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Non-perturbative Effects in Production and Detection
Processes of Dark Matter

Nicht-perturbative Effekte in Produktions- und
Detektionsprozessen von Dunkelmaterie

Stefan Lederer

Abstract

This dissertation examines different non-perturbative effects in production and de-
tection processes of heavy Dark Matter. Annihilation via scattering into resonant
unstable particles is shown to factorize from long-range potential effects between
initial state particles on an amplitude level, allowing to treat both simultaneously.
Neutralino Dark Matter subject to long-range electroweak forces is revisited, im-
proving on the treatment of running couplings and input values and completing
the calculation of semi-inclusive annihilation cross sections into high-energetic pho-
tons including resummation of electroweak Sudakov logarithms to NLL accuracy.
A general study of radiative formation of excited bound states in Coulomb poten-
tials finds a parametric enhancement for repulsive initial states over processes with
identically-attractive potentials. This results in eternal depletion during thermal
production for non-Abelian gauge symmetries, contrary to the usual freeze-out
paradigm, and furthermore violates unitarity systematically at the perturbative
leading order for highly excited bound states.

Zusammenfassung

Diese Dissertation behandelt verschiedene störungstheoretisch nicht beschreibbare
Effekte in Annihilations- und Detektionsprozessen schwerer Dunkelmaterie. Ein
Beweis, dass Annihilation vermittels Streuung in resonante instabile Teilchen von
langreichweitigen Kräften im Anfangszustand faktorisiert, erlaubt eine gleichzeit-
ige Beschreibung beider Prozesse. Die bekannte Behandlung von Neutralino-
dunkelmaterie unter langreichweitigen elektroschwachen Kräften wird im Hinblick
auf verwendete Eingangswerte sowie laufende Kopplungen verbessert und die Be-
schreibung semi-inklusiver Neutralinoannihilation zu hochenergetischen Photonen
mit Resummation von Sudakovlogarithmen zur NLL Ordnung wird vervollständigt.
Eine allgemeine Betrachtung der radiativen Bildung angeregter Bindungszustände
in Coulombpotentialen zeigt eine parametrische Verstärkung von repulsiven An-
fangszuständen im Vergleich zu Prozessen mit identischen Potentialen. Dies be-
wirkt für nichtabelsche Eichtheorien während der thermischen Produktion einen
anhaltenden Abbau anstelle des gängigen paradigmatischen Ausfrierens. Des Weit-
eren wird für hochangeregte Bindungszustände in der führenden störungstheoretis-
chen Ordnung systematisch die Unitaritätsschranke verletzt.
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1 Introduction

Theoretical physics describes processes of nature in the language of mathematics.
From a strict system of rules developed on basis of set of experimental results one
aims to predict or explain further phenomena, rendering the theory scientifically
falsifiable. Due to practical limitations of experimental measurements, also theo-
retical predictions are only required with finite accuracy and approximate results
suffice as no further discrimination is possible on basis of experimentally accessible
information. Difficulties arise typically from a conflict between simplicity and accu-
racy. For useful approximate calculations, it is mandatory to not lose control over
all significant contributions whilst correctly identifying negligible ones. A simple
enough premise which becomes complicated to fulfill when different simultaneous
approximations affect which terms are to be counted as negligible.

In a modern perspective of quantum field theory, the process of approximation
is usually performed already on the level of the Lagrangian describing the complete
microphysics of the model by construction of an effective field theory. An approx-
imation can generally be stated in terms of some parameter ϵ ≪ 1 parametrizing
a comparatively small contribution which is identified as negligible. One then
expects the physics to remain well described in terms of a perturbative series in
powers ϵn where higher n are successively suppressed. ϵ could be a small coupling
or a ratio of hierarchically separated scales of energies or momenta. The effective
theory ansatz ensures all aspects of the theory can be consistently approximated
at the same time and additionally defines the procedure for computing arbitrary
higher order corrections in the expansion.

This thesis investigates various effects present in annihilation processes of heavy
dark matter or, more generally, beyond-Standard Model particles which cause such
series expansions to break down and instead demand a resummation of all per-
turbative orders to produce reliable results. In particular, processes where ϵ is
defined by scale ratios and perturbative expansions are broken by the dynamical
interplay of different scales are of interest. Large terms at least of order O(1/ϵn)
necessitate such a non-perturbative treatment if they arise systematically at every
given order n. It is important to stress that the terminology “non-perturbative”,
therefore, does not simply refer to a large-coupling regime, in contrast to its com-
mon interpretation in physics of the strong interaction. Even in non-perturbative
scenarios, effective theories proof to be a useful tool and, provided that they are
carefully constructed to respect the power enhanced contributions, can appro-
priately include them to all orders. A breakdown of perturbativity is therefore
not indicative of the breakdown of the effective field theory ansatz but, usually,
of shortcomings in the specific employed theory framework. Commonly, this oc-
curs when multiple perturbative expansions are employed simultaneously and the
theory framework assumes hierarchies among the different expansion parameters,
which may become violated. The later chapters 3 - 6 each study a different source
of non-perturbative physics, which is stated at the beginning of the respective
chapter in equations (3.1), (4.1), (5.1) & (6.1).

Overall, the topics studied in this thesis may be summarized as precision com-
putations for neutralino Dark Matter, where various simultaneous effects need to
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be computed reliably, and the impact of excited bound states on Dark Matter
production. The remainder of this introduction gives an overview of dark matter
and its known or commonly hypothesized properties and behaviors and chap-
ter 2 briefly introduces core concepts of the different effective field theories used
throughout this thesis. A brief summary and outlook is provided in chapter 7.

After the introductory chapters, s-channel resonance effects are investigated
more closely in chapter 3. The main result is that the Sommerfeld factorization
employed in later parts of this work remains justified even in presence of such
resonances and no additional soft corrections arise. This chapter may serve as
an easy entry point and already introduces Sommerfeld enhancement, which re-
mains ubiquitous throughout this thesis, in a simple model without delving into
more detail. Going beyond simplistic toy models, chapter 4 proceeds to analyze
Sommerfeld enhancement in electroweakino annihilation, improving on numerical
inputs and the treatment of running couplings, including also automated heavy-
Higgs decoupling. Building on top of that chapter is the closely related chapter 5
which expands on mixed neutralino Dark Matter by completing the framework
to include non-perturbative effects of large Sudakov logarithms in indirect detec-
tion photon spectra. Lastly, the core project of this thesis investigated general
radiative bound state formation in Coulombic potentials. Results are presented
in chapter 6. After a novel derivation of the reaction cross section for general
potentials and multipole interactions, theoretical inconsistencies with unitarity for
highly excited bound states are proven even when couplings are arbitrarily small.
The chapter ends with a study of the phenomenological impact of bound state
formation which, surprising to the naive intuition, turns out to be significantly
enhanced for repulsive initial states going as far as to invalidate the simple freeze-
out paradigm in certain non-Abelian gauged dark sectors. An index of the most
important definitions and notations may be found in appendix A. Appendix B lists
numerical inputs used for MSSM benchmark studies in chapters 4 and 5. Appen-
dices C and D provide helpful supplementary material to chapter 6.

The present thesis repeats and, in various parts, elaborates in more detail on
results which were already or are planned to be published in the following works:

[1] Beneke, Lederer & Urban:
”Sommerfeld enhancement of resonant dark matter annihilation”,

[2] Beneke, Lederer & Peset:
”Electroweak resummation of neutralino dark-matter annihilation into high-
energy photons”,

[3] Binder, Garny, Heisig, Lederer & Urban:
”Excited bound states and their role in dark matter production”,

[4] Beneke, De Ros, Garny, Lederer:
“Perturbative unitarity violation in radiative capture transitions to dark mat-
ter bound states” [preliminary, to be published ],

[5] Beneke, Bharucha, Hryczuk, Lederer, Recksiegel, Ruiz-Fermenia:
to be published.
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1.1 Evidence of Dark Matter

The riddle of the microscopic nature of Dark Matter (DM) is one of the longest
standing unresolved questions in modern physics. Its original conception dates
back almost 100 years [6] where an additional “dark”, meaning electromagnetically
non-luminous and non-reflecting, source of gravitational force was found to be
necessary to explain observed rotation curves of galaxy nebulae. The modern
Standard Model of particle physics (SM) does not provide a valid candidate for
such a dark, massive particle, with neutrinos being ruled out for being too light in
mass [7, 8]. Instead, beyond-Standard Model (BSM) physics, usually a novel DM
quantum field, need to be considered in order to explain observations. The last
century saw tremendous efforts in search of a BSM particle by a variety of means,
yet no conclusive evidence was found. A short overview of the most conventional
search strategies is given in section 1.4. On the other hand, extragalactic and
astrophysical experiments have put forward strong support for the gravitational
presence of Dark Matter at length scales ranging from the size of galaxies [6, 9–11]
to cosmological large-scale structures [12, 13]. This has firmly rooted DM as a
missing piece in modern particle physics and is commonly viewed as one of the
few clear indicators that the Standard Model is in fact incomplete.

Under the assumption of DM being some kind of cosmological point-like par-
ticle, simulations of structure formation strongly prefer cold, that is massive and
low-energetic, DM [14] which is reflected in the fact that to this day the simplistic
ΛCDM model of cosmology, provides an excellent fit to most observations despite
extending SM physics by only a cold Dark Matter (CDM) component and a cos-
mological constant (Λ), the latter capturing the even more elusive Dark Energy.
Due to its success and minimalism, ΛCDM has become the standard paradigm of
cosmology. It allows to derive the energy density of DM from measurements of
the cosmic microwave background anisotropies [12], with modern measurements
and analyses claiming impressive sub-percent precision on cosmological density
parameters,

ΩDMh
2 = 0.120± 0.001. (1.1)

For any generic BSM model which introduces additional non-luminous, stable par-
ticles, the quoted value is to be understood as an upper bound which must not be
overcome for the theory to remain compatible with cosmological observations. A
successful DM candidate, however, should fully saturate this condition solely by
itself to reasonable accuracy.

Another implicitly known property of DM derived from experimental null re-
sults is a lack of interactions with the SM at “low” energies accessible by current
collider experiments. Both above constraints in combination with the required
presence of DM on vastly different length scales demand DM to be stable on
cosmological time scales [15]. Possible solutions are either a stabilization of DM
against decay into lighter SM particles by some additional symmetry under which
DM and SM fields have different charges or to simply have essentially no inter-
action between the two. The latter assumption places DM in a theoretical sector
fully secluded from the SM, a scenario in which most experimental searches be-
come obsolete as only gravity remains to infer information about the dark sector.
Although possibly reality, such scenarios are theoretically nightmarish due to an
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inherent lack of falsifiability as well as due to further known problems of the SM.
For example, the origin of neutrino oscillations [16] or the catastrophic hierarchy
dependence of the Higgs mass term induced by radiative corrections [17] call for
extensions of the SM. In light of the vastly unconstrained parameter space of viable
DM models spanning dozens of orders of magnitude [18], one may take guidance
from the SM by elegantly embedding a viable, stable DM candidate into a solu-
tion to known SM shortcomings. This ansatz inherently necessitates an interaction
between SM particles and DM.

This thesis exclusively considers cold particle DM candidates with a clear cut
connection to the SM, either directly as a charge neutral component of a SM gauge
group multiplet or by means of a so-called “portal”, an additional, heavier and thus
unstable particle which couples to the SM and the DM. To date, uncertainties in
the measured properties of the Higgs boson [19] are still large enough to allow
for many Higgs portal models. For completeness, it should be noted that also
theories explaining the observed DM properties without introducing BSM particles
far below the Planck scale exist, for example modeling CDM by primordial black
holes or even hypothesizing modifications of gravity on large lengths scales.

1.2 Dark Matter production mechanisms

A successful DM model not only provides a stable, neutral particle which can be
sufficiently abundant to saturate Eq. (1.1), but must explain how this abundance
results from the cosmological evolution. Even for models of vastly different particle
content or phenomenology, particle production can occur by conceptually analo-
gous mechanism. The identification of a viable production mechanism for a given
model and its capability to yield the observed DM density is therefore crucial.

The basis to any calculation of particle numbers in the early universe in absence
of long range forces is a Boltzmann transport equation for collisions of point-like
particles. The physical state of the early universe is a hot plasma of SM particles
and possibly further BSM particles such as DM. For simplicity of terminology,
the following discussion shall neglect any additional BSM particles. SM particles
are continuously rapidly interacting which keeps them in kinetic, chemical and
thermal equilibrium. As long as elastic scatterings between DM and SM remain
efficient also DM remains in kinetic equilibrium and the equations in terms of
phase space abundance densities may be simplified to the Boltzmann equation of
number density n, the “Lee-Weinberg equation” [8, 20],

ṅ+ 3Hn = −⟨σannv⟩
(
n2 − neq2

)
. (1.2)

Here, H denotes the Hubble rate and ⟨σannv⟩ is the thermally averaged annihilation
cross-section [20] for the process DM+DM → XSM where XSM indicates any SM
final state of arbitrary multiplicity. When ⟨σannv⟩ is large, neq is the equilibrium
attractor solution.

The Boltzmann equation describes the evolution of the number density through-
out the history of the Universe. As long as the Hubble rate dominates over the
annihilation rate, n × ⟨σannv⟩, as well as the production rate, neq × ⟨σannv⟩, the
dominant effect is a simple dilution caused by the expansion of the Universe. Typ-
ically, this state is reached at late times as the number density decreases more
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rapidly than the Hubble rate. From this point of chemical decoupling onwards,
the so-called relic abundance of Dark Matter remains constant until today and thus
define the relic energy density ΩDMh

2. Although in every chapter of this thesis,
relic densities are computed, it is only in section 6.5.1 that Boltzmann equations
are discussed in more detail in the context of multiple coupled channels since other
chapters follow well-known standard procedures.

1.2.1 Thermal relics — freeze-out

One speaks of a thermal relic when DM was in thermal equilibrium, n = neq, in
the early Universe when the temperature was still of the order of the DM mass or
higher. Inelastic scatterings between SM and DM, typically DM production and
annihilation, are taking place efficiently. As temperature falls below the DM mass,
annihilation is statistically favored and the DM number follows the exponentially
suppressed attractor solution neq until the annihilation rate becomes inefficient
compared to the Hubble rate. Chemical decoupling takes place as described above.

This mechanism of depletion from an initial thermal equilibrium distribution
down to the found relic density as temperature decreases is known as freeze-out
mechanism, where “freeze-out” denotes the point of complete chemical decoupling
itself after which no number-changing reactions notably affect the DM density.
Since the depletion is driven by the interaction with the remaining bath particles,
a key feature of the freeze-out mechanism is that the relic density decreases with
stronger couplings. Furthermore, thermal and kinetic equilibrium is maintained
until the temperature drops significantly below the DM mass, so typically the
particle freezing-out is non-relativistic for all relevant processes. Additionally, if
all SM masses are negligible, the annihilation cross-section must be proportional
to the inverse squared DM mass and smaller DM masses give rise to stronger
depletion.

Freeze-out as a production mechanism is attractive since it renders the obtained
relic abundance insensitive to the literal production physics which give rise to the
large DM abundance in the early universe. Once the abundance is present, all left-
over features are erased during thermal equilibration. If either thermal or kinetic
equilibrium are violated in the early universe, dynamics become more complicated
respectively demanding either separate tracking of DM and SM bath temperatures
or even treating Boltzmann equations on full phase space distributions [21].

The terminology of freeze-out being the complete chemical decoupling rather
than the point of first significant deviation from equilibrium becomes important in
section 6.5. Therein, similarly to the behavior of Sommerfeld-enhanced thermally
produced DM, the number density deviates from equilibrium but sees an (eternally)
prolonged phase of depletion via intermediately formed unstable bound states.

1.2.2 Non-thermal relics — freeze-in and decay production

Non-thermal relics summarize remnants of a production mechanism where DM
never reaches thermal equilibrium in the early universe, typically because coupling
strengths are too small or the reheating of the Universe is too low to efficiently pro-
duce DM. Since DM is therefore at all times dilute, the annihilation term ∝ n2 in
Eq. (1.2) is negligible. Instead of seeing a depletion over the course of the Universe,
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the DM abundance is built up over time, a process here (in a minor generalization
of nomenclature) referred to as “freeze-in” [22]. The gradual production itself can
occur via different processes, including inefficient inelastic scattering (formally the
true freeze-in mechanism) or by decay of a heavier particle into the DM. Produc-
tion by decay is not described by the annihilation term included in Eq. (1.2). This
specific case is also known as the “superWIMP” production mechanism [3, 23]. It
will see application in section 6.6 where a frozen-out BSM partner decays at late
times to DM.

Opposite to the previous section, the initial DM abundance is negligible for
any practical application. Since all interaction terms of the DM need to be small
anyways (feeble, dilute or otherwise suppressed) in order to avoid thermal equi-
librium in the first place, no notable error is made by disregarding it. Since DM
abundance ramps up over time, it is possible in certain models to increase the relic
abundance of DM with stronger couplings. However, this is not necessarily so. For
instance, in superWIMP production the number density of DM is approximately
in a one-to-one correlation to the decay of the superWIMP mediator. A stronger
DM coupling gives rise to shorter lifetimes of the partner, leading to earlier decay,
but yields no change in the final DM relic density. Yet, the mediator itself is as-
sumed to be thermally produced and will thus decrease in its abundance at the
time of deviation from chemical equilibrium for larger couplings.

This highlights how different production mechanisms can be used simultane-
ously within non-minimal BSM models of DM to understand successive, well sep-
arated dynamics. For too short lifetimes, decay occurs already during the decou-
pling of the superWIMP mediator and the decoupling of the dynamics of DM and
mediator is lost. Such coupled models are rarely well categorized by generic pro-
duction mechanism and demand dedicated investigations. Accordingly, there is a
plethora of thermal and non-thermal production mechanism, nearly as abundant
as the range of viable DM models, including “coannihilation” [24], “conversion-
driven freeze-out” [25, 26], “superWIMP production” [23], “cannibalistic Dark
Matter” [27, 28], “semi-production” [29] (informally known as “pandemic Dark
Matter” [30] due to its exponential growth and time of discovery) or “bouncing
Dark Matter” [31], to name a few.

1.3 Weakly interacting massive particles as Dark Matter

Typically, a viable DM candidate is charged under neither the electromagnetic
nor the strong SM gauge interaction to avoid detection in ordinary baryonic SM
matter. This, however, does not exclude the existence of unstable heavy colored
or charged particles which efficiently decay on cosmological time scales. Hence,
one popular and widely adopted framework for DM or BSM particles is that of
a Weakly Interacting Massive Particle (WIMP) which are charged under the SM
SU(2)L×U(1)Y group. Imposing or modeling a Z2 symmetry to prevent decay of
the BSM field into lighter SM states, the lightest member of the electroweak multi-
plet after electroweak symmetry breaking is rendered stable and, if it is furthermore
the charge-neutral component of the multiplet, a DM candidate is obtained. Min-
imal WIMP models are attractive because of their limited number of degrees of
freedom, being classified by only their spin, isospin and hypercharge representa-
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tions. The hypercharge Y is constrained to half-integer values by the requirement
for a charge-neutral component after electroweak symmetry breaking. Beyond this
choice of model, the sole remaining free parameter is the mass of the multiplet in
the symmetric phase which is constraint by the condition to thermally produce the
experimentally observed relic density. Hence, minimal WIMPs can be systemati-
cally classified, studied and successively ruled out [32]. More complicated WIMP
models can be constructed by introducing additional interactions with SM fields,
further unstable BSM fields or by considering multiple WIMPs at the same time
out of which only the overall lightest state remains stable.

Yet, the core motivation which lead to the rise of the WIMP as the predominant
DM candidate over the last decades is due to a “miraculous” [33] coincidence
between the electroweak scales, mass and coupling strength, and the ballpark
estimate to produce the correct relic density via thermal freeze-out [20],

ΩDMh
2 ∼ 0.1× 2× 10−26cm3s−1

⟨σv⟩
. (1.3)

Cross sections of the order of 2 × 10−26cm3s−1 are roughly found for SM weak
couplings and masses in the range around hundreds of GeV -TeV. Although details
depend on the specific model, this generic mass range places WIMPs in the range
of currently operational or proposed particle colliders [34]. Minimal WIMP DM
models of low isospin multiplets yield the correct thermal relic density for masses
of 1 - 10TeV [35].

Apart from their appealing minimalism, WIMPs are often found in theoretically
motivated ultraviolet extension of the SM, most prominently in Supersymmetry
(SUSY). In the Minimal Supersymmetric Standard Model (MSSM) [36], the super-
partners of gauge bosons are then one isospin-doublet Dirac fermion (Higgsino) and
one isospin-triplet (wino) and -singlet (bino) Majorana fermion each. Although
this model introduces a lot of additional complexity due to couplings between these
“electroweakinos” and the Higgs boson sector, it still follows the core concept of
demanding R-parity to stabilize the lightest super-symmetric partner [37] which
must also be electromagnetically neutral. Chapters 4 and 5 investigate specifically
such MSSM neutralino DM candidates. In the case that two of the electroweakino
masses are significantly heavier than the third, the DM model is once more well
described by a minimal WIMP model. Hence, the isospin doublet and triplet
WIMP models are known as Higgsino and wino model, respectively.

Ever repeating updates of experimental null results with increasingly stronger
exclusion bounds from all sides over the course of multiple decades made WIMPs
begin to fall out of favor with the community and focus has dispersed onto a much
broader range of DM models. One prominent candidate at vastly lower mass
ranges, µeV - eV, is the axion (or its relatives, axion-like particles), while ultra-
light DM allows for even much lower masses, reaching Compton wavelengths of
astrophysical size. On the other end, primordial black holes or black hole remnant
DM theories conjecture DM “objects” (as the term “particle” is hardly applicable
here) of astrophysical masses. Although scientifically well motivated, the wealth
of investigated DM candidates in modern times is partially in spite of the fact
that well-motivated DM models such as the Higgsino remain alive and sound even
in face of projected sensitivities of upcoming experiments [38]. In some part, the
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decline of the WIMP paradigm is also tied to the downfall of low-scale SUSY which
was required for it to provide a good answer to the hierarchy problem.

1.4 Experimental constraints on Dark Matter

A large number of experiments have been undertaken, and many more are currently
ongoing or planned for the future, in hopes of finding experimental evidence or
signatures of DM. Without clear hints towards new physics from shortcomings of
the SM at a distinct energies, theoretical considerations are relied upon as guidance
in order to identify the most promising phenomenological parameter ranges. To
cover the wide variety of theoretically possible models, an almost equally wide
range of experimental setups has been conceived, each useful in their own right.
Of relevance for this thesis are WIMP DM searches, primarily indirect detection,
and also cosmological constraints from structure formation.

1.4.1 Detection avenues for Weakly Interacting Massive Particles

The key features of WIMP DM, a mass in the GeV -TeV scale and a direct connec-
tion to the SM via the electroweak interaction, allow for detection from a variety
of different physical effects. There are three main conceptually different ways of
exploiting the interaction with the SM: i) DM may be directly produced in SM
particle collisions in high-energy colliders, ii) DM may scatter off SM particles,
making it detectable by energy and momentum deposition in the SM target ma-
terial, thus leaving a direct evidence of an unknown particle [18, 39], iii) DM may
annihilate into lighter SM particles, giving rise to indirect evidence in form of high
energetic particles. Such cosmic rays are naturally expected from regions of space
with enhanced DM densities such as galactic halos. Indirect detection is further
elaborated on below.

Experiments with substantial funding usually also have wide ranging research
programs. Nevertheless, much of the combined efforts in modern experimental
physics may be viewed as part of a global strategy to probe the WIMP parameter
space. The three approaches are complementary and help cover each others blind
spots. For example, coannihilation models with a slightly heavier partner to the
DM are notoriously difficult to detect in direct or indirect detection if the DM is
a singlet under the SM gauge group. Colliders, however, are not limited to the
cosmologically abundant DM particle and instead could also produce the coanni-
hilation partner. Note that this example is more precisely a coannihilation model
with a BSM WIMP, while the DM candidate is actually not weakly interacting but
a SM gauge singlet, yet, such granular nominal differences are often disregarded.

Constraints from high-energy collider experiments are highly model dependent
and crucially limited by the accessible energy ranges of the experiment. Current
limits on production of neutralinos or charginos remain well below 1TeV [40–42],
where the Higgsino thermal mass resides. Exclusion bounds on the lightest su-
persymmetric Higgs boson in the MSSM, A0, strongly depend on the ratio of
vacuum expectation values in the MSSM but rule out masses ≲ 500GeV [43]. Di-
rect detection experiments use recoil effects from DM-nucleon interactions to set
constraints on DM interactions with baryonic matter. Existing experiments are
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most sensitive for WIMP masses of around 10-100GeV, presently excluding spin-
independent cross sections above 10−46 cm2, but retain some lessened sensitivity
also in the TeV range. Such experiments are eventually limited by the atmo-
spheric and diffuse super-nova neutrino background which is predicted to cause
an unavoidable background at very low interactions. Neither direct detection nor
collider constraints play an important role in the investigations of this thesis and
were only briefly touched upon here for completeness.

1.4.2 Indirect detection

At large DM masses in the multi-TeV range, indirect detection becomes the pri-
mary source of experimental constraints for many WIMP models. Assuming ther-
mally produced DM to have long decoupled from chemical equilibrium, regions of
space with enhanced DM density such as the galactic center or extragalactic DM
halos can yield observable fluxes from DM annihilation despite cosmological mean
annihilation rates being far below the Hubble rate. Indirect detection relies on the
possibility of DM (co-) annihilation and does not constrain asymmetric DM mod-
els where the DM field is neither a real field (thus permitting self-annihilation) nor
symmetrically abundant between particle and anti-particles (thus differing quali-
tatively from the baryonic sector). A symmetric abundance is actually a feature
of generic thermal production and, additionally, the charge neutral DM candidate
in WIMP models is typically a Majorana fermion. Hence, there remains strong
motivation to investigate indirect signals for DM.

In 2-to-2 pair annihilation processes of χχ into two photons, kinematics are
entirely fixed by the initial state relative velocity and energy-momentum conser-
vation and leading order tree-level calculations predict a line-shaped peak in the
gamma-ray spectrum at half the center-of-mass energy smeared by momentum dis-
tributions. A detection of such a gamma-ray line at TeV energies originating from
regions of high DM densities is considered a smoking gun detection [44] of WIMP
DM since no SM processes are expected to produce such features. Alternatively,
lower energetic gamma rays may be part of the diffuse, unresolved background
radiation which would therefore become anomalously enhanced in regions of high
DM density.

Prime targets for indirect detection are thus cosmologically close-by regions
of high DM density and low SM background radiation. While the closest target
is naturally the Milky Way galactic center [45], it is not particularly clean but
contaminated by baryonic sources as it is only observable through the foreground
of the galactic plane. Dwarf spheroidal satellite galaxies of the Milky Way, on
the other hand, optimize the ratio of expected DM signal to baryonic noise [46]
while not being excessively distant. Since annihilation requires two DM particles
to be close to each other, indirect detection is sensitive to the precise shape of the
DM density profile of any given target, particularly so to the innermost region.
However, with only gravitational probes available, DM profiles are difficult to
constrain to such detail and, conventionally, simple template models are used
instead. The most common analytic templates are known as “Einasto” [47] and
“NFW” [48] (for the authors Navarro, Frenk and White) profiles. A “cored”
version of the former exists where the density is set constant inside of a critical
radius [49] which tends to be in better agreement with observations but deviates
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from non-interacting CDM models. For the purposes of indirect detection, the
main difference is that NFW, being a broken power law, grows to a sharp cups
towards the coordinate origin whereas cored profiles predict a much smaller DM
density. The DM density integrated along a line of sight of an observation enters in
the macroscopic statistical factor for the expected annihilation rate of DM (known
as J-factor) and hence the expected particle flux. Thus, J translates observed
cosmic ray fluxes to the microphysical annihilation cross-section in a particular DM
model. Different choices of DM profiles can weaken indirect detection constraints
by multiple orders of magnitude and even upcoming next-generation experiments
such as the Cherenkov Telescope Array may still fall short of reaching the generic
WIMP thermal relic cross-section 2×10−26cm3/s, cf. Eq. (1.3), under conservative
assumptions [45].

1.4.3 Cosmological constraints

The best-known cosmological constraint on DM is its energy density which is
limited according to Eq. (1.1) in the ΛCDM paradigm and understood as an upper
bound in theories allowing for multiple DM sub-species. Any model exceeding
the experimental measurement overcloses the Universe in its cosmological history
and is not compatible with observations. Analogously, cosmological constraints
are typically searches for imprints of new physics through otherwise inexplicable
physical effects. Despite their highly indirect nature, they can place strong bounds
on particle physics models. This section only briefly touches upon some of the more
prominent members of this group to place later used bounds into context.

One central result of modern cosmology for DM model building is the exclu-
sion of relativistic (hot) DM in the early Universe on basis of structure formation
simulations [14]. A too high number of relativistic degrees of freedom suppresses
structure on smaller scales (relative to the simulated large scale structures) and
finely grained details become too “washed out” to be in agreement with with cos-
mological surveys [13, 50]. By direct observations of the so-called Lyman-α forest
lines in the spectrum of distant quasars, small scale structure can be measured on
redshift scales z = 2 - 6 [50, 51], to a large part providing the leading experimental
constraints from structure formation. For instance, Lyman-α bounds constrain
models where a BSM particle decays into a lighter DM candidate, which is prohib-
ited from being too energetic unless the decay happens sufficiently late [52]. An-
other cosmological constraint on BSM physics is to maintain successful Big Bang
nucleosynthesis for which purely-SM calculations agree to a remarkable degree
with the observed ratio of elements heavier than hydrogen [53]. Nucleosynthesis
occurs around temperatures of a few MeV, when kinetic energies are insufficient to
break nuclear forces, and, roughly speaking, nucleosynthesis bounds imply that any
color-charged BSM particles must be absent latest by that time. However, since
the strong phase transition occurs beforehand, resulting in color-confinement and
making analytic results essentially incalculable, practical limitations of theoretical
models are often already found at temperatures T ∼ ΛQCD ∼ 1GeV.

To end with, a remark on gravitational waves is in order. The onset of the era
of gravitational wave astronomy has been ushered in by the recent detection of
gravitational waves in binary black hole mergers [54] and first stochastic gravita-
tional wave signals [55]. This has led to a surge in interest as one of the few definite
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properties of DM is its gravitational presence. Rapid advances are expected within
the coming decades and the next generation of experiments, yet on its own the
impact of gravitational wave measurements on WIMPs is likely to remain limited.
Today’s primary applications relate to strong phase transitions in the early Uni-
verse [56, 57]. Main advantages of gravitational wave astronomy may nevertheless
come from improvements to multi-messenger astronomy [58] and the cosmological
history, thereby more precisely defining required properties of DM.

1.5 Effective quantum field theory

At last, this introduction closes with a conceptual view on effective field theory
(EFT) in quantum physics prior to the introductions of later used frameworks in
chapter 2. Especially earlier parts may also be of interest to non-experts while
later parts argue for the particular usefulness of EFTs to DM phenomenology.

The modern view on the quantum field theory of the Standard Model is already
that of an Wilsonian effective field theory. The SM is known to be incomplete
due to various conceptual problems and the exclusion of gravity. While fatal
for transcendental interpretations, this poses no direct challenge to the SM as a
scientific theory. It solely informs us that the SM is only expected to remain a
good description of reality within some window of (comparatively small) energies.
Any effects of, for example, quantum gravity may happen at very short scales
or high energies, yet by defining the free parameters of the SM to agree with
experimental results, short distance effects are included even if a proper description
of the dynamics of gravitons is impossible within the SM.

This is the basic principle of EFTs, that for a sufficiently large separation
of scales (be they energies, distances or couplings) the description of physical
processes becomes approximately independent of the details of much smaller or
larger scales, provided that appropriate degrees of freedom are used to describe
the system. This scientific philosophy is evidently in agreement with everyday
experiences. To ride a bicycle, it suffices to possess an intuitive impression of
Newton’s laws [59] that pushing the pedals will make them move. There is no
need to grasp the full quantum movement of electrons at the interface between
pedal and foot, nor a necessity to understand the details of Higgs condensation
or color confinement giving rise to the masses of electrons and atoms to keep
them stuck by the gravitational field of the Earth. The separation holds in both
directions. Certainly the majority of cyclists has only little insight in the dynamics
of quantum gravity, yet also the SM of particle physics has little knowledge of
the existence of cyclists. Attempts to calculate the wealth of low energy physics
directly from the SM as first-principle are unpromising since there are numerous
emergent phenomena which arise as unforeseen when only looking at the quantum
fields of quarks, leptons and gauge bosons.

To construct a successful EFT, the relevant dynamical degrees of freedom which
appropriately describe the given problem of interest must be identified as well as
the relevant energy scales which contribute in processes to be described by the
theory. The two ingredients are often related. In fact, it is possible to implement
the method of regions for integration [60] directly at operator level in an EFT.
To do so, one defines multiple instances of the same physical quantum field each
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carrying only one of the momentum scales of the theory, accordingly expanding
all mathematical objects in calculations, despite integrating still over the complete
phase space volume.

It should be noted that beyond the top down approach of model building pur-
sued in this thesis, EFTs also flourish in bottom up approaches by parametrizing
our ignorance of the nature of DM in a set of BSM Wilson coefficients. In this
approach, basically, not only some but all of the BSM momentum modes are inte-
grated out of the theory, rendering it entirely independent of the need to specify
an ultraviolet SM extension. The model ansatz is motivated by the exceptional
success of the SM in a wide range of energies, even far beyond the its heaviest
particle masses. Hence, a split description of SM and BSM physics, which is in-
herently suggestive of an EFT treatment, appears to yield a good approximation
of processes nature.

For one example, WIMP DM has been excluded at masses close to the elec-
troweak scale and pushed into the TeV range, as was introduced above. As a
consequence, there is a growing ratio of scale between the SM and BSM physics
which causes a series of non-perturbative effects in DM theories as the simultaneous
description of free DM and free SM particles becomes inadequate. Among other
effects, this development challenges the long-standing WIMP paradigm where an-
nihilation rates for thermal production or indirect detection may simply be taken
from perturbative calculations directly in the full theory. Since calculations in
quantum field theory are notoriously difficult and usually only possible within
perturbation theory [61], EFTs become a particularly powerful tool when non-
perturbative effects give rise to a change in the relevant degrees of freedom, for
example in the description of bound states. In addition to the usual perturbative
expansion in interaction strengths in QFT, there are two main approximations
which stand to reason when treating thermally produced WIMPs. Firstly, as men-
tioned, masses of all SM particles become negligible compared to the DM mass in
the TeV range. Secondly WIMP velocities are typically already non-relativistic at
the onset of chemical decoupling and decrease as time goes on. The interplay of
these expansions and non-perturbative effects sourced thereby constitute the core
of this thesis.



2 Overview of effective theories

A variety of non-perturbative effects are investigated in this thesis, each requiring a
uniquely different effective field theoretical description. An EFT framework allows
to implement useful physical approximations already on a Lagrangian level and
thus, if constructed appropriately to a given problem, to focus on the physically
relevant degrees of freedom. The present chapter briefly introduces the core ideas
of the EFTs used in the later parts, collecting schematic Lagrangian terms as
well as the most important definitions in a general notation. Detailed derivations
are skipped and may be found in pertinent textbooks or the provided citations.
Especially, soft-collinear effective theory in section 2.4 is a complicated theory but
broken down to the relevant qualitative description of Sudakov enhancement. This
is in part to avoid to reiterate too much on [62] wherein all required soft-collinear
EFT results are already presented.

All throughout this thesis, Dark Matter is denoted by χ, with required spec-
ifications introduced as needed via additional notation. This implies that con-
sidered non-relativistic two-constituent states usually consist of χ or, possibly, its
anti-particle and hence the DM mass Mχ sets the hard energy scale. The only
exception is found in section 6.6 where a heavy t-channel mediator q̃ decays to
much lighter χ, thus Mq̃ ≫ mχ. In context of the MSSM, χ0 refers to neutralinos,
hence χ is its own anti-particle, but also charginos χ± occur. To ease a bit the
notation, Mχ = MLSP will be used there. Notably, it is thus not ubiquitously
defined whether χ refers to Majorana or Dirac fermions or even charged scalars.
In light of this, also the present introductory chapter is kept in a rather general
formalism, using simply M to denote large mass scales.

Although the analyses of chapters 3 - 6 are for the most part discussed sepa-
rately, the different physical phenomena are by no means exclusive to each other.
Quite in contrast, all ingredients can act in concert in certain processes of neu-
tralino annihilation.

2.1 Shared concepts

The investigated physical processes in all chapters start from a two-particle state
|pa, pb⟩ of a non-relativistic relative velocity

v = |⃗v| = |⃗va − v⃗b| ≈
∣∣∣∣ p⃗aMa

− p⃗b
Mb

∣∣∣∣ . (2.1)

The approximation in the second step holds for slowly moving, that is “heavy”,
particles v ≪ 1. The center-of-mass momentum is arbitrary as one may always
use translational invariance to boost to the center-of-mass frame of the 2-particle
system, p⃗a = −p⃗b, where it vanishes. Calculations are always performed in the
center-of-mass frame.

All subsequent chapters investigate heavy particles transforming under some
gauged unitary symmetry, with varying additional Yukawa interactions. The rel-
evant UV-complete BSM Lagrangian terms can therefore be conceptualized by
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generic scalars (Φ) and fermions (Ψ) as

LUV =(DΦ)†µ (DΦ)µ −M2
Φ|Φ|2 +Ψ

(
i /D −MΨ

)
Ψ

− 1

4
F a
µνF

µν,a +ΨyΦΨΦΨ+ “h.c.” , (2.2)

using

Dµ ≡ ∂µ + iĝ T̂ aAa
µ. (2.3)

a sums over adjoint indices of all gauge symmetries present in the theory, including
SM gauge groups, and T̂ a is the gauge generator operator with ĝ the gauge cou-
pling constant (which, technically, is a simple diagonal matrix gab). The contact
interaction between Ψ and Φ involves matrix valued Yukawa couplings yΦΨ which
may be non-trivial gauge structures, namely Clebsch-Gordan coefficients, with en-
tries given by (yΦΨ)

abc to maintain gauge symmetry. Different mass scalings of
MΦ,Ψ will be considered as well as cases where multiple scalars or fermions are
present. Equation (2.2) implicitly uses complex scalars (Dirac fermions) whereas
for real scalar fields (Majorana fermions) the usual factor 1

2
must be added to all

terms quadratic in the respective field.

Typical expansion parameters used to define the particular expansions of a
given EFT are small coupling strengths α, which are dimensionless by convention,
or ratios of dimensionful quantities such as energy, momentum or mass. The EFT
picture shows its full power when all scales present in a theory can be factorized
from each other, turning otherwise complicated multi-scale problems into a set
of simpler single scale problems. If multiple unrelated expansion parameters are
present in a theory, a power counting relating them is required and, once set, must
be strictly maintained in order to consistently perform expansions.

To set terminology, the following momentum modes will be considered, here
counted by an expansion parameter λ≪ 1 and a single large scale M :

mode scaling description
hard h ph ∼M all components highly energetic

collinear c
n+pc ∼M,
n⊥pc ∼Mλ,
n−pc ∼Mλ2

high-energetic light-like along n−

soft s ps ∼Mλ all components low energetic

potential p
p0p ∼Mλ2,
p⃗p ∼Mλ

instantaneous off-shell modes

ultrasoft us pus ∼Mλ2 all components very low-energetic

Anti-collinear modes c̄ are identical to collinear ones under exchange n+ ↔ n− with
n± introduced in section 2.4. Each of the following sections serves the purpose of
providing an overview of the respective EFT sufficient to build an understanding
of where non-perturbative effects arise from and how they are treated by the EFT
with no claims to completeness.
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2.2 Non-relativistic effective theory — NREFT

Non-relativistic effective theory (NREFT) [63] describes particles moving at ve-
locities much smaller than the speed of light

vψ ≪ 1.

In the following ψ denotes a general non-relativistic field of velocity vψ, left unspec-
ified in its spin-statistics as bosonic or fermionic but always of mass-dimensions
[ψ] = 3/2. For on-shell particles, the (single particle) 4-velocity is approximated
to first order as

vψ ≡
(
1

0⃗

)
+

(
0
v⃗ψ

)
+O(v2ψ) (2.4)

and the virtuality of slow moving particles is of order p2 −M2 = O(Mv2ψ). In the
leading (static) approximation, its momentum is simply given by the rest mass,
pψ ≈ Mvψ + O(Mvχ). The residual momentum can be at most of the potential
scale in order for ψ to remain on-shell. Having integrated out hard momentum
modes, the result for the gauge kinetic Lagrangian term is [63, 64]

LNREFT[ψ] = ψ†

(
iD0 − δMψ +

D⃗2

2M

)
ψ +O

(
M4v6

)
. (2.5)

Technically, δMψ is a generic Wilson coefficient which is found by matching to
be δMψ ≡ Mψ −M . The NREFT Lagrangian still describes soft, potential and
ultrasoft momentum modes. This also affects light annihilation- or decay-products
of heavy particles and annihilation operators of heavy fields arise in NREFT as
imaginary-valued local 4-point vertices between non-relativistic states. Inelastic
cross sections are then computed by use of the optical theorem [65]. For the
non-relativistic description of heavy external states to be sensible, one requires
Mψ =M +O(Mv2) or else the residual mass term dominates the propagator,
Mψ −M ≫ iD0. If only a single heavy mass exists in the theory, M ≡Mψ is the
most sensible choice and the residual mass term vanishes. Yet, some δMψ ̸= 0 are
in general unavoidable in theories of multiple nearly degenerate non-relativistic
fields. A simultaneous description of multiple hard scales with large scale separa-
tions between them is possible [64]. Several discussions in chapters 4 and 5 concern
the applicability of (P)NREFT in case of δM ∼Mv. For now, δM is a (diagonal)
residual mass term of the formally correct power counting δMψ ≤ O(Mv2).

When integrating out hard modes, all propagators are approximated according
to their momentum power counting, following the method of regions prescription.
As a consequence, the matching becomes blind to resonant effects if some internal
particle is counted as a hard mode while the propagator denominator is actually
anomalously small due to cancellations,MR−(M1+M2) ∼ O(Mv) in the example
of s-channel resonance scattering. Instead, the non-relativistic initial two-particle
state and the resonance field are now (almost) mass degenerate and may be de-
scribed by a single non-relativistic EFT description. The presence of two small
parameters, v and δMR/M breaks the usual perturbative expansion in v.

Non-relativistic particles of finite lifetime formally warrant their own unique
unstable particle EFT [66, 67] which is in most practical aspects similar to heavy
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quark effective theory [68] or NREFT. There are some conceptual differences,
nonetheless. The pole mass of unstable particles, and thus the residual mass,
develops an imaginary part which is explicitly written in terms of the decay width,
δMψ − iΓψ/2, cf. Eq. (3.1). Notably, external states in scattering theory are
evaluated at infinite past or future times and cannot involve any particles of a finite
lifetime, hence one must not apply cutting rules to unstable particle propagators.
In the example of s-channel scattering via an unstable particle, one must instead
once more use the optical theorem to gain access to the annihilation cross-section
via the resonance funnel and the EFT would be formally insensitive to specific
final states. This is directly analogous to the above statement on annihilation
operators, however now applied to two-point “interactions”, that is propagators,
which translates to prompt decay of one heavy particle into hard modes.

2.3 Potential non-relativistic effective theory — PNREFT

Soft modes and potential modes can be additionally integrated out from the
NREFT Lagrangian, giving rise to instantaneous, spatially non-local interactions
known as potentials from classical physics. They arise as non-perturbative effects
when the relative momentum between two particles,

p = prel =
Mv

2
, (2.6)

anomalously enhances t-channel diagrams of interactions via a light mediator. The
obtained EFT is known as potential non-relativistic effective theory (PNREFT) [69].

As long as the mass of the virtual mediator propagating in the t-channel is
comparatively small, mmed ≲ Mv, and its coupling strength to ψ satisfies α ≳ v,
cf. Eq. (4.1), successive t-channel exchanges in NREFT are not systematically
suppressed in powers of α. Perturbation theory in powers of the mediator coupling
strength α breaks down due to the interplay of the multiple expansion parameters
in the theory. Even infinitely many successive t-channel exchanges remain of the
same power counting order as the kinetic term in the Lagrangian and the potential-
mode t-channel exchange diagram must be treated as a non-perturbative term in
the Lagrangian. Such diagrams reproduce in position space well-known non-local
Yukawa potentials [70–72],

L ⊃ −
∫
d3r⃗ (ψ1ψ2) (t, X⃗)V(12),(34)(r) (ψ3ψ4) (t, X⃗ + r⃗) (2.7)

where

V (r) =
−αeff

r
e−mmed r. (2.8)

Here, αeff indicates that it is typically not directly the coupling strength of a
theory but an effective potential strength involving additional factors assumed to
be O(1). Naturally, massless mediators source Coulomb potentials. Implying the
summation over possibly different particle species 1-4, the Lagrangian term may
be given compactly in terms of constituent field notation, that is still without
projecting onto the 2-constituent space, as
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LPNR [ψ] = ψ†

(
i∂0 − δMψ +

∂⃗2

2Mψ

)
ψ

−
∫

d3r⃗
[
ψ†ψ

]
(t, X⃗ + r⃗) V (r)

[
ψ†ψ

]
(t, X⃗). (2.9)

ψ may be read as a vector including all non-relativistic species present in the
theory which for complex fields means at least the particle and its anti-particle.
Correspondingly, δMψ and V (r) are then understood as matrices where the former
is only diagonal in the mass eigenbasis of a given model. The covariant derivative
temporal component is dropped in favor of ∂0 to ensure a uniform power counting.
Since α ∼ v and p ∼ 1/r, the kinetic and potential terms all are of order M4

ψv
5.

Beyond the leading order Lagrangian (2.9), also ultrasoft modes of light fields
remain in the theory and interact with ψ. They give rise to multipole interactions
and thus to radiative transitions between energy levels of multi-particle states
[73, 74]. Multipole interactions of two-constituent states will be introduced in
general in chapter 6 without relating them to any particular UV completion. The
Lagrangian after projection onto the two-constituent space [75] is also given there
assuming a decomposition of [ψ1ψ2] into eigenstates of the potential, S and B, see
Eq. (6.11). The two-constituent field operators are then bilinear functionals of the
constituent field operators folded by the two-particle wave function Ψ [61].

After the projection onto two-constituent states, the equations of motion in
PNREFT are given by the quantummechanical Schrödinger equation as in NREFT,
however now with the addition of the potential term, making solutions more in-
teresting than simple, non-interacting Fourier modes. Since soft modes decouple
to leading order from non-relativistic fields already in NREFT and potential mode
exchanges are resummed to all orders, interaction terms such as for example imagi-
nary four point interactions describing annihilation are essentially unchanged from
NREFT on the Lagrangian level. Yet, upon calculating correlation functions, dif-
ferences arise from the modification of the wave functions by including the potential
in the equations of motion. For the generic short-distance annihilation forward-
scattering operator, the impact of potential interactions is encoded in the wave
function at the origin absolute square,∫

d3r⃗ ⟨p|
[
ψ†ψ

]†
(r⃗) ifδ3(r⃗)

[
ψ†ψ†](⃗0) |p⟩ = if |Ψp(0)|2. (2.10)

f is an agnostic Wilson coefficient and Ψp(r) the two-particle state wave func-
tion obtained by projecting the single constituent field operators onto the external
state of relative momentum p. Translation invariance allows to set one coordinate
to 0⃗ and the optical theorem now relates the forward scattering amplitude to an
(inclusive) inelastic cross section. Sommerfeld enhancement [76] is now defined as
the multiplicative modification of the cross section with respect to using free, non-
interacting wave functions of NREFT, |Ψ0

p(0)| = 1. The definition is analogous
for other observables or in more complicated processes [77]. Concretely, the Som-
merfeld factor in the example of a cross section in a simplistic single field model
is thus



18 2 OVERVIEW OF EFFECTIVE THEORIES

S ≡ σ

σ0
=

|Ψp(0)|2

|Ψ0
p(0)|2

= |Ψp(0)|2, (2.11)

where σ0 denotes the perturbative cross section. For Coulomb potentials, S de-
pends only on the ratio αeff/v, hence the Sommerfeld factor is typically thought of
as a function of velocity S = S(v) whileM and αeff are fixed. Performing a partial
wave decomposition on the two-particle states, the s-wave Sommerfeld factor in a
Coulombic potential, Eq. (2.8) with mmed = 0, is

S0(v) =
2πα

eff

v

1− e−2π αeff

v

. (2.12)

This holds for any Coulombic potential, including repulsive scenarios αeff < 0,
without violating that S0(v) > 0. In a more modern language, the Sommerfeld
factor is seen as a multiplicative contribution obtained from the modified spec-
tral probability density compared to the free, non-interacting case. Such is the
formulation in the language of retarded 4-point (or 2-particle) Green functions
evaluated at the origin which is theoretically convenient due to its extensibility to
descriptions at finite temperature [78]. In vacuum, there are no differences to the
wave function formulation given above.

2.4 Soft-collinear effective theory — SCET

When heavy particles annihilate or decay into significantly lighter fields, final
states are highly energetic and an effective theory to describe nearly massless par-
ticles must be employed to disentangle the different scales of the process. This
is achieved in soft-collinear effective theory (SCET) [79, 80] wherein fields are ex-
panded around a dominant hard mode, n+p ∼ M , in the direction a light-like
vector n−. At leading order, hard annihilation or decay processes emit two light
fields fixed into a back-to-back configuration in the center-of-mass frame by mo-
mentum conservation. These primary fields emitted from the hard vertex may
undergo additional soft or collinear splittings and the physical final state is a two
jet event collimated along the jet axes

n− ≡


1
0
0
+1

 and n+ ≡


1
0
0
−1

 . (2.13)

The spatial momentum direction is arbitrarily chosen. Being light-like, n2
± = 0

while n+n− = 2. It thus becomes clear why above the large mode along the
direction n− is projected out by acting with n+. On a technical level, SCET
performs an expansion of the orthogonal mode λ = p⊥/n+p where n±p⊥ ≡ 0. For
a collinear particle of momentum pc, the different modes then scale as

n+pc ∼M , pµc⊥ ∼Mλ , n−pc ∼Mλ2 ,

where the latter is a consequence of demanding p2c ∼Mλ2, since masses are negli-
gible at energies of O(M). For anti-collinear particles, the roles of n± are simply
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interchanged. The operator fields are again split according to the method of re-
gions into hard, (anti-) collinear and soft modes.

In computing loop diagrams, divergences arise in SCET in the kinematic limit
where emitted radiation momenta become soft, pc,s,us → 0, or collinear with one
of the jet axes, p⃗c,s,us ∥p⃗primary. The simultaneous soft and collinear limit yields
quadratic divergences which, after renormalization, give rise to Sudakov double
logarithms [79, 81] of ratios between the widely separated scales of the theory,
L = log(1/λ). A combined expansion in the perturbative coupling α and L can be
written as ∑

n

αn
(
cLL L

2 + cNLL L+O(1)
)n
. (2.14)

Such scale logarithms are troublesome as EFT is founded on the very assump-
tion that λ ≪ 1. Once L ≳ 1/α, perturbation theory by expanding in α (that
is in loop orders) breaks down. To obtain reliable results to O(1), all leading
and next-to-leading logarithmic (NLL) contributions need to be resummed to all
orders. Furthermore, to maintain a single power counting parameter, it is conven-
tion to count each logarithm as L ∼ 1/λ ∼ 1/α. For practical applications in DM
phenomenology, the hard and soft scales are usually identified with twice the DM
mass and the SM gauge boson mass scale, respectively. The inherent construction
of the EFT on basis of a separation of scales can be recovered as a factorization
theorem between multiplicatively separated hard, collinear, anti-collinear and soft
functions of the cross section. It allows to evaluate each function at its natural
scale, where logarithms are small, and subsequently evolve all of them to a single
common scale in a non-perturbative fashion, see [82] for an example. In perform-
ing the resummation of LL and NLL terms to all orders, one includes repeated
dominant emission of soft and collinear modes off of the primary collinear modes.

As an aside, it should be noted that even stronger “super-leading” logarith-
mic enhancements are known to arise in certain processes of QCD [83], making
the above identification “leading” and “next-to-leading” logarithmic powers a pro-
cesses and, possibly, loop-order dependent one. Nevertheless, the multi-loop ac-
curacy striven for in QCD are far beyond any useful accuracy for the purposes in
DM phenomenology.

2.5 Effective theory of heavy Dark Matter — PNRDM

The potential non-relativistic effective theory of Dark Matter, including effects
from PNREFT and SCET, is designed to describe annihilation processes of heavy,
non-relativistic electroweak multiplets which host a DM candidate annihilating
into highly-energetic, light standard model particles, here specifically photons. In
the following, it is abbreviated as PNRDM, adopting an existing name [82, 84] for
simplicity, with an implicit presence of SCET. With typical WIMP DMmasses, the
large scale ratio between Mχ and SM scales is automatic and SCET is included
in matching computations of short distance annihilation operators of PNREFT
opposed to the usual inclusive hard Wilson coefficients. PNRDM thus captures
non-local potential interactions between initial states as well as large logarithmic
enhancements in the soft and collinear limits. Its non-inclusive annihilation cross-
sections are needed to accurately predict cosmic ray spectra searched for in indirect
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detection experiments. The initial state to the processes consists of a pair of DM
Majorana fermions. The theory keeps only a single power-counting parameter to
uniformly describe all expansions,

λ ≡ mW

2Mχ

∼ v ∼ α. (2.15)

All scales of the standard model (the electroweak scale, boson masses or the onset
of importance of fermion masses) are uniformly approximated by mW while the
DM mass scale 2Mχ remains open to the specific BSM model. Since DM is only
the lightest state of a gauge multiplet, with mass splittings sourced by loop correc-
tions and electroweak symmetry breaking, there are additional almost degenerate
states nearby 2Mχ which contribute to the annihilation. On the Lagrangian level,
PNRDM introduces no essential new difficulties beyond the successive implemen-
tation of SCET and PNREFT. The simultaneous presence of many scales, masses
and couplings does, however, lead to sizable complexity during computations.

Factorization theorems splitting not only the Sommerfeld enhancement but
all contributing scales into separate factors were found for annihilation near the
endpoint where most of the energy is carried away by a single gauge boson and
the final state is again a back-to-back two-jet event described in SCET [82, 85].
In a first step, the annihilation cross-section of DM is split into the annihilation
matrix ΓIJ and the long distance Sommerfeld effect SIJ analogous to Eq. (2.10)
[77, 86],

σv =
∑
IJ

SIJ ΓIJ , (2.16)

The summation runs over all charge neutral two-particle state indices I, J , e.g. I =
(I1I2), from the BSM gauge multiplet (mass-) eigenstates. Rather than encoding
the total annihilation cross-section into a single anonymous Wilson coefficient f ,
now Γ resolves additional final state physics allowing to treat (semi-) exclusive
annihilation processes near the spectral endpoint. Being matrices in the NR field
space themselves, potential exchanges can scatter different multiplet states into
each other and I (J) need no longer coincide with the physical initial (final) state
of the scattering process. Moreover, I ̸= J still defines a forward scattering process.
Hence, the above SIJ includes the Sommerfeld enhancement for χχ scattering into
I by infinitely many ladder exchanges and the corresponding final state process of
J scattering into χχ. In practice, this means that the annihilation of any states
sufficiently degenerate to the DM candidate can contribute to the DM annihilation
process. To describe the Sommerfeld effect in arbitrary initial states, an even more
general form than SIJ is needed, cf. section 4.2.1.

As an inheritance from SCET, ΓIJ further factorizes into separate hard, collinear,
anti-collinear and soft functions,

ΓIJ = Hkl · [Zγ × J ×w]IJ,kl . (2.17)

The notation abbreviates some mathematical technicalities such as Mellin space
transformations and an integration in the final state photon energy Eγ. Full de-
tails may be found in [2, 82, 87]. As a technical aside, the unobserved jet func-
tion J demands the introduction of hard-(anti-)collinear light-like modes where
n−phc ∼ Mλ, due to the parametric counting of the resolution window of the
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observed photon energy Eγ
res ∼ mW [82]. In practice, this detail is irrelevant to

here presented investigations and henceforth omitted. Hkl is the hard function
describing the local annihilations into primary emitted SCET fields where k and l
label the inserted annihilation operators. To leading order, H is simply given by
the product of two hard annihilation coefficients Ck,

Hkl = CkC
∗
l . (2.18)

In order to perform Sudakov resummation up to the NLL order written in
(2.14) the full one loop anomalous dimension of the hard Wilson coefficients is
required [2, 62]. This includes also soft exchanges between initial state legs of
the annihilation vertices. Note that the topology of such initial state interactions
is diagrammatically identical to the final ladder wrung already resummed into
the Sommerfeld factor SIJ , yet there is no double counting, as the Sommerfeld
enhancement treats potential mode exchanges whereas the anomalous dimension
one loop computation includes exchanges of soft modes.

The full framework of PNRDM, and for that matter SCET, only becomes
necessary when one is interested in the details of the annihilation spectra of DM,
which will be investigated in chapter 5 for mixed neutralino DM candidates. All
other chapters are primarily concerned with the full annihilation rate in order to
compute freeze-out relic abundances.
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Figure 3.1: Schematic depiction of the resonant s-channel annihilation process. In
blue the long-lived intermediate resonance and in red, the exchange of a light me-
diator that produces the long-distance Sommerfeld effect. Light Standard Model
final states are shown as straight black lines. Long-distance (soft) gauge boson
modes (black wavy lines), including real emissions, vanish at leading order accord-
ing to Eq. (3.16). The figure was taken from [1].

3 Resonant particle decay

This chapter regards inelastic scattering of a non-relativistic two-particle initial
state via an intermediate s-channel mediator which is produced close to on-shell
in the annihilation process. That is, for initial state particles of masses Ma,b the
s-channel mediator of mass MR has to fulfill the resonance condition∣∣∣∣ M2

R

(Ma +Mb)
2 −M2

R

∣∣∣∣≫ 1. (3.1)

Taking χa,b and R to be heavy, non-relativistic particles, the physical process of
interest is thus

χaχb → R → F (3.2)

where F ̸= χaχb denotes inelastic final states to be specified later. The process
breaks perturbative power counting by virtue of the internal propagator being
anomalously enhanced near the resonance condition. The propagator is only reg-
ulated by finite mass splittings or by a non-vanishing decay width of R, which
is obtained from all-order resummation of higher loop processes in the two-point
function. In DM annihilation, χaχb form a particle anti-particle pair annihilating
into light degrees of freedom. Going beyond minimalistic models, χ is assumed to
be charged under some gauge symmetry giving rise to initial state potentials ac-
cording to PNREFT. A diagrammatic depiction of the process under consideration
is shown in Fig. 3.1. The total process sees an initial two-particle initial state χ̄χ
experience a long-distance Sommerfeld effect (red) and scatter into a number SM
final state particles (black straight lines) via an intermediate s-channel resonance
(blue). Black wavy lines depict crucial soft gauge fields which can a priori connect
any two parts of the process or be emitted as an on-shell final state particle from
the initial state. Such soft interactions spoil a simple factorization between Som-
merfeld enhancement and the s-channel resonance or the final state. They will be
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shown to cancel out at leading order.
By use of effective theories, the physics of different scales can be systemati-

cally disentangled with the goal of turning the multi-scale calculation into several
purely multiplicative factors, each involving only one single scale. Although not
guaranteed to exist, finding such a factorization theorem can dramatically reduce
the complexity of a problem, as was outlined already in section 2.5.

To place the rather technical factorization theorem on a solid foundation, sec-
tion 3.1 discusses the details of the used (P)NREFT Lagrangian in a schematic
toy model. Next, sections 3.2 and 3.3 derive the decoupling of soft gauge boson
modes and the factorization theorem of the annihilation cross-section, respectively.
Finally, some exemplary phenomenology will be discussed relating to an MSSM
inspired toy model realization in section 3.4.

The work presented in this chapter has been published under the title “Sommerfeld
enhancement of resonant dark matter annihilation” [1].

3.1 Model setup

Starting from a rather general ansatz, this study of intermediate s-channel reso-
nances in DM annihilation processes considers a particle anti-particle initial state
χa = χ̄b of mass Ma =Mb ≈MR/2 together with a heavy, resonant field R. Both
fields, χ and R, are assumed to transform under some representation of a gauge
symmetry G such that their trilinear combination χ∗ ⊗ χ ⊗ R can form a gauge
singlet and, thus may appear in a gauge invariant Lagrangian. The written tensor
products combine vector representations of G. For simplicity, the possibility of R
carrying spin is neglected, however the factorization theorem later on is unaffected
by this restriction and solely relies on gauge invariance of the EFT Lagrangian and
identical velocities of χ̄χ and R. The complete Lagrangian used for this chapter
is decomposed into the gauge-kinetic and potential (P)NREFT terms of χ and
R, the trilinear interaction coupling to the resonance as well as local χ 4-point
operators,

Lres = Lχ + LR + Lχ̄χR + L(χ̄χ)(χ̄χ). (3.3)

The direct annihilation of χ into light fields, such as the gauge bosons of G,
is captured in the EFT by imaginary short-distance Wilson coefficients of 4-point
operators, ∼ (χ̄χ)†(χ̄χ). They are not relevant for the decoupling theorem but be-
come of significance in later phenomenological studies. Annihilation cross-sections
are computed from the imaginary part of the forward scattering amplitude of the
process χ̄χ → R → χ̄χ by employing the optical theorem in the UV-complete
theory, even though PNREFT now involved non-hermitian operators. To provide
an annihilation channel, R must be unstable and boast a non-zero decay width
ΓR > 0 as a consequence of Dyson-resumming the decay depicted in Fig. 3.1 as
part of the 1-loop irreducible bubble chain of the R two-point function. As a sim-
plification, only inclusive processes (summing over all F ̸= χ̄χ) are regarded for
now, which allows to remain agnostic about the final state. Branching fractions to
specific F are introduced later on. While the leading terms of the χ Lagrangian
are identical to PNREFT, R is described by unstable particle effective theory and
has a kinetic Lagrangian
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LR = R†
w

(
iD0 − δMR +

iΓR
2

)
Rw. (3.4)

The index w gives the velocity of R, wµ = (1, 0⃗) + O(v) in the center-of-mass
frame of the initial state. R appears exclusively in the single-particle s-channel
process, therefore there is no need to describe also its potential interactions, which
are non-local only in space but occur instantaneously. Since Ma+Mb ≈MR holds
merely as an approximation, there is a small residual mass term,

δMR ≡MR −Ms −Mb =MR − 2Mχ ≪MR, (3.5)

when measuring energy in the rest frame of the initial state. This choice leaves
the kinetic Lagrangian of χ without a residual mass term δMχ = 0 in Eq. (2.9),

Lχ ≡ LPNR[χw]. (3.6)

The essential interaction term for the s-channel resonance is written in terms of a
Wilson coefficient C and a general Clebsch-Gordan tensor yabc as

Lχ̄χR(X) = J(X) + “h.c.” =
C√
2MR

yabc
(
χa†w χ

b
wR

c
w

)
(X) + “h.c.”, (3.7)

with gauge indices on the field operators made explicit only here and the hermitian
conjugate implied by “h.c.”. By explicitly extracting the mass factor, C is kept
dimensionless. Lastly, there are the local 4-point annihilation vertices of χ to
describe the pair annihilation by hard processes captured in

L(χ̄χ)(χ̄χ) =
∑
k

(
χ†χ

)†
fk
(
χ†χ

)
(3.8)

where any possible gauge or spin structures of (χ̄χ) may be contracted in the
generic short-distances coefficients fk, hence the unspecified summation. This well-
known term will help emphasize the parametric s-channel resonance dominance
and provide a second, direct annihilation channel later on which follows simply
Born-level calculations in the UV-complete theory. Hence, further details may be
disregarded in this general formalism.

The forward scattering matrix element of χ̄χ is

iT =

∫
d4X ⟨χ̄χ|T{iJ†(X) iJ(0)} |χ̄χ⟩+ δ4(X) ⟨χ̄χ| iL(χ̄χ)(χ̄χ)(0) |χ̄χ⟩ (3.9)

where one can clearly observe the s-channel resonance as a long-distance effect
being evaluated at different space-time points with only one coordinate shifted
to 0 by translational invariance, in contrast to the local annihilation vertex. By
dimensional analysis one finds that the second local annihilation vertex is sup-
pressed as O(ΓR/MR, δMR/MR) relative to the s-channel term, provided there is
no further scale hierarchy between the coupling constants in L(χ̄χ)(χ̄χ) and Lχ̄χR.
As the dominant process is now a long-distance effect which, unlike short distance
processes, are resolved by soft modes, the question arises whether there are addi-
tional contributions from soft gauge boson interactions which do not decouple at
leading order.



26 3 RESONANT PARTICLE DECAY

3.2 Soft gauge boson decoupling theorem

The decoupling of soft gauge boson modes at leading order NREFT and leading
order in ΓR/MR from the resonant annihilation processes is derived formally in
the following. This proves that the long-range Sommerfeld effect remains fully
factorized from the long-lived s-channel resonance meaning there can be no soft
gauge boson exchanges between the DM initial and SM final state decay products
of the resonance nor the resonance itself, for that matter. To this end, it is most
convenient to make all soft interactions explicit on the Lagrangian level by use of
soft Wilson lines

Ww(x) = P
{
eig

∫ 0
−∞ dt wµA

µ
s (x+tw)

}
, (3.10)

g being a respective gauge coupling of A = AaT̂ a. The soft gauge boson field is
explicitly labelled as As. Due to Ww(x) being a linear matrix multiplication and
phase rotation, the field redefinition is straightforward,

Rw(x) → Ww(xw)Rw(x) , χw → Ww(xw)χw(x), (3.11)

involving xw = (wµx
µ)w which follows from multipole expanding the Wilson line

to leading order to maintain a consistent power counting everywhere. Wilson lines
obey the key property that they eliminate the soft gauge field dependence when
acted upon by a longitudinal soft-gauge covariant derivative term,

wµD
µ
s Ww(x) = Ww(x)wµ∂

µ. (3.12)

The redefinition renders the fields manifestly gauge invariant, so they act as
a singlet in the covariant derivative, i.e. D = ∂ acting on them. In turn, all
complications due to soft interactions are placed as explicit Wilson lines into the
interaction operators. The kinetic terms are known to be invariant under the soft
decoupling transformation. It is now possible to find simplifications of soft inter-
actions on the Lagrangian level, which would otherwise occur only as cancellations
between explicitly computed Feynman diagrams.

The essential aspect to proving the decoupling is quite simple and follows from
gauge invariance of the Lagrangian. Therefor, it is important to note that all
distinct Lagrangian pieces in Eq. (3.3) are separately gauge invariant, specifically
also J(X) and its hermitian conjugate. Under the above field redefinitions, the
trilinear interaction becomes

J(X) → C√
2MR

[
W ãa
w (Xw)

†W b̃b
w (Xw)W

c̃c
w (Xw) yãb̃c̃

] (
χ†,a
w χbwR

c
w

)
(X). (3.13)

The Wilson lines are actually identical to a gauge transformation with the phases

φa = ig

∫ 0

−∞
dt wµAaµ(x+ tw) (3.14)

giving a gauge transformation under some representation R as

U[R] ≡ eiφ
aTa

[R] = Ww(x). (3.15)
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The generators of a specified representation T[R] are implicitly included as oper-

ators T̂ in the definition (3.10). Now, gauge invariance demands Lχ̄χR to be a
singlet and unaffected by any gauge rotation, hence simply by rewriting (3.13)
shows its invariance,

J(X) → C√
2MR

[
U ãa
[R̄χ]

U b̃b
[Rχ] U

c̃c
[RR] yãb̃c̃

] (
χ†,a
w χbwR

c
w

)
(X)

= J(X). (3.16)

Having performed the decoupling field redefinition by use of soft Wilson lines,
gauge invariance of the Lagrangian term under concern implies that an operator
involving exclusively fields with identical velocities does not yield any soft gauge
boson interactions to leading order.

At higher orders, the path ordering inWw gives essential differences between the
Wilson line and a gauge rotation. Only a single production operator J(x) ∝ χ†χ
was implicitly assumed, whereas in general many operators Jm(x) could exist,
giving rise to a summation

∑
m,n J

†
mJ

†
n in (3.9). As long as gauge invariance is

ensured for each term separately, the proof remains unchanged since it applies
already on Lagrangian level.

3.3 Factorization in presence of an s-channel resonance

The proven decoupling of soft modes to leading order allows to insert a complete
set of states between the different contributions to iT and confidently approximate
it at leading order simply by the vacuum state |Ω⟩⟨Ω|, resulting in

iT =

∫
d4X ⟨χ̄χ|T{iJ†(X) iJ(0)} |χ̄χ⟩ (3.17)

=
−|C|2

2MR

∫
d4X eiEt ⟨χ̄χ|

[
χ†a
w χ

b
w

]
(0) |Ω⟩ × ⟨Ω|

[
χ†a′
w χb

′

w

]†
(0) |χ̄χ⟩

× ⟨Ω|
[
ya′b′c′R

c′

w(X)
]†
[yabcR

c
w(0)] |Ω⟩ (3.18)

=
−|C|2

2MR

Ψab
χ̄χ,E(0)

[
Ψa′b′

χ̄χ,E(0)
]∗ iδcc

′
y∗a′b′c′yabc

E − δMR + i
2
ΓR

(3.19)

where, alike the usual Sommerfeld treatment [77], translation invariance was used
to shift both χ̄χ wave functions to the origin, which yields the same Sommerfeld
factor as for short distance annihilation. The optical theorem now gives the cross
section to leading order as

σv = Im{T } =
|C|2 Y · S(v)

2MR

×
Im
{

i
2
ΓR
}

(E − δMR)
2 + 1

4
Γ2
R

(3.20)

≡ |C|2Y
4M2

χ

S(v)R(v) (3.21)

introducing

R(v) =
1
2
MχΓ̂R

(1
4
Mχv2 − δMR)2 +

1
4
Γ2
R

. (3.22)
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Figure 3.2: Resonance enhancement factors R(v), Eq. (3.22), for δMR < 0 (left)
and δMR > 0 (right) plotted over relative velocity v for exemplary parameters in
units of Mχ, ΓR = 0.001Mχ and δM̂ ≡ δMR/Mχ.

Y ·S(v) is a schematic notation for the respective irreducible gauge representation
channel Sommerfeld enhancement factor. It is included as part of the fraction
in (3.21) which is defined to make contact to the gauge factors in usual Born
approximated calculations. The numerator of R(v) involves Γ̂R which refers to a
partial width of R into some specific final states. In order to describe inelastic
processes to which the optical theorem is applicable, Γ̂R must exclude the decay
channel back into χ̄χ, which is open if δMR > 0.

It should be noted that one does not actually cut the R propagator but, es-
sentially, only one single bubble insertion of lighter states in the Dyson-resummed
propagator of R. Correspondingly, when regarding exclusive final states only the
numerator of R(v) picks up the appropriate branching fraction Γ̂R/ΓR. The re-
mainder of the infinite bubble chain remains intact and still results in the total
decay width in the denominator, as naively expected. A simpler way of reading
Eq. (3.22), to simply state that the cross section is proportional to ΓR and thus
may be rescaled by simple multiplication of a branching fraction, assumes that
(3.20) remains valid even in elastic forward scattering scenarios. This is, however,
not guaranteed by the optical theorem.

R(v) deserves a brief analysis to understand its expected physical implications.
The function itself is the well-known Breit-Wigner peak shape [88] commonly found
for unstable particle production. There are two qualitatively different regimes set
by δMR < 0 and δMR > 0 shown separately in the left and right panel of Fig. 3.2
for different values. For positive δMR, some non-zero initial kinetic energy is re-
quired to produce R exactly on its mass shell, E − δMR = 0, and the resonance
enhancement reaches its maximum at this finite velocity, vmax = 2

√
δMR/Mχ.

For negative mass splittings, this obviously does not yield a solution for real ve-
locities and the strongest possible enhancement is instead always found at rest
v = 0. In this low-velocity limit, both cases agree. The maximum enhancement
for negative mass splittings is set by 1

2
MχΓR/(δM

2
R + Γ2

R/4) and approaches the
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peak value Rmax = R(vmax) = 2Mχ/ΓR for δMR = 0. Physically, this corresponds
to the fact that even at zero velocity, a lighter single particle state can only be
produced with some virtuality and never exactly on-shell. For R = Rmax, the cross
section must saturate the s-wave unitary bound [89] up to a possible suppression
by spin-statistical multiplicity factors. For example, in case of fermionic χ only
the spin-singlet combination can couple to a scalar R, and the initial state spin
average introduces a factor 1/4. The saturation is expected, since a leading order
calculation treating the decay of R perturbatively diverges for on-shell production
and upon regularization by Dyson resummation any other non-divergent process
is hence suppressed by “1/∞ = 0′′.

From the above statement, unitarity becomes apparently worrisome when in-
corporating Sommerfeld and resonance enhancement simultaneously in the fac-
torized form of Eq. (3.21). Introducing the Resonance and Sommerfeld factors
separately leads to inconsistencies whenever S(vmax) > 1 and δMR > 0. This is
caused by neglecting a dominant scattering contribution in the non-perturbative
4-point function of χ which involves only potential ladder exchanges but disre-
gards R. A proper, simultaneous treatment of both effects requires to include the
s-channel in the non-perturbative Lagrangian which fully resums it in the two-
particle propagator by a Dyson type resummation of the s-channel process. This
means the s-channel resonance scattering, which itself already includes the 1-loop
self-energy bubble-chain giving rise to ΓR, is to be included in the equations of mo-
tion of χ. Similarly, unitarity violation in Sommerfeld resonances is known to be
cured by inclusion of the local annihilation operators in the Schrödinger equation
[90]. However, in the present case of resonance scattering, the effective 4-point
interaction becomes non-local in time and equations of motion can no longer be
molded into the a Schrödinger equation, and a solution for the wave function be-
comes more complicated to obtain. A closer investigation of such a resummation
of s-channel scatterings is beyond the scope of this thesis.

3.4 Resonance & Sommerfeld enhanced annihilation

The novelty here compared to already established resonant DM annihilation mech-
anisms [20, 24, 33] is the simultaneous treatment of a strongly Sommerfeld en-
hanced initial state whilst having confidence in the stability of the result under
soft interactions. This section discusses an exemplary toy model to illustrate the
possible effects for DM phenomenology.

3.4.1 Expected phenomenology

To illuminate the chosen exemplary benchmark model a brief discussion of ex-
pected effects is in order.
Mainly two properties of dark matter are of interest to this thesis, the annihilation
cross-section in the early universe setting the particle abundance via the freeze-out
process at velocities around v ∼ 0.1 and the late-time annihilation cross-section
in gravitationally bound dark matter halos, where v ∼ 10−3, which is subject
to constraints from indirect detection experiments. The importance of DM self-
scattering for structure formation is disregarded here, although resonant s-channel
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enhancement could constitute a sizable effect. The two respectively relevant ve-
locities differ by multiple orders of magnitude demanding a choice to be made in
model building for where the predominant resonance enhancement is to be found
and δMR > 0 is to be chosen accordingly. For δMR negative or so small as to
affect only late time annihilation, the space of viable dark matter models remains
virtually unchanged, yet in some resonantly tuned models, indirect detection con-
straints are now enhanced.

Since the Sommerfeld enhancement near a resonance grows monotonically to-
wards small velocity similar to the case of δMR < 0, the case of resonance en-
hancement during freeze-out is conceptually more interesting and opens new mass
ranges for viable DM candidates. In case of χ being a WIMP, the Sommerfeld cou-
pling strength αeff is fixed by SM parameters α1,2 and the sole remaining question
is whether a given model choice of hypercharge, isospin,Mχ, ΓR and δMR and vio-
lates existing experimental bounds. Furthermore, the Sommerfeld enhancement in
WIMP models is dictated by Yukawa potentials which themselves yield resonant
enhancements at specific, discrete points of Mχ corresponding to the presence of a
near-threshold bound state in the spectrum. One may attempt to determine Mχ

to be near such a resonance, resulting in strongly enhanced late time annihilation
cross-sections, and tune δMR to still obtain the correct relic density. ΓR may
be used to further hone the tuning, however it is constrained from two aspects.
Firstly, in order to see an appreciably resonant enhancement, ΓR ≲ δMR should
remain fulfilled. Secondly, the abundance is set by the thermally averaged cross
section in which the smeared area of the resonance peak enters. This becomes
largely independent of ΓR ≈ 0 as the peak approaches a delta distribution. Fur-
thermore, for δMR > 0, the coupling parameter to the s-channel, C, also sets a
lower bound on the resonance width ΓR ≥ ΓR→χ̄χ ∼ |C|2.

To give a meaning to the toy model aside from a qualitative study of doubly
enhanced phenomenology effects, the parameters for the toy model are inspired by
valid MSSM scenarios in hopes of coarsely predicting viable regions in parameter
space once the impact of s-channel resonances are taken into account.

3.4.2 MSSM inspired toy model

The Lagrangian for the chosen toy model schematically corresponds to the one
given at the start of this chapter in (3.3), although now treating an explicitly
fermionic χ charged under a dark Abelian gauge symmetry U(1)D mediated by a
massive gauge boson X of field strength Xµν . The full-theory Lagrangian in terms
of relativistic fields is

L =χ
(
i /D −Mχ

)
χ− 1

4
XµνXµν + yAχχ

+
1

2
(∂A)2 − 1

2
M2

AA
2 + LSM+int, (3.23)

where A is a real scalar field taking the role of the s-channel resonance R. The
naming is chosen to be suggestive to the Higgs pseudoscalar appearing in the
MSSM after electroweak symmetry breaking. The analogy here, with no claim
to predictiveness, is to understand χ as simultaneously filling the role of the neu-
tralino DM candidate and the degenerate chargino state which experiences strong
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Figure 3.3: Upper panel : DM annihilation cross-section plotted over velocity
with subtended panel for Sommerfeld enhancement S(v) sharing the same axis.
Cross sections for SM finals states (black dot-dashed, blue) and dark gauge bosons
X X (green dashed, red dotted) are shown each when neglecting or including
of Sommerfeld enhancement. Lower panel : The same annihilation cross-sections
thermally averaged and plotted over inverse temperature.

Sommerfeld enhancement. A rigorous treatment of Sommerfeld enhancement in
the MSSM for neutralino DM is discussed in further detail in chapter 4. From
a model building perspective, the gauge boson mass mX is simply introduced to
avoid constraints from warm dark matter as it allows to introduce a small kinetic
mixing to the Standard Model photon. It is neglected in Eq. (3.23), assuming it
to arise from some spontaneous symmetry breaking of U(1)D, instead emphasizing
the gauge invariance of the Lagrangian, which is central to the soft decoupling
theorem. The scalar A decays into standard model fields where the corresponding
interaction and all standard model terms are hidden in LSM+int. The resonance
condition (3.1) implies |δMA| ≪Mχ. As ΓA is the parameter to be defined by the
desired phenomenology, its detailed origin is irrelevant here. Instead the relevant
quantities are the s-channel annihilation cross-section at Born level,
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(σv)Born
χ̄χ→A→SMSM =

y2

2Mχ

1
2
ΓA→SM

(1
4
Mχv2 − δMA)2 +

1
4
Γ2
A

, (3.24)

and the direct annihilation cross-section of χ,

(σv)Born
χ̄χ→XX =

πα2
X

M2
χ

. (3.25)

The choice of ΓA must only respect the mentioned lower bound from the decay
into χχ,

ΓA→χ̄χ =
y2M2

χ

2πMA

√
1−

4M2
χ

M2
A

θ(MA − 2Mχ). (3.26)

Obeying (3.1), this rate is negligible as it is highly phase space suppressed by√
1−

4M2
χ

M2
A

∼

∣∣∣∣∣ M2
A

(Mχ +Mχ)
2 −M2

A

∣∣∣∣∣
−1/2

≪ 1. (3.27)

With all these conditions in place, a MSSM-inspired benchmark model was con-
structed on basis of the electroweak interactions of typical Higgsino models,

αX =
1

2
α2(mZ) = 0.0168,

y =
√
2πα2(mZ)× 0.152 = 0.0987,

mX = mW = 80.385GeV,

ΓA→SM =
MA

150
= 88.2GeV

and

Mχ = 6.5TeV, MA = 13.23TeV, thus δMA = 230GeV.

The small numerical factor in y models the fact that pure Higgsino states in the
MSSM do not couple by themselves to A but require some admixture of the bino
(or wino). Keeping in mind a Higgsino-dominated model, such a bino admixture
is thus approximated as just a numerical suppression due to small mass mixing
contributions entering linearly in y. Hence, the factor 0.152 implies a 2% bino
admixture. The mass splitting δMA > ΓA→SM gives rise to a distinct peak feature
in the annihilation cross-section, which can be seen in the upper panel of Fig. 3.3.
Blue and black (dot-dashed) curves show the s-channel resonance annihilation
cross-section into SM, respectively with and without including the Sommerfeld
effect. The red (dotted) and green (dashed) curves show analogously the annihi-
lation cross-section into dark gauge boson XµXν . The center panel, sharing the
same horizontal axis, shows only the Sommerfeld factor S(v) computed using a
code developed in scope of [87]. S(v) remains small near v = vmax but becomes
strongly enhanced by about two orders of magnitude in the low-velocity limit.
Sommerfeld enhancement sets in once v ≲ αX and saturates towards a constant
plateau below v < 10−3 due to the non-negligible potential mediator mass setting
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a finite range to the potential. The bottom panel shows the thermally averaged
cross sections plotted over x = Mχ/T . The mass splitting is chosen such that
the resonance is located just in the crucial velocity range where departure from
chemical equilibrium takes place during thermal production, x ∼ 25, prolonging
the phase of efficient annihilation. The chosen value of Mχ = 6.5TeV exactly
saturates the relic density constraint, ΩDMh

2 = 0.120, and thus predicts a possible
region of MSSM parameter space of Higgsino dominated models in the multi-TeV
range for resonant Higgs sectors.

Obviously, the constructed toy model is rather crude and many additional as-
pects must be considered when translating this prediction to actual MSSM mod-
els, predominantly the increased complexity from coannihilation in true Higgsino
models and the presence of several additional Higgs bosons in the MSSM scalar
spectrum which are expected nearbyMA. The strong Sommerfeld enhancement at
late times boosts particle flux predictions, rendering this parameter range possibly
detectable in cosmic-ray indirect detection experiments. Overall, this Higgsino in-
spired model yields a stark contrast in its phenomenology compared to the thermal
pure Higgsino. The latter is located at a mass of Mχ = 1.1TeV with Sommerfeld
enhancement being almost negligible at the percent-level and evades even opti-
mistic projections of the future Cherenkov Telescope Array experiment [49], see
also Fig. 5.4 below.

As a concluding remark, note that it is possible to construct truly doubly
resonantly enhanced models where S(v) and R(v) are simultaneously large. For
instance, a wino-inspired model similar to the above at Mχ = 3.85TeV and tiny
negative δMA = −5GeV sees almost two orders of magnitude s-channel resonance
enhancement and another 3 orders of magnitude of Sommerfeld enhancement.
However, realistic implementations of such parameter ranges are almost certainly
excluded by existing null results from experiments and, moreover, raise concerns
about the validity of disregarding the s-channel resonant self-scattering in the DM
potential. In a different setup of resonant Higgs-portal DM (Mχ ≈ 62.5GeV),
constructing a similarly doubly enhanced model was found to be impossible due
to a combination of stringent experimental bounds and theoretical constraints.
With the s-channel resonance mass value fixed to the Higgs boson mass and upper
and lower bounds to its decay width, the model loses too much freedom which is
not to be compensated by the increased freedom of choosing αX ≤ v or mX .

The simple toy models studied in this chapter introduced Sommerfeld enhance-
ment, its origin in PNREFT calculations and its rough general velocity dependence
without going into any further detail. The following chapter delves deeper into
Sommerfeld enhancement in the MSSM before its eventual application in mixed
neutralino indirect detection spectrum calculations including Sudakov resumma-
tion, which is presented in chapter 5. In both chapters, s-channel resonant regions
are carefully avoided due to technical limitations of available tools, albeit with
the results presented here, the theoretical path to treating Sommerfeld enhanced
resonant annihilation has been cleared.
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4 Sommerfeld-effect for neutralino Dark Matter

For this chapter, Sommerfeld enhanced neutralino DM annihilation in the Mini-
mal supersymmetric Standard Model is reiterated upon [77, 91]. Novel ingredients
to the discussion are a more thorough investigation of the Higgs sector and elec-
troweak symmetry breaking, also in preparation of the subsequent chapter 5, and
the inclusion of complete one-loop and electroweak two-loop running couplings as
well as state-of-the-art accurate SM inputs to the computation.

The Sommerfeld effect (SE), interchangeably referred to as Sommerfeld en-
hancement in the attractive case, dates back more than one hundred years [92]
when it was derived for electrons in atomic systems in humble quantum mechanics.
Its significance for applications in dark matter was brought to the attention of the
community more recently [76, 93] and has been widely studied since. It has strong
implications for thermal freeze-out and indirect detection searches as in both cases
the participating particles are non-relativistic. The physical picture is that long
range forces, encoded in non-local potentials in the EFT, give rise to a qualitative
modification of the behavior of particles at low relative velocity v. More tech-
nically, the relativistic calculation of light, i.e. approximately massless, t-channel
exchanges diverges at low momentum exchange which breaks the perturbative ex-
pansion in α. Sommerfeld enhancement thus becomes a relevant non-perturbative
effect once velocities are at most of the order of the t-channel coupling strength,

1

v
∼ 1

α
≫ 1. (4.1)

Following [77], the traditional wave function formalism is adopted here, as
introduced in Eq. (2.11). The Sommerfeld factor S will be defined more con-
cretely in section 4.2. The infinite ladder exchanges resummed by solving the
two-particle Schrödinger equation are indicated in Fig. 4.1 by three dots. Instan-
taneous potential modes are drawn as dashed lines, hence all loop momenta are
of the potential scale, while non-relativistic particles are represented as solid lines.
A single insertion of the short-distance annihilation vertex f̂ is shown in blue,
explicitly denoting the field labels e1−4 which make up the two-particle external
states to the annihilation operator. No internal particle species of the ladder is
denoted since, naturally, all possibilities need to be respected in the resummation.
This includes also up-scattering from the neutral DM to almost degenerate states
and even kinematically closed virtual states. Although the total electric charge is
conserved in ladder exchanges, individual internal two-particle states may consist
of chargino anti-chargino pairs. Corresponding charge arrows are neglected in the
diagram. To describe forward scattering and thus allow for an application of the
optical theorem to obtain the total annihilation cross-section, the initial and final
states (χiχj) are the same (ignoring here possible permutations). As an aside to
this more exhaustive definition of SE one should note that SE commonly refers
only to effects on scattering states and no analogous term is coined for bound
states which do not permit for a free-theory counterpart description.

Some novel results of this chapter were published in [2], mainly regarding the
Higgs decoupling in sections 4.3 and 4.4. Some minor repetition of contents of
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... ...

f̂

any number of potential exchanges

χi

χj
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e1

e2
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e4

Figure 4.1: Exemplary forward scattering diagram with repeated, possibly
charged, ladder exchanges of potential modes (red dashed lines) between non-
relativistic fields (solid). f̂ denotes the short distance operator (blue) and i, j and
ei are generic field labels for neutralinos or charginos as occurring in Eq. (4.4).
Charge and fermion flows are suppressed.

[62] is, for the sake of completeness, unavoidable in this and the following chapter.
Further improvements and modifications of the numerical code base from [77] have
been developed in collaboration with M. Beneke, A. Bharucha, P. Ruiz Femeńıa,
A. Hryczuk and S. Recksiegel with a publication planned in combination with a
feature-complete code release in the near future [5].

4.1 Overview of neutralino dark matter

Supersymmetry [36] originally gained much attention for providing a solution to
the hierarchy problem of the SM [17, 94, 95] and has been widely studied since.
The hierarchy problem is resolved in SUSY once all super-multiplet components
are dynamical, protecting SM scalar masses from quadratic ultraviolet divergences
by cancellation between fermionic and bosonic field contributions in each complete
superfield. However, SUSY must therefor introduce (at least) one superpartner to
each degree of freedom in the SM, different only in its spin representation, and thus
predicts a plethora of new particles, even in its minimal realization. Many super-
partners are charged under electromagnetic and/or strong interactions providing
attractive targets for collider searches, however none have yet been observed in ex-
periments. Tensions with experimental null-results drive the need for ever larger
scale separations between the known SM and hypothesized supersymmetric scales
eventually threatening the possibility to solve the hierarchy problem as the SUSY
scale itself is large already. Current collider searches begin to reach into the low
TeV region [96] which is also of phenomenological interest for the purposes of
neutralino DM.

The minimal supersymmetric extension of the Standard Model includes several
WIMPs where the lightest one is stabilized by R-parity and can therefore take the
role of DM. For this work, the lightest supersymmetric particle (LSP) is taken
to be a neutralino, where any admixture of Higgsinos or gauginos is permitted,
while other SUSY partners are assumed to be sufficiently heavier to not affect
freeze-out computations. As departure from equilibrium occurs around temper-
atures T ∼ 25MLSP, thermal upscattering to heavier states at times most crucial
to thermal production becomes inefficient as long as the mass splitting is larger
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than ∼ 10%, i.e. O(10 - 100GeV) for TeV DM masses. In a maximally reduced
form, pure Higgsino or wino WIMP DM models become attractive due to their
minimality and theoretical simplicity and many results have been found for gen-
eral electroweak multiplets [32, 35, 82, 87, 97–104]. The mass range of thermally
produced DM was found to be broadly around 1 - 15TeV, disregarding also sterile
bino-dominated models, with 1.1 and 2.8TeV for the thermal pure Higgsino and
pure wino.

The relevant Lagrangian terms to describing the dynamics of non-relativistic
electroweakinos are only the gauge-kinetic terms and Higgs-interactions,

LMSSM = LSM +
1

2

 B̃

W̃√
2H̃

†

γ0
(
i /D − diag {M1, M2, MH̃}

) B̃

W̃√
2H̃1


+
√
2H̃†γ0PL

(
g2W̃

aT a + g1B̃
)
iσ2H∗

2

+
√
2H̃†γ0PR

(
g2W̃

aT a + g1B̃
)
sign(µ)H1 + “h.c.”. (4.2)

B̃ is the singlet bino, W̃ the wino isospin triplet and H̃ the Higgsino doublet
with hypercharge YH̃ = −1/2. Being charged, H̃ is a Dirac fermion encompassing
the Weyl-fermion super partners of both Higgs bosons H1,2, whereas W̃ and B̃
are Majorana fermions. The kinetic terms of the Higgs bosons are insignificant
beyond the fact that they give rise to the mass mixing angle αH as discussed in
section 4.3. The strictly positive mass term MH̃ ≡ |µ| is obtained after absorb-
ing sign(µ) into the upper component of H̃, c.f. Eq. (4.7), which puts it into the
Yukawa terms instead. It would be possible to analogously redefining the sign of
the corresponding boson H1, cf. [62], in which case the freedom to choose µ < 0 in
the MSSM Lagrangian affects in the Higgs potentials, not stated here. However,
this complicates applications of known results from the literature without much
benefits. Gauge indices are suppressed aside from the wino in the Yukawa cou-
plings. For more details on the interactions and mass mixing in the electroweakino
sector, see [105, 106].

The mass eigenstates in the electroweak broken phase are a set of four neutrali-
nos, Majorana fermions χ0

1,2,3,4, and two electromagnetically charged charginos,
Dirac fermions χ+

1,2. For the theory to provide the desired DM candidate, the LSP
must be a neutralino. It is conventional to order the neutralinos and charginos
according to their mass, thus

Mχ = MLSP =Mχ0
1
≡ min{Mχ0

i
}. (4.3)

Note that bosonic Higgs fields are not considered superpartners such that there
may even be BSM particles lighter than the LSP. Since the Higgs vacuum expecta-
tion value (VEV) is a soft scale quantity, v ∼ mZ , the hard scale remains unaffected
by mass shifts under electroweak symmetry breaking, MLSP ∼ min{MH̃,1,2}. Su-
perpartners of SM fermions (sfermions) may mediate annihilation processes but
are disregarded in calculations of the PNREFT potentials. Hence, sfermion coan-
nihilation models of near-degenerate sfermions to the DM cannot be treated here



38 4 SOMMERFELD-EFFECT FOR NEUTRALINO DARK MATTER

and their mass must here be chosen at least 25% heavier than MLSP [107]. Con-
versely, neutralino-sfermion coannihilation models neglecting electroweak SE have
also been considered in the literature [108, 109] and are accessible in a publicly
available tool [110].

As long as the lightest electroweakino is sufficiently split in mass from the other
two, thermal production dynamics are well approximated by a minimal WIMP
model. However, to parametrically rule out the possibility of up-scattering by
potential interactions demands mass splittings to be beyond the soft and therefore
of the hard scale. Furthermore, a decoupled description as a minimal WIMP
would also become inaccurate in models where s-channel scattering through Higgs
particles is resonant, cf. chapter 3. Resonant models are avoided in the following.

4.2 Sommerfeld enhancement in non-minimal models

The rich particle content with a large number of independent parameters in the
MSSM, even under the above limitations, causes several subtleties in when com-
puting Sommerfeld enhancement. An appropriate framework to obtain numerical
solutions has been developed in [64, 77, 111]. This section repeats the central con-
cepts and required definitions for later use without delving into too much detail of
what is already known in the literature for over a decade at the time of writing.

4.2.1 Factorization

For almost degenerate electroweakinos, i.e. MH̃,1,2 close enough to impact the
obtained relic density or annihilation spectra, the phenomenology of the model
becomes much richer and calculations correspondingly more complex than a min-
imal WIMP model. Specifically, for mass splittings of the order or below the
potential momentum scale the potential exchanges between two electroweakinos
can scatter between the degenerate fields. This means there are simultaneously
two complications present compared to the simple picture drawn in Eq. (2.11),
due to off-diagonal mass matrices and off-diagonal potential interactions. Once
electroweak symmetry is broken the Yukawa interactions of LMSSM give rise to the
new mass eigenstates χ±

1,2 and χ0
1,2,3,4 and the couplings to Higgs bosons involve

mass mixing matrices. Secondly, even when setting up a mixed initial two-particle
scattering state, it can scatter into other two-particle states of the same total elec-
tromagnetic charge but not necessarily of identical constituent charges meaning
χ0
e1
χ0
e2

may scatter into χ+
e3
χ−
e4

by exchange of a charged boson.

Analogous to Eq. (2.11), the leading order SE S(f̂) is defined as the ratio
between the resummed and tree-level approximated result, however now for each
specific short-distance annihilation process individually [77]. The hard 4-fermion
Wilson coefficients f̂ take the form of a matrix in the space of two-particle states
as seen in Fig. 4.1. The Sommerfeld factor becomes a rank-3 tensor, accounting
now for the possibility of scattering the initial state into any other state. For
annihilation of a specific initial state χiχj, it reads

Sij→ij(f̂) ≡
∑
{ek}

[ψe4e3,ij(0)]
∗ f̂(e1e2)(e4e3) ψe1e2,ij(0)

f̂(ij)(ij)
(4.4)
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where all indices ek, k = 1, 2, 3, 4, are summed over chargino and neutralino labels.
The total annihilation cross-section is

(σv)ij→light = Sij→ij(f̂) f̂(ij),(ij). (4.5)

As this thesis attempts to balance many different notations as best as possible,
the definition here differs slightly from its [77] where the SE is introduced carrying
subscript initials state indices (Sij). Considering angular momentum L and spin
S, which remain conserved in non-relativistic scattering processes to leading order,
the two-particle states can be decomposed accordingly and the corresponding wave
functions carry the quantum numbers ψ

(L,S)
ij,e1e2

. Since f̂ was kept general, Eq. (4.4)

adapts correspondingly and f̂ becomes the annihilation matrix of a specific partial
wave barring potential interactions [64].

For the present chapter, single particle labels (i, j, ek) are used while the later
chapter 5 investigates neutralino annihilation at late times where only DM initial
states are present (i= j=χ0

1=χ) and uses more compact two-particle labels I, J .
This distinction serves to emphasize the different physical surroundings between
freeze-out and annihilation processes as well as to stay close to the respective
literature. The s-wave annihilation matrix relevant to chapter 5 is identified as
f̂(1S0) = ΓTree and the respective s-wave DM-DM annihilation Sommerfeld factor
relates to the above definition as

SIJ ≡ Sχχ→χχ
(I1I2)(J1J2)

(
f̂(1S0)

)
=
[
ψ

(1,0)
J1J2,ij

(0)
]∗
ψ

(1,0)
I1I2,ij

(0). (4.6)

4.2.2 Qualitative properties

The strength of SE is crucially governed by the precise mass splittings between
different states rather than the overall mass scale, set aside Sommerfeld reso-
nances where the interplay of both is important, and one-loop corrections to
electroweakino mass eigenvalues are mandatory to obtain reliable results [107,
112]. Potential modes after the electroweak phase transition involve massive
gauge bosons and, moreover, in the MSSM also Higgs boson exchanges between
electroweakinos are possible. As a consequence, long-range forces always involve
non-Coulombic Yukawa interactions and wave functions at the origin ψe1e2,ij(0)
as they appear in Eq. (4.4) need to be computed as numerically solutions to the
Schrödinger equation. SEs sourced by Yukawa potentials differ qualitatively com-
pared to the simpler case of Coulomb potentials, primarily due to the presence
of Sommerfeld resonances, regions in parameter space near a point where a zero-
energy bound state solution occurs in the spectrum [93]. Sommerfeld factors near
such resonances grows more rapidly with the inverse velocity, exceeding the usual
1/v low-velocity limit scaling of Coulombic SE, and allows for multiple orders of
magnitude correction to perturbative results at phenomenologically relevant ve-
locities. As the non-relativistic particle mass increases and the scale ratio between
the long range force mediator and the high scale grows, the potential is gradu-
ally better approximated by a Coulomb potential and also the number of bound
state solutions grows. Hence, the “first” Sommerfeld resonance is named after the
lowest constituent mass M below which no negative energy solutions exist in the
physical spectrum. The first resonances for pure Higgsino and wino models are



40 4 SOMMERFELD-EFFECT FOR NEUTRALINO DARK MATTER

(Wh
2
)
SE

(Wh
2
)
pert

0

0.2

0.4

0.6

0.8

1.0

-6-4-20246

Figure 4.2: Sommerfeld enhancement measured by its impact on relic density
shown as an intensity map as well as by discrete contours. The light green band
indicates the region of 2σ deviation around of the dark matter density (0.1188).
Other MSSM parameters are as indicated, with Ai = 8TeV and Xt is fixed by
the measured Higgs mass. Figures were adapted from [107]. Left : Parameter
space log10(M1 −M2) over M2 is depicted with µ = 2M2. Right : Parameter space
µ−M2 over M2 is depicted with M1 = 2M2. A dark green band was added from
the updated analysis, see section 4.6 for discussions.

located near 7 and 2.28TeV while the second wino resonance is found at 8.77TeV
[87, 98].

In the full MSSM, the resonances are hypersurfaces through the parameter
space, slices of which are depicted in Fig. 4.2 [107] for varying wino masses (hor-
izontal) and bino or Higgsino splittings (vertical, left or right panel). Note the
logarithmic vertical scale for the bino mass splitting. The coloring indicates the
obtained relic density relative to the respective perturbative result and thereby
parametrically the strength of SE during freeze-out. Green bands indicate agree-
ment with the experimental ΛCDM energy density, light green being the orig-
inal analysis [107] and dark green the updated numerical analysis discussed in
section 4.6. A reduced relic abundance (red coloring) implies a more strongly
enhanced annihilation cross-section. The first Sommerfeld resonance is clearly
visible around M2 = 2.5TeV when the LSP is wino dominated and shifting to
larger masses as bino or Higgsino admixtures increase. Note that sfermion masses
have sizable impact on the location of the correct relic density contour even when
they are seemingly decoupled from the electroweakino masses [107]. The param-
eter space of Higgsino-admixed DM is under severe constraints from direct and
indirect detection experiments [91], which is not included in Fig. 4.2.

The expected parameter space of thermal wino-admixed DM can be read off as
approximatelyMχ = 2−3TeV and largely close to, yet above, the first Sommerfeld
resonance. Technically, this means that bound state formation should be included
in the early universe dynamics, see section 6.5 for a detailed description, it is never
included in MSSM analyses included in this work. One may justify this by firstly
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the fact that BSF, while significant, usually reduces the obtained relic density
only on order of 10%. Secondly, as shall be derived in chapter 6, shallow bound
states typically become of relevance only at low velocities, that is when chemical
decoupling is almost complete and effects from enhanced annihilation via bound
state formation are less impactful.

It remains to understand how this framework handles mass splittings beyond
the typical (P)NREFT power counting δM = O(Mv2). First off, hydrogen-like
systems where two non-relativistic particle species exist with a large mass sepa-
ration, δM ≫ MLSP, are straightforward in their treatment. It suffices to keep
track of mass splittings to two NREFT reference scales [77]. In order to obtain
a uniform theory, this is always done in the calculation of potential t-channel
diagrams as well as for short distance annihilation processes, see also the later
section 5.2.2. To do so, however, one must justify the use of NREFT propagators
i/(p0− p⃗ 2/2M − δM) for large mass splittings δM ≫Mv2. This is possible under
the additional weak assumption that any interaction vertex other than the bilin-
ear NR kinetic terms (i.e. any three-point vertices or higher) are proportional to
a small coupling constant g ≲

√
v. It is very much natural to do so, as any un-

suppressed interaction would be indicative of an overall non-perturbative theory,
meaning that soft interactions to non-relativistic fields would be power suppressed
in the EFT yet arbitrarily high order of purely-soft loops would contribute iden-
tically at that order. From simple power counting, one can now show that the
one-particle irreducible two-point function is, at next-to-leading power in the EFT
counting, simply given by the insertion of the kinetic bilinear term. Hence, the
resummed propagator becomes the usual one while any insertion of further inter-
actions may still be treated in perturbation theory. Lastly, the question arises
whether also the PNREFT leading-order two-particle Green function, that is the
Sommerfeld factor, respects the fact that some mass splittings may be large and
set the ladder off-shell thus breaking the non-perturbative power counting. In
the example of neutralinos, ladder diagrams depend on δM only through W - and
Z-boson exchanges, via terms [77]

δMe4e1δMe3e2

m2
Z

× vVe4e1v
V
e3e2

,

where vV denote the respective vector boson couplings between the subscripted
mass eigenstates. This means vV is systematically suppressed by mass mixing
matrix elements once δMeaeb ≫ mZ . The combination of both terms remains
under control and, therefore, every perturbative ladder diagram is found to always
be of order g2(q⃗ 2 +m2

Z)
−1 ×O(1). In summary, the combined power counting

v ∼ α2 ∼ mW/Mχ ensures that the mass mixing appropriately decouples heavy
channels in the potential terms.

Apart from theoretical concerns, there are practical problems caused by non-
degenerate masses when numerical methods are invoked without sufficient care
being taken to include such kinematically closed channels. Instabilities occur once
mass splittings become too large yet can be circumvented using an appropriate
mathematical formulation of the Schrödinger problem [77, 113].

Treating the power counting in short distance annihilation operators while
resumming large Sudakov logarithms involves yet some additional care and will
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be discussed in the next chapter. For now, it shall suffice to have confidence in
the computed Sommerfeld enhancement for tree-level short distance annihilation
processes.

4.3 Higgs sector in the MSSM

The present section 4.3 and the following section 4.4 include details on the treat-
ment of the Higgs sector and electroweak symmetry breaking in the MSSM. For
completeness and homogeneity of the structure, this section collects all required
bases and angles even though the unbroken mass eigenbasis is only relevant to
chapter 5.

There are three different field bases for the Higgs sector, all useful in their own
right: the “SUSY basis” (H1,2), the mass eigenbasis in the electroweak symmet-
ric theory (h, H) and the mass eigenbasis after electroweak symmetry breaking
(h0, A0, H±, H0). Additionally, in the NREFT of electroweakinos there arises a
convenient rotation of the Higgs bosons titled the “parity decomposition” (H±).
All calculations for neutralino annihilation concern energies of at most the hard
scale, 2MLSP, where all heavier R-parity odd superpartners are already integrated
out. Hence, usefulness and convenience of the notation refers solely to the relation
between Higgs bosons and electroweakinos. The SM and Higgs sectors may at this
point also be thought of as a special case of the 2 Higgs-doublet model [114] with
interactions fixed by SM gauge couplings.

4.3.1 SUSY field basis

Invariance under supersymmetry requires interaction terms to be given by a holo-
morphic superpotential [36] which forbids the presence of the usual SM Yukawa
interactions where a single Higgs isospin doublet couples to the right-handed up-
type and down-type quarks simultaneously. Instead a second scalar Higgs doublet,
alongside a corresponding fermionic Higgsino super-partner, is introduced which
takes the place of the SM charge-conjugated Higgs boson. The two Weyl-spinor
super partners demanded by SUSY supply the required degrees of freedom to
construct the Higgsino Dirac 4-spinor, which is still an isospin doublet in every
component,

H̃ =

(
sign(µ)ψ1

−iσ2 ψc2

)
(4.7)

where charge conjugation is denoted by c and σ2 is the isospin Pauli matrix. The
explicit sign(µ) ensures the positive mass term MH̃ in Eq. (4.2).

This fundamental requirement of holomorphy in SUSY makes the “SUSY ba-
sis” H1,2 most natural basis of the MSSM for the scalar components of the super-
multiplets. By construction, this basis disentangles the coupling to up-type and
down-type right-handed fermion flavors and H1,2 must therefore carry opposite hy-
percharges Y = ∓1/2, writing ĝ = Y g for the corresponding coupling in Eq. (2.3).
Exploiting the pseudoreal fundamental representation of SU(2), H̃ still has a well-
defined hypercharge but in turn involves the anti-symmetric tensor iσ2. Analogous
combinations follow for field rotations of the Higgs bosons. Throughout this the-
sis, the term “super-partner” is applied to Higgs and Higgsino degrees of freedom
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irrespective of assumed bases, even though H1,2 are the literal super-partners of
the Higgsino H̃.

4.3.2 High energy mass eigenbasis

The notational convention to differentiate large from small masses by capital letters
enters muddy waters with the MSSMHiggs sectors which may be of the electroweak
scale or much heavier thanMLSP for the BSM particle content. To ease comparison
to existing notations and allow to write the SM Higgs boson consistently, all Higgs
boson mass parameters are denoted by small letters, m instead of M . Regardless,
also scenarios of (partially) heavy Higgs masses will be considered within this
notation. The mass matrix of the scalar Higgs sector involves off-diagonal entries
m2

12 in the SUSY basis [105] already in the electroweak-symmetric phase, giving rise
to a mixing angle αH . The symmetric mass eigenbasis is defined by an orthogonal
rotation (

h
H

)
≡
(
−cαH

sαH

sαH
cαH

)
·
(
iσ2H∗

1

H2

)
(4.8)

where sx, cx, tx abbreviate the sine, cosine and tangent of x and αH is defined by

tαH
=

−2m2
12

m2
H2

−m2
H1

+
√

4m4
12 + (m2

H2
−m2

H1
)2

(4.9)

to diagonalize the mass Higgs boson mass matrix. Note that [2] has a mistyped
exponent (m2

12) in the root of its equation (A.2). mH1,2 and m12 are the soft SUSY
breaking parameters and the obtained mass eigenvalues in the unbroken Higgs
sectors are

m2
h,H = MH̃ +

m2
H1

+m2
H2

2
± m2

12

s2αH

. (4.10)

4.3.3 Low energy mass eigenbasis

After electroweak symmetry breaking, which will be discussed in more detail in
section 4.4, the Higgs potential is expanded around a different minimum. Hence,
one finds new masses and also a new mixing angles, α and β, relative to the SUSY
basis. In many applications, α is more common than αH as it sets the relation
between the charge-neutral super-partners H0

1,2 and the lightest charge neutral real
scalar h0 [36],

1√
2

(
−sα cα
cα sα

)
·
(
h0

H0

)
+

i√
2

(
−cβ sβ
sβ cβ

)
·
(
G0

A0

)
≡
(
H0

1

H0
2

)
+ const. (4.11)

The right hand side dropped constant terms from vacuum expectation values.
G0 is the Nambu-Goldstone boson, turning into the longitudinal Z-boson mode.
To agree with experimental measurements, mh0 must coincide with the 125GeV
resonance measured at the Large Hadron Collider [19, 115]. Loop corrections to
mh0 are sizable, however, here only leading order effects are regarded. The Higgs
boson spectrum in the electroweak-broken phase is well known [36] and includes
5 real degrees of freedom in the light and heavy neutral scalars h0 and H0, the
neutral pseudoscalar A0 and the charged scalars H±.
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4.3.4 Parity decomposition

The degrees of freedom of H̃ are in NREFT separate particle annihilator and anti-
particle creator fields which, to leading order, are eigenstates of the parity even
projection operator P+. In a 4-component notation, P+ = (1+ γ0) /2. From the
Weyl fermion representation of the Higgsino, Eq. (4.7), it becomes clear that the
non-relativistic fields ψ1 and iσ2ψc2 both rotate symmetrically by a π/4 rotation [2,
62]. Since all hard modes are integrated out in NREFT, only the respective anni-
hilation operators are of relevance and, by virtue of the underlying supersymmetry
in the MSSM Lagrangian, also only the parity even scalar Higgs combination ap-
pears,

LUV[H1,2] −→ LNR[H±] = LNR,LO[H
(UV)
+ ] + higher orders.

Only H
(UV)
+ remains in leading-order NREFT. Disregarding masses of the Higgs

bosons for the moment, H
(UV)
± are the unbroken-phase parity eigenbasis of the

Higgs fields,

H
(UV)
± ≡ ±sign(µ)H1 + iσ2H∗

2√
2

, (4.12)

mirroring the π/4 rotated definition of the NREFT Higgsino annihilation operator

fields (which do have equal masses). The absence of H
(UV)
− in the NR MSSM

was already observed in [62] together with the analogous analytic decoupling of
one of the four neutralino eigenstates from the mass-mixing, yet not all subtleties
regarding sign(µ) and H

(UV)
± were understood in detail at the time.

In full one-loop computations with propagating Higgs fields, the interactions
must now be projected into the mass eigenbasis in order to have diagonal propa-
gators. However, for the computation of the anomalous dimension used in chapter
5 the finite masses are irrelevant to the required UV divergences [2, 62], which

makes H
(UV)
± a useful decomposition. Still, mH can become large in which case H

is to be considered as static and does not propagate such that the projection onto
H yields 0 as the loop is suppressed by the approximately infinite mass mH . This
decoupling can be incorporated in a straightforward fashion as a discrete step in
the interactions by changing the number of active Higgs bosons nH = 2 → 1. The
interaction Lagrangian in NREFT becomes

LNR,LO[H
(UV)
+ ] −→ LNR,LO[h,H, nH ] = LNR,LO[H+]

where H+ is now the linear combination of the unbroken mass eigenstate fields

H± ≡ sαH
± sign(µ)cαH√

2
h + δ2nH

cαH
∓ sign(µ)sαH√

2
H , (4.13)

with the Kronecker-delta δ2nH
removing the second term once nH = 1. Again, only

H+ appears in the LO NREFT Lagrangian. Due to this definition, H± are not
canonically quantized fields and should be thought of as mere linear combinations
abbreviating interactions with the mass eigenstate present at the considered energy
scale. The surviving term for nH = 1 gives an effective coupling upon integrating
out the heavy Higgs doublet and since only internally propagating Higgs fields
are considered in chapter 5, the entire decoupling can be easily incorporated into
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calculations via

a+ ≡
{ 1√

2
(sαH

+ sign(µ)cαH
) if nH = 1

1 if nH = 2
. (4.14)

The definition differs slightly from the corresponding expressions in [62] by incor-
porating sign(µ) explicitly in Eq. (4.12) and therefore a+ whereas αH now remains
independent of it. The main advantage of this updated construction is that αH is
now unambiguously defined by tαH

in (4.9) and does not flip sign alongside µ.

4.4 Treatment of electroweak symmetry breaking

This section clarifies some aspects of the treatment of electroweak symmetry break-
ing (EWSB) in the model and the practical implementation for the purpose of
calculating SE. To achieve a homogeneous power counting, the various scales for
the gauge boson masses, the top quark decoupling and EWSB are assumed to all
coincide at the soft scale,

µ̂EWSB ∼ mW ∼ mZ ∼ mt ∼Mv, (4.15)

which is the lowest scale relevant to chapters 4 and 5. In thermal production, the
kinetic energy is set by the bath temperature and thus the Sommerfeld enhanced
region is to be considered to take place in the electroweak broken phase, demanding
the PNREFT potentials to respect electroweak gauge boson masses. The natural
choice is now to match to (P)NREFT already in the EWSB basis. Furthermore,
at or below µ̂EWSB any ultraviolet extension must match onto the SM such that
parameters are defined by experimental measurements and all BSM particles are
latest integrated out at mW . As a consequence, mh0 = 125GeV must be fulfilled.

The electroweak phase transition is triggered from the Higgs potential develop-
ing a new minimum at non-zero field values. These VEVs are commonly defined
in the SUSY basis as

〈
H0

1,2

〉
= v1,2/

√
2 [105]. Their geometric sum defines the

total VEV measured in the SM, vsm =
√
v21 + v22 = 246.22GeV [116]. Remaining

degrees of freedom of the Higgs sector are typically parametrized by mA0 and

tβ = tan(β) ≡ v2
v1
. (4.16)

The VEV angle β coincides with the pseudoscalar rotation angle in the EW broken
phase already introduced in section 4.3.3 [36]. The fact that the mass eigenbasis
after EWSB does not coincide with the SUSY basis has interesting consequences for
the interpretation of the Yukawa couplings in the MSSM. In the SM, the Yukawa
couplings are simply derived from measurements of fermion masses. However in
the MSSM, both SUSY basis Higgs states gain a VEV, meaning that the SM
Yukawa coupling must actually be smaller than what is found in the MSSM, by
factors

ysmf =

√
2mf

vsm
=

√
2mf

v2,1

v2,1√
v21 + v22

= yMSSM
f ×

{
sin(β) if f ∈ U
cos(β) if f ∈ D

(4.17)

where U = {u, c, t} indicates any up-type quark and D = {d, s, b, e, µ, τ} any
down-type fermion which couple to H1 and H2, respectively. This becomes of
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relevance when one allows for mW ≪ mA0 ≪ MLSP in which case a decoupling
step of the heavier Higgs bosons must be included when evolving the couplings from
the hard to the low scale. A subtlety to this renormalization scale independent
statement is that the factors sβ (or cβ) were found under the assumption that
mA0 ∼ µ̂EWSB ∼ mW . A detailed analysis shows that in a heavy Higgs scenario,
one would instead find an effective coupling yf,eff = ysmf sαH

/sβ at the scale mW

and an analogous matching factor to the one derived in Eq. (4.17) but in terms of
the EW symmetry rotation angle sαH

(or cαH
) at the decoupling scale mA0 . These

differences can safely be neglected, instead always relying directly on Eq. (4.17) at
the renormalization scale µ̂ = mA0 , since a scenario where mA0 ≫ mW also implies
αH = β +O(m2

W/m
2
A0) [36].

EWSB causes mass mixing terms of order of the soft scale, ∼ g1,2 vsm, which
change the electroweakino mass eigenstates and shift the eigenvalues by O(mW ).
As a consequence, only a subset of neutralinos and charginos can be degenerate
within ultrasoft mass splittings, see section 5.2.1. Concerns arising from soft or
hard mass splittings regarding the computation of the SE were already alleviated
by the earlier discussions regarding the applicability of PNREFT in section 4.2.2.

With the setup of the MSSM and EWSB clarified, this chapter will now intro-
duce the renormalization group running to get precise input values for the numeric
results of section 4.6 and also chapter 5.

4.5 Renormalization group evolution in the SM andMSSM

“Running couplings”, that is the renormalization group equation (RGE) solution
of coupling strengths, is by far the best known resummation procedure in quantum
field theory and conceptually analogous to the Sudakov resummation investigated
in chapter 5. Instead of using a single experimentally determined value for the
coupling strength, one derives an all-order solution to the fixed order differential
equation obtained from the condition that physical observables must be indepen-
dent of any renormalization scale choice at every perturbative order. Since the
SE and hard annihilation process are evaluated at widely separated scales, one
expects notable effects from inclusion of running couplings. This section discusses
the implementation of one-loop Yukawa and two-loop electroweak couplings, go-
ing beyond previously used treatments. Furthermore, state-of-the-art numerical
inputs for all SM couplings are derived.

To clearly separate the Higgsino mass parameter µ from the dimensional reg-
ularization renormalization scale µ̂, the latter is denoted with a circumflex accent
(“hat” symbol). To further preclude possible misinterpretation Yukawa couplings
and gauge coupling strengths are also denoted with a hat, ŷ and α̂, when referring
to their values in the minimal subtraction scheme in dimensional regularization
(MS). Their un-hatted values instead refer to the respective on-shell scheme val-
ues.

A convenient notation for the RGEs uses the reduced coupling strengths

a1 ≡
5

3

α̂1(µ̂)

4π
, a2,3 ≡

α̂2,3(µ̂)

4π
, af ≡

ŷf (µ̂)
2

16π2
, (4.18)

where f ∈ {e, µ, τ, u, d, c, s, t, b}. This definitions efficiently absorb all factors of π
from the RGEs, leaving compact expressions in terms of only rational numbers.
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The factor 5/3 in the reduced hypercharge coupling strength is adopted from a
wide-spread convention which originated from SU(5) grand unified theories [117].
Specifically, the running couplings solve a system of coupled differential equations
defined by the beta-functions β(µ̂),

dax
d log µ̂2

= 2µ̂
dax
dµ̂

≡ βx ≡ ax
(
β(0)
x + axβ

(1)
x +O(a4x)

)
, (4.19)

where β
(i)
x are homogeneous functions in all ax of combined order i+ 1.

The RG running will always be performed in the unbroken phase since µ̂EWSB

is the lowest scale (soft scale) in all processes, even though the Universe may have
already undergone EWSB. On the one hand, this greatly simplifies the analytic
expressions by removing many additional mass scales. Furthermore, the running
couplings are also required in chapter 5 where the running of hard annihilation
Wilson coefficients is computed in the EW symmetric phase. The choice is one
between assuming the running to the hard scale to be caused by field fluctuations
of such short wavelength that EWSB remains ineffective or assuming the EW
broken thermal environment with a Higgs condensate background to define even
the dynamics of virtual quantum fluctuations.

4.5.1 Full Yukawa dependence of the RGE

This subsection compiles the complete one loop beta functions for all reduced
coupling strengths and also two-loop terms for the electroweak gauge couplings
a1,2. These results are not conceptually new and were adopted by combining
existing results [114, 117–119] but are nonetheless not present in the literature in
the here required form. The number of dynamical Higgs fields nH is kept general
which in turn allows to decouple the heavier Higgs doublet H at an arbitrary
scale later on. This is needed since mA0 is a free input parameter of the MSSM.
Furthermore, the number of active flavors nq is left unspecified as in known results
which technically also allows to decouple the top quark at any scale, however this
is not used in later numerical evaluations instead relying on starting inputs already
in the nq = 6-flavor scheme.

To one-loop accuracy, the gauge coupling renormalization remains independent
of any other couplings whereas Yukawa interactions yield mixing already at this
order. The one-loop contributions are

β
(0)
1 =a1

(
1

10
nH +

2

3
nq

)
, (4.20)

β
(0)
2 =a2

(
−44− nH

6
+

2

3
nq

)
, (4.21)

β
(0)
3 =a3

(
−11 +

2

3
nq

)
, (4.22)
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β
(0)
U,g =− 17

20
a1 −

9

4
a2 − 8a3

+ 3∥ãU∥+ δ1,nH
(3∥ãD∥+ ∥ãL∥) +

3

2
ãU,g −

4δ1,nH
− 1

2
ãD,g, (4.23)

β
(0)
D,g =− 1

4
a1 −

9

4
a2 − 8a3

+ 3δ1,nH
∥ãU∥+ 3∥ãD∥+ ∥ãL∥+

3

2
ãD,g −

4δ1,nH
− 1

2
ãU,g, (4.24)

β
(0)
L,g =− 9

4
a1 −

9

4
a2

+ 3δ1,nH
∥ãU∥+ 3∥ãD∥+ ∥ãL∥+

3

2
ãL,g, (4.25)

where βU(D/L),g is the Yukawa coupling beta function for the up-type quark (down-
type quark / charged Lepton) of generation g. The compact notation uses

∥ãU∥ ≡
∑
g

ãU,g =
∑
x=u,c,t

ãx, (4.26)

∥ãD∥ ≡
∑
g

ãD,g =
∑
x=d,s,b

ãx, (4.27)

∥ãL∥ ≡
∑
g

ãL,x =
∑

x=e,µ,τ

ãx, (4.28)

provided all respectively summed fermions are dynamic. Further,

ãU =

{
aU for nH = 2,

aU · sin2(β) for nH = 1
, (4.29)

ãD =

{
aD for nH = 2,

aD · cos2(β) for nH = 1
, (4.30)

ãL =

{
aL for nH = 2,

aL · cos2(β) for nH = 1
(4.31)

takes care of the mixing to the light mass-eigenstate h which still propagates in
the loops even when the heavier doublet is integrated out. As mentioned above,
αH ≈ β is used in the matching the decoupled nH = 1 theory. In the litera-
ture, the Yukawa couplings are often encoded in 3-by-3 matrices YU,D,L and traces
thereof. In contrast, here a vectorial representation as aF (F = U,D,L) is pre-
ferred, implicitly pointing to the fact that no mass mixing is considered for the
light fermions.

For nH = 1, the definitions (4.20)-(4.24) correspond to the result of the SM
if the ãU,D were treated as traditional Yukawa couplings aU,D [117]. For nH = 2
they agree with the MSSM where only the second Higgs doublet is left dynamic
out of the entire BSM particle content, whereas all R-parity odd particles de-
couple below 2MLSP [114]. The results of [114] only include the third generation
fermion couplings at,b,τ but can be generalized to respect all generation without

additional calculations. For example, for β
(0)
b the only complication to including

all generations is to understand which contribution of ab arise from ∥aD∥, that
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is from the generation-independent Higgs self-energy diagrams, and which ones
from aD,g=3 that is from generation-specific triangle diagrams connecting to the
external bottom-quarks present in the Yukawa-interaction operator. The former
must coincide with the lepton contribution up to a factor Nc = 3 counting the
number of colors. The terms mixing aU,g and aD,g at one loop originate from from
the left-handed quark isospin doublet self-energies and must be specific to the
given generation g when neglecting mass mixing effects. The two conditions can
be expressed mathematically as

∂

∂ ∥ãU∥
β
(0)
U,g =

∂

∂ ∥ãD∥
β
(0)
D,g = Nc

∂

∂ ∥ãL∥
β
(0)
D,g, (4.32)

as well as
∂

∂ ∥ãU∥
β
(0)
D,g =

∂

∂ ∥ãD∥
β
(0)
U,g (4.33)

because up-type quarks are assumed to not affect the down-type quark RGEs of a
different generation or lepton couplings in the MSSM. Similarly, for the generation-
specific terms

∂

∂ ãU,g
β
(0)
U,g =

∂

∂ ãD,g
β
(0)
D,g. (4.34)

The electroweak 2-loop terms required by power-counting for NLL Sudakov
resummation in chapter 5 are [2, 62]

1

4
β
(1)
1 =

9nH
50

a1 +
9nH
10

a2 + nq

(
19

30
a1 +

3

10
a2 +

22

15
a3

)
− 17

10
∥ãU∥ −

1

2
∥ãD∥, (4.35)

1

4
β
(1)
2 =

3nH
10

a1 −
272− 13nH

6
a2 + nq

(
1

10
a1 +

49

6
a2 + 2a3

)
− 3

2
∥ãU∥ −

3

2
∥ãD∥. (4.36)

All other coupling strengths are kept at one-loop accuracy since they only enter at
NLO in the running of α1,2. Therefore the quartic Higgs self-coupling never enters
in the computation of the running couplings. These two-loop results are included
in numerical evaluations of this chapter as well.

The results of this subsection define the system of differential renormalization
group equations. Due to the complicated coupled differential equations in the
Yukawa couplings, where formally all Yukawa couplings are counted equally despite
the hierarchy yt ≫ yf ̸=t present in realistic systems, analytic solutions are not
considered, directly relying on numerical results instead.

4.5.2 Precise numeric Standard Model parameters

To solve the RGEs numerically, experimental data is necessary for realistic bound-
ary conditions to the system of differential equations. However, also theoretically
it is important to use a well defined renormalization scheme at all points in the
computations by choosing a unique set of independent input parameters and sys-
tematically deriving any dependent quantities at a fixed precision. For example,
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the electroweak sector of the SM is often defined by [120] the (inverse) electro-
magnetic fine structure constant, the squared Weinberg angle sine, the Z-boson
mass and the Fermi constant which makes the W-boson mass a dependent value
mW = mW (α−1, sW ,mZ , GF ). The importance of a consistent renormalization
scheme can exemplified already at tree-level. If one was to compute the annihila-
tion of a neutralino pair into photons to first order in the gauge couplings, neglect-
ing SE, naive physical understanding correctly predicts this cross section to be zero
as all participating particles are neutral under photon interactions. However the
(EW symmetric) electroweakinos mixing into the neutralino mass eigenstate do in
fact annihilate into pairs of gauge bosons, including photons. This is necessarily so
as they also make up the chargino mass eigenstates. The neutralino annihilation
cross-section therefore only vanishes due to the relation between the electroweak
gauge couplings α1,2 and the Weinberg angle, s2W = sin2 θW = α1/(α1 + α2). A
careless approach might now use s2W not related to the exact values of α1,2 but
taken from some other experimental input hence breaking theoretical consistency,
violating the cancellation in electromagnetic processes of neutralinos and lead-
ing to non-vanishing annihilation cross-sections. Note that a seemingly similar
yet physical non-cancellation occurs when resumming electroweak Sudakov loga-
rithms in neutralino annihilation to leading order, where the resummed inclusion
of charged gauge-boson emission allows for a loop-order coupling to the photon
which is enhanced by the large Sudakov logarithms [62].

The renormalization scheme employed here makes use of on-shell mZ and mW

masses in the electroweak sector with the addition of the fine structure constant in
the MS-scheme at mZ setting the Higgs VEV. All inputs are listed in Tab. 1. Fol-
lowing [99], MS values are indicated by hatted quantities and the 6-flavor scheme
is implied as the top-quark is considered dynamic above mZ . The fine structure
constant and W and Z-bosons are known to high precision in the SM while a de-
pendence on GF only produces unnecessary complications when aiming to compute
processes in the EW symmetric phase.

Due to the rather large interaction strength of the strong interaction (QCD),
higher loop orders are not as rapidly suppressed as for electroweak processes and
the public tool RunDec is employed to precisely compute α̂3 in the 6-flavor scheme
as well as the quark masses at mZ , which provides state-of-the-art values. To do
so, quark decouplings are assumed at their respective MS-masses and decoupling
and RG evolution was done at 5-loop accuracy, with inputs taken from [116]. The
top quark mass is given only in the on-shell scheme and was matched to MS at
4-loop accuracy assuming nf = 5. All masses and α̂3 are obtained at µ̂ = mZ for
nf = 5 and only then matched onto the 6-flavor scheme. For the Lepton Yukawa
couplings, recent results at the scale µ̂ = Q0 = 172.5GeV exist for ŷe,µ,τ [122] and
can be run to mZ with nH = 1. This introduces the assumption mA0 > Q0 which
is reasonable given current experimental constraints. In practice, this assumption
is numerical almost unnoticeable. Yukawa couplings are actually only needed at
one-loop accuracy allowing to us simple tree-level matching relations to extract
them from the mass values, which themselves are now computed at much higher
accuracy than formally required,

ŷq(mZ) ≡
√
2 m̂q(mZ)

246.22GeV
, q = u, d, s, c, b, t. (4.37)
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input quantity symbol & value

Z-boson mass mZ = 91.1876GeV
W-boson mass mW = 80.385GeV

fine structure constant α̂em = 1/128.143
Weinberg angle sine square ŝ2W = 0.232444
strong coupling constant α̂3 = 0.10778

up-Yukawa ŷu = 7.14413× 10−6

down-Yukawa ŷd = 0.0000154459
strange-Yukawa ŷs = 0.000308918
charm-Yukawa ŷc = 0.00359552
bottom-Yukawa ŷb = 0.0164189
top-Yukawa ŷt = 0.972632

electron-Yukawa ŷe = 2.77803× 10−6

muon-Yukawa ŷµ = 0.000585231
tauon-Yukawa ŷτ = 0.00994096

Table 1: Precise numerical standard model inputs used to define the renormal-
ization scheme for calculations in chapters 4 and 5. Hatted quantities are un-
derstood in the MS-scheme with 6 active quark flavors evaluated at µ̂ = mZ .
α̂em and ŝ2W are computed by one-loop matching [99] from the on-shell val-
ues mW,Z , α

on-shell
em = 1/128.943, in turn taken from [116]. α̂3 corresponds to

α̂
nq=5
3 (mZ) = 0.1181 for 5-active flavors and has been matched at 4-loop accuracy

using RunDec 3.1 [121]. Yukawa couplings relate to the masses of Tab. 2 accord-
ing to Eq. (4.37).

The ad-hoc introduction of the measured SM Higgs VEV [116] does not break
the renormalization scheme as it is used only prior to setting the inputs of any
calculation and is thus fully degenerate with experimental uncertainties. Lastly,
electroweak coupling strengths in MS are computed from one-loop matching rela-
tion to the on-shell masses mW,Z and α̂em(mZ) [99], finding α̂1(mZ) = 0.0101671
and α̂2(mZ) = 0.0335727, and define the starting values to solve the RGEs together
with α̂3 and the Yukawa.

4.5.3 Numerical evaluation of the running couplings

Using the SM inputs derived in the previous section, there are two remaining
degrees of freedom in the numerical solution which need to be fixed by BSM pa-
rameters. Firstly, the VEV mixing angle tβ is a conventional input to MSSM
models. Secondly, the decoupling step for the heavy Higgs doublet is chosen as
mA0 , the lightest mass eigenstate of the BSM Higgs sector after EWSB. Other
choices such as mH+ or mH are possible but almost identical as the mass splittings
between the two is relatively small whenever there is a notably large scale separa-
tion to mZ . The derivation of the RGEs in section 4.5.1 and the found numerical
values of section 4.5.2 for the SM inputs were confirmed in a blind double-check.

Fig. 4.3 shows the numerical result,s taking tan(β) = 3 and mA0 = 1TeV, for
the running of the gauge coupling strengths (upper panel) and the Yukawa cou-
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fermion MS mass at mZ

up m̂u = 1.24382MeV
down m̂d = 2.68919MeV
strange m̂s = 53.7838MeV
charm m̂c = 625.994MeV
bottom m̂b = 2.85859GeV
top m̂t = 169.339GeV

electron m̂e = 483.666 keV
muon m̂µ = 101.891MeV
tauon m̂τ = 1.73076GeV

Table 2: Precise SM fermion masses m̂f in the MS-scheme with 6 active quark
flavors evaluated at µ̂ = mZ . Quark masses were matched and evolved to mZ at
4 and 5-loop accuracy, respectively. Starting values for both are taken from [116].
Lepton Yukawa couplings are taken from [122] at Q0 = 172.5GeV and evolved to
mZ using the coupled system of RGEs given in section 4.5.1.

plings (lower panel) with each value normalized to its respective boundary condi-
tions from Tab. 1. mZ and mA0 are indicated by vertical lines. Note that all de-
picted curves are continuous since the Yukawa couplings ŷ are being shown rather
than the discontinuous objects ãf from Eqn. (4.29)-(4.31). At scales µ̂ > mA0 ,
the decoupling firstly enhances the depicted up- and down-type Yukawa couplings
by powers of 1/ sin(β) and 1/ cos(β). Secondly, several diagrams vanish once the
complete 2 Higgs-doublet field content is dynamical. Crucially, lepton RGEs then
become independent of the two largest SM couplings, y2t /4π ∼ α3 ∼ 0.1. This is
not the case for quarks, where still the left-handed doublet self-energy loop gives
rise to a contribution from ŷt and also the strong coupling α̂3 contributes sizably
making the dependence on nH less noticeable. Hence, the Higgs decoupling step is
especially significant for lepton couplings (black curves in the lower panel) where
even the sign of the beta-functions changes. Similar, albeit weaker, effects are seen
in the light up- and down-type quarks of the first two generations (dashed red and
blue curves) above µ̂H . This leads to the interesting feature that around typical
neutralino DM masses, µ̂ = 1 − 5TeV, the evolved Lepton couplings are almost
identical to their starting values, y(2Mχ) ≈ y(mZ). For the light quarks u, c and
d, s as well as all three leptons, the RGE is always dominated by ŷb,t or gauge
couplings and they are indistinguishable in the depicted resolution.

4.6 Numerical impact of improved coupling values

The impact of the improved running couplings is discussed in this section an illus-
trative MSSM benchmark points to exemplify the importance of running Yukawa
couplings and confirm the found results with expectations. Finally, also updates
to the relic density contour of wino-Higgsino DM is studied in a single slice of
parameter space.

According to Fig. 4.3, inclusion of renormalization group evolution is expected
to result inO(30%) effects in tt or bb channels, since ŷf enters at least squared in the
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Figure 4.3: Numerical solutions for the MS running couplings (4.20)-(4.25), in-
cluding the two-loop terms (4.35) and (4.36), normalized to the respective bound-
ary values at mZ as given in section 4.5.2. tan(β) = 3 and the heavy Higgs is
decoupled below mA0 = 1TeV. Upper panel : The gauge coupling strengths α̂1,2,3

(blue, red, black). Lower panel : The Yukawa couplings yf where for f = e, µ, τ
(black), f = u, c (dashed red) and f = d, s (dashed blue) the normalized couplings
are respectively almost identical. ŷb(t) are shown by the solid blue (red) curves.
The discontinuous factor δ1,nH

+ δ2,nH
cos2 β of ãL,D or sin β for aU , is not part of

ŷf .

cross section. Both, the running of the weak and hypercharge coupling strength are
notably less significant, ofO(5%), while the QCD coupling α̂3 only enters in WIMP
annihilation through loop processes. The importance of including RG evolutions
is thus expected to be strongest in models with a large primary branching fraction
BRtt̄ ∼ 1. One such illustrative model is given by BHW-mass, as defined in Tab. 4
in App. B. All electroweakinos are close in mass and the LSP has more than 5% ad-
mixture from bino, wino and Higgsinos while tβ = 2.2 is relatively small enhancing
the MSSM top-quark coupling. The total Sommerfeld-enhanced DM annihilation
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cross-section with complete one-loop running couplings is 2.4× 10−27cm3/s at a
typical late-time DM velocity v = 0.002. It is almost evenly split between four pri-
mary final state channels: W+W− (29%), H0Z (23%), tt (21%) and A0H0 (20%).
Excluding RG evolution of any couplings, the total annihilation cross-section would
be larger by 12%, which is driven by a reduction of the W+W−-channel by about
-10% from RG evolution to the hard scale, itself entirely dominated by running
of the gauge couplings, and a reduction of the tt-channel by -29%. As predicted,
the latter is primarily affected by inclusion of running Yukawa couplings (-23%)
and less so by only the running of the gauge couplings. These values are nicely
in agreement with, for example, the estimated dependence of a s-channel Z-boson
interaction χ0

1χ
0
1 → Z → tt. Both α̂1,2 and ŷ2t enter the cross section linearly

and the strength of the running can be approximately read from Fig. 4.3 around
µ̂ = 2TeV.

In order to reach percent-level precision on annihilation cross-sections and
thereby relic abundances, RG evolution must be respected. Branching ratios into
primary bb can be even more strongly affected, ≥ 30%. However, for a large set of
experimentally viable models, annihilation into primary W+W− pairs dominates
the cross section [107] and the impact of running couplings, specifically Yukawa
couplings, on the total cross section is correspondingly smaller. Moreover, from
analyzing all benchmarks listed in App. B, this is found to be predominantly the
case for experimentally viable models near the Sommerfeld resonance such that
when the SE leads to dramatic enhancements, often times one-loop running of
the electroweak gauge couplings might suffice for achieving a reliable relic abun-
dance. In total, previous results in the literature for viable MSSM DM regions in
parameter space are not expected to be strongly affected. Nevertheless, indirect
detection bounds from on high-energetic cosmic-ray observations of a particular
particle species, e.g. bottom quarks, depend on the respective branching ratio and
are thus directly affected.

Coupling strengths evolved to the high scale α̂(2MLSP) only enter the hard
annihilation vertex while the potential ladder exchanges remain unaffected. Im-
portantly, this means that the contours shown in Fig. 4.2, and crucially the lo-
cation and strength of the Sommerfeld resonance, are not expected to change as
an effect of RG evolutions. An analogous scan of the depicted parameter space
of Higgsino-wino mixed models using improved numerical SM input values from
Tab. 1 confirmed this expectation. The combination of Yukawa running and up-
dated inputs give rise to a minor change in the exact location of the experimentally
observed relic density contour. The result is included in Fig. 4.2. Both panels are
taken from [107], however the right panel is modified to include a second, darker
green band for the region where the thermal relic abundance matches to the ex-
perimentally observed DM energy density, ΩDMh

2 = 0.120 ± 0.003. The targeted
relic density value differs from 0.1188 used in [107], however, this choice is unno-
ticeable for the depicted band widths. Overall, the thermal mass contour shifts to
smaller M2 by roughly 60GeV. In the wino-like region, M2 ≫MH̃ , this translates
to a relative mass shift of about −2% and in the mixed Higgsino-wino region,
M2 ≈ MH̃ , of about −4%. The relative mass shifts are similar when comparing
perturbative relic density contours where no SE is included in the calculation. The
dominant annihilation branching fractions, regarding the primary final states, at
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late times are in both cases W+W− (65% and 68%) and ZZ (12%), hence pre-
dominantly the weak gauge coupling α̂2 is important. From the simple estimate
ΩDMh

2 ∼ MLSP/(σv)
tot ∼ M3

LSP/α
2
2, one finds that a constant relic density re-

quires an agreement between the relative changes in DM mass and the weak gauge
coupling strength according to ∆M ∼ 2/3 × ∆α2 . From Fig. 4.3, ∆α2 is found
to be about −5% (slightly less negative in the degenerate case but slightly more
for s-channel processes where the coupling would be evaluated at 2MLSP rather
than MLSP). This agrees nicely with the above found changes in the DM mass,
especially when taking into account that, firstly, also the SE sees a minor decrease
(∼ −1%) in the degenerate case by virtue of changing M2 by the mentioned −4%
and, secondly, the ZZ channel gains also enhancing contributions from α̂1 while
the tt̄, channel, which is only notably present in the degenerate case, is fourfold
more strongly decreased by the running of its Yukawa coupling than the estimated
∆α2 . Thus, one already expects the reduction by 2/3 × |∆α2 | = 3.3% to be an
underestimate for the mixed and an overestimate for the wino-like scenario. In
practice, the relic abundance is affected in much more complicated ways from
varying branching fractions throughout the thermal evolution and also minor in-
fluences from changed LSP admixtures. Such effects are not captured by the above
estimate.

The one-loop RGEs for all SM couplings with an automated heavy Higgs de-
coupling step constitutes one technical improvement to the existing code base used
for numerical evaluation in previous analyses. As part of the work performed in
the scope of this thesis, the derived one- and two-loop RGE solutions are fully
integrated into this code. Furthermore, in preparation of an eventual publication,
several practical improvements in regards to ease-of-use and large-scale scanning
applications were implemented. Apart from this, the developed RGE solver can
be used as a complete, stand-alone module in Mathematica. The implementa-
tion of an appropriate treatment of s-channel resonances according to chapter 3
remains one open point with work ongoing at the time of writing of this thesis.
The inclusion of resonances will facilitate a major improvement step towards a
complete treatment of the neutralino DM parameter space in a unified framework,
giving reliable relic density and annihilation cross-section predictions to a percent
level of theoretical uncertainty.
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5 Sudakov-resummation in neutralino annihila-

tion

This chapter concerns precision computations of indirect detection spectra for
mixed neutralino dark matter including resummation of large Sudakov logarithms
in PNRDM. In SCET, the large separation of the hard energy scale (µ̂h) of the
order of the annihilating particles mass from the soft scale (µ̂s) of small transverse
momenta gives rise to Sudakov double logarithms which change the naive power
counting in the electroweak coupling strengths α1,2, as introduced in section 2.4.
The power-counting of these large logarithms is taken to be

L ≡ log

(
µ̂h
µ̂s

)
∼ 1

λ
≫ 1. (5.1)

λ is the simultaneous power counting parameter, see Eq. (2.15),

λ ∼ mW

2MLSP

∼ α1,2 ∼ v. (5.2)

Since an expansion according to Eq. (2.14) is now non-perturbative, leading and
next-to-leading logarithmic terms need to be resummed to all orders to system-
atically neglect only terms suppressed in λ. The appropriate framework for the
combined treatment of Sommerfeld and Sudakov resummation effects is PNRDM,
outlined in section 2.5 [82]. Sommerfeld enhancement in the MSSM was discussed
in chapter 4 and is accordingly included in the numeric results of section 5.3.
The resummation of Sudakov logarithms to NLL accuracy in degenerate models
was achieved already in [62]. This chapter completes the framework to arbitrarily
mixed models by ensuring all power expansions remain under control throughout
the entire MSSM parameter plane.

After laying some groundwork in section 5.1, the necessary modifications to
the annihilation matrix allowing to extend it to non-degenerate MSSM models
are discussed in section 5.2. Finally, section 5.3 constructs and analyzes a set of
benchmark models which probe interesting parts of parameter space for mixed
neutralino DM. Familiarity with either [2] or [62] will be assumed in some more
technical discussions of section 5.2 to avoid excessive repetitions.

Theoretical foundations may be found in [62, 82] and the derived framework for
arbitrarily mixed neutralino DM annihilation has been published under the title
“Electroweak resummation of neutralino dark-matter annihilation into high-energy
photons” [2].

5.1 Preliminaries

In contrast to the analysis of thermal relic densities, which were in the focus of
discussions of chapter 4, now late-time annihilation of DM into observable final
states are considered. This changes the physical picture as indiscriminate total
annihilation cross-sections are no longer of interest but only concrete final states
involving high-energy gamma-rays and, moreover, their spectral distribution near
the endpoint.
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Concretely, this chapter discusses necessary modifications to the semi-inclusive
CP-even s-wave annihilation matrix ΓIJ into high energetic photons (γ + X) in
fully degenerate models [62] in order to cover arbitrarily mixed neutralino annihila-
tion. The Sommerfeld enhanced annihilation cross-section (σv)χχ→γX is obtained
following Eqn. (4.5) and (4.6), albeit including Sudakov resummation in the hard
annihilation coefficients as

(σv)χχ→γX =
∑
I,J

SIJ ΓIJ , (5.3)

carrying over the explicit summation of two-particle indices I and J from Eq. (4.4),
there in form of four single particle indices, which was already written schemat-
ically in the (2.16). The respective accuracy to which Sudakov logarithms are
being resummed will be denoted as a superscript, ΓTree = ΓTree,EFT being the per-
turbative result in the framework of PNRDM, which is not identical to the exact
relativistic result ΓTree,exact. ΓNLL denotes the next-to-leading logarithmic order
resummed result generalized to arbitrarily mixed neutralinos which will be de-
rived in section 5.2, while ΓNLL,EFT is adopted from [62] as the result for strictly
ultrasoft-degenerate initial states.

The semi-inclusive cross section is integrated over a certain “intermediate”
resolution window to describe the endpoint energy bin which is assumed to be of the
soft scale, ranging from 2MLSP−Eγ

res to 2MLSP. The EFT is specifically constructed
to treat Eγ

res ∼ mW and is not identical to a narrow (ultrasoft) resolution window
[82, 98]. Technically, Eγ

res is not of further concern for this thesis since its integral is
easily resolved at NLL accuracy for intermediate resolutions. Presented numerical
analyses set Eγ

res = mW .

5.1.1 Effective theory framework

The UV-complete Lagrangian remains unchanged from Eq. (4.2), treating a MSSM
model hosting a neutralino LSP as a DM candidate with sufficiently split sfermions
to not impact SE. The second Higgs doublet is allowed at any scale using the re-
sults of chapter 4 and CP-conservation is assumed in the construction of the SCET
annihilation operator basis. As a concequence of the latter, the hard annihilation
processes of electroweakinos into at least one photon are inelastic 2-to-2 scatter-
ing processes of two fermions into bosonic final state and cannot be mediated
by sfermions [2, 62]. Hence, sfermions play no role in the hard annihilation pro-
cesses under investigation in this section and the BSM model reduces to only the
electroweakino fields (bino, wino and Higgsinos) and the two-Higgs doublet sector.

From this, the PNRDM Lagrangian can be constructed for neutralino DM
in straightforward analogy to the pure wino and pure Higgsino cases [82, 87].
The explicit construction of the PNRDM Lagrangian and the hard annihilation
operator basis was demonstrated in [62]. The hard annihilation process is most
conveniently written in the electroweak unbroken basis whereas the physical DM
abundance consists of the lightest neutralino, a EWSB mass eigenstate. Therefore,
the soft functionw in Eq. (2.17) translates between the broken and unbroken bases,
a step which, in pure Higgsino or wino models, is almost irritatingly simple due
to their limited field content allowing for additional freedom. In mixed models,
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Figure 5.1: Sketch for the annihilation process Eq. (5.4) forward scattering,
resolving the short distance 4-fermion vertex ΓIJ for exemplary primary final states
γ, X (black). Hard final state radiation connects to soft modes, cf. Fig. 3.1, and
undergoes soft and collinear splittings (not shown). A single soft loop is depicted
(dotted: soft exchange, double-struck lines: internal state which may be heavy).
All soft one-loop and certain two-loop exchanges are resummed in ΓNLL [62].

the soft function is to leading order defined simply by neutralino and chargino
mixing matrices. The most natural order of EFTs is therefore to compute the
annihilation operator basis in the unbroken theory, match onto PNRDM and only
then introduce EWSB. This is opposite to the EFT tower used in chapter 4 and the
compatibility of both descriptions is discussed in more detail in subsection 5.2.1.

5.1.2 Process overview

Realistic cosmic-ray indirect detection experiments of DM annihilation can only
ever observe a single final state of any one annihilation process which renders the
correct theoretical observable to be a semi-inclusive process,

χ + χ → γ + X. (5.4)

Obeying CP, charge and angular momentum conservation, the primary unobserved
field in X is constraint to be some unobserved SM gauge boson. These are much
lighter than χ, hence the annihilation results in a collimated (back-to-back 2-
jet) event morphology, justifying the use of PNRDM. This also means the de-
tected energetic photon γ is itself part of a jet involving multiple secondary soft
or collinear particles. An illustration of the complete DM annihilation process is
drawn in Fig. 5.1. Unlike the similar Fig. 4.1, the hard 4-fermion annihilation
vertex f̂(1S0) = ΓIJ is now resolved in greater detail. The primary final states
γ and X are denoted as wavy lines and one exemplary soft mode exchange be-
tween the external legs I is depicted as a dotted line. The notion of “external”
is understood in the context of the annihilation matrix ΓIJ and does not refer to
the microphysical “initial” state χ0

1 prior to potential interactions. The “internal”
fermions in the soft loop are instead given by double-struck lines indicating that
they are not necessarily identical to I1,2. Species changes between gauginos and
Higgsinos occur only for soft Higgs boson exchanges.

The drawn primary final states source jet events described by resummation
of soft and collinear splittings which give rise to Sudakov logarithms. Since this
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resummation in ΓIJ in Eq. (5.3) combines multiplicatively with the SE, neither
can be neglected for accurate predictions of gamma-ray spectra in neutralino DM
annihilation. Unlike for freeze-out in the early universe, where all states whose
mass splitting is below the current temperature are abundant, in the late-time
Universe only DM, χ = χ0

1, remains as an initial state to the microphysical process.
An important distinction here is that SE remains a microphysical process in terms
of the statistical physics of gamma-ray detection where the abundance of χ is
treated as a dilute particle gas of only a single species. Nonetheless, scattering into
any mass eigenstate by repeated ladder exchanges still gives rise to the need for the
full annihilation matrix ΓIJ , thus also I ̸= J contribute in the DM annihilation.
The annihilation itself is then once again a point-like process relative to long-range
potential interactions.

On a technical level, the Sudakov logarithms are resummed by running the
hard and jet functions from their natural scales to the soft scale using appropriate
RGEs. For simplicity, the hard and soft renormalization scales are chosen explicitly
to coincide with their natural scales,

µ̂h ≡ 2MLSP and µ̂s = mW , (5.5)

hence their appearance in Eq. (5.2). The freedom of scale choice is attributed to
the theoretical uncertainty of the result and was studied already in [62], including
also jet and rapidity renormalization scales which are irrelevant to discussions
here. As before, the soft scale O(mW ) simultaneously approximates the gauge
boson masses, the electroweak symmetry breaking scale and thereby the onset of
relevance of fermion masses, cf. Eq. (4.15), and the BSM Higgs doublet is decoupled
at mA0 .

5.2 Viability for arbitrarily mixed neutralino models

This section comprises a complete discussion of how the annihilation matrix in
arbitrarily mixed neutralino models can be computed, controlling all terms up to
corrections of O(λ). All significant issues were known in [62], though not resolved.
In particular, the treatment of non-decoupling heavy internal states had been left
to future work and will now be dealt with in subsection 5.2.4. Redundancies with
[62] are minimized to the extent necessary to provide a solid line of argument.

5.2.1 Ordering of NREFT and EWSB

The present chapter assumes a formally different tower of EFTs than chapter 4 by
matching onto PNRDM before introducing EWSB. By taking the non-relativistic
limit, certain interactions of the Higgs scalars to the electroweakinos are lost which,
however, would give rise to mass terms after EWSB. The concern is that the
O(Mv) terms dropped in NREFT, despite being suppressed relative to the hard
scale, might still give rise to important contributions in EWSB, since they count
as the same order, Mv ∼ mW . For any self-consistent construction where EFT
operators and Wilson coefficients are consistently computed to the same accuracy,
the ordering of the NR limit and EWSB may only give rise to higher order cor-
rections which are to be systematically neglected which is to be confirmed. This
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was proven explicitly for chargino masses in [62] but only by numerical tests for
the neutralino sector. A shortcoming which is rectified here.

The two orderings of EFT towers are titled

“path 1”: full → NR → NR+ /EW,

“path 2”: full → /EW → NR+ /EW.

For the following, x and X shall respectively denote the neutralino mass eigenval-
ues in paths 1 and 2 directly after EWSB, meaning the desired identification is
X = x+MLSP. Starting from the neutralino mass matrix in path 2 [105], it takes
a convenient form under an orthogonal rotation and writing M2 −M1 = ∆,

M
(P2)
N =


M2 − c2W∆ −sW cW∆ 0 0
−sW cW∆ M2 − s2W∆ e

2sW cW
v+

e
2sW cW

v−
0 e

2sW cW
v+ MH̃ 0

0 e
2sW cW

v− 0 −MH̃

 (5.6)

where
〈
H0

±
〉
= v±/

√
2 and sW and cW are the Weinberg angle sine and cosine. This

form is useful to compare three of the eigenvalues to path 1 on the level of the
characteristic polynomial PN without evaluating explicit solutions, yet the fourth
(negative) eigenvalue must be treated separately. Real fields such as Majorana
particles do not permit general unitary rotations but only orthogonal ones and
the minus sign cannot simply be absorbed by a complex phase rotation. However,
the use of characteristic polynomials comes to rescue where it gives a mere overall
sign change insignificant to its roots. Dividing out the negative diagonal entry, the
thus reduced characteristic polynomial of M

(P2)
N for eigenvalues X is defined as

P̄
(P2)
N (X) ≡ P

(P2)
N (X)

−Mχ −MH̃ −X
(5.7)

= (MH̃ −X) (M2 −X) (M2 −∆−X)

−
(
M2 − c2W∆−X

) e2

4s2W c
2
W

(
v2+ − v2−

MH̃ −X

MH̃ +X

)
(5.8)

In path 1, the negative eigenvalue found above corresponds to a fully decoupled
Higgsino eigenstate [62], which is expected from (5.6) and earlier statements in
subsection 4.3.4 that, to leading power, only H+ appears in NREFT. With

M
(P1)
N =


δM2 − c2W∆ −sW cW∆ 0 0
−sW cW∆ δM2 − s2W∆ e

2sW cW
v+ 0

0 e
2sW cW

v+ δMH̃ 0

0 0 0 δMH̃

 , (5.9)
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where δM1,2,H̃ ≡M1,2,H̃ −MLSP, one finds the reduced characteristic polynomial

P̄
(P1)
N (x) ≡ P

(P1)
N (x)

δMH̃ − x
(5.10)

=
(
δM2 − c2W∆− x

) [(
δM2 − s2W∆− x

)
(δMH̃ − x)−

e2v2+
4s2W c

2
W

]
− s2W c

2
W∆2(δMH̃ − x) (5.11)

= P̄
(P2)
N (x+MLSP) −

e2v2−
4s2W c

2
W

(δMH̃ − x) (δM2 − c2W∆− x)

2MLSP + δMH̃ + x
. (5.12)

The last line explicitly extracts the differences to path 2 which are suppressed by
one order in mW/MLSP when counting the mass splittings as δM = O(mW/MLSP).
This proves that for at most near-degenerate masses (i.e. soft-scale mass splittings),

M
(P1)

χ0
i

=M
(P2)

χ0
i

+O
(
m2
W

MLSP

)
. (5.13)

This reasoning does not apply to non-degenerate cases where some δM ≫ mW ,
however a straightforward case separation and consistent expansion in O(λ) cov-
ers also this shortcoming with unchanged outcome. Moreover, it is manifest in
Eq. (5.12) that differences are due to the parity odd combination of the Higgs
fields H−, yet again in agreement with earlier observations that H− is absent in
NREFT to leading order. Since eigenvalues agree up to higher order corrections,
also the respective mixing matrices must agree,

R
(P1)
N,C = R

(P2)
N,C +O

(
mW

MLSP

)
(5.14)

where RN,C acts on the vector of neutralinos or charginos. This coincidence of
mixing matrices is guaranteed up to some corner cases concerning cancellations,
which can be rigorously ruled out by explicit comparison of analytic results, yet
expressions are unwieldy and uninsightful and hence omitted. More details on the
relations of RN,C in both paths are provided in appendix A of [2]. They are not
of further interest here, coinciding with [62] beyond minor improvements to the
notation.

The results of this subsection allow to confidently combine SIJ as computed
in chapter 4 with ΓIJ computed in its natural tower of EFTs in PNRDM. Any
possible mistakes due to using different EFT orderings in different parts of the
calculation are power suppressed in λ. Nevertheless, the choice of path is overall
not negligible. The SE crucially depends on mass splittings to the point that
one-loop mass corrections are to be included [107]. This is due to the kinematic
accessibility of coannihilating states as well as the precise position of zero-energy
bound state in the spectrum which lead to resonant Sommerfeld enhancement by
orders of magnitude. Eq. (5.13) only proves that the hard annihilation matrix
agrees to the desired order between both paths, yet it makes no statement about
the full Sommerfeld enhanced cross section. It is therefore path 2 which is to be
employed to calculate mass splittings in the full relativistic theory without further
approximations.
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A closer analysis of the characteristic polynomials yields that at most two
neutralinos can possibly be degenerate within an ultrasoft splitting at the same
time. This is easily understood as one Higgsino decouples completely and the
usual see-saw behavior of eigenvalues gives rise to at least one eigenvalue gaining
a positive contribution from the VEVs in EWSB. This applies analogously to the
two chargino masses and overall at most three degenerate mass eigenstates (two
Majorana and one Dirac fermion) exist after EWSB. In pure Higgsino or pure
Wino models, these states still encompass the full field content while, generally,
they are unspecified mixed states. The lightest state is always a maximally mixed
state, that is, the first diagonal “bino-wino” entry δM2 − c2W∆ in Eq. (5.9) which
becomes an eigenvalue in the limit M1 →M2 is never the LSP mass, nor is it the
decoupled Higgsino eigenvalue δMH̃ .

5.2.2 Exact tree-level mass dependence

The leading order mass dependence of ΓIJ as calculated in [64] was included in
[62] in its entirety. Definitions and core concepts are repeated here to collect all
corrections to ΓIJ in a uniform notation.

The PNRDM annihilation matrix can be improved to include the exact leading
order mass dependence of the initial state, valid at any mass splittings, by replacing
the sole dimensionful factor 1/(2MLSP)

2 by a matrix 1/M2
IJ ,

M2
IJ =

1

2
(MI1 +MI2 +MJ1 +MJ2) . (5.15)

Note that here the masses are in fact exactly Lagrangian mass terms and no
longer non-relativistic approximations of the total energy in the annihilation pro-
cess. This holds because s-channel annihilation diagrams do not contribute in
matching the operator basis for γ+X final states. Hence, this description remains
correct independently of the physical initial state prior to SE which determines the
total center-of-mass energy. The leading order mass dependence can be straight-
forwardly corrected for by multiplication of ΓEFT

IJ with (2MLSP)
2/M2

IJ . In addi-
tion, the exact relativistic result ΓTree,exact includes minor corrections from single
particle velocities and thereby differs even beyond the leading mass dependence.
Although those differences are formally beyond the accuracy of the theory, they
tempt numerical evaluations to aim for a better central value within the theoret-
ical uncertainty by including them. On the other hand, ΓTree,exact

IJ = 0 in case I
or J consist of two neutralinos, rendering this approach inapplicable. Overall, the
leading mass dependence may be implemented by an improvement factor

ΓNLL,imp
IJ ≡ GIJ ΓNLL,EFT

IJ , (5.16)

GIJ ≡


(2MLSP)

2

M2
IJ

if ΓTree,EFT
IJ = 0,

ΓTree,exact
IJ

ΓTree,EFT
IJ

else.
(5.17)

The exact annihilation matrix elements are defined by the sum of all exclusive
processes into photons [64],

ΓTree,exact
IJ ≡ 2 ΓI→γγ→J

IJ (1S0) + ΓI→γZ→J
IJ (1S0), (5.18)
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accounting for the relative weighing in the γγ channel where either photon could
be the observed gamma ray. No other γ+X final states are accessible at tree level.

5.2.3 Leading order decoupling of non-degenerate states

This section briefly justifies why Eq. (5.3) sums over all neutralino and chargino
states irrespective of their mass splitting to the LSP. Clearly, any particles much
heavier than χ, δM ≳MLSP, should be integrated out of the theory before match-
ing to NREFT in the first place and their impact on physical observables must
vanish as the scale separation grows large. The correctness of SIJ when including
non-degenerate states in the theory was elaborated on in section 4.2.2. As men-
tioned, only near-degenerate states are efficiently scattered into under potential
interactions, thus, no non-degenerate external states ei are expected to contribute
without already parametrically small suppressions from SIJ . For the annihilation
matrix ΓIJ , the observable cross section decouples from heavy states due to mass
mixing suppression.

The annihilation operator basis for the hard Wilson coefficients Ck is written in
terms of the EW symmetric fields B̃, W̃ and H̃. All annihilation operators are be-
ing summed over in the calculation of ΓIJ and the soft function translates between
the external mass eigenstates I, J and the annihilation operator basis via the mass
mixing matrices, RN,C . For strongly non-degenerate states, the mass matrix M(P1)

is dominated by δM and the mixing of such heavy states into states (near-) degen-
erate to the LSP, δM = O(mW ), is systematically power suppressed. Hence, to
leading power in the EFT, short-distance annihilation operators of much heavier
external states decouple in tree-level calculations either by suppressed Sommerfeld
scattering or suppressed mass mixing in the soft function. For example, a wino-
like model with δM1,H̃ ≳MLSP becomes independent of any annihilation operators
involving either the Higgsino or bino. Even if paths 1 and 2 are to differ, they
differ in systematically sub-leading terms once the Sommerfeld summation picks
out only those I and J which are at least near-degenerate to χ. At most, the accu-
racy of Eq. (5.14) becomes relevant in bino-dominated models where the tree-level
result for annihilation into photons naturally vanishes. In this case, any results
must be taken with some care as power suppressed corrections may still contribute
to the “leading non-vanishing” term. Still, results are never anomalously enhanced
by ratios δM/MLSP ≳ 1.

A caveat of the argumentation in this subsection is its limitation to tree-level
processes. Once soft loop diagrams of the hard Wilson coefficients are included in
the Sudakov resummation, heavy states contribute unrelated to their mass mixing
matrix entries simply by virtue of Higgs-Higgsino-gaugino couplings. This problem
is treated in the following subsection.

5.2.4 Treatment of non-decoupling heavy internal states

The decoupling by mass mixing suppression discussed in the previous subsection
does not extend to NLL accuracy. Problems arise from soft loop diagrams which
are computed in PNRDM, that is under the assumption that propagators are
correctly expanded according to the method of regions and δM are systematically
neglected in the calculation of UV divergences. To understand the problem in a
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concrete example, consider the simple case of the bino self-energy, which removes
any further complications due to operator mixing. Using x to generally denote the
ratio between the internally and external state masses,

x ≡ internal field mass

external field mass
, (5.19)

the UV-pole subtracted full relativistic result of the one-loop bino self-energy in
presence of bino-Higgsino-Higgs Yukawa interactions and vanishing Higgs boson
masses is

∂ ΣB̃

∂/p

∣∣∣∣
/p,IR

=
α1a

2
+

4π

(
2 + 4x2 + 4x4 ln(1− x−2)

)
, (5.20)

where x = MH̃/M1 and a+ is defined in Eq. (4.14) to automate the heavy Higgs
decoupling step. The self-energy can be approximated in the infinitely heavy,
degenerate and massless internal-particle mass limits to

∂ ΣB̃

∂/p

∣∣∣∣
/p,IR

≈
α1a

2
+

4π


−4

3
x−2 − x−4 for x→ ∞,

6 + 4 ln(1− x−2) for x ≈ 1,
2 + 4x2 for x→ 0.

(5.21)

The logarithmic enhanced term evidently vanishes for x ≫ 1 (here meaning
MH̃ ≫M1) which is not reproduced in the strict EFT anomalous dimension matrix
calculation where δM are systematically neglected as parametrically small quanti-
ties. Note that for near-degenerate mass splittings, δM ∼ mW , the soft loop is still
computed correctly since there is no impact on the ultraviolet behavior yet. Only
once δM ≫ mW , should the soft loop process decouple. The non-decoupling is
baked into EFT by assumption and a known danger in dimensional regularization.
Little more can be done other than to artificially impose a decoupling condition
on loop contributions of heavy internal states once they exit the near-degenerate
mass range, using the knowledge of the full result to improve EFT calculation in
regions outside the formal regime of validity of near-degenerate states.

Before discussing the specific implementation of the decoupling condition, po-
tentially problematic terms in the hard anomalous dimension matrices [62] need
to be identified first. Leading logarithmic terms, the cusp-logarithms, arise exclu-
sively from (anti-)collinear gauge boson interactions which cannot source species
changes in the non-relativistic initial state and are therefore unproblematic. At
NLL accuracy, all soft one-loop processes need to be included in computing the
ultraviolet anomalous dimension for the annihilation operator Wilson coefficients.
These involve soft Higgs boson loops in self-energies or triangle diagrams such
as the one depicted in Fig. 5.1 which do not dynamically decouple for arbitrar-
ily heavy internal (double struck) lines, as in the considered self-energy example
above. One conclusion of [62] was already the identification of non-decoupling
in soft Higgs boson loops in self-energy diagrams, however problems in triangle
diagrams were overlooked. Gauge boson interactions do not change the species
of a given electroweakino state such that external and internal states necessarily
coincide and earlier decoupling arguments apply. The only problematic diagrams
are soft Higgs boson loops where the internally propagating fermions are much
heavier than the external fermions. The problematic terms are thus conveniently
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traced by a+. It contributes to the hard anomalous dimension matrices in one of
two positions: either on diagonal entries induced by self-energy diagrams of the
external state, which do not mix Wilson coefficients of different annihilation opera-
tors, or as off-diagonal entries which mix Higgsino-Higgsino annihilation operators
with bino-bino, wino-bino and wino-wino annihilation [2, 62] and are sourced by
the previously mentioned soft triangle diagrams. Obeying SUSY, the Yukawa in-
teraction between Higgsino and bino or wino fields are respectively given by g1,2.
Hence, tracking terms proportional to α1a

2
+ and α2a

2
+ in the anomalous dimension

matrix alongside their position within the matrix unambiguously determines the
diagram giving rise to the respective contribution. This will be exploited below to
uniquely determine the value of x in every occasion.

With the bookkeeping taken care of, it is time to treat the decoupling imple-
mentation itself. Rather than imposing a sharp cutoff, it is desirable to introduce
a matching function to smoothly interpolate from 1 to 0, depending on x, without
introducing artificial features to parameter space scans. An arc tangent function
compactified to a finite interval ]−∞,∞[→]t1, t2[ can obey these conditions and
the function

f(x) =
1

2
− 1

π
arctan

[
π s

2n

(
−1

|t1 − x|n
+

1

|t2 − x|n

) ∣∣∣∣t2 − t1
2

∣∣∣∣n] , (5.22)

serves as a convenient tool. It has four free parameters: t1,2 to set the interpolation
window [t1, t2], s > 1 to set the slope at the mid-point x = (t2 + t1)/2 and n > 1
to control smoothness of the merging at x → t1,2. Note that not all values of n
produce featureless interpolation. Well suited values are found to be s = 1, n = 2.
For the attempted accuracy a any reasonable choice of f suffices and no attempts
at optimization were pursued. The matching window of the interpolation should
respect the expected range of validity of the theory, hence t1 = 1 + 2mW/MLSP is
chosen, allowing for a factor 2 variation above the natural soft scale. The upper
bound is chosen as t2 = 1.3 which permits up to 30% non-degeneracy before all
effects of heavy states are excluded. Due to the asymptotic behavior of the arc-
tangent, f(x) < 0.1 is reached already after only three quarters of the matching
window, x(t2 − t1) − t1 = 0.76. Consistency of the ordering t1 < t2 requires
2mW < 0.3MLSP ⇒ MLSP > 0.54TeV, which allows the complete TeV LSP mass
range and no additional parameter space restrictions follow from the choice of t2.

The decoupling is implemented in the annihilation matrix as

ΓNLL
IJ = ΓNLL,imp

IJ

∣∣∣
a2+→a2+·f(x)

(5.23)

where x adapts to the respective external and internal masses by the identifica-
tion procedure outlined above. Note on the aside that [2] implicitly includes the
modification (5.23) in ΓNLL,imp

IJ whereas here the symbol is kept separate from ΓIJ .
This subsection concludes by a brief numerical study to demonstrate the work-

ings of the decoupling in a realistic MSSM model. The dashed curve in Fig. 5.2
shows non-decoupling of a heavy wino, M2 − MH̃ ≫ mW , by comparison to a
mixed bino-Higgsino-wino model where M2/MH̃ is gradually increased (keeping
M1,H̃ constant). The benchmark model “BHW-mix” from Tab. 4 in App. B serves
as a basis for numerical inputs and the point M2 = 4M1 estimates the decoupled
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Figure 5.2: Ratios r and r(no-matching) (solid and dashed) of Eqn. (5.24) and
(5.25), comparing the diagonal lightest-chargino annihilation matrix element to
its heavy-wino limit (M2 ≈ 4M1) by varying M2. Other parameters coincide with
benchmark BHW-mix of Tab. 4 in App. B.

scenario. For convenience, the diagonal lightest-chargino pair annihilation entry
ΓC1C1 is considered. Concretely, the bold and dashed curves respectively depict
the values

r(x) =
ΓNLL
C1C1

ΓNLL
C1C1

∣∣
M2=4M1

(5.24)

and

r(no matching)(x) =
ΓNLL,imp
C1C1

ΓNLL
C1C1

∣∣
M2=4M1

=
ΓNLL
C1C1

∣∣
f(x)=1

ΓNLL
C1C1

∣∣
M2=4M1

. (5.25)

The non-decoupling yields around ∼ 5% difference (dashed line) at large M2/|µ|
and remains stable. t1,2 are indicated by vertical lines and the desired smooth
behavior of f(x) is apparent. The decoupled value is already reached within 1%
for x = 1.2 which translates to a mass splitting of 400GeV. The impact of the
decoupling can appear much more dramatic in neutralino channels, however this
is artificial as neutralino annihilation lacks a tree-level leading order contribution.
Note that due to the adaptive nature of x to each respective diagram contribution,
not all channels are affected equally. This becomes especially intricate for stacked
non-degeneracies such as MH̃ − M2 ∼ M2 − M1 ∼ 3mW . The wino may still
be efficiently scattered into and the anomalous dimension matrix has not fully
decoupled soft Higgsino loop contributions for external wino channels but does
already decouple soft Higgsinos loops when the external state is a bino.

5.2.5 Logarithmic mass corrections

Finally, the approximation M1,2,H̃ ≈ MLSP in the cusp-logarithms present in the
anomalous dimensions are of concern for the accuracy of the obtained results. The
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detailed mass dependence in case of non-degenerate and near-degenerate mass
splittings was already studied in [62] finding the approximation to remain in both
cases to remain unproblematic. Suffice here to say that differences between the
full kinematic dependence are always power suppressed, O(mW/MLSP), as a con-
sequence of having either only small, soft scale corrections in the logarithm argu-
ments or, otherwise, being suppressed in the mass mixing, see section 5.2.3.

In total, this section derived how the NLL resummed annihilation cross-section
computed in PNRDM, ΓNLL,EFT can be extended to arbitrarily mixed neutralino
models in a controlled fashion by implementing leading order mass corrections in
Eq. (5.16) and a manually imposed decoupling function in Eq. (5.23). Further-
more the analytic proof for the commutation of EWSB and (P)NREFT matching
for neutralino mass eigenvalues, and consequently their mixing matrices, allows
to confidently follow path 2 in calculations of the Sommerfeld enhancement and
Sudakov resummation.

5.3 Phenomenological analysis

The corrections discussed in this chapter complete the framework for computations
of neutralino annihilation spectra near the endpoint. This allows to study accurate
theoretical predictions in entire neutralino LSP parameter space of interest as long
as sfermions are sufficiently heavy to decouple from the theory. SM input values as
well as the running couplings required to resum Sudakov logarithms were already
discussed in chapter 4. The resummation procedure itself was investigated in [62],
see also [82]. This section focuses on the available parameter space, sampling
regions of interest [49, 91, 123] by a set of benchmarks, and on phenomenological
constraints from indirect detection of cosmic high energy gamma rays.

5.3.1 Reduced MSSM parameter space

The parameter space of interest can be broken down a set of 5 central free param-
eters defining the electroweakino masses and the BSM Higgs sector.

ΓIJ was calculated in a CP-preserving and flavor-diagonal MSSM model where,
additionally, contributions of sfermions are negligible for Sommerfeld enhancement
and Sudakov resummation. Sfermions only impact the one-loop mass corrections to
neutralinos and charginos and the total annihilation cross-sections required in the
computation of the thermal relic density [107]. For simplicity, all sfermion masses
are set to a common value Msf > 2MLSP, in most models Msf > 4MLSP. The
gluino mass is fixed at MG̃ = 30TeV (correcting on a typo in [2] stating 30GeV),
yet it is irrelevant for computations here. No justifications for the presence of
such scale hierarchies within the MSSM are regarded, taking a merely practical
standpoint to reduce phenomenological complexity as far as possible. Since the
theoretical calculation for the anomalous dimension in PNRDM is not available
via automated tools for the full MSSM, such a reduction of the field and operator
bases is mandatory to maintain a practical scope of the project. Combined with
the required alignment limit in the Higgs sector, mh ≈ 124 ± 5GeV allowing
some variation due to expected theoretical uncertainties in the mass from higher
loop corrections, the vast number of over one hundred free parameters of the full
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MSSM reduces to only 5 BSM parameter plus the almost irrelevant scale Msf .
The remaining free parameters of interest for neutralino DM models are

M1 , M2 , µ , mA0 , tan(β). (5.26)

Of primary importance are the electroweakino masses M1,2 and µ, the latter of
which is allowed to become negative, for they determine the DM mass scale roughly
as

Mχ =MLSP ≈ min{M1,M2, |µ|} + O(mW ). (5.27)

mA0 sets the scale of the extended Higgs sector by virtue of being the lightest
BSM Higgs boson mass. Collider searches exclude values close to the electroweak
scale mA0 < 400GeV [43], yet mA0 < MLSP remains permitted. Since the au-
tomated decoupling of the heavy Higgs doublet is an interesting feature of the
derived Sudakov resummation and the running couplings of section 4.5, models
with mA0 < 2MLSP will be distinctly denoted. Experimental constraints were
checked for each model individually. The main phenomenological effects of having
an energy range with two dynamical Higgs doublets are additional annihilation
channels during freeze-out thus primarily reducing the found relic density when
keeping all other parameters fixed. The VEV ratio tan(β) determines the remain-
ing freedom in the Higgs sector. It enters in the neutralino mass mixing matrix and
also the RG evolution of the running couplings when mA0 < 2MLSP. However, its
primary phenomenological impact comes from changing the interaction strengths
of up- or down-type SM fermions to BSM Higgs bosons which has important con-
sequences for direct detection and collider constraints. Values of tan(β) < 1 are
long excluded already by LEP data up to very large values of mA0 [124]. For the
analysis here only tan(β) ≤ 20 are regarded and the photon resolution is chosen
as Eγ

res = mW = 80.385GeV.
To best make use of the gained theoretical accuracy in mixed models, at least

two of the electroweakino masses should be degenerate within O(mW ). Addition-
ally, bino and wino do not mix directly but only via their interactions with the
Higgsinos, hence, models with MH̃ ≫M1 ≈M2 are seemingly in a coannihilation
scenario but do not possess sizable interaction with each other. On the other hand,
direct detection rules out essentially any model of µ > 0 where Higgsino and Wino
fields strongly mix into a mass eigenstate in the range O(100GeV− 10TeV). For
µ < 0, the spin-independent nucleon scattering cross-section decreases and some
level of mixing may be present without causing tensions to experimental data [91,
125].

While collider searches are only starting to probe into the TeV range and direct
detection loses out on sensitivity at small cross sections such as bino-dominated
models or also at large masses [39, 123, 126, 127], indirect detection promises
to probe large parts of the wino-bino mixed parameter space. That said the
minimalistic pure-Higgsino region around 1TeV remains out of reach even for
upcoming experimental sensitivities of direct and indirect detection [125].

For SM inputs, the values listed in Tab. 1 were used in the numerical analysis.
BSM parameters derived from the set of inputs above (masses for Higgs bosons,
neutralinos, charginos and sfermions and their respective mixing matrices) were
obtained by generating SLHA2 cards [128] for each investigated model by use of
the Mathematica release of FeynHiggs [120] (version 2.14.4) with the respective
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numerical input values tabulated in App. B. Even though one loop corrections
to the neutralino and chargino masses, which are crucial to obtain accurate SE
results, are included, the mixing matrices are directly taken from the SLHA card
for all subsequent steps. This latter aspect is a minor source of conceptual conflict,
since heavy states are manually decoupled in ΓIJ as described in subsection 5.2.4
while their contributions via (suppressed) mass mixing effects remains ever present.
As was shown above, this effect is consistently power suppressed and its impact
is correspondingly expected to be less than the claimed accuracy. A designated
numerical confirmation was, however, omitted.

5.3.2 Selected benchmark models

Disregarding effects of the chosen Msf , the remaining 5-dimensional parameter
space is still not easily scanned without constructing efficient sampling and eval-
uation methods beyond the scope of this thesis. Instead the expected effects of
the logarithmic resummation shall be demonstrated by a set of selected bench-
mark models which primarily illuminate two aspects. Firstly, they should cover
all relevant corners of the parameter space such as generic pure Higgsino or Wino
models and secondly they are to probe the relevant cases of mixed neutralino DM
which currently evade experimental constraints from collider measurements and
direct detection searches. The results of the Higgsino- and wino-like models also
served as a check of the implementation and have been confirmed by comparison
to existing results [82, 87].

The set of benchmark models studied in this thesis was originally constructed
in the scope of [2]. In that work, most MSSM models were tuned to produce
DM relic density of ΩDMh

2 = 0.1187 within sub-percent variations. However, the
present analysis uses an updated evaluation based on the SM input parameters
and running couplings found in chapter 4, see Tab. 1, and the previously tuned
benchmarks now yield thermal relic densities of ΩDMh

2 = 0.128 ± 0.004. This
corresponds to a 3% interval around a +10% deviation from the experimentally
found ΛCDM value. Models marked by an asterisk (B, BW-coan, H+) were not
tuned and do not target the experimental relic density value.

Although most considered models now exceed the quoted uncertainty band of
the experimental relic density value, the selection of benchmarks merely serves
to highlight qualitative features in the parameter space and a minor mismatch is
thus acceptable. Furthermore, each selected benchmark was confirmed to evade
tensions with experimental collider or direct detection experiments by use of the
public tool micrOMEGAs (version 5.2.7.a) [129]. A perturbative analysis of the
relic density neglecting SE as well as running couplings done in the scope of [2]
found agreement with results from micrOMEGAs. Differences resided within
2% for most models and O(10%) in models with significant contributions from the
tt̄ annihilation channel. The latter is caused by running coupling effects of the
top-quark mass in micrOMEGAs.

The complete set BSM input parameters for the chosen benchmarks are given
in appendix B and the numerical results of interest are given in Tab. 3 which
lists the name, LSP and lightest-chargino mass value in the first three columns.
The forth column is the result for the NLL resummed semi-inclusive annihilation
cross-section into photons according to (5.3), (4.6) and (5.23) and the fifth col-
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model MLSP Mχ±
1

⟨σv⟩SE+NLL
γX

⟨σv⟩SE+NLL
γX

⟨σv⟩SEγX

⟨σv⟩SEtot
⟨σv⟩LO

tot

[GeV] [GeV] [cm3s−1]

pure models
∗B 2144.9 6997.4 4.00 · 10−36 2.05 · 105 1.03
H 1111.6 1112.4 1.47 · 10−28 0.81 1.57
W 2849.5 2849.6 7.38 · 10−26 0.61 78.1

doubly mixed

BH 1065.3 1069.8 7.16 · 10−29 1.10 1.29
BW 2141.7 2143.8 1.46 · 10−27 0.65 5.34
HW 2830.9 2831.1 2.24 · 10−25 0.59 281

fully mixed

BHW-mix 1916.1 1922.0 1.12 · 10−28 0.65 2.11
BHW-mix2 1966.0 1971.3 1.65 · 10−28 0.64 2.35
BHW-mass 1621.1 1632.4 1.62 · 10−29 0.70 1.40
BHW-nh2 1797.1 1808.5 2.97 · 10−29 0.66 1.63

additional
∗BW-coan 2144.9 2147.6 2.64 · 10−31 0.65 1.16

∗H+ 1111.4 1112.2 1.50 · 10−28 0.80 1.58
H2 1236.5 1238.9 1.02 · 10−28 0.77 1.48

BW-2520 2516.4 2516.9 1.50 · 10−25 0.62 189
BW-e 1825.7 1830.5 1.76 · 10−28 0.68 2.26

BW-e-nh2 2054.0 2056.1 1.81 · 10−28 0.65 3.57
HW-nh2 2912.2 2912.4 1.28 · 10−25 0.57 174

BH-undet 1296.1 1316.0 3.13 · 10−30 0.83 1.16
BW-nfw 2073.6 2075.7 3.72 · 10−28 0.65 4.10
BW-ce 2284.8 2285.7 7.24 · 10−27 0.64 15.6

BW-2670 2663.0 2664.0 3.94 · 10−26 0.59 58.5
BW-nh2 2436.0 2436.7 3.38 · 10−26 0.63 43.6

BW-ce-nh2 2162.9 2164.1 3.50 · 10−27 0.64 9.60

Table 3: Names of the benchmark MSSM models from Tab. 4 in App. B together
with the respective lightest neutral and charged superpartner masses,MLSP =Mχ0

1

and Mχ±
1
, the semi-inclusive annihilation cross-section into photons ⟨σv⟩SE+NLL

γX ,

the correction factor relative to the result neglecting Sudakov resummation (bold-
font column) and the Sommerfeld factor to the total annihilation cross-section.
Results are computed for a relative velocity v = 2× 10−3.
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Figure 5.3: Projection of the selected benchmarks of Tab. 4 in App. B onto a two-
dimensional plane of normalized inverse mass differences according to Eqn. (5.28)
and (5.29). Contours connect points of constant mass ratios (1.2, 2, 3, 5, 10) ac-
cording to Eq. (5.30). The coloring indicates LSP admixtures larger than 5%,
coincident with Fig. 5.4.

umn extracts only the modification factor obtained by including the ΓNLL
IJ instead

of ΓTree
IJ . Hence, it is the primary indicator for phenomenological importance of

specifically Sudakov resummation. Lastly, the Sommerfeld enhancement on the
total annihilation cross-section is given in the final column, serving as an indicator
for the relative strength of the SE.

In all cases, the fist part of the names and the colorings in Figs. 5.3 and 5.4 are
chosen to indicate which of the bino (B), the Higgsino (H) or wino (W) contribute
more than 5% of the LSP mass eigenstate. All models for which mA0 < 2MLSP

and hence the regime nH = 2 becomes relevant in the running are denoted by a
suffix nh2. The benchmarks carefully avoid s-channel resonances between Higgs
bosons and any pair of neutralinos and/or charginos.

Before turning to the phenomenological analysis in subsection 5.3.3, the intent
of the most prominent benchmark models is discussed. For ease of reference and
accessibility, Fig. 5.3 projects each benchmark into a 2-dimensional plane according
to the electroweakino masses to intuitively show expected LSP admixtures and
phenomenologically similar behavior. The horizontal and vertical positions of each
point are calculated from M1,2,H̃ :

horizontal:
1

3
×

M−1
2 − δM−1

H̃(
M−1

1 +M−1
2 + δM−1

H̃

) , (5.28)

vertical:
−1

2
√
3
×
M−1

1 −M−1
2 − δM−1

H̃

M−1
1 +M−1

2 + δM−1

H̃

. (5.29)
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These inverse mass ratios have no theoretical motivation but were chosen for rep-
resentational convenience. Higgsino-, bino- and wino-like models are hereby sorted
towards the left, bottom and right corners, respectively, while fully mixed models
are sorted towards the center of the plot. Information on the absolute mass scale
MLSP gets lost in this representation. To quantify the degeneracy of M1, M2 and
δMH̃ , gray contours connect points corresponding to a constant multiplicative dif-
ference for between the masses as detailed in the following. Calling the m1,2,3 the
lightest to heaviest mass parameter (which may be degenerate), the six discrete
points (kinks) of each gray contour satisfy

either
m2

m1

=
m3

m2

= const or
m3

m1

=
m3

m2

= const. (5.30)

where the constant values (1.2, 2, 3, 5, 10) are denoted on each line. This means
the three points oriented towards the triangle corners satisfy m2 = m3 (pure-like
model) while their mid-points satisfy m1 = m2 (two-degeneracy).

The set of pure models B, H and W is nicely oriented towards the outer corners,
indicating that two masses are non-degenerate. Analogously, doubly mixed models
BH, HW lie near the outer edge mid-points indicating that only one mass is non-
degenerate. Benchmark W may give an impression of being significantly more
degenerate than the other pure models, yet it still hasM2 split to both the Higgsino
and bino by almost a factor 3 and, in absolute value, is split by more than 5TeV,
almost the same as for H.

The model BW is degenerate within 40% of the LSP since it was constructed
to be of phenomenological interest, which requires the Higgsino to not be fully
decoupled or else there is no mixing between wino and bino fields. Instead, BW-coan
uses all-identical input values except for µ = 7TeV in place of 2.91TeV, giving a
properly non-degenerate Higgsino in that model. BW-coan does not produce the
correct relic density, as indicated by the asterisk in Tab. 3, to fully isolate the effect
of changing µ = 1.36MLSP = MLSP + 9.6mW to µ = 3.26MLSP. Both cases would
traditionally be considered decoupled and the mass splitting is far above the soft
scale mW , yet the phenomenology is quite different and for BW-coan a decoupled
scenario is found where indirect detection signals are near 4 orders of magnitude
smaller than for BW, see Tab. 3. This behavior is caused by the bino being the LSP,
M1 =M2 − 3GeV. Since it is assumed that exclusively the LSP is present as DM
in the late Universe, the annihilation cross-section strongly decreases according
to the suppressed mixing into the wino or suppressed by higher powers in the
large Higgsino mass. Even slight, per-mille level changes in M2 can tip the scales
to have a wino-dominated LSP with a drastically different phenomenology. In
the representation of Fig. 5.3 such models are indeed distinctly separated. BW and
BW-coan are clearly separated already and a wino-like LSP model would be colored
blue rather than yellow.

In a similar fashion, H+ is identical to H up to sign(µ) being positive and the
model is hence also not tuned to produce the correct relic abundance nor to obey
experimental constraints. The last model not obeying the relic density constraint
is B, a pure bino model in the TeV range which is far away from its thermal mass
and only serves qualitative or illustrative purposes. The additional Higgsino-like
and Higgsino-wino mixed benchmarks (H2 and HW-nh2) are visible near HW. All
other models are bino-wino like (green) or fully mixed (black). Most remaining
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models are not well distinguishable in the scaling of Fig. 5.3, possibly calling for
a logarithmic representation of the degeneracy contours. The various mixed-BW
models continuously connect to the fully mixed case simply by reducing δMH̃ .

Since large simultaneous Higgsino-wino admixtures are under strong constraints
and bino-dominated models yield undetectably small annihilation cross-sections
into photons, the direction of fully mixed models with rather large δMH̃ towards
the pure wino case, that is starting from the center going to the right hand side,
is of primary interest.

5.3.3 Indirect detection constraints from highly-energetic γ-rays

The semi-inclusive annihilation cross-section into photons near the endpoint, listed
in the fourth column of Tab. 3 is plotted in Fig. 5.4 against the LSP mass. The
coloring is chosen as for Fig. 5.3, indicating LSP admixtures larger than 5% and
the benchmarks B and BW-coan are outside the vertical plot range due to the van-
ishing coupling between bino and photons. The points at the lower end of the
error bars denotes the NLL resummed result, the upper end shows the result bar-
ring Sudakov resummation, that is for ΓTree,imp. Hence, the bar length indicates
how strongly each respective benchmark is shifted by resummation of Sudakov
logarithms, cf. column five in Tab. 3. Benchmark BH is an exception showing an
enhancement of +10% gained from resumming Sudakov logarithms, a known be-
havior in pure Higgsino models at small masses δMH̃ < 1TeV [87]. This enhancing
feature arises here at slightly larger masses due to the bino admixture.

The red shaded region (bounded by a dashed line) shows exclusion bounds
from null-observations by H.E.S.S. on a 95% confidence level [130] for the more
optimistic cuspy NFW profile of the DM halo in the galactic center [48]. An
analogous analysis assuming a cored Einasto profile [47] yields a weaker bound
by approximately a factor of 2 [130]. The dot-dashed and dotted lines (gray
shaded area) show forecasts for exclusion bounds obtained by null-results from
the Cherenkov Telescope Array (CTA) for both profiles using the sensitivity to
the monochromatic gamma ray lines provided in the ancillary files to [49].

Recently, concern were raised in [38] regarding the correctness of the limits
obtained in [130], claiming them to be strongly overestimated due to neglecting
diffuse gamma ray background in the detected region surviving the masking proce-
dure and additional effects in certain specific channels. Concretely, according to a
reconstruction from externally available experimental information and data, upper
limits on W+W− annihilation channels should be a factor 8 weaker. However, for
γγ, the estimated modifications are about a factor of 2 and easily exceeded by
astrophysical uncertainties such as the choice of DM density profile. Being aware
of this unresolved conflict, the bounds of [130] are anyways shown without further
modification for one, rather optimistic, NFW DM profile. In a conservative ap-
proach respecting [38] and more cored profile choices, almost the entire depicted
parameter space remains valid. Note that conventionally provided experimental
constraints on photon-photon annihilation cross-sections must be scaled up by a
factor 2 to apply to the semi-inclusive γ +X cross-sections depicted here.

The importance of indirect detection searches is apparent as the shown limits
cut right through the set of bino-wino mixed benchmarks. This also demonstrates
the importance of including precise NLL resummed results in order to derive reli-
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H, H+

H2

W

BW

HW

BH
BHW-mix

BHW-mass

BHW-mix2 BW-nfw

BW-e

BW-ce

BW-2520

BW-2670

HW-nh2

BW-nh2

BW-ce-nh2

BW-e-nh2

BHW-nh2

Figure 5.4: (σv)SE+NLL
γX (dots) and Sudakov resummation effect (attached vertical

lines) plotted against the LSP massMχ0
1
for the benchmarks of Tab. 3. Benchmark

names are denoted near each point. The color-coding and naming indicate LSP
admixture of at least 5% for any combination of bino “B”, Higgsino “H’ or wino
“W”, as listed in the legend. Shaded areas show exclusion limits from H.E.S.S.
[130] (red, dashed boundary) and projected exclusions bounds for the CTA ex-
periment [49] (gray, bold boundary), both assuming a NFW profile for the DM
density distribution. Bounds weaken by about an order of magnitude for the cored
Einasto profile (dot-dashed). Changes from Fig. 2 in [2] are minuscule.

able constraints on the MSSM parameter space. Various models would resign in the
experimentally excluded region when neglecting Sudakov resummation whereas the
resummed result reduces the tension to experimental data, cf. benchmark BW-nfw.
The relevance of NLL resummation increases towards higher MLSP already sim-
ply due to the more pronounced scale ratio λ = mW/2MLSP and additionally due
to the stronger couplings between gauge bosons and the wino caused by O(1)
gauge constants of the adjoint representation [62, 82, 87]. Simultaneously, larger
DM masses require a larger annihilation cross-section to produce the correct relic
abundance, which can generically be realized by smaller bino and larger wino LSP
admixtures. Hence the annihilation cross-section roughly increases withMLSP and
so does the wino LSP mixing.

The first pure-wino SE resonance is located near M2 = 2.25TeV [82, 91], con-
tributing to the enhancement in the cross section for increasing wino admixtures
at identical masses. For DM masses beyond 3TeV, models must sit near a Som-
merfeld resonance to have a chance of producing the correct relic abundance by
thermal freeze-out. If existent, such models are expected to be in strong tension
with current observations. The simplistic s-channel toy model described in sec-
tion 3.4 indicates that neutralino models around mA0 ≈ 2MLSP ≈ 12TeV could
also produce the observed DM relic abundance.
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As mentioned above, models with suffix nh2, primarily differ in their thermal
history where the additional annihilation channels help depleting the DM abun-
dance which means they require a slightly larger DM mass to saturate the relic
density bound. Hence, those models systematically tend to slightly larger mass
values in Fig. 5.4 compared to their rather similar “non-nh2” counterparts.

The strength of the corrections from including NLL resummation to the Som-
merfeld enhanced tree-level calculation is found to vary between −20% around
MLSP = 1TeV in dominantly Higgsino models up to −43% for MLSP ≈ 3TeV in
pure wino or mixed wino-Higgsino models. Overall, as a coarse rule of thumb, it
may thus be expected as a reduction by one third across the 1-3TeV regime of
thermal neutralino DM. The effect is roughly in agreement with the findings of
[62] of 20 - 60% reduction in the chargino annihilation matrix elements.

By construction, the accuracy of the Sommerfeld-enhanced and NLL-resummed
cross section is expected to be of O(λ) ∼ 5%, yet no systematic study of theoreti-
cal uncertainties has been performed for this analysis. For a discussion relating to
results from pure wino and Higgsino models, see [82, 87]. Variation of the resum-
mation scale in the hard function at NLL accuracy were studied in [62]. No large
corrections are expected according to these investigations.

Comparing the last two columns in Tab. 3, SE is found to remain the dominant
source of corrections to a naive tree-level calculation in most models, neverthe-
less resummation of Sudakov logarithms can be similarly or even slightly more
important in specific parts of the parameter space with strong bino admixture,
cf. benchmarks BH, BW or BHW-mass, where SE is small.

The presented analysis focused on the gamma-ray line feature near the spec-
trum endpoint within an intermediate energy resolution of the order of the soft
scale mW and disregarded continuum contributions expecting them to be sub-
leading [131]. Constraints on the MSSM parameter space obtained from analyzing
also the continuum spectrum [100, 132] can therefore be less strongly impacted by
Sudakov resummation if the diffuse continuum contributes notably to the likeli-
hood statistics.



6 Bound state formation

The main subject of research of this thesis is bound state formation (BSF) by
radiative emission of a light mediator where both the non-relativistic initial scat-
tering and final bound state experience separately general Coulomb potentials of
strengths αs and αb. The scattering state is characterized by its relative velocity
v and angular momentum ℓ′ and the bound state by the usual major, angular and
magnetic quantum numbers, n, ℓ and m. The latter will always be summed over.
By physical intuition of effective theories, which is proven to be correct below, one
expects interesting physical phenomena to take place when the momenta of initial
scattering state is similar to the Bohr momentum of the formed bound state. In
this regime, the leading order quantum mechanical matrix elements computed in
section 6.2 grows large and partial wave unitarity [89] can become violated on
this perturbative level even for small couplings. For a simple parametric estimate,
efficient BSF and, in particular, perturbative unitarity violation (UVi) occur when

1

nv
∼ 1

αb
≫ 1. (6.1)

The systematic occurrence of UVi even for perturbative couplings will be
proven analytically and shown numerically to arise in any αs < αb at low ve-
locities. Other central results are an algorithmic approach to compute BSF radial
overlap integrals for arbitrary multipole interactions and general αb,s, n, ℓ and ℓ

′

detailed in App. C.2 and the emergence of eternal depletion in the early universe
for non-Abelian gauge theories which conflicts with the simple WIMP paradigm
of thermal production.

This chapter constructs the computational framework and treats theoretical
problems in the first sections prior to more phenomenological studies in later sec-
tions. After some brief introduction, section 6.2 derives the Coulombic BSF cross-
section of general multipole interactions, stating explicit solutions up to quadrupole
interactions. A semi-classical analogy and approximate quantum mechanical re-
sults confirm this full quantum mechanical result in section 6.3. Section 6.4 derives
UVi from the computed BSF cross-sections, demonstrating a theoretical problem
in BSF processes which remains technically unresolved yet is formally known to
be cured by resummation [133]. Relating more directly to DM applications, sec-
tion 6.5 considers the effect of bound state formation and decay on early Uni-
verse dynamics of heavy fundamental SU(Nc) constituents. The simplistic ther-
mal freeze-out paradigm turns out to not be applicable for Nc > 2 as no com-
plete chemical decoupling is ever reached. Lastly, for a concrete phenomenological
application, section 6.6 numerically investigates a colored and charged t-channel
mediator DM model where now also transitions between different bound states are
present. Bound state effects source a dependence of the obtained relic densities
on the mediator lifetime in contrast to typical superWIMP production. App. C
collects many supplementary analytic expressions and App. D includes a detailed
functional analysis of the found BSF cross-sections from section 6.2 which is sum-
marized in the main text.

The chapter follows a logical rather than a historical build up, with the earlier
sections dominantly consisting of more recent research, core aspects of which are at
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the time of writing in finalizing stages of a publication under the title “Perturbative
unitarity violation in radiative capture transitions to dark matter bound states”
[4]. Later phenomenological analyses as well as some of the groundwork of the
first sections has been published already as “Excited bound states and their role
in dark matter production” [3].

6.1 Overview

Attractive long-range forces between particles can allow for bound state B in
the two-particle spectrum at negative energies relative to the rest mass of two
non-interacting particles, 2Mχ. Identically heavy particles will be assumed in all
later sections, yet a generalization to reduced and total masses is straightforward.
Bound states appear in PNREFT as discrete poles on the negative real axis of the
complex energy plane E < 0, labeled by n ∈ N, as a consequence of the non-local
potential interaction. Poles are only shifted into the negative complex half-plane
upon non-perturbative inclusion of a finite decay width in the Hamiltonian. These
solutions are absent in NREFT, hence, bound states are an emergent phenomenon
in PNREFT from the point of view of perturbation theory.

The exponential term in Yukawa potentials implements a typical range 1/mϕ to
the potential and the spectrum of bound states depends on the ratiomϕ/Mχ which
must be small to yield long range interactions in the first place. The Sommerfeld
resonances observed in chapter 4 are indicative of a new bound state solution
appearing in the spectrum on-threshold, meaning close to zero binding energy. No
such resonances arise in Coulomb potentials,

V (r) = −α
eff

r
, (6.2)

which are devoid of any inherent dimensionful scale. However, an infinite number
of bound state solutions Bn, n ∈ N, exists independently of Mχ for attractive
coupling strengths αeff = αb > 0. Their Bohr energies are, written only here using
the general reduced mass µ for conformity with common expressions,

⟨Bn|H |Bn⟩ = −En = − µBα
2
b

2n2
(6.3)

with corresponding Bohr momenta and Bohr radii

pn =
µBαb
n

and rn =
n

pn
. (6.4)

For each eigenenergy, there exist multiple degenerate Bnℓm of angular momentum
ℓ < n, ℓ ∈ N0 and magnetic quantum number m ∈ Z, −ℓ ≤ m ≤ ℓ.

For this chapter, radiative bound state formation processes

χa + χb = Spℓ′ −→ Bnℓm + ϕω (6.5)

are considered, where the initial state of two non-relativistic constituents χa,b is
an eigenstate of relative momentum p = |p⃗a − p⃗b|/2 and angular momentum ℓ′

between the two. Calculating in the center-of-mass frame, the kinetic energy of
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the initial state is then K = p2/2µS with the reduced mass µS of S. The final state
consists of the bound state Bnℓm and an emitted mediator of energy ω which is
assumed to be a massless scalar ϕ, for simplicity. The generalization to unpolarized
processes of gauge boson BSF mediators will be discussed later, see section 6.5. A

non-zero BSF mediator mass only gives rise to a simple known factor
√

1 +m2
ϕ/p

2
ω

in the cross section. A description in PNREFT involves only ultra-soft modes of
ϕ which necessitates that the masses of B and S are similar, so to leading order
µS ≈ µB. In the following also pairs of (nearly-) degenerate particles are assumed,
thus p =Mχv/2. Note that B is constructed as a single-particle state in the Fock-
space of two-constituent fields [61], so the process in Eq. (6.5) is indeed a 2-to-2
inelastic scattering process and as such subject to partial wave unitarity conditions
which will be considered in section 6.4. The Coulomb potential strengths of S and
B are not constraint, except for the necessary condition αb > 0, and may differ. For
a simple example, one may think of a doubly charged scalar emission via mediator
interaction with charged fermions, χ++χ+ → ϕ2++Bχ−χ+ . More commonly, non-
Abelian gauge groups give rise to potentials with varying sign, cf. section 6.5. Until
then, the calculations are performed in the general framework assuming scalar
mediators since results translate in a straightforward fashion to gauge bosons as
long as the BSF mediator is treated fully inclusively in regards to phase space,
polarization and other internal degrees of freedom.

Convenient variables for the process are the ratio of potentials κ and the ratio
of two-constituent state momenta ζn,

ζs ≡ αs
v
, (6.6)

ζb ≡ αb
v
, (6.7)

ζn ≡ pn
p

=
αb
nv
, (6.8)

κ ≡ ζs
nζn

=
αs
αb
. (6.9)

The introduced inverse velocity ζs sees widespread usage in the literature. Here, the
notation of the corresponding “bound state inverse velocity” ζb = nζn = ζ1, which
is more clearly identified as the ratio of Bohr and relative momentum, is generalized
to include n as a subscript, slightly honing the notation of [3]. Nevertheless, ζb
becomes useful for inclusive processes where n is being summed over. The second
steps of expressing ζn and κ employ that the reduced masses must coincide to the
considered accuracy. By energy conservation, the radiated energy ω is now

ω = |p⃗ω| = K + En =
Mχv

2

4

(
1 + ζ2n

)
. (6.10)

Neither the angular distribution of the emitted ϕ nor of the initial relative momen-
tum are of interest here, nor would be any possible polarization or other internal
degrees of freedom for less minimal mediators. Averaging and summing over these
parameters drastically simplifies the calculation of angular overlap integrals later
on.
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6.2 General radiative Coulombic BSF

This section derives a compact, efficiently evaluated form of the most general LO
radiative BSF radial overlap integral in Coulombic potentials. The first subsec-
tions define the relevant Lagrangian, the matrix element and re-derive the an-
gular integral. The general radial overlap integral is solved in subsection 6.2.4
and subsequently employed in the BSF cross-section. The result can always be
reduced to involve only a single, unique hypergeometric function once specific val-
ues for multipole order and angular momentum change are inserted, as outlined
in subsection 6.2.5. This reduction to compact closed-form expressions is explic-
itly performed for maximal angular-momentum changing BSF cross-sections up to
quadrupole interactions with results stated and analyzed in the final subsections.
Discussions in this section mostly remain technical while a deeper understanding
of the physics of BSF will be built in the dedicated section 6.3.

In terms of single field constituent operators, the relevant non-perturbative
Lagrangian simply remains in the form of LPNR[χ] in Eq. (2.9) for all constituent
fields making up S and B. However, knowing that only radiative transitions be-
tween 2-constituent states, or at most their constituent annihilation captured by
local 4-point interactions, are of interest, one may project directly into the two-
constituent space. This has the advantages of including only the desired degrees
of freedom and directly separating the potentials according to their effective cou-
pling strengths αb,s [134–136]. The Lagrangian describing both two-particle state
species, S and B, in the center-of-mass frame is [75]

LBSF = S†(R, r⃗)

(
i∂0 +

∂⃗2r⃗
Mχ

− δMS +
αs
r

)
S(R, r⃗)

+B†(R, r⃗)

(
i∂0 +

∂⃗2r⃗
Mχ

− δMB +
αb
r

)
B(R, r⃗) + Lm.p.

BSF + Llight
BSF (6.11)

where integrations in d3r⃗ is dropped, annihilation operators are disregarded and
mass splittings are only included for completeness. Spatial derivatives with respect
to the center-of-mass (4-vector) coordinate R are suppressed in v in the center-
of-mass frame, even compared to a dipole interaction operator. Lm.p.

BSF includes
multipole interactions of S and B and all remaining light modes are described in
Llight

BSF . The spectrum of two-constituent states B in (6.11) also includes scattering
states Bp⃗ℓ and, provided αs > 0, that of S includes bound states Snℓm, as well.
Neither of these are relevant to calculations of this thesis and S and B are always
considered as scattering and bound states, respectively, in the following. Dropping
the scattering and (possible) bound terms in the spectral decomposition of B(R, r⃗)
and S(R, r⃗), respectively, also ensures that all discussions are applicable to the case
where only a single species is present, |Sn⟩ = |Bn⟩, without any double counting.

6.2.1 Agnostic multipole interaction Lagrangian

This chapter is limited to leading order effects and tree-level processes only and
no higher power or loop corrections are considered. The goal is nevertheless to
investigate also higher multipole interactions. Limiting the analysis to tree-level
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strongly reduces the set of relevant interaction operators but also limits the viable
processes where tree-level amplitudes of multipole interactions yield the complete
leading order scattering matrix element as discussed below.

Even though the heavy, non-relativistic states are conserved in number in
(P)NREFT, regarded interactions may induce species changes between S and B,
thus giving rise to BSF. Disregarding multi-field emissions for being additionally
suppressed in the multipole coupling strength, interactions contributing at tree-
level must be linear in S, B and ϕ. Furthermore, expanding all occurrences of
ϕ(R, r) obtained in the PNREFT matching in r/R ≪ 1, the interactions form a
multipole series counted in a ∈ N0 with terms

Lm.p., a
BSF ≡ geffa paϕ r

aPa(p̂ϕ · r̂) B†(R, r⃗)ϕ†(R)S(R, r⃗)

=
4π

2a+ 1

∑
m̃

geffa paϕ r
a Yam̃(p̂ϕ)ϕ

†(R) B†(R, r⃗)Y ∗
am̃(r̂)S(R, r⃗). (6.12)

The geffa are Wilson coefficients defined by matching and pϕ is the momentum
operator acting on ϕ(R). This expression relates to the more common expansion
in Cartesian monomials (p⃗ϕ · r⃗)a by reverse Legendre polynomials [137]. The given
form is general due to the absence of any other 3-vectors in the problem. Note
that for spinful mediators this is complicated by mediator polarizations, which are
only summed over on cross-section level. The mediator mode is ultrasoft, pϕ ∼ pv,
which makes all multipole interactions power suppressed with respect to the kinetic
or potential terms by

geffa va. (6.13)

This systematic power suppression in v implies that, when considering a given
multipole interaction a, all lower multipoles a′ < a and also higher power EFT
corrections thereof must be considered carefully in computing the matrix element,
see for example [138]. What comes to rescue are familiar angular momentum
selection rules, arising in this chapter from Eq. (6.32), according to which each
multipole can only induce changes in the angular momentum by

∆ ≡ ℓ′ − ℓ, (6.14)

−a ≤ ∆ ≤ a, (6.15)

∆ increasing in steps of 2. It follows that in maximal angular momentum transi-
tions, |∆| = a, any lower multipole insertions a′ < a vanish. This holds true since
the problem maintains its spherical symmetry even under higher power corrections,
hence the quantization in terms spherical harmonic functions remains intact and
the angular overlap integral exact. On the basis of this justification, the multipole
interactions in Eq. (6.12) for regarded processes are at leading order given by

Lm.p.
BSF ≈ Lm.p., |ℓ′−ℓ|

BSF (6.16)

and there can be only one diagram contributing at tree-level. The major quantum
number n may still be summed over, which will be studied in section 6.4.3. Fur-
thermore, depending on the process of interest, the initial or final state angular
momentum may be summed in both allowed values ℓ′ = ℓ ± ∆. Summation of
both, ℓ and ℓ′, is only briefly discussed in App. D.2.
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Note that regardless of this argument, geffa may vanish in certain configurations
at the leading order accuracy in v. Most prominently, a total charge neutral two-
constituent state such as χ+χ− has a vanishing monopole term under U(1) gauge
interactions, corresponding to the fact that there is no far field.

6.2.2 Multipole transition matrix element

The cross section for the radiative BSF process in Eq. (6.5), averaged over the in-
coming momentum direction p̂ and summed in the bound state magnetic quantum
number m and all internal degrees of freedom of ϕ, denoted as dϕ, for distinguish-
able initial states constituents reads

(σv)apℓ′→n,ℓ =
(1 + ζ2n)v

2

29π2M2
χ

×
∑∫
m, dϕ

d2p̂

4π
d2p̂ω

∣∣∣Ma,ℓ′−ℓ
p,nℓm

∣∣∣2 (6.17)

with the leading order scattering matrix element applicable for |∆| = a

i δ4(Pin − Pout)Ma,∆
p,nℓm ≡ ⟨ϕω ,Bnℓm|

∫
d4R d3r⃗ iLm.p., a

BSF |Sp,ℓ+∆⟩ . (6.18)

The tree-level expression immediately factorizes and ϕ can be contracted with
the external state, setting p⃗ϕ = p⃗ω. To arrive at the electric multipole operator
normalization of Qam̃ [139] one performs the phase space integral over p̂ω but
maintains the operator definition such that widespread cross section formulas still
apply without further modification except that m̃ is averaged decoherently,

∑
m̃,m̃′

∫
d2p̂ω

(4π)2

(2a+ 1)2
Yam̃(p̂ω)Y

∗
am̃′(p̂ω) =

∫
d2p̂ω

∑
m̃

2a+ 1

∣∣∣∣
m̃′=m̃

√
4π

2a+ 1

2

, (6.19)

resulting in

(σv)ap ℓ′→nℓ =
geffa

2
Mχ(1 + ζn

2)v2

8π(2a+ 1)2

∑∫
m,m̃

d2p̂

4π
d2p̂ω

∣∣∣∣∫ d3r⃗B∗
nℓm(r⃗)p

a
ωr

aY ∗
am̃(r̂)Sp⃗ ℓ′(r⃗)

∣∣∣∣2.
(6.20)

Where the two particle state normalizations must be respected when contract-
ing to the external states [61]. The cross section is now given in terms of the well-
known and expected matrix element from quantum mechanics ⟨Bnℓm|Qam̃ |Sp⃗,ℓ′⟩
using Qam̃ = paω r

aYam̃(r̂) where pω = ω is still included to keep mass dimensions
constant when considering different multipoles. pω can be taken out of the integral
and the remaining wave function overlap decomposes in spherical coordinates into
separate radial and angular terms. The well-known Coulomb wave functions are

Bnlm(r⃗), = Bnl(r)Yℓm(r̂), (6.21)

Sp⃗,ℓ′(r⃗) = Sp,ℓ′(r) iℓ
′
eiℓ

′ arg(Γ(1+ℓ′−iζs))(2ℓ′ + 1)Pℓ′(r̂ · p̂) (6.22)
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with the radial pieces

Bnl(r) =
(2pn)

ℓ+ 3
2 rℓ

(2ℓ+ 1)!

√
(n+ ℓ)!

2n(n− l − 1)!
e−pnr 1F1 (−n+ ℓ+ 1; 2ℓ+ 2; 2pnr) , (6.23)

Spℓ′(r) =
(2pr)ℓ

′

(2ℓ′ + 1)!
e

π
2
ζs |Γ(1 + ℓ′ − iζs)| eipr 1F1 (−iζs + ℓ′ + 1; 2ℓ′ + 2;−2ipr) .

(6.24)

Pℓ′ denotes Legendre polynomials and Yℓm are the orthonormal spherical harmonic
functions evaluated for the polar and azimuth angles of the unit vectors. The usual
Sommerfeld factor is encoded in the complex gamma function,

eπζs |Γ (1 + ℓ′ − iζs)|2 =
2πζs

1− e−2πζs

ℓ′∏
j=1

(
j2 + ζ2s

)
≡ (ℓ′!)2 Sℓ′(ζs). (6.25)

The separate radial and angular squared overlap integrals are

Ia,∆R ≡ p2aω

∣∣∣∣∫ dr r2+a B∗
n,ℓ(r)Sp,ℓ+∆(r)

∣∣∣∣2 (6.26)

and

Ia,∆A ≡
∑
m,m̃

∫
d2p̂

4π

∫
d2p̂ω

∣∣∣∣(2ℓ+ 2∆+ 1)

∫
d2r̂ Y ∗

ℓm(r̂)Y
∗
am̃(r̂)Pℓ+∆(r̂ · p̂)

∣∣∣∣2 . (6.27)

The cross section written in terms of these two integrals is simply

(σv)ap ℓ′→nℓ =
geffa

2
Mχ(1 + ζn

2)v2

8π(2a+ 1)2
× Ia,ℓ

′−ℓ
A × Ia,ℓ

′−ℓ
R . (6.28)

The following two subsections repeat the solution to IA and, as a novelty, discuss
in detail how to solve IR for general processes.

6.2.3 Squared angular overlap integral

The angular integral in Eq. (6.27) is independent of the major quantum number
n and the incoming momentum p. Its solution is long-known from the early days
of quantum mechanics. The average over the initial momentum direction allows
for a particularly simple derivation by multiplying out the absolute square and
rewriting the Legendre polynomials as

Pℓ′(r̂ · p̂) =
∑
m′

4π

2ℓ′ + 1
Yℓ′m′(r̂)Y ∗

ℓ′m′(p̂). (6.29)

Doing so in both contributions from the absolute square, which are complex conju-
gates of each other, introduces separate summation indices m′ and m′′. Similarly,
the two integration variables are r̂ and r̂′. Performing the average over p̂,

1

4π

∫
d2p̂ Y ∗

ℓ′m′(p̂)Yℓ′m′′(p̂) =
δm′,m′′

4π
, (6.30)
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cancels one summation. There are now three summations left (m, m̃ and m′) and
6 spherical harmonic Y where always two are related by complex conjugation and
exchange of the integration variable coordinate r̂ ↔ r̂′. Using Eq. (6.29) in reverse
to perform each sum yields

Ia,ℓ
′−ℓ

A =
1

4π
(2a+ 1)(2ℓ+ 1)(2ℓ′ + 1)

∫
d2r̂ d2r̂′ Pa(r̂ ·r̂′) Pℓ(r̂ ·r̂′) Pℓ′(r̂ ·r̂′). (6.31)

One of the integrals is now trivial while the remaining integral results in a known
solution in terms of a squared three-j symbol,

Ia,ℓ
′−ℓ

A = 4π(2a+ 1)(2ℓ+ 1)(2ℓ′ + 1)

(
a ℓ ℓ′

0 0 0

)2

. (6.32)

The three-j symbol vanishes unless a, ℓ and ℓ′ satisfy a triangle inequality
a ≤ ℓ + ℓ′ and a ± ∆ > 0. The second condition justifies the pursued ansatz to
consider tree-level BSF diagrams of only a single multipole interaction as long as
a = |∆|. The former condition poses a bound on the maximal multipole which
can contribute, however this is a weak bound in practice as soon as ℓ, ℓ′ ≥ 1 since
interactions beyond quadrupole are rarely ever calculated. The average in p̂ is
computationally convenient but not necessary to solve the integral [140].

6.2.4 General radial overlap integral

To solve Ia,∆R , it is convenient to start from a more minimal definition of a math-
ematical integral problem Ja,∆p,pn . The technicalities of radial overlap integrals for
arbitrary multipole insertions were already solved for electromagnetic interactions,
i.e. κ = 1, in [141]. Discussions therein regard BSF, bound-to-bound transitions
and bremsstrahlung and take great concerns of mathematical rigor with analyses
of convergence conditions, poles and branch cuts in the analytic continuations per-
formed for all different cases. Relying on the thus proven existence of the integrals,
most concerns of convergence are ignored for this section. A different route making
use of a more general equation, see identity 1. in section 7.622 of [142],∫ ∞

0

dt e−st t(c−1)
1F1(a; c; t) 1F1(α; c;λt) =

=Γ(c)(s− 1)−a(s− λ)−αsa+α−c 2F1

(
a, α; c;

λ

(s− 1)(s− λ)

)
, (6.33)

has been employed to solve the quadrupole scenario in the case of κ = 1 [138],
yet no further generalizations in κ or a were considered. With the results of
this subsection, arbitrary Coulombic potentials and multipoles can be treated.
Furthermore this thesis formulates the problem entirely in spherical coordinates,
which are suited to the problem in the absence of any distinguished external axes.

Introducing the abbreviations [141]

n̄ ≡ n− ℓ− 1, (6.34)

n̄∗
s ≡ −iζs − ℓ′ − 1, (6.35)
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the starting point of the calculation is the definition

Ja,∆p,pn(n̄s, n̄, ℓ) ≡
∫ ∞

0

dr r2+a+2ℓ+∆ e−ipr−pnr

× 1F1(−n̄∗
s; 2ℓ+ 2∆+ 2; 2ipr)1F1(−n̄; 2l + 2; 2pnr). (6.36)

This form is more general than the needed case of ∆ = ±a and the procedure
described here is also applicable for radial overlap integrals of arbitrary BSF pro-
cesses. Before being able to apply the solution (6.33), the integral needs to first
be brought into the correct form by two main transformations. From usual hyper-
geometric relations one finds

1F1(a; c+ 2|∆|;x) =
Γ(c+ 2|∆|)
x2|∆|Γ(c)

2|∆|∑
j=0

(−1)j
(
2|∆|
j

)
1F1(a− j; c;x). (6.37)

This allows to bring both second parameters of the confluent hypergeometric func-
tions in Ja,∆p,pn to the same value. Now, only the polynomial power of r is not in the
desired form of Eq. (6.33). This is resolved by introducing an ancillary variable
s in the exponential term as (−ip − pn)rs, thus defining a more general integral
Ja,∆p,pn(n̄s, n̄, ℓ; s) which obeys

Ja,∆p (n̄s, n̄, ℓ; 1) = Ja,∆p,pn(n̄s, n̄, ℓ), (6.38)

∂s J
a,∆
p,pn(n̄s, n̄, ℓ; s) = −p(i− ζn)J

a,∆+1
p,pn (n̄s, n̄, ℓ; s). (6.39)

The construction allows to trade surplus powers in r for derivatives with respect
to s. Note that by having reduced the higher of the two hypergeometric functions’
second parameters in Eq. (6.37), it is ensured that there will be surplus powers
of r rather than a lack of powers of r which could not be absorbed into simple
derivatives. As a consequence, the cases ∆ > 0 and ∆ < 0 work out slightly
differently in intermediate results J

a,±|∆|
p,pn , yet, ultimately take very similar forms.

It is noted in passing that negative powers of r are also one pitfall why this approach
may be insufficient for overlap integrals integrals in higher-power EFT insertions,
which introduce powers∼ ∂⃗2 ∼ 1/r according to leading order equations of motion.
Higher order effects were not investigated in any more detail. To arrive at the exact
form of Eq. (6.33), one must introduce 1 + a− |∆| > 0 differentiations,

r2+2ℓm+a−|∆|e−rp(i+ζn) =
(−1)1+a−|∆|

(i + ζn)1+a−|∆| (∂s)
1+a−|∆|∣∣

s=1
r2ℓm+1 e−rp(i+ζn)s (6.40)

where ℓm = min{ℓ, ℓ′} = ℓ + (∆ − |∆|)/2. The simplicity of the case ∆ = ±a
becomes apparent as a minimization of number of differentiations. Before inserting
Eq. (6.33), note that it comes with conditions of convergence, Re(2ℓ+ 2) > 0 and
Re(s(1 + i/ζn)) > 1 + Re(i/ζn), where s refers to the differentiation variable.
The first condition is trivially fulfilled while the latter is consistently violated for
any s < 1, even when allowing for imaginary momenta. However, for physical
values the confluent hypergeometric function in the bound state wave function
actually collapses simply to a polynomial, which is assumed to extend the radius
of convergence. This is supported by numerical results later on. Hence, bravely
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disregarding concerns about convergence, the integral solution may be inserted,
identifying the integration variable as t = 2pnr. With a convenient redefinition
s→ 1 + s/(i + ζn), the integral yields for ∆ > 0

Ja,∆p,pn(n̄s, n̄, ℓ) =
(−1)1+a

22∆ pa+2ℓ+∆+3

× (∂s)
1+a−∆

∣∣∣
s=0

2∆∑
j=0

(−1)j
(
2∆

j

)
Γ(2ℓ+ 2∆+ 2)

(s+ ζn + i)2l+2

×
(
s− ζn + i

s+ ζn + i

)n̄(
s+ ζn − i

s+ ζn + i

)n̄∗
s
(
s+ ζn − i

s+ ζn + i

)j
× 2F1

(
−n̄,−n̄∗

s − j; 2ℓ+ 2;
−4iζn

(ζn − i)2 − s2

)
(6.41)

and for ∆ < 0 (writing the sign explicitly, to prevent any possible confusion)

Ja,−|∆|
p,pn (n̄s, n̄, ℓ) =

ζ
−2|∆|
n (−1)1−a+|∆|

22|∆| pa+3+2ℓ−|∆|

× (∂s)
1+a−|∆|∣∣

s=0

2|∆|∑
j=0

(−1)j
(
2|∆|
j

)
Γ(2ℓ+ 2)

(s+ ζn + i)2ℓ′+2

×
(
s− ζn + i

s+ ζn + i

)n̄(
s+ ζn − i

s+ ζn + i

)n̄∗
s
(
s− ζn + i

s+ ζn + i

)j
× 2F1

(
−n̄− j,−n̄∗

s; 2ℓ
′ + 2;

−4iζn
(ζn − i)2 − s2

)
. (6.42)

Apart from some differences mostly concerning the interchange of ℓ ↔ ℓ′, the
main conceptual difference is that now the first argument of the hypergeometric
function is being iterated by the summation. Notably, the number of differen-
tiations and also the summation index j are here of order a = O(1) which is a
strong simplification compared to the known results of [140] in terms of at least
n + ℓ + 2 differentiations. The differentiation are easily performed analytically
using Eq. (C.9) since all three parameters of the hypergeometric function are inde-
pendent of s. All other terms are technically straightforward rational polynomials,
even though their analytic form becomes cumbersome in practice. An algorithmic
prescription to obtain compact analytic results for specified a and ∆ is given in
App. C.2.

Before moving on to the explicit results of the radial overlap integrals IR, some
especially simple cases are regarded. For later use in analytic treatments, it will be
useful to have a better understanding of the most relevant case ∆ = a. Evaluating
the single remaining derivative, Eq. (6.41) yields

Ja,ap,pn(n̄s, n̄, ℓ) =
(−1)ae−2ζsArcCot(ζn)

22a−1 p2a+2ℓ+3

Γ(2ℓ+ 2a+ 2)

(i− ζn)2ℓ+4

×
2a∑
j=0

(
2a

j

)
(−1)j e2i(a−j−1−n)ArcCot(ζn) (nζn − ζs + i(a− j))

× 2F1

(
−n̄,−n̄∗

s − j; 2ℓ+ 2;
−4iζn

(ζn − i)2

)
. (6.43)
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Further considering ℓ = n − 1 ⇔ n̄ = 0 trivializes the hypergeometric function,

2F1(0, b; c; z) = 1, and leads to the solution

Ja,ap,pn(n̄s, 0, n− 1) =
2nζn

p2n+2a+1

Γ(2n+ 2a)

(1 + ζ2n)
1+a+n

(
1 +

a

n
− κ
)
e−2ζsArcCot(ζn). (6.44)

Its simplicity makes the case of maximal ℓ = n− 1, meaning near-circular orbits,
theoretically attractive for analytic studies. A curious feature of Eq. (6.44) is that
BSF cross-sections will directly proportional to (1 + a/n− κ)2. Hence, it predicts
cancellations occurring at certain combinations of a, n and rational positive κ >
1. Specifically, and of most immediate interest, radiative dipole ground state
formation vanishes at LO in Coulombic systems where the initial state potential
is twice as strong as the bound state potential, i.e. κ = 2. This cancellation is
not captured by any conventional multipole transition rule. An investigation of
possible consequences is beyond the scope of this thesis.

6.2.5 Simplified squared radial overlap integral

The radial overlap (6.26) relates to the integral J by straightforward multiplication
of the absolute square,

Ia,ℓ
′−ℓ

R =
p2aω (2pn)

2ℓ+3(2p)2ℓ
′

2n

Γ(n+ ℓ+ 1)

Γ(2ℓ+ 2)2Γ(2ℓ′ + 2)2
eπζs|Γ(n̄s)|2

Γ(n̄+ 1)

∣∣Ja,∆p,pn(n̄s, n̄, ℓ)
∣∣2.

(6.45)

Using Eqn. (6.41) and (6.42), IR may now be evaluated into a closed form. The con-
secutive derivatives produce an equal number of different hypergeometric functions
according to Eq. (C.9) which can be simplified by repeated use of hypergeometric
identities, cf. App. C.1.2, following App. C.2. It turns out that (even for general
∆) all hypergeometric functions can be related to only a single one, F+(0), where

F+(X) = 2F1

(
−n̄, X + ℓ+ iζs; 2ℓ+ 2;

−4iζn
(i− ζn)2

)
(6.46)

Introducing the complex phase γn,

γn ≡ arg(i + ζn) = arccot(ζn) ⇔ e2iγn =
i + ζn
i− ζn

(6.47)

one can see the argument of the hypergeometric function is located on a unit circle
centered around 1, a critical property in the reduction to F+(0). Two notable
steps in the simplification should be briefly highlighted. First, after arriving at an
expression in terms of F+(X) with X = 0, 1, 2, one makes use of

F+(1) =
1 + ζ2n
2iζs

(1 + ℓ+ iζs) e
2iγnF+(2)− (1 + ℓ− iζs) e

−2iγnF+(0)

ζ2n −
(
1− 2

κ

) , (6.48)

a simplification which was not implemented in the literature previously [75, 140].
Secondly, F+(X) obeys

F+(X) = e4iγnn̄F ∗
+(2−X). (6.49)
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At X = 2, this mirror property allows to rewrite the radial overlap integral in
terms of only F+(0) and its complex conjugate.

Note that Eq. (6.48) seemingly introduces a nonphysical pole at ζ2n = 1− 2/κ.
However, F+(X) at integer n, ℓ ∈ N0 are just polynomials of degree n̄ in the
argument of the hypergeometric function and ζs, thus F+(1) is not divergent and
the pole is ensured to be lifted in the numerator. While this is apparent from
Eq. (6.48), once the absolute square of the integral Ia,aR is inserted in the BSF
cross-section, this mathematically concerted cancellation will become unobvious.
Note on the aside, that Eq. (6.48) begins the trend of using redundant notation,
including ζs and κ simultaneously.

The fully simplified squared radial overlap integral now only depends on

(i) the prefactors inherited from the wave functions according to (6.45), includ-
ing the Sommerfeld factor,

(ii) the exponential term written in (6.44) which are obtained from the complex
fractions in (6.43),

(iii) F+(0) and its complex conjugate and

(iv) all remaining contributions of ζn, n and κ left over after performing the
derivatives in the ancillary parameter s and the reduction to F+(0). These
form a well behaved rational polynomial R.

Remarkably, the algorithmic reduction to F+(0) must hold for any a and ∆ and
F+(0) is thus the defining hypergeometric function for any Coulombic radiative
multipole BSF at LO. Ia,∆R for general a and ∆ = ±a is therefore given by

Ia,±aR =
24ℓ−2a+5v2a−3ζ2ℓ+3

n

M3 (1 + ζ2n)
2ℓ+4−2a

e−4ζsγnSℓ±a(ζs) ((ℓ± a)!)2

ζ2s

Γ(n+ ℓ+ 1)

nΓ(2ℓ+ 2)2Γ(n− ℓ)

×
∣∣1− e2i(2γn(n−l)−γ±a−γF )

∣∣2(
ζ2n −

(
1− 2

κ

))2 |F+(0)|2 |R±a|2 (6.50)

where γn is defined in Eq. (6.47) and, analogously, γF and γ∆ are the complex
phases of F+(0) and R∆. a is not denoted explicitly on R∆, but implied by
a = |∆|. The second term in (6.50) involving the Sommerfeld factor Sℓ′ includes
also the usual arc cotangent term exp{−4ζsγn} which is a known ingredient to BSF
cross-sections [141, 143]. The third term arises directly from the wave function
normalizations and the second line involves the non-trivial terms obtained from
the radial integration and simplification steps. It includes the two absolute squares
of the rational polynomials and the defining hypergeometric function as well as a
fraction which is, in its entirety, referred to as “phase factor”. The denominator
originates from Eq. (6.48) and should not be considered independently. Explicit
expressions of R∆ up to quadrupole interactions are provided in section 6.2.6. The
result of Eq. (6.50) is analyzed in more detail in section 6.2.7 and App. D.

The reduction to a single hypergeometric function is a significant simplification
and unexpected ab initio. It opens the path to better analytic treatment thanks
to more tractable expressions, as well as numerical stability and efficiency. Similar
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results in terms of a single hypergeometric function are known in the literature
for the reduced cases of monopole BSF, I0,0R [144], or “Abelian” quadrupole BSF,
I2,∆R |κ=1 [138]. The terminology “Abelian” simply refers to identical initial and
final state potentials κ = 1 irrespective of the responsible multipole interaction
being a U(1) gauge interaction. Both works found solutions involving only F+(1)
which avoids the issue of the lifted pole but hides the highly oscillatory nature of
the final result. Moreover, F+(1) is insufficient to describe more general BSF as
Eqn. (6.48) and (6.49) cannot be inverted to find F+(0) in terms of F+(1) without
F+(2). Still two or three hypergeometric functions were used in [75] and none
of the known results were applicable to simultaneously general a, ∆ and κ. The
oscillatory behavior of the BSF cross-section observed already in the literature [3,
140, 144] is for all significant parts entirely manifest in (6.50) from the phase
γn(n− ℓ) as long as κ ≤ 0.

6.2.6 Analytic results for Mono-, Di- or Quadrupole interaction

Following the simplification procedure of C.2, the rational polynomials R±a in
Eq. (6.50) defining the different multipole BSF cross-sections of the monopole,
dipole and quadrupole (a = 0, 1, 2) operator are obtained as

R0 ≡nζn(1− κ)(1 + ζ2n)(1 + ℓ− iζs), (6.51)

R1 ≡ ζs(1 + ζ2n) + nζn(1− κ)
(
2 + 2inζn(1− κ) + (1 + ζ2n)(ℓ+ 1)

)
, (6.52)

R−1 ≡
[
ζs(1 + ζ2n) + nζn(1− κ)

(
2 + 2inζn(1− κ)− (1 + ζ2n) ℓ

)]
(6.53)

× (l − iζs) (1 + ℓ− iζs) ,

R2 ≡ nζn
(ζ2s + (ℓ+ 2)2)(1 + ζ2n)

[
(1 + ζ2n)

2(ℓ+ 1)(2ℓ+ 3)(2 + ℓ(1− κ))

+ 2(1 + ζ2n)(iζs + ℓ+ 2) (2 + 2ℓ(1− κ) + inζn(1− κ)(2ℓ(1− κ) + 3))

+4(1− κ)(iζs + ℓ+ 2) (1 + inζn(1− κ)) (2 + inζn(1− κ))] , (6.54)

R−2 ≡
(ℓ− iζs)(1 + ℓ− iζs)

1 + ζ2n

[(
1 + ζ2n

)2
ℓ(2ℓ− 1)((1− ℓ)nζn(1− κ) + 2ζs)

− 2
(
1 + ζ2n

)
(1− ℓ+ iζs)

× (2ζs − nζn(1− κ)(i(2ℓ− 1)nζn(1− κ)− iζs + 2(ℓ− iζs)))

−4nζn(1− κ)(1− ℓ+ iζs)(−2 + inζn(1− κ)(−3− inζn(1− κ)))] . (6.55)

The form given here makes all cancellations of the “Abelian” case manifest as terms
(1 − κ), highlighting the strong simplifications of the Abelian case. Anticipating
the analysis of section 6.4, the large n and ℓ behavior n, ℓ ≫ n̄ = O(1) shows a
dependence on the non-Abelian nature of the interaction,

Ra|n,ℓ≫n̄ ∝ n2(1− κ) +O(n). (6.56)

Abelian cross sections boast a parametrically weaker dependence on n ≫ 1 com-
pared to general-potential BSF processes by two powers since |Ra|2 contributes.
Note that this estimate holds only for positive ∆ = a while for ∆ < −a already
the wave-function normalization Gamma-functions in Eq. (6.50) count differently.
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Nevertheless, the leading order in n is still proportional to (1−κ) allowing for the
same line of argument. This suggests the existence of a different form of the radial
overlap integral which has identical power counting in large n for Ra and R−a, yet
for all analytical investigations as well as efficient numerical evaluation, the here
used form (6.50) suffices. Lastly, the complex phase of Ra in monopole and dipole
interactions vanishes in the Abelian case, γ∆|κ=1 = 0 at ∆ = 0, 1, however this
feature does not generalize to ∆ < 0 or ∆ ≥ 2.

The presentation of R∆ completes the analytic computation of the general-
multipole BSF cross-sections (6.28) expressed by the angular integral (6.32) and
the radial squared overlap integral (6.50) where the above R±a are to be inserted.

The power counting of the cross section is (σv)BSF ∝ (geffa )2v2a−1, in agreement
with the multipole interaction operator in Eq. (6.13). All contributions of αb,s
are implicitly encoded in ζn, κ or ζs which are O(1) quantities in the EFT power
counting. The presented results were confirmed by an independently double check,
direct numerical integration of the wave functions at small n and well behaved v
and extensive numerical comparisons to a numerical code developed in early stages
of [3] (build for a = 1 and stable to high n ≤ 1000). Note that the mathemat-
ical algorithm implemented in that code differs fundamentally from Eq. (6.50),
relying on a system of recursion relations of 5th order derived from the derivative
expression Eq. (52) in [140]. The found complete numerical agreement is therefore
also viewed a check of the disregarded concerns about the radius of convergence
formally constraining the use of Eq. (6.33) [142]. The above expression also repro-
duces existing analytic expressions of the radial overlap for monopole [144], dipole
[75, 140] as well as for quadrupole [138] for the available low n ≤ 3.

Compared to the multi-derivative expressions given in [140], the radial integral
was solved for arbitrary a and ∆ in Eq. (6.41) and involves only a small number of
derivatives and summed terms, a = O(1), vastly reducing numerical efforts when
using this unevaluated form. Moreover, for BSF into a specific bound state from
any initial angular momentum,

∑
ℓ′ Sp,ℓ′ → Bnℓ, still only the single hypergeometric

function F+(0) needs to be evaluated according to Eq. (6.50) as it is independent of
∆. In numerical evaluations, only the hypergeometric function demands significant
effort, as there are no fast convergence conditions when all parameters are large,
n, ℓ ∼ n − ℓ ≫ 1. Additional numerical stability can be achieved by rewriting
the Sommerfeld factor Sℓ′(ζs) in terms of a sinh(πζs), a binomial term, several
Gamma functions of O(1) (half-)integer arguments and Pochhammer symbols of
small (half-)integer indices ∼ ∆. Lastly, numerical underflow near oscillatory
features can be prevented by implementing an evaluation of log2 ((σv)BSF). This
implementation is efficient and stable (allowing n ≥ 104 with reasonable effort) and
was used for all velocity-dependent analyses below. Maximal angular momentum
state BSF, ℓ = n− 1, remains basically instantaneous even at n = 106 and higher
as no hypergeometric functions need to be evaluated.

6.2.7 Properties of general Coulombic bound state formation

To close this section, some intuition for general Coulombic BSF is derived from a
brief numerical study. Despite their compactness, the found analytic expressions
for the BSF cross-section are rather opaque to the human eye and it is not apparent
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Figure 6.1: Bound state formation cross section normalized to the unitarity bound
(6.76), αBSF = geffa

2
/4π and α2a

b , removing all explicit model dependence beyond κ
and ζb = αb/v. Different choices κ = 1, 0.5, ,±0.1 ,−2 (purple, blue, red, black)
are shown for n = ℓ+ 1 = 5, ℓ = 4 and ℓ′ = 6 (quadrupole). A thinner gray curve
shows κ = −2 with n = 9 (cut off below κ = 0.1 in the range 1 < ζb < 6). The
inset plot highlights the departure of κ = −0.1 (dashed red) from κ = 0.1 (solid)
at large ζb, the vertical axis here being in logarithms to the base 10.

where various qualitative features arise from. A comprehensive functional analysis
of the found BSF cross-section formulas distinctly investigating all free parameters
is relegated to App. D in the interest of brevity of this main text. Nevertheless, its
insights may prove useful to readers unfamiliar with some of the intricate details
of non-Abelian BSF cross-sections. Core aspects which may be understood in
terms of classical or basic quantum mechanical physical intuition are listed here to
provide a sufficient foundation of understanding to, at least, accept the numerical
results presented in the following sections. The phase-space prefactors and angular
integral are simple and most aspects of the following discussion relate to IR.

Different multipoles do not give major qualitative changes aside from a = 0
in which case κ = 1 must vanish due to orthogonality of the wave functions,
cf. R0 ∝ (1−κ) in Eq. (6.51). To distill the special role of κ = 1 from the analytic
expressions more clearly, consider a theoretically simple maximal-ℓ BSF process
normalized to the Abelian case,

(σv)apℓ′→n (n−1)

(σv)apℓ′→n (n−1)

∣∣∣
κ=1

= e4nζn(1−κ) arccot(ζn)
(
1 +

n

a
(1− κ)

)2 Sℓ′(κnζn)
Sℓ′(nζn)

. (6.57)

This equation holds irrespective of the κ in the numerator, a and n, cf. Eq. (6.44).
Fig. 6.1 illustrates most of the qualitatively interesting aspects of Coulombic

BSF in the exemplary case of (σv)a=2
v,6→5,4 for several κ (denoted) and, additionally,

n = 9 for κ = −2 (gray oscillatory curve). The latter has 4 true roots in the range
ζb ∈ [1, 6] which, for clarity of the figure, are not drawn below the red curve. The
depicted cross section is normalized to α2a

b αBSF, where g
eff
2 =

√
4παBSF, and for

later use also to the applicable partial wave unitarity bound (σv)uni6 , to be defined
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in Eq. (6.76). The normalization removes all explicit dependence on αs,b,BSF or v
and ζb, κ, n and ∆ are the only remaining free parameters. Many supplementary
figures may be found in App. D.1, separately varying the parameters a, κ, ℓ, n.

� The simplest class of BSF processes is the one of maximal angular momen-
tum, ℓ = n− 1. In general, such processes have a local maximum (peak) in
between the low and high velocity regimes. Fig. 6.1 shows n = ℓ + 1 = 5,
∆ = 2, for different values of κ = −2, ±0.1, 0.5, 1 (black, red, cyan and
purple) as examples. Note that ℓ ≫ 1 is one necessary condition to make
contact to classical physics via the correspondence principle, thus this class
of processes is also here of significance.

� The high velocity regime is known to be dictated by ℓ. All depicted choices
of κ share the same angular momentum and therefore also the same high-
velocity behavior (σv)BSF/(σv)

uni
6 ∼ ζ2ℓ−2a+5

b at ζb ≪ 1.

� At low velocities, BSF cross-sections with κ > 0 approach a Sommerfeld
scaling, σv ∼ 1/v ∝ (σv)uni6 , cf. Eq. (6.76), and the respective plotted curves
saturate in the chosen normalization. Even tiny initial state potentials even-
tually reach this Sommerfeld enhanced regime, as can be seen in the inset
panel of Fig. 6.1. Any repulsive potentials (κ= − 0.1, dashed red) instead
are exponentially suppressed. The black curve, κ < 0 and n = ℓ + 1, is an
exemplary case with a single global maximum in between the polynomial
growth and exponential suppression and may be kept in mind for various
later discussions.

� Apart from the change in low-velocity behavior, the free case κ = 0 is a
smooth point in parameter space of no further apparent qualitative signifi-
cance, hence both red curves largely overlap.

� Another strong simplification is κ=1, the Abelian case, which is mostly
featureless (see Fig. D.1 in App. C or [138]) beyond the two discussed regimes
even for arbitrarily high n. Abelian BSF into high excitations is significantly
suppressed in n at ζn=O(1), compared to non-Abelian cases.

� The peak positions in maximal-ℓ BSF were numerically observed around
ζn ∼ 1, independent of n for fixed κ. That is, for higher n = ℓ+ 1, the peak
becomes sharper and shifts to lower v. The peak maximum position will be
found to be ζn = (1− 2κ)−1/2, see Eq. (6.85) in section 6.4.

� At lower ℓ < n− 1, the cross section develops a number of n− ℓ− 1 roots in
place of the single peak when κ < 0 and ∆ ≥ 0, giving rise to an oscillatory
regime in between the high and low velocity limits, originating from the phase
factor. This is similar to the Ramsauer-Townsend effect [145–147]. The os-
cillatory regime expands “outwards”, to lower and higher velocities, relative
to the maximal-ℓ peak position. Overall, it may be viewed as a distracting
nuisance when attempting to understand the physical aspects of non-Abelian
BSF. Its quantum mechanical interpretation will become clear in section 6.3.
The number of oscillations decreases in the range κ ∈ [0, 1], terminating in
the (almost) featureless Abelian case. A low number of additional roots may
occur if instead ∆ < 0.
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6.3 Semi-classical analogy

Albeit intricate in their detailed formulation, the obtained cross sections for BSF
into a single bound state n, ℓ lend themselves to a semi-classical interpretation.
It provides an intuitive physical picture to the investigated quantum processes.
Naturally, the analogy improves for higher n and ℓ in accordance with the corre-
spondence principle. The most “unnatural” aspect to translate to terms of classical
physics is the change of potentials, meaning κ. Assuming there to be only the two
heavy species B and S, the emission of multiple quanta of the mediator field by
multipole interactions will lead to as many back and forth changes αb ↔ αs. For a
classical interpretation, emission needs to be treated as a continuous process and
a prediction of the effective strength of the potential is not possible. Instead, con-
sider the semi-classical picture of one single multipole mediator emission at a set
point in time but treating the heavy two-constituent states still classically prior
to and after the interaction. Using the rest frame of one of the constituents, the
semi-classical picture, illustrated in Fig. 6.2, is as follows.

An particle incoming from r = ∞ with kinetic energy K > 0 moves in a cen-
tral potential Vs(r) on a hyperbolic path (black line). It approaches the second
constituent at located at r = 0 until the minimal impact distance r = b is reached.
Instead of following the elastic scattering path back to r = ∞ (dashed), the po-
tential changes exactly at the point r = b, Vs(r) → Vb(r). The BSF mediator
field is neglected and, hence, energy conservation is broken here. However, since
r = b is an extremum, there is no radial motion at this point in time, therefore
momentum and angular momentum remain conserved throughout. For sufficiently
small velocities K < ℓ2/Mχb

2 and attractive Vb < 0, thinking of fixed b for the
moment, the orbit after changing the potential is now a bound state described by
an energy En (blue or orange lines).

6.3.1 Classical capture into Keplerian orbits

A classical computation of “BSF” trajectories yields convenient approximations
of the oscillatory regime of the BSF cross-section. Restricting Vs,b to Coulom-
bic potentials defines the movement before and after the potential change to be
Keplerian orbits set by an energy and an eccentricity,

e ≡
√

1− ℓ2

n2
≈
√

1− (ℓ+ 1)2

n2
+O

(
1

n

)
, (6.58)

where the approximation ℓ ≈ ℓ + 1 allows to naively match onto a circular orbit
with maximal angular momentum, e|ℓ=n−1 = 0. This approximation eliminates the
otherwise ever-present small uncertainty of quantum states for ℓ = n−1, rendering
movement to a perfect circle. Analogous to Figs. D.1-D.4 which are plotted in v
for fix n and ℓ, the final state is set from the beginning and one calculates the
required initial velocity in order to match onto the desired orbit. Furthermore, in
the introduced picture momentum and angular momentum is conserved at r = b
so the initial and final orbits must be tangential at r = b. For a circular orbit,
the problem is rotational symmetric while for elliptic orbits the matching can take
place at the distance of the aphelion or perihelion,

rA = rn(1− e) or rP = rn(1 + e). (6.59)
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Figure 6.2: Sketch of the semi-classical analogy to obtain approximations for the
high and low end of the oscillatory regime of the BSF cross-section. An initial
scattering state in a repulsive potential (black) approaches the center P1, reaching
the minimal impact distance b where the potential is assumed to abruptly change
to be attractive. The velocity is tuned such that the impact parameter matches
the Bohr radius, b = rn, of a circular orbit (blue). To match an elliptic orbit
(dashed) aphelion distance, b = rn(1− e).

The particle initially experiences the effective potential

Veff(r) ≈
(ℓ′ + 1)2

Mχr2
− αs

r
(6.60)

and correspondingly for ℓ and αb after the potential change. Expressing the relative
velocity in terms of ζn yields K = ζ−2

n En and energy conservation at r = ∞ and
r = b = rA,P now implies

K = Enζn
−2 =

(ℓ′ + 1)2

Mχb2
− αs

b
=

(ℓ′ + 1)2

(ℓ+ 1)2
(−En +

αb
rA,P

)− κ
αb
rA,P

= En

[(
ℓ′ + 1

ℓ+ 1

)2
1± e

1∓ e
− 2κ

1∓ e

]
, (6.61)

(ζn)A,P =

√
1∓ e

(ℓ′+1)2

(ℓ+1)2
(1± e)− 2κ

, (6.62)

where the upper sign corresponds to the aphelion. ℓ′ and ℓ were kept distinct in
the calculation, however, in the reasonable assumption of low multipoles a≪ n, ℓ
one may use ℓ′ = ℓ+O(a/ℓ). Now, a circular orbit is matched onto when the ratio
of momenta and coupling strengths fulfill

ζn =
1√

1− 2κ
. (6.63)

The square corresponds to the ratio of energies of the final over the initial state
En/K = 1/(1 − 2κ). Interestingly, this equation only holds for κ < 1/2, since
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Figure 6.3: Effective potentials Veff for initial state (black) and final state (blue)
as, Eq. (6.60), divided by (pnαb). Wave-functions for initial scattering states (gray,
green) and final bound states (blue) are superimposed at their respective energy
with arbitrary normalization. Left : The ground state for a given ℓ is shown,
n = ℓ + 1 = 20. The vertical red line indicates its Bohr momentum, coinciding
with the impact parameter for the scattering state of energy K. The centrifugal
repulsive potential is shown as a dashed curve. Right : The first excited bound
state n = ℓ+ 2 = 20 is shown with the initial states tuned to match their impact
parameter to the semi-classical perihelion and aphelion distances, b = rn(1± e).

ζn ∈ R, meaning that no such semi-classical paths exist for Abelian interactions
where κ = 1. The scattering state potential needs to be sufficiently less attractive
or repulsive to allow the centrifugal term to dominate at ranges where bound states
are classically located. Since bound states n = ℓ+1 are located at the minimum of
the effective potential, the scattering state is simply accelerated inwards, gaining
exactly En in the Abelian scenario, and thus cannot possibly have coincident
(classical) momentum and position with the classical bound state.

Turning to a semi-classical wave function description, for any αs > 1/2 the
effective potential is insufficiently repulsive and the scattering state would sim-
ply always be rapidly oscillating compared to the bound state wave length at a
given radial distance, similar to the green wave in Fig. 6.3, such that the over-
lap integral remains small and the scattering state cannot sense the presence of
the bound states. Fig. 6.3 depicts how the energies, classical radii and Coulomb
wave functions relate to each other. The vertical axis shows the scaled effective
potential Veff/pnαb in dependence on pnr for a fixed n = 20. The left panel depicts
the case ℓ = n − 1 ≈ n and also includes the centrifugal contribution to Veff as a
dashed curve for reference. The classical circular orbit is found at the minimum of
the final state effective potential (blue curve) where there is no radial motion (red
vertical line). Overlaid (shaded blue) is the reduced bound state wave function for
this “ground state” of the effective potential. It is vertically centered around the
value of its total energy En.
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The impact parameter b is given by the intersection of the horizontal gray line
at K = p2/Mχ and the initial effective potential (black curve), marked by a red
dot. For the gray depicted scattering state wave function, b = rn match and there
is clearly a large overlap between the bound state peak and the final maximum
of the scattering state. For smaller velocities, b grows, following the black curve
outwards and the bound state is found in the suppressed, classically inaccessible
tail of the scattering state wave function. Conversely, for too large v the bound
state is confined in the rapidly oscillating part of the approximately free wave
function of the scattering state, cf. green wave with b = rn/2. In the overlap
integral, the bound state is not sensed but averaged out over many oscillations
suppressing the matrix element at small ζn.

The case of capture into elliptic orbits, ℓ < n − 1, is analogously depicted in
the right panel of Fig. 6.3. Instead of a single position rn, the range pnrA to pnrP
is shown by an orange shaded vertical band. The bound state is now no longer the
ground state of the effective potential but the first excitation (n̄ = 1). The orange
band encompasses all bound state oscillations. Reduced scattering state wave
functions are shown here for the two cases of tuning either b = rA or b = rP . The
same logic as before applies to the interval [rP , rA]. Furthermore, this connects the
multiple roots of the oscillatory regime in the BSF matrix element the number of
nodes of the bound state wave function. Within the classically accessible range of
the bound state, the oscillatory wave function features are scanned as b(v) changes.
This intuitive explanation will be derived rigorously in the next subsection.

Returning to the Abelian scenario and taking ℓ ≈ ℓ′, the initial state potential
(black) is here identical to the final state potential (blue). Clearly the best match
between the bound state and the scattering state wave functions is reached when
K = 0 since in all other cases the bulk of the bound state is scanned by a more
rapidly oscillating part of the initial state. The overlap is now always dominated by
the innermost oscillation of the bound state and the overlap increases gradually
as the initial state relative velocity tends to zero. This is a well-known feature
of scattering processes where, for κ > 0, largest cross sections are found in the
Sommerfeld enhanced low-velocity limit from the scaling ∝ 1/v as v → 0.

6.3.2 Wave function approximations

This subsection describes a quantum mechanical treatment of BSF, with the goal
of solidifying how the wave function overlap is to be interpreted. To this end, the
reduced wave functions u(r) of scattering and bound state are approximated near
the Bohr radius rn and impact b distance, respectively. From the semi-classical
picture above, b = b(v) is uniquely defined by the momentum, potential strength
and relative velocity as

p× b =
√
ζ2s + (ℓ′ + 1)2 − ζs. (6.64)

Starting with the simpler bound state wave function at maximal angular mo-
mentum, the single-peak shape is to a good approximation near the maximum
given in terms of a Gaussian distribution obtained via standard saddle point ex-
pansion,
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uGauß
n (r) =

(
n

r2nπ

) 1
4

exp

[
−n
2

(
r

rn
− 1

)2
]
. (6.65)

In units of rn, the width of the bound state is thus n−1/2. The analytic form of
the scattering wave function is more challenging to approximate as the position
of the final maximum is not known and, furthermore, it does not easily lend itself
to a description in terms of a single peak. Also the commonly employed WKB
approximation is not applicable near impact. Instead, a linear approximation of
the effective potential in the vicinity of the impact distance becomes useful,

Veff,in(r) ≈ Veff,in(b) + V ′
eff,in(b)(r − b) +O(r − b)2. (6.66)

In terms of the most natural coordinate,

z ≡
(
−MχV

′
eff,in(b)

)1/3
(b− r) = z0(v)

(
1− r

b

)
, (6.67)

z0 ≡ (2ℓ′(ℓ′ + 1)−Mαsb(v))
1
3 , (6.68)

the radial Schrödinger equation for this potential takes the simple form

d2 u(z)

dz2
= z u(z) (6.69)

and its solutions are Airy Ai and Bi functions. With the additional condition of
an exponential decay at r < b, the reduced wave function is then found to be
uAiry
ℓ′ (r) = cAi(z). A second boundary condition is needed to define the constant
c. One can use the common procedure of WKB approximations to match the
solution of the linearized potential at large radii uAiry

ℓ′ (r → ∞) onto the WKB
approximation near impact uWKB(r≈b). The WKB solution is itself matched onto
the full solution at r → ∞. The procedure carries the flair of a scale separation
in effective theory, in that the long range (r ≫ b) behavior of the local solution
must describe the short range (r ≈ b) behavior of the solution valid far away
from impact. In usual applications, the linearized solution is merely the matching
condition by which WKB solutions for r > b and r < b are glued together. Here,
instead, uAiry

ℓ′ is itself the object of interest. Ultimately, the approximate scattering
wave function near impact is given by

uAiry
ℓ′ (r) =

√
2π b

Mv z0
Ai (z) (6.70)

where the entire dependence on v and ℓ′ is hidden in z and b. The correctness of
this approximation can be confirmed numerically and improves for large ℓ, being
virtually indistinguishable from the full solution within the final oscillation (even
giving a reasonably good approximation of the second-to-last oscillations), once
ℓ′ ≳ 20. Both approximative wave functions, uGauß

n and uAiry
ℓ′ , are seen in Fig. 6.3

(left panel), the former as a blue dashed curve near the bound state peak and
the latter as a darker green curve drawn near the final oscillation of the upper
scattering state wave function. They are shown in ±30% intervals around rn and
b(v), respectively.
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Both, the maximal-ℓ bound state peak and the final scattering state oscillation
become broad at high n and low v. To compare them more easily, uGauß

n (r) is
expressed in terms of z, under the condition b = rn, as

uGauß
n (z) =

√
Mαb

(4n3π)1/4
exp

[
− 1

2σ2
n

z2
]

(6.71)

with

σn =
(2ℓ′(ℓ′ + 1)−Mαbb(v))

2
3

n− 1
. (6.72)

Represented in terms of z rather than r, the width of the scattering state wave
function is trivially constant. σn, the width of uGauß

n (z), is more easily understood
by inserting b(v) = rn = n/pn,

σn = 2
2
3

[
n(1− κ) + 2∆− 1

] 1
3 +O(n− 1

3 ), (6.73)

thus

σn ∼ n
1
3 . (6.74)

The width of the bound state wave function in z-coordinates, σn, grows with n.
Hence, the innermost oscillation of the scattering state wave function should be
thought of as a sharp peak scanning through a much broader bound state for high
excitations. This picture holds (at least) when tuning the impact distance to the
Bohr radius while n≫ ∆. Note that inserting b = rn and setting n = ℓ+ 1 ≫ ∆,
implicitly introduces the condition κ < 1/2, following from Eq. (6.63).

As the bound state grows infinitely broad in z, also the integral becomes inde-
pendent of n,

lim
n→∞

∫ ∞

−∞
dzAi(z)e−

1
2σn

z2 = lim
n→∞

√
2πe

σ3
n

12
√
σnAi

(
σ2
n

4

)
= 1. (6.75)

Numerically, one finds that the innermost oscillation dominates the radial overlap
integral for maximal ℓ, as expected since farther out oscillations are relatively
rapid and cancel against each other. When the integration regime in z is cut off
beyond the first root of Ai(z), the integral approaches a value of around 1.27 for
large n. The second oscillation has opposite sign, compensating the overestimate.
This validates the qualitative picture of approximating the scattering state by its
final oscillation which becomes basically a sharp peak scanning through the bound
state probability distribution as v is decreased.

6.3.3 Comparison to the full quantum mechanical result

The semi-classical results based on matching orbits at rA,P do not precisely capture
the first and last maxima of the oscillatory regime of the BSF cross-section at finite
n but bound the oscillatory regime from above and below in ζn. These estimates
are useful to preemptively define oscillatory regions, which pose a challenge for
example to thermal averaging, and are difficult to prove analytically otherwise.
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Figure 6.4: Bound state formation cross sections normalized by the appropriate
partial wave unitarity bound for n = 12 and ℓ = 0, 10, 11 (gray, blue, red) plotted
over relative velocity v. ℓ = 0 is depicted as the boundary of the gray shaded
area for better readability. Vertical lines mark semi-classical approximations of
the aphelion and perihelion distance matching in Eq. (6.62). The horizontal red
line shows the partial wave unitarity limit (6.76).

Thanks to the perfect circular approximation, e = 0, both bounds coincide for
n = ℓ+ 1 and the maximal-ℓ peak position is very well approximated.

For illustration, the relative velocities αb/n/(ζn)A,P according to Eq. (6.62) are
shown in Fig. 6.4 as vertical dashed lines in colors corresponding to the three
plotted partial waves ℓ = 0 (gray), ℓ = n − 2 (blue) and ℓ = n − 1 (red). The
cross section, plotted over relative velocity, is computed specifically for interac-
tions as they are obtained in a SU(3) gauge theory for heavy fundamental particle
anti-particle pairs [140, 148], meaning geffa → gs

√
2CF/Nc as well as a = 1 and

κ = −1/8, cf. section 6.5. Used numerical inputs are αb = 0.3, n = 12 and
∆ = +1 (allowing s-wave capture). The vertical axis shows the BSF cross-section
for dipole interactions again normalized to the respectively applicable unitarity
bound (σv)uniℓ′ . Another feature of radiative BSF is understood from the semi-
classical approximation. The reduced bound state wave function is maximal at
its outermost maximum. This means the overall maximal overlap is expected at
the low-velocity end of the oscillatory regime. The prediction agrees with Fig. 6.4
where all cross sections increase towards small velocities, even despite being nor-
malized by the unitarity bound, (σv)uni ∝ 1/v. The semi-classical analogy here is
that of a time-average probability of finding the bound particle at a certain dis-
tance r on an elliptic orbit. This probability is directly proportional to the inverse
classical orbit velocity 1/v(r) which is maximal at r = rP .

It is apparent from Fig. 6.4 that BSF cross-sections grow rapidly compared to
the unitarity bound which of great concern in regards to theoretical self-consistency.
This looming issue of unitarity violation is investigated in detail both, analytically
and numerically, in the following section.
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6.4 Systematic perturbative unitarity violation

Any 2-to-2 particle scattering cross-section obtained in a self-consistent unitary
theory must respect the partial wave unitarity bound [89]. Performing a partial
wave decomposition on the initial state, the upper bound on a particular partial
wave ℓ′ inelastic process reads

(σv)2→2,inel
ℓ′ ≤ (σv)uniℓ′ ≡ 4π

M2
χv

(2ℓ′ + 1) . (6.76)

It holds irrespective of the final state and applies to arbitrarily inclusive inelas-
tic scattering processes. It is of importance to highlight the difference between
2-constituent 2-particle scattering state and 2-constituent single-particle bound
states. While both are obtained as solutions to the Schrödinger equation to the
same Hamiltonian, the former is indeed part of the multi-particle spectrum of
the Fock space while the latter is constructed to correspond to a single particle
pole [61]. Bound state formation by emission of a single multipole mediator, unlike
bremsstrahlungs processes or bound-to-bound transitions, are therefore inelastic
2-to-2 scatterings of two heavy non-relativistic particles S into a non-relativistic
composite state B and a light, relativistic mediator particle.

Unitarity bounds have been used in attempts to set upper limits to thermally
produced electroweak multiplet dark matter masses Mχ [32, 89, 149–152]. These
works typically compute the annihilation rates required in order to achieve the cor-
rect DM relic density and set upper bounds whenever either the coupling strength
becomes of O(1), expecting a breakdown of perturbativity at such couplings, or
once the computed cross sections overcome the unitarity bound. Interpretations
remain identical, demanding to compute higher order, or even all order, results
to obtain reliable predictions. A qualitatively different observation was made in a
model of charged monopole emission [144]. It showed BSF to violate unitarity even
for small couplings and already in capture into the ground state. The findings of
this section confirm this known fact and put it into a larger context of systematic
UVi for arbitrary (non-vanishing) couplings.

Most works present in the literature on analytic calculation of BSF focus on
Abelian-type interactions (κ=1) or consider only a small number of bound states,
usually n = 1 or, in more recent works, n = 2, 3. Although of theoretical interest,
there are no applications of non-Abelian Coulombic BSF processes in the SM, as
the electroweak symmetry is broken, giving rise to Yukawa potentials which de-
mand numerical treatment, and there are no reasonably stable heavy particles far
above the confinement scale of the strong interaction, nor are there electromagnet-
ically charged light mediators. This explains why there has not been a systematic
treatment of BSF in non-identical Coulombic potentials prior to dark sector model
building efforts.

Fig. 6.4 already shows a clear trend to overcome the unitarity bound for lower
ℓ. At the same time the gray curve (n = 9) of Fig. 6.1 implies an enhancement
towards larger n (see also the lower panel in Fig. D.4). To explicitly illustrate
perturbative unitarity violation in BSF, Fig. 6.5 is similar to Fig. 6.4 but uses
much higher excitations n = 500 and, for illustrative purposes only, a slightly
stronger effective coupling αb = 0.4. The vertical axis is again normalized to
the unitarity bound, showing (σv)1,1pℓ′→500ℓ/(σv)

uni
ℓ′ , and each curve gives the result
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Figure 6.5: Bound state formation cross-sections normalized to the respec-
tive partial wave unitarity bound in a SU(2) model (κ = −1/3, αBSF = αb/2,
dipole, ℓ′=ℓ+ 1), plotted over relative velocity using n = 500, αb = 0.4 and
ℓ = 0, 250, 498, 499 (gray, green, blue, red). The horizontal red line shows the
unitarity limit (6.76) being exceeded at large n. Vertical dashed lines give respec-
tive semi-classical aphelion and perihelion matching conditions.

for one partial wave ℓ′ = ℓ + 1 for ℓ = 0, n/2, n− 2 or n − 1. Other inputs are
taken to reproduce a model of heavy dark-SU(2) doublet constituents. Vertical
dashed lines once more indicate the semi-classical results from Eq. (6.62). The
above found results of enhancement at smaller v (higher n) can be recognized
again. Every partial wave overcomes the unitarity bound at some velocity, despite
regarding only exclusive processes Spℓ′ → Bnℓ. This troublesome feature is studied
analytically in detail in subsection 6.4.1 before turning to a numerical analysis of
exclusive and, finally, inclusive BSF processes in subsequent subsections.

6.4.1 Analytic proof for capture into high angular momentum

This subsection presents for the first time an analytic proof of perturbative uni-
tarity violation occurring in BSF for non-identical Coulombic potentials. UVi is
derived in processes of specified final state bound states Bnℓ assuming n≫ 1 and,
thus, only conservatively demonstrates theoretical inconsistencies arising in BSF.
It does not aim to find the strongest possible bounds on α or v.

As a first estimate, this subsection briefly returns to the approximate wave
functions derived in subsection 6.3.2 before investigating the full quantum me-
chanical result. For the sake of simplicity of the argument, monopole interactions
are assumed in this example. From Eq. (6.28), one can see

(σv)apℓ′→n,(n−1)

(σv)uniℓ′
∼ v3

2ℓ′ + 1
× Ia,∆A × Ia,∆R . (6.77)

The angular integral scales as Ia,∆A ∼ n for ℓ′ ∼ ℓ ∼ n ≫ 1 and a∆ ∼ 1. By
insertion of the above definitions of z(r) in the integrand and the approximative
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reduced radial wave functions, one arrives at the power scaling

(σv)apℓ′→n,(n−1)

(σv)uniℓ′
∼
M2

χv

n
×Mχv

2 × n×

∣∣∣∣∣
√

pn√
n
×

√
b

pz0
× b

z0

∣∣∣∣∣
2

∼
√
n≫ 1. (6.78)

The unitarity bound is eventually exceeded at large n, which is also where the wave
function approximations are applicable. Note that constant but small prefactors
such as αBSF were dropped. The intermediate step has already inserted Eq. (6.75)
but keeps terms originating from the unitarity bound, the phase space, the angular
integral and the squared radial integral separate. The latter decomposes into the
prefactors of both wave functions and the integral measure. The semi-classical
calculation predicts a systematic violation of unitarity from perturbative radiative
transitions in bound state formation at high excitations. This shall now be con-
firmed more carefully in the complete PNREFT result and studied in the following
subsections in greater detail for its dependence on a, κ and ζb.

Turning to the complete leading order PNREFT result, capture into bound
states of maximal angular momentum is once more regarded to simplify the an-
alytic treatment by exploiting the absence of any hypergeometric functions. The
relevant result for the radial overlap integral Ja,ap,pn(ns, 0, n−1) is given in Eq. (6.44)
and the cross section normalized to the well known Abelian case in Eq. (6.57). Its
velocity dependence is now entirely captured by rational polynomials, the Som-
merfeld factor and the typical exp{−4ζsArcCot(ζn)} term.

UVi was found at small velocities which directly requires large n for κ < 0 since
exponential suppression sets in when ζn ≫ 1. Thus, to analyze the impact of high
excitations, the limit of large n≫ ζn, a ∼ 1 is of interest. As shown in Fig. D.4 and
indicated by the semi-classical result (6.62), the global maximum of the BSF cross-
sections is found at ζn = O(1) while κ may be considered another O(1) constant
fixed by the EFT Lagrangian. Taking v ≪ 1 while geffa , αb,s = const. = O(1) for
this limit of large n, the counting is fixed as

ζs = nκζn = n×O(1) ∼ n ∼ 1

v
. (6.79)

Neglecting coupling strengths as constant in this limit implies v ∼ 1/n. Moreover,
since ζn ∼ 1 remains constant, the condition p ∼ pn is maintained. Crucially, the
above requires the validity of PNREFT at arbitrarily small velocities. In PNREFT,
only ultrasoft modes are left and no additional particles or interactions are present
at that scale other than multipole interactions of the heavy constituents. Because
of this, PNREFT is expected to hold also at arbitrarily small velocities despite
the condition which indicates the onset of non-perturbativity of potential ladder
exchanges being α ∼ v. Hence, with all non-perturbative effects appropriately
resummed in a controlled way, one concludes that unitarity should be maintained
at every perturbative order in the power expansion. Yet, the observed UVi from
leading order calculations points towards some misconception of the theory. The
observation of UVi for monopole ground state formation [144] corroborates that
the here employed large-n limit is not the original source of UVi but merely a
useful tool for analytic investigation.
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Taking the logarithm on both sides of Eq. (6.76) at ℓ = n − 1 and employing
the above described large-n limit together with Stirling’s formula,

lim
|z|→∞

Γ(z) ≈ zz−
1
2 e−z

√
2π, (6.80)

which is also applicable to Sℓ′(ζs) according to Eq. (6.25), results in an expansion
in n starting from the leading linear order but also including sub-leading terms
∝ log(n),

0 ≥ log

{
(σv)ap⃗,n+a−1→n,n−1

(σv)unin+a−1

}
(6.81)

= log

{
geffa

2
M3

χ(1 + ζn
2)v3

27π2(2n+ 2a− 1)(2a+ 1)2
× Ia,aA × Ia,aR

}
(6.82)

≡ nP (ζn, κ) +O (log(n)) . (6.83)

The leading order P (ζn, κ) is defined as

P (ζn, κ) ≡ 2ζnκ
(π
2
− ArcTan(ζnκ)− 2ArcCot(ζn)

)
+ log

(
4ζ2n(1 + ζ2nκ

2)

(1 + ζ2n)
2

)
.

(6.84)
Any leading term violating 0 ≥ P (ζn, κ) indicates that BSF is systematically and
exponentially enhanced relative to the unitarity bound. This does not occur. After
some standard functional analysis, P (ζn, κ) can be shown to be a negative semi-
definite function with only one root on the real axis,

P

(
1√

1− 2κ
, κ

)
= 0. (6.85)

In practice, P (ζn, κ) is a quite intriguing function and despite its structure rather
resilient against analytic simplifications. Remarkably, the root sees the logarith-
mic and trigonometric terms vanish separately, which can be easily checked by
insertion. If the root is real, κ < 1/2, the curvature at this point is

d2P (ζn, κ)

d ζ2n

∣∣∣∣
ζn=1/

√
1−2κ

= −2(1− 2κ)3

(1− κ)2
< 0. (6.86)

With some more effort, P (ζn, κ) can also proven to be negative definite when κ > 1.
Equation (6.84) is understood to capture the balancing of the strong enhancement
σv ∼ (ζn)

2ℓ−2a+5 before the peak position and the exponential suppression from
the repulsive potential small relative velocities. Therefore it is not unexpected
to find the leading order expansion of the Stirling formula to vanish at the peak
position. Note that the semi-classical result (6.63) exactly agrees with the large-n
limit where the quantum process becomes infinitely sharp and coincident with a
classical circular orbit. It is the only combination of ζn and κ where BSF is not
exponentially suppressed in n. For κ > 1/2, there exists no solution agreeing
with the numerical observation of cross sections which show a slight bump but
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no local maximum in their transition to the low-velocity Sommerfeld enhanced
regime, cf. Fig. 6.1.

The strength of the peak at its maximum is to be read from the first sub-leading
term, O(log(n)), in Eq. (6.83). It corresponds to polynomial contributions of n
to the cross section. Inserting the explicit expressions for monopole, dipole and
quadrupole interactions (6.51 - 6.55) yields in every case

0 ≥ log

{
(σv)ap⃗,n+a−1→n,n−1

(σv)unin+a−1

}
= P (ζn, κ) +

1− 4 δκ1
2

log(n) +O(1). (6.87)

The partial wave unitarity bound is violated near the peak ζn = (ζn)P,A for
ℓ = n− 1 = ℓ′ − a because the BSF cross-section on-peak grows with n as

(σv)apℓ′→nℓ

(σv)uviℓ′
∼

√
n+O(1) ≫ 1. (6.88)

At κ = 1 the previously discussed cancellations occur in R∆, cf. Eq. (6.57). For κ >
1 the leading order is known to never vanish (even for non-maximal ℓ) and always
dominates over the logarithmic NLO term. This parametric UVi agrees with the
introductory result above from integrating the approximate wave functions. The
result in Eq. (6.87) is universal for a = 0, 1, 2 and ℓ = n − 1 and is assumed to
generalize to higher partial waves as well as to higher multipoles as long as a≪ n.
Functional differences of non-maximal ℓ cross sections are primarily the presence
of |F+(0)|2 which is well behaved in relevant parameter ranges, yet analytic proofs
of UVi in other BSF processes than n = ℓ+ 1 were not pursued any further.

The large-n expansion neglects suppression by small numerical constants such
as powers in αb or g

eff
a . In practice, these can give rise to prefactors which need

to be overcome by the
√
n enhancement before unitarity can be violated. How-

ever, as long as the spectrum supports sufficiently high excitations which are well
approximated by Coulomb wave functions, UVi will occur eventually. Conversely,
since geffa and αb are in general independent parameters, for sufficiently small geffa
any given bound state formation process does respect unitarity. In agreement with
the single-peak shape of the maximal-ℓ bound state seen in Fig. 6.5 (red curve),
the violation from a single bound state can only occur in the vicinity around the
peak position before strong suppression sets in. Nevertheless, this does not im-
ply that UVi vanishes to a range of measure zero for large n. Unitarity violating
velocity ranges of neighboring energy levels n, n ± 1 eventually overlap such that
unitarity is continuously violated at all velocities below a certain critical value
when considering inclusive processes into any n.

6.4.2 Unitarity bounds from exclusive processes

In this subsection, UVi in exclusive processes and the dependence on ζn an κ
will be studied, focusing on maximal angular momenta. To perform a concrete
numerical study, still a value for the BSF mediator coupling Wilson coefficient geffa
must be chosen. Relating to models of theoretical interest, geffa is chosen according
to the common case of dipole interactions sourced by gauge interactions among
fundamental fields. As will be shown later on, see Eqn. (6.101) and (6.102), the
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Figure 6.6: Parameter space ζn-κ with highlighted areas of unitarity violation in
dipole mediated BSF process of SU(2)-like doublet heavy scalars into bound states
with ℓ = n − 1, ∆ = a = 1. κ is varied freely with κ = −1/3 corresponding to
true SU(2). The central black line gives the large-n maximum, Eq. (6.85). Left :
Different n at fixed coupling αb = 0.4. Right : Different αb at fixed n = 500 and
(light red) the result of the large-n NLO approximation, Eq. (6.87). Vertical axis
identical to left panel.

results of scalar interactions derived above can exactly describe this case, provided
the multipole mediator gauge boson is treated fully inclusively. The replacement

geff1 →
√
2

Nc

√
4παb (6.89)

then captures initial state averages for (anti-)fundamental particles and final state
polarization sums. The model is still only “SU(Nc)-like” since in genuine gauge
theories also κ = κ(Nc) is fixed by gauge symmetry, whereas here αs = καb is
still considered a free parameter. For brevity, simply SU(Nc) is denoted for scans
in κ where this difference is obvious. Note that κ(Nc) would even pick up a n-
dependence if running coupling effects were included in the analysis. In respect to
this point, it is important to stress that UVi can indeed be found at scales above
the Landau pole of the theory and thus remains a relevant independent theoretical
problem. Since all multipole interactions are spin-independent at leading order,
treating scalar constituents is actually identical to treating spinful constituents
and summing all spin eigenstates analogously to the magnetic quantum number,∑

m →
∑

s,m.
Fig. 6.6 shows in both panels the same parameter space plane in ζn-κ with

the analytic peak position, Eq. (6.85), as a black line and, in the right panel,
also the estimated regime of UVi from the NLO expansion in Eq. (6.87) as a
light red shaded area. This estimate neglects all couplings or numerical factors as
being of order log (O(1)) = 0. The horizontal gray line κ = −1/3 gives the value
of genuine SU(2) interactions for fundamental constituents. The different colored
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areas show where LO perturbative BSF by dipole interaction into maximal angular
momentum states, n = ℓ+ 1 = ℓ′, violates the partial-wave unitarity bound. The
left panel shows different n ≤ 500 for fixed αb = 0.4. The right panel fixes n = 500
and shows different αb, as listed. Hence, the red area is identical between both
panels. Again the rather large value of αb eases illustration but is not required
for UVi. At a given point of αb and κ, which means a specific theoretical model
of interactions in the Lagrangian, higher n yield horizontally thinner areas of UVi
simply translating the fact that the peaks in terms of log(ζn) get ever sharper with
higher n.

For a fixed value of κ, the colored part along the corresponding horizontal line
shows the regime of UVi, meaning it gives the range of ζn where the single peak of
the maximal-ℓ BSF cross-section exceeds the partial wave unitarity bound. The
red part of the line κ = −1/3 was thus already seen in Fig. 6.5 by the red curve
ℓ = 499. As also indicated by the vertical dashed line there, the UVi range is
centered around the peak position, however now Fig. 6.6 validates the numerical
results of previous sections along the entire contour in ζn and κ for many n.

For too small n < 10, no UVi is found at αb = 0.4 in the exclusive processes
considered here which are summed neither in n nor ℓ. More negative κ ≪ −1
enhance the cross-section and formation of already more deeply bound states (lower
n) violates unitarity. The reason why the colored areas in the right panel are not
coincident with the large-n prediction is the non-negligible smallness of even αb.
The large-n prediction becomes more accurate as log(αb) → 0 with UVi regions
extending to higher ζn as well as shrinking in width to reside within the analytic
NLO estimate.

In applications, it is frequently of primary concern to not violate unitarity in
a set velocity range, for example at typical velocities of DM in galactic halos for
indirect detection searches or v ≳ 2/

√
20 in the usual WIMP freeze-out paradigm.

Due to the analytic large-n scaling of the cross section on peak with
√
n relative

to the unitarity bound, one can conveniently estimate at which n, and thus below
which velocities, the exclusive maximal-ℓ BSF process will violate unitarity as
long as the value of the BSF cross-section is known on-peak for some n ≳ 3. For
instance from Fig. 6.5 the cross section (σv)1,1500,499 = 1.5(σv)uni500 from which the
reversed logic predicts that n ≲ 500/1.52 = 222 should just barely respect the
unitarity bound. This is in good agreement with the blue region, n = 200, in
Fig. 6.6 reaching only below κ = −1/3.

Additionally, the parameter space analysis of Fig. 6.6 emphasizes that κ = 0,
the free initial state without Sommerfeld enhancement, is not exempted from vi-
olating unitarity and, here, behaves unremarkably uniform. The processes com-
puted for Fig. 6.6 take n = ℓ+1, where aphelion- and perihelion-matching solution
(ζn)A,P = (1 − 2κ)−1/2 become nonphysical for κ ≥ 1/2, hence the central black
lines approach κ = 0.5 at ζn → ∞. For lower ℓ → 0, (ζn)P becomes nonphys-
ical already at lower κ → 0, describing the fact that in absence of Sommerfeld
suppression, the final maximum does not form. For κ ≥ 1, also the aphelion so-
lution is always imaginary and no efficient BSF is ever found. Lastly, κ = 0 may
cause numerical complications if treated carelessly, as here many cancellations and
simplifications arise to reduce the complexity of an interacting initial state to noth-
ing but a Fourier mode. However, these are mathematical complications with no
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Figure 6.7: Inclusive p-wave (ℓ′ = 1) bound state formation cross-sections nor-
malized by α3

b(σv)
uni
1 and summed in n ≤ nm and ℓ = ℓ′ ± 1, plotted over ζb for

a SU(2) model (κ = −1/3). Different values of nm are shown as tabulated in the
legend. Unitarity limits for three values αb = 0.1, 0.3, 0.5 are marked by horizon-
tal lines.

attached physical interpretation.

6.4.3 Unitarity bounds from inclusive processes

The partial wave unitarity bound in Eq. (6.76) constrains inclusive inelastic 2-to-2
scattering processes for specific initial state partial waves. Since radiative BSF
is by its very nature inelastic, also the inclusive process for a fixed initial state
partial wave, ℓ′ →

∑
n,ℓ,m,a, is bounded by it.

The BSF cross-section, Eq. (6.28) with IR from Eq. (6.50), yields an overall
dependence on couplings and velocities outside of ζb,s of

(σv)apℓ′→nℓ ∼ αBSF v
2a−1 = v−1ζ−2a

b ×Na, (6.90)

Na ≡ αBSF α
2a
b =

geffa
2

4π
α2a
b . (6.91)

Dividing by (σv)uniℓ′ cancels the global dependence on Mχ and one power of v−1.
The only overall model dependence is now the multiplicative scaling by Na. In
the double-logarithmic presentation of Fig. 6.7, changes in αb from 1 translate to
simple shifts horizontally by − log(αb) and vertically log(Na). It is, however, more
convenient to simply normalize also by Na to obtain a plot with one fixed, model-
independent curve where instead the partial wave unitarity bound is a unique
horizontal line for every choice of αBSF α

2a
b .

The most prominent modification compared to the exclusive process considered
up to this point is that, by summing all n, the low-velocity cutoff of the cross
section of repulsive initial states vanishes. Although BSF into any specific n is
only relevant near the respective perihelion-matching velocity, there exists always
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another bound state becoming relevant for every lower velocity. Fig. 6.7 depicts
BSF cross-sections summed up to different nm for each curve, all with a fixed
ℓ′ = 1, for the case of SU(2) interactions (a = 1, κ = −1/3, αBSF = αb). The
vertical axis shows, according to the above normalizations and Eq. (6.89),

α−3
b

nm∑
n=1

∑
ℓ=0,2

(σv)av1→nℓ

(σv)uni1

. (6.92)

The momentum suffix on the cross section is replaced by just the relative velocity
v since there is no more mass dependence in the shown results. Unitarity bounds
for αb = 0.5, 0.3, 0.1 are shown by horizontal lines and even smaller couplings
are less constraint and lie higher up in the plot. Each curve cuts off once the
respective nm-th perihelion is matched while larger nm still extend to smaller
velocities. At lower values of ζb, more and more nm still overlap. This convergence
allows to use a finite nm to get reliable results for relatively low values of ζb. A
comparison of, for example, the solid green curve nm = 10 to the blue or purple
results of nm = 100, 1000 shows that notable differences to higher nm arise already
long before the maximum of the highest bound state is reached and the range of
reliability is not set by ζb < (ζnm)P but much smaller. Also the enhancement
of the inclusive cross-section over the exclusive scenario may be estimated from
comparing the last oscillation of nm = 10, i.e. the right-most maximum of the
green curve at α/v = 15 from n = 10 which remains visible even once all other n
are exponentially suppressed, to the results with larger nm. Already at n = 10,
including higher n increases the cross section by a factor of about 2 and more so
at higher n. Nonetheless, the results for nm = 100 and 1000 still coincide at this
point, demonstrating a convergence of the inclusive result for high enough nm.

At low velocities, sufficiently high nm converge to a power-law like slope which,
eventually for very high nm, will overcome any constant horizontal unitarity bound
even for small αb ≪ 1.

The oscillatory behavior of the first few bound states is always clearly resolved,
yet the summation over many n eventually washes out all features seen in exclusive
processes. Most notably, the n = 1 peak remains clearly distinguishable for any
nm, dominating the regime around αb = v. This particularity possibly provides
an explanation for why the importance of excited bound states has long been
overlooked in studies of non-Abelian DM annihilation. Starting with expectations
biased by Abelian interactions where n = 1 dominates at all velocities, one does
indeed also here observe a dominant contribution of the ground state at largest v
and the maximum of the n = 1 bump is hardly affected by summing all n > 1.
The converged behavior emergent at lower velocities from summing n was therefore
unforeseen. This power-law like increase of the inclusive cross section at small v
suggests that an analytic form may be found by performing a summation in n over
the exclusive BSF cross-sections. Yet in light of the found violation of unitarity,
the need of additional corrections to the calculated results is apparent and this
avenue is not pursued any further in this thesis.

With n and ℓ summed over and all explicit model dependence normalized off by
Na, it is possible to give general results for unitarity constraints as two-dimensional
contour plots in the remaining plane of ζb-κ. Most intuitively, the contours should
indicate the maximally allowed value of the coupling strength. If αb was identical



6.4 Systematic perturbative unitarity violation 109

1

1

0.1
0.01

0.001

0.0001

1

0.1

1

1

0.32

Figure 6.8: Strongest upper bounds on αb × (αb/αBSF)
1/(2a+1) from any combi-

nation of ℓ′ partial-wave unitarity bounds, including ℓ′ ≤ 3, shown as contours
in parameter space ζb-κ. Left panel : Monopole (a = 0). Right panel : Dipole
(a = 1). Bottom panel : Quadrupole (a = 2). Gray-shaded areas approximate
unreliable regions where n > 1000 are significant. Contours are in logarithmic
steps of 101/4 and coloring agrees among all panels. Red points denote velocity
bounds for α = 0.1 in SU(Nc), Nc ≤ 10, see Fig. 6.9.

to αBSF this instructs to take the “2a+1”-th root. Although αBSF is independent,
it is still convenient to follow this idea, as it renders different multipoles into the
same order of magnitude. A single contour plot will thus depict the maximal
value of αb × (αBSF/αb)

1+2a allowed by the unitarity bound. Phrased in terms of
the computed cross sections, this means desired contours for specific a and ℓ′ are[

nm∑
n=1

∑
ℓ=ℓ′±a

1

Na

(σv)vℓ′→nℓ

(σv)uniℓ′
,

] −1
2a+1

. (6.93)

Yet, there is more to be done, since every ℓ′ is to obey its unique unitarity bounds
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but also a sum in ℓ′ must obey the summed bounds
∑

ℓ′(σv)
uni
ℓ′ . Mathematically,

the strongest constraint is the obtained from the maximum over the power set
of the range of some ℓ′m. Introducing P(ℓ′m) to be the power set (excluding the
empty set) of {0, 1, ..., ℓ′m}, that is P(1) = {{0}, {1}, {0, 1}}, etc., the maximal
violation considering all partial waves up to ℓ′m is given by

Ca,ℓ′m(ζb, κ) ≡ max
S∈P(ℓ′m)

{
1

Na

∑
ℓ′∈S

∑nm

n=1

∑
ℓ=ℓ′±a(σv)vℓ′→nℓ∑

ℓ′∈S (σv)
uni
ℓ′

,

}
. (6.94)

Hence, the three panels of Fig. 6.8 each assume a specific multipole interaction
a = 0, 1, 2 (left, right, bottom) and scan the parameter space for the strongest
possible bound where all ℓ′ ≤ 3 and n ≤ 1000 are considered, plotting contours of

[Ca,3(ζb, κ)]
−1

2a+1 . (6.95)

For most parts, especially for all qualitative features, obtained bounds are identical
to the simpler s-wave unitarity bounds, ℓ′ = 0 in Eq. (6.93). Slightly stronger
bounds arise only at low ζb ≲ 10 (meaning before the converged regime is reached).
At large ζb, inclusive partial wave BSF cross-sections are almost identical but still
obey a sorting in ℓ′, see the lower panel in Fig. D.6 in App. D.2. This causes the
s-wave bound to be dominant. The color coding in Fig. 6.8 is chosen to transition
from blue to orange around the value Na/4π = 0.52a+1, thus marking in darker
blue regimes where perturbation theory in αb becomes increasingly unreliable.
Most notable is the systematic enhancement of BSF towards low velocities as long
as κ < 1, converging to the power-law like growth seen in Fig. 6.7. The more
densely stacked the contours are along a horizontal line of constant κ, the stronger
is the corresponding converged-to power law. The color intensity in Fig. 6.8 along
the single horizontal slice κ = −1/3 is therefore approximately a projection of the
vertical values plotted in Fig. 6.7, up to normalizations.

For perturbative coupling strengths, BSF exceed the unitarity bound only at
larger αb/v. The Abelian case κ = 1 never violates unitarity for perturbative
couplings and gives rise to a horizontal cut in the parameter space for a = 0 where
the orthogonal wave function overlap is identically 0. The region κ > 1 shows no
unexpected UVi, even in the inclusive cross section, in agreement with the analytic
finding above that the leading order large-n expansion is strictly exponentially
suppressed here. For less attractive initial states, 0 < κ < 1, perturbative UVi
is found arbitrarily close to the Abelian case provided sufficiently large αb/v are
considered. Already from Fig. 6.7, it is understood that such small velocities
(thinking of constant αb in a specific model) require extremely highly excited states
n. A second horizontal feature in the contours is recognized at the free initial
state κ = 0, showing stronger unitarity constraints on αb, contrary to typical
notions of well-behaved non-interacting states. κ = 0 is significant due to this
additional enhancement but, as pointed out earlier, an otherwise smooth point in
the parameter plane and well described in PNREFT. At low αb/v ∼ 1, remnants
of the oscillatory features are still noticeable, cf. Fig. 6.7. In particular, the ground
state peak can be separated clearly in the left panel (a = 0) as vertical features
present at κ < −1. For negative κ, low n are exponentially suppressed at large
ζb, hence there is a white region in the bottom right corner of each panel, where
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Figure 6.9: S-wave unitarity exclusion bounds on relative velocity v from inclusive
bound state formation processes of heavy fundamental SU(Nc) constituents (FF̄)
with a gauge coupling strength α = 0.1, i.e. αb = (N2

c − 1)/2Nc α, αs = −α/2Nc.

nm = 1000 becomes insufficient. In the range of large ζb but κ > 0, simple
Sommerfeld scaling is instead approached and, due to the normalization by (σv)uni,
contours turn horizontal, cf. Fig. 6.1. Nevertheless, results at such low velocities
for κ > 0 are equally untrustworthy as for κ < 0. Higher n will give rise to
stronger unitarity bounds such that reliable contours never become horizontal even
in a close vicinity of κ = 1. Analytically, this is evident from Eq. (6.57), where
setting κ = 1 + ϵ will still yield UVi once nϵ ≫ 1. Thus, at any finite distance ϵ
will very low velocities give rise to unitarity violation for arbitrary couplings and
the inclusive cross section must always diverge relative to the unitarity bound as
ζb → ∞.

The qualitative behavior of the contours stabilizes for κ < −1 and no significant
new features are expected for strongly repulsive initial states. All features observed
in the depicted parameter space are clearly understood as the limits for Abelian
or free processes, oscillatory remnants and artifacts of finite nm. The bounds on
higher multipoles are weaker due to the systematically power suppression in v,
which here gets rephrased into α2a

b . While the above qualitative analysis still ap-
plies, quadrupole BSF respects the unitarity bound for any values of αb ≤ 0.1
in the reliable depicted parameter space. The red marking in the right panel for
dipole interactions relate to Fig. 6.9.

Returning finally to a representation more directly applicable to phenomeno-
logical results, Fig. 6.9 shows which relative velocities are incompatible with s-wave
unitarity in leading order BSF formation for different SU(Nc) gauge theories for a
gauge couplings strength of α = 0.1. The scattering and bound states are formed
by a particle anti-particle pair transforming under the fundamental representation
which sets αs,b and κ = 1(1−N2

c ) by gauge symmetry, see Eqn. (6.99) and (6.100)
in section 6.5 below. Fig. 6.9 is thus discrete on the horizontal Nc-axis and marks
the ranges of initial state relative velocities in which partial wave unitarity is vi-
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olated in BSF at the perturbative leading order. Corresponding red markers in
Fig. 6.8 (right panel, a = 1) show the minimal allowed relative velocity projected
to the κ-ζb plane. (Effectively, the parameter space depiction in Fig. 6.8 is ro-
tated 90◦ clockwise in Fig. 6.9.) The shown results include n ≤ 2000 and were
ensured to not change appreciably by inclusion of n ≤ 104 (n ≤ 6000) for Nc = 2
(Nc = 10). Once Nc ≳ 1/α the effective coupling αb becomes non-perturbative.
For high Nc ≥ 5 already typical galactic-center DM velocities of v ∼ 10−3 violate
unitarity when including very high bound states, n ≥ 500.

In light ofNc = 10 giving rise to rather large αb = 0.495, a different approach by
use of the t’Hooft limit of large Nc comes to mind, imposing αb = const. Opposed
to α = const. the cross section now scales as [140]

(σv)t’Hooft
BSF ∝ αBSF

N2
c

∣∣∣∣
Nc≫1

∝ αb
N2
c

∣∣∣∣
Nc≫1

→ 0. (6.96)

Thus, BSF vanishes at large Nc and unitarity remains intact in the t’Hooft limit.

This section investigated theoretical self-consistency from 2-particle scattering
unitarity, which requires fixing the initial state partial wave ℓ′. For the following
sections of this chapter, radiative capture cross-sections into a specific final state
Bnℓ is of interest, which no longer bounded directly by Eq. (6.76) as ℓ′ is now being
averaged over. The analyses in the following still consider highly excited states
but were ensured to not be in conflict with unitarity constraints.

6.5 Eternal depletion via BSF in the early universe

This section derives a breakdown of the traditional freeze-out paradigm as intro-
duced in subsection 1.2.1 in dark SU(Nc), Nc ≥ 3, gauge theories of heavy particles
still within the regime of perturbative couplings caused by the inclusion of BSF
in depletion processes. To be precise, the freeze-out paradigm is understood to
result in a stable late time abundance which has undergone complete chemical
decoupling and its applicability to bound-state enhanced depletion breaks down
since no such regime is reached in the absence of other physical effects, for example
a phase transition.

The first three subsections set up the required formalism for the used particle-
abundance Boltzmann equations, the thermally averaging procedure and the effec-
tive annihilation cross-section. Finally, subsection 6.5.4 demonstrates scenarios in
which the assumption of chemical decoupling implicit in thermal DM production
is not fulfilled when including BSF into highly excited states. This introduction
describes how above results for BSF cross-sections need to be adapted to gauge
boson BSF mediators and gauge-multiplet constituent fields.

Effects of bound state formation at the TeV-scale and above on early Universe
dynamics related to dark matter production have drawn increasing attention in the
last decade. A wide range of models has been studied, primarily (dark) Abelian
[152–155] and non-Abelian [32, 35, 147, 148, 156–162] gauge interactions affecting
either the production mechanism of DM directly or that of a BSM partner par-
ticles (primarily for colored coannihilation [136, 140, 148, 163–171]). Also scalar
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interactions have been studied which give rise to quadrupole [61, 138, 172–174] or
even monopole transitions [144, 175].

Under the assumption of kinetic equilibrium [20, 21, 176–178] of the relevant
dark sector particles, the DM relic abundance (1.1) can be computed from Boltz-
mann equations governing the abundance evolution of all particle species in the
early Universe plasma. The assumption is usually easily justifiable by elastic bath
scattering via the same interactions which give rise to Sommerfeld enhancement
and bound state formation. To allow a description of the complete plasma by
a single temperature parameter, the kinetic equilibrium must also be maintained
with the SM bath. Hence, the number of light degrees of freedom of the SM have
to be included in the calculation accordingly. Temperature takes the role of a
time coordinate by introducing the Hubble rate H(T ) = ȧ/a as a temperature
dependent function. Since for this and the following section only the chemical
decoupling of the heavy bound state constituents from a “dark” BMS sector is
of interest, it is useful to measure the temperature in terms of the heavy particle
mass, introducing

x ≡ Mχ

T
. (6.97)

For section 6.6, the numerator becomes Mq̃.
Both sections regard bound state formation between particle anti-particle pairs

in the early universe, which transform under the fundamental representation of
some dark non-Abelian SU(Nc) gauge symmetry, see for example [75]. The con-
stituents are here taken to be fermions (sχ=1/2) which impacts bound state decay
rates to massless gauge bosons. The Lagrangian for the constituents is thus given
by LPNR[χ] from Eq. (2.9) where now χ is a gauge Nc-plet transforming under
the fundamental representation of the dark gauge symmetry. The two-constituent
space of particles χa,b with representations Ra,b decomposes into separate irre-

ducible representation R̂ and gives rise to an effective coupling in terms of the
quadratic Casimir constants [148, 179]

αeff
[R̂]

=
C2(Ra) + C2(Rb)− C2(R̂)

2
× α (6.98)

with α being the dark gauge coupling strength. In particular, for fundamental
constituents F⊗ F̄ = 1⊕Ad one gets

αb ≡αeff
[1] =

N2
c − 1

2Nc

α = CF α, (6.99)

αs ≡αeff
[Ad] =

(
CF − Nc

2

)
α =

−1

2Nc

α. (6.100)

The adjoint representation is always repulsive and, thus, already at this point
identified with the initial state species. Since the multipole mediator is now also
the SU(Nc) gauge boson, multipole interactions can also affect the representation
of the 2-constituent states. While one has Ad ⊂ Ad ⊗ Ad, meaning that the
adjoint representation can be scattered into itself by bremsstrahlungs processes,
Ad = 1 ⊗ Ad defines two important constraints. Firstly, BSF can only take
place starting from the adjoint representation which effects κ < 0. Secondly there
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are no bound-to-bound transition by single gauge boson emission, nor is there
bremsstrahlung between singlet states. Multipole interactions are equally sourced
by vector bosons. The leading term is the dipole interactions with an effective
coupling

geff1 =
√

4πCF α. (6.101)

Additionally, one must adapt the BSF cross-section (6.28) to include the initial
state average of each fundamental constituent, and factors for decoherently sum-
ming over the polarizations of the emitted vector boson (gA = 2) and the bound
state spin polarization (gB),

(6.28) −→ (6.28)× gA gB

∣∣∣∣∣ 1√
(2sχ + 1)Nc

2

∣∣∣∣∣
2

≡ (6.28)× 2

N2
c

ξ . (6.102)

This relation relates dipole, a = 1, BSF processes of scalar BSF mediator to gauge
boson BSF mediators. At higher multipoles, instead a factor (a + 1)/a arises in
place of the simple factor 2 [180]. ξ takes care of spin degrees of freedom of the
bound state, ξ = 1/4 for capture into a spin-singlet and ξ = 3/4 for capture into a
spin-triplet state. When considering the inclusive BSF cross-section irrespective of
spins, ξ = 1 may be used directly. However, in the effective cross section discussed
in the following, spin-singlet and -triplet bound states must be treated as separate
particle species as they generally differ in their decay rates, thus making a final
state spin summation inapplicable.
This replacement to incorporate the effects of initial state gauge multiplets and
vector-boson mediator polarizations was already used in Eq. (6.89), setting ξ = 1
as scalar constituents were treated.

6.5.1 Boltzmann equations under steady-state approximation

When considering only the first moment of the phase-space distributions [177],
the number density nX of a particle species X, Boltzmann equations are typically
rewritten as a temperature evolution of the abundance Y . Every particle species
is technically to be treated separately, however there is no difference between
particles and their respective anti-particles for the models of interest in this thesis
such that one can write

YX(x) =
nX(x) + nX̄(x)

s(x)
=
gX + gX̄
gX

nX(x)

s(x)
=

2nX(x)

s(x)
, (6.103)

where X̄ denotes the anti-particle of X, g their internal degrees of freedom and
s(x) is the entropy density [181]. The respective Boltzmann equation takes the
form

dYX
dx

=
1

3H

ds

dx

[
1

2
⟨σannv⟩

(
Y 2
X − Y eq 2

X

)
+ ⟨“number-changing reactions”⟩

]
(6.104)

where only the typical annihilation term is given explicitly. The factors of 21−|N |

in front of processes where nX + nX̄ particle number is changed by N units are
a consequence the definition in Eq. (6.103) [140]. While scattering eigenstates of
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energy K = Mχv
2/4 follow a thermal distribution, each bound state counts as

its own unique particle species, since they differ in their various reaction rates.
At the same time, different angular momentum eigenstates must also be kept
separate, treating nnℓ(x), because their reaction rates depend on ℓ. Note that for
particle anti-particle bound states there is no distinct anti-bound state, Bnℓ = B̄nℓ.
Magnetic quantum numbers do not affect any processes under consideration and
can therefore be included as a simple internal degree of freedom in nnℓ. No 2-
bound-state (4-constituent particle) processes are of significance, so there is no
additional subtlety as above from an inclusion of the magnetic multiplicity.

As long as all light degrees of freedom are efficiently kept in equilibrium at
temperatures far above their mass scale, it is viable to simply approximate their
abundances by the equilibrium attractor solution of the Boltzmann equations [20],

nX(x)|light ≈ neqX ≡ gX
Mχm

2
light

2π2x
K2

(
mlight

Mχ

x

)
, (6.105)

K2 being the modified Bessel function of second kind.
Imposing a quasi steady state assumption, which approximates there to be effi-

cient equilibration process between the various bound states such that dYnℓ/dx ≈ 0,
one can solve for their abundances in Eq. (6.104) algebraically. The assumption
is in fact rather weak as it only requires one of the processes to be efficient at any
given point in time as long as one of the thus efficiently-coupled states is also main-
taining equilibrium with the (SM) plasma. The network of Boltzmann equations
for bound states can now be included as only a single effective cross section ⟨σBSFv⟩.
This ansatz of including excited states was separately formalized to include the
three bound state processes, bound-to-bound transitions, bound state decay and
ionization, in the two works [140] and [182]. The notation for the present thesis
follows the former. The Boltzmann equation describing the abundance evolution
in the dark sector then takes the simple form

dYX
dx

=
1

3H

ds

dx

1

2
⟨σv⟩eff

(
Y 2
X − Y eq 2

X

)
, (6.106)

where

⟨σv⟩eff ≡ ⟨σannv⟩ + ⟨σv⟩BSF,eff (6.107)

and the angle brackets indicate the thermal average. The detailed definition of
⟨σv⟩BSF,eff is given in subsection 6.5.3. Beforehand, some intricacies of the thermal
averaging procedure are discussed.

6.5.2 Thermal averaging procedure for highly excited bound states

The thermally averaged cross section of radiative capture by emission of a single
dark gauge boson into a particular bound state Bnℓ yields

⟨σnℓv⟩ =
(
Mχ

4πT

) 3
2
∫

d3v⃗ e−
xv2

4 [1 + f(ω)] (σv)BSF
pℓ±1→nℓ

=
( x
4π

) 3
2

∫ vmax

vmin

d3v⃗
1

e
x
4
v2 − e−

En
T

(σv)BSF
pℓ±1→nℓ . (6.108)
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where the distribution functions of the initial and final states are combined into
a single term, using f(ω) = 1/(eω/T − 1) and ω/T = xv2(1 + ζ2n)/4. While the
thermal distribution functions of the non-relativistic particles have been approxi-
mated by Maxwell-Boltzmann distributions, this is not applicable to the emitted
massless BSF mediator as the region T ∼ En ∼ K is of significance. The physical
lower boundary of the integration is naturally 0. The upper limit of the integral is
physically bounded by vmax ≤ 1, yet in the non-relativistic approximation there is
no sensitivity to relativistic corrections and, to remain consistent with this picture,
v would have to be integrated to ∞. Since BSF is suppressed at large velocities,
this modification has little impact on the final results given large enough vmax.
To make numerical evaluation more efficient, the distribution function is also cut
off for temperatures T < En/100 at which point the exponential Boltzmann sup-
pression is strong. Moreover, the highly oscillatory behavior of BSF cross-sections
poses a challenge to numerical integration methods. This problem has been dealt
with by splitting the considered velocity range 10−5 ≤ v ≤ 100.3 into a number of
logarithmic equidistant steps. These steps help numerical routines by reducing the
number of oscillations per step but also allow more manual control than fully auto-
mated samplings of the integration range. Knowing the total number of roots to be
n− ℓ− 1, a convenient step size has been found to be 4 log(vmax/vmin)/(n− ℓ+9).
The offset by +9 ensures efficiency when only few oscillations are present and
the prefactor 4 sets the expected mean number of roots in each integration step
to be 4. Such an estimate assumes all roots to be homogeneously distributed
across the complete integration regime. This is evidently not satisfied, as seen in
Fig. D.4 but serves sufficiently well for practical purposes. To additionally avoid
useless evaluation of lower n all the way until v = 10−5, the following automatic
stop-condition was introduced making use of the systematic behavior of the BSF
cross-section. Neglecting oscillations, the enveloping behavior of non-Abelian BSF
cross-section increases monotonically until the global maximum is reached. There-
fore, avoiding all reliance on the semi-classical aphelion or perihelion estimates, all
smaller velocity integration steps m > l are neglected once the integral Il of the
presently computed step l fulfills

n− ℓ+ 9

4
Il < 10−3

∑
k≤l

Ik. (6.109)

This condition estimates that even if all steps contribute the present amount to
Il, the total effect on the already summed integral is less than 0.1%, effectively
targeting a sub-percent precision. More efficient choices may be built exploiting
the aphelion and perihelion positions (ζn)A,P found in section 6.3. High n are
most expensive to compute and thus most important to properly constrain in
their integration range. To this end, the steep exponential suppression beyond the
perihelion helps with the above condition. Additionally, the lower boundary to the
integration range, v ≥ 10−5, was adjusted specifically to the maximal n = 1000
(ℓ = 0) states included in the analyses. Typical coupling strengths are α ∼
0.3− 0.01, such that vmin = 10−5 ≤ α/n. Note that for all Nc > 2 on additionally
has αb > α.

The fact that the roots are not logarithmic equally spaced means there are
significantly more than only 4 roots included in the smallest-velocity steps and
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a larger step size generates problems with numerical convergence. Performing
the integration in reciprocal or logarithmic space of v did not yield significant
improvement in stability or efficiency. The numerical integration was performed
using “Global Adaptive” routines available by default in Mathematica with
adjusted minimal and maximal recursion parameters (2 and 30) as well as precision
and accuracy goals (8 and 20+2 log(Mχ)) to mitigate this. The accuracy goal was
scaled with Mχ since the cross section was not normalized to a dimensionless
quantity.

6.5.3 Effective cross section

The computation of the effective cross section follows directly [140] (with minor
adjustments to the notation) and the central equations are repeated here for com-
pleteness. The effective cross section encodes the complete network of Boltzmann
equations for all bound states by weighing the thermally averaged BSF cross-
section for all bound states Bi = Bnℓ with an depletion efficiency factor Ri,

⟨σv⟩BSF,eff =
∑
n,ℓ

Rnℓ ⟨σnℓv⟩ . (6.110)

Ri captures the interplay of the decay rate Γdec
i , ionization rate Γion

i and also all
bound-to-bound transition rates

Γtrans
ij = Γtrans

j→i . (6.111)

The ordering of the indices is relevant since Γtrans
ij ̸= Γtrans

ji , for example all ex-
citation processes vanish in vacuum while de-excitations remain possible. More
precisely, detailed balance dictates

Γtrans
ji = Γtrans

ij

Y eq
j

Y eq
i

. (6.112)

The chosen subscript ordering allows to think about processes in a vector-matrix
notation going right to left from initial to final states. Being an efficiency factor,
Ri ∈ [0, 1] for any i. In practice one finds Ri to increase monotonically, roughly
resembling a step function as temperature drops below its the respective binding
energy En. This is natural since a formed bound state i which can no longer be
ionized or excited will only de-excite to even more deeply bound states. Yet, for
the effective cross section it is insignificant through which channel a formed bound
state decays, thus Ri ≈ 1. This simple argument is less transparent in the full
definition of the depletion efficiency factors

Ri ≡ 1 −
∑
j

(M−1)ij
Γion
j

Γfull
j

(6.113)

where

Γfull
i ≡ Γion

i + Γdec
i +

∑
j

Γtrans
ji , (6.114)

Mij ≡ δij −
Γtrans
ji

Γfull
i

. (6.115)
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As mentioned above, there are no bound-to-bound transitions in the dark
SU(Nc) setup at leading order approximation and Γtrans

ij = 0. This “no-transitions”
limit trivializes Mij. Now,

Rno-trans
i = 1− Γion

i

Γfull
i

=
Γdec
i

Γdec
i + Γion

i

(6.116)

is clearly the branching ratio of the decay process for the bound state i. In this
limit, the “network” of coupled Boltzmann equations sees all bound states to only
be in connection via the free two-particle state species. Using once more the
detailed balance condition in thermal equilibrium in form of the Milne relation,

Γion
i =

s

4

(
Y eq
χ

)2
Y eq
Bi

⟨σiv⟩ , (6.117)

the ionization rate is easily computed from the thermally averaged BSF cross-
section, summed over all initial states and also all possible interactions if there
are multiple. This summation removes any dependence on the spin, meaning ξ
cancels out in the ionization rate. The decay rate for spin-singlet s-wave bound
states BS=1

n0 into a pair of gauge bosons AA is [140, 148]

Γdec
n0 = ΓBS=1

n0 →AA K1(x)

K2(x)
= ΓBS=1

n0 →AA +O(x−1), (6.118)

ΓBS=1
n0 →AA =

MχCF
8n3

α̂(Mχ)
2 α3

b . (6.119)

The ratio of Bessel-K functions encodes the thermal average which, however, tends
to 1 for large x effectively negating any influence of the thermal average at T ≪Mq̃.
In anticipation of the later inclusion of renormalization group running, αb is kept
separate from the gauge coupling strength evaluated at the hard scale α̂(M) in
the vacuum decay rate. Spin-triplet bound states will be neglected for the analysis
of dark SU(Nc) interactions in this section since their decay rate is suppressed by
one additional power in α [183].

Lastly, annihilation of scattering states into two gauge bosons is possible from
singlet as well as adjoint states and given by the short-distance annihilation term
and the Sommerfeld factor [135]

(σv)ℓ
′=0
ann =

πα̂(2Mχ)
2

M2
χ

CF
4

N2
C − 2

N2
c

(
2

N2
c − 2

S
[1]
0 +

N2
c − 4

N2
c − 2

S
[Ad]
0

)
+O(v) (6.120)

where the gauge couplings are now evaluated at the center-of-mass energy of the
process and the Sommerfeld factors are explicitly

S
[1]
0 =

α̂(p)

v

2πCF
1− e−2πCF α̂(p)/v

, (6.121)

S
[Ad]
0 =

α̂(p)

v

2π(CF − CA/2)

1− e−2π(CF−CA/2)α̂(p)/v
. (6.122)

The running gauge couplings are evaluated at the potential scale of the scattering
state p = Mχv/2. Hence, the effective singlet coupling CF α̂(p) here, in general,
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differs from αb, which is defined at its own respective potential scale,

αb = CF α̂(pn), (6.123)

αs =
−1

2Nc

α̂(p), (6.124)

whereas the multipole mediator coupling (6.101) is evaluated at the ultrasoft en-
ergy scale

(geffa )2

4π
= CF α̂(ω). (6.125)

Since pn ∝ αb, the the effective bound state couplings are implicitly defined by
a recursive equation which must be solved numerically for each n. The running
couplings are computed to one loop accuracy. Subsections 6.5.3 and 6.5.4 treat a
minimalistic dark SU(Nc) model with no additional light degrees of freedom such
that the pure Yang-Mills RGE holds,

α̂(µ̂) =
α̂(Mχ)

1 + 22
3

α̂(Mχ)

4π
Nc log

(
µ̂
Mχ

) . (6.126)

Constraints on perturbativity arise first in geffa as it is evaluated at the lowest scale.
If RG running was neglected, even the results for the thermally averaged cross-
sections would be universal in x, and αb meaning that as long as Nc, or equivalently
κ, is kept fixed, simple rescalings of x and ⟨σv⟩eff suffice to obtain results for
any αb and Mχ, analogous to the discussion after Eq. (6.91). This conceptual
independence of αb, up to rescaling, is broken by the inclusion of running couplings.
Upon choosing a value for α̂(Mχ), the Landau pole ΛNc is fixed in terms of the
only available mass scale Mχ,

log

(
ΛNc

Mχ

)
= −6π

11

(
1

Nc α̂(Mχ)
− 1

Nc

)
. (6.127)

This distance between the hard scale and the Landau pole generally defines also
the maximal number of bound states which can be reasonably included before a
perturbative approach in α ≪ 1 breaks down. ForNc = 10, barely the ground state
can be resolved before reaching α̂(ω) = 1. In the following section 6.6, the non-
Abelian interaction is given by the strong interaction of the SM where the running
is significantly weakened by the presence of quarks and quantitative results from
this section do not apply. Furthermore, the solutions to the Boltzmann equations
depend on more mass scales through the number of relativistic degrees of freedom
heff(T ) contributing in s(x) [20], if equilibrium with the SM bath is assumed.

Before turning to numerical results, the employed simplifications must be em-
phasized. Firstly, as mentioned, bound-to-bound transitions are only mediated by
higher order multipole interactions (the non-Abelian two-gluon term A⃗·A⃗ does not
contribute here). Secondly, only bound state decay of s-wave states is considered,
since all higher partial waves are parametrically suppressed in α, which renders
Rnℓ ∝ δ0ℓ. In combination, one may view this simplification as the assumption
that ionization rates dominate parametrically over transition and decay rates for
non-s-wave bound states. Such an argument, however, ignores that any Γion

nℓ be-
comes Boltzmann suppressed once T ≪ En. Results presented in the remainder of
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Figure 6.10: Effective cross section (6.107) over inverse temperature x = Mχ/T ,
including bound state formation up to different nm (different blue curves) and
one-loop running couplings in a dark SU(3) model. Additionally, a curve of only
⟨σannv⟩ including Sommerfeld enhancement but no bound states (gray) and of
⟨σv⟩eff including n ≤ 1000 but neglecting RG running (light blue) are shown. A
dashed red line ∝ x indicates critical power scaling.

this section are thus obtained as a conservative lower bound to the true effective
annihilation cross-section.

Fig. 6.10 shows M2
χ ⟨σv⟩eff for Nc = 3 and α̂(Mχ) = 0.025, including different

numbers of bound states up to n ≤ 1000 (blue curves). The gray curve “SE only”
includes no bound states in the calculation but does include SE in the annihi-
lation cross-section, Eq. (6.120). The thermal averaging smears out every single
cross section, removing the precise roots present in velocity dependent exclusive
cross sections and resulting in an overall peak-shaped contribution similar to what
is observed for n = 1 (dotted). Thus, analogous to effects observed in Fig. 6.7,
each bound Bnℓ predominantly contributes in roughly the regime T ∼ En, albeit
now initial ℓ′ are summed and n, ℓ are weighed by Rnℓ. Despite the complicated
summation, the resulting effective cross section converges once more to a smooth,
power-law like slope when summing sufficiently high n. Because of this, the differ-
ent blue curves coincide before reaching the exponential cutoff of the respectively
highest included n. The light blue curve depicts the result for n ≤ 1000 when
neglecting the running of the gauge coupling and is distinctly smaller and yields
a weaker power law. Estimating Mχ/E1 = 4/0.0252 = 6400 gives a reasonably
good prediction for the position of the maximal contribution of the ground state,
keeping in mind that actually αb|n=1 > 0.025. From this simple estimate it is clear
that the on-set of the bound-state enhancement is directly given by the choice of
α̂(Mχ). However, qualitatively the picture remains unchanged since also the on-set
of the Sommerfeld enhancement to the annihilation cross-section “SE-only” must
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shift correspondingly to larger x. The significance of the dashed red line indicating
a power-law ⟨σv⟩eff ∼ 1/T will be discussed next.

6.5.4 Temperature dependence of annihilation via bound states

This subsection studies the temperature dependence of the effective cross-section.
It derives and demonstrates a systematic lack of late-time chemical decoupling due
to large enhancements at low temperature. This effect is titled “eternal depletion”
and is incompatible with the traditional freeze-out paradigm.

After detaching from chemical equilibrium, x > xcd, the abundance Yχ stops
following the equilibrium abundance and the contribution of Y eq

χ in Eq. (6.106)
becomes exponentially suppressed and negligible. As long as xcd is known, the
present day (x ≈ ∞) relic abundance can then be solved for by separation of
variables and integrating in x [184],

Yχ(∞) =

[
Yχ(xcd)−

∫ ∞

xcd

dx
1

3H

ds

dx

1

2
⟨σv⟩eff

]−1

. (6.128)

The detaching usually happens around x = 25 whereas the BSF contributions set in
much later for α < 0.2. Assuming that no significant changes in the entropy density
of the heat bath occur, one can estimate the parametric temperature dependences
as s(x) ∼ T 3 and H(T ) ∼ T 2, i.e. radiation domination. Suppressing the constant
contribution Yχ(xcd) one finds

ΩDMh
2 ∝ 1

const.−
∫∞
x0
dx x−2 ⟨σv⟩eff

. (6.129)

Independent of the finite positive constant one can see that the integral only con-
verges as long as the effective cross section yield at late times a parametric power
scaling exponent γ of

⟨σv⟩eff ∼ xγ , with γ < 1. (6.130)

This implies that, for an effective cross section growing more strongly than γ = 1,
the annihilation rate will exceed the Hubble rate at late times and, hence, there
is no freeze-out. This behavior is referred to as “super-critical” in the following,
while “sub-critical” refers to γ < 1 allowing for a frozen-out relic abundance.
Disregarding the smearing of the thermal average, one may also think of this
critical temperature dependence as xγ ∼ v−2γ. The critical value γ = 1 requires a
power-law twice as strong as the Sommerfeld effect.

Fig. 6.10 shows that a generic dark SU(3) slightly exceeds the critical power
scaling once RG running is included. Nevertheless, the super-critical scaling is not
to be read as a pure running coupling effect. Rather, the sub-critical scaling in
the absence of running being close to critical is a numerical coincidence for SU(3).
The effect for different Nc, or correspondingly κ, is demonstrated in fig 6.11. It
depicts the BSF contribution to the effective cross section (6.110), excluding the
direct annihilation contribution, for Nc = 2, 3, 4, 5, 10 plotted over x. Accordingly
colored vertical lines denote temperatures of the respective Landau pole. Again,
the the critical power scaling is indicated by a dashed red line. Clearly all Nc > 2
are super-critical. Apart from Nc = 2, summing all contributions of n ≤ 1000
suffices to compute reliably converged effective cross-sections for all T > ΛNc .
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Figure 6.11: Inverse temperature dependence of the effective BSF annihilation
cross-section (6.110) in SU(Nc) models (FF̄) for different Nc including n ≤ 1000
(ℓ ≤ n−1, ℓ′ = ℓ±1) bound states and one-loop RG evolution from α̂(Mχ) = 0.025.
Vertical lines indicate respective positions of the Landau pole, x =Mχ/ΛNc , color-
coded to the shown Nc and the plotted curves end for α̂(µ̂) = 1.

A fit to the power scaling of ⟨σv⟩BSF,eff can reliably be performed sufficiently
long after the ground state peak and the subsequent first few n ≲ 5 excitations and
stopping sufficiently long before the end point of each of the lines where α̂(µ̂) = 1.
Excluding both these ranges removes influences from oscillatory features of single
n and strong running effects near the Landau pole. The fitted slopes are depicted
as black dots in Fig. 6.12 for Nc ≤ 5. The gray dashed line indicates the degraded
fitting behavior when including also the strong running regime up to α̂(µ̂) = 1.
For Nc = 2, even n = 1000 does not reach up to the Landau pole and both values
coincide. It is important to emphasize that the super-criticality is not sourced
by RG running but truly a consequence of the different potentials κ ̸= 1. This
will become evident in the next section where bound-to-bound transitions give
another strong enhancement resulting in γ > 1.5. A linear function 0.6+0.15Nc is
depicted in Fig. 6.12, highlighting the fact that there appears to be a simple linear
relationship between Nc and γ. This numerical observation is not investigated any
further but, possibly, could be understood from an analysis of the peak heights
and densities for a given κ(Nc).

These results demonstrate that the inclusion of bound states in the abundance
evolution of heavy particles transforming in the fundamental representation of non-
Abelian SU(Nc) gauge interactions do not freeze-out in the perturbative regime for
Nc > 2. Apart from clearly stating the significance of long range interactions and
particularly bound states to dark matter relic density computations, the practical
influence in this specific numerical example is somewhat limited. For Nc = 3,
the additional depletion relative to the SE-only result is approximately a factor of
1/8 until the non-perturbative scale is reached. It is known that there are large
additional corrections occurring once the non-Abelian interaction undergoes the
transition to the confined phase and hadronization occurs [157, 159, 185, 186].
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Figure 6.12: Power scaling exponent γ plotted shown for Nc ≤ 5 (connected black
dots). γ(Nc) was extracted from Fig. 6.11 by fitting the double-logarithmic slope
in the linear regime between the first few n ≲ 5 and the strong running regime
near α̂(µ) = 1 (fitting windows manually adjusted to each Nc). The linear model
γ(Nc) ≈ 0.6 + 0.15Nc (red diagonal) agrees well. A worse matching including all
results up to α̂(µ̂) = 1 is shown (dashed).

Nevertheless, the corrections due to the phase transition are usually a multiplica-
tive modification to the relic abundance at the onset of the transition, which was
ab initio assumed to exist in these works. From the results here it is clear that one
cannot simply assume a freeze-out production at temperatures around x ∼ 25 but
has to consider the “eternal” depletion effect due to bound states all throughout.
Also other corrections might modify the effect of bound states on the effective cross
section. Most importantly, the calculations here rely on the existence of highly
excited bound states n≫ 1 which is valid provided the potential is Coulombic but
can break down when extending the framework carelessly to include additional
interactions or too heavy potential mediators. Thermal or higher order correc-
tions are impressively un-impactful on the dipole approximation of PNREFT [78,
152, 154, 158], which is due to contributions from any given bound state being
significant only once the temperature is of or below its binding energy. Thus, no
sizable melting effects are expected since they only set in for temperatures at or
above the respective Bohr-momentum scale.

In light of the systematic unitarity violation found in section 6.4, also unitariza-
tion effects may play a role eventually. For the results presented here it was ensured
for Nc = 3 that unitarity remains respected for all depicted values. Additionally,
the range T ≈ Λ was ensured to respect unitarity forNc = 2, 3, 10 in velocity ranges
corresponding to temperatures near the Landau pole. It is important to under-
stand that the perturbativity constraints originate from Λ < T ∼ En, K whereas
the couplings are evaluated at the momentum scales µ̂ = p, pn ∼

√
MT and are

thus still quite far from α̂(µ̂) = 1, except for the single insertion of geffa
2 ∝ α̂(ω).
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Since no α̂(µ̂) > 1 is ever evaluated, there is no divergent enhancement caused by
vicinity to the Landau pole. From Fig. 6.6 it is clear that κ→ 0 requires increas-
ingly higher n (smaller v) while the suppression by ⟨σv⟩eff ∝ N−2

c further helps
avoiding the unitarity bound. In the following section concerning BSF by colored
interactions the SM, the unitarity bound is avoided by two orders of magnitude,
hence, no sizable corrections from unitarization are expected [133].

6.6 Phenomenological impact in a realistic Dark Matter
model

As a final piece to the present chapter on bound state formation, a phenomenologi-
cal study in a t-channel mediator DM model is presented which is crucially affected
by the non-Abelian formation of bound states in the early universe. The model in-
cludes bound-to-bound level transitions which source another strong enhancement
of the effective BSF cross-section.

In the previous section, the abundance evolution was only regarded in the
temperature regime of small, perturbative coupling strength. To still avoid an
investigation of the evolution of heavy constituent abundances over the course of
a phase transition in the SU(Nc) gauge interaction [159, 185, 187] in a more re-
alistic model, the bound state constituents are assumed to have a finite life-time
leading to efficient decay within the perturbative regime. This, obviously, makes it
impossible to construct a reasonable DM candidate from the bound states or their
constituents. Hence, one of the decay products is assumed to be a massive SM
gauge singlet fermion χ, coupling exclusively feebly to the heavy constituents thus
providing a stable DM candidate. To remain minimal and simultaneously allow for
detectability or falsification of the theory, the long-range Coulomb potential and
multipole interactions are embedded within the gauge symmetries already existing
in the SM. The second decay product may now be a SM quark thus giving rise to
a portal between χ and the SM via the (colored) t-channel mediator q̃ [188]. Intro-
ducing a dependence on the strong and electromagnetic force allows to combine the
above non-Abelian BSF from repulsive initial states with radiative level-transitions
between bound states. Furthermore, this embedding also lifts concerns of dark-
glueball contributions, which otherwise add to the dark matter energy budget and
may conflict with warm DM constraints form structure formation and Lyman-α
bounds [159]. In turn, it introduces constraints from collider searches or Big Bang
nucleosynthesis. The setup is closely related to coannihilation [24, 176, 189] and
conversion-driven freeze-out [25, 26, 190], differing technically only in the size of
the t-channel interaction.

Notably, the bound state constituents q̃ now differ from the DM χ which is
taken to be much lighter. The mass mχ ≪ Mq̃ will merely be chosen to saturate
the relic density abundance and is insignificant to all considered dynamics. This
setup induces a slight shift in notation from previous sections, writing the DM
mass as mχ while the hard scale is set by Mq̃.

The first three subsections introduce the considered model and the ingredients
necessary for the later numerical solutions of the Boltzmann equations by use of
quasi-steady state approximation, including a study of the importance of bound-
to-bound transitions to the effective cross section. A detailed discussion of the
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validity of the adopted framework is delayed until subsection 6.6.4 where it will
be covered together with formally higher order corrections.

6.6.1 Colored and charged t-channel mediator model

The considered t-channel mediator model extends the SM by two new fields, one
colored and hypercharged scalar q̃, which is heavy but still assumed to be thermally
produced in the very early universe, and one gauge singlet Majorana fermion χ
coupling to the t-channel mediator q̃ and a right-handed SM quark through

Lint = λχ q̄Rχq̃ + h.c. . (6.131)

For such an operator to maintain gauge symmetry, the representations of q̃ must
coincide with those of the quark. Conceptually, also couplings to left-handed
fermion are conceivable but disregarded here due to the attached complications of
EWSB, massive gauge bosons and multiple interacting SM fermions. The coupling
is taken to be exclusively to the bottom quark, q = b, hence the electromagnetic
charge of q̃ is Qq̃ = 1/3. The regime of the superWIMP production mechanism [23,
191] is found in Mq̃ ≫ mχ and λχ ≲ 10−6. Here, λχ is so small that χ plays
essentially no role in the dynamics in the early universe. Production of χ via typical
freeze-in exists yet remains a sub-dominant contribution to the DM relic density.
Instead q̃ undergoes mostly the usual thermal production until it efficiently decays
via q̃ → q + χ. This is found once the t-channel mediator width Γq̃ becomes large
compared to the Hubble rate at which point the abundance of the abundance of q̃
shifts almost at a 1-to-1 ratio into χ. In usual superWIMP production, q̃ freezes-
out prior to its decay and the model becomes insensitive to its exact lifetime.
Due to the negligible abundance of χ prior to this decay and the smallness of λχ
no other processes, such as the inverse decay or annihilation into χ, are relevant
here. Too low values of λχ need to be avoided in order to ensure q̃ decays before
reaching the QCD phase transition, where perturbative calculations break down
and, eventually, strong constraints from nucleosynthesis arise.

According to Eq. (6.98), the roles of S and B in Eq. (6.11) are taken by the
color singlet and octet representations. Since the electromagnetic interaction is
much weaker than QCD even at high energies, further corroborated by Q2

q̃ < 1, its
contribution to the long range Coulomb potentials is neglected and the effective
potential strengths are just given in Eqn. (6.123) and (6.124) with α̂(µ̂) = α̂3(µ̂).
The renormalization group running of the electromagnetic coupling strength will
be neglected in the following, using simply αem = 1/128.9. Numerical values for
the strong coupling are obtained using RunDec 3.1 [121].

Differences from the analysis of dark SU(Nc) interactions in section 6.5, set
aside the finite constituent lifetime, arise from the presence of the additional U(1)
interactions of electromagnetism allowing singlet-to-singlet BSF and, more impor-
tantly, bound-to-bound level transitions. Since the constituents are now scalar
particles (thus ξ = 1) there is no additional complication from forbidden spin-
triplet bound states. Considered BSF processes include the leading order, single
gauge boson dipole emission for gluons as well as photons, however the latter turn
out numerically sub-dominant in the effective cross section and are ultimately
neglected when solving the Boltzmann equations. According to Eq. (6.125), the
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multipole mediator interaction is evaluated at the energy of the emitted gauge
boson

(
q̃†q̃
)
[8]

→ Bnℓ + g :
(geff1 )2

4π
=

4

3
× α̂3

(
Mq̃v

2

4
(1 + ζ2n)

)
(6.132)

and for the color neutral BSF process by photon emission

(
q̃†q̃
)
[1]

→ Bnℓ + γ :
(geff1 )2

4π
=

1

9
× αem (6.133)

where in both cases the cross section in Eq. (6.28) still gains the factor 2/N2
c

accounting for color average and spin sums. Pair annihilation and decay of bound
states depend on the center-of-mass energies 2Mq̃ and Mq̃, as before.

The treatment of QCD as a perturbative theory is only valid above the confine-
ment scale, which is taken as ΛQCD = 1GeV. The multipole mediator coupling in
Eq. (6.132) limits when the non-perturbative regime is reached. This means that
when the binding energies of a given bound state contribution reach En ∼ 1GeV
the Coulomb potential is still described by a parametrically perturbative scale
α̂3(pn) ≪ 1.

Imposing again the quasi steady state approximation to employ the effective
cross section formalism, there are only the two particle species x = q̃, χ left in the
network of Boltzmann equations. Due to the large mass splitting Mq̃ ≫ mχ and
the feeble nature of λχ, the inverse decay process q + χ → q̃ can be neglected, as
well as 2-to-2 conversions or annihilation which are suppressed by four powers of
λχ, e.g. qq, q̃q̃ ↔ χχ. The coupled Boltzmann equations are therefore

dYq̃
dx

=
1

3H

ds

dx

[
1

2
⟨σv⟩eff

(
Y 2
q̃ − Y eq 2

q̃

)
+

Γconv
q̃→χ

s

(
Yq̃ − Yχ

Y eq
q̃

Y eq
χ

)]
, (6.134)

dYχ
dx

=
1

3H

ds

dx

[
−

Γconv
q̃→χ

s

(
Yq̃ − Yχ

Y eq
q̃

Y eq
χ

)]
, (6.135)

with the equilibrium yields defined by

Y eq
x =

gx
s

∫
d3p

(2π)3
e−
√
m2

x+p
2/T (6.136)

where gx are the degrees of freedom of the respective particles, gq̃ = 2Nc = 6
(particle and anti-particle color triplets) and gχ = 2 (for two spin polarizations)
states. The degrees of freedom of the bound states included in the effective cross
section take care of the otherwise averaged or summed magnetic quantum number,
gBnℓ

= 2ℓ+ 1.

6.6.2 Relevant rates and cross sections

To clarify some notational subtleties, note that thermally averaged cross sections
are denoted explicitly by angle brackets while for reaction rates, such notation is
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rather unconventional. Instead, vacuum rates are superscripted by their respective
reaction while thermally averaged rates appearing in the Boltzmann equations are
written as Γdec, trans, ion with disambiguation by suffixes as needed.

The bound state formation and ionization rates have been discussed already.
Their definitions are found in Eqn. (6.28), (6.108) and (6.117), see also sec-
tion 6.5.2. The direct annihilation cross-section for a pair of color-triplet scalars
including Sommerfeld enhancement is

(σv)ann =
14

27

πα̂3(2Mq̃)
2

M2
q̃

(
2

7
S
[1]
0 +

5

7
S
[8]
0

)
, (6.137)

using Eqn. (6.121) and (6.122) with Ad = 8, CA = Nc = 3 and CF = 4/3. Bound
state decay is only included for s-wave states, where [140, 148]

Γnℓ→gg = δ0ℓ
Mq̃CF
8n3

α̂(Mq̃)
2 α3

b , (6.138)

which differs from the fermionic bound-state decay rate, Eq. (6.118), by a factor
of 1/2. Formally, the decay of the constituents q̃ → χq after thermal averaging is
[140]

Γdec
q̃ = Γq̃→χqK1(x)

K2(x)
≈ Γq̃→χq , (6.139)

Γq̃→χq =
λ2χ
(
Mq̃ −m2

b −m2
χ

)
16πM3

q̃

√
λ
(
M2

q̃ ,m
2
χ,m

2
q

)
, (6.140)

λ denoting the Källen function λ(a, b, c) = a2 + b2 + c2 − 2(ab+ bc+ ac). In prac-
tice Γq̃→χq may be directly used as an input parameter of the theory, implicitly
defining λχ, since no other processes depend on it. Direct annihilation χχ → qq
or t-channel mediator production χχ→ q̃q̃ are proportional to λ4χ and completely
negligible here. Bath-scattering conversions q̃X → χY are proportional to λ2χ and
dominate the conversion at high temperatures. However, q̃ remains in chemical de-
coupling until around typical values xcd ∼ 25 and conversions only are significant
at low temperatures where the decay term q̃ → χq dominates. These are signifi-
cant simplification for the superWIMP production compared to conversion-driven
freeze-out where all processes need to be considered [140].

Transitions between bound states levels i = (n′ℓ′) → (nℓ) = j mediated by
electromagnetic dipole interactions require n−n′ ̸= 0 and |ℓ− ℓ′| = 1. The former
condition avoids zero-energy photon modes interacting with the bound state and
the latter is the dipole angular momentum selection rule. Transitions between
discrete bound state energy levels are in many aspects related to the transition of
positive-energy scattering states to bound states that is BSF [141]. This includes
the detailed balance relation between de-excitations, i → j for En < En′ , and the
reverse excitation process j → i following Eq. (6.112). The de-excitation rates
can be computed by analogous steps as for BSF where, as a simplification, now a
second real integer parameters n′ occurs instead of iζs. They relate to the matrix
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element by

Γn
′ℓ′→nℓ =

4Q2
q̃αem

3
(2ℓ+ 1)ωn′n |⟨Bn′ℓ′ |ωn′nr⃗ |Bnℓ⟩|2

=Mq̃

Q2
q̃αem(αb)

2

3

n′2 − n2

n′2n2(2ℓ′ + 1)

(
ℓ′δℓ′−1,ℓ I

1,+1
R,t + ℓδℓ′+1,ℓ I

1,−1
R,t

)
(6.141)

A more detailed analysis for different multipole transitions is omitted here. It is
expected to follow similar lines as for BSF. By exploiting the same hypergeometric
relations used in section 6.2.5, see also App. C.1, additional simplification of the
expressions provided in [3] is possible,

I1,+1
R,trans =4(αb)

2 z
2ℓ|1− z|1+n−n′

Γ(2ℓ+ 2)2
Γ(n+ ℓ+ 1)

Γ(n− ℓ)

Γ(n′ + ℓ+ 2)

Γ(n′ − ℓ− 1)

×
(
F+,t(0)

(n′ − n)2
− F+,t(2)

(n′ + n)2

)2

, (6.142)

I1,−1
R,trans =4(αb)

2 z
2ℓ′|1− z|1+n′−n

Γ(2ℓ′ + 2)2
Γ(n+ ℓ+ 1)

Γ(n− ℓ)

Γ(n′ + ℓ)

Γ(n′ − ℓ+ 1)

×
(
F−,t(0)

(n′ + n)2
− F−,t(2)

(n′ − n)2

)2

, (6.143)

with z = 4n′n/(n′ + n)2 and

F+,t(X) ≡ 2F1 ( −n+ ℓ+ 1, X + n′ + ℓ; 2 + 2ℓ; z) . (6.144)

F−,t(X) ≡ 2F1 (X − n+ ℓ+ 1, n′ + ℓ; 2ℓ; z) . (6.145)

These functions are related to the hypergeometric function for BSF by replacing
iζs → n′, ζn → pn/(ipn′), cf. Eqn. (6.41), (6.42) and (6.46). This simple pre-
scription cannot directly relate the BSF and bremsstrahlungs radial integrals as
different imaginary parts are picked up [141]. Further, the reduction to a result in
terms of only F+(0) as performed for BSF is now not possible since n′ ∈ R. Hence,
complex conjugation does no longer reproduce the sign change iζs → −iζs neces-
sary in deriving Eq. (6.49) from hypergeometric relations. Note that the above
bound-to-bound transition rates already implement κ = 1 which is of course re-
quired in U(1)em interactions. Furthermore, a = 1 is already inserted giving rise
to compact results. In more complicated models, κ ̸= 1 is conceivable even in
bound-to-bound transitions. Simply regarding larger gauge representations than
the fundamental already yields multiple differently attractive 2-constituent repre-
sentations [32]. In such a scenario, more general formulas are required to describe
“not-Abelian” bound-to-bound transitions. At the same time, radiative transi-
tions become possible by emission of a non-Abelian gauge boson without the need
to have an additional U(1) charge for q̃.

The thermal average for bound-to-bound transitions must be carefully included,
since the energy splittings between two highly excited energy levels are suppressed
relative to the ground state by n−3,

∆En′n = En′ − En =
Mq̃α

2
b

4

n2 − n′2

n′2n2
. (6.146)
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Numerically, though not parametrically in PNREFT, level energy gaps become
even much smaller than the ultrasoft scale E1, which is not of concern in regards
to unitarity nor perturbativity, since the coupling evaluated at this ultrasoft scale
is only αem. Detailed thermal distributions of the photons need to be considered
as long as T ≳ ∆En′n. The thermally averaged rates are

de-excitation (n > n′) : Γtrans
n′ℓ′→nℓ = Γn

′ℓ′→nℓ ×
(

1

e|∆En′n|/T − 1
+ 1

)
, (6.147)

excitation (n′ > n) : Γtrans
n′ℓ′→nℓ = Γn

′ℓ′→nℓ ×
(

1

e|∆En′n|/T − 1

)
. (6.148)

The explicit +1 defines the vacuum contribution to de-excitations whereas excita-
tions are exclusively possible in a thermal environment.

6.6.3 Effective cross section for charged and colored particles

This subsection analyses the numerical results found for the effective cross section
for the colored and charged t-channel mediators q̃ including effects from highly
excited bound states and transitions among them. In pushing for high excitations
n ≫ 10, practicability of the numerical implementation of the transition rates
needs to be kept in mind as the number of possible transitions grows rapidly. There
are nm(nm−1)/2 distinctly treated bound states Bnℓ where the magnetic quantum
number degeneracy is already absorbed into the degrees of freedom gB. Bound-
state dipole transitions by photon emission occur between any pair of bound states
where n > ℓ∧n′ > ℓ′ ∧ ℓ = ℓ′± 1. Already s-wave, ℓ′ = 0, alone thus allows for n2

m

unique processes and the total number of transitions nears n3
m. Since the transition

matrix needs to be evaluated on a dense grid in x, brute-force attempts quickly
reach runtimes of O(days) even for millisecond speeds of each individual rate. A
more efficient method is to compute the temperature dependence from the thermal
distributions in Eq. (6.147) separately and multiply the vacuum transition rates
after only computing all of them once. This approach also allows to treat ∆En′n

and hence the thermal distributions as degenerate in ℓ(′) which improves efficiency
by one order of nm. Another practical advantage of this approach is that there is
no need to store large n2

m × n2
m matrices in each temperature step, significantly

reducing memory requirements during the computation. Altogether, this method
allows to use one unique matrix of pre-evaluated vacuum transition rates in order
to compute the temperature dependent Γtrans(x) as needed on-the-fly.

With the results of the previous section, all ingredients to compose the effec-
tive cross section, Eq. (6.107), are known. The obtained numerical results are
given in Fig. 6.13 including all bound states Bnℓ, up to three different maximal
nm = 1, 10, 100 (blue curves), and all electric dipole transitions among them.
The discrete level transitions, sourced by the addition of Abelian gauge interac-
tions, constitute the main conceptual difference to the pure SU(Nc) results shown
in Fig. 6.10. To ease comparison, Fig. 6.13 shows also the no-transitions limit,
including all n ≤ 1000 (green curve), and the Sommerfeld enhanced direct an-
nihilation including no effects from bound states (gray curve). The t-channel
mediator is taken to have a mass of Mq̃ = 4× 106GeV and the non-perturbative
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Figure 6.13: Effective cross sections of the colored and electrically charged t-
channel mediator q̃ plotted in inverse temperature for Mq̃ = 4× 106GeV. Contri-
butions from all bound state levels n and ℓ, accounting for all dipole transitions
among them, are included up to different n ≤ 1, 10, 100 (dotted, dashed and solid
blue). The no-transitions limit is shown including n ≤ 1000, ℓ = 0 (green). All
grow more strongly than ∝ x (dashed red line) once sufficiently high n are in-
cluded.

regime of QCD is correspondingly reached at x = 4 × 106 (gray shaded area,
T < 1GeV). Perturbative EFT results are no longer trustworthy at such low
temperatures as α̂3(1GeV) = 0.48 becomes of O(1). Any concerns of the influ-
ence of non-perturbative QCD running couplings are refuted by evaluating ⟨σv⟩eff
for three different conventions for α̂3. The first convention simply sets α̂3 = 0
whenever µ̂ < 1GeV. The second convention disables the running and freezes
α̂3(µ̂ ≤ 1GeV) = α̂3(1GeV) in this regime. The third convention continues the
running until α̂3(µ̂1) = 1 and freezes it only there. Results of all three prescriptions
are drawn in Fig. 6.13 yet fully coincident.

The effective cross section in Fig. 6.13 shares the Sommerfeld enhanced direct
annihilation cross-section and the ground state contribution (n = 1, dotted) with
the no-transitions limit. Differences between the solid blue and green curves arise
only once capture into n = 2 becomes notable in the no-transitions limit around
x = 104. Hence, excitations of the ground state into higher excited states does
not significantly affect the effective cross section at high temperatures. As also
differences between the different blue curves occur analogously, one may conclude
this to hold for all excitations.

Ground state capture becomes relevant around x ≳ 103. A simplistic estimate
assumes this to coincide with the point where temperature drops below it bind-
ing energy and ionization becomes inefficient. Defining xn ≡ Mq̃/En, one finds
x1 = 7× 102, x10 = 5× 104 and x100 = 3× 106 as naive estimates for significance
of the respective bound state levels, expecting the exponential cutoff due to the
repulsive nature of the initial octet state shortly thereafter. By comparing these
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values to the locations of the low-temperature cutoff of the respective curves one
observes that Bnℓ, in practice, impact significantly lower temperatures than just
T = En by over one order of magnitude. This is presumably caused by ther-
mal distributions of particles in the plasma and the summation of many ℓ < n,
cf. Fig. D.4.

The inclusion of bound states n ≤ 100 is found to give good convergence
for any T > 1GeV. While nm = 10 (dashed blue) is clearly still insufficient at
x > 2 × 105, relative differences between nm = 50 and nm = 100 are less than
0.2% in the entire perturbative regime. Fitting the converged power law yields
a power scaling exponent according to Eq. (6.130) of γ = 1.6, being significantly
super-critical. Again, a dashed red line ∝ 1/T serves as guidance. Compared
to the no-transitions limit, where γ = 1.1, the contribution of bound-to-bound
transitions now allow de-excitation and decay of any-ℓ bound states opposed to
just s-wave. The contribution of bound-to-bound transitions to the temperature
dependence of ⟨σv⟩eff (x) is found to be of roughly the same strength as the SE,

1/v ∼ 1/
√
T ∝ x0.5.

SE is commonly taken to be the dominant source of correction while any other
effects at low temperatures are insignificant for the obtained relic abundance, since
the annihilation rate is already negligible compared to H(x) after chemical decou-
pling. This line of argument is now seen to no longer apply to γ > 1. There
may well be an intermediate temperature range where ΓBSF < H and the number
density appears to be frozen out, yet at sufficiently low temperatures, ΓBSF must
eventually exceed the Hubble rate and the bound state constituents recouple to
a second phase of (eternal) depletion. In a model where αBSF or αb can be cho-
sen freely, this recoupling may be shifted to arbitrarily late times (ignoring for
the moment the QCD phase transition) by decreasing the coupling strengths and
thereby the recoupling temperature. Slight intermediary decoupling will be visible
in Fig. 6.16 around x = 102, however, in that model already the ground state
contribution suffices to recouple the system around x = 103.

6.6.4 Validity of the effective cross section formalism

Before turning to numerical solutions of the Boltzmann equations (6.134) and
(6.135), this section discusses in detail the different approximations entering the
various rates as well as the applicability of the quasi-steady state approximation
in the considered theory.

The validity of the multipole expansion is limited by rnω ∼ αb T/En ≪ 1, hence
one does not expect a good description for x ≲ n2/αb. However, as long as T > En,
meaning x ≲ n2/α2

b , bound state ionization dominates the reaction rate of Bnℓ, sup-
pressing the depletion efficiency factors Rnℓ → 0. Therefore, the regime where the
multipole expansion breaks down parametrically never contributes to the effective
cross section. This suppression also explains the absence of strong thermal cor-
rections to the calculated reaction rates. Such finite temperature corrections can
affect the BSF or transition rates by orders of magnitude and even melt the discrete
bound state spectrum into a continuum contribution continuously connected to the
traditional scattering states [78], such melting also only occurs when the temper-
ature exceeds the respective Bohr momentum, T ≳ pn ≫ En [192, 193]. At lower
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temperatures corrections are small and, eventually, even Boltzmann suppressed.
Finite temperature effects most strongly impact bound-to-bound transition since
the level splitting ∆En′n ∼ En/n for neighboring n′ ≈ n. To numerically inves-
tigate possible higher-order effects, the effective cross section was also computed
including finite temperature NLO corrections to bound-to-bound transition rates
for several parameter points. To a good approximation, the corrections take the
form of a simple multiplication of the vacuum transition rates by a temperature
dependent factor in addition to the phase space densities [158],

Γtrans
nℓ→n′ℓ′ → Γtrans

nℓ→n′ℓ′ ×
[
1 + 12× αem × fNLO

(
∆n′n

T

)]
, (6.149)

where 12 is the number of light fermionic degrees of freedom in the SM plasma,
neglecting the top quark, and the approximate fit function is defined as

fNLO(x) =


7.3823−8 log(x)

x2π
for x ≤ 1,

7.3823x−5/2/π for 1 ≤ x ≤ 2.626,

10x−4 else.

(6.150)

Corrections to the effective cross-section from these finite temperature effects re-
mained negligible, mostly at a sub-percent level, and thus far below the expected
accuracy of the calculation. As mentioned earlier, the effective cross section can
only increase if finite temperature effects give rise to enhanced bound-to-bound
transition rates [182] and obtained results are thus understood as a conservative
lower bound.

To demonstrate the dominance of ionization rates at low temperatures and
justify the use of the steady state approximation at the heart of the effective cross
section formalism, Fig. 6.14 shows the different reaction rates of the first ten q̃
bound states (n ≤ 4, ℓ < n). Gluon and photon ionization (green dashed and
dotted curves), bound state decay (red dashed) and bound-to-bound transitions
(blue) are drawn as functions of the inverse temperature parameter x. Vertical
gray lines indicate T = En for the respective bound state Bnℓ.

The ground state (upper left panel, (1, 0)) cannot undergo any further de-
excitations and the transition rate is Boltzmann suppressed once T ≪ E1 − E2.
Dipole selection rules limit accessible transitions to ℓ′ − ℓ = ±1 and the same
argument also applies to the first excited s-wave state (2, 0). Numerically, gluonic
ionization rates dominate over photonic ones by more than three orders of magni-
tude and, by the detailed balance relation to the inverse process, the same holds
for BSF cross-sections. Both ionization rates are suppressed at high x whereas de-
cay and de-excitation rates approach their non-vanishing in-vacuum values where
available. The enhancement of ionization and BSF due to being mediated by the
strong interaction also demands T ≪ En by roughly an order of magnitude before
the electromagnetic de-excitation rates can become dominant. Decay of bound
states is only included for s-wave states. In every bound state, there is at least
one reaction rate (either de-excitation or decay) which becomes constant at low
temperatures and therefore large compared to xH ∼ x−1, keeping the full network
of bound states in chemical equilibrium [24, 182]. Hence, it is justified to assume a
quasi-steady state approximation and employ the effective cross section formalism
in the first place, which was assumed thus far.
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Figure 6.14: Plots of temperature dependences, x = Mq̃/T , of the different
reaction rates listed in the legend are tabulated for the lowest 10 bound states
n ≤ 4. Each panel depicts horizontally 10 < x < 106 and vertically the different
rates in ranges 10−6 - 102GeV. Panels for the respective states (n, ℓ) are sorted
from top left: (1,0) to bottom right: (4,3).
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Apart from the validity of the quasi-steady approximation it still remains to
justify why the inclusion of only s-wave bound state decay suffices. Before present-
ing the argumentation, it should be emphasized that any inclusion of additional
decay rates only ever increases the depletion efficiency and therefore strengthen the
result of eternal annihilation found in section 6.5. To begin with, pair annihilation
of bound state constituents involves the ℓ-th derivative of the wave function at the
origin, ∂ℓrBnℓ(0), and is therefore systematically suppressed in higher partial waves
by (αb)

1+ℓ relative to s-wave annihilation. The s-wave decay rate into two gluons
is itself already of O(α5

3). On the other hand, dipole transition rates among bound
states Bn′ℓ′ and Bnℓ are proportional to αemα

4
b . For p-wave bound states this naive

analysis predicts the decay rate into two gluons to compare to the transition rate
np→ n′s by powers α3

3/αem. However, there is a special cancellation for the tree-
level p-wave decay rate into two gluons happening among the color-antisymmetric
Abelian and the non-Abelian parts of the wave functions [194]. Note that this only
holds only at tree level as the Landau-Yang theorem does not apply to all orders
in QCD [195]. Hence, the dominant term in p-wave decay is the NLO contribution
and therefore

Γnp→gg

Γnp→n′s
∼ α5+2+2

3

Q2
q̃αem × α4

3

∼ Q−2
q̃ α3

3 (6.151)

where the second +2 in the exponent denotes the suppression from vanishing LO
amplitudes. The second step in Eq. (6.151) assumes the widespread counting
αem ∼ α2

3 to allow for a systematic comparison of αem and α3. The p-wave decay
into two gluons is suppressed equally as much as the genuine NLO process of decay
into three gluons and both are therefore identically negligible.

Also a comment on the negligence of two-gluon transitions is in order. Since
the two-gluon operator ∝ A⃗ · A⃗ in the Lagrangian cannot mediate between con-
tinuum and bound states as it does not carry away energy, two-gluon processes
are obtained from double insertions of single gluon multipole operators. Again in
the counting αem ∼ α2

3, such matrix elements would not be suppressed relative
to single photon emissions, however some qualitative arguments can be made in
favor of neglecting two-gluon transitions. The price of emitting two gluons has
to be paid in phase space. From a simplistic comparison of electromagnetic hy-
drogen life times dominated by 1-photon and 2-photon emissions, τ2p→1s = 1.6 ns
and τ2s→1s = 0.12 s [196], one may estimate a suppression of O(α3). Secondly, by
inserting two gluon dipole operators, there must be an intermediate color-octet
state with a repulsive potential. From classical arguments one expects this overlap
to yield additional suppression. However, in light of the here developed semi-
classical picture of repulsive-to-attractive BSF and the observed enhancement of
such processes, this naive expectation should be doubted and warrants further in-
vestigation. For this thesis, two gluon operators shall be neglected solely based on
the strict limitation to single-boson emissions. Yet again, the neglected bound-to-
bound transition channels can give an enhancement over the computed effective
cross-section.
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Figure 6.15: Abundance evolutions of q̃ and χ for Mq̃ = 4 × 106GeV and
Γq̃ = 1× 10−17GeV in inverse temperature x =Mq̃/T . Upper panel : Abundances
Yq̃ (blue) and Yχ (red) are shown, including bound states n ≤ 1, 10, 100 (dot-
dashed, dashed, bold), and “SE only” (dotted) including none. All electric dipole
transitions among bound state levels are included. Lower panel : The ratio of Yχ(x)
over the “SE only” solution is shown.

6.6.5 Abundance evolution in presence of bound states

The system of Boltzmann equations for the particle abundances of χ and q̃,
Eqn. (6.134) and (6.135), decouples in the approximation of negligible inverse
decay χ+ q → q̃. This allows to first solve for Yq̃ and then integrate the remaining
term to find the abundance of Yχ as

Yχ(x1)− Yχ(x0) =

∫ x1

x0

dYχ
dx

dx ≈
∫ x1

x0

dx
−1

3H

d s

dx

Γq̃→χ
conv

s
Yq̃(x). (6.152)

Stability is ensured by iteratively solving for each decade in x separately and
using available implicit backward differentiation methods. Starting conditions are
Yq̃(x0) = Y eq

q̃ (x0), Yχ(x0) = 0 and x0 = 4. Any initial abundance of χ may
be neglected as there is a small freeze-in contribution to Yχ produced at early
times when q̃ is still in thermal equilibrium with the SM bath which is almost
instantly approached by the numerical solution. Even when starting from x = 4,
this freeze-in contribution can be reproduced but is desired to remain negligible
to contributions from late time mediator decay.

To begin the analysis of the obtained numerical solutions, Fig. 6.15 shows the
mediator and DM abundance (blue and red curves) upon including differently
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many bound state excitations n ≤ nm. At small x < 20, Yq̃ follows the exponen-
tially suppressed equilibrium abundance but falls out of equilibrium around x = 20.
When omitting all bound states (dotted curves), Yq̃ almost instantly freezes-out
with only mild noticeable depletion until x = 103, as is usual for Sommerfeld-
enhanced annihilation. The mediator abundance remains constant until the age
of the Universe reaches its life time τq̃ = 1/Γq̃ at which point q̃ rapidly decays
to χ, converting the abundance in a 1-to-1 ratio. The corresponding decay-time
inverse-temperature parameter is

xdec = (Γq̃→qχ/H(mq̃))
−1/2 . (6.153)

For the given example, Mq̃ = 4×106GeV, Γq̃ ≈ Γq̃→qχ = 10−17GeV is chosen such
that τq̃ reaches almost to the QCD phase transition around T = 1GeV. The relic
abundance when neglecting bound states is thus insensitive to Γq̃ in a wide range
of parameters. Including only the ground state (dot-dashed lines) would lead to a
similar conclusion, although with a lowered relic abundance due to the additional
depletion via ground state formation around x = 2× 103. The inclusion of higher
excitations (nm = 10, 100 in dashed and bold lines) gives rise to eternal depletion
up until xdec and, consequently, result in a direct dependence of Y 0

χ = Yχ|today on
Γq̃, in contrast to usual superWIMP production.

The abundances Yχ(x) including bound states normalized by Yχ,“SE only”(x) are
shown in the subtended panel. The relic abundance reduces by a factor of 11 (1.7)
for nm = 100 (nm = 1) due to annihilation via unstable BSF. Hence, the contribu-
tion of excited states n ≥ 2 is a factor of 7 and sizably more important than the
contribution of the ground state alone, unlike what is known from widely studied
Abelian scenarios. Since the effective cross-section for n ≤ 100 in Fig. 6.13 is well
converged, the corresponding obtained abundance is expected to remain stable un-
der inclusion of even higher bound states in the entire perturbative temperature
range.

The emerging dependence on Γq̃ caused by the eternal depletion of the t-channel
mediator is explicitly exemplified in Fig. 6.16. The given dotted and bold curves
in blue and red are analogous to Fig. 6.15 but now shown simultaneously for three
choices of Γq̃→qχ as denoted in the figure. Neglecting BSF, Yχ always reaches the
same relic abundance at late times, apparent from the three red dotted curves
overlapping at large x. Smaller decay rates lead to longer lifetimes τq̃ and thus to
lower relic abundances once BSF is accounted for. Hence, eternal depletion from
non-Abelian BSF also changes the picture of usual superWIMP production, where
Y 0
χ is understood to be produced from a frozen-out abundance of q̃. The light-blue

dashed curve extends the result for absolutely stable q̃ into the non-perturbative
regime of QCD without respecting any further corrections. It serves to emphasize
the effect of finite lifetimes in all three models. The freeze-in contribution to χ
gives rise to the plateau of Yχ at early times but remains small compared to the
superWIMP production in all shown parameter choices.

For larger Γq̃→qχ, first the initial freeze-in contribution becomes significant to
the relic abundance and, eventually, the decay takes place when q̃ is (almost) in
equilibrium, changing the picture of the production mechanism and more processes
need to be considered.



6.6 Phenomenological impact in a realistic Dark Matter model 137

Figure 6.16: Abundance evolutions of q̃ and χ for Mq̃ = 4 × 106GeV in inverse
temperature x = Mq̃/T . Dotted curves neglect bound state formation while bold
curves include all n ≤ 100 and all electric dipole transitions among them. Abun-
dances Yq̃ (blue) and Yχ (red) for three values of the t-channel mediator decay
rate, Γq̃ = 2.5× 10−14, 5 × 10−16, 1 × 10−17GeV are shown. A light-blue dashed
curve shows Γq̃ = 0GeV.

6.6.6 Dark Matter relic density constraints

So far only the DM relic abundance Y 0
χ has been calculated and without any

need of mχ. Hence, mχ may be chosen freely so long as it remains negligible
compared toMq̃ to leave decay kinematics unaffected. The parameter space in mχ

and Γq̃→qχ is shown in Fig. 6.17 for the already above investigated mediator mass
Mq̃ = 4×106GeV. The top horizontal axis gives xdec as computed from Eq. (6.153).
The four different curves, corresponding to the same values of nm = 0, 1, 10, 100 as
in Fig. 6.15, show the obtained DM relic density Y 0

χ (right vertical axis) for every
given value of Γq̃→qχ (bottom horizontal axis). Y 0

χ linearly relates to a specific
value of mχ upon imposing the condition that χ should saturate the DM relic
density bound, cf. Eq. (1.1),

ΩDMh
2 ≡ s0h

2

ρc
Y 0
χ mχ = 2.744× 108

Y 0
χ mχ

GeV
= 0.120. (6.154)

The used present-day values are the Hubble constant h = 0.678, the entropy
density s0 = 2.8912 × 109m−3 and the critical density ρc = 10.537h2GeVm−3

[197]. Larger mχ at each value of Y 0
χ overclose the Universe and are incompatible

with experimental observations for cold DM. Furthermore, DM produced by decay
from a much heavier mediator is subject to constraints from small scale structure
formation as its momentum distribution after is peaked at much higher energies
than typical cold DM. For too energetic DM, this eventually suppresses structure
formation as the increased free-streaming length of χ washes out structures on
smaller scales which are experimentally probed by measurements of the Lyman-α
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Figure 6.17: Combinations of Dark Matter mass mχ and t-channel mediator de-
cay rate Γq̃ for which the relic density bound is saturated for a mediator mass
Mq̃ = 4× 106GeV. Different curves include bound states n ≤ 0, 1, 10, 100 (dotted,
dot-dashed, dashed, bold) and all ℓ. All electric dipole transitions among bound
state levels are included. Exclusion-regions at 95% confidence level by Lyman-
α forest observations [52] are indicated by red shading. Gray bands bracket
uncertainties due to non-perturbative effects near the QCD confinement scale,
T < 1GeV. The upper horizontal and right-hand vertical axes are obtained using
Eqn. (6.153) and (6.154).

forest spectral lines. The lower bound on mχ is then given by [52]

mχ

keV
> 3.8× xdec ×

(
106.75

g∗S(xdec)

)1/3

(6.155)

where g∗S is the number of relativistic degrees of freedom in the thermal bath
which contribute to the entropy density [181].

The Lyman-α -exclusion bounds are shown as a red shaded region in Fig. 6.17.
Each black curve fans out into a gray band at low decay rates where the mediator
evolution becomes subject to non-perturbative QCD effects from T < 1GeV. The
upper bound is obtained by assuming all q̃ vanish instantly by efficient annihilation
once T = 1GeV is reached. The lower bound instead assumed that the entire
mediator abundance is converted into χ, Yχ(∞) = Yχ(1GeV) + Yq̃(1GeV).

As discussed above, the Sommerfeld enhanced direct annihilation result barring
any bound state contributions becomes independent of Γq̃→qχ once the xdec ≫ xcd.
Complete chemical decoupling is typically only a good approximation in presence
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of SE at x > 103. Decay rates below 2 × 10−15GeV would thus be excluded if
no bound state effects were present. However, experimental bounds are entirely
evaded when effects of excited bound states are properly included. The model
remains in agreement with current Lyman-α forest measurements by virtue of the
additional t-channel mediator depletion being compensated for by larger mχ in
order to satisfy the relic density constraint.

Lyman-α bounds become more severe at largerMq̃ and, in particular, set upper
bounds on xdec more stringent than the theoretical limitations due to the QCD
phase transition once Mq̃ > 4×106GeV. In the representation of Fig. 6.17, this
means that also the solid black line extends into the excluded region before fan-
ning out into its uncertain, gray area. Lower lifetimes of the t-channel mediator
are needed to evade such strong constraints but in turn give rise to lower mχ.
The entire superWIMP production regime of the considered sbottom-like model
is excluded for Mχ > 4× 108GeV. On the other hand, effects of BSF become less
prominent at lower Mq̃ since the chemical decoupling takes place already closer
to the QCD phase transition. There is thus less time for the eternal depletion to
affect on the t-channel mediator abundance before the temperature cools down
to the confinement scale. In Fig. 6.17, this implies a shrinking of the parameter
range between the gray uncertainty bands to the left and the steep cutoff to the
right, where the decay takes place around or before xcd. From the top horizontal
axis, one can estimate the lowest accessible mass for the superWIMP production
mechanism where the t-channel mediator chemical decoupling still occurs in the
unconfined phase to be Mq̃/ΛQCD = 103 - 104.





141

7 Conclusion

Effective field theories were shown to be a useful and often times needed tool in
the realm of WIMP DM or extended dark sectors. With the interest of theoretical
physics shifting to increasingly larger Dark Matter masses of the TeV scale and
beyond, a plethora of non-perturbative effects arise from the large scale separa-
tion to the Standard Model. The paradigm of GeV-scale WIMPs, where interac-
tions are readily estimated at tree level, becomes insufficient and a much richer
landscape of physical phenomena opens up. The capabilities of EFT to rephrase
problems in appropriate degrees of freedom and resum to all orders emerging non-
perturbative interactions enable simple and physically intuitive descriptions even
of such complex systems. Although, for the most parts, each of the chapters 3 - 6
focused predominantly on a single non-perturbative effect in order to highlight
their individual relevance, all may as well be treated simultaneously within a sin-
gle theoretical framework.

7.1 Summary

Four non-perturbative effects were discussed (each associated with a systematic
power counting), namely:

1. s-channel resonances (small mass splittings relative to the mass),

2. long-range potentials (small or similar velocities relative to a small coupling),

3. jet formation (small final state masses relative to their energy) and

4. excited bound state formation (small or similar momenta relative to a Bohr
momentum).

Particular attention was spent on the last point. All considered processes involve
non-relativistic BSM initial state particles, making Sommerfeld enhancement from
long-range potentials a recurring theme.

At first, s-channel resonance enhancements were proven to simply factorize,
at leading order, from non-relativistic initial state physics, without sourcing any
additional soft gauge boson interactions in the process. Consequently, Sommerfeld
and resonance enhancements could be studied as parallel effects, unless unitarity
becomes of concern. Depending on the exact value of the mass splitting, resonance
enhancement can significantly alter late time indirect detection signals or the ther-
mal production history of DM (or both), and were demonstrated to change the
obtained thermal mass in a Higgsino inspired toy model setup by a factor of a few.

An updated analysis of Sommerfeld ehanced mixed neutralino DM models was
presented making use of derived state-of-the-art SM input values and improving
upon previous results by including one-loop running gauge and Yukawa couplings
with automated treatment of a light or heavy BSM Higgs sector. Reproducing
all known features in the a two-dimensional plane of wino-Higgsino mixed models,
especially the location of the first Sommerfeld resonance, thermal mass predictions
are affected only at the percent level. Notable effects were found in late-time
annihilation cross-sections of models hosting large primary tt branching fractions.
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Another improvement to the same numerical code used to compute SE in arbi-
trarily mixed neutralino models was the addition of accurate semi-inclusive cross
sections for annihilation processes into highly energetic photons near the kinematic
endpoint of the spectrum. This was possible in consequence of the completion
of a framework which includes LO Sommerfeld and NLL Sudakov resummation
while reliably ensuring to only neglect systematically power suppressed terms in
PNRDM. As the original EFT construction assumes fully degenerate electro-
weakinos, virtual contributions of heavy states needed to be decoupled by use of a
manually implemented matching function. A set of benchmark points distributed
throughout the most relevant areas in parameter space found effects from Sudakov
resummation to yield a reduction of the cross section by about one third in most
models. This pushes several mixed bino-wino or fully-mixed models out of the
projected reach of the upcoming Cherenkov Telescope Array.

At the core of this thesis stands an in-depths analysis of radiative bound state
formation effects in Coulombic potentials under general multipole interactions
where initial and final state potential strengths are separately kept general. An-
alytic results of radial overlap integrals keeping multipole order and all quantum
numbers general were found in a compact form readily evaluated to closed-form
expressions for specific processes. An algorithmic approach was outlined to arrive
at simplified closed-form expressions allowing both, convenient analytic and effi-
cient numerical treatments. This recipe finds the entirety of leading order BSF for
Coulombic potentials in terms of only a single hypergeometric function, indepen-
dent of the multipole order, in combination with long-known factors and simple
rational polynomials. Explicit results for monopole, dipole and quadrupole were
presented and used in subsequent numeric studies. Significant cancellations occur
when initial and final state potentials are identical. More general results, thus, do
not align with naive intuition from QED but lend themselves to a semi-classical
interpretation. Whenever the initial state is repulsive or even just less attractive
than the final state, BSF is enhanced over the case of identical couplings in a
limited velocity range specific to each bound state. The enhancement increases for
capture into higher excitations. Therefore, BSF of such non-identical couplings can
systematically violate partial wave unitarity at the perturbative leading order in
the EFT power counting for arbitrarily small couplings, provided sufficiently high
excitations are considered. Carefully avoiding regions in parameter space where
unitarity is violated, the phenomenological impact of highly excited bound states
on DM thermal production was studied in toy models involving SU(Nc) gauge
symmetries. Annihilation via bound state decay remains efficient at all times and
the bound state constituents never undergo complete chemical decoupling, instead
seeing an “eternal” depletion. The depletion may, however, be interrupted by other
effects such as finite constituent lifetimes, unitarization or, eventually, phase tran-
sitions in the gauge theory close to the Landau pole. An exemplary application to
a colored and charged t-channel mediator DM model in a superWIMP-production
scenario showed that in addition to BSF, transitions between bound-state levels
significantly further enhance the depletion and eternal depletion sources a depe-
nence of the relic density on the mediator lifetime. The effects from excited bound
states were shown to help evade experimental constraints from Lyman-α observa-
tions and increase DM mass predictions by up to an order of magnitude.
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7.2 Outlook

One clear-cut extension of the presented work is to exceed the set of manually
constructed benchmarks for the analysis of indirect detection constraints from
gamma-rays line searches. All necessary tool-chains to perform a detailed scan of
parameter spaces of interest exist and first attempts at more systematic investi-
gations have already been started. Such analyses become especially interesting in
relation to future data releases from the Cherenkov Telescope Array which should
provide world leading sensitivity to cosmic rays originating from the galactic cen-
ter.

A full-force investigation might still await yet further improvements to the nu-
merical Sommerfeld calculation since, with the decoupling theorem of soft modes
from s-channel resonance enhancement and SE at hand, also the treatment of res-
onant models was understood. Some work may be required to include resonances
on a technical level within the limitations of the existing numerical code basis.
Such a modification will open up one of the few remaining MSSM parameter space
regions currently inaccessible to thermal neutralino DM mass predictions.

Several open theoretical questions regarding BSF remain, first and foremost,
to understand the cause of the observed perturbative unitarity violation. Typi-
cally, such a breakdown of an EFT power counting is indicative of a novel scale
emerging in the considered process which had not been respected in the construc-
tion of the EFT. So far, no candidate for such a scale has been identified and in
the common picture of PNREFT no such hypothesized energy scale exists. Alter-
natively, the unique role of identical Coulomb potentials, where systematic UVi
was shown to be absent, possibly hints towards a different explanation in terms
of overlapping mathematically unrelated wave functions. Apart from this concep-
tual question, demonstrating unitarization of BSF in all its technical glory from
a realistic PNREFT Lagrangian poses a daunting unresolved task, even though
it was recently shown on a conceptual level. Secondly, the converged smooth,
power-law-like behavior of inclusive BSF cross-sections and effective cross sections
remains mathematically mysterious. An analytic understanding of this power-law
may prove useful for understanding unitarity violating parameter spaces and aid
phenomenological estimates.

Since the topic of Sommerfeld enhancement, especially Sommerfeld resonances,
is intimately linked to bound states, both must be considered simultaneously dur-
ing thermal production to reach accurate predictions of relic densities. Modern day
studies of minimal WIMP models for quintuplet and higher representations only
include few excited states, naively expecting higher excitations to be suppressed
while bound states are currently completely disregarded in the computation of
neutralino relic densities. Possible improvements are thus apparent.
This corroborates how all here separately discussed non-perturbative effects can
coexist in a single theory. Altogether, they give rise to a wide field of emergent
phenomena, which can aid either side in the ever-prominent fight of falsifiability
and viability of theoretical models once one steps into the TeV-realm in the hunt
for clear hints of Dark Matter.
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A Notation Index

This appendix provides an index of the most important notations and conventions
used throughout this thesis.
Shared between all chapters is, most importantly, the notion of

v : Relative velocity of non-relativistic two-particle states, v = |⃗v1 − v⃗2|.

All chapters treat processes in the centre-of-mass frame. Heavy, non-relativistic
particles with masses of the hard scale in (P)NREFT use generally capital M ,
subscripted accordingly and Mχ denotes heavy DM masses. Soft-scale masses use
the letter m instead. Despite the omnipresent theme of two-constituent states,
the total mass of the system is never abbreviated by a designated symbol while
reduced masses (µ) are only rarely used and clearly denoted in these cases.

A.1 Resonant particle decay

Most notation is only briefly required for the technical proof of soft decoupling
of the unstable resonance field. The resonance field R is later identified with A.
Physically relevant quantities are:

MR : Mass of the s-channel resonant field.

ΓR : Total decay width of the s-channel resonant field. The pole mass
value is M2

R − iMRΓR.

δMR : Resonance detuning, δMR =MR −M1 −M2.

Γ̂R : Partial decay width of R for an unspecified channel.

A.2 Sommerfeld-effect for neutralino Dark Matter

SM input parameters may be read from Tab. 1. Core definitions are:

µ̂ : Dimensional regularization renormalization scale.

µ : Higgsino mass parameter.

M1,2,H̃ : Masses of the bino (1), wino (2) or Higgsino (H̃).

χ±
i : Chargino (anti-) particles, i = 1, 2.

χ0
i : Neutralino particles, i = 1, 2, 3, 4.

MLSP : The LSP mass which is identical with the DM mass Mχ =Mχ0
1
.

δMx : Mass splitting relative to LSP, δMx ≡ Mx −MLSP, typically of the
(ultra-)soft scale.
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Fields in the various Higgs bases and Higgs parameters are:

H1,2 : SUSY basis (MSSM Higgs superfield scalar components).

h,H : Mass eigenbasis in the EW symmetric phase.

h0, H0 : Neutral scalars in the EW broken mass eigenbasis.

A0 : Pseudoscalar in the EW broken mass eigenbasis. It is the lightest
“BSM” Higgs boson.

H± : Charged scalars in the EW broken mass eigenbasis.

mh,H,A0 : Masses of the respective bosons, denoted by small letters indepen-
dent of their actual scale.

αH : Mixing angle in the EW unbroken phase.

v1,2 : VEVs of the neutral components H0
1 = (H1)

1 and H0
2 = (H2)

2,
respectively.

vsm : SM Higgs VEV value, 246.22GeV.

β : Ratio of vacuum expectation values, tβ = tan(β) = v2/v1.

A.3 Sudakov-resummation in neutralino annihilation

The majority of used conventions is introduced in chapter 4 already. Here, most
importantly, ΓIJ denotes the (not further specified) short distance annihilation
matrix into primary photons in semi-inclusive processes for “external” two-particle
states I and J . Superscripts Tree, LL and NLL indicate which orders in the
logarithmic expansion have been resummed. More intricate differences are:

ΓIJ : Unspecified annihilation matrix. Either formal or identical to ΓNLL
IJ .

ΓNLL,EFT
IJ : NLL Sudakov resummed annihilation matrix obtained in PNRDM.

ΓTree,exact
IJ : LO perturbative annihilation matrix in the relativistic theory.

GIJ : improvement factor correcting LO mass dependences in ΓEFT
IJ .

ΓNLL,imp
IJ : NLL resummed, leading order corrected annihilation matrix.

ΓNLL
IJ : NLL Sudakov resummed, leading order corrected annihilation ma-

trix including smooth decoupling of heavy internal states.
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A.4 Bound state formation

The considered processes see an initial scattering state Spℓ′ transition to a final
bound state Bnℓ (both already partial wave decomposed) under emission of a BSF
mediator field ϕ, which is largely assumed to be massless. Bound state formation
in general Coulombic potentials V = −αeff/r by radiative multipole emission of
ultrasoft modes are characterized by the following model parameters:

Mχ : Mass of initial and final state constituents (differences are negligible).
For section 6.6, q̃ forms the bounds state, hence Mq̃ is used.

a : The multipole order of the specified transition.

geffa : Coupling of the a-th multipole.

αs : Effective initial (scattering) state potential strength.

αb : Effective final (bound) state potential strength.

For ultrasoft emitted BSF mediators, the total mass of the initial scattering and
final bound two-constituent states must agree up to ultrasoft differences and mass
splittings are thus negligible to leading order. Nevertheless, corrections would only
arise as modifications to p and pn and therefore only multiplicatively modify ζn
without sourcing any new terms in the calculation.
A particular BSF transition is further defined by various process variables:

p : Initial state relative momentum, p⃗ = p p̂.

ℓ′ : Initial (scattering) state angular momentum quantum number.

n : Final (bound) state major quantum number.

ℓ : Final (bound) state angular momentum quantum number.
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From the above model parameters and input variables, the following convenient
definitions are derived (which values are to be considered as derived is an arbitrary,
intuitive choice):

αBSF : αBSF = geffa
2
/4π.

En : Bound state energy absolute value, En =Mχα
2
b/4n

2.

pn : Bound state Bohr momentum pn ≡Mχαb/2n.

ζn : Ratio of momenta, ζn ≡ pn/p = αb/vn.

κ : Ratio of effective potential strengths, κ ≡ αs/αb.

ζb,s : Coupling strength-velocity ratio, ζb,s ≡ αb,s / v, also ζs = nκζn.

∆ : Change in angular momentum, ∆ ≡ ℓ′ − ℓ.

K : Initial state kinetic energy, K ≡ p2/Mχ =Mχv
2/4 = Enζ

−2
n .

b : Impact parameter, b = b(v) = (
√
ℓ′(ℓ′ + 1) + ζ2s − ζs)/p.

rn : Bound state Bohr radius, rn = n/pn.

ω : BSF mediator energy, ω = K + En = (1 + ζ2n)Mχv
2/4.

p⃗ω : Emitted BSF mediator momentum.

Further abbreviations are

n̄≡ n− ℓ− 1,

n̄s≡ iζs − ℓ′ − 1,

F+(x)≡ 2F1

(
−n̄, x+ ℓ+ iζs; 2ℓ+ 2; −4iζn

(i−ζn)2

)
,

γn≡ ArcCot(ζn),

γa≡ arg(Ra),

γF ≡ arg(F+(0)),

Since γn,a is never written for concrete values of n and a, there is no ambiguity here.
For the treatment of thermally averaged quantities in freeze-out computations
in this chapter’s final subsection, a fine separation between thermally averaged
rates, e.g. Γdec

q̃ , and vacuum process rates, e.g. Γq̃→χq, is used. Corresponding
definitions of the physical process type (decay, ionization or transition) is denoted
as a superscript on thermally averaged rates while the a superscript denoting a
specific reaction such as q̃ → χq is given to vacuum processes.
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B Neutralino Dark Matter benchmarks

model µ M1 M2 tan β mA0 Msf

pure models
∗B 7 2.145 8 15 2.9 12
H -1.112 7.5 7 15 2.9 12
W 9 8 2.85 15 2.9 13

2-component

BH -1.069 1.116 10 2.24 2.9 29
BW 2.91 2.145 2.148 15 2.9 12
HW -2.977 30 2.839 3 2.9 20

fully mixed

BHW-mix -2.041 1.92 1.929 2.5 1.96 20
BHW-mix2 -2.094 1.97 1.978 2.5 2.045 20
BHW-mass -1.701 1.625 1.642 2.2 1.725 25
BHW-nh2 -1.94 1.802 1.819 3.6 0.67 25

additional
∗BW-coan 7 2.145 2.148 15 2.9 12

∗H+ 1.112 7.5 7 15 2.9 12
H2 -1.24 8 1.419 2.4 1.25 29

BW-2520 -3.3 2.525 2.52 20 2.5 7.25
BW-e -2.27 1.829 1.836 15 2.446 5.45

BW-e-nh2 3.6 2.055 2.058 15 0.55 10
HW-nh2 -3.065 20 2.92 3 0.78 25

BH-undet -1.363 1.3 1.33 2.19 1.305 25
BW-nfw 3.38 2.075 2.078 15 2.9 12
BW-ce -3.2 2.287 2.288 13 2.8 13.8

BW-2670 -3.1 2.677 2.67 20 2.7 12
BW-nh2 -3.15 2.4417 2.44 15 0.62 9

BW-ce-nh2 3.42 2.165 2.1665 15 0.57 9.5

Table 4: Benchmark MSSM inputs used for the analyses in chapters 4 and 5.
Masses are given in TeV. An asterisk (∗) marks models which are not constructed
to produce the observed DM relic density. The split into 4 categories serves ease
of reference. Further SM inputs are taken from Tab. 1.

Originally [2], all benchmarks without an asterisk marking (i.e. all except for B,
BW-coan and H+) were constructed to yield experimentally indistinguishable values
ΩDMh

2 = 0.1186 ± 0.0005. For the present thesis, an updated numerical analysis
was performed using improved SM inputs, cf. Tab. 1, and one-loop running Yukawa
couplings. The listed benchmarks are therefore spread within a 3% band around
ΩDMh

2 = 0.128 and hence slightly overclose the Universe.



152 C SUPPLEMENTARY MATERIAL TO BOUND STATE FORMATION

C Supplementary material to bound state for-

mation

This appendix collects various smaller addenda to chapter 6. Mathematical identi-
ties of hypergeometric functions are found in section C.1 and a summarized outline
of the algorithmic simplification procedure to arrive at the compact expressions
for IR of Eqn. (6.50-6.55) is given in section C.2.

The well known discrete bound state and continuous scattering state solutions
to the Schrödinger problem in presence of a Coulomb potential Vb,s(r) = −αb,s/r
are given in the main text, Eqn. (6.21-6.24). Their dependence on (confluent)
hypergeometric functions and the corresponding overlap integral demand several
useful simplification transformation of hypergeometric functions.

The radial wave functions lend themselves to a mathematically more efficient
notation, identifying the respective first arguments of Bn,ℓ(r) and Spℓ′(r) as −n̄
and −n̄s. This notation suggests the close relation between radiative processes
into positive-energy final states (i.e. bremsstrahlung) and negative-energy final
states (i.e. BSF). However this comes at the cost of needing to perform a careful
case separation in order to use correct contours in overlap elements [141]. Note
also that the integral in (6.33) cannot be used for the case of bremsstrahlung since
the integration regime demands at least one confluent hypergeometric function to
have a real-valued argument t ∈ R.

C.1 Hypergeometric Functions

The first part of this appendix, C.1.1, collects some of the many known math-
ematical identities for hypergeometric functions which make up the basis of the
more directly applicable relations of F+(X) provided in section C.1.2, therein also
already using the notation of chapter 6.

C.1.1 Properties of confluent and Gauss hypergeometric functions

Some rather well-known general properties of the general hypergeometric functions

pFq(a1, ..., ap; b1, ..., bq; z) are their symmetry between interchange among ai and
interchange among bi. Moreover, if any single one ai becomes zero, one finds

pFq(0, ...) = 1. For this thesis, confluent and Gauss-hypergeometric functions, 1F1

and 2F1, suffice. For the sake of rudimentary completeness, formulas stated in the
main text are repeated here.

By iteration of known identities between confluent hypergeometric functions
with neighboring first parameters, on can obtain the distant-neighbor relation for
∆ ∈ Z:

1F1(a; c+ 2|∆|;x) =
Γ(c+ 2|∆|)
x2|∆|Γ(c)

2|∆|∑
j=0

(−1)j
(
2|∆|
j

)
1F1(a− j; c;x). (C.1)

The notation ∆ is already suggestive of how it is employed.
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The relevant integral of two confluent hypergeometric functions with additional
monomial and exponential terms, see also Eq. (6.33) [142], is∫ ∞

0

dt e−st t(c−1)
1F1(a; c; t) 1F1(α; c;λt) =

=Γ(c)(s− 1)−a(s− λ)−αsa+α−c 2F1

(
a, α; c;

λ

(s− 1)(s− λ)

)
, (C.2)

With a = 0, the integral solution reduces to∫ ∞

0

dt e−st t(c−1)
1F1(α; c;λt) = Γ(c)(s− λ)−αsα−c. (C.3)

For Gauss hypergeometric functions, some simpler relations between neighbor-
ing parameters are

2F1(a, b; c; z) =
(c− 1)

(a− 1)z
[2F1(a− 1, b; c− 1; z))− 2F1(a− 1, b− 1; c− 1; z)] ,

(C.4)

2F1(a, b; c; z) =
(b− c− 1)(bz − cz + c)

c(c+ 1)(z − 1)
2F1(a, b; c+ 2; z)

− b(z(a+ b− 1)− 2cz + c)

c(c+ 1)(z − 1)
2F1(a, b+ 1; c+ 2; z), (C.5)

2F1(a, b; c; z) =
(c− 2)(c− 1)(z(a+ b+ 3− 2c) + c− 2)

z2(a− c+ 1)(c− b− 2)(c− b− 1)
2F1(a− 1, b; c− 2; z)

+
(c− 2)(c− 1)(z − 1)(z(a+ 1− c) + c− 2)

z2(a− c+ 1)(c− b− 2)(c− b− 1)
2F1(a, b; c− 2; z),

(C.6)

2F1(a, b; c; z) =
(c− 1− a− b)

c− a− 1
2F1(a+ 1, b; c; z)

− b(z − 1)

c− a− 1
2F1(a+ 1, b+ 1; c; z). (C.7)

Involving changes in the argument, z/∈[1,∞[, it obeys

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; 1− 1

1− z

)
. (C.8)

The derivative with respect to the argument is known to be

∂z 2F1(a, b; c; z) =
a b

c
2F1(a+ 1, b+ 1; c+ 1; z)

=
b

z
[2F1(a, b+ 1; c; z)− 2F1(a, b; c; z)] . (C.9)
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C.1.2 Properties of the hypergeometric function F+(x)

For a compact notation of the hypergeometric functions, the abbreviations n̄ and
n̄s are introduced in Eqn. (6.34) and (6.35), cf. App. A.4. These definitions also see
usage in section 6.2, yet in most other places they are instead expressed through
n and ζs (as well as ℓ and ∆ or ℓ′) for a better physical intuition. As a convenient
function in radial overlap integrals, one finds

F+(X) = 2F1

(
−n̄, X + ℓ+ iζs; 2ℓ+ 2;

−4iζn
(i− ζn)2

)
, (C.10)

The function has two main additional symmetries compared to a fully general
hypergeometric function 2F1(a, b; c; z) for independent parameters or arguments,
firstly b∗ = c− b− 2 + 2X and secondly (1− z)∗ = 1/(1− z). Three neighboring
values of X are related by hypergeometric identities, hence any F+(X) can always
be expressed through X = 0, 2.
To increase X (if X < 0):

F+(X) =
(ζn + i)2(1 + ℓ+X + iζs)

(ζn − i)2(1 + ℓ−X − iζs)
F+(X + 2)

+ 2
(1− ζ2n) (X + iζs)− 2inζn
(ζn − i)2(1 + ℓ−X − iζs)

F+(X + 1), (C.11)

To decrease X (if X > 2):

F+(X) =
(ζn − i)2(iζs − ℓ+X − 3)

(ζn + i)2(1− ℓ−X − iζs)
F+(X − 2)

+ 2
(1− ζ2n) (X − 2 + iζs)− 2inζn
(ζn + i)2(1− ℓ−X − iζs)

F+(X − 1). (C.12)

Inserting X = 0 in (C.11) yields, explicitly for F+(1),

F+(1) =
1 + ζ2n
2iζs

(1 + ℓ+ iζs) e
2iγnF+(2)− (1 + ℓ− iζs) e

−2iγnF+(0)

ζ2n −
(
1− 2

κ

) , (C.13)

Lastly, F+(X) obeys a symmetry around X = 1 which relates X = 0, 2 as complex
conjugates with an additional factor phase

F+(X) = e4iγn(n−ℓ−1)F ∗
+(2−X). (C.14)

C.2 Algorithmic radial overlap evaluation

Before defining the algorithm to obtain simple forms of the radial overlap integral,
it should be noted that there exist also distant-neighbor relations for parameters
of Gauss hypergeometric functions with coefficients in terms of recursive objects.
Their insertion into the sum and derivative of cf. Eqn. (6.41) and (6.42) does thus
still not result in general closed-form expressions. On the contrary, after evaluation
of the derivatives, solutions are then found to be intractable high order recursive
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functions which permit any reasonable physical interpretation and promises no
gains beyond automating the procedure below.

The following steps allow to systematically extract the squared radial overlap
integral in the form of Eq. (6.50) by virtue of simplifying the more minimal integral
Ja,∆p,pn appearing in Eq. (6.45). It is advised to gather up all identical 2F1 functions
in between steps.

1. Starting from the general definition of Ja,∆p,pn , Eq. (6.36), the second param-
eters of the confluent hypergeometric functions must be made to coincide
by applying (C.1) on the respectively higher one, i.e. the scattering state if
∆ > 0 and the bound state if ∆ < 0.

2. Introduce an ancillary variable s in the exponential function, according to
Eq. (6.40).

3. With the integral (C.2) (c = 2ℓm + 2) and some simplifications, the expres-

sions for J
a,±|∆|
p,pn in Eqn. (6.41) and (6.41) are obtained.

4. Insert, latest now, the desired transition a and ∆.

5. Perform the derivatives in s and set s = 0, with further basic simplifica-
tions applied as needed. According to (C.9), this can only affect the second
argument.

6. Explicitly write out the finite summation in j.

7. If ∆ < 0, apply Eq. (C.5) repeatedly, to shift the third parameter to 2ℓ+ 2.

8. If ∆ < 0, apply Eq. (C.7) repeatedly until all hypergeometric functions have
as their first parameter exactly −n̄. All hypergeometric functions are now
of the form F+(X).

9. Iterate F+(X) by Eqn. (C.11) and (C.12) such that only X = 0, 1, 2 are
present in the expression.

10. Eliminate F+(1) using Eq. (C.13)

11. Lastly, identify F+(2) in terms of F+(0)
∗ by (C.14) for the case X = 2.

12. Upon taking the absolute square in (6.45), the sum of F+(0) and F+(0)
∗

can be decomposed into its overall amplitude square, the phase factor and
polynomial terms to be identified with R∆ in (6.50).

The use of computer algebra systems is recommended as intermediate expres-
sions become lengthy in this outlined procedure, especially for ∆ < 0 due to the
additional shifts between the first two parameters of the hypergeometric function
in step 3. Nevertheless, the final expressions for ∆ = ±a are very similar in many
aspects, cf. Eqn. (6.52-6.55). The fact that R±a differ in their power in n in the
large-n limit suggests that there should be some form of Ia,∆R , possibly in terms of a
different hypergeometric function than F+(0), which balances both cases. However
the large-n case is primarily of analytic interest and, moreover, the cases ∆ = ±a
are qualitatively very similar at maximal ℓ≫ 1. Thus, the here derived expression
(6.50) is satisfactory and also numerically efficiently evaluated.
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Figure D.1: Various bound state formation cross-sections, normalized by
geffa

2
α2a−1
b /M2

χ, plotted over ζn. Different multipoles a = 1, 2 (green, orange) are
shown for κ = 1, n = 20 and ℓ = 0, 19 (solid, dashed).

D Analyses of Coulombic bound state formation

The first section of this appendix includes a thorough functional analysis of the
BSF cross-section in all independent parameters and should allow readers unfamil-
iar in the subject to understand in detail the functional behavior of (σv)ap ℓ′→nℓ from
Eq. (6.28). Since the phase space factor and angular integral are straightforward,
especially in their velocity dependence as one expects from an unpolarized spher-
ically symmetric process, the discussion is primarily defined by IR, Eq. (6.50).
Section D.2 illustrates additionally inclusive bound state formation processes in
dark U(1) and dark SU(3) models.

D.1 Parametric dependence of exclusive cross sections

BSF cross-sections depend in a complicated way on the parameters κ (the initial
to final state potential ratio), n and ℓ (the bound state quantum numbers) and
the initial state scattering angular momentum ℓ′. Up to quadrupole interactions,
a = |ℓ′ − ℓ| is ensured by angular momentum selection rules. The focus of this
thesis resides on the regime κ ≤ 1, especially so on κ < 0 which is of interest for
BSF in non-Abelian gauge theories. Qualitatively, there is little difference between
∆ = ±a once ℓ ≫ a and, for simplicity, this appendix shall consider only ∆ ≥ 0
as it allows capture into ℓ = 0. Cross sections are plotted in ζn = αb/nv and all
explicit dependence on Mχ, αb and geffa is absorbed in the normalization of the

vertical axis by plotting (σv)apℓ′→nℓ ×M2
χ/g

eff
a

2
α2a−1
b . This allows to conveniently

depict different multipoles in a single plot which otherwise are far separated in
their absolute values.

To begin the discussion with a simple case, consider κ = 1. Fig. D.1 shows the
BSF cross-sections for n = 20 and κ = 1 for the first three multipoles. Dashed
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curves give the maximal angular momentum ℓ = n− 1 = 19 while bold ones give
the s-wave ℓ = 0. The Abelian dipole setup a = κ = 1 has been widely studied
in non-relativistic quantum electrodynamics will be discussed in greater detail in
section D.2. Note that the monopole term is known to vanish due to orthonormal-
ity of the wave functions. The orthogonality is explicitly unique to αb = αs. This
observation suggests an interesting hypothesis that by computing overlap between
orthogonal full wave functions for general κ, that is when multipole interactions
are resummed to to all orders in the two-constituent Green function, any monopole
interactions of properly projected eigenstates must vanish and, correspondingly,
general κ may yield a behavior more similar to κ = 1 than what is found here.
While it must be that a complete all-order treatment of a hermitian Hamilto-
nian maintains unitarity, this line of argument sheds a new interpretation on the
observations of UVi in this thesis, namely that the overlap of wave functions of
technically unrelated (free) Hamiltonians is simply by construction not expected
to maintain unitarity. In this reasoning, there is no need for a new physical scale
breaking the perturbative expansions.

Once the velocity drops far below all other scales, ζn ≫ 1, all cross sections are
essentially featureless and yield the well known Sommerfeld enhancement ∼ 1/v.
According to (6.50), the cross section must vanish whenever

2γn(n− ℓ)− γa − γF
π

∈ Z, (D.1)

apart from the lifted pole in the denominator ζ2n = 1 − 2/κ. As γn changes with
ζn, see Eq. (6.47), large n − ℓ allows for many solution of this condition unless
γa,F balance it. Each solution gives rise to a sign flip in the radial overlap integral
which results in a root of the squared matrix element and the cross section yields
(strongly) oscillatory behavior. Between two consecutive roots, IR necessarily
forms a local maximum. Since the oscillations become very rapid, their numerical
resolution is tedious yet not insightful.

In light of Fig. D.1, the rather vague statement of the Abelian case being
“mostly featureless” stated in section 6.2.7 can be discussed concretely. Even
the Abelian-case cross section develops a minor peak and (at sufficiently high
n) also one additional root for quadrupole interactions. The additional root is
not yet present at very low n ∼ O(1) [138]. Mathematically, this is understood
from R±2|κ=1 maintaining a non-trivial complex part, which is not yet the case in
R0,±1. No further roots were observed to develop up to n = 1300. Such additional
roots also occur in general κ, yet they never grow in number as for the rapid
oscillatory regime found in non-Abelian cases at large n≫ ℓ from the phase term
(n−ℓ)γn. With the semi-classical analogies of section 6.3 these roots are physically
understood as a consequence of a non-negligible change in the centrifugal potential
ℓ′ ̸= ℓ. For ∆ = ℓ′−ℓ > 0, the classical impact distance gets shifted outwards, thus
eventually enabling to probe the oscillatory part of the bound state wave function
even with κ = 1.

The mentioned oscillatory behavior is for example visible in the repulsive case
κ = −1 depicted for s-wave capture in Fig. D.2. Unlike the Abelian case, the
monopole interaction is now non-vanishing as there is no orthonormality condi-
tion. Note that the depicted parameter ranges differ from Fig. D.1 but agree with
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Figure D.2: Various bound state formation cross-sections, normalized by
geffa

2
α2a−1
b /M2

χ, plotted over ζn. Different multipoles a = 0, 1, 2 (blue, green, or-
ange) are shown for κ = −1, n = 20, ℓ = 0.

Figs. D.3 and D.4. The number of oscillations (counting local maxima) is now in
all cases n−ℓ. The last maximum is constructed differently where the high ζn edge
is not due to another root but due to an exponential suppression term at small
velocities ζn ≫ 1 found in the Sommerfeld factor Sℓ′(ζs), cf. (6.25). Physically,
this is understood as a consequence of the repulsive nature of the initial poten-
tial αs < 0. In a classical line of thought, once the total initial energy becomes
too small the constituent pair simply bounces off each other without ever coming
close enough to see significant overlap with a bound state wave function. Note
that the Bohr radius grows for higher excitations, however, due to the definition
of ζn = αb/nv, higher n already imply smaller v for constant ζn = 1 and the cutoff
onset is largely unaffected by n, only becoming steeper.

Nonetheless, the position of the cutoff is shifted to lower ζn by more negative
κ, as seen by comparing the curves κ = −1, 0 (red, green) in Fig. D.3 which
illustrates the exponential suppression sourced by repulsion. The plot is similar to
Fig. 6.1 in the main text, albeit with a = 1, ℓ = 0 and a different normalization.
The case of dipole interactions a = 1 is of special interest due to its connection to
gauge interactions of the UV complete theory, hence it is shown here and below.
n = 5, ℓ = 0 is depicted in Fig. D.3. For κ = 0 (green), no low-velocity Sommerfeld
scaling is obtained and once κ < 0, exponential suppression sets in. A detailed
comparison of κ = ±0.01 may be found in the inset panel of Fig. 6.1.

As mentioned, there are no oscillations at κ = 1 = a (purple), however, they
successively develop as κ decreases and once κ = 0.5 (blue), one root can be seen
at ζn = 0.45. Hence, there are fine tuned ratios between the initial and final
state potential for which specific excitations become essentially invisible at low
velocities, despite κ.0, as the cross section decreases forever and never reaches the
regime of Sommerfeld enhancement. In the depicted case of a = 1, n = 5, ℓ = 0
this was found at κ = 0.4767464447 where the onset of Sommerfeld enhancement
in found only at ζn ∼ 3× 105 and suppressed by 10−15 relative to the case κ = 1.
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Figure D.3: Various bound state formation cross-sections, normalized by
geffa

2
α2a−1
b /M2

χ, plotted over ζn. Different multipoles κ = −5, 0, 0.5, 1 (red, green,
blue, purple) are shown for a = 1 (dipole), n = 5, ℓ = 0.

The behavior is analogous to the Ramsauer-Townsend effect [145–147]. In it’s
simplest form, it occurs in a finite potential well tuned to host a zero energy
bound state which leads to a vanishing reflection index and the potential becomes
fully transparent in tuned points.

An understanding of the qualitative behavior, especially at small velocities is
relevant for model building as new, interesting or required effects can be identified
with a specific parametric range in a and κ to then construct a model satisfying
these requirements. On the flip side, in phenomenology the specific model is
fixed which usually means a and κ are not to be changed. The most interesting
parameters are now n and ℓ to define the dominantly contributing energy levels and
whether or to what degree observables are affected. As a small caveat, complicated
systems of even more than two species can have more than only one ratio of
potentials κ and thus yield effects from different parametric ranges simultaneously.
Fig. D.4 depicts the scaled BSF cross-sections as above in the case of a = 1 and
κ = −1 for different bound state angular momentum ℓ = ℓ′ − 1 = 0, 10, 19 at
n = 20 (upper panel) and different n = 1, 5, 20 at ℓ = 0 (lower panel). The red
curves on both plots thus shows the same BSF process, n = 20, ℓ = 0. The upper
panel clearly demonstrates how the number of oscillations is given by n− ℓ. The
particularly simple radial integral for ∆ = 1, ℓ = n − 1, cf. Eq. (6.44), results in
one simple peak peak here. The oscillatory regime for ℓ < n− 1 extends on both
sides, a feature which is nicely understood from the bound state wave functions
and by the semi-classical analogy in section 6.3, since rA,P = rn(1∓ e).

Finally turning to variations of n, a striking feature is found. Higher n are
no longer suppressed relative to capture into lower lying bound states, as it is the
case in Abelian BSF. The horizontal axis ζn = pn/p scales differently for each n
such that, overall, each bound state contributes maximally when the initial energy
is of the order of the respective bound state energy ζn ∼ 1 ⇔ p ∼ pn. Note that
while higher n systematically overcome lower n at a fixed ℓ, this does not translate
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Figure D.4: Various bound state formation cross-sections, normalized by
geffa

2
α2a−1
b /M2

χ, plotted over ζn. Upper panel : Different angular momenta
ℓ = 0, n/2, n− 1 (red, blue, black) are shown for n = 20, κ = −1 and a = 1
(dipole). Lower panel : Different bound state levels n = 1, 5, 20 (red, green, pur-
ple) are shown for ℓ = 0, κ = −1 and a = 1 (dipole). The cross section for
n = 20, ℓ = 0 is thus depicted in both panels.

to the angular momentum. The maximal angular momentum ℓ = n − 1 reaches
its maximum, where it also exceeds all other partial waves, at largest velocity as
seen in the upper panel, yet the exclusive BSF cross-section across the full velocity
range is maximized for an intermediate ℓ ̸= 0, n − 1 (here exemplary satisfied by
ℓ = 10, the blue curve). As the overall scaling by interpolating successive maxima
grows still faster than 1/v, cf. Fig. D.3, this makes a prediction of which partial
wave gives strongest constraints from unitarity bounds impossible and, in fact,
this turns out to be a velocity dependent statement for the intricate comparison of
exclusive processes. Nevertheless, for inclusive processes the s-wave bound ℓ′ = 0
generically is strongest, though by very small numerical factors, see Fig. D.6.
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Figure D.5: Upper panel : Bound state formation cross-sections summed in n ≤
1000 for different ℓ = 0, ..., 17 (various gray curves) and summed in all ℓ < n ≤ 1,
10, 100, 1000 (blue curves as indicated) plotted over α/v for a U(1) model (a = 1,
κ = 1). Cross sections are normalized by 4α3/M2

χv. Kramer’s estimate, Eq. (D.2),
is shown for comparison (red). Lower panel : Ratio of Kramer’s estimate divided
by the various fully-summed results n ≤ 1, 10, 500, 1000 (dashed red, solid orange,
solid red) on the same horizontal axis.

D.2 Inclusive cross sections under U(1) or SU(3)

The Figs. D.5 and D.6 show BSF cross-sections of fermions charged under gauge
symmetries (with gauge coupling strength α) summed in n (gray) or n and ℓ (blue)
plotted over the inverse velocity α/v (v = v, µ =Mχ/2, using notation from [3]).

Abelian U(1) gauge interactions are shown in Fig. D.5. The upper panel in-
cludes summed cross sections normalized by M2v/4α3, thus rendering the low



162 D ANALYSES OF COULOMBIC BOUND STATE FORMATION

Figure D.6: Upper panel : Bound state formation cross-sections summed in ℓ < n
and n ≤1, 10, 100, 500, 1000 plotted over α/v for a SU(3) model (a = 1, κ = −1/8).
Cross sections are normalized by 4α3/M2

χv. Lower panel : Cross sections now
summed in ℓ and n ≤ 1000 for fixed initial state partial waves ℓ′ = 0, 1, 2, 3, 100
normalized by α3(σv)uniℓ′ . Constant horizontal lines are thereby upper bounds from
partial wave unitarity for one specific value of α, exemplified by α = 0.1, 0.22.

velocity limit of simply Sommerfeld enhanced quantities horizontal. Various gray
lines show results for summing n ≤ 1000 each with one fixed ℓ = 0, 1, 2, .... Blue
dotted, dot-dashed, dashed and bold curves include summation in of all ℓ ≤ n− 1
and n ≤ 1, 10, 100 and 1000. From comparing the uppermost gray curve ℓ = 0
to the dotted curve n = 1, one can see how in Abelian models the ground state
dominates and all higher states give only a small enhancement by a factor of 1.268.
Summing in ℓ and n overcomes the low-velocity Sommerfeld scaling. For compar-
ison, the approximate summed, low-velocity result known as Kramer’s logarithm
[198, 199], ∑

n,ℓ

(σv)nℓ ≈
128π

3
√
3

α3

M2
χv

[log(α/v) + γE] (D.2)

is shown by a red curve. In the bottom panel, the ratio of Kramer’s logarithm
over the numeric results (n ≤100, 500, 1000) is depicted. It agrees well with the
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numerically observed converged result as long as sufficiently many n are summed
and for α/v → ∞ the ratio is expected to tend to unity. The shown ratios remains
limited around the 7% level due to the numerical limitation n ≤ 1000.

Fig. D.6 is similar to the previous one, but now showing results for a fermion
transforming under the fundamental representation of a (dark) SU(3) gauge sym-
metry, thus κ = 1/(1 − N2

c ) = −1/8. The enhancement of higher n is obvious
and the low-velocity behavior converges to seemingly a power-law. Note that the
here given results are summed in n and ℓ, which differs from all other representa-
tions throughout this thesis and are not subject to partial wave unitarity anymore.
However, even the applicable summed unitarity bound

∑
ℓ′≤1001(σv)

uni
ℓ′ would be

exceeded for perturbative couplings α > 0.15 in the upper panel.
Decomposed into separate initial state angular momenta ℓ′ and normalized to

α3 and the respective unitarity bound, Eq. (6.76), the obtained curves remain
model independent but upper bounds from self-consistency with unitarity are now
indicated by horizontal lines for each choice of α. The form of representation is
analogous to Fig. 6.7 in the main text, however indicating α rather than αb = CFα.
Partial waves up to ℓ′ = 3 (f-wave) and specifically ℓ′ = 100 are shown in different
colors. One can observe some remaining oscillations at higher velocities before
the summation in n hides such features. Furthermore, the previous statement
regarding s-wave giving the strongest constraints from unitarity is now observed.
It holds at low velocities once all curves are well converged and featureless. While
the depicted lines largely overlap, there is a detailed ordering of the cross sections
according to their partial waves which is more easily observed around α/v = 40.
It is because of this sorting of the partial wave unitarity bounds, that also the
optimization in Eq. (6.4.3) does not yield appreciable improvements at ζn ≫ 1
with respect to s-wave unitarity bounds. Correspondingly, the mentioned summed
upper bound α = 0.15 found in the upper panel is weaker than what is observed in
the lower panel for each separated partial wave constraint, which overcome even
the α = 0.1 line.
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