ2

α,p is the α-quantile of
the χ2

p distribution.
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6 Model Selection Criterion

In the next chapter, several models are presented from which the best model must be
determined. The selection of the best model requires the use of model selection criteria
such as Akaike’s Information Criterion (AIC) and Bayesian Information Criterion (BIC). The
log-likelihood function, which is needed to calculate AIC and BIC, is defined below. The
following definitions are based on the book by Georgii (2015), Fahrmeir et al. (2013) and
Rossi (2018).

Definition 6.1 (Log-likelihood function) Let f (x; θ) be a probability model with parameter space
Θ.For a sample x1, . . . , xd the likelihood function for a modelM is given by the joint probability
density function (pdf) of the random vector (X1, . . . , Xd) and is denoted by

LM(θ) = f (x1, . . . , xn; θ).

For identically, independent random variables, the likelihood function is given by

LM(θ) =
n

∏
i=1

fi(xi; θ),

where fi is the probability density function of Xi. The log-likelihood function is the logarithm of
the likelihood function and is represented by the following equation

lM(θ) = log(LM(θ)). (6.1)

Let’s now define the model selection criteria of AIC and BIC. These specific metrics measure
the goodness of fit of a model, where the model with the smallest AIC or BIC is considered
the best fit.

Definition 6.2 (Akaike’s Information Criterion (AIC)) The Akaike’s Information Criterion for a
modelM is defined by

AICM = −2lM(θ̂)± 2k, (6.2)

where k is the number of model parameters, lM the log-likelihood function for the data at hand and a
modelM and θ̂ maximum likelihood estimate of θ based on x1, . . . , xd.

Definition 6.3 (Bayesian Information Criterion (BIC)) The Bayesian Information Criterion is
defined by

BICM = −2lM(θ̂)± log(n)k, (6.3)

where n is the sample size and k is the number of model parameters, lM the log-likelihood function for
the data at hand and a modelM and θ̂ maximum likelihood estimate of θ based on x1, . . . , xd.
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7 Copula

This section provides a definition of copula and presents different copula classes. Addition-
ally, it explains important copula families and models, such as vine copula and factor copula
models. Algorithms that are necessary for the simulation are also introduced and explained.
The following definitions are based on the book by Czado (2019).

Definition 7.1 (Copula) A multivariate distribution function C on the d-dimensional hypercube
[0, 1]d with uniformly distributed marginals, is a d-dimensional copula. The copula density for the
absolutely continuous copula is dentoed by c and is determined by partial differentiation

c(u1, ..., ud) =
∂d

∂u1 · · · ∂ud
C(u1, ..., ud) ∀u in [0, 1]d. (7.1)

The following theorem allows to combine any marginal distribution with a copula to form
new multivariate distribution functions.

Theorem 7.1 (Sklar’s theorem) The joint distribution function F of a d-dimensional random vector
X can be expressed by

F(x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (7.2)

with marginal distribution functions Fi, i = 1, ..., d and copula C. The corresponding density is then
given by

f (x1, ..., xd) = c(F1(x1), ..., Fd(xd)) f1(x1) · · · fd(xd), (7.3)

where c is the copula density. Is the distribution function absolutely continuous, then the copula is
unique. Considering the inverse, the copula and its density can be expressed as follows

C(u1, ..., ud) = F(F−1
1 (u1), ..., F−1

d (ud)), (7.4)

c(u1, ..., ud) =
f (F−1

1 (u1), ..., F−1
d (ud))

f1(F−1
1 (u1)) · · · fd(F−1

d (ud))
. (7.5)

The following definition is needed if one wants to transform the given data into copula
data. For example, original data can be transformed to copula data (u-scale) by applying
PIT from the Definition 3.9. This data can in turn be converted to standard normal margins
(z-scale). The transformed data can also be converted back to original data (x-scale). The
scales described here are now defined in more detail.
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Definition 7.2 (Variable scales) The scales described above are defined by

u-scale: Copula scale (U1, U2) where Ui := Fi(Xi) and copula density c(u1, u2),

x-scale: Original scale (X1, X2) with density f (x1, x2),

z-scale: Marginal normalized scale (Z1, Z2) where Zi := Φ−1(Ui) = Φ−1(Fi(Xi)) for i = 1, 2 with
density g(z1, z2) = c(Φ(z1), Φ(z2))φ(z1)φ(z2).

So far, the multivariate distribution has been presented in the terms of a copula and its
marginal distribution. In the next part, the bivariate conditional distribution is presented
using the marginal distributions and a copula.

Definition 7.3 (Bivariate conditional distribution and density) The bivariate conditional distribution
function and density is defined by

F1|2(x1|x2) =
∂

∂u2
C12(F1(x1), u2) |u2=F2(x2) (7.6)

=:
∂

∂F2(x2)
C12(F1(x1), F2(x2)),

f1|2(x1|x2) = c12(F1(x1), F2(x2)) f2(x2). (7.7)

Copulas can be constructed by three classes, elliptical, Archimedian and the extreme-value
copulas. The bivariate elliptical copulas are described first, the Archimedian copulas and
finally extreme-value copulas are presented.

Bivariate elliptical copulas

The class of elliptical copulas includes the multivariate Gaussian copula, as well as the
multivariate Student’s t copula. In this paper, for the Gaussian copula, only the bivariate
case is considered, while for the Student’s t copula, the bivariate and multivariate cases are
presented.

Definition 7.4 (Bivariate Gaussian copula) Using a bivariate normal distribution with zero mean
vector, unit variances and correlation ρ one gets the bivariate Gaussian copula

C(u1, u2; ρ) = Φ2(Φ
−1(u1), Φ−1(u2); ρ), (7.8)

where Φ is the distribution function of standard normal distribution and Φ2(·, ·; ρ) is the normal
distribution with zero means, unit variances and correlation ρ. The bivariate Gaussian copula density
is given by

c(u1, u2; ρ) =
1

φ(x1)φ(x2)

1√
1− ρ2

exp
{
−ρ(x2

1 + x2
2)− 2φx1x2

2(1− ρ2)

}
, (7.9)

where x1, x2 is defined by x1 := Φ−1(u1) and x2 := Φ−1(u2).
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Definition 7.5 (Bivariate Student’s t copula) For the bivariate Student’s t copula we use a
bivariate Student’s t distribution with ν degrees of freedom, zero mean vectors and correlation ρ and
get

C(u1, u2; ν, ρ) =

u1∫
0

u2∫
0

t(T−1
ν (ν1), T−1

ν (ν2); ν, ρ)

t(T−1
ν (ν1))t(T−1

ν (ν2))
dν1dν2 (7.10)

=

b1∫
−∞

b2∫
−∞

t(x1, x2; ν, ρ)dx1dx2, (7.11)

where b1 := T−1
ν (u1), b2 := T−1

ν (u2) and t(T−1
ν (ν1),T−1

ν (ν2);ν,ρ)
t(T−1

ν (ν1))t(T−1
ν (ν2))

the bivariate Student’s t copula density.

Expanding the bivariate case to several variables results in obtaining the multivariate
Student’s t copula.

Definition 7.6 (Multivariate Student’s t copula) The multivariate Student’s t copula is derived from
the multivariate Student’s t distribution and defined accordingly

C(u1, ..., ud; Σ, ν) = TR,ν(T−1
ν (u1), ..., T−1

ν (ud)) (7.12)

where TΣ,ν the multivariate Student’s t distribution with scale parameter matrix Σ ∈ [−1, 1]d×d and
the degrees of freedom ν > 0.

Next, the second class of copulas, known as Archimedean copulas, will be examined. First,
Archimedean copulas will be defined and the families used in this thesis will be presented
in a table.

Archimedean copulas

As before, bivariate Archimedean copulas are considered only.

Definition 7.7 (Bivariate Archimedean copulas) Let Ω be the set of all continuous, strictly monotone
decreasing, and convex functions ϕ : I → [0, ∞] with ϕ(1) = 0. Let ϕ ∈ Ω, then

C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)) (7.13)

is a copula with generator ϕ and pseudo-inverse ϕ[−1]. The generator ϕ is called strict if ϕ(0) = ∞
and the pseudo-inverse of ϕ is defined by ϕ[−1] : [0, ∞]→ [0, 1] with

ϕ[−1](t) :=


ϕ−1(t) t ∈ [0, ϕ(0)]

0 t ∈ [ϕ(0), ∞]

The most important Archimedean copulas are now summarized in Table 7.1.
Finally, the extreme-value copula constitutes the last class of copulas.
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Table 7.1 Bivariate Archimedean copulas

Copula family C(u1, u2) Parameters

Clayton (u−δ
1 + u−δ

2 − 1)−
1
δ 0 < δ < ∞

Gumbel exp(−
[
(−ln(u1))

δ + (−ln(u2))
δ
] 1

δ ) δ ≥ 1

Frank − 1
δ ln
(

1
1−e−δ

(
(1− e−δ)− (1− e−δu1)(1− e−δu2)

))
R\{0}

Joe 1−
(
(1− u1)

δ + (1− u2)
δ − (1− u1)

δ(1− u2)
δ
) 1

δ δ ≥ 1

Extreme-value copulas

In this part, the behavior of extreme events and their dependence is studied. As before, we
will only consider the bivariate case.

Definition 7.8 (Bivariate extreme-value copula) A bivariate copula C is called an extreme-value
copula if there is a bivariate copula CX such that for n→ ∞ we have(

CX(u
1
n
1 , u

1
n
2 )

)n

→ C(u1, u2) ∀(u1, u2) ∈ [0, 1]2, (7.14)

where CX is in the domain of attraction of copula C.

Furthermore, the extreme-value copula can only be defined for the bivariate case in terms of
Pickand’s dependence function and its characterization is given in the following definition.

Definition 7.9 (Characterization of bivariate extreme-value copulas in terms of the Pickands de-
pendence function) A bivariate copula C is an extreme value copula if, and only if, the following
holds

C(u1, u2) = exp
{
[ln(u1) + ln(u2)] A

(
ln(u2)

ln(u1u2)

)}
, (7.15)

where A : [0, 1]→
{ 1

2 , 1
}

is the Pickands dependence function. Function A is convex and satisfies
A ∈ [max{1− t, t}, 1] for all t ∈ [0, 1].

As only a single extreme-value copula family is utilised in this study, we shall only present
this family: the Extended Joe family, also referred to as the BB8 family.

Definition 7.10 (Extended Joe (BB8)) The representation of the Pickands dependence function of the
Extended Joe copula is provided below.

A(t) =
[

tθ + (1− t)θ −
(
(1− t)−θδ + t−θδ

)− 1
δ

] 1
θ

. (7.16)

The bivariate Extenden Joe copula with the parameters θ ≥ 1 and δ > 0 is given by equation (7.15),
where the Pickands dependence function is replaced by the equation (7.16).

31



7 Copula

Before studying the next class of copulas, the vine copulas, we need to introduce some
essential notation.

A pair copula decomposition of a multivariate distribution is when the copulas associ-
ated with conditional distributions can depend on the specific value of the underlying
conditioning variable. For example c13;2(·, ·; x2) means that c13;2(·, ·; x2) depends on x2. In
the following, this dependence is often assumed to be disregarded. The following definition,
the so-called simplifying assumption, takes this case into account. We specify the simplifying
assumption for the three-dimensional case.

Definition 7.11 (Simplifying assumption) The simplifying assumption of a three-dimensional pair
copula is fulfilled if the following condition holds for any x2 ∈ R.

c13;2(u1, u2; x2) = c13;2(u1, u2) for u1, u2 ∈ [0, 1],

where c13;2(·, ·; x2) depends on x2.

Furthermore, this section presents in detail the construction of joint parametric density as
well as parametric copulas and copulas associated with bivariate conditional distributions.

Definition 7.12 (Pair copula construction of a joint parametric density) A three-dimensional density
with a parameter vector Θ = (θ12, θ23, θ12;3) can be specified by using a parametric pair copula
construction and is defined by

f (x1, x2, x3; Θ) = c13;2(F1|2(x1|x2), F3|2(x3|x2); θ13;2)× c23(F2(x2), F3(x3); θ23) (7.17)

× c12(F1(x1), F2(x2); θ12) f3(x3) f2(x2) f1(x1),

where c13;2(·, ·; θ13;2), c12(·, ·; θ12), c23(·, ·; θ23) are arbitrary parametric bivariate copula densities.

Definition 7.13 (Pair copula construction of a parametric copula) A three-dimensional parametric
copula family with a parameter vector θ = (θ12, θ23, θ12;3) can be defined in the following way

c(u1, u2, u3; θ) = c13;2(C1|2(u1|u2), C3|2(u3|u2); θ13;2)× c23(u2, u3; θ23)× c12(u1, u2; θ12) (7.18)

with conditional distribution functions of U1 given U2 = u2 denoted by C1|2(·|u2) and U3 given
U2 = u2 as indicated by C3|2(·|u2).

Definition 7.14 (Copulas associated with bivariate conditional distributions) Given a set of random
variables (X1, . . . , Xd), and a set D containing indices {1, ..., d} excluding i and j, the copula
associated with the bivariate conditional distribution for (Xi, Xj) given XD = xD is denoted by
Cij;D(·, ·; xD).
The conditional distribution function of (Ui, Uj) given UD = uD is denoted by Cij|D(·, ·; uD) with
bivariate density function cij|D(·, ·; uD).
For indices i, j, where i < j and D := {i1, i2, ..., ik} with i1 < ... < ik the following abbreviation is
used

ci,j;D := ci,j;D(Fi|D(xi|xD), Fj|D(xj|xD); xD).

Now that important definitions have been introduced, in the next section we will have a
closer look at the classes of vine copulas.
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7.1 Vine copula

The vine copula decomposes a multivariate density into products of conditional densities.
A set (X1, . . . , Xd) of random variables with joint distribution F1,...,d and density f1,...,d. The
decomposition is then given by

f1,...,d(x1, . . . , xd) = fd|1,...,d−1(xd|x1, . . . , xd−1) f1,...,d−1(x1, . . . , xd−1)

=

[
d

∏
t=2

ft|1,...,t−1(xt|x1, ..., xt−1)

]
· f1(x1). (7.19)

The joint density for the case d = 3 is now described in detail. Assuming the presence of
random variables X1, X2 and X3, the joint density is expressed as follows

f1,2,3(x1, x2, x3) = f3|12(x3|x1, x2) f2|1(x2|x1) f1(x1). (7.20)

To ascertain the component f3|12(x3|x1, x2), the bivariate conditional density f13|2(x1, x3|x2)
must be taken into account. This density has F1|2(x1|x2) f1|2(x1|x2) and F3|2(x3|x2) f3|2(x3|x2)
as marginal distributions with corresponding copula density c13;2(x1, x3; x2), which belongs
to the conditional distribution of (X1, X3) given X2 = x2. The conditional density of (X1, X3)
given X2 = x2, can be determined with the following equation

f13|2(x1, x3|x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2) f1|2(x1|x2) f3|2(x3|x2).

Finally, we can provide the first component from the Equation (7.20).

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2) f3|2(x3|x2)

The conditional density for X2 given X1 = x1 and X3 given X2 = x2, is then given by

f2|1(x2|x1) = c12(F1(x1), F2(x2)) f2(x2)

f3|2(x3|x2) = c23(F2(x2), F3(x3)) f3(x3).

Equation (7.20) can now be completed and is represented as follows

f (x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2)× c23(F2(x2), F3(x3))

× c12(F1(x1), F2(x2)) f3(x3) f2(x2) f1(x1).

Now that we have examined the details of the case for d = 3, we will introduce three classes
of decompositions, namely regular, canonical and drawable vine copulas.

Before introducing regular vine copulas, we provide theoretical graph background def-
initions and the definition of regular vine (R-vine) distribution. Subsequently, we present
the definition of regular vine copula.
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Definition 7.15 (Graph theoretic background)

1. Graph is a pair G = (N, E) of sets such that E ⊆ {{x, y} : x, y ∈ N}

2. Elements of E are referred to as edges of the graph G, while those of N are nodes.

3. The number of neighbors of a node v ∈ N is the degree of v, denoted by d(v).

Definition 7.16 (Regular vine tree sequence) The set of trees V = (T1, . . . , Td−1) is a regular vine
tree sequence on d elements if the following conditions are satisfied:

1. ∀j = 1, . . . , d− 1, a tree Tj = (Nj, Ej) is connected.

2. A tree T1 has a node set N1 = (1, . . . , d) and a edge set E1.

3. Tj for j ≥ 2 is a tree with node set Nj = Ej−1 and edge set Ej.

4. For j = 2, . . . , d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1.

An example of an R-vine tree is displayed in Figure 7.1. The graph contains five trees.
Considering Tree 1, the nodes are represented by N = {1, 2, 3, 4, 5, 6}, and edges by E =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}, {4, 6}}. The degree for node 4 in Tree 1 is indicated by d(4) = 3.
The R-vine density of the R-vine tree structure in Figure 7.1 is given by

f123456(x1, x2, x3, x4, x5, x6) =c16;2345 · c26;345 · c15;234 · c36;45 · c25;34 · c14;23 · c56;4 · c35;4 · c24;3

· c13;2 · c54 · c46 · c34 · c23 · c12 · f6 · f5 · f4 · f3 · f2 · f1,

where f123456(x1, x2, x3, x4, x5, x6) is the joint density, f j(xj), j = 1, ..., 6 the marginal densities
and cCe,a,Ce,b;De the corresponding pair copula densities.

Definition 7.17 (Complete union and conditioned sets) The definition of the complete union of an
edge e, denoted by the notation Ae, is as follows

Ae = {j ∈ N1|∃e1 ∈ E1, . . . , ei−1 ∈ Ei−1 such that j ∈ e1 ∈ . . . ∈ ei−1 ∈ e}

for any edge e ∈ Ei.

The conditioning set De of an edge e = {a, b} defined by

De := Aa ∩ Ab.

Conditioning set Ce,a := Aa\De, Ce,b := Ab\De and Ce := Ce,a ∪ Ce,b are given. Edge e =
(Ce,a, Ce,b; De) is abbreviated by e = (ea, eb; De).
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1,5;4,3,2

2,6;5,4,3
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Figure 7.1 R-vine tree including the yield curve for maturities of 1, 5, 10, 15 and 20 year(s), alongside
the inflation rate.

Definition 7.18 (Regular vine distribution) If one can specify a triplet (F , V,B) so that the
conditions below are fulfilled, then the joint distribution F for the d-dimensional random vector
X = (X1, . . . , Xd) has a regular vine distribution.

1. F = (F1, . . . , Fd) a vector of marginal distribution functions of the random variable Xi, i =
1, . . . , d.

2. V is a R-vine tree sequence with d elements.

3. A set B = {Ce|e ∈ Ei, i = 1, . . . , d− 1} with Ce being a symmetric bivariate copula and Ei is
the set of edges of tree Ti in the R-vine tree sequence V for i = 1, . . . , d− 1 .

4. For each e ∈ Ei, i = 1, . . . , d− 1 and e = {a, b}, Ce is the copula associated with the conditional
distribution of XCe,a and XCe,b given XDe = xDe .

Definition 7.19 (Existence regular vine distribution) The probability density function of a unique
d-dimensional distribution F can be determined if the set (F , V,B) satisfies condition (1) - (3) from
Definition 7.18. The density can then be obtained.

f1,...,d(x1, ..., xd) = f1(x1) · · · fd(xd) ·
d−1

∏
i=1

∏
e∈Ei

cCe,aCe,b;De(FCe,a|De(xCe,a |xDe), FCe,b|De(xCe,b |xDe)),

(7.21)
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where e ∈ Ei, i = 1, . . . , d− 1 with e = {a, b}. The distribution function of XCe,a and XCe,b given
XDe = xDe is defined by

FCe,aCe,b|De(xCe,a , xCe,b |xDe) = Ce(FCe,a|De(xCe,a |xDe), FCe,b|De(xCe,b |xDe)).

Definition 7.20 (Regular vine (R-vine) copula) A regular vine copula is a regular vine distribution,
where all margins are uniformly distributed on [0, 1].

Now consider the canonical vine (C-vine) copula, which is a subclass of the regular vine
copula. Compared to the regular vine copula, the C-vine copula has a star shape. The
definition of the tree sequence and the density of the canonical vine copula are described
below.

Definition 7.21 (C-vine tree sequence) A regular vine tree sequence V = (T1, ..., Td−1) is a canonical
vine tree sequence if in each Tree Ti there exist one node n ∈ Ni such that | {e ∈ Ei|n ∈ e} | = d− i.
A node of this type is also referred to as the root node of the tree Ti.

Definition 7.22 (Canonical vine (C-vine) density) The joint density f1,...,d is decomposed by

f1,...,d(x1, . . . , xd) =

[
d−1

∏
j=1

d−j

∏
i=1

cj,(j+i);1,...,j−1

]
·
[

d

∏
k=1

fk(xk)

]
(7.22)

and we call the decomposition, a canonical vine distribution.

A C-vine tree including the yield curve with maturities of 1, 5, 10, 15 and 20 years and
the inflation rate is shown in Figure 7.2. Considering Figure 7.2, in Tree 1 the root node is
represented by node 6. The cardinality of the edges in this tree is then equal to 5, since it is a
C-vine on d = 6 elements, where i is equal to 1 for the first tree.

The last subclass of regular vine copulas, the drawable vine copula, will now be defined.
First the tree structure will be outlined, followed by the density of the drawable vine (D-vine)
copula. Compared to the C-vine tree structure, the drawable vine copula has a path as a tree
structure. Mathematically this is defined as follows

Definition 7.23 (D-vine tree sequence) A regular vine tree sequence V = (T1, ..., Td−1) is a drawable
vine tree sequence if for each node n ∈ Ni we have |{e ∈ Ei|n ∈ e}| ≤ 2.

The density of the D-vine copula is hence defined.

Definition 7.24 (Drawable vine (D-vine) density) A drawable vine is given by

f1,...,d(x1, . . . , xd) =

[
d−1

∏
j=1

d−j

∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

]
·
[

d

∏
k=1

fk(xk)

]
, (7.23)

where the joint density f1,...,d is decomposed into products of marginal densities fk and pair-copula
densities ci,j|D(·, ·; xD), where D is a set of indices from {1, . . . , d}.

Figure 7.3 displays an example of a D-vine tree structure. Focusing on Tree 1, we can see
that the cardinality of the edge is less than or equal to two. If we observe the edge (1, 2), the
cardinality in this case is equal to one. Similarly, upon analysing the edge (3, 4), we obtain a
cardinality equal to 2.
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Figure 7.2 Graphical representation of the C-vine including the yield curve for maturities of 1, 5, 10,
15 and 20 year(s), alongside the inflation rate.
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Figure 7.3 Graphical representation of the D-vine including the yield curve for maturities of 1, 5, 10,
15 and 20 year(s), alongside the inflation rate.
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The simplifying assumption applies not only for general pair copulas, but also for the C- and
D-vine copulas. This assumption holds for C- and D-vine copulas if the following definition
is met.

Definition 7.25 (Simplifying assumption for C- and D-vines) Simplifying assumption for C- and
D-vines is satisfied if

cij,D(Fi|D(xi|xD), Fj|D(xj|xD); xD) = cij,D(Fi|D(xi|xD), Fj|D(xj|xD))

holds for all xD and i, j and D containing indices {1, ..., d} are chosen to occur in (7.22) and (7.23)
the corresponding C- and D-vine distribution is then simplified.

In addition to the vines, truncated vines are also a method for consideration. For the
truncated vine models, the tree structure, pair copulas and parameters remain the same for
the first n trees; for the remaining trees Tn+1 to Td−1, the independence copula is chosen
for each pair copula. Let now consider the mathematical definition of the truncated R-vine
copula, based on the paper by Brechmann and Joe (2015) and Brechmann et al. (2012).

Definition 7.26 (Truncated R-vine copula) Let a random vector with uniform margins be given by
U = (U1, ..., Ud)

′ and the truncation level by n ∈ {1, ..., d}. The random vector U is then distributed
according to the d-dimensional n-truncated R-vine copula CCe,a,Ce,b;De if CCe,a,Ce,b;De is a d-dimensional
R-vine with

CCe,a,Ce,b;De = Π ∀e ∈ Ei, i = n + 1, ..., d− 1,

where Π represents the bivariate independence copula.

Another copula model, known as the factor copula model, is an alternative to the truncated
vine copula. In the next section, we will define the one- and two-factor copula models as
special cases.
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7.2 Factor copula

In this section, we will examine additional copula models, specifically, factor copula mod-
els. The factor copula model links observable and unobservable (latent) variables. The
dependence of observable variables is explained by a few unobservable variables. The
advantage of the model is that it is easy to interpret and it can deal with tail dependencies
and asymmetries, which is not the case with normal copula models.

On the basis of the paper by Krupskii and Joe (2013) and Krupskii and Joe (2015), we
will focus in the following on the definition of the one- and two-factor copula model.

Definition 7.27 (One-factor copula model) The factor copula model with one latent variable p = 1
is defined by

C(u1, . . . , ud) =

1∫
0

d

∏
j=1

Fj|V(uj|v)dv =

1∫
0

d

∏
j=1

Cj|V(uj|v)dv, (7.24)

where Uj, j = 1, ..., d and the latent random variable V are U(0, 1) distributed with Uj|V being
independent of Uj′ |V for j 6= j′. Cj|V represents the partial derivative of the joint cumulative

distribution function (cdf) copula of (Uj, V), mathematically given by Fj|V = Cj|V =
∂Cj,V(uj,v)

∂v . The
joint cdf is denoted by Cj,V . The differentiation of equation (7.24) leads to the copula density

c(u1, . . . , ud) =
∂dC(u1, . . . , ud)

∂u1 · · · ∂ud
=

1∫
0

d

∏
j=1

cj,V(uj, v)dv,

where cj,v(uj, v) is the joint copula density of (Uj, V).

If an additional latent parameter is included in the factor copula model, it results in the
formation of the two-factor copula model.

Definition 7.28 (Two-factor copula model) The copula model, with two latent variables p = 2, is
defined by

C(u1, . . . , ud) =

1∫
0

1∫
0

d

∏
j=1

Fj|V1,V2
(uj|v1, v2)dv1dv2 =

1∫
0

1∫
0

d

∏
j=1

Cj|V2;V1
(Cj|V1

(uj|v1)|v2)dv1dv2.

(7.25)

where Cj|V1
the partial derivative of the joint cdf copula of (Uj, V1), Cj,V2;V1 the copula for Fj|V1

= FUj|V1

and FV2|V1
. For Cj,V2;V1 we use the simplifying assumption , i. e. Cj,V2;V1(uj, v2; v1) = Cj,V2;V1(uj, v2).

Since FV2|V1
is the U(0, 1) cdf, one can assume that V2 is independent of V1 which implies

Fj|V1,V2
(u|v1, v2) = P(Uj ≤ u|V1 = v1, V2 = v2)

=
∂

∂v2
P(Uj ≤ u, V2 ≤ v2|V1 = v1)

=
∂

∂v2
CjV2;V1(Cj|V1

(u|v1), v2)

= Cj|V2;V1
(Cj|V1

(u|v1)|v2).
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The density function for the two-factor copula model is defined by

c(u1, . . . , ud) =

1∫
0

1∫
0

d

∏
j=1

cj,V2;V1(Cj|V1
(uj|v1), v2) · cj,V1(uj, v1)dv1dv2.

We now examine the special case of the factor copula model. We provide the definitions of
the Gaussian one-factor and two-factor copulas.

Definition 7.29 (Gaussian one-factor copula model) In the Gaussian one-factor copula model,
the bivariate normal copula with correlation αj1 for j = 1, . . . , d is referred to as Cj,V and is defined as
such

Cj,V(u, v) = Φ2(Φ
−1(u), Φ−1(v); αj1),

where Φ represents the standard normal cumulative distribution function and Φ2(·; ρ) denotes the
bivariate normal cumulative distribution function with correlation ρ. The conditional distribution for
Uj given V, can be expressed as follows

Fj|V(u|v) = Φ

Φ−1(u)− αj1Φ−1(v)√
1− α2

j1

 .

Extending the Gaussian one-factor copula model with a latent variable yields the Gaussian
two-factor copula model.

Definition 7.30 (Gaussian two-factor copula model) Let Cj,V1 and Cj,V2;V1 be the bivariate copulas
with correlation αj1 and γj =

αj2√
1−α2

j1

for j = 1, . . . , d, where αj2 is the correlation of Zj = Φ(Uj)

and W2 = Φ(V2) such that the independence of V1, V2 implies that γj is the partial correlation of Zj
and W2 given W1 = Φ(V1). The conditional distribution of the bivariate copula is given by

Cj|V2;V1
(Cj|V1

(u|v1)|v2) = Φ

Φ−1(u)− αj1Φ−1(v1)− γj(1− α2
j1)

1
2 Φ−1(v2)√

(1− α2
j1)(1− γ2

j )

 .

The factor copula model can be extended for p > 2. This extension represents the p-factor
multivariate normal distribution, which possesses a correlation matrix Σ having a p-factor
structure. This is described in the next section and is referred to as the Gaussian p-factor
model.
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7.3 Gaussian p-factor

In this section, we present the Gaussian factor model, a multivariate normal model that
exhibits a structured correlation matrix Σ = (ρij)i,j=1,...,d with O(d) dependence parameters.
The definition of the Gaussian factor model is presented below, referencing the book by
Everitt and Hothorn (2011) and Akaike (1987).

Definition 7.31 (p-factor models) Let X = (X1, X2, . . . , Xd) be a set of random variables which is
assumed to be linked to p unobserved latent random variables f1, . . . , fp, where p < d by a regression
model of

X1 = λ11 f1 + λ12 f2 + . . . + λ1p fp + ε1,
X2 = λ21 f1 + λ22 f2 + . . . + λ2p fp + ε2,

... (7.26)
Xd = λd1 f1 + λd2 f2 + . . . + λdp fp + εd.

Error terms are given by ε1, . . . , εd with mean zero and variance ψi, i = 1, ..., d. ε1, . . . , εd are uncor-
related with each other and the random factors f1, . . . , fp. Since the factors f1, . . . , fp are unobserved,
their location can be fixed and scales are arbitrary and one assumes that they occur with mean zero
and standard deviation one. Regression coefficients λjs are alternatively referred to as factor loadings
and are the correlations of the observed variables and the factors. It is also assumed that the latent
factors are uncorrelated with one another.

Considering the assumption that the latent factors are independent of one another and of the er-
ror terms, the variance of Xi is given by

σ2
i =

p

∑
j=1

λ2
ij + ψi.

The covariance matrix of the variables is given by

Σ = ΛΛT + Ψ

with Ψ = diag(ψi) and Λ matrix with the factor loadings.

If p = 1, the factor model includes a single latent factor. This is known as the Gaussian
one-factor model and is defined by

X1 = λ11 f1 + ε1,
X2 = λ21 f1 + ε2,

...
Xd = λd1 f1 + εd,

where the latent factor f1 is standard normally distributed and the error terms ε i, i = 1, ..., d
are normally distributed with mean zero and variance ψi. If one include another latent factor,
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we get the Gaussian two-factor model, which is given by

X1 = λ11 f1 + λ12 f2 + ε1,
X2 = λ21 f1 + λ22 f2 + ε2,

...
Xd = λd1 f1 + λd2 f2 + εd.

Before using the above model, it is necessary to estimate the model parameters, which
includes the factor loadings Λ, the entries in the covariance matrix Σ and the variances
Ψ. Usually, the covariance matrix Σ is estimated by the sample covariance matrix S from
(X1, ..., Xd). The remaining parameters to be estimated are then only the factor loadings and
the variances.

Given the estimations for the factor loadings, the entries ψi can be computed by

ψ̂i = s2
i −

p

∑
j=1

λ̂2
ij, i = 1, ..., d,

where s2
i are the sample variances. Now two methods are available to estimate these

parameters: principal factor analysis and maximum likelihood factor analysis. In the
subsequent section, we will elaborate on the maximum likelihood factor analysis.

Maximum likelihood factor analysis

In the context of maximum likelihood factor analysis, the initial assumption is that the data
comply with a multivariate normal distribution. Under this premise, and given that the
factor analysis model remains valid, the resulting likelihood function L can be expressed as
− 1

2 nF plus a function of the observations only. Here, F is defined as follows:

F = ln|ΛΛT + Ψ|+ trace(S|ΛΛT + Ψ|−1)− ln|S| − d, (7.27)

where S is the estimator of the covariance matrix Σ. If S equals ΛΛT + Ψ, then function
F is zero. The estimators for the factor loadings and variances are determined through
minimization of the function F with respect to these parameters.

Model selection criterion

Additionally, model selection criteria should be considered in order to identify the most
optimal model. The model selection criteria are Akaike’s Information Criterion (AIC) and
Bayesian Information Criterion (BIC). Using function 1

2 nF plus a function of the observations
as described above, the log likelihood l at the MLE estimate is given by

l̂ = l(Λ̂, Ψ̂; X) = −1
2

n
[
ln|Λ̂Λ̂T + Ψ̂|+ trace(S|Λ̂Λ̂T + Ψ̂|−1)

]
.

We can now apply the log-likelihood function to determine the AIC and BIC.

AIC = −2l̂ + [2d(p + 1)− p(p− 1)]

BIC = −2l̂ +
[

d(p + 1)− p(p− 1)
2

]
The best model is then the one with the lowest AIC and BIC.
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7.4 Simulation from vine copula models

In this section, different algorithms for simulation from the copula models are presented.The
algorithm for simulating from the R-, C-, and D-vine copula is outlined below. To begin
with, it is necessary to describe the definition of h-functions. The algorithms and definitions
presented in this section are based on the book by Czado (2019).

Definition 7.32 (h-functions of bivariate parametric copulas) For a bivariate copula Cij(ui, uj; θij)
with parameter θij, the h-functions are defined as follows:

hi|j(ui|uj; θij) :=
∂

∂uj
Cij(ui, uj; θij) (7.28)

hj|i(uj|ui; θij) :=
∂

∂ui
Cij(ui, uj; θij) (7.29)

For the the parametric pair copula Cea,eb;De(w1, w2; θea,eb;De) in a simplified regular vine corresponding
to the edge ea, eb; De the following notation is introduced

hea|eb;De(w1|w2; θea,eb;De) :=
∂

∂w2
Cea,eb;De(w1, w2; θea,eb;De) (7.30)

heb|ea;De(w2|w1; θea,eb;De) :=
∂

∂w1
Cea,eb;De(w1, w2; θea,eb;De) (7.31)

Before presenting the algorithms, necessary notations must be introduced. The vector (i, ..., j)
will be abbreviated as i : j, and (ui, ..., uj) as ui:j. Additionally, the copula parameter θij is
excluded in the notation, and hi|j(ui|uj; θij) is substituted with hi|j(ui|uj).

Considering the simulation from a C-vine copula, the d × d - dimensional R-vine struc-
ture matrix M has the following structure:

M =



1 1 1 1 1 · · ·
2 2 2 2 · · ·

3 3 3 · · ·
4 4 · · ·

5 · · ·
· · ·

 .

The univariate conditional distribution function Ci|1:i−k(ui|u1:i−k) is provided by

Ci|1:i−k(ui|u1:i−k) =
∂Ci,i−k;1:i−k−1(Ci|1:i−k−1(ui|u1:i−k−1), Ci−k|1:i−k−1(ui−k|u1:i−k−1))

∂Ci−k|1:i−k−1(ui−k|u1:i−k−1)

for i = 1, . . . , d and k = 1, . . . , d, the copula parameters are contained in a d× d-dimensional
strict upper triangular matrix, Θ, with the entries ηik = θik;1:i−1 for i < k = 2, . . . , d. Θ has
the following representation

Θ =


− θ1,2 θ1,3 θ1,4 · · ·
− − θ2,3;1 θ2,4;1 · · ·
− − − θ3,4;1,2 · · ·
− − − − · · ·

 .
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The copula parameter matrix Θ is employed to compute the elements of the upper triangular
d× d-dimensional matrix V of conditional distribution functions with entries ηik, i ≤ k =
1, . . . , d.

V =


u1 u2 u3 u4 · · ·

C2|1(u2|u1) C3|1(u3|u1) C4|1(u4|u1) · · ·
C3|1,2(u3|u1, u2) C4|1,2(u4|u1, u2) · · ·

C4|1,2,3(u4|u1, u2, u3) · · ·
· · ·


The procedure for simulating from the C-vine copula is described in Algorithm 1.

Algorithm 1 Sampling from a C-vine copula
1: Inputs:

Θ is a strict upper triangular matrix of copula parameters with entries
ηki = θki;1:k−1 for k < i, i = 1, · · · , d and k = 1, · · · , d for a
d-dimensional C-vine

2: Sample wi
i.i.d∼ U[0, 1], i = 1, . . . , d

3: v1,1 := w1
4: for i = 2, ..., d do
5: vi,i := wi
6: for k = i− 1, ..., 1 do
7: vk,i := h−1

i|k;1:k−1(vk+1,i|vk,k, ηk,i)

8: end for
9: end for

10: Return ui := v1,i, i = 1, . . . , d

Let us consider the simulation from a D-vine copula. First, we present the R-vine structure
matrix M.

M =



1 1 2 3 4 · · ·
2 1 2 3 · · ·

3 1 2 · · ·
4 1 · · ·

5 · · ·
· · ·


Then, we define the conditional distribution function Ci|k:i−1(ui|uk:i−1)

Ci|k:i−1(ui|uk:i−1) =
∂Ci,k;k+1:i−1(Ci|k+1:i−1(ui|uk+1:i−1), Ck|k+1:i−1(uk|uk+1:i−1))

∂Ck|k+1:i−1(uk|uk+1:i−1)
(7.32)

with i = 3, . . . , d and k = 2, . . . , i− 1, where i > k.
The second argument in Equation (7.32) must be determined, requiring an additional step.
Similar to simulating from the C-vine copula, the d× d upper triangular matrix V is essential.
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The definition of this matrix is

V =


u1 u2 u3 u4 · · ·

C2|1(u2|u1) C3|2(u3|u2) C4|3(u4|u3) · · ·
C3|2,1(u3|u2, u1) C4|3,2(u4|u3, u2) · · ·

C4|3,2,1(u4|u3, u2, u1) · · ·
· · ·

 .

As previously described, an additional upper triangular matrix V2 must be incorporated.
The matrix is specified by

V2 =


u1 u2 u3 u4 · · ·

C1|2(u1|u2) C2|3(u2|u3) C3|4(u3|u4) · · ·
C1|2,3(u1|u2, u3) C2|4,3(u2|u4, u3) · · ·

C1|4,3,2(u1|u4, u3, u2) · · ·
· · ·

 .

The entries of matrices V and V2 must also be identified in this context, which is determined
with the copula parameter matrix Θ.

Θ =


− θ1,2 θ2,3 θ3,4 · · ·
− − θ3,1;2 θ4,2;3 · · ·
− − − θ4,1;3,2 · · ·
− − − − · · ·

 .

The algorithm for simulating from the D-vine copula is explained in more detail in the
Algorithm 2.

Algorithm 2 Sampling from a D-vine copula
1: Inputs:

Θ is a strict upper triangular matrix of copula parameters with entries
ηki = θki;1:k−1 for k < i, i = 1, · · · , d and k = 1, · · · , d for a
d-dimensional D-vine

2: Sample wi
i.i.d∼ U[0, 1], i = 1, . . . , d

3: v1,1 := w1, v2
1,1 := w1

4: for i = 2, ..., d do
5: vi,i := wi
6: for k = i− 1, ..., 1 do
7: vk,i := h−1

i|i−k;i−k+1:i−1(vk+1,i|v2
k,i−1, ηk,i)

8: if i < d then
9: v2

k+1,i := hi−k|i;i−k+1:i−1(v2
k,i−1|vk,i, ηk,i);

10: end if
11: end for
12: v2

1,i := v1,i
13: end for
14: Return ui := v1,i, i = 1, . . . , d

Finally, we will discuss the algorithm used to simulate the R-vine copula. The R-vine
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matrix M is defined as M = (mi,j)i,j=1,...,d. The matrix Θ includes the copula parameters and
is provided by

Θ =


− θm1,2,2 θm1,3,3 θm1,4,4 · · ·
− − θm2,3,3;m1,3 θm2,4,4;m1,4 · · ·
− − − θm3,4,4;m2,4,m1,4 · · ·
− − − − · · ·

 .

The conditional distribution function C is defined as follows:

C(umi,i |umk,i , umk−1,i , . . . , um1,i) =

∂Cmi,i ,mk,i ;mk−1,i ,...,m1,i(C(umi,i |umk−1,i , . . . , um1,i), C(umi,i |umk,i , umk−1,i , . . . , um1,i))

∂C(umk,i |umk−1,i , . . . , um1,i)
.

where i = 3, . . . , d and k = 2, . . . , i − 1. The representations of matrices V and V2 are as
follows:

V =


u1 u2 u3 u4 · · ·

C(u2|um1,2) C(u3|um1,3) C(u4|um1,4) · · ·
C(u3|um1,3,um2,3) C(u4|um1,4 , um2,4) · · ·

C(u4|um1,4 , um2,4 , um3,4) · · ·
· · ·

 ,

V2 =


u1 u2 u3 u4 · · ·

C(um1,2 |u2) C(um1,3 |u3) C(um1,4 |u4) · · ·
C(um2,3 |um1,3 , u3) C(um2,4 |um1,4 , u4) · · ·

C(um3,4 |um1,4 , um2,4 , u4) · · ·
· · ·

 .

To simulate from the R-vine copula, another matrixM := (m̃k,i), k ≤ i needs to be introduced,
which is defined as

m̃k,i := max {mk,i, mk−1,i, . . . , m1,i}.

Now that all the significant variables have been introduced and defined, the simulation
algorithm of the R-Vine copula is explained.
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Algorithm 3 Sampling from a R-vine copula
1: Inputs:

Θ is a strict upper triangular matrix of copula parameters with entries
ηki = θki;1:k−1 for k < i, i = 1, · · · , d and k = 1, · · · , d for a
d-dimensional D-vine

2: Sample wi
i.i.d∼ U[0, 1], i = 1, . . . , d

3: v1,1 := w1, v2
1,1 := w1

4: for i = 2, ..., d do
5: vi,i := wi
6: for k = i− 1, ..., 1 do
7: if mk,i = m̃k,i then
8: vk,i := h−1

mii |mki ;m1i ,...,mk−1,i
(vk+1,i|vk,m̃k,i , ηk,i)

9: elsevk,i := h−1
mii |mki ;m1i ,...,mk−1,i

(vk+1,i|v2
k,m̃k,i

, ηk,i)

10: end if
11: if i < d then
12: if mk,i = m̃k,i then
13: v2

k+1,i := h−1
mki |mii ;m1i ,...,mk−1,i

(vk,m̃k,i |vk,i, ηk,i);
14: else
15: v2

k+1,i := h−1
mki |mii ;m1i ,...,mk−1,i

(v2
k,m̃k,i
|vk,i, ηk,i);

16: end if
17: end if
18: end for
19: end for
20: Return ui := v1,i, i = 1, . . . , d
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7.5 Simulation from factor copula models

As this paper generates predictions using both vine copula models and factor copula models,
it is necessary to explain the simulation algorithm for the one- and two-factor models. The
algorithms below are based on the book by Czado (2019) and the paper by Kadhem and
Nikoloulopoulos (2021).

To simulate the u data using the one-factor copula model, the latent factor v must first
be simulated from the U(0, 1) distribution. In the second step, independent, identical,
uniformly distributed random numbers wj, j = 1, ..., d are generated. The u data is obtained
by using the inverse of the h function, with the simulated latent factor v and the generated
random numbers wj as function arguments. The simulation procedure using the one-factor
copula model is summarised in Algorithm 4.

Algorithm 4 Sampling from a one-factor copula
1: Sample v ∼ U(0, 1)

2: Sample wj
i.i.d∼ U[0, 1], j = 1, . . . , d

3: Then uj = C−1
j|v (wj|v), j = 1, ..., d

The procedure for sampling from the two-factor copula is summarised in Algorithm 5. To
simulate the two-factor copula, first the latent factors v1 and v2 must be simulated from the
U(0, 1) distribution. Next, the random numbers wj are simulated similarly to the one-factor
copula model. Then, calculate Cj|v1

(wj|v1), j = 1, . . . , d using the first latent factor v1 and the
random numbers wj as arguments to determine the first argument of the h-function. Finally,
the inverse of the h-function, Cj|v1

and the second latent factor v2 are used to generate the
u-data.

Algorithm 5 Sampling from a two-factor copula
1: Sample v1 ∼ U(0, 1)
2: Sample v2 ∼ U(0, 1)

3: Sample wj
i.i.d∼ U[0, 1], j = 1, . . . , d

4: Then rbj = Cj|v1
(wj|v1), j = 1, . . . , d

5: uj = C−1
j|v2

(rbj|v2), j = 1, . . . , d

The samples simulated in this section are used to determine forecasts, which then need to be
checked for accuracy. This paper will focus on two scoring rules for evaluating predictions:
The continuous ranked probability score and the interval score. These scoring rules will be
defined in the next section.
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7.6 Scoring rule

This section presents the scoring rules that will be used to evaluate the forecasts. The
continuous ranked probability score and the interval score are considered and are presented
below. The definitions are based on the paper by Ferro et al. (2008), Broecker (2012) and
Gneiting and Raftery (2004).

Definition 7.33 (Continuous ranked probability score) The Continuous Ranked Probability Score
(CRPS) is a measure that compares a single observation y with the cumulative distribution function F
of the forecasts. The mathematical definition of CRPS is as follows

CRPS(F, y) =
∫
R

(F(x)− 1{x≥y})
2dx.

A CRPS value of zero indicates an accurate prediction, while a value of one indicates an inaccurate
prediction.

If the forecasts are given in intervals, the CRPS should not be used; there is a more appropriate
method, known as the interval score.

Definition 7.34 (Interval score) The definition of the Interval Score (IS) is as follows

ISα(F, y) = (u− l) +
2
α
(l − y)1{y<l} +

2
α
(y− u)1{y>u},

where y are the observations, l and u are the lower and upper endpoints of the (1 − α) · 100%
prediction interval. The terms l is the α

2 and u the 1− α
2 quantile of F.

Observations below the lower endpoint l are penalised in the term 2
α (l − y)1{y<l}, while the

penalty for observations above the upper endpoint u is considered in the term 2
α (y− u)1{y>u}.
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This chapter describes the procedure for obtaining copula data using a flowchart. The copula
models and factor models used are also summarised in a flowchart. Subsequently, the data
are described. The results of modelling the dependencies and forecasting using copula and
factor models are presented.

The statistical software RStudio was used for modelling and prediction, with the following
packages: fGarch from Wuertz et al. (2022), FactorCopula from Kadhem and Nikoloulopou-
los (2023), gamlss.dist from Stasinopoulos and Rigby (2022), rvinecopulib from Nagler and
Vatter (2023), VineCopula from Nagler et al. (2023).

8.1 Procedure description

The following section presents a detailed description of the process for determining the
copula data and copula model, which is summarized in Flowchart 8.1 and 8.2.

To create the copula data to be used for estimation, an exploratory data analysis is ini-
tially conducted on the provided data. In a first step the serial dependence of each variable
has to be removed to create necessary copula data consisting of independent rows. The ACF
and PACF of each variable are taken into consideration. If they indicate the presence of
trends and seasonal effects, said trends and seasonal effects are eliminated. The subsequent
phase involves investigating if a seasonal autoregressive moving average model (SARMA) is
needed. If the standardized residuals of the SARMA model display autocorrelation in the
ACF and PACF plots that is not close to zero, then the ACF and PACF are examined for
the squared standardized residuals to see if the GARCH effects are needed. If these auto-
correlation in the ACF and PACF are high, GARCH effects are incorporated. Subsequently,
a SARMA-GARCH model needs to be fitted, in which the standardized residuals are also
taken into account. The standardized residuals distribution is assessed using a histogram to
check if it aligns with the assumed innovation F. The probability integral transformation
based on it is used to create the copula data. However, if the residuals distribution is not
congruent with distribution F, an appropriate distribution must be re-determined. In that
event, copula data is then created from the identified probability integral transform using
the fitted distribution.
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Exploratory data
analysis (ACF, PACF)
for time series X j

t, j =
1, . . . , d, t = 1, . . . , T

Remove time and
seasonal effects

SARMA(p, q)(P, Q)s
model

Standardized
SARMA(p, q)(P, Q)s

residual rSARMA,j
t

SARMA-
GARCH model

Standardized
residual analysis
rARMA−GARCH,j

t
with innovation
distribution F

Refit rSARMA−GARCH,j
t

using a univari-
ate parametric
distribution F̂j

Transform to
the u-scale

Adding
GARCH
effects

Not
okay

Okay
utj = F̂j(rt) utj = Fj(rt)

Figure 8.1 Flowchart for obtaining the copula data U = (utj, t = 1, . . . , T, j = 1, . . . , d)
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Two-Factor
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Two-Factor
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Copula

One- and
Two-Factor
Gaussian
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Figure 8.2 Copula models studied using the copula data U

Having created the copula data, we need to find a suitable model to detect dependency
structures. We will therefore explore different models, starting with R-, C-, and D-Vine
copula models. Additionally, we will consider the one- and two-factor copula model, as
well as a specific instance of the Gaussian one- and two-factor copula model. Further to this,
we will also compare to the multivariate Student’s t copula model and the Gaussian factor
model.

8.2 Data description

Monthly German yield curves with maturities of 1, 5, 10, 15 and 20 years, covering the period
from 1986-06-01 to 2019-12-01 (403 observations) were selected to analyse the dependency.
The yield curves are shown in Figure 8.3.
For the analysis, the following abbreviations are used for the yield curve with different
maturities: M1 for the 1-year maturity, M5 for the 5-year maturity, M10 for the 10-year
maturity, M15 for the 15-year maturity and M20 for the 20-year maturity.

The Figure shows a trend in the yield curves for the various maturities. To prepare the data
for time series analysis, the trend must be removed by differentiating the yield curves

∆X j
t = X j

t − X j
t−1, j = 1, ..., d, t = 1, ..., T,

where X j
t = Mjt, j = 1, 5, 10, 15, 20. Differenced yield curves are shown in Figure 8.4. After

removing the trend, an autoregressive moving average model is fitted. The results are
presented in the next section.
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Figure 8.3 Monthly yield curves for maturities of 1, 5, 10, 15 and 20 year(s) with observation number
T = 403
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Figure 8.4 Differenced yield curves for maturities of 1, 5, 10, 15 and 20 year(s) with observation
number T = 403
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8.3 Marginal ARMA fitting

Autoregressive moving average models for differenced yield curves are fitted below. Table
8.1 presents the ARMA model formulas for the differenced yield curves with maturities of 1,
5, 10, 15 and 20 years.

Table 8.1 Fitted ARMA model formula

ARMA model formula Wt

M1t = −0.013 + 0.325M1t−1 + Wt Wt ∼ N(0, 0.040)
M5t = −0.016 + Wt + 0.173Wt−1 Wt ∼ N(0, 0.044)
M10t = −0.016− 0.054M10t−1 − 0.817M10t−2 + 0.156M10t−3 + Wt + 0.113Wt−1 + 0.796Wt−2 Wt ∼ N(0, 0.040)
M15t = −0.015 + Wt Wt ∼ N(0, 0.042)
M20t = −0.015− 0.149M20t−1 − 0.962M20t−2 − 0.02M20t−3 + Wt + 0.083Wt−1 + 0.946Wt−2 Wt ∼ N(0, 0.043)

Starting with the differenced yield curves with a maturity of one year, an autoregressive
model of order one was fitted. The AR(1) model formula is given in the table above, where
M1t−1 is the differenced yield curve with maturity one year at time t− 1 with coefficient
φ1 = 0.325, Wt the white noise process and the intercept -0.013. Next a moving average
model with an order of one was fitted to the differenced yield curve with a maturity of
five years. As with the one-year maturity yield curve, the formula for the MA(1) model
can be found in Table 8.1. The ARMA(3, 2) model was used to fit the differenced yield
curve with a maturity of 10 years. In the model formula, M20t−1, M20t−2, M20t−3 are the
differenced yield curves at time t− 1, t− 2 and t− 3 and Wt−1, Wt−2 the white noise at time
t− 1 and t− 2. The differenced yield curve with a maturity of 15 years was only fitted by
the white noise process and the intercept. The autoregressive moving average model with
orders p = 3 and q = 2 was fitted for the differenced yield curve with a maturity of 20 years.
The terms M20t−1, M20t−2, M20t−3 are the differenced yield curves with maturity 20 years at
time points t− 1, t− 2 and t− 3 with coefficients φ1 = −0.149, φ2 = −0.962, φ3 = −0.02. The
white noise for the time points t− 1 and t− 2 is then denoted by Wt−1 and Wt−2, respectively,
with coefficients θ1 = 0.083 and θ2 = 0.946.

After fitting the ARMA model, it is necessary to check if the standardized residuals follow the
white noise model. This can be done by examining the ACF and PACF of the standardized
residuals, as well as the ACF and PACF of the squared standardized residuals. The ACF and
PACF of the standardized residuals, as shown in Appendix A in Figure A.1, reveal a few
significant lags. Additionally, the ACF and PACF of the squared standardized residuals in
Figure A.2 indicate a need for the GARCH model, as more lags are significant.
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Table 8.2 ARMA for the yield curves with maturity of 1, 5, 10, 15 and 20 year(s)

Dependent variable:
M1 M5 M10 M15 M20

φ1 0.325∗∗∗ −0.054 −0.149∗∗

(0.047) (0.096) (0.064)
φ2 −0.817∗∗∗ −0.962∗∗∗

(0.093) (0.064)
φ3 0.156∗∗∗ −0.020

(0.054) (0.057)
θ1 0.173∗∗∗ 0.113 0.083∗∗

(0.050) (0.086) (0.040)
θ2 0.796∗∗∗ 0.946∗∗∗

(0.105) (0.070)
intercept −0.013 −0.016 −0.016 −0.015 −0.015

(0.015) (0.012) (0.011) (0.010) (0.010)

Observations 402 402 402 402 402
Log Likelihood 74.683 56.203 77.880 66.038 63.009
σ2 0.040 0.044 0.040 0.042 0.043
Akaike Inf. Crit. −143.366 −106.407 −141.760 −128.075 −112.018

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

8.4 Marginal ARMA-GARCH with skew Student’s t innovation

This section presents the results of the ARMA-GARCH model with skew Student’s t inno-
vation. Table 8.3 shows the formulas for the fitted ARMA-GARCH model and Table 8.4
summarises the results of the ARMA-GARCH model.

Table 8.3 Fitted ARMA-GARCH model formula

ARMA-GARCH model formula

M1t = −0.008 + 0.210M1t−1 +
√

0.223W2
t−1 + 0.808σ2

t−1εt

M5t = −0.012 +
√

0.077W2
t−1 + 0.916σ2

t−1εt + 0.119
√

0.077W2
t−2 + 0.916σ2

t−2εt−1

M10t =− 0.029− 0.034M10t−1 − 0.803M10t−2 + 0.151M10t−3

+
√

0.005 + 0.048W2
t−1 + 0.84σ2

t−1εt + 0.1
√

0.005 + 0.048W2
t−2 + 0.84σ2

t−2εt−1

+ 0.814
√

0.005 + 0.048W2
t−3 + 0.84σ2

t−3εt−2

M15t = −0.020 +
√

0.005 + 0.092W2
t−1 + 0.8σ2

t−1εt

M20t =− 0.035− 0.064M20t−1 − 0.853M20t−2 + 0.051M20t−3 +
√

0.03 + 0.272W2
t−1εt

+ 0.05
√

0.03 + 0.272W2
t−2εt−1 + 0.88

√
0.03 + 0.272W2

t−3εt−2
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Let this section start by looking at the ARMA(1, 0)-GARCH(1, 1) model for the differenced
yield curve with a maturity of one year, which is given in Table 8.3, where M1t−1 the differ-
enced yield curve with maturity one year at time t− 1, σ2

t−1 the conditional variance and
Wt−1 the process from Equation (4.10). We will now examine the tests for the standardized
residuals, which can be found in Appendix Section A.
The Jarque-Bera and Shapiro-Wilk tests indicate that the current standardized residuals do
not conform to a normal distribution. As the p-value is less than 5%, the null hypothesis can
be rejected. The Ljung box test indicates that the correlation coefficients are zero, while the
LM ARCH test shows that no ARCH effects are included.

The differenced yield curve with a maturity of five years was modelled using the ARMA(0, 1)-
GARCH(1, 1) model. The standardized residuals tests, Jarque-Bera and Shapiro-Wilk, show
that the standardized residuals follow a normal distribution. The Ljung-Box and LM ARCH
tests indicate that there are no significant correlation coefficients for any lags and no ARCH
effects present.

The 10-year differenced yield curve was modelled using the ARMA(3, 2)-GARCH(1, 1)
model. Examining the residual test, it is evident that the standardized residuals do not
follow a normal distribution, as indicated by the Jarque-Bera and Shapiro-Wilk tests. Similar
to previous cases, the Ljung-Box and LM ARCH tests also indicate the presence of correlation
coefficients of zero for all lags and no ARCH effects.

Additionally, the GARCH(1, 1) model of the differenced yield curve with a maturity of
15 years is considered. The model is defined by the equation in Table 8.3. The Jarque-Bera
test indicates that the standardized residuals do not follow a normal distribution. Since the
p-value for the remaining residual tests is greater than α = 5%, the null hypothesis cannot
be rejected. According to the Shapiro-Wilk test, this suggests that the standardized residuals
follow a normal distribution. The correlation coefficients for all lags are zero and the LM
ARCH test finally proves the non-existence of ARCH effects.

The ARMA(3, 2)-GARCH(1, 1) model was used to model the differenced yield curve with a
maturity of 20 years. The Jarque-Bera and Shapiro-Wilk tests indicate that the standardized
residuals do not follow a normal distribution. As before, the Ljung-Box test indicates a
correlation coefficient of zero for all lags. Furthermore, the LM ARCH test indicates no
ARCH effects.

The ACF and PACF for the standardized and squared standardized residuals were also taken
into account for the fitted ARMA-GARCH models. The ACF and PACF are shown in Figure
A.3 and Figure A.4 in the Appendix. The plots show that there are no significant correlation
coefficients for most lags.
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Table 8.4 ARMA-GARCH model for the yield curves with maturity of 1, 5, 10, 15 and 20 year(s)

Dependent variable:
M1 M5 M10 M15 M20

µ -0.008 -0.012 -0.029 -0.020∗ -0.035
(0.006) (0.011) (0.019) (0.010) (0.018)

φ1 0.210∗∗∗ -0.034 -0.064
(0.054) (0.072) (0.059)

φ2 -0.803∗∗∗ -0.853∗∗∗

(0.063) (0.039)
φ3 0.151∗∗ 0.051

(0.053) (0.053)
θ1 0.119∗ 0.100 0.050

(0.051) (0.054) (0.029)
θ2 0.814∗∗∗ 0.884∗∗∗

(0.071) (0.040)
α0 0.000 0.000 0.005 0.005 0.031∗∗

(0.000) (0.000) (0.005) (0.003) (0.010)
α1 0.223∗∗ 0.077∗ 0.048 0.092∗ 0.272∗∗

(0.075) (0.036) (0.035) (0.047) (0.105)
β1 0.808∗∗∗ 0.916∗∗∗ 0.839∗∗∗ 0.801∗∗∗ 0.000

(0.050) (0.041) (0.140) (0.093) (0.252)
skew 0.954∗∗∗ 1.175∗∗∗ 1.116∗∗∗ 1.027∗∗∗ 0.945∗∗∗

(0.075) (0.086) (0.104) (0.082) (0.075)
df 5.590∗∗∗ 10∗∗ 10∗∗ 10∗∗ 7.16∗∗

(1.395) (3.345) (3.455) (3.735) (2.300)

Observations 402 402 402 402 402
Log Likelihood 0.381 0.167 0.217 0.188 0.221
Akaike Inf. Crit. −0.726 −0.299 −0.379 −0.346 −0.386

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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After modelling the marginal dependencies with ARMA-GARCH, the standardized residuals
can be transformed into copula data using the skew Student’s t innovation. This transfor-
mation requires the probability integral transform given in (3.9). However, since the skew
Student’s t distribution is not suitable as an innovation, a more appropriate distribution
must be determined. The table below presents the univariate parametric distribution used
for the transformation to the u-scale.

Table 8.5 Univariate fitted parametric distribution F̂j to the standardized residuals of ARMA-GARCH
model

Variable Distribution F̂
M1 Skew t type 4
M5 Skew normal type 2
M10 Generalized t
M15 Generalized t
M20 Logistic

Figure 8.5 displays QQ-plots comparing the skew Student’s t distribution with the chosen
univariate parametric distributions. The plots indicate that the selected distributions are only
slightly more appropriate than the skew Student’s t distribution. The standardized residuals
were transformed into copula data using the PIT and the selected distributions. The pairs
plot of the copula data is displayed in Figure 8.6 with the estimated Kendall’s tau values
above, contour plots below and histograms on the diagonal. From the pair plot we can see
that Kendall’s tau is above 50% for the following pairs: M1 and M5, M5 and M10, M10 and
M15, M15 and M20, M5 and M10, M10 and M20.
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Figure 8.5 QQ-plots for the standardized residuals with the skew Student’s t (right column) and the
refit distributions (left column).

60



8 Yield Curves

M1

z1

z 2

z1

z 2

z1

z 2

z1

z 2

0.59

M5

z1

z 2

z1

z 2

z1

z 2

0.42

0.69

M10

z1

z 2

z1

z 2
0.33

0.60

0.78

M15

z1

z 2

0.27

0.50

0.72

0.80

M20

Figure 8.6 Pairs plot of the copula data created for the differenced yield curves
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8.5 Vine copula fitting

This section presents the fitting of various vine copula models. First, the yield curve is
modelled using the regular vine copula. The modelling results are summarized in Table 8.6.
The structure of the R-vine indicates that it corresponds to the D-vine. For the first tree, the
copula pair families consist of the Gaussian and Student’s t copulas. The dependency mea-
sure tau exceeds 50% for all pair copulas in tree one. Trees 2 to 4 have as pair copula families
the Frank, Gaussian, Gumbel, Student’s t and the independence copula. The dependency
measure τ for Tree 2 to 4 ranges from -0.34 to 0.

Table 8.6 Fitted R-vine copula for the differenced yield curves

tree conditioned conditioning family rotation parameters tau
1 1, 2 gaussian 0 0.77 0.564
1 2, 3 gaussian 0 0.87 0.674
1 3, 4 t 0 0.94, 3.80 0.776
1 4, 5 t 0 0.95, 3.36 0.789
2 1, 3 2 gumbel 90 1.3 -0.213
2 2, 4 3 t 0 -0.21, 5.51 -0.131
2 3, 5 4 t 0 -0.03, 3.14 -0.019
3 1, 4 3, 2 gaussian 0 -0.23 -0.149
3 2, 5 4, 3 frank 0 -3.4 -0.337
4 1, 5 4, 3, 2 indep 0 0.000

Now, let’s take a look at the so-called canonical vine copula with order 14253. The outcomes
are presented in Table 8.7. C-vine copula models typically exhibit a star structure, with the
yield curve at 10 years maturity being the central point in the first tree. This point is then
connected to the other variables. The pair copulas families for the first tree are then the
Frank, Student’s t and Gumbel copulas. The second tree has the yield curve with a 20-year
maturity as the central point, and it uses the Frank and Gaussian copulas as pair copulas.
The third tree has the yield curve with a 5-year maturity as the central point, in which
the Gaussian and Student’s t copulas have been selected as pair copulas. The dependency
measure τ ranges from -0.31 to 0.78 for all trees.
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Table 8.7 Fitted C-vine copula for the differenced yield curves

tree conditioned conditioning family rotation parameters tau
1 1, 3 frank 0 4.5 0.42
1 4, 3 t 0 0.94, 3.80 0.78
1 2, 3 gaussian 0 0.87 0.67
1 5, 3 t 0 0.9, 6.1 0.71
2 1, 5 3 frank 0 -2.7 -0.28
2 4, 5 3 frank 0 6.4 0.53
2 2, 5 3 gaussian 0 -0.47 -0.31
3 1, 2 5, 3 gaussian 0 0.61 0.41
3 4, 2 5, 3 t 0 0.22, 10.37 0.14
4 1, 4 2, 5, 3 gaussian 0 -0.2 -0.13

The last model is the drawable copula. The first tree in the D-vine copula has a structure
of order 45321. The pair copulas chosen were the Gaussian and Student’s t copulas. The
dependence measure τ in trees 2 to 4 ranges from -0.31 to 0.79, and the chosen pair copulas
are the Clayton, Gaussian, Gumbel and Student’s t copulas. Table 8.8 presents the results.

Table 8.8 Fitted D-vine copula for the differenced yield curves

tree conditioned conditioning family rotation parameters tau
1 4, 5 t 0 0.95, 3.36 0.789
1 5, 3 t 0 0.9, 6.1 0.711
1 3, 2 gaussian 0 0.87 0.674
1 2, 1 gaussian 0 0.77 0.564
2 4, 3 5 t 0 0.67, 5.79 0.468
2 5, 2 3 gaussian 0 -0.47 -0.314
2 3, 1 2 gumbel 270 1.3 -0.213
3 4, 2 3, 5 t 0 0.22, 11.31 0.142
3 5, 1 2, 3 clayton 270 0.13 -0.062
4 4, 1 2, 3, 5 gaussian 0 -0.24 -0.156
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8.6 Factor copula models on the copula scale

The following section discusses factor copula models, including the one- and two-factor
models.

8.6.1 One-factor arbitrary copula

The one-factor model is now examined in detail. Table 8.9 display the families, parameters,
and tau. The dependency measure τ between the latent variable and the variables M1, M5,
M10, M15 and M20 is illustrated in Figure 8.7.

0.32
0.6

2
0.

80
0.92

0.79

F1

M1 M5 M10 M15 M20

Figure 8.7 Fitted one-factor copula for the differenced yield curves with the given dependence
measure τ

The reflected Gumbel copula was chosen as the pair copula for the yield curve with a
maturity of 1 year and the latent factor, with a dependency measure of 32%. For the yield
curve with a maturity of 5 years, the Frank copula was selected as the pair copula, and for
the yield curve with maturities of 10 and 20 years, the Student’s t copula with three degrees
of freedom was chosen. The yield curve with a maturity of 15 years was modelled using the
Gaussian copula as the pair copula. The latent factor explained 62% of the dependency for
M5, 80% for M10, 92% for M15, and 79% for M20.

Table 8.9 Fitted one-factor copula for the differenced yield curves

variables family parameters tau
M1 rgum 1.46 0.32
M5 frk 8.35 0.62
M10 bvt3 0.95 0.80
M15 bvn 0.99 0.92
M20 bvt3 0.95 0.79

8.6.2 Two-factor arbitrary copula

We will now discuss the fitted two-factor copula model. The pair copulas selected for this
model are the same as those used in the one-factor copula model. Table 8.10 presents the
families, parameters and tau. In the one-factor copula model, the dependency measure for
yield curves with maturities of 10, 15 and 20 years exceeds 50%. The tau for the two-factor
model exceeds 50% for the maturities of 1, 5, 10 and 15 years.
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Table 8.10 Fitted two-factor copula for the differenced yield curves

variables factor family parameters tau
M1 1 rgum 1.15 0.13
M5 1 frk 4.30 0.41
M10 1 bvt3 0.84 0.64
M15 1 bvn 0.95 0.80
M20 1 bvt3 0.96 0.82
M1 2 rgum 2.51 0.60
M5 2 frk 29.03 0.87
M10 2 bvt3 0.89 0.69
M15 2 bvn 0.89 0.70
M20 2 bvt3 0.46 0.31

Table 8.11 summarises the abbreviations for the pair copula families.

Table 8.11 Abbreviations for pair copula families

Abbreviation Pair copula family
rgum reflected Gumbel
frk Frank
bvt3 Student’s t with three degrees of freedom
bvn Gaussian

The previous models selected arbitrary pair copula families. In the following, Gaussian
copulas are selected as pair copula families.

8.6.3 One-factor Gaussian copula

The one-factor Gaussian copula model is defined by Equation (8.1), where Ci|V(ui|v), i =
M1, M5, M10, M15, M20 is the partial derivative of the joint copula CiV(ui, v) with respect to
v.

C(uM1, uM5, uM10, uM15, uM20) =

1∫
0

CM1|v(uM1|v)CM5|v(uM5|v)CM10|v(uM10|v) (8.1)

· CM15|v(uM15|v)CM20|v(uM20|v)dv.

Now, we provide a more detailed representation of CM1|v(uM1|v). First, the bivariate
Gaussian copula is presented.

C(uM1, v; ρ) = Φ2(Φ
−1(uM1), Φ−1(v); ρ)
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Now the partial derivative of the copula CM1,v(uM1, v; ρ) with respect to v has to be computed.

CM1|v(uM1|v) =
d

dv
CM1,v(uM1, v; ρ)

=
d

dv
Φ2(Φ

−1(uM1), Φ−1(v); ρ)

= Φ

[Φ−1(uM1)− ρM1,1Φ−1(v)
]√

1− ρ2
M1,1


The remaining terms can be expressed similarly. To obtain the one-factor Gaussian copula,
multiply the conditional copula distribution functions and integrate them.
Now let’s consider the results for the one-factor Gaussian copula, which are summarised in
Table 8.12. Similar to the one-factor copula model with arbitrary copulas, the yield curve
with a maturity of 1 year has a dependency lower than 50%, while the remaining variables
have a higher dependency measure.

Table 8.12 Fitted one-factor Gaussian copula for the differenced yield curves

variables family parameters tau
M1 bvn 0.54 0.37
M5 bvn 0.85 0.64
M10 bvn 0.97 0.84
M15 bvn 0.97 0.83
M20 bvn 0.93 0.76

8.6.4 Two-factor Gaussian copula

In comparison to the one-factor copula model, the two-factor copula model includes an
additional latent factor. Mathematically, the two-factor copula model can be represented by
the following equation.

C(uM1, uM5, uM10, uM15, uM20) =

1∫
0

1∫
0

CM1|V2;V1
(CM1|V1

(uM1|v1)|v2)

· CM5|V2;V1
(CM5|V1

(uM5|v1)|v2)

· CM10|V2;V1
(CM10|V1

(uM10|v1)|v2)

· CM15|V2;V1
(CM15|V1

(uM15|v1)|v2)

· CM20|V2;V1
(CM20|V1

(uM20|v1)|v2)dv1dv2

The inner term Cj|V2;V1
(Cj|V1

(uj|v1)|v2), j = M1, M5, M10, M15, M20 is determined by

Cj|V2;V1
(Cuj|V1

(uj|v1)|v2) =
∂

∂v2
CjV2;V1(Cuj|V1

(uj|v1), v2).

For the Gaussian copula, we obtain

Cuj|V2;V1
(Cuj|v1

|v2) = Φ

Φ−1(uj)− αj1Φ−1(v1)− γj(1− α2
j1)

1
2 Φ−1(v2)√

(1− α2
j1)(1− γ2

j )


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with correlation αj1 for Cj,V1 . The partial correalation γj =
αj2√
1−α2

j1

for (Φ(Uj), Φ(V2)) given

Φ(V1), where αj2 is the correlation of Φ(Uj) and Φ(V2). As with the one-factor model,
multiply the conditional copulas first and then integrate to obtain the two-factor copula
model.

Consider now the results for the two-factor copula model, which are summarised in Table
8.13. In this case, the Gaussian copula was used as the pair copula family for all variables.
The estimated parameter values are shown in the fourth column, and the dependence mea-
sure is shown in the last column. The dependence measure ranges from 11% to 82% for the
first factor and from 46% to 96% for the second factor.

Table 8.13 Fitted two-factor Gaussian copula for the differenced yield curves

variables factor family parameters tau
M1 1 bvn 0.18 0.11
M5 1 bvn 0.50 0.33
M10 1 bvn 0.82 0.61
M15 1 bvn 0.91 0.72
M20 1 bvn 0.96 0.82
M1 2 bvn 0.81 0.60
M5 2 bvn 1.00 0.96
M10 2 bvn 0.91 0.73
M15 2 bvn 0.85 0.64
M20 2 bvn 0.66 0.46

8.7 Gaussian factor models on z-scale

This section presents the results for the one and two factor models, starting with the one
factor model. The factor models require data on the z-scale defined in 7.2. This data is
obtained by using the quantile of the standard normal distribution. Now consider the case
where only one factor is included.

8.7.1 One-factor Gaussian model

The fitted factor model with one latent factor f1 is given by

M1 = 0.56 f1 + uM1

M5 = 0.86 f1 + uM5

M10 = 0.98 f1 + uM10

M15 = 0.95 f1 + uM15

M20 = 0.91 f1 + uM20,
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where ui, i = M1, ..., M20 are normally distributed random variables with mean zero and
variance ψi = diag(0.68, 0.25, 0.03, 0.10, 0.17) and

Σ =


1.00
0.49 1.00
0.56 0.85 1.00
0.54 0.82 0.93 1.00
0.51 0.79 0.90 0.86 1.00


the sample correlation matrix of the observed data for variables M1, M5, M10, M15, M20.

As the data has been transformed on the z-scale, the results of the factorial model can-
not be compared with the other models directly. In order to be able to compare them, the
results must be transformed to the u-scale. This was done using the density transformation
theorem.

8.7.2 Two-factor Gaussian model

Adding another latent factor, f2, the fitted two-factor Gaussian model is given by the
following equations

M1 = 0.19 f1 + 0.79 f2 + uM1

M5 = 0.51 f1 + 0.86 f2 + uM5

M10 = 0.81 f1 + 0.54 f2 + uM10

M15 = 0.89 f1 + 0.39 f2 + uM15

M20 = 0.95 f1 + 0.22 f2 + uM20.

The variance for ui is given by

ψ = diag(0.34, 0.01, 0.06, 0.05, 0.04)

and the sample correlation matrix of the observed data for variables M1, M5, ..., M20 by

Σ =


1.00
0.77 1.00
0.58 0.87 1.00
0.48 0.78 0.93 1.00
0.36 0.67 0.89 0.94 1.00

 .
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8.8 Multivariate t copula in 5 dimensions

This section fits the Student’s t copula in five dimensions. The Student’s t copula(Σ, ν)
requires the multidimensional Student’s t distribution with the parameters, ν the degrees of
freedom and Σ the correlation matrix. For the fit, we did not specify the degrees of freedom,
but had them estimated. The estimated degrees of freedom are ν = 8 and the correlation
coefficients are given in the following matrix.

Σ =


1.00 0.77 0.57 0.46 0.38
0.77 1.00 0.88 0.81 0.70
0.57 0.88 1.00 0.95 0.90
0.46 0.81 0.95 1.00 0.95
0.38 0.70 0.90 0.95 1.00


The R package copula from Hofert et al. (2023), Jun Yan (2007), Ivan Kojadinovic and Jun
Yan (2010) and Marius Hofert and Martin Mächler (2011) was used to fit the multivariate
Student’s t copula.

So far we have fitted various vine copulas, factor copula models, the multivariate Stu-
dent’s t copula and factor models. Now the best model has to be determined. This is done
by comparing the different models. The selection criteria used for the comparison are AIC,
BIC and log-likelihood. The results of the comparison are presented in detail in the next
section.

8.9 Model comparison

Table 8.14 compares copula models and factor models using selection criteria AIC, BIC, and
log-likelihood. The drawable vine copula model with order 45321 has the smallest AIC and
BIC compared to the other models, making it the best model among the models studied.
The AIC and BIC for the R-vine, C-vine, two-factor copula, two-factor Gaussian copula,
two-factor Gaussian model and Student’s t copula are closely behind the D-vine copula.

Table 8.14 Model comparison

Models AIC BIC logLik Number of parameters
RVine = DVine (BIC) with order 12345 -2942.45 -2890.50 1484.23 13
CVine (BIC) with order 14253 -2935.74 -2883.79 1480.87 13
DVine (BIC) with order 45321 -2951.29 -2895.34 1489.64 14
One-factor copula -2231.26 -2203.29 1122.63 7
Two-factor copula -2812.71 -2756.76 1420.35 14
One-factor Gaussian copula -2145.10 -2125.12 1077.55 5
Two-factor Gaussian copula -2740.29 -2700.33 1380.15 10
One-factor Gaussian model transformed to u-scale -2142.26 -2102.29 1081.13 15
Two-factor Gaussian model transformed to u-scale -2742.83 -2702.87 1381.42 20
t copula -2938.77 -2894.81 1480.39 11
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8 Yield Curves

8.10 Forecasting

This section presents a forecast of the yield curve for the next three months. The process
involves several steps, beginning with predicting time T = 404.

1. Forecasted mean and standard deviations
For the variables M1, M5, ..., M20, the mean µ̂(T+1) and standard deviation σ̂(T+1)
were forecasted for the time T + 1 = 404. The forecasted parameters for the different
maturities are presented in Table 8.15.

Table 8.15 Mean and standard deviation forecast for T + 1 = 404

µ̂T+1 σ̂T+1
M1 -0.018 0.085
M5 0.003 0.139
M10 0.016 0.188
M15 -0.020 0.193
M20 -0.007 0.204

2. Sampling from a copula model
Using the fitted R-, C- and D-vine copula and the one- and two-factor copula models,
n = 1000 samples are generated in this step.

(un
T+1,1, ..., un

T+1,d) ∼ C, n = 1, ..., 1000, T + 1 = 404.

3. Transform simulated u-data into standardized residuals
The u-data generated in the second step are transformed into the standardized residuals.
These residuals are determined by the inverse of the univariate distribution function.

u(T+1)j = F̂j(r̂n
(T+1)j)⇔ r̂n

(T+1)j = F̂−1
j (un

(T+1)j), j = M1, ..., M20, T + 1 = 404.

4. Forecast of differenced data
Using the estimated forecasts from step one and the results from step three, we obtain
predictions for the differenced data.

∆̂Yn
(T+1)j = µ̂(T+1)j + σ̂(T+1)j · r̂n

(T+1)j

where we use ∆Y(T+1)j instead of ∆M1(T+1)j, ..., ∆M20(T+1)j with n = 1, ..., 1000, j =
M1, ..., M20.

5. Forecasting the yield curve
To obtain a forecast on the original scale, the differenced data step must be reversed.“Y(T+1)j = ∆̂Y(T+1)j + YTj

To predict the yield curves for time T + 2 = 405, the given data needs to be shifted by
one month, starting at t = 2, ..., 404. The time series analysis, ARMA-GARCH model, and
modelling using vine copula and factor copula models must be performed again on the
new data set. To determine the predicted yield curve for T + 2 = 405, repeat steps 1 to 5
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8 Yield Curves

Table 8.16 Mean and standard deviation forecast for T + 2 = 405

µ̂T+2 σ̂T+2
M1 0.005 0.084
M5 -0.036 0.145
M10 -0.046 0.195
M15 -0.021 0.199
M20 -0.020 0.216

as previously instructed. The parameters estimated µ̂(T+2) and σ̂(T+2) in the first step are
summarized in Table 8.16. For the time T + 3 = 406, we do the same procedure. We form
the new data set and start at time t = 3 and go to t = 405. The time series analysis and
modelling were performed with the data and finally the yield curve was predicted for T + 3.
The estimated parameters used for this are presented in Table 8.17.

Table 8.17 Mean and standard deviation forecast for T + 3 = 406

µ̂T+3 σ̂T+3
M1 -0.025 0.089
M5 -0.029 0.143
M10 -0.028 0.193
M15 -0.022 0.201
M20 -0.018 0.209

Results from the forecasting using the R-, C- and D-vine copula models

The results obtained from the simulation are summarized in Table A.1 in Appendix A,
including the observed value, the mode and the prediction interval. Figure 8.8 displays the
values predicted using the R-vine copula. The figure contains the density, the 5% and 95%
quantile of the predictions and the observed value. The figure presents the maturities M1,
M5, M10, M15 and M20 in the rows. The columns show the times T + 1, T + 2 and T + 3. For
all maturities and times, the observed values are included in the forecasts and lie between
the 5% and 95% quantiles. This indicates that the predicted values are accurate.

Figure 8.9 presents the forecasts using the C-vine copula. The figure has the same structure
as above. The observed values lie between the two quantiles and we can conclude that the
observed values were well covered by the predictions.

As with the two previous cases, Figure 8.10 presents the results of the prediction using the
D-vine copula model. The predictions cover the observed value well, as the observed value
is contained within the predicted values and lies between the two quantiles.
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Figure 8.8 The R-vine copula is used to forecast yield curves. The maturities M1, M5, M10, M15,
and M20 are presented in rows and the predicted times T + 1 = 404, T + 2 = 405, T + 3 = 406 are
presented in columns.
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Figure 8.9 The C-vine copula is used to forecast yield curves. The maturities M1, M5, M10, M15,
and M20 are presented in rows and the predicted times T + 1 = 404, T + 2 = 405, T + 3 = 406 are
presented in columns.
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Figure 8.10 The D-vine copula is used to forecast yield curves. The maturities M1, M5, M10, M15,
and M20 are presented in rows and the predicted times T + 1, T + 2, T + 3 are presented in columns.
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Results from the forecasting using the one- and two-factor copula models

Now consider the forecasting using the one and two factor copula model. Figures 8.11 and
8.12 display the prediction results, while Appendix A Table A.2 presents the simulation
results, including the mode, predicted interval and observed value. As in the previous cases,
for both the one-factor and two-factor copula models, the observed values are included in
the predictions and lie between the two quantiles. This indicates that the true values are well
covered by the predictions.

0
2
4

−1.5 −1.2 −0.9 −0.6
 

 

0
2
4

−1.2 −1.0 −0.8 −0.6 −0.4
 

 

0
2
4

−1.25 −1.00 −0.75 −0.50
 

 

0
1
2

−1.00−0.75−0.50−0.25 0.00
 

 

0
1
2

−1.25−1.00−0.75−0.50−0.25
 

 

0
1
2

−1.0 −0.5
 

 
0
1
2

−1 0 1 2
 

 

0
1

−2 −1 0
 

 

0
1

−2 −1 0
 

 

0
1
2

−1.5 −1.0 −0.5 0.0 0.5 1.0
 

 

0
1
2

−1.5 −1.0 −0.5 0.0 0.5
 

 

0
1

−2.0 −1.5 −1.0 −0.5 0.0 0.5
 

 

0
1
2

−1.0 −0.5 0.0 0.5 1.0
 

 

0
1
2

−1.0 −0.5 0.0 0.5 1.0
 

 

0
1
2

−1.5 −1.0 −0.5 0.0 0.5
 

 

 5% quantile 95% quantile Density forecasts True value

Figure 8.11 The one-factor copula is used to forecast yield curves. The maturities M1, M5, M10, M15,
and M20 are presented in rows and the predicted times T + 1, T + 2, T + 3 are presented in columns.
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Figure 8.12 The two-factor copula is used to forecast yield curves. The maturities M1, M5, M10, M15,
and M20 are presented in rows and the predicted times T + 1, T + 2, T + 3 are presented in columns.
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In order to determine the best model, a comparison of the results from the predictions is
necessary. This is achieved through the use of the continuous ranked probability score (CRPS)
and interval score (IS). The CRPS for all models and predicted time points are summarised
in Table 8.18. The table indicates that all models have the same CRPS for the yield curve
with a maturity of 1 year. For the remaining variables, several models provide the same
CRPS in some cases. To identify the optimal model, we search for the one with the smallest
CRPS. As multiple models give the same result, there is no definitive best model. To select a
model regardless, we computed the sum of CRPS for each model. It is important to note that
the variables are not independent, so the sums cannot simply be calculated. Nevertheless,
we consider the sums and obtain the best model, the D-Vine copula model, which was also
identified as the best model in Section 8.9.

Table 8.18 Continuous ranked probability score for the forecasted yield curves

T + 1 = 404 T + 2 = 405 T + 3 = 406
Model RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F
M1 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.03 0.04 0.04
M5 0.09 0.09 0.09 0.09 0.10 0.05 0.06 0.05 0.06 0.05 0.07 0.07 0.07 0.07 0.08
M10 0.16 0.16 0.15 0.16 0.17 0.08 0.09 0.08 0.09 0.09 0.10 0.10 0.09 0.09 0.10
M15 0.14 0.15 0.14 0.14 0.16 0.13 0.13 0.13 0.13 0.13 0.11 0.11 0.10 0.11 0.11
M20 0.15 0.16 0.15 0.15 0.17 0.13 0.13 0.13 0.14 0.13 0.10 0.10 0.10 0.10 0.11
∑ 0.58 0.60 0.57 0.58 0.64 0.45 0.47 0.45 0.48 0.46 0.42 0.42 0.39 0.41 0.44

Now lets consider the interval score in Table 8.19 where we can see that several models have
the same IS. To determine the best model, we select the one with the lowest interval score. It
is important to note that the variables are dependent, so their sum should not be calculated.
However, to select a model, we determined that the one with the smallest sum is the best.
The D-vine copula model is considered the best model for time T + 1, while the one-factor
copula model is the best for time T + 2, and the R-vine copula model is the best for time
T + 3. As the D-vine copula was chosen as the best model for the CRPS and also produced
low IS in some cases, it is considered to be the most suitable model.

Table 8.19 Interval score for the forecasted yield curves

T + 1 = 404 T + 2 = 405 T + 3 = 406
Model RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F
M1 0.28 0.28 0.27 0.27 0.27 0.33 0.27 0.28 0.27 0.26 0.29 0.27 0.28 0.28 0.27
M5 0.45 0.46 0.43 0.45 0.45 0.53 0.47 0.48 0.48 0.47 0.45 0.46 0.45 0.45 0.44
M10 0.54 0.58 0.56 0.57 0.56 0.68 0.57 0.60 0.55 0.56 0.54 0.55 0.56 0.58 0.57
M15 0.61 0.62 0.59 0.62 0.61 0.75 0.62 0.66 0.60 0.60 0.60 0.63 0.63 0.62 0.63
M20 0.64 0.68 0.66 0.69 0.67 0.87 0.70 0.71 0.64 0.68 0.64 0.69 0.67 0.67 0.68
∑ 2.52 2.62 2.51 2.60 2.56 3.16 2.63 2.73 2.54 2.57 2.52 2.60 2.59 2.60 2.59
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9 Yield Curves and Inflation Rate

This chapter presents the second case study, which includes an economic factor in the
analysis. The chapter begins with a description of the data and presents the results of the
modelling and forecasting in the following sections.

9.1 Data description

The second case study includes the German inflation rate as an economic factor in addition
to the yield curves from the first case. The yield curves take into account maturities of 1,
5, 10, 15 and 20 years. Both the inflation rate and yield curves are provided for the period
1990-10-01 to 2019-12-01 (351 observations). Technical abbreviations are used for the analysis,
with the same abbreviations for yield curves as in Chapter 8. The inflation rate is abbreviated
as Inf in the following. Figure 9.1 displays the time series for the yield curves and inflation
rate.
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Figure 9.1 Monthly yield curves for maturities of 1, 5, 10, 15 and 20 year(s) and inflation rate with
observation number T = 351

The figure shows a trend in the data which needs to be removed. This was removed by
differentiation. Figure 9.2 presents the differenced data.
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Figure 9.2 Differenced yield curves for maturities of 1, 5, 10, 15 and 20 year(s) and inflation rate with
observation number T = 351

For modelling and forecasting, the procedure is the same as for the first case study. The
results are presented and not explained in detail in this case.

9.2 Marginal ARMA fitting

This section models the serial dependencies using the ARMA model. Table 9.1 presents the
ARMA models with their respective orders.

Table 9.1 ARMA models for the yield curves and inflation rate

Variable Model
M1 ARMA(1, 0)
M5 ARMA(0, 1)
M10 ARMA(3, 2)
M15 ARMA(3, 0)
M20 ARMA(3, 0)
Inf ARMA(0, 2)× (2, 1)s=12
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9 Yield Curves and Inflation Rate

The differenced inflation rate was modelled using a seasonal ARMA model. The non-seasonal
part has an order of p = 0 and q = 2, while the seasonal part has an order of P = 2, Q = 1
and frequency s = 12. The seasonal ARMA model is determined using Definition 4.9, which
yields the following representation.

(1−Φ1B12 −Φ2B24)Inf =(1 + Θ1B12)(1 + θ1B + θ2B2)Wt (9.1)

The solution to Equation (9.1) provides the final seasonal ARMA model.

Inft = Φ1Inft−12 + Φ2Inft−24 + Wt + θ1Wt−1 + θ2Wt−2 + Θ1Wt−12 + θ1Θ1Wt−13

+ θ2Θ1Wt−14

= −0.007− 0.069Inft−12 − 0.057Inft−24 + Wt − 0.029Wt−1 + 0.080Wt−2

− 0.593Wt−12 + 0.069 · 0.593Wt−13 + 0.057 · 0.593Wt−14

The remaining variables can be modelled using ARMA models, similar to the first case study.
The model formulas for these variables are presented in Table 9.2.

Table 9.2 ARMA model formulas for the differenced yield curves and inflation rate

ARMA model formula Wt

M1t = −0.026 + 0.313M1t−1 + Wt Wt ∼ N(0, 0.033)
M5t = −0.027 + Wt + 0.150Wt−1 Wt ∼ N(0, 0.041)
M10t = −0.026− 0.044M10t−1 − 0.788M10t−2 + 0.144M10t−3 + Wt + 0.105Wt−1 + 0.758Wt−2 Wt ∼ N(0, 0.036)
M15t = −0.025− 0.024M15t−1 − 0.034M15t−2 + 0.131M15t−3 + Wt Wt ∼ N(0, 0.038)
M20t = −0.024− 0.082M20t−1 − 0.021M20t−2 + 0.115M20t−3 + Wt Wt ∼ N(0, 0.041)
Inft = −0.007− 0.069Inft−12 − 0.057Inft−24 + Wt − 0.029Wt−1 + 0.080Wt−2

− 0.593Wt−12 + 0.069 · 0.593Wt−13 + 0.057 · 0.593Wt−14
Wt ∼ N(0, 0.072)

To determine whether the GARCH model is necessary, the standardized residuals are
examined. This is done by analysing the ACF and PACF of the standardized residuals
and the squared standardized residuals. The ACF and PACF plots (Figure B.1) show some
significant lags and the ACF and PACF for the squared standardized residuals (Figure B.2)
show increased significant lags, confirming the need for the GARCH model.
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Table 9.3 ARMA for yield curves with maturity of 1, 5, 10, 15, 20 year(s) and inflation rate

Dependent variable:
M1 M5 M10 M15 M20 Inf

φ1 0.313∗∗∗ −0.044 −0.024 −0.082
(0.051) (0.146) (0.053) (0.053)

φ2 −0.788∗∗∗ −0.034 −0.021
(0.226) (0.054) (0.054)

φ3 0.144∗∗ 0.131∗∗ 0.115∗∗

(0.068) (0.055) (0.057)
θ1 0.150∗∗∗ 0.105 −0.029

(0.053) (0.137) (0.054)
θ2 0.758∗∗∗ 0.080

(0.248) (0.053)
intercept −0.026∗ −0.027∗∗ −0.026∗∗ −0.025∗∗ −0.024∗∗ −0.007

(0.014) (0.012) (0.011) (0.011) (0.011) (0.006)
Φ1 −0.069

(0.137)
Φ2 −0.057

(0.099)
Θ1 −0.593∗∗∗

(0.131)

Observations 350 350 350 350 350 350
Log Likelihood 100.382 61.154 85.593 76.672 63.199 −40.762
σ2 0.033 0.041 0.036 0.038 0.041 0.072
Akaike Inf. Crit. −194.764 −116.309 −157.186 −143.344 −116.398 95.524

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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9.3 Marginal ARMA-GARCH fitting

This section extends the ARMA model from the previous section by incorporating the
GARCH model. Similarly to the first case, the ARMA-GARCH models for the yield curve
with maturities of 1, 5, 10, 15 and 20 years can be determined. As the inflation rate requires
a seasonal ARMA model, a two-step approach is needed for the GARCH model. First, the
seasonal ARMA model is fitted and the standardized residuals are determined. These are
then used as a new dataset for the GARCH model, taking only the order of the GARCH
model into account. Table 9.4 presents the results of the ARMA-GARCH fit. The table is not
explained in detail.

Table 9.4 ARMA-GARCH model for the yield curves with maturity of 1, 5, 10, 15, 20 year(s) and
inflation rate

Dependent variable:
M1 M5 M10 M15 M20 Inf

µ -0.009 -0.020 -0.040∗ -0.021∗ -0.022∗ -0.006
(0.006) (0.011) (0.020) (0.010) (0.010) (0.196)

φ1 0.195∗∗∗ -0.127 0.034 0.006
(0.058) (0.151) (0.053) (0.052)

φ2 -0.617∗∗∗ -0.034 -0.034
(0.142) (0.052) (0.051)

φ3 0.131∗ 0.117∗ 0.108∗

(0.064) (0.051) (0.048)
θ1 0.098∗ 0.209

(0.056) (0.147)
θ2 0.600∗∗∗

(0.142)
α0 0.000 0.001 0.002 0.003 0.004 13.275∗∗∗

(0.000) (0.001) (0.002) (0.002) (0.003) (1.813)
α1 0.255∗∗ 0.083∗ 0.030 0.061 0.118∗ 0.053

(0.083) (0.038) (0.024) (0.042) (0.059) (0.070)
β1 0.781∗∗∗ 0.907∗∗∗ 0.930∗∗∗ 0.873∗∗∗ 0.777∗∗∗

(0.055) (0.043) (0.488) (0.090) (0.113)
skew 0.949∗∗∗ 1.121∗∗∗ 1.104∗∗∗ 1.002∗∗∗ 0.899∗∗∗ 1.046∗∗∗

(0.077) (0.086) (0.100) (0.091) (0.087) (0.079)
df 5.938∗∗∗ 10∗∗ 10∗∗ 10∗∗ 10∗∗ 5.34∗∗∗

(1.717) (3.907) (3.467) (3.548) (3.766) (1.482)

Observations 350 350 350 350 350 350
Log Likelihood 0.478 0.200 0.259 0.268 0.266 -2.696
Akaike Inf. Crit. −0.917 −0.360 −0.455 −0.484 −0.480 5.421

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

To determine if the standardized residuals follow a white noise process, the ACF and PACF
plots must also be considered, which are presented in Appendix B for both the standardized
and squared standardized residuals.
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As in the first case study, the skew Student’s t innovation do not sufficiently cover the
standardized residuals. Therefore, it is necessary to determine more appropriate univariate
parametric distributions. For the yield curve with a maturity of one year, the skew t type 4
distribution was chosen. For maturities of 5, 10 and 15 years, the normal distribution was
selected and for 20 years, the generalized t distribution. The logistic distribution was found
to be more suitable for the inflation rate than the selected innovation. Figure B.5 compares
QQ-plots of the selected distributions and the innovation.
The standardized residuals were converted to copula data with the selected distributions
and the pairs plot is displayed in Figure 9.3 with the estimated Kendall’s tau values above,
contour plots below and histograms on the diagonal.
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Figure 9.3 Pairs copula for the yield curves for maturities of 1, 5, 10, 15 and 20 year(s) and inflation
rate
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The pair plot shows that the dependency measure τ between the variable Inf and the yield
curves is less than 20%, while it is greater for the other cases.

9.4 Vine copula fitting

This section presents the fitted R-, C- and D-vine copula models. As the dependence measure
tau was close to or equal to zero for several trees, these trees were truncated and the
two-truncated R-vine, the three-truncated C-vine and the D-vine are additionally considered.

Regular vine copula model

The yield curves and inflation rate were modelled using the regular vine copula model. The
results are summarised in Table 9.5. The R-vine has the structure of a D-vine, as shown by
the tree structure for the first tree. The first tree uses Gaussian, Student’s t, Gumbel and BB7
as pair copulas. The dependency measure tau is non-zero for trees one and two and close to
or equal to zero for trees three to five. In the next case, the trees with tau equal to zero were
truncated.

Table 9.5 Fitted R-vine copula model for the differenced yield curves and inflation rate

tree conditioned conditioning family rotation parameters tau
1 1, 2 gaussian 0 0.77 0.562
1 2, 3 gaussian 0 0.89 0.693
1 3, 4 bb7 0 5.3, 5.3 0.789
1 4, 5 t 0 0.98, 5.00 0.878
1 5, 6 gumbel 180 1.2 0.136
2 1, 3 2 gaussian 0 -0.46 -0.305
2 2, 4 3 frank 0 -4.8 -0.447
2 3, 5 4 frank 0 -4.6 -0.433
2 4, 6 5 indep 0 0.000
3 1, 4 3, 2 indep 0 0.000
3 2, 5 4, 3 t 0 0.059, 4.263 0.038
3 3, 6 5, 4 indep 0 0.000
4 1, 5 4, 3, 2 indep 0 0.000
4 2, 6 5, 4, 3 indep 0 0.000
5 1, 6 5, 4, 3, 2 indep 0 0.000

The study considers the two-truncated R-vine copula model and Table 9.6 presents a sum-
mary of the results. Furthermore, the tree plots for the R-vine are shown in Figure 9.4.
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Table 9.6 Fitted two-truncated regular vine copula model for the differenced yield curves and inflation
rate

tree conditioned conditioning family rotation parameters tau
1 1, 2 gaussian 0 0.77 0.56
1 2, 3 gaussian 0 0.89 0.69
1 3, 4 bb7 0 5.3, 5.3 0.79
1 4, 5 t 0 0.98, 5.00 0.88
1 5, 6 gumbel 180 1.2 0.14
2 1, 3 2 gaussian 0 -0.46 -0.30
2 2, 4 3 frank 0 -4.8 -0.45
2 3, 5 4 frank 0 -4.6 -0.43
2 4, 6 5 indep 0 0.00

123

4

5

6

Tree 1

1 = M1, 2 = M5, 3 = M10, 4 = M15, 5 = M20, 6 = Inf
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Figure 9.4 Fitted R-vine copula tree plot for the differenced yield curves and inflation rate
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Canonical vine copula model

Table 9.7 presents the results of the canonical vine copula model fit. The first tree’s root node
is variable 3, which represents the yield curve with a maturity of 10 years. Trees 4 and 5
have a dependence measure close to or equal to zero, and therefore, they are truncated. The
resulting model is displayed in Table 9.8.

Table 9.7 Fitted C-vine copula model for the differenced yield curves and inflation rate

tree conditioned conditioning family rotation parameters tau
1 1, 3 frank 0 4.2 0.399
1 6, 3 clayton 0 0.26 0.115
1 5, 3 t 0 0.91, 5.20 0.734
1 2, 3 gaussian 0 0.89 0.693
1 4, 3 bb7 0 5.3, 5.3 0.789
2 1, 4 3 frank 0 -2.8 -0.293
2 6, 4 3 indep 0 0.000
2 5, 4 3 frank 0 13 0.730
2 2, 4 3 frank 0 -4.8 -0.447
3 1, 2 4, 3 gaussian 0 0.63 0.438
3 6, 2 4, 3 gumbel 0 1.1 0.056
3 5, 2 4, 3 indep 0 0.000
4 1, 5 2, 4, 3 joe 270 1.1 -0.032
4 6, 5 2, 4, 3 indep 0 0.000
5 1, 6 5, 2, 4, 3 indep 0 0.000

Table 9.8 Fitted three-truncated canonical vine copula model for the differenced yield curves and
inflation rate

tree conditioned conditioning family rotation parameters tau
1 1, 3 frank 0 4.2 0.399
1 6, 3 clayton 0 0.26 0.115
1 5, 3 t 0 0.91, 5.20 0.734
1 2, 3 gaussian 0 0.89 0.693
1 4, 3 bb7 0 5.3, 5.3 0.789
2 1, 4 3 frank 0 -2.8 -0.293
2 6, 4 3 indep 0 0.000
2 5, 4 3 frank 0 13 0.730
2 2, 4 3 frank 0 -4.8 -0.447
3 1, 2 4, 3 gaussian 0 0.63 0.438
3 6, 2 4, 3 gumbel 0 1.1 0.056
3 5, 2 4, 3 indep 0 0.000
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Drawable vine copula model

The drawable vine copula model in Table 9.9 shows dependencies between -0.37 and 0.88 for
trees 1 to 3. For the first tree, the Gaussian and Student’s t copulas were selected as the pair
copulas in the D-vine model.

Table 9.9 Fitted D-vine copula model for the differenced yield curves and inflation rate

tree conditioned conditioning family rotation parameters tau
1 4, 5 t 0 0.98, 5.00 0.878
1 5, 3 t 0 0.91, 5.20 0.734
1 3, 2 gaussian 0 0.89 0.693
1 2, 1 gaussian 0 0.77 0.562
1 1, 6 gaussian 0 0.15 0.094
2 4, 3 5 t 0 0.85, 4.51 0.641
2 5, 2 3 bb8 270 2.64, 0.89 -0.369
2 3, 1 2 gaussian 0 -0.46 -0.305
2 2, 6 1 clayton 0 0.22 0.101
3 4, 2 3, 5 t 0 -0.34, 5.21 -0.220
3 5, 1 2, 3 joe 90 1.1 -0.033
3 3, 6 1, 2 indep 0 0.000
4 4, 1 2, 3, 5 indep 0 0.000
4 5, 6 1, 2, 3 gumbel 180 1.1 0.071
5 4, 6 1, 2, 3, 5 indep 0 0.000

Additionally, the three-truncated D-vine model was considered due to a tau equal or
close to zero for trees 4 and 5.

Table 9.10 Fitted three-truncated drawable vine copula model for the differenced yield curves and
inflation rate

tree conditioned conditioning family rotation parameters tau
1 4, 5 t 0 0.98, 5.00 0.878
1 5, 3 t 0 0.91, 5.20 0.734
1 3, 2 gaussian 0 0.89 0.693
1 2, 1 gaussian 0 0.77 0.562
1 1, 6 gaussian 0 0.15 0.094
2 4, 3 5 t 0 0.85, 4.51 0.641
2 5, 2 3 bb8 270 2.64, 0.89 -0.369
2 3, 1 2 gaussian 0 -0.46 -0.305
2 2, 6 1 clayton 0 0.22 0.101
3 4, 2 3, 5 t 0 -0.34, 5.21 -0.220
3 5, 1 2, 3 joe 90 1.1 -0.033
3 3, 6 1, 2 indep 0 0.000
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9.5 Factor copula models on the copula scale

This section fits the factor copula models, focusing on the one- and two-factor copula models
with arbitrary pair copulas and the Gaussian pair copula.

9.5.1 One-factor arbitrary copula

For the yield curve with a maturity of 1 year, the Student’s t copula with five degrees of
freedom was chosen as the pair copula in the one-factor copula model. The Student’s t
copula with three degrees of freedom was used as the pair copula for the yield curve with
maturities of 5, 10 and 20 years, the Gaussian copula for the maturity of 15 years and the
reflected Gumbel copula for the inflation rate. Upon examining the dependency measure, it
is evident that the inflation rate exhibits the lowest dependency measure when compared to
the other variables.

Table 9.11 Fitted one-factor copula model with arbitrary pair copulas for the differenced yield curves
and inflation rate

variables family parameters tau
M1 bvt5 0.47 0.31
M5 bvt3 0.78 0.57
M10 bvt3 0.96 0.81
M15 bvn 1.00 0.95
M20 bvt3 0.98 0.87
Inf rgum 1.17 0.14

9.5.2 Two-factor arbitrary copula

The two-factor copula model utilises the Student’s t, Frank, and Gaussian copulas as pair
copulas. In this instance, the inflation rate exhibits the lowest dependence measure.

Table 9.12 Fitted two-factor copula model with arbitrary pair copulas for the differenced yield curves
and inflation rate

variables family parameters tau
M1 frk 1.99 0.21
M5 bvt5 0.67 0.47
M10 bvt3 0.89 0.70
M15 bvn 0.98 0.87
M20 bvt3 0.98 0.87
Inf bvt5 0.22 0.14
M1 bvn 0.80 0.59
M5 bvn 0.97 0.84
M10 bvt3 0.93 0.77
M15 bvt3 0.97 0.84
M20 frk 4.60 0.43
Inf bvn 0.07 0.05
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9.5.3 One-factor Gaussian copula

Consider the one-factor copula model with the Gaussian copula as the pair copula. Table
9.13 summarizes the results of the one-factor copula model. The dependence measure for the
inflation rate is the same as that of the one-factor copula model with arbitrary pair copulas.

Table 9.13 Fitted one-factor copula model with Gaussian pair copulas for the differenced yield curves
and inflation rate

variables family parameters tau
M1 bvn 0.46 0.30
M5 bvn 0.80 0.59
M10 bvn 0.96 0.82
M15 bvn 1.00 0.94
M20 bvn 0.98 0.87
Inf bvn 0.22 0.14

9.5.4 Two-factor Gaussian copula

The two-factor copula model also contains the Gaussian copula as a pair copula. The results
are consistent with previous cases. The inflation rate and yield curve with a one-year
maturity exhibit the smallest dependency measure for the first factor. For the second factor,
only the inflation rate shows a small dependency measure.

Table 9.14 Fitted two-factor copula model with Gaussian pair copulas for the differenced yield curves
and inflation rate

variables family parameters tau
M1 bvn 0.27 0.17
M5 bvn 0.63 0.43
M10 bvn 0.87 0.68
M15 bvn 0.97 0.83
M20 bvn 0.97 0.85
Inf bvn 0.20 0.13
M1 bvn 0.82 0.62
M5 bvn 0.97 0.84
M10 bvn 0.92 0.75
M15 bvn 0.98 0.88
M20 bvn 0.66 0.46
Inf bvn 0.10 0.06
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9.6 Gaussian factor models on the z-scale

The results of the factor Gaussian model, both one-factor and two-factor, on the z-scale are
presented below.

9.6.1 One-factor Gaussian model

The one-factor Gaussian model contains one latent factor and is given by

M1 = 0.45 f1 + uM1

M5 = 0.79 f1 + uM5

M10 = 0.96 f1 + uM10

M15 = 1.00 f1 + uM15

M20 = 0.98 f1 + uM20

Inf = 0.21 f1 + uInf,

where ui, i = M1, M5, M10, M15, M20, Inf are normally distributed with variance ψ =
diag(0.80, 0.37, 0.08, 0.01, 0.04, 0.96) and

Σ =



1.00
0.36 1.00
0.43 0.76 1.00
0.45 0.79 0.96 1.00
0.44 0.78 0.94 0.98 1.00
0.09 0.16 0.20 0.21 0.20 1.00


represents the sample correlation matrix for the variables M1, M5, .., Inf.

9.6.2 Two-factor Gaussian model

The two-factor model incorporates an additional factor, f2, alongside the latent factor, f1.
The model is defined by the following equations.

M1 = 0.19 f1 + 0.80 f2 + uM1

M5 = 0.55 f1 + 0.83 f2 + uM5

M10 = 0.84 f1 + 0.51 f2 + uM10

M15 = 0.94 f1 + 0.33 f2 + uM15

M20 = 0.96 f1 + 0.23 f2 + uM20

Inf = 0.18 f1 + 0.13 f2 + uInf

The sample correlation matrix for variables M1 to M20 and Inf is represented by

Σ =



1.00
0.77 1.00
0.57 0.89 1.00
0.44 0.79 0.96 1.00
0.37 0.72 0.92 0.98 1.00
0.13 0.20 0.21 0.21 0.20 1.00

 .
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9.7 Multivariate t copula in 6 dimensions

This section presents another copula model, which fits the Student’s t copula in six dimen-
sions. The estimated correlation coefficients are presented in the matrix below

Σ =



1.00 0.77 0.56 0.44 0.39 0.13
0.77 1.00 0.90 0.80 0.74 0.19
0.56 0.90 1.00 0.97 0.92 021
0.44 0.80 0.97 1.00 0.98 0.23
0.39 0.74 0.92 0.98 1.00 0.24
0.13 0.19 0.21 0.23 0.24 1.00


and the degrees of freedom are ν = 9.5.

The following section compares the models that have been fitted so far.

9.8 Model comparison

The previously fitted models are compared to determine the best model. The selection
criteria used were AIC, BIC and log-likelihood.

Table 9.15 Model comparison

Models AIC BIC logLik Number of parameters
RVine (BIC) -3455.30 -3409.01 1739.65 12
RVine two truncated -3423.77 -3385.19 1721.88 10
CVine (BIC) with order 165243 -3316.69 -3266.54 1671.35 13
CVine three truncated -3312.61 -3266.32 1668.31 12
DVine (BIC) with order 453216 -3353.28 -3287.70 1693.64 17
DVine two truncated -3347.01 -3285.29 1689.51 16
One-Factor Copula -2392.80 -2365.79 1203.40 10
Two-Factor Copula -3109.77 -3055.76 1568.89 18
Gaussian One-Factor Copula Model -2342.22 -2322.93 1176.11 6
Gaussian Two-Factor Copula Model -3005.97 -2967.39 1512.99 12
Gaussian One-Factor Model transformed to u-scale -2377.14 -2330.85 1200.57 21
Gaussian Two-Factor Model transformed to u-scale -3036.62 -2990.32 1530.31 27
t Copula -3327.07 -3265.34 1679.53 16

The table indicates that the R-vine copula model is the best among those considered. The R
vine model is closely followed by the two truncated R-vine and D-vine copula models.
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9.9 Forecasting

The same approach as in the first case (Section 8.10) is used for the forecasting. The next
three months were also predicted for this case. The parameters required for the forecast
are given in Appendix Section B. Now we present the results from the prediction using the
R-vine copula model.

Figure 9.5 displays the density, as well as the 5% and 95% quantiles of the predicted
1000 samples. The variables M1, M5, M10, M15, M20 and Inf are shown in the rows, while
the time points T + 1 = 352, T + 2 = 353 and T + 3 = 354 are shown in the columns. The
graphs show clearly that the observed value is included in the generated samples. Further-
more, this value lies between the two quantiles. In general, the forecasts cover the observed
values well.
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Figure 9.5 The R-vine copula is used to forecast yield curves and inflation rate. The maturities M1,
M5, M10, M15, M20 and Inf are presented in rows and the predicted times T + 1 = 352, T + 2 =
353, T + 3 = 354 are presented in columns.
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In addition to using R-vines for prediction, C- and D-vines, as well as one- and two-factor
copula models, were also employed. These models produced comparable results to the
R-vine copula model. The prediction graphs can be found in Appendix B. In addition to the
graphical interpretation, the score rules were also considered. The results for the CRPS are
summarized in Table 9.16 and for the score interval in Table 9.17.

Since several models sometimes produced the same CRPS, no clear best model could be
determined. As in the first case study, the sum was calculated for each model to determine
the best one. It is important to note that the variables are not independent, so the sum cannot
be simply calculated. The R-vine copula model was the best predictor for the first month,
whereas the C-vine copula model was the best predictor for the second and third month.

Table 9.16 Continuous ranked probability score for the forecasted yield curves and inflation rate

T + 1 = 352 T + 2 = 353 T + 3 = 354
Model RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F
M1 0.04 0.04 0.04 0.04 0.04 0.06 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.04 0.04
M5 0.09 0.09 0.08 0.08 0.08 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.07 0.06 0.06
M10 0.16 0.16 0.16 0.16 0.15 0.08 0.08 0.08 0.08 0.08 0.10 0.11 0.11 0.10 0.11
M15 0.17 0.17 0.16 0.16 0.16 0.12 0.12 0.12 0.12 0.12 0.09 0.10 0.10 0.09 0.10
M20 0.16 0.16 0.16 0.16 0.15 0.15 0.12 0.13 0.13 0.12 0.10 0.11 0.11 0.10 0.11
Inf 0.73 0.76 0.74 0.77 0.74 0.79 0.76 0.77 0.75 0.77 0.79 0.73 0.79 0.78 0.75
∑ 1.19 1.38 1.34 1.37 1.32 1.25 1.19 1.22 1.19 1.20 1.18 1.15 1.22 1.17 1.17

Similar to CRPS, IS also indicated that the C-vine copula model was the best predictor for
the second and third month. The two-factor copula model forecasted the first month best.

Table 9.17 Interval score for the forecasted yield curves and inflation rate

T + 1 = 352 T + 2 = 353 T + 3 = 354
Model RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F RVine CVine DVine 1F 2F
M1 0.26 0.27 0.26 0.28 0.26 0.26 0.26 0.27 0.28 0.27 0.29 0.28 0.29 0.28 0.30
M5 0.43 0.45 0.44 0.41 0.44 0.46 0.44 0.45 0.48 0.46 0.44 0.45 0.46 0.44 0.46
M10 0.54 0.59 0.55 0.54 0.55 0.56 0.55 0.59 0.60 0.55 0.58 0.60 0.59 0.57 0.60
M15 0.58 0.61 0.57 0.57 0.57 0.58 0.56 0.61 0.62 0.57 0.60 0.60 0.60 0.61 0.63
M20 0.57 0.60 0.58 0.57 0.56 0.63 0.61 0.64 0.66 0.62 0.61 0.59 0.59 0.60 0.64
Inf 11.25 11.58 11.51 11.81 11.10 12.48 10.73 12.05 11.66 11.98 12.00 11.02 12.07 11.58 11.34
∑ 13.63 14.10 13.91 14.18 13.48 14.97 13.15 14.61 14.30 14.45 14.52 13.54 14.60 14.08 13.97

As the CRPS has identified the C-vine copula model as the best model and IS has used the
canonical vine copula model for the last two months and the two-factor copula model for
the first month, and the C-vine is only just behind, we identify the C-vine copula model as
the best model.

93



10 Conclusion

The goal of this thesis was the modelling of the dependencies and the forecasting of yield
curves and economic factors using vine and factor copula models. Two case studies were
conducted: the first involved modelling and predicting German yield curves, while the
second involved modelling and forecasting yield curves and the German inflation rate.
Prior to modelling, the data had to be transformed to the copula scale. This required
removing serial dependencies using the ARMA-GARCH model. The standardized residuals
were derived from the ARMA-GARCH model and transformed to copula data using the
probability integral transform and the selected univariate distributions. The dependence
structure was modelled using various copulas, including R-, C-, and D-vine copulas, one-
and two-factor copulas, the Student’s t copula and the one- and two-factor Gaussian model.
Additionally, truncated vine copula models were considered in the second case study. The
best model was then selected using the selection criteria AIC, BIC and log likelihood. The
D-vine copula was found to be the best model for the first study case, while the R-vine copula
was the best model for the second study case. The vine copula and factor copula models
were used in the next step to generate 1000 samples for the next three months, T + 1, T + 2
and T + 3. The prediction procedure involved several steps. Firstly, the parameters, µ̂ and σ̂,
were estimated from the ARMA-GARCH model for the three time points. The yield curves
and inflation rate predictions were determined using the estimated parameters and the
transformed samples. To predict time points T + 2 and T + 3, the yield curve and inflation
rate data were shifted forward by one and two months respectively and used for modelling
and forecasting. After predicting all three months, the observed values were compared
with the predicted samples. Graphs and tables presenting the results were provided. The
observed values for the next three months were well covered by the predicted samples, as
they fell between the 5% and 95% quantile. Finally, the best model was determined by CRPS
and IS, which identified the D-vine copula model for the first case study and the C-vine
copula model for the second case study.
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A Appendix - Yield Curves

This appendix presents the results of the time series analysis and modelling of dependencies.
The section is organised as follows: first, relevant results and graphs from the time series
analysis are presented, followed by the results from the modelling of dependencies.

Marginal ARMA fitting

This section presents the autocorrelation function (ACF) and the partial autocorrelation
function (PACF), as well as the squared ACF and PACF of the standardized residuals from
the ARMA model discussed in Section 8.3.
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Figure A.1 Estimated ACF and PACF of the standardized residuals obtained from the ARMA models
fitted in Table 8.2.
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Figure A.2 Estimated ACF and PACF of the squared standardized residuals obtained from the ARMA
models fitted in Table 8.2.
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Marginal ARMA-GARCH fitting

This section presents the results of the ARMA-GARCH model. The fitted ARMA-GARCH
models are presented first, followed by the ACF and PACF of the standardized residuals
and the squared standardized residuals.

1. Yield curve with maturity 1 year

ARMA(1, 0)-GARCH(1, 1) model
## Mean and Variance Equation:
## data ~ arma(1, 0) + garch(1, 1)
##
## Conditional Distribution:
## sstd
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
## Estimate Std. Error t value Pr(>|t|)
## mu -0.0075582 0.0057966 -1.304 0.19227
## ar1 0.2102283 0.0536721 3.917 8.97e-05 ***
## omega 0.0002301 0.0002057 1.118 0.26338
## alpha1 0.2229789 0.0753065 2.961 0.00307 **
## beta1 0.8083600 0.0500170 16.162 < 2e-16 ***
## skew 0.9536537 0.0754969 12.632 < 2e-16 ***
## shape 5.5895554 1.3946832 4.008 6.13e-05 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Log Likelihood:
## 153.0226 normalized: 0.3806533
##
##
## Standardised Residuals Tests:
## Statistic p-Value
## Jarque-Bera Test R Chi^2 1011.54 0
## Shapiro-Wilk Test R W 0.932716 1.726717e-12
## Ljung-Box Test R Q(10) 14.70929 0.1430254
## Ljung-Box Test R Q(15) 16.00547 0.3816884
## Ljung-Box Test R Q(20) 20.40283 0.4329977
## Ljung-Box Test R^2 Q(10) 1.524733 0.9988562
## Ljung-Box Test R^2 Q(15) 2.963248 0.9996274
## Ljung-Box Test R^2 Q(20) 4.819588 0.9997919
## LM Arch Test R TR^2 2.172042 0.9990931
##
## Information Criterion Statistics:
## AIC BIC SIC HQIC
## -0.7264807 -0.6568907 -0.7270734 -0.6989276

2. Yield curve with maturity 5 years

ARMA(0, 1)-GARCH(1, 1) model
##
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## Mean and Variance Equation:
## data ~ arma(0, 1) + garch(1, 1)
##
## Conditional Distribution:
## sstd
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
## Estimate Std. Error t value Pr(>|t|)
## mu -0.0119483 0.0107102 -1.116 0.26459
## ma1 0.1188595 0.0512155 2.321 0.02030 *
## omega 0.0005371 0.0007630 0.704 0.48147
## alpha1 0.0771739 0.0363891 2.121 0.03394 *
## beta1 0.9157478 0.0414612 22.087 < 2e-16 ***
## skew 1.1752702 0.0857164 13.711 < 2e-16 ***
## shape 10.0000000 3.3449091 2.990 0.00279 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Log Likelihood:
## 67.19564 normalized: 0.1671533
##
##
## Standardised Residuals Tests:
## Statistic p-Value
## Jarque-Bera Test R Chi^2 0.7973731 0.6712011
## Shapiro-Wilk Test R W 0.9944849 0.1575729
## Ljung-Box Test R Q(10) 12.01499 0.2840545
## Ljung-Box Test R Q(15) 14.24569 0.5069828
## Ljung-Box Test R Q(20) 20.282 0.4404179
## Ljung-Box Test R^2 Q(10) 5.185914 0.8784176
## Ljung-Box Test R^2 Q(15) 7.723698 0.9343816
## Ljung-Box Test R^2 Q(20) 12.05613 0.9141306
## LM Arch Test R TR^2 4.865108 0.9623332
##
## Information Criterion Statistics:
## AIC BIC SIC HQIC
## -0.2994808 -0.2298908 -0.3000735 -0.2719277

3. Yield curve with maturity 10 years

ARMA(3, 2)-GARCH(1, 1) model
## Mean and Variance Equation:
## data ~ arma(3, 2) + garch(1, 1)
##
## Conditional Distribution:
## sstd
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
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## Estimate Std. Error t value Pr(>|t|)
## mu -0.028815 0.018846 -1.529 0.12627
## ar1 -0.034495 0.071671 -0.481 0.63031
## ar2 -0.802648 0.062526 -12.837 < 2e-16 ***
## ar3 0.150640 0.052794 2.853 0.00433 **
## ma1 0.100255 0.054459 1.841 0.06563 .
## ma2 0.814237 0.071389 11.406 < 2e-16 ***
## omega 0.004577 0.004820 0.950 0.34226
## alpha1 0.047681 0.035427 1.346 0.17833
## beta1 0.839091 0.140216 5.984 2.17e-09 ***
## skew 1.115602 0.104046 10.722 < 2e-16 ***
## shape 10.000000 3.454722 2.895 0.00380 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Log Likelihood:
## 87.13325 normalized: 0.2167494
##
##
## Standardised Residuals Tests:
## Statistic p-Value
## Jarque-Bera Test R Chi^2 11.48007 0.003214648
## Shapiro-Wilk Test R W 0.990448 0.01039652
## Ljung-Box Test R Q(10) 3.231746 0.9754322
## Ljung-Box Test R Q(15) 8.141291 0.9179932
## Ljung-Box Test R Q(20) 10.1318 0.9657185
## Ljung-Box Test R^2 Q(10) 7.323457 0.6945963
## Ljung-Box Test R^2 Q(15) 10.23191 0.8049041
## Ljung-Box Test R^2 Q(20) 12.47884 0.8986096
## LM Arch Test R TR^2 8.65872 0.7317707
##
## Information Criterion Statistics:
## AIC BIC SIC HQIC
## -0.3787724 -0.2694167 -0.3802174 -0.3354746

4. Yield curve with maturity 15 years

GARCH(1, 1) model
## Mean and Variance Equation:
## data ~ garch(1, 1)
##
## Conditional Distribution:
## sstd
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
## Estimate Std. Error t value Pr(>|t|)
## mu -0.019681 0.009938 -1.980 0.04765 *
## omega 0.004600 0.002944 1.563 0.11812
## alpha1 0.091807 0.046745 1.964 0.04953 *
## beta1 0.800997 0.093474 8.569 < 2e-16 ***
## skew 1.027406 0.082172 12.503 < 2e-16 ***
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## shape 10.000000 3.734823 2.678 0.00742 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Log Likelihood:
## 75.54121 normalized: 0.1879135
##
##
## Standardised Residuals Tests:
## Statistic p-Value
## Jarque-Bera Test R Chi^2 8.793161 0.0123194
## Shapiro-Wilk Test R W 0.9944189 0.1508464
## Ljung-Box Test R Q(10) 10.06641 0.4346861
## Ljung-Box Test R Q(15) 19.60005 0.1878177
## Ljung-Box Test R Q(20) 24.05066 0.2401863
## Ljung-Box Test R^2 Q(10) 2.488234 0.9910461
## Ljung-Box Test R^2 Q(15) 11.54151 0.713349
## Ljung-Box Test R^2 Q(20) 13.48361 0.8556843
## LM Arch Test R TR^2 6.659633 0.8792628
##
## Information Criterion Statistics:
## AIC BIC SIC HQIC
## -0.3459762 -0.2863276 -0.3464130 -0.3223592

5. Yield curve with maturity 20 years

ARMA(3, 2)-GARCH(1, 1) model
## Mean and Variance Equation:
## data ~ arma(3, 2) + garch(1, 1)
##
## Conditional Distribution:
## sstd
##
## Std. Errors:
## based on Hessian
##
## Error Analysis:
## Estimate Std. Error t value Pr(>|t|)
## mu -3.548e-02 1.829e-02 -1.940 0.05238 .
## ar1 -6.409e-02 5.946e-02 -1.078 0.28113
## ar2 -8.527e-01 3.946e-02 -21.608 < 2e-16 ***
## ar3 5.110e-02 5.265e-02 0.971 0.33170
## ma1 4.952e-02 2.883e-02 1.718 0.08585 .
## ma2 8.838e-01 3.971e-02 22.255 < 2e-16 ***
## omega 3.082e-02 1.049e-02 2.937 0.00331 **
## alpha1 2.715e-01 1.053e-01 2.578 0.00995 **
## beta1 1.000e-08 2.519e-01 0.000 1.00000
## skew 9.449e-01 7.549e-02 12.518 < 2e-16 ***
## shape 7.160e+00 2.299e+00 3.115 0.00184 **
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Log Likelihood:
## 88.66988 normalized: 0.2205718
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##
##
## Standardised Residuals Tests:
## Statistic p-Value
## Jarque-Bera Test R Chi^2 32.31334 9.621611e-08
## Shapiro-Wilk Test R W 0.9854238 0.000453954
## Ljung-Box Test R Q(10) 5.136804 0.8818539
## Ljung-Box Test R Q(15) 9.463042 0.8520899
## Ljung-Box Test R Q(20) 11.11462 0.9431956
## Ljung-Box Test R^2 Q(10) 4.31216 0.9321681
## Ljung-Box Test R^2 Q(15) 7.394249 0.9457725
## Ljung-Box Test R^2 Q(20) 11.34611 0.9367482
## LM Arch Test R TR^2 3.93698 0.9845469
##
## Information Criterion Statistics:
## AIC BIC SIC HQIC
## -0.3864173 -0.2770617 -0.3878623 -0.3431196
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Figure A.3 Estimated ACF and PACF of the standardized residuals obtained from the ARMA-GARCH
models fitted in Table 8.4.
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Figure A.4 Estimated ACF and PACF of the squared standardized residuals obtained from the
ARMA-GARCH models fitted in Table 8.4.
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Forecast

The following tables show the density mode, the prediction interval and the observed value
for the R-, C- and D-vine copula and the one- and two-factor copula models.

Table A.1 Density mode and prediction interval of forecasted yield curves using R-, C- and D-Vine
copula models and the observed value

Variable Copula model T = 404 T = 405 T = 406
Obs. value -0.64 -0.73 -0.69

M1

Mode -0.71 -0.62 -0.75
R-vine Prediction interval [-1.17, -0.47] [-1.16, -0.39] [-1.54, -0.46]

Mode -0.69 -0.65 -0.74
C-vine Prediction interval [-1.2, -0.47] [-1.11, -0.34] [-1.17, -0.49]

Mode -0.7 -0.63 -0.74
D-vine Prediction interval [-1.12, -0.39] [-1.17, -0.36] [-1.51, -0.41]

Obs. value -0.64 -0.77 -0.68

M5

Mode -0.49 -0.74 -0.81
R-vine Prediction interval [-0.93, -0.11] [-1.06, -0.22] [-1.29, -0.39]

Mode -0.54 -0.65 -0.83
C-vine Prediction interval [-0.87, 0.04] [-1.11, -0.24] [-1.18, -0.36]

Mode -0.47 -0.69 -0.8
D-vine Prediction interval [-0.93, -0.01] [-1.1, -0.23] [-1.2, -0.3]

Obs. value -0.42 -0.61 -0.47

M10

Mode -0.29 -0.55 -0.76
R-vine Prediction interval [-1.8, 0.66] [-1.57, 0.33] [-2.2, 0.41]

Mode -0.11 -0.34 -0.68
C-vine Prediction interval [-0.78, 1.02] [-1.53, 0.26] [-1.53, 0.08]

Mode -0.12 -0.5 -0.48
D-vine Prediction interval [-1.45, 1.3] [-1.64, 0.4] [-1.43, 0.15]

Obs. value -0.21 -0.44 -0.28

M15

Mode 0.02 -0.31 -0.54
R-vine Prediction interval [-1.12, 0.76] [-1.08, 0.46] [-1.56, 0.34]

Mode 0.08 -0.21 -0.44
C-vine Prediction interval [-0.67, 0.7] [-0.99, 0.43] [-1.45, 0.22]

Mode 0.04 -0.18 -0.53
D-vine Prediction interval [-0.81, 0.82] [-0.97, 0.64] [-1.22, 0.47]

Obs. value -0.06 -0.30 -0.15

M20

Mode 0.2 -0.08 -0.38
R-vine Prediction interval [-0.82, 0.93] [-0.93, 0.68] [-1.21, 0.47]

Mode 0.24 -0.09 -0.32
C-vine Prediction interval [-0.59, 0.82] [-0.95, 0.64] [-1.14, 0.3]

Mode 0.2 -0.11 -0.35
D-vine Prediction interval [-0.56, 0.99] [-0.81, 0.75] [-1.07, 0.53]
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Table A.2 Density mode and prediction interval of forecasted yield curves using one- and two-factor
copula models and the observed value

Variable Copula model T = 404 T = 405 T = 406
Obs. value -0.64 -0.73 -0.69

M1

Mode -0.69 -0.65 -0.73
One-factor Prediction interval [-1.32, -0.31] [-1.03, -0.3] [-1.26, -0.45]

Mode 0.02 -0.17 -0.49
Two-factor Prediction interval [-0.74, 0.77] [-0.97, 1] [-1.29, 0.36]

Obs. value -0.64 -0.77 -0.68

M5

Mode -0.52 -0.72 -0.82
One-factor Prediction interval [-0.87, -0.03] [-1.18, -0.2] [-1.12, -0.34]

Mode -0.5 -0.68 -0.82
Two-factor Prediction interval [-0.88, -0.07] [-1.15, -0.28] [-1.25, -0.4]

Obs. value -0.42 -0.61 -0.47

M10

Mode -0.19 -0.56 -0.63
One-factor Prediction interval [-2.28, 1.53] [-1.22, 0.66] [-1.94, 0.88]

Mode -0.16 -0.56 -0.73
Two-factor Prediction interval [-1.05, 0.73] [-1.25, 1.43] [-1.52, 0.32]

Obs. value -0.21 -0.44 -0.28

M15

Mode 0.05 -0.27 -0.48
One-factor Prediction interval [-1.43, 1.28] [-0.98, 0.63] [-1.19, 0.88]

Mode 0.02 -0.17 -0.49
Two-factor Prediction interval [-0.74, 0.77] [-0.97, 1] [-1.29, 0.36]

Obs. value -0.06 -0.30 -0.15

M20

Mode 0.21 -0.09 -0.38
One-factor Prediction interval [-0.8, 1.05] [-0.83, 0.67] [-1.16, 0.67]

Mode 0.19 -0.07 -0.32
Two-factor Prediction interval [-0.68, 0.88] [-0.87, 0.94] [-1.08, 0.59]
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This appendix section presents the results of modelling and forecasting yield curves and
inflation rate.

Marginal ARMA fitting

The ARMA model results are presented in this section. The autocorrelation function and
partial autocorrelation function of the standardized residuals and squared standardized
residuals are displayed.
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Figure B.1 Estimated ACF and PACF of the standardized residuals obtained from the ARMA models
fitted in Table 9.3.
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Figure B.2 Estimated ACF and PACF of the squared standardized residuals obtained from the ARMA
models fitted in Table 9.3.
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Marginal ARMA-GARCH fitting

The ACF and PACF plots of the standardized residuals, the squared standardized residuals
and the QQ-plots with the skewed Student’s t distributions and the selected univariate
parametric distributions. The ARMA-GARCH model was used to form the standardized
residuals.

110



B Appendix - Yield Curves and Inflation Rate

−
0.

15
0.

15

Lag

A
C

F
Maturity 1

5 10 15 20 25

−
0.

15
0.

15

Lag

P
ar

tia
l A

C
F

Maturity 1

5 10 15 20 25

−
0.

15
0.

15

Lag

A
C

F

Maturity 5

5 10 15 20 25

−
0.

15
0.

15

Lag

P
ar

tia
l A

C
F

Maturity 5

5 10 15 20 25

−
0.

15
0.

15

Lag

A
C

F

Maturity 10

5 10 15 20 25

−
0.

15
0.

15

Lag

P
ar

tia
l A

C
F

Maturity 10

5 10 15 20 25

−
0.

15
0.

15

Lag

A
C

F

Maturity 15

5 10 15 20 25

−
0.

15
0.

15

Lag

P
ar

tia
l A

C
F

Maturity 15

5 10 15 20 25

−
0.

15
0.

15

Lag

A
C

F

Maturity 20

5 10 15 20 25

−
0.

15
0.

15

Lag

P
ar

tia
l A

C
F

Maturity 20

5 10 15 20 25

−
0.

15
0.

15

Lag

A
C

F

Inflation rate

5 10 15 20 25

−
0.

15
0.

15

Lag

P
ar

tia
l A

C
F

Inflation rate

5 10 15 20 25

Figure B.3 Estimated ACF and PACF of the standardized residuals obtained from the ARMA-GARCH
models.
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Figure B.4 Estimated ACF and PACF of the squared standardized residuals obtained from the
ARMA-GARCH models.
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Figure B.5 QQ-Plots with skew Student’s t distribution and selected univariate parametric distribu-
tions.
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Forecasting

The estimated parameters obtained from the ARMA-GARCH model for the time points
T + 1 = 352, T + 2 = 353 and T + 3 = 354 are shown in the tables below.

Table B.1 Parameter estimation

T + 1 T + 2 T + 3

M1
µ̂ -0.019 0.002 -0.025
σ̂ 0.085 0.084 0.089

M5
µ̂ -0.006 -0.038 -0.013
σ̂ 0.139 0.143 0.142

M10
µ̂ 0.014 -0.052 -0.032
σ̂ 0.178 0.182 0.183

M15
µ̂ 0.003 -0.031 -0.003
σ̂ 0.182 0.184 0.187

M20
µ̂ -0.003 -0.024 -0.024
σ̂ 0.190 0.207 0.196

Inf
µ̂ -0.006 -0.040 -0.029
σ̂ 3.707 3.672 3.654
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Forecasting using the C-vine copula model
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Figure B.6 The C-vine copula is used to forecast yield curves and inflation rate. The maturities M1,
M5, M10, M15, M20 and Inf are presented in rows and the predicted times T + 1 = 352, T + 2 =
353, T + 3 = 354 are presented in columns.
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Forecasting using the D-vine copula model
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Figure B.7 The D-vine copula is used to forecast yield curves and inflation rate. The maturities M1,
M5, M10, M15, M20 and Inf are presented in rows and the predicted times T + 1 = 352, T + 2 =
353, T + 3 = 354 are presented in columns.
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Forecasting using the one-factor copula model
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Figure B.8 The one-factor copula is used to forecast yield curves and inflation rate. The maturities
M1, M5, M10, M15, M20 and Inf are presented in rows and the predicted times T + 1 = 352, T + 2 =
353, T + 3 = 354 are presented in columns.
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Forecasting using the two-factor copula model
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Figure B.9 The two-factor copula is used to forecast yield curves and inflation rate. The maturities
M1, M5, M10, M15, M20 and Inf are presented in rows and the predicted times T + 1 = 352, T + 2 =
353, T + 3 = 354 are presented in columns.

The following tables show the density mode, the prediction interval and the observed value
for the R-, C- and D-vine copula and the one- and two-factor copula models.
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Table B.2 Density mode and prediction interval of forecasted yield curves and inflation rate using R-,
C- and D-Vine copula models and the observed value

Variable Copula model T = 352 T = 353 T = 354
Obs. value -0.64 -0.73 -0.69

M1

Mode -0.71 -0.64 -0.74
R-vine Prediction interval [-1.15, -0.43] [-0.99, -0.36] [-1.27, -0.49]

Mode -0.69 -0.63 -0.73
C-vine Prediction interval [-1.13, -0.51] [-1.02, -0.37] [-1.63, -0.42]

Mode -0.69 -0.64 -0.76
D-vine Prediction interval [-1.14, -0.47] [-0.98, -0.31] [-1.1, -0.42]

Obs. value -0.64 -0.77 -0.68

M5

Mode -0.48 -0.69 -0.83
R-vine Prediction interval [-0.97, 0.05] [-1.07, -0.15] [-1.24, -0.38]

Mode -0.49 -0.68 -0.78
C-vine Prediction interval [-0.99, -0.06] [-1.11, -0.22] [-1.18, -0.3]

Mode -0.51 -0.71 -0.83
D-vine Prediction interval [-0.93, -0.07] [-1.11, -0.2] [-1.26, -0.38]

Obs. value -0.42 -0.61 -0.47

M10

Mode -0.21 -0.52 -0.6
R-vine Prediction interval [-0.79, 0.51] [-0.97, 0.16] [-1.27, -0.07]

Mode -0.22 -0.47 -0.66
C-vine Prediction interval [-0.82, 0.38] [-1.01, 0.1] [-1.24, -0.14]

Mode -0.22 -0.53 -0.71
D-vine Prediction interval [-0.71, 0.35] [-1, 0.16] [-1.31, -0.07]

Obs. value -0.21 -0.44 -0.28

M15

Mode -0.01 -0.26 -0.37
R-vine Prediction interval [-0.56, 0.74] [-0.77, 0.37] [-1.05, 0.17]

Mode 0 -0.26 -0.47
C-vine Prediction interval [-0.58, 0.62] [-0.76, 0.29] [-1.04, 0.09]

Mode 0.03 -0.28 -0.49
D-vine Prediction interval [-0.47, 0.53] [-0.77, 0.35] [-1.08, 0.16]

Obs. value -0.06 -0.30 -0.15

M20

Mode 0.13 -0.09 -0.23
R-vine Prediction interval [-0.78, 1.62] [-0.95, 0.83] [-1.24, 0.63]

Mode 0.24 -0.04 -0.37
C-vine Prediction interval [-0.82, 0.87] [-0.77, 0.6] [-1.13, 0.43]

Mode 0.1 -0.01 -0.4
D-vine Prediction interval [-0.47, 0.86] [-0.84, 1.04] [-1.36, 0.78]

Obs. value 1.74 1.65 1.47

Inf

Mode 1.78 2.05 2.29
R-vine Prediction interval [-11.71, 12.94] [-14.52, 21.22] [-14.24, 12.52]

Mode 1.49 1.81 1.58
C-vine Prediction interval [-13.4, 16.05] [-14.05, 16.9] [-11.34, 16.57]

Mode 1.77 1.73 1.55
D-vine Prediction interval [-9.89, 15.7] [-12.92, 15.17] [-15.02, 13.31]
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Table B.3 Density mode and prediction interval of forecasted yield curves and inflation rate using
one- and two-factor copula models and the observed value

Variable Copula model T = 352 T = 353 T = 354
Obs. value -0.64 -0.73 -0.69

M1

Mode -0.72 -0.64 -0.76
One-factor Prediction interval [-1.23, -0.38] [-1.04, -0.36] [-1.29, -0.47]

Mode 0 -0.29 -0.42
Two-factor Prediction interval [-0.55, 0.59] [-0.89, 0.33] [-1.03, 0.04]

Obs. value -0.64 -0.77 -0.68

M5

Mode -0.48 -0.69 -0.78
One-factor Prediction interval [-0.93, 0] [-1.11, -0.23] [-1.3, -0.28]

Mode -0.51 -0.72 -0.84
Two-factor Prediction interval [-0.97, -0.11] [-1.17, -0.21] [-1.3, -0.37]

Obs. value -0.42 -0.61 -0.47

M10

Mode -0.2 -0.44 -0.63
One-factor Prediction interval [-0.68, 0.49] [-1.06, 0.08] [-1.22, 0.04]

Mode -0.21 -0.51 -0.68
Two-factor Prediction interval [-0.75, 0.35] [-1.1, 0.07] [-1.22, -0.15]

Obs. value -0.21 -0.44 -0.28

M15

Mode 0.01 -0.24 -0.4
One-factor Prediction interval [-0.48, 0.72] [-0.88, 0.36] [-1.02, 0.24]

Mode 0 -0.29 -0.42
Two-factor Prediction interval [-0.55, 0.59] [-0.89, 0.33] [-1.03, 0.04]

Obs. value -0.06 -0.30 -0.15

M20

Mode 0.15 -0.03 -0.27
One-factor Prediction interval [-0.43, 1.78] [-1.06, 0.94] [-1.14, 1.13]

Mode 0.13 -0.17 -0.32
Two-factor Prediction interval [-0.7, 0.94] [-1.34, 0.86] [-1.15, 0.24]

Obs. value 1.74 1.65 1.47

Inf

Mode 2.49 1.64 2.32
One-factor Prediction interval [-12.85, 20.09] [-10.54, 15.55] [-14.86, 18.41]

Mode 0.96 1.07 2.22
Two-factor Prediction interval [-11.94, 16.89] [-14.29, 21.19] [-10.56, 16.28]
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