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A B S T R A C T

The accuracy of finite element solutions is closely tied to the mesh quality. In particular,
geometrically nonlinear problems involving large and strongly localized deformations often
result in prohibitively large element distortions. In this work, we propose a novel mesh
regularization approach allowing to restore a non-distorted high-quality mesh in an adaptive
manner without the need for expensive re-meshing procedures. The core idea of this approach
lies in the definition of a finite element distortion potential considering contributions from
different distortion modes such as skewness and aspect ratio of the elements. The regularized
mesh is found by minimization of this potential. Moreover, based on the concept of spatial
localization functions, the method allows to specify tailored requirements on mesh resolution
and quality for regions with strongly localized mechanical deformation and mesh distortion.
In addition, while existing mesh regularization schemes often keep the boundary nodes of
the discretization fixed, we propose a mesh-sliding algorithm based on variationally consistent
mortar methods allowing for an unrestricted tangential motion of nodes along the problem
boundary. Especially for problems involving significant surface deformation (e.g., frictional
contact), this approach allows for an improved mesh relaxation as compared to schemes with
fixed boundary nodes. To transfer data such as tensor-valued history variables of the material
model from the old (distorted) to the new (regularized) mesh, a structure-preserving invariant
interpolation scheme for second-order tensors is employed, which has been proposed in our
previous work and is designed to preserve important properties of tensor-valued data such
as objectivity and positive definiteness. As a practically relevant application scenario, we
consider the thermo-mechanical expansion of materials such as foams involving extreme volume
changes by up to two orders of magnitude along with large and strongly localized strains
as well as thermo-mechanical contact interaction. For this scenario, it is demonstrated that
the proposed regularization approach preserves a high mesh quality at small computational
costs. In contrast, simulations without mesh adaption are shown to lead to significant mesh
distortion, deteriorating result quality, and, eventually, to non-convergence of the numerical
solution scheme.
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1. Introduction

The accuracy of finite element solutions is closely tied to the quality of the underlying finite element mesh. Excessive element
distortions can result in unreliable solutions or even lead to divergence. Therefore, it is important to keep mesh distortions small to
achieve accurate and reliable results. To address this issue, dynamic mesh treatment techniques have been developed and studied.
In general, replacing the old mesh by a newly generated mesh (i.e., remeshing) is typically a computationally inefficient approach,
especially in 3D, as it results in high computational costs and challenges regarding parallel communication. In addition, the inherent
challenges of producing high-quality meshes for complex geometries are re-occurring in every remeshing step, which also means that
it requires additional means for maintaining mesh quality. In contrast, mesh adaptation, i.e. moving element nodes while keeping
he number of nodes and their connectivity fixed in the sense of r-refinement, allows for updating the mesh without consuming

excessive computational resources. For many applications, this seems to be a more efficient approach. Mesh adaptation typically
consists of two major steps viz. finding the new nodal positions (new mesh) and transferring data from the old to the new mesh. In
his work, we term the first step as mesh refitting and the second step as data transfer, while the overall procedure including both
teps is termed mesh adaptation.

Mesh refitting techniques have been studied in the past, e.g., in the context of fluid–structure interaction based on arbitrary
Lagrangian–Eulerian (ALE) discretizations. These methods can be classified as interpolation and physical analogy-based methods.
A detailed review of mesh refitting methods can be found in [1]. In interpolation-based schemes, an interpolation function is used
to obtain the new mesh and in general they do not require nodal connectivity information, which enables their application to
polyhedral elements or unstructured grids. The most common methods in this category are transfinite interpolation [2], the algebraic
damping method [3], and radial basis function interpolation [4]. Transfinite interpolation has the disadvantage of (potentially)
roducing inverted elements, while the algebraic damping method may yield non-smooth aspect ratio distributions in the domain.

Additionally, the use of radial basis function methods can be computationally expensive. In contrast, physical analogy-based methods
se the element connectivity information and find the new nodal positions by solving a system of equations formulated according
o a physical process. The first approach in this class is the linear spring analogy scheme proposed by Batina [5]. In this method,

a fictitious spring is added to the discretization with a stiffness inversely proportional to the element edge length. This method
frequently results in inverted elements and is less suited for large deformation problems. To prevent element inversion, modified
pring analogies such as torsional spring [6], semi-torsional spring [7], ball-vertex [8], and ortho-semi-torsional spring approaches

were proposed. However, these methods are either limited to triangular elements (respectively, tetrahedral elements in 3D) or
ave been shown to exhibit poor performance for large deformation problems. Moreover, these methods can also result in inverted
lements or boundary nodes that are not relaxed. Another set of methods in this group is given by Laplacian methods [9,10], in which

a Laplace equation is solved in the interior of the domain. These schemes allow for a certain degree of regularization for distorted
meshes and they ensure that the interior nodes remain confined by the domain boundaries. However, Laplacian methods often result
in a limited mesh movement, i.e., a limited mesh regularization, and may also lead to inverted elements (see [10]). Finally, in an
lastostatic approach [11,12], the discretized domain is considered as an elastic body and the new nodal locations are obtained
hrough the solution of an elasticity problem. Here, the new nodal positions are dependent on the values of Young’s modulus and

Poisson’s ratio underlying the pseudo-elastic problem. Yet, a linear elastostatic equation can lead to inverted elements and non-linear
constitutive equations can lead to poor element quality for large deformation problems. Improved elastostatic approaches can be
ound in [13–15]. Still, these methods typically suffer from insufficient element quality control and are not well-suited for large
eformation problems with localized mesh distortion.

In summary, there is still a need for mesh refitting techniques that can produce a high quality mesh for problems involving
very large and strongly localized deformation. Existing methods tend to give either inverted elements or elements with low quality
n such scenarios. Moreover, controlling the element size and quality at specific regions of the domain is not easily feasible with
xisting approaches. In addition, the mesh movement for boundary nodes is either limited or for some approaches even impossible,
eading to distorted elements at the boundary.

Once the new mesh is obtained, the primary and history variables must be mapped from the old to the new mesh. The accuracy of
the data mapping between the meshes is critical for all adaptive FEM procedures. The most common data types that arise as history
variables are scalars and tensors. On the one hand, the mapping of scalar variables is well investigated, and methods such as moving
east squares can be adopted [16–21]. On the other hand, the mapping of tensor-valued data was not well-studied before [22]. To

bridge this gap, structure preserving tensor interpolation schemes have been proposed and evaluated in our previous work [22].
These interpolation schemes fulfill essential properties of the underlying continuum mechanics problem such as objectivity, positive
efiniteness, and monotonicity of invariants of the interpolated tensors along with higher-order spatial convergence.

To overcome the aforementioned limitations of existing approaches, we propose a novel mesh adaptation scheme. The underlying
mesh refitting approach is based on the definition of an element distortion potential considering contributions from different
istortion modes such as skewness and aspect ratio of the elements. The regularized mesh is obtained by minimizing this potential.
oreover, based on the concept of spatial localization functions, the method allows to specify tailored requirements on mesh

esolution and quality for regions with strongly localized mechanical deformation and mesh distortion. To address also problems
nvolving significant surface deformation, we propose the usage of a mortar mesh-sliding scheme to allow for a tangential motion
f boundary nodes without changing the boundary topology. It is demonstrated that this approach enables a significantly improved
esh relaxation as compared to schemes with fixed boundary nodes. To transfer tensor-valued history data from the old to the

new mesh, we utilize the structure-preserving interpolation methods proposed in our previous work [22]. The effectiveness of the
proposed scheme is validated by means of several selected numerical examples. In particular, as a practically relevant application
2 
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Fig. 1. Notation and kinematics to depict the interaction between two deformable bodies.

scenario, we consider the thermo-mechanical expansion of materials such as foams involving extreme volume changes by up to
two orders of magnitude along with large and strongly localized strains as well as thermo-mechanical contact interaction. For this
scenario it is demonstrated that the proposed regularization approach preserves a high mesh quality at small computational costs.
In the investigated numerical examples, the computation time for mesh adaptation was typically in the order of only a few percent
of the total simulation time. In contrast, simulations without mesh adaption are shown to lead to significant mesh distortion and,
eventually, to non-convergence of the numerical solution scheme.

The remainder of this work is organized as follows: While the main novelty of the work, the overall mesh adaptation approach,
can be applied to all kinds of problems, we demonstrate it using thermomechanical problems driven by the demands from specific
applications. To ease presentation, we first introduce this problem class and related methods in Section 2 before presenting the
mesh adaptation in Section 3. In particular, the finite-strain inelastic material model is introduced in Section 2.2, followed by the
considered mortar methods for thermo-mechanical contact in Section 2.3, and finally discretization in space and time in Section 2.4.
Next, the mesh adaptation method is detailed in Section 3, in which the mesh refitting problem is formulated in Section 3.1, and the
data transfer methods are described in Section 3.2. Finally, selected numerical examples are presented in Section 4 and the main
novelties and findings of this work are summarized in Section 5.

2. Thermo-mechanical problem

In this work, we propose a novel mesh adaption method, which is able to regularize strongly distorted meshes without the need
for a complete remeshing. While the proposed method is very general, in this work as a demonstration example it is applied to
a finite deformation thermo-mechanical problem involving thermally activated materials undergoing very large (inelastic) volume
expansion as well as thermo-mechanical contact interaction, which typically results in prohibitively large mesh distortions if no
mesh adaption is applied. We start with a description of the underlying thermo-mechanical problem. Next, the thermo-mechanical
constitutive model for the inelastic expansion is presented, followed by the thermo-mechanical contact formulation.

2.1. Thermo-mechanical initial boundary value problem

Consider the deformation of bodies 𝑖 = {1, 2} with reference configuration 𝑿(𝑖) ∈ 𝛺(𝑖)
0 and current configuration 𝒙(𝑖) ∈ 𝛺(𝑖)

𝑡 at
time 𝑡 described by the mapping 𝜑(𝑖)

𝑡 ∶ 𝑿(𝑖) ↦ 𝒙(𝑖) as illustrated in Fig. 1. The displacement 𝒖(𝑖) at material point 𝑿(𝑖) is given by
𝒖(𝑖)(𝑿(𝑖), 𝑡) = 𝒙(𝑖)(𝑿(𝑖), 𝑡) −𝑿(𝑖) and the temperature is denoted by 𝑇 (𝑖)(𝑿(𝑖), 𝑡). The thermo-mechanical initial boundary value problem
(IBVP) summarizing the set of equations required to determine the displacement and temperature field, i.e. the primary variables
3 
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𝒖(𝑖) and 𝑇 (𝑖) in the time interval 𝑡 ∈ [0, 𝑡𝐸 ], reads:
∇𝑿 ⋅ (𝑭 (𝑖)𝑺(𝑖)) + �̂�(𝑖)0 = 𝜌(𝑖)0 �̈�(𝑖) in 𝛺(𝑖)

0 ×
[

0, 𝑡𝐸] ,
−∇𝑿 ⋅𝑸(𝑖) + �̂�(𝑖)

0 = 𝑐(𝑖)𝑣 �̇� (𝑖) in 𝛺(𝑖)
0 ×

[

0, 𝑡𝐸] ,
(𝑭 (𝑖)𝑺(𝑖))𝑵 (𝑖) = �̂�(𝑖)0 on 𝛤 (𝑖)

𝜎 ×
[

0, 𝑡𝐸] ,
𝑸(𝑖) ⋅𝑵 (𝑖) = �̂�(𝑖)

0 on 𝛤 (𝑖)
𝑞 ×

[

0, 𝑡𝐸] ,
𝒖(𝑖) = �̂�(𝑖) on 𝛤 (𝑖)

𝑢 ×
[

0, 𝑡𝐸] ,
𝑇 (𝑖) = �̂� (𝑖) on 𝛤 (𝑖)

𝑇 ×
[

0, 𝑡𝐸] ,
𝝈(𝑖)𝒏(𝑖) = 𝒕(𝑖)𝑐 on 𝛾 (𝑖)𝑐 ×

[

0, 𝑡𝐸] ,
𝒒(𝑖) ⋅ 𝒏(𝑖) = 𝑞(𝑖)𝑐 on 𝛾 (𝑖)𝑐 ×

[

0, 𝑡𝐸] ,
𝒖(𝑖) = 𝒖(𝑖)0 in 𝛺(𝑖)

0 for 𝑡 = 0,
�̇�(𝑖) = �̇�(𝑖)0 in 𝛺(𝑖)

0 for 𝑡 = 0,
𝑇 (𝑖) = 𝑇 (𝑖)

0 in 𝛺(𝑖)
0 for 𝑡 = 0,

(1)

where ̇(⋅) is the total time derivative, ∇𝑿 the gradient with respect to the material position vector 𝑿, �̂�(𝑖)0 the body forces per
unit reference volume, 𝜌(𝑖)0 the mass density per unit reference volume, �̂�(𝑖)

0 the heat source per unit reference volume, and 𝑐(𝑖)𝑣 the
specific heat capacity. 𝑵 and 𝒏 represent outward unit-normal vectors onto the surfaces of the considered bodies in material and
spatial description, respectively. Furthermore, 𝑭 , 𝑺, 𝝈, 𝑸, and 𝒒 are the deformation gradient, second Piola–Kirchhoff stress tensor,
Cauchy stress tensor, material heat flux, and spatial heat flux, respectively, and are detailed in the following sections. The first two
equations in (1) are the momentum balance and the heat conduction equation, respectively. The Neumann boundary conditions for
the mechanical problem on 𝛤 (𝑖)

𝜎 and for the thermal problem on 𝛤 (𝑖)
𝑞 involve the prescribed fluxes �̂�(𝑖)0 and �̂�(𝑖)

0 . The Dirichlet boundary
conditions for the mechanical problem on 𝛤 (𝑖)

𝑢 and for the thermal problem on 𝛤 (𝑖)
𝑇 are represented by the prescribed values �̂�(𝑖) and

�̂� (𝑖), respectively. The next two equations correspond to the Cauchy traction 𝒕(𝑖)𝑐 and Cauchy heat flux 𝑞(𝑖)𝑐 at the contact surfaces 𝛾 (𝑖)𝑐 .
Finally, 𝒖(𝑖)0 , �̇�(𝑖)0 , and 𝑇 (𝑖)

0 depict the initial conditions of the displacement, velocity, and temperature, respectively.
For the subsequent finite element formulation, first the weak form of the coupled thermo-mechanical IBVP is formulated. The

eak form is obtained by multiplying the linear momentum and heat conduction equations in (1) with test functions 𝛿𝒖(𝑖) and 𝛿 𝑇 (𝑖),
respectively, then integrating over the domains, and applying Green’s theorem. Eventually, the weak forms of the mechanical and
thermal problem without contact contribution read

∫𝛺(𝑖)
𝜌(𝑖)0 𝛿𝒖(𝑖) ⋅ �̈�(𝑖) d𝛺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿 iner

𝑢

+∫𝛺(𝑖)
∇𝑿𝛿𝒖(𝑖) ∶ (𝑭 (𝑖)𝑺(𝑖)) d𝛺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿 int

𝑢

−

(

∫𝛺(𝑖)
𝛿𝒖(𝑖) ⋅ �̂�(𝑖)0 d𝛺 + ∫𝛤 (𝑖)

𝜎

𝛿𝒖(𝑖) ⋅ �̂�(𝑖)0 d𝛤

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿ext

𝑢

= 0 (2)

and ∫𝛺(𝑖)
𝛿 𝑇 (𝑖)𝑐(𝑖)𝑣 �̇� (𝑖) d𝛺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿 iner

𝑇

+∫𝛺(𝑖)
∇𝑿𝛿 𝑇 (𝑖) ⋅𝑸(𝑖) d𝛺

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿 int

𝑇

−

(

∫𝛺(𝑖)
𝛿 𝑇 (𝑖)�̂�(𝑖)

0 d𝛺 + ∫𝛤 (𝑖)
𝑞

𝛿 𝑇 (𝑖)�̂�(𝑖)
0 d𝛤

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛿ext

𝑇

= 0, (3)

respectively, wherein 𝛿 iner
𝑢 , 𝛿 int

𝑢 , and 𝛿ext
𝑢 are the mechanical inertia, internal, and external virtual work contributions,

respectively, and the corresponding virtual work contributions of the thermal problem are denoted by 𝛿 iner
𝑇 , 𝛿 int

𝑇 , and 𝛿ext
𝑇 .

2.2. Kinematics and constitutive model for large deformation thermo-mechanical problem

The mesh adaptation method proposed in Section 3 is motivated by one of our current research questions involving material
behavior with extreme volume expansion. Since the proposed mesh adaption scheme is independent of the specific form of the
material law, and also for reasons of confidentiality by our industrial partner, the constitutive law governing the inelastic volume
expansion, i.e., the function 𝑓 (𝑇 ,𝑺, 𝛼) in Eq. (6), will be stated in a generic form below.

Following the framework of nonlinear continuum mechanics, the local deformation at a material point 𝑿 is described by the
deformation gradient 𝑭 = 𝜕𝒙

𝜕𝑿 . To account for inelastic deformations, we adopt the multiplicative split of the deformation gradient
into an elastic part 𝑭 𝑒 and an inelastic part 𝑭 𝑖𝑛 as proposed by Lee [23] in the context of plasticity:

𝑭 = 𝑭 𝑒𝑭 𝑖𝑛. (4)

We allow for an anisotropic inelastic volume expansion with respect to the principal stretch directions 𝑵 𝑖
𝐶 , which are given by the

igenvectors of the right Cauchy–Green stretch tensor 𝑪 = 𝑭 T𝑭 , according to

𝑭 𝑖𝑛 =
3
∑

𝑖=1
𝜆𝑖𝑖𝑛𝑵

𝑖
𝐶 ⊗𝑵 𝑖

𝐶 , (5)

where 𝜆𝑖𝑖𝑛 is the magnitude of the inelastic expansion in the direction 𝑵 𝑖
𝐶 , governed by an evolution equation

𝑖
�̇�𝑖𝑛 = 𝑓 (𝑇 ,𝑺, 𝛼), (6)

4 
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accounting for dependencies of the inelastic volume expansion on the current temperature, stress state and on the scalar-valued
nternal variable 𝛼 governing the material history. Exemplarily, the scalar 𝛼 can be a material degradation factor which reduces
rom 1 to 0 during the expansion process. In the numerical examples studied in this work, we prescribe 𝛼 as an explicit function of
ime. Finally, a similar definition of inelastic deformation material models can be found in the context of biomechanics: e.g., a stress-
ependent growth model was presented by Rodriguez et al. in [24], and Lubarda and Hoger showcased isotropic and anisotropic
tress-modulated growth in [25].

In analogy to the (total) right Cauchy–Green stretch tensor 𝑪 , the elastic right Cauchy–Green stretch tensor is defined as
𝑪𝑒 = 𝑭 𝑒

T𝑭 𝑒. Based on 𝑪𝑒, we define a hyperelastic strain–energy function 𝛹𝑒(𝑪𝑒) under the assumption that the elastic response
oes not explicitly depend on the temperature. Based on this assumption and the multiplicative split (4), the second Piola–Kirchhoff
tress tensor 𝑺 can be computed as (see [26] for more details)

𝑺 = 2𝑭 𝑖𝑛
−1 𝜕 𝛹𝑒

𝜕𝑪𝑒
𝑭 𝑖𝑛

−T. (7)

Furthermore, the spatial Cauchy stress tensor 𝝈 follows as 𝝈 = (det𝑭 )−1𝑭 𝑺 𝑭 T. In the examples presented in this paper, the
yperelastic strain–energy function is based on a Neo-Hookean model as presented in [26].

Finally, the thermal constitutive equation relating heat flux and temperature gradient via the isotropic heat conductivity 𝑘0 is
formulated on the basis of Fourier’s law. The latter can be stated using either the (material) second Piola–Kirchhoff heat flux 𝑸 or
he spatial heat flux 𝒒 = (det𝑭 )−1𝑭 𝑸 according to

𝑸 = −𝑘0𝑪−1∇𝑿𝑇 or 𝒒 = − 𝑘0
det𝑭 ∇𝒙𝑇 , (8)

where we distinguish between the material gradient ∇𝑿 = 𝜕
𝜕𝑿 and the spatial gradient ∇𝒙 = 𝜕

𝜕𝒙 .

2.3. Thermo-mechanical contact

In this section, we discuss the thermo-mechanical contact formulation used in this work. The underlying contact constraints
long with the basics of mortar methods for constraint enforcement and regularization are briefly summarized below. For a detailed
escription of these mortar methods in the context of thermomechanical contact interaction, the interested reader is referred to
xemplary literature [27,28]. While the general formulation accounts for frictional contact interaction, for simplicity, only the

frictionless case will be recapitulated in the following.

2.3.1. Mechanical contact problem: Kinematics and contact forces
In the following, we distinguish the contacting surfaces as master and slave side denoted by the sets  and , respectively.

Here, a superscript (1) refers to the slave side and 𝛾 (1)𝑐 represents the contact surface on the slave side. The relative motion between
hese interfaces at any time instant 𝑡 is quantified by the smooth mapping (see Fig. 1)

𝜒𝑡(𝒙(1)) ∶ 𝛾 (1)𝑐 → 𝛾 (2)𝑐 ,𝒙(1) ↦ 𝒙(2). (9)

This mapping projects any point 𝒙(1) from the slave surface 𝛾 (1)𝑐 onto the master surface 𝛾 (2)𝑐 along the outward normal 𝒏(𝒙(1)) or in
hort 𝒏 (see Fig. 1). The unit vectors spanning the tangential plane at the contact point are denoted as 𝝉𝜂 and 𝝉𝜉 . The mapping is
ssumed to exist in the zone of closed contact and its close vicinity. For (potentially) interacting points on the slave surface 𝛾 (1)𝑐 , the

normal gap is defined as

𝑔𝑛(𝒙(1)) = −𝒏 ⋅ [𝒙(1) − 𝒙(2)]. (10)

Moreover, the traction vectors acting on the contact surfaces are denoted as 𝒕(𝑖)𝑐 . Based on a balance of linear momentum, the traction
ectors on the slave and master side of the contact surface are related according to 𝒕(1)𝑐 = −𝒕(2)𝑐 =∶ 𝒕𝑐 . Furthermore, the contact traction

can be decomposed into a normal component 𝑝(𝑖)𝑛 and a tangential component 𝒕(𝑖)𝝉 :

𝑝(𝑖)𝑛 = 𝒏 ⋅ 𝒕(𝑖)𝑐 , (11)

𝒕(𝑖)𝝉 = (𝑰 − 𝒏⊗ 𝒏)𝒕(𝑖)𝑐 . (12)

2.3.2. Mechanical contact problem: Constraints and virtual work
The (frictionless) mechanical contact constraints are given by the Hertz–Signorini–Moreau conditions:

𝑔𝑛 ≥ 0, 𝑝𝑛 ≤ 0, 𝑝𝑛𝑔𝑛 = 0 on 𝛾 (1)𝑐 . (13)

As basis for a variational statement of the contact problem, the slave side traction vector 𝒕𝑐 is introduced as an additional primary
field, which is identified as Lagrange multiplier 𝝀𝑐 = −𝒕𝑐 associated with the contact constraint. If the normal component of the
Lagrange multiplier is denoted as 𝜆𝑐 ,𝑛 = 𝒏 ⋅ 𝝀𝑐 , the contact virtual work can be shown to yield:

𝛿𝑐
𝑢 = −∫𝛾(1)𝑐

[[𝛿𝒖]] ⋅ 𝝀𝑐 d𝛾 = ∫𝛾(1)𝑐

𝛿 𝑔𝑛𝜆𝑐 ,𝑛 d𝛾 , (14)

where [[⋅]] = (⋅)(1) − [(⋅)(2)◦𝜒 ] is the jump operator (cf. (9)) and 𝛿 𝑔 the variation of the normal gap in (10).
𝑡 𝑛
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2.3.3. Thermal contact problem
Next, the thermal effects at the contacting surfaces have to be addressed. The heat balance at the interface reads

𝑞(1)𝑐 + 𝑞(2)𝑐 = 0, (15)

with 𝑞(1)𝑐 and 𝑞(2)𝑐 being the slave and master side heat fluxes across the contact interface defined according to (cf. (8))

𝑞(𝑖)𝑐 = 𝒒(𝑖) ⋅ 𝒏(𝑖). (16)

Within this work, an interface heat flux model with a linear dependence on the contact pressure is used according to
𝑞(1)𝑐 = 𝛽𝑐 |𝑝𝑛|[[𝑇 ]], 𝑞(2)𝑐 = −𝛽𝑐 |𝑝𝑛|[[𝑇 ]], (17)

where 𝛽𝑐 ≥ 0 is the contact heat conductivity. Finally, the virtual work of the interface heat conduction problem reads:

𝛿𝑐
𝑇 = −∫𝛾(1)𝑐

𝑞(1)𝑐 [[𝛿 𝑇 ]]d𝛾 , (18)

Therein, all contact integrals are transformed into pure slave side integrals using (9). As studied in [27–29], it is not necessary
o introduce thermal Lagrange multipliers 𝜆𝑇 = −𝑞(1)𝑐 to enforce the thermal interface constraints. Instead, a direct substitution of
he heat flux model (17) into (18) allows to express the interface heat fluxes as function of the temperature, which is the primary

variable of the thermal problem.

Remark 2.3.1. The drawback of this direct heat flux substitution method is that the problem becomes ill-conditioned for very large
values of 𝛽𝑐 , i.e., in the limit 𝛽𝑐 → ∞. In this case, alternative approaches such as the Lagrange multiplier method [30] or Nitsche’s
method [31] are well suited.

2.4. Discretization in space and time

The displacement and temperature field are approximated in space through trial functions defined on basis of discrete nodal
values 𝐝𝑗 and 𝐓𝑗 and ansatz functions 𝑁𝑗 , whereas the Lagrange multiplier field is approximated in space through trial functions
defined on basis of discrete nodal values Λ𝑐 ,𝑗 and ansatz functions 𝜙𝑗 , viz

𝒖ℎ =
𝑛
∑

𝑗=1
𝑁𝑗𝐝𝑗 , 𝑇 ℎ =

𝑛
∑

𝑗=1
𝑁𝑗𝐓𝑗 , 𝝀ℎ𝑐 =

∑

𝑗∈
𝜙𝑗Λ𝑐 ,𝑗 . (19)

In (19) the global vectors 𝐝 and 𝐓 contain all displacement and temperature degrees of freedom, respectively and the vector Λ𝑐 all
nodal Lagrange multipliers. The corresponding test functions can be written as

𝛿𝒖ℎ =
𝑛
∑

𝑗=1
𝑁𝑗𝛿𝐝𝑗 , 𝛿 𝑇 ℎ =

𝑛
∑

𝑗=1
𝑁𝑗𝛿𝐓𝑗 , 𝛿𝝀ℎ𝑐 =

∑

𝑗∈
𝜙𝑗𝛿Λ𝑐 ,𝑗 . (20)

For more information on the choice of the ansatz functions 𝜙𝑗 for the Lagrange multiplier field, the interested reader is referred
o [30,32]. Eventually, the semi-discrete solid mechanics problem can be obtained by substituting (19) and (20) into the weak form
2), resulting in:

𝐌𝑢�̈� + 𝐟 int𝑢 (𝐝,𝐓) − 𝐟 ext𝑢 + 𝐟 𝑐𝑢 = 𝟎, (21)

where 𝐌𝑢 represents the constant mass matrix and 𝐌𝑢�̈� corresponds to the nodal force vector resulting from the inertia virtual work
contribution 𝛿 iner

𝑢 , 𝐟 int𝑢 is the nodal internal force vector resulting from 𝛿 int
𝑢 , and the nodal external force vector is denoted as

ext
𝑢 and associated with 𝛿ext

𝑢 . Lastly, 𝐟 𝑐𝑢 in (21) is the nodal contact force vector which is associated with the contact virtual work
14) and given as

𝐟 𝑐𝑢 = [𝟎,−𝑴(𝐝),𝑫(𝐝)]T𝜦𝑐 , (22)

where 𝑫 and 𝑴 are the well-known mortar matrices [32]. Equation (22) is obtained after rearranging the global displacement
ector in a set of inactive , master , and slave  degrees of freedom.

The spatial discretization of the mechanical problem is completed by discretizing also the contact constraints (13). The constraints
re discretized using the Lagrange multiplier ansatz functions 𝜙𝑗 (19), resulting in

�̃�𝑛,𝑗 ∶= ∫𝛾(1),ℎ𝑐

𝜙𝑗𝑔
ℎ
𝑛 d𝛾 ≥ 0, 𝜆𝑐 ,𝑛,𝑗 ≤ 0, 𝜆𝑐 ,𝑛,𝑗 �̃�𝑛,𝑗 = 0 ∀𝑗 ∈  on 𝛾 (1)𝑐 , (23)

where �̃�𝑛,𝑗 is referred to as weighted nodal gap and 𝜆𝑐 ,𝑛,𝑗 is the normal component of the nodal Lagrange multiplier Λ𝑐 ,𝑗 (see [32]).
To enforce the normal contact constraint (23), we employ a penalty regularization as detailed in [32]. Accordingly, the contact
ressure 𝜆𝑐 ,𝑛 and weighted gap �̃�𝑛 at every slave node 𝑗 are related by introducing a penalty parameter 0 < 𝜖𝑐 < ∞ according to

𝜆𝑐 ,𝑛,𝑗 = 𝜖𝑐⟨−�̃�𝑛,𝑗⟩, (24)

where ⟨⋅⟩ denotes the Macauley bracket. As a consequence of the regularization, the nodal Lagrange multipliers are no longer
primary variables. For a comprehensive treatment of penalty-regularized mortar finite element methods, the interested reader is
referred to [27].
6 
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Remark 2.4.1. The choice of the penalty parameter affects the accuracy of the contact problem. To circumvent prohibitively large
penetration for too low values of the penalty parameter as well as ill-conditioning for too high values of the penalty parameter, an
adaptive penalty parameter scaling can be employed as shown in [31].

The semi-discrete thermal problem is achieved by substituting (19) and (20) in (3) and reads:

𝐌𝑇 �̇� + 𝐟 int
𝑇 (𝐝,𝐓) − 𝐟ext

𝑇 + 𝐟 𝑐𝑇 = 𝟎, (25)

where 𝐌𝑇 is the constant heat capacity matrix, 𝐟 int𝑇 , 𝐟 ext𝑇 , and 𝐟 𝑐𝑇 are the nodal thermal internal, external, and contact forces,
espectively. In (25), 𝐌𝑇 �̇�, 𝐟 int𝑇 , 𝐟 ext𝑇 , and 𝐟 𝑐𝑇 result from the virtual work contributions 𝛿 iner

𝑇 , 𝛿 int
𝑇 , 𝛿ext

𝑇 , and 𝛿c
𝑇 , respectively.

For simplicity, the external forces (𝐟 ext𝑢 and 𝐟 ext𝑇 ) are assumed to be independent of the displacement and temperature field.
Next, the temporal discretization of the solid dynamics problem is achieved using a generalized-𝛼 time integration scheme. The

discrete solid mechanics problem for the time interval [𝑡𝑛, 𝑡𝑛+1] with step 𝛥𝑡 reads

𝐫𝑢
(

𝐝𝑛+1,𝐓𝑛+1) = 𝐌𝑢 �̈�𝑛+1−𝛼𝑢,𝑀 + 𝐟 int,𝑛+1−𝛼𝑢,𝑓𝑢 − 𝐟 ext,𝑛+1−𝛼𝑢,𝑓𝑢 + 𝐟 𝑐 ,𝑛+1𝑢 = 𝟎, (26)

where the superscript 𝑛 + 1 − 𝛼𝑢,(⋅) denotes quantities evaluated at generalized mid-points within the time interval [𝑡𝑛, 𝑡𝑛+1] based
on generalized-𝛼 parameters 𝛼𝑢,(⋅) (see, e.g., [30,33] for more details). In (26), all terms except 𝐟 int,𝑛+1−𝛼𝑢,𝑓𝑢 and 𝐟 𝑐 ,𝑛+1𝑢 are evaluated
in a standard manner, i.e., the value at the generalized mid-point is obtained by linearly combining the values at 𝑡𝑛 and 𝑡𝑛+1 (see,
e.g., [30,32]). In contrast, the contact force 𝐟 𝑐𝑢 is computed at 𝑡𝑛+1 to avoid an undesirable violation of energy conservation in the
discrete system in the event of a changing active contact surface as stated in [30]. The evaluation of the deformation gradient,
lastic right Cauchy–Green tensor and stress tensor, as required to compute the nodal internal force vector 𝐟 int,𝑛+1𝑢 from 𝛿 int

𝑢 , is
onducted as follows: The total deformation gradient at 𝑡𝑛+1 is given as

𝑭 𝑛+1 = 𝑭 𝑛+1
𝑒 𝑭 𝑛+1

𝑖𝑛 . (27)

To avoid numerically involved linearizations of the principal stretch directions 𝑵𝐶 , the inelastic deformation gradient 𝑭 𝑛+1
𝑖𝑛 at 𝑡𝑛+1

s approximated according to

𝑭 𝑛+1
𝑖𝑛 =

3
∑

𝑖=1
𝜆𝑖,𝑛+1𝑖𝑛 𝑵 𝑖,𝑛

𝐶 ⊗𝑵 𝑖,𝑛
𝐶 , (28)

where the magnitude of the inelastic expansion is found by explicit time integration of the corresponding rate equation (6) using an
xplicit Euler scheme, i.e., 𝜆𝑖,𝑛+1𝑖𝑛 = 𝜆𝑖,𝑛𝑖𝑛 + �̇�𝑖,𝑛𝑖𝑛 𝛥𝑡 with �̇�𝑖,𝑛𝑖𝑛 = 𝑓 (𝑇 𝑛,𝑺𝑛, 𝛼𝑛). Here, 𝑵 𝑖,𝑛

𝐶 is computed from the spectral decomposition of
𝑛. The elastic deformation gradient results from 𝑭 𝑛+1

𝑒 = (𝑭 𝑛+1
𝑖𝑛 )−1𝑭 𝑛+1, and the right Cauchy–Green tensor is determined according

o

𝑪𝑛+1
𝑒 = (𝑭 𝑛+1

𝑒 )T𝑭 𝑛+1
𝑒 . (29)

Finally, the second Piola–Kirchhoff stress tensor is computed as

𝑺𝑛+1 = 2(𝑭 𝑛+1
𝑖𝑛 )−1

𝜕 𝛹𝑒(𝑪𝑛+1
𝑒 )

𝜕𝑪𝑛+1
𝑒

(𝑭 𝑛+1
𝑖𝑛 )−T. (30)

In a similar fashion, the fully discrete thermal problem is achieved based on a generalized-𝛼 time integration scheme and reads

𝐫𝑇
(

𝐝𝑛+1,𝐓𝑛+1) = 𝐌𝑇 �̇�𝑛+𝛼𝑇 ,𝑀 + 𝐟 int,𝑛+𝛼𝑇 ,𝑓
𝑇 − 𝐟ext,𝑛+𝛼𝑇 ,𝑓

𝑇 + 𝐟 𝑐 ,𝑛+𝛼𝑇 ,𝑓𝑇 = 𝟎. (31)

Finally, the solution of the coupled non-linear problem (26) and (31) is found in a monolithic manner using the classical Newton–
aphson method with consistent linearization. The linearized system is solved using iterative solvers based on preconditioners such
s AMG(BGS) as studied in [33,34].

3. Mesh adaptation

The proposed mesh adaptation consists of two steps: mesh refitting and subsequent data transfer. In the mesh refitting step we
construct a ‘‘new mesh’’ with improved quality compared to the ‘‘old mesh’’. The ‘‘old mesh’’ is the starting point of this procedure
and usually exhibits heavily distorted elements, i.e., a low mesh quality. In the second step, the associated data, e.g., nodal primary
ariables and history variables of the material model defined at quadrature points, is transferred from the old mesh to the new
ne. These two steps are described in the following. All methods presented throughout this article are implemented in our in-house
arallel multi-physics research code 4C [35].

3.1. Mesh refitting

The objective of the mesh refitting (MR) step is to achieve high-quality elements which are less distorted while preserving the
topology of the boundary, i.e., the total volume of the domain. Thereto, we define an element distortion potential and solve for the
minimum of this potential during the mesh refitting step, thus minimizing the distortion of the finite element mesh. As mentioned
before, an additional requirement for the MR step is the preservation of the boundary topology, which requires to prohibit motion
of boundary nodes in the direction normal to the boundary of the problem. However, motion of the boundary nodes should be
7 
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Fig. 2. Geometry with sharp edge. The slave and master bodies are denoted by 𝛺𝑆 and 𝛺𝑀 , respectively. The sliding surfaces of the slave and master meshes
are represented by 𝛤 (1)

𝑚 and 𝛤 (2)
𝑚 . At the corner node 𝑗, the tangent vector is 𝝉𝑗 , and the averaged normal vector is 𝒏𝑗 , with 𝒏1𝑗 and 𝒏2𝑗 representing the two

distinct normal vectors at this node. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

permitted in tangential direction to allow for an optimal mesh relaxation also in the domains close to the boundary. This aspect is
crucial for problems involving interface phenomena such as contact mechanics, which often result in a strong mesh distortion at the
boundaries of the interacting bodies. These two requirements, i.e., prohibiting the normal displacement component while allowing
free tangential movement for boundary nodes will be fulfilled by employing a novel mortar mesh sliding approach.

In the following, the mortar mesh sliding approach (Section 3.1.1) is presented, followed by the definition of the element
distortion potential in Section 3.1.2. Finally, in Section 3.1.3, the complete description of the MR problem is given.

3.1.1. Mesh sliding approach
Mesh sliding denotes a relative motion at the interface of two meshes that allows for free tangential sliding without detach-

ment. To formulate such a constraint, the two bodies in Fig. 1 shall be considered, which are initially in contact. To enforce
non-detachment, the normal gap has to remain zero during the motion, i.e.,

𝑔𝑛 = 0. (32)

Since no resistance with respect to tangential relative motion shall be applied, the tangential component of the interface traction
vector has to vanish, similar to the friction-less contact scenario discussed before:

𝒕𝝉 ⋅ 𝝉 = 0. (33)

Identical to the mechanical contact case in Section 2.3, the contribution of the mesh sliding constraint to the virtual work of the
mesh refitting problem in terms of the Lagrange multiplier 𝝀𝑚 can be written as:

𝛿𝑢 = −∫𝛾(1)𝑐

[[𝛿𝒖]] ⋅ 𝝀𝑚 d𝛾 = ∫𝛾(1)𝑐

𝛿 𝑔𝑛𝜆𝑚,𝑛 d𝛾 = 0, (34)

where the normal component of the Lagrange multiplier is 𝜆𝑚,𝑛 = 𝝀𝑚 ⋅ 𝒏. Following the mortar finite element formulation presented
above, the spatially discretized mesh sliding force vector 𝐟𝑚𝑢 is identical to the vector 𝐟 𝑐𝑢 in (22). The only difference between the
mesh sliding approach and the friction-less contact case presented above is given through the constraints (13) and (32), where the
former represents an inequality constraint and the latter an equality constraint. Keeping this difference in mind, the mesh sliding
constraints are enforced through a regularization based on the discretized weighted nodal gap �̃�𝑛,𝑗 (see (23)) and a penalty parameter
0 < 𝜖𝑚 < ∞, which yields for node 𝑗:

𝜆𝑚,𝑛,𝑗 = 𝝀𝑚,𝑗 ⋅ 𝒏𝑗 = −𝜖𝑚�̃�𝑛,𝑗 , 𝝀𝑚,𝑗 ⋅ 𝝉𝑗 = 0 ∀𝑗 ∈  . (35)

The significant difference between the penalty regularization of the mesh sliding (35) and the mechanical contact (24) is the
Macaulay brackets. They must be used in contact mechanics because contact forces only exist if the gap is negative. In contrast, in
mesh sliding, the forces exist regardless of the sign of the gap to prevent penetration and detachment.

Remark 3.1.1. We employ mesh sliding to allow free tangential sliding on relatively smooth surfaces to minimize mesh distortions
close to the interface. However, due to the construction of the mesh sliding constraints, it is inherent to the method that sharp edges
or corners in the mesh sliding interface can lead to a penetration of the bodies at this interface. To explain this issue, we consider a
square body 𝛺𝑆 with a corner node 𝑗 and an L-shaped body 𝛺𝑀 as shown in Fig. 2. As it is not straightforward to define the normal
at a corner node since the normals of the adjacent edges are not parallel (𝒏1𝑗 ,𝒏2𝑗 ), we apply a common strategy from computational
contact mechanics, i.e. we construct an averaged normal (𝒏𝑗) at the corner. The averaged normal (𝒏𝑗) at the corner 𝑗 points along
the diagonal of the square (green vector), and the tangential vector (red vector) are constructed as shown in Fig. 2. According to
the definition of the mesh sliding constraint, the nodes are free to move in the tangent plane. As a consequence, the node 𝑗 can
penetrate into 𝛺𝑀 , keeping the gap zero in a weighted sense, i.e., �̃�𝑛,𝑗 = 0.

In this work for the numerical examples showcased in Section 4, the discussed phenomenon is avoided by applying a displacement
Dirichlet boundary condition 𝒖 = 𝟎 (equivalent to mesh tying) to the slave and master nodes of sharp corners or edges. As a result,
there is no relative motion between the slave and master side.
8 
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Fig. 3. Illustration of edge vectors defined to formulate included angle and edge constraints for a hexahedral element.

3.1.2. Element distortion potential
Generally, mesh quality can be measured in geometric quantities such as skewness and aspect ratio. The skewness quantifies

the angles enclosed by the element faces or edges, whereas the aspect ratio measures the ratio of the dimensions of elements in
different spatial directions. In this work, we control the element size and aspect ratio by enforcing constraints on the element edge
lengths, denoted as 𝐺𝐸 , and the skewness by enforcing constraints on the angles enclosed by the element edges, denoted as 𝐺𝐴.

Remark 3.1.2. It is known that certain finite element formulations are sensitive to specific element distortions (e.g. trapezoidal vs
parallelogram). In such cases, it is straightforward to include this knowledge in the definition of the element distortion potential.

We demonstrate the formulation of these constraints using an 8-noded hexahedral element, which is the finite element type
employed in the numerical examples of this work. As shown in Fig. 3, we first define 12 edge vectors 𝒗𝑖𝑗 . Here, the superscript
𝑖 ∈ {1, 2, 3} denotes the direction 𝒆𝑖 associated with the orientation of the edge in parameter space. The subscript 𝑗 ∈ {1, 2, 3, 4}
represents a counting index for the four individual edge vectors pointing to a given direction 𝑖. As illustrated in Fig. 3, each edge
vector is defined as the difference vector between the (current) spatial position vectors of the two nodes associated with the edge
vector. From these individual edge vectors, an averaged edge vector �̄�𝑖 is defined as

�̄�𝑖 = 1
4

4
∑

𝑗=1
𝒗𝑖𝑗 . (36)

Based on these definitions, the edge and angle constraints will be formulated in the following.

Edge constraints 𝐺𝑖
𝐸

To impose specific edge lengths on elements, we apply constraints on both, the average edge vectors �̄�𝑖 and the individual edge
vectors 𝒗𝑖𝑗 , which are denoted as �̄�𝑖

𝐸 and 𝐺𝑖
𝐸 , respectively. The constraint �̄�𝑖

𝐸 on the average edge vector in direction 𝒆𝑖 is defined
as

�̄�𝑖
𝐸 =

√

�̄�𝑖 ⋅ �̄�𝑖

𝑙𝑖r
− 1 !

=0 for 𝑖 = 1, 2, 3, (37)

with 𝑙𝑖r denoting a target element edge length in direction 𝒆𝑖 to be prescribed. This constraint enforces the length 𝑙𝑖r on the average
edge vector �̄�𝑖. In a next step, the constraint 𝐺𝑖

𝐸 is defined according to
(

𝐺𝑖
𝐸
)

𝑗 =
𝒗𝑖𝑗 ⋅ 𝒗

𝑖
𝑗

�̄�𝑖 ⋅ �̄�𝑖
− 1 !

=0 for 𝑖 = 1, 2, 3, 𝑗 = 1, 2, 3, 4, (38)

which enforces that each individual edge vector equals the associated average edge vector. Prescribing a spatial distribution function
for the element size will be called mesh localization throughout this work. It can be achieved by prescribing spatial functions for the
target lengths, i.e., 𝑙𝑖r = 𝑙𝑖r(𝑿). To sum up, so far we have defined 15 constraints associated with element size and aspect ratio, 3 on
the average edge vectors and 12 on the individual edge vectors.

Angle constraints 𝐺𝑚𝑛
𝐴

Next, we construct angle constraints considering the angle enclosed by a pair of edge vectors 𝒗𝑖𝑗 with shared node. For example,
the angle constraints 𝐺𝑚𝑛 for node ‘‘0’’ are formulated as (c.f. Fig. 3)
𝐴
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𝐺12
𝐴 =

𝒗11 ⋅ 𝒗
2
1

‖𝒗11‖‖𝒗
2
1‖

− cos 𝜃12r
!
=0,

𝐺13
𝐴 =

𝒗11 ⋅ 𝒗
3
1

‖𝒗11‖‖𝒗
3
1‖

− cos 𝜃13r
!
=0, (39)

𝐺23
𝐴 =

𝒗21 ⋅ 𝒗
3
1

‖𝒗21‖‖𝒗
3
1‖

− cos 𝜃23r
!
=0,

where 𝜃12r , 𝜃13r , and 𝜃23r are the enclosed target angles to be achieved. To achieve perpendicular edges, we set 𝜃12𝑟 = 𝜃13𝑟 = 𝜃23𝑟 = 𝜋∕2.
Likewise, angle constraints can be formulated for all remaining nodes. To conclude, we have formulated 24 angular constraints in
(i.e., three constraints for each of the eight nodes).

Constraint enforcement
Finally, we enforce these constraints on basis of a distortion potential with penalty parameters �̄�𝐸 , 𝜀𝐸 and 𝜀𝐴 given as

𝜋𝑑 = 1
2
�̄�𝐸

𝑛𝑑 𝑖𝑟
∑

𝑖=1
�̄�𝑖
𝐸�̄�

𝑖
𝐸 + 1

2
𝜀𝐸

𝑛𝑑 𝑖𝑟
∑

𝑖=1

4
∑

𝑗=1

(

𝐺𝑖
𝐸
)

𝑗
(

𝐺𝑖
𝐸
)

𝑗 +
1
2
𝜀𝐴

𝑛𝑛𝑜𝑑 𝑒
∑

𝑛=1

(

𝐺12
𝐴 𝐺12

𝐴 + 𝐺13
𝐴 𝐺13

𝐴 + 𝐺23
𝐴 𝐺23

𝐴
)

𝑛, (40)

where 𝑛𝑑 𝑖𝑟 = 3 is the number of spatial directions and 𝑛𝑛𝑜𝑑 𝑒 = 8 is the number of nodes. In the following, the meaning of the
different constraint contributions shall be briefly discussed. Clearly, the constraints 𝐺𝑖

𝐸 penalize deviations of the individual edge
lengths from the average edge length in a given direction, i.e., they enforce the element shape to equal a parallelepiped in the limit
of 𝜀𝐸 → ∞. If additionally also the angular constraints 𝐺𝐴 with target angles 𝜃12𝑟 = 𝜃13𝑟 = 𝜃23𝑟 = 𝜋∕2 are enforced, the element
will tend towards a cuboid shape. Eventually, if equal target lengths are chosen for the constraints �̄�𝑖

𝐸 , i.e., 𝑙1𝑟 = 𝑙2𝑟 = 𝑙3𝑟 =∶ 𝑙𝑟, the
element will approach a cubic shape. Finally, the absolute value of 𝑙𝑟 determines how a shape-preserving scaling of the element
size will be penalized. For example, by choosing 𝑙𝑟 as the initial edge length of a regular mesh with cubic elements, every (even
shape-preserving) deviation from the initial element size will be penalized. Clearly, the chosen set of 15 + 24 constraints per element
is redundant, since an hexahedral element with 8 nodes only exhibits 24 degrees of freedom (including 6 rigid body modes changing
neither the shape nor the size of the element). However, this over-constraining is no problem when employing a penalty potential for
constraint enforcement. Moreover, this specific choice of (redundant) constraints allows to independently control different modes of
element distortion (with different effect on the mesh quality), as elaborated above. In addition, the chosen set of constraints leads
o a distortion potential that is symmetric with respect to the node numbering, i.e., the result will not change if the node numbering
s changed for a given mesh. In conclusion, it is emphasized that the definition of an element distortion potential is not unique.
he specific choice presented above has proven effective in the numerical test cases we have investigated so far. In particular, the
pecification �̄�𝐸 = 𝜀𝐸 =∶ 𝜀𝐴 turned out as a robust choice and will be used in the remainder of this work.

Demonstration example: Effect of target element edge lengths
To conclude this section, the effect of the element constraints shall be demonstrated using the numerical example shown in Fig. 4.

Consider the truncated rectangular pyramid-shaped body in Fig. 4a meshed with 42 hexahedral elements. The body is freely
supported in the first quadrant, so that rigid body modes are suppressed. We solve the constraint equations (40) (see next section, for
details of the solution procedure) with equal target lengths (see (37)) in all directions, i.e. 𝑙1r = 𝑙2r = 𝑙3r and 𝜃𝑚𝑛𝑟 = 𝜋∕2. The resulting
geometry is shown in Fig. 4b. As expected the obtained geometry is rectangular with cubic elements. When 𝑙1r ≠ 𝑙2r ≠ 𝑙3r and 𝜃𝑚𝑛𝑟 = 𝜋∕2
he resulting geometry remains rectangular and contains rectangular elements as illustrated in Fig. 4c. This shows that the suggested

approach is suitable to obtain elements of a specific desired shape. It is emphasized that this example has been designed to visualize
the isolated effect of the element distortion potential without imposing mesh sliding constraints at the boundaries. Thus, in contrast
to actual mesh refitting problems, the mesh in this demonstration example is not required to preserve the boundary contour of the
discretized body.

3.1.3. Problem description of mesh refitting method
Let the old mesh be defined on the domain 𝛺𝑚 ⊂ 𝛺𝑡 with boundary 𝛤 (1)

𝑚 ∶= 𝜕 𝛺𝑚. We apply the mesh sliding approach from
above (see Section 3.1.1) to preserve the boundary contour of a given body while allowing for tangential sliding. This will be
done only for the boundary nodes without prescribed Dirichlet boundary condition, i.e., only for nodes on the boundary 𝛤 (1)

𝑚 ⧵ 𝛤𝑢.
From a technical point of view, to enable the mesh sliding approach in the same sense as typical for mortar interface problems,
we replicate the discretized boundary 𝛤 (1)

𝑚 and denote this auxiliary boundary as 𝛤 (2)
𝑚 (see Fig. 5). Since 𝛤 (2)

𝑚 and 𝛤 (1)
𝑚 coincide,

a one-to-one mapping between the nodes on these boundaries exists, i.e., nodal positions can be transferred in a straight-forward
anner from 𝛤 (1)

𝑚 to 𝛤 (2)
𝑚 . It is emphasized that the auxiliary boundary 𝛤 (2)

𝑚 is only required to represent a fictitious interaction
partner to apply the standard mesh-sliding method to the boundary nodes of the original mesh on 𝛤 (1)

𝑚 . This means, that the nodal
position and displacement values on the auxiliary boundary 𝛤 (2)

𝑚 remain fixed, i.e., are prescribed per Dirichlet boundary condition,
and the mesh-refitting problem does not need to be solved for these nodes.

Remark 3.1.3. To prevent changes in the topology of the body, the movement of the corner nodes must be avoided during mesh
refitting. In this work, it is achieved by applying a displacement Dirichlet boundary condition 𝒖 = 𝟎.
10 
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Fig. 4. Illustration of constraints: (a) initial geometry (b) resulting geometry when elemental constraints with 𝑙1r = 𝑙2r = 𝑙3r and 𝜃𝑚𝑛𝑟 = 𝜋∕2 are applied on (a), and
(b) when 𝑙1r ≠ 𝑙2r ≠ 𝑙3r with 𝜃𝑚𝑛𝑟 = 𝜋∕2 are applied on (a).

Fig. 5. Illustration of mesh sliding interface surfaces with auxiliary boundary 𝛤 (2)
𝑚 .

The complete MR problem is performed after solving the fully discretized thermo-mechanical problem for time step 𝑡𝑛+1, as
described in Section 2.1. The solution of the mesh refitting problem is defined as the stationary value of the following total potential

𝜋𝑑 + 𝜋𝑚 → stat., (41)

where the element distortion potential 𝜋𝑑 is given in (40) and 𝜋𝑚 represents an abstract potential for mesh sliding constraint
enforcement (e.g., a Lagrange multiplier or a penalty potential; the latter approach is used in the examples presented in the following)
whose variation is given by the discretized form of (34). Similar to the weak form of our physical (thermo-mechanical) problem, as
necessary condition for a stationary value the variation of the discrete potential (41) has to vanish, leading to the following system
of nonlinear (residual) equations:

𝐟𝑑𝑢 + 𝐟𝑚𝑢 = 𝟎, (42)

where 𝐟𝑑𝑢 = 𝜕 𝜋𝑚
𝜕𝐝 is the gradient of the discrete element distortion potential (40) and 𝐟𝑚𝑢 is the nodal mesh sliding force vector according

to Section 3.1.1 (see Appendix A for more details). The solution of the non-linear system (42) is found using a Newton–Raphson
scheme based on a consistent linearization.
11 
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Fig. 6. Frictional sliding of a rigid cylinder with a diameter of 0.25 over a rectangular block of dimensions 1 × 0.25 × 0.125: (a) and (b) show the initial
configuration. (c) illustrates the final deformed state without mesh refitting. (d) shows mesh refitting with fixed boundaries for the deformed state in (c). (e)
presents mesh refitting with mesh sliding for the deformed state in (c).

Remark 3.1.4. It should be noted that sometimes it is useful to execute an ‘‘artificial time step’’ after mesh adaptation (i.e. after
mesh refitting and data transfer) to rebuild the dynamic equilibrium.

Remark 3.1.5. In this work, the reference configuration of the MR problem is updated with the (converged) current configuration
of the old mesh. This means that the current state of the old mesh becomes the reference state of the MR problem. By updating
the reference configuration of the MR problem with the current configuration of the old mesh the MR procedure gets more robust
because the MR problem is thereby independent of the original reference configuration.

Demonstration example: Influence of mesh sliding approach
Next, we demonstrate the benefits arising from the use of the mesh sliding algorithm compared to keeping boundary nodes

fixed using two numerical examples in Figs. 6 and 7. These examples are provided for illustration and a better understanding of
these specific effects only and are not designed to demonstrate the extreme cases that our approach can handle. First, consider the
isothermal frictional sliding of a rigid cylinder over a rectangular block as shown in Fig. 6. The rigid cylinder has a diameter of
0.25 with height 0.125, and the rectangular block has the dimensions 1 × 0.25 × 0.125 (see Figs. 6(a) and 6(b)). The rectangular
block is meshed with 2500 cubic 8-noded hexahedral elements and is modeled with a finite strain hyperelastoplastic material model
as studied in Section 3.4.2.5 of [36]. The isothermal frictional contact is modeled using the mortar penalty method presented
in [37]. The motion of the cylinder is completely displacement-controlled. First, the cylinder is pressed onto the rectangular block
by displacing the cylinder through 0.005 in the −𝑦 direction. Next, the cylinder is moved from 𝑥 = 0.25 to 𝑥 = 0.75 in a straight
12 
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Fig. 7. Elasto-plastic punching of a rectangular block of dimensions 0.5 × 0.5 × 0.25 by a rigid sphere of outer radius 0.25: (a) reference configuration. (b) final
deformed state without mesh refitting. (c) The solution of the same physical problem with accompanying mesh refitting after every time step with mesh sliding
and (d) with fixed boundary, respectively. In the subfigures (b)–(d), the rigid sphere is hidden to provide a clear view of the deformed zone. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

line. This procedure induces elastic and plastic deformation on the top surface of the block as shown in Fig. 6(c). It can be seen that
the boundary elements underneath the cylinder (shown in a red dashed circle) have experienced shear distortion and this boundary
is under consideration for mesh sliding. At this deformed state, the presented mesh refitting is performed with fixed boundary and
mesh sliding and the resulting new mesh configurations are illustrated in Figs. 6(d) and 6(e). When MR is performed with a fixed
boundary, the original cubic shape of the elements cannot be restored, as is evident from the elements within the yellow dashed
circle in Fig. 6(d). However, in MR with mesh sliding (see Fig. 6(e)), the refitted mesh in the whole domain, and in particular in the
region below the cylinder (shown in a green dashed circle), resembles the initial uniform mesh, i.e., cubic elements. This is achieved
by the free tangential sliding of the boundary nodes in the mesh refitting step. In short, in case of pure shear at the boundary, the
quality of the refitted mesh is close to the initial mesh after applying the mesh sliding approach.

The second example investigates the punching of a rectangular block by a rigid sphere. Only a quarter part is modeled exploiting
the symmetry of the problem configuration (see Fig. 7(a)). The quarter rectangular block of size 0.5 × 0.5 × 0.25 is modeled with a
hyperelastoplastic model, the same as in the first example, and meshed with 13500 cubic 8-noded hexahedral elements. The rigid
13 
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quarter sphere has an outer radius of 0.25 and is represented by the blue colored body in Fig. 7(a). Isothermal frictionless contact
is applied as presented in Section 2.3. The sphere segment is moved vertically downwards by a distance equal to half of the block
hickness, i.e., 0.125, in 125 load steps. This induces elastic and plastic deformations in the rectangular block as depicted in Fig. 7(b).

The elements near the upper surface of the block are largely distorted, especially in the transition region between the contact and
on-contact areas (highlighted by the red dashed circle in Fig. 7(b)). This boundary is considered for mesh sliding. Mesh refitting

was carried out at every time step using two different variants, one with fixed boundary and one with mesh sliding. In MR with mesh
sliding, as shown in the Fig. 7(c), mesh contains less distorted elements at the boundary and inside the volume. Furthermore, the
ontact area has more elements than the original problem. Moreover, the gradual transition of element shape from the boundary to

the volume, as highlighted in the green dashed circle in Fig. 7(c), shows a significant improvement. MR with fixed boundary nodes
can lead to a strong mesh distortion in the boundary region, which can in turn deteriorate the convergence of nonlinear solvers.
In this example, convergence using the Newton–Raphson scheme could not be achieved with the same number of load steps when
boundary nodes were fixed. Instead, the number of load steps had to be increased to 250, i.e., doubled, to achieve convergence.
In addition, even the penalty parameters for MR had to be reduced. The resulting mesh, illustrated in Fig. 7(d), reveals that the
quality of the mesh at the boundary does not show significant improvement when compared to MR with mesh sliding, as evident
in the yellow dashed circle.

For both shown examples, no significant improvement of the mesh quality could be achieved if the boundary nodes where kept
ixed. Thus, mesh sliding is required to obtain a proper mesh relaxation also in boundary regions, especially for problems with large
oundary distortion.

3.1.4. Algorithmic aspects of the mesh refitting method
In the following, more detailed algorithmic aspects of the overall mesh refitting approach will be presented.

Target shape incrementation scheme
The non-linear problem in (42) may not be solvable in one step if the old mesh is heavily distorted. To improve convergence

of the Newton–Raphson scheme we employ an incrementation approach to the target lengths in (37) and target angles in (39).
Thereto, we define 𝑁 incrementation steps for the mesh refitting algorithm during which the incrementation factor 𝛼𝑛𝑖𝑛𝑐 ∈ [0, 1],
with 𝑛𝑖𝑛𝑐 ∈ 1,… , 𝑁 , is increased from 0 to 1. Let 𝑙𝑖𝑒0 and 𝜃𝑖𝑗𝑒0 be the element average lengths and angles of the original distorted mesh
t the beginning of the MR algorithm (updated reference configuration). Moreover, 𝑙𝑖r and 𝜃𝑖𝑗r are the target element edge lengths
nd angles to achieve. Then, for the current incrementation step 𝑛𝑖𝑛𝑐 , the elemental target lengths and angles are defined as

(

𝑙𝑖r
)

𝑛𝑖𝑛𝑐
= 𝑙𝑖𝑒0 + 𝛼𝑛𝑖𝑛𝑐

(

𝑙𝑖r − 𝑙𝑖𝑒0
)

, (43)
(

𝜃𝑖𝑗r
)

𝑛𝑖𝑛𝑐
= 𝜃𝑖𝑗𝑒0 + 𝛼𝑛𝑖𝑛𝑐

(

𝜃𝑖𝑗r − 𝜃𝑖𝑗𝑒0
)

. (44)

For the numerical examples considered in this work, the target angles are set to 𝜃𝑖𝑗r = 𝜋∕2.

Remark 3.1.6. The target incrementation scheme is similar to a classical substepping procedure. When a Newton step is not
converged the step size is subdivided. However, when a prescribed number of consecutive subs-steps converges in a few iterations,
the sub-step size can be increased again.

Uniform mesh regularization
The aim of a purely uniform mesh regularization is to achieve uniform element sizes and shapes inside the entire problem

omain. To achieve this goal, we prescribe the target element edge lengths as the average element edge length within the total
roblem domain determined for the (original) distorted mesh. The average edge length 𝑙𝑖r is defined as

𝑙𝑖r =
1
𝑁𝑒

𝑁𝑒
∑

𝑗
‖(�̄�𝑖)𝑗‖, (45)

where 𝑁𝑒 is the number of elements in 𝛺𝑚 and the index 𝑖 refers to the direction 𝒆𝑖 in parameter space.

Mesh localization
To achieve different target element edge lengths at different locations of the problem domain, we define a continuous spatial

distribution function for 𝑙𝑖r:

𝑙𝑖r(𝑿) = 𝑙𝑖r0𝑓 (𝑿), (46)

where 𝑓 (𝑿) is a spatial function and 𝑙𝑖r0 is a reference value of the target element edge length; for instance, it can be an average
ength as defined in (45). In this work, we employ the following exponential function:

𝑓 (𝑿) = 1 + exp (−𝑐‖𝑿 −𝑿0‖
2), (47)

where the parameter 𝑐 controls the rate of decay of the function when departing from the reference point 𝑿0. According to (47), the
distribution function 𝑙𝑖r(𝑿) reproduces the reference value 𝑙𝑖r0 when evaluated at the reference point 𝑿0. In practice, the reference
oint 𝑿0 typically represents a location of the physical problem, which is characterized by strong gradients of the primary variables
ccompanied by a significant mesh distortion. Thus, the mesh localization approach allows to have smaller elements, i.e., a higher
esh resolution, at this location. Moreover, to enforce a high mesh quality, i.e., small element distortions, at this critical location,

lso the penalty parameters may be prescribed as spatial functions based on (47), i.e., 𝜀 (𝑿) = 𝜀 𝑓 (𝑿) and 𝜀 (𝑿) = 𝜀 𝑓 (𝑿).
𝐸 𝐸0 𝐴 𝐴0
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Fig. 8A. Illustration of mesh regularization and localization: (a) an initial distorted mesh. (b) and (c) show uniformly regularized and localized meshes, with
smaller elements at the center of the square, both with �̄�𝐸 = 𝜀𝐸 = 𝜀𝐴 = 0.01.

Demonstration example: Uniform mesh regularization and localization
Uniform mesh regularization and localization shall be illustrated by a 2-dimensional numerical example defined on a 2 × 2

domain. The initial distorted mesh is created by 40 unequal divisions of the edges resulting in 1600 elements as illustrated
in Fig. 8A(a). To achieve a uniform regularized mesh, we set the target lengths to an average length according to (45). The
resulting meshes for different penalty parameter combinations are shown in Figs. 8A(b), 8B(d), and 8B(f), which clearly confirm
the underlying idea of the uniform mesh regularization approach. However, it can be observed that, irrespective of the choice of
the penalty parameters, the exact solution, i.e., cuboid shapes, is recovered. On the other hand, a localization is achieved using
an exponential function according to (47) with 𝑙𝑖r0 = 0.025, 𝑐 = 0.1, and 𝑿0 representing the center of the domain. The resulting
mesh for different penalty parameter combinations are portrayed in Figs. 8A(c), 8B(e) and 8B(g). As desired, this approach allows
to achieve a higher mesh resolution with very regular elements at the location of interest, i.e., the center of the domain. Of course,
this ansatz compromises the mesh quality in other regions of the problem setup. Nevertheless, it can be very helpful in scenarios
with very strict requirements on the mesh quality in certain regions of the problem.

In the latter case of mesh localization, the choice of the penalty parameters will influence the mesh quality after refitting. The
relative weights will determine the strictness of enforcing the corresponding constraint. For example, on the one hand, a higher
̄𝐸 or 𝜀𝐸 will prioritize controlling the aspect ratio of the mesh over skewness. This is why, in Fig. 8B(e), the angular constraint
is less pronounced in comparison to Fig. 8B(g). On the other hand, a higher 𝜀𝐴 will result in the strict enforcement of the angular
constraint 𝐺𝐴, producing a mesh with lower skewness. This, in combination with mesh localization (discussed in Section 3.1.4),
provides the flexibility to adapt the method to the problem requirements.
15 
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Fig. 8B. Illustration of mesh regularization and localization continued from Fig. 8A: (d) and (e) present uniformly regularized and localized meshes, again with
smaller elements at the center, with �̄�𝐸 = 𝜀𝐸 = 0.015 and 𝜀𝐴 = 0.001. (f) and (g) show similar meshes, but with �̄�𝐸 = 𝜀𝐸 = 0.001 and 𝜀𝐴 = 0.03.

Fig. 9. Illustration of element patch for transferring data from old mesh to new mesh.
16 
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3.2. Transfer of mesh data

Within our overall mesh refitting approach, the transfer of data from the old (distorted) mesh on 𝛺𝑚 to the new (regularized)
mesh on 𝛺′

𝑚 is a critical aspect. The variables to be transferred include nodal primary variables (i.e., displacement and temperature
field) but also internal material variables (e.g., the inelastic deformation gradient) defined at quadrature points. These variables can
be broadly classified as scalars, vectors, and tensors, whereas the latter represents the most challenging case from a data transfer
oint of view. This section presents the main strategy for data transfer as employed in this work including a tensor interpolation
cheme proposed in our recent contribution [22]. It is emphasized that the proposed data transfer schemes are independent of the

mesh refitting scheme proposed in the previous sections, and can be combined with arbitrary mesh regularization, mesh refinement
and remeshing schemes.

Consider an element node or quadrature point located at 𝒙𝑝 in the new mesh 𝛺′
𝑚. To determine the new data at 𝒙𝑝, we interpolate

data from an element patch 𝛺𝑝 ⊂ 𝛺𝑚 within a radius of 𝑟𝑝 around this point (see Fig. 9). Let 𝒙𝑗 ∈ {𝒙1,… ,𝒙𝑁} be a set of position
vectors in 𝛺𝑝, while 𝛼𝑗 ∈ {𝛼1,… , 𝛼𝑁} and 𝑻 𝑗 ∈ {𝑻 1,… ,𝑻𝑁} represent scalar- and tensor-valued data associated with these points.

he methods presented in the following rely on a relative weighting of data considering the distance of the data points from the
interpolation point. For this purpose, we employ the normalized weighting function �̃�(𝒙𝑗 ) according to:

�̃�(𝒙𝑗 ) ∶=
𝑤(𝒙𝑗 )

∑𝑁
𝑗=1 𝑤(𝒙𝑗 )

such that
∑

𝑗
�̃�(𝒙𝑗 ) = 1. (48)

Here the weighting function 𝑤(𝒙𝑗 ) can be any monotonic continuous function that decreases as it moves away from the interpolation
point 𝒙𝑝. For example, an exponential weighting function with control parameter 𝑐 reads:

𝑤(𝒙𝑗 ) = exp (−𝑐‖𝒙𝑗 − 𝒙𝑝‖2
)

. (49)

In the following subsection, we demonstrate methods to compute scalars and tensors at 𝒙𝑝, denoted as 𝛼𝑝 and 𝑻 𝑝.

3.2.1. Scalar interpolation
We employ two different schemes for scalar interpolation, namely the moving least squares (MLS) and the logarithmic moving

east squares (LOGMLS) method. Importantly, the LOGMLS scheme preserves strict positivity of strictly positive data (𝛼𝑗 > 0), but,
n turn, is limited to data exhibiting this property. Furthermore, both methods preserve important additional properties such as
onotonicity of the data. The two schemes are briefly outlined below.

1. Moving least squares (MLS): This variant employs a spatial polynomial approximation which reads

𝛼(𝒙) ∶= 𝒑(𝒙)𝒂, (50)

where 𝒑(𝒙) ∈ R𝑚 is the vector of polynomial basis functions of order 𝑚, and 𝒂 ∈ R𝑚 is the corresponding vector of coefficients.
The unknown coefficient vector 𝒂 is obtained by minimizing the residual

𝑟 =
𝑁
∑

𝑗=1
�̃�(𝒙𝑗 )

(

𝒑(𝒙𝑗 )𝒂 − 𝛼𝑗
)2. (51)

As a prerequisite, the order of the polynomial function 𝑚 must be chosen such that 𝑚 ≤ 𝑁 .
2. Logarithmic moving least squares (LOGMLS)): This method ensures non-negative interpolation of positive quantities. It employs

a moving least squares approximation of a logarithmically transformed scalar field:

𝛼(𝒙) ∶= exp(𝒑(𝒙)𝒂). (52)

In this approach, the unknown vector of coefficients 𝒂 is found by minimizing the residual

𝑟 =
𝑁
∑

𝑗=1
�̃�(𝒙𝑗 )

(

𝒑(𝒙𝑗 )𝒂 − ln(𝛼𝑗 )
)2. (53)

For a detailed analysis of these two methods the reader may refer to our previous work [22].

3.2.2. Tensor interpolation
We employ rotation vector-based methods for tensor interpolation proposed in our previous work [22]. These methods exploit

the polar and spectral decomposition of the tensor data according to 𝑻 𝑗 = 𝑹𝑗𝑸𝑇
𝑗 𝜦𝑗𝑸𝑗 , where 𝑹𝑗 , 𝑸𝑗 ∈ SO(3) are rotation tensors

and 𝜦𝑗 is the positive definite diagonal tensor containing the eigenvalues of 𝑻 𝑗 . The general strategy for tensor interpolation relies on
an individual interpolation of the rotation tensors and the eigenvalues contained in 𝜦𝑗 . First, the scalar eigenvalues are individually
nterpolated using the schemes from Section 3.2.1 to finally reconstruct 𝜦𝑝. For interpolation of the rotation tensors 𝑹𝑗 , 𝑸𝑗 specific

schemes are employed that preserve, among others, the objectivity of the underlying mechanical problem and are well-established,
e.g., in the field of geometrically exact beam theories [38]. This step results in the interpolated rotation tensors 𝑹𝑝, 𝑸𝑝. Finally, the
nterpolated tensor 𝑻 𝑝 at 𝒙𝑝 is reconstructed according to 𝑻 𝑝 = 𝑹𝑝𝑸𝑇

𝑝 𝜦𝑝𝑸𝑝.
These interpolation methods are well suited for any invertible second-order tensor. In the context of finite element discretizations

for problems of nonlinear continuum mechanics, tensor-valued history often arises for material models involving, e.g., inelastic
constitutive behavior [39–41] or phase change [42–44]. Generally, these methods have been proven to preserve important properties
f the tensor during interpolation (e.g., positive definiteness, objectivity, etc.) and allow for higher-order spatial convergence [22].
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Fig. 10. Tensor interpolation example: (a) input mesh (b) regularized mesh (c) ellipsoidal representation of input tensor field (d) ellipsoidal representation of
mapped tensor field. The color represents the determinant of the tensor.

Table 1
Material parameters of the expanding material.

Parameter Value

Young’s modulus (𝐸) 1 × 104
Poisson’s ratio (𝜈) 0
thermal conductivity (𝑘0) 7.55 × 106
Heat capacity (𝑐𝑣) 1.4 × 10−2

Table 2
Mesh refitting parameters.

Parameter Value

�̄�𝐸 , ̂𝜀𝐸 , 𝜀𝐴 1 × 10−2
𝜖𝑚 2 × 108
Maximum 𝑛𝑖𝑛𝑐 20
Displacement tolerance 1 × 10−5

Demonstration example: Transfer of tensor data
The tensor interpolation as part of the mesh adaptation approach is portrayed in Fig. 10. Consider an initial mesh as visualized

in Fig. 10(a) with a tensor field as illustrated in Fig. 10(c) (ellipsoidal representation, see [22]). Now, the mesh regularization is
performed as described in Section 3.1.3 and the resulting mesh is shown in Fig. 10(b). For tensor interpolation, we employed the
‘‘R-MLS’’ variant as defined in our previous work [22] to transfer tensor data from the old to the new mesh. From Figs. 10(c) and
10(d) it is evident that the method delivers a smooth interpolation while preserving the magnitude and orientation of the tensor
data when mapped.

4. Numerical results

In this section we show the capabilities of the proposed mesh adaptation scheme using different numerical examples. In the
following examples, the basic units kg, mm, s, and K are used.
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Fig. 11. Example 1: Problem setup with a grey body denoting the expanding material and a violet body representing the rigid obstruction. (a) geometry and
boundary conditions (b) dimensions. A temperature surface Dirichlet boundary condition is applied at 𝛤𝑇 (red line). Moreover, all other boundaries of expanding
material are modeled adiabatic. The thermo-mechanical contact slave (𝛤 (1)

𝑐 ) and master (𝛤 (2)
𝑐 ) boundaries are represented using in orange and green lines. For

the mesh adaptation the mesh sliding surfaces (𝛤 (1)
𝑚 ) are denoted by green and yellow lines. (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Fig. 12. Example 1: Mesh around the corner (a)–(c) without mesh adaptation and (d)–(f) with mesh adaptation for time steps 300, 350, and 400, respectively.

4.1. Expansion past a rigid obstruction

As the first numerical example, we explore a pseudo 2-dimensional expansion past a rigid body as illustrated in Fig. 11. The
geometry and the boundary conditions are depicted in Fig. 11(b) and the corresponding dimensions are given in Fig. 11(a). The
expanding material is modeled as presented in Section 2.2. It’s elastic behavior described by 𝛹𝑒 is modeled using a Neo-Hookean
material model with parameters listed in Table 1. The expansion is restricted to +𝑥 and −𝑦 direction by arresting the normal
displacements as shown in Fig. 11(b). Furthermore, the initial temperature 𝑇0 is set to 198 and a temperature surface Dirichlet
boundary condition 𝑇 = 148 + 345 log10(1 + [(8 × (𝑡+ 3))∕60]) is applied to 𝛤𝑇 . Moreover, all other boundaries are modeled adiabatic.
Finally, to avoid 3-dimensional effects, the displacements in 𝑧−direction are arrested. Both, the expanding and the rigid body are
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Fig. 13. Example 1: Comparison of minimum and maximum skewness over time steps in the corner region around 𝑿𝑐 with radius 𝑟 = 0.1 for the problem with
and without mesh adaptation (MA).

discretized with 8-noded hexahedral elements with 22,500 elements (45,602 nodes) and 6414 elements (13,092 nodes) with one
element in the thickness direction, respectively. For the mortar thermo-mechanical contact, the outer surface of the rigid body is
chosen as the slave side and the surface of the expanding material as the master side. The contact interface is discretized with
4-noded quadrilateral elements, where the contact penalty parameter is set to 𝜖𝑐 = 1 × 108 and the interface conductivity to 𝛽𝑐 = 0,
i.e., modeling adiabatic contact. The thermo-mechanical problem is analyzed for 1000 steps using a time step size 𝛥𝑡 = 0.05. The
nonlinear system of equations resulting in each time step is solved using a Newton–Raphson scheme with a tolerance on the combined
residual and increment of 10−8. The linear monolithic thermomechanical system to be solved in each Newton iteration is approached
by means of an iterative GMRES method with AMG(BGS) preconditioner. The convergence tolerance for the linear solver is set to
10−10.

The accompanying mesh adaptation problem is formulated as follows: to achieve a good quality mesh around the corner 𝑿𝑐
(see Fig. 11(b)), we employ a mesh localization as in (46) and (47) with 𝑐 = 100. The target element edge length (𝑙𝑖r0) in each
time step are estimated as in (45) and mesh refitting parameters as listed in Table 2. The mesh sliding surfaces 𝛤 (1)

𝑚 in reference
configuration are portrayed in the Fig. 11(b). For the Newton–Raphson scheme the convergence tolerance for the residual and the
displacement increment is set to 10−5. Moreover, the linearized system is solved with the ‘‘SuperLU’’ [45] direct solver. After the
mesh refitting step, data needs to be transferred from the old to the new mesh. For the material model as presented in Section 2.2,
the computation of the inelastic deformation gradient 𝑭 𝑛+1

𝑖𝑛 requires 𝑭 𝑛
𝑖𝑛, 𝑭

𝑛, 𝑺𝑛, and 𝑇 𝑛. These quantities have to be transferred to
the new mesh. The tensor data 𝑭 𝑛

𝑖𝑛 is transferred by the ‘‘R-MLS’’ method with quadratic basis (see Section 3.2.2), the deformation
gradient 𝑭 𝑛 is reconstructed from nodal displacements, and the stress 𝑺𝑛 and temperature 𝑇 𝑛 are interpolated as scalar using moving
least square with quadratic basis (see Section 3.2.1). The mesh adaptation is carried out every 15th step starting from step 210.
Finally, the computation is carried out on 2 nodes (48 CPUs) of a computing cluster with Intel Xeon E5-2680v3 2.5 GHz processors.

First, the results without adaption are investigated. As expected, once the expanded material passes the corner, the mesh quality
reduces (see Figs. 12(a)–12(c)). The element skewness around the corner 𝑿𝑐 in the radius 0.1 is plotted over time in Fig. 13. The
element skewness is computed as

𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 = max
( 𝜃𝑚𝑎𝑥 − 90
180 − 90 ,

90 − 𝜃𝑚𝑖𝑛
90

)

∈ [0, 1], (54)

where 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the maximum and minimum included angle (in degree) between the edges. For a cuboid shape 𝜃𝑚𝑎𝑥 = 𝜃𝑚𝑖𝑛 =
90◦ and the skewness is zero (optimal element quality). In contrast, when 𝜃𝑚𝑎𝑥,𝑚𝑖𝑛 → 0, corresponding to a very skewed element, the
skewness value is 1 (worst element quality). From Fig. 13 it can be seen that the skewness increases rapidly, starting from time step
200 to 425. After step 250, the maximum skewness is greater than 0.6, which may affect the accuracy of the solution. At time step
425 (see Fig. 14(a)), the elements are heavily distorted (skewness ≈ 1) such that computation can no longer be continued. However,
a volume increase of about 863% is achieved at this step.

Next, the results including the proposed mesh adaptation scheme are studied. The mesh around the corner is portrayed
in Figs. 12(d)–12(f) and 14(b). Compared to the results without mesh adaptation, a mesh of higher quality is maintained around
the corner (𝑿𝑐) during the expansion. The skewness near the corner is greatly reduced throughout the simulation (see Fig. 13).
A slight increase in skewness can be attributed to the extreme volume expansion and shape change which cannot be completely
avoided. Fig. 14(b) shows the expanded state at step 425, which has exhibits a significantly improved mesh quality as compared
to the simulation without mesh adaptation (see Fig. 14(a)). Moreover, further states at steps 800 and 1000, that could only be
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Fig. 14. Example 1: Deformed state at step (a) 425 without adaptation, (b) 425 with adaptation, (c) 800 with adaptation, and (b) 1000 with adaptation.
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Fig. 15. Example 1: (a) percentage increase in total volume ( 𝑉 −𝑉0

𝑉0
) vs. step. (b) computation time for mesh refitting step 𝑡𝑚𝑟 per incrementation steps 𝑛𝑖𝑛𝑐 and

data mapping 𝑡𝑑 𝑎𝑡𝑎 time for each mesh adaptation step.

Fig. 16. Example 1: Comparison of first principal Cauchy stress (maximum compressive in MPa) at step 420. Subfigures (a) without mesh adaptation and (b)
with mesh adaptation.
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Fig. 17. Example 1: von Mises equivalent stress and first principal Cauchy stress (maximum compressive in MPa) at steps 600 and 990 with mesh adaptation.
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Fig. 18. Example 1: Comparison of first principal Cauchy stress (maximum compressive in MPa) at step 420 before and after data mapping.

Table 3
Material properties of the deformable body.

Parameter Value

Young’s modulus (𝐸) 1 × 104
Poisson’s ratio (𝜈) 0.3
Thermal conductivity (𝑘0) 7.55 × 106
Heat capacity (𝑐𝑣) 1.4 × 10−2

produced/reached when the mesh adaptation is activated, are portrayed in Figs. 14(c) and 14(d). At the end of step 1000, there is
a volume increase of approximately 7553%. The increase in volume over time steps is depicted in Fig. 15(a). The mesh quality at
step 1000 with a volume expansion of 7553% is still significantly better as compared to the simulation without MA at step 425 (at
which the volume increase is only 863%). It has been tested that the expansion process could even be carried out further, which
confirms the robustness of the overall numerical solution scheme.

To get insights into the physical behavior of the investigated material, the first principal Cauchy stress is plotted. The Cauchy
stress is obtained from interpolated second Piola–Kirchhoff stress tensor (see Section 2.2). The first principal Cauchy stress at step
420 resulting from simulations with and without MA is plotted in Fig. 16. At step 420, mesh resulting from a simulation without
MA is heavily distorted (c.f Fig. 14(a)), leading to a rather unphysical stress distribution, namely very high peak stresses within
distorted finite elements in boundary layer, which abruptly drop to significantly smaller stress values in next finite element layers
(see Fig. 16(a)). In contrast, simulation with MA leads to physically more reasonable, i.e., smoother, stress distributions, but still
with highest stress values occurring in boundary region near sharp corner at 𝑿𝑐 (see Fig. 16(b)). Furthermore, first principal Cauchy
stress at steps 600 and 990, plotted in Figs. 17(a) and 17(b), shows a similar trend. As a result, von Mises equivalent stress exhibits
its peak values in this boundary region, as depicted in Figs. 17(c) and 17(d). Finally, Fig. 18 shows the stress distribution before
and after data mapping for step 420. There is a discretization error of approximately 6.1% in the peak value of the stresses, which
can be attributed to the polynomial approximation of the stress field in the data mapping procedure. This aspect along with the
consistent spatial convergence behavior of the data mapping scheme is addressed in the author’s previous publication [22].

The computation time for the mesh adaptation is plotted in Fig. 15(b). The figure portrays the time for the mesh refitting 𝑡𝑚𝑟 per
incrementation step 𝑛𝑖𝑛𝑐 and the data mapping time 𝑡𝑑 𝑎𝑡𝑎 for every mesh adaptation step. Furthermore, the total time for the mesh
adaptation step can be computed as 𝑡𝑚𝑟𝑛𝑖𝑛𝑐 + 𝑡𝑑 𝑎𝑡𝑎. Time 𝑡𝑚𝑟 is the total time spent for the MR including all the necessary setup. For
𝑛𝑖𝑛𝑐 > 1, also the time spent on the unconverged Newton–Raphson iterations is included. On average 𝑡𝑚𝑟 is 13 s. The data transfer
time 𝑡𝑑 𝑎𝑡𝑎 is 4 s and approximately constant. In the initial phase, specifically between steps 200 to 400 (see Fig. 15(a)) the number
of incrementation steps range between 5 to 13. However, as we progress, the incrementation requirement decreases significantly.
From steps 600 to 1000, only two steps are needed for each mesh adaption. During the simulation a total of 52 MA steps were
performed with an average computational time per mesh adaptation step of 56 s. The total simulation time is 10, 960 s, i.e., the
mesh adaptation accounts for a share of approximately 27%.

4.2. Expansion past a rigid obstruction and a deformable body

This example is an extension of the previous example, and the problem setup is illustrated in Fig. 19. The dimensions, material
properties, boundary conditions, and discretization of the expanding and rigid body are the same as in the previous example
(see Fig. 11, Table 1). The length of the deformable body (green) is twice the length of the rigid body, has the same thickness
as the rigid body, and boundary conditions as illustrated in Fig. 19. The material of the deformable body is of Neo-Hookean type
with parameters as given in Table 3. For the thermomechanical mortar contact between the expanding and deformable body, the
boundary of the expanding body is chosen as the master surface 𝛤 (2) and the boundary of the deformable body as the slave surface
𝑐
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Fig. 19. Example 2: Problem setup with a grey body denoting the material in expansion. The blue and green bodies represent the rigid body, and the deformable
body, respectively.

𝛤 (1)
𝑐 (see Fig. 19). Furthermore, the penalty parameter for this contact pair is set to 1 × 107, and the interface conductivity is 𝛽𝑐 = 0,

i.e., adiabatic contact. The deformable body is discretized with 420 linear hexahedral elements. The thermo-mechanical problem is
analyzed for 500 time steps with a step size of 𝛥𝑡 = 0.05. The nonlinear system of equations resulting in each time step is solved
using a Newton–Raphson scheme with a tolerance on the combined residual and increment of 10−8. Again, the linearized monolithic
thermomechanical system is solved using the iterative GMRES method with AMG(BGS) preconditioner with a tolerance of 10−10.

The mesh adaptation problem is formulated as follows: Like in the previous example, to achieve a high mesh quality around the
corner 𝑿𝑐 , we employed a mesh localization according to (46) and (47) with 𝑐 = 100. The target element edge length (𝑙𝑖r0) in a time
step are estimated as in (45). The mesh refitting parameters are the same as for the previous example and are listed in Table 2. The
convergence tolerance for the residual and displacement increment is chosen to 10−5 and the linearized system is solved with the
‘‘SuperLU’’ solver. Again, the data transfer parameters remain the same as in the previous example. The mesh adaptation is carried
out every 5th step starting from step 200. Finally, the computation is carried out on 3 nodes (72 CPUs) of a computing cluster with
Intel Xeon E5-2680v3 2.5 GHz processors.

The mesh resulting from a simulation of the expansion process without and with mesh adaptation is depicted for the time steps
300 and 400 in Figs. 20(a)–20(d), respectively. The mesh near the corner point 𝑿𝑐 (not plotted) shows the same trend as in the
previous example (see Fig. 12). The simulation without mesh adaptation in this example fails at step 400 due to a heavily distorted
mesh near 𝑿𝑐 , leading to non-convergence of the Newton–Raphson scheme. The deformed states resulting from the simulation with
mesh adaptation at time steps 450 and 500 are depicted in Figs. 20(e) and 20(f), respectively. Also in this example, the proposed
MA approach results in a significantly improved mesh quality compared to simulations without MA. The additional presence of
the deformable body in this second example is motivated by a practical application scenario within our broader research interests,
considering seals for such expandable foams. It is demonstrated that even for this highly challenging scenario, i.e., extreme volume
expansion of a foam squeezed through the gap between a rigid and a deformable body including mutual thermo-mechanical contact
interaction, the proposed MA approach allows for a high mesh quality and robust simulations.

Finally, the computational costs for the mesh adaptation procedure are presented in Fig. 21. In contrast to the previous example,
less incrementation steps (≤ 2) are necessary as the mesh adaption frequency is higher. The data transfer time is ≤ 3 s and 𝑡𝑚𝑟 is 15 s
on average. Finally, a total of 60 MA steps are performed during the simulation with an average computation time of 20 s spent for
MA. The total simulation time is 5621 s for this example, i.e., the mesh adaptation accounts for a share of ≈ 20%.

4.3. Inward expansion of a hollow cylinder past a rigid obstruction

Next, the proposed MA approach shall be applied to a complex 3D problem. Thereto, the inward expansion of a hollow cylinder
past a rigid obstruction is investigated. Consider the problem setup depicted in Fig. 22. Due to symmetry, only a quarter portion
of the system is simulated. The hollow quarter cylinder has an outer radius of 𝑟𝑒𝑜 = 4, an inner radius of 𝑟𝑒𝑖 = 3, and a length of
𝑙𝑒 = 1. The rigid body has the same outer radius as the hollow cylinder’s, an inner radius of 𝑟𝑜𝑖 = 2.5, and a length of 𝑙𝑜 = 0.5.
The corner radius of the rigid obstruction has the same dimensions as in Example 1 (see Fig. 11). Also the material model for the
expanding body is the same as in Example 1 (Section 4.1). The initial temperature 𝑇0 is set to 198 and a temperature surface Dirichlet
boundary condition according to 𝑇 = 148 + 345 log10(1 + [(8 × (𝑡 + 3))∕60]) is applied at the outer surface of the expanding cylinder
denoted by 𝛤𝑇 . Moreover, all other boundaries of expanding material are modeled adiabatic. Apart from the symmetry boundary
conditions (see Fig. 22), for the structural problem also the outer surface of the expanding cylinder (denoted by 𝛤𝑢) is fixed. Both, the
expanding and the rigid body are discretized with 8-noded hexahedral elements with 432, 000 elements (449631 nodes) and 14700
elements (18178 nodes), respectively. For the mortar thermo-mechanical contact, the outer surface of the rigid body is chosen as
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Fig. 20. Example 2: (a) and (c) show the mesh without mesh adaptation at steps 300 and 400, respectively; (b) and (d) show the corresponding meshes with
mesh adaptation. (e) and (f) mesh at steps 450 and 500 with mesh adaptation, respectively.
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Fig. 21. Example 2: Computation time for mesh refitting step 𝑡𝑚𝑟 per incrementation steps 𝑛𝑖𝑛𝑐 and data mapping 𝑡𝑑 𝑎𝑡𝑎 time for each mesh adaptation step.

Fig. 22. Example 3: expanding material (gray), obstruction (blue), and auxiliary boundary (green) (a) +z-plane view (b) +x-plane view (same as +y-plane
due to symmetry). (c) mesh at reference configuration. The temperature and displacement surface Dirichlet boundaries (𝛤𝑇 , 𝛤𝑢) are represented by a red line.
Furthermore, all other boundaries of expanding material are modeled adiabatic. The master side (𝛤 (2)

𝑐 ) of the thermo-mechanical contact is denoted by green
line. The mesh sliding surfaces (𝛤 (1)

𝑚 ) for the mesh adaptation are represented by green and yellow lines. Finally, magenta line represent a curve 𝑟=𝑟𝑜𝑖 .

the slave side and the surface of the expanding material as the master side (𝛤 (2)
𝑐 ). The contact interface is discretized with 4-noded

quadrilateral elements. Moreover, the penalty parameter is set to 𝜖𝑐 = 108 and the interface conductivity to 𝛽𝑐 = 0, i.e., adiabatic.
The thermo-mechanical problem is analyzed for 500 steps with time step size 𝛥𝑡 = 0.05 using Newton–Raphson scheme with a
convergence tolerance of 10−8 on the combined residual and increment. Again, the linearized monolithic thermomechanical system
is solved using the iterative GMRES method with AMG(BGS) preconditioner with tolerance 10−10.

The mesh adaptation problem is formulated as follows: To achieve a high mesh quality around the corner edge 𝑟=𝑟𝑜𝑖 (see Fig. 22),
we employ a mesh localization according to (46) with 𝑙𝑖r0 as in (45). The function 𝑓 (𝑿) as shown in (47) is reformulated according
to

𝑓 (𝑿) = 1 + exp (−𝑐 (𝑟2𝑛 + 𝑟2𝑒𝑖 − 2𝑟𝑛𝑟𝑒𝑖 + (𝑧 − 𝑙𝑒)2)
)

, (55)

with 𝑟𝑛 = 𝑥2 + 𝑦2 and 𝑐 = 150. The mesh refitting parameters are the same as in the previous example (see Table 2). The mesh
sliding surfaces are denoted by 𝛤 (1),1 and 𝛤 (1),2 in Fig. 22. The convergence tolerance of the Newton–Raphson scheme is set to 10−5.
𝑚 𝑚
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Fig. 23A. Example 3: deformed state at step (a) 360 (b) 400 (c) 428.

In contrast to previous examples, the linearized system is solved iteratively using the GMRES method with an AMG preconditioner.
Furthermore, the convergence tolerance of the linear solver is set to 10−10. The data transfer for scalars is done using a moving
least squares scheme with trilinear shape functions and for tensors using the ’R-MLS’ variant with trilinear basis as described in
Section 3.2.2. The mesh adaptation is carried out every 5th step starting from step 100. The computation is carried out on 9 nodes
(216 CPUs) of a computing cluster with Intel Xeon E5-2680v3 2.5 GHz processors.

The deformed states at time steps 360, 400, and 428 are depicted in Figs. 23A and 23B. In step 428, mechanical instabilities,
i.e. local buckling phenomena, are observed in the system, an effect that is particularly challenging with respect to mesh quality.
At this step, the expanded material almost closes the annular opening leading to a minimum inner radius of approximately 0.3545
(= 0.118 𝑟𝑒𝑖). The von Mises equivalent stress at steps 360, 400, and 425 is depicted in Fig. 24. Like in the previous example, the
equivalent stress is initially higher in the region near the fillet 𝑟=𝑟𝑜𝑖 (see Figs. 24(a), 24(d), 24(g) and 24(j)). But once mechanical
instabilities start to form, the position of the peak value of the equivalent stress shifts towards the kinks resulting from the buckling
as portrayed in Figs. 24(b), 24(c), 24(e), 24(f), 24(h), 24(i), 24(k) and 24(l).

The volume increase during expansion is showcased in Fig. 25(a) with a final volume increase of 525%. Again, similar to the
previous examples, the quality of the mesh in the vicinity of the rigid body (Figs. 23B(g)–(i)) is preserved. The minimum and
maximum skewness (see (54)) change in the region around the curved edge 𝑟=𝑟𝑜𝑖 over time is depicted in Fig. 25(b). To isolate
this most critical region around the curved edge for the post-processing, only contributions from elements satisfying the condition
0.8 < 𝑓 (𝑿𝑒) < 1.0 were considered in Fig. 25(b), where 𝑓 (𝑿𝑒) is given by (55) with 𝑐 = 1 and 𝑿𝑒 is the element centroid position. It
can be seen that the skewness is < 0.15 in this critical region during the entire expansion process, which indicates a very high mesh
quality.

Finally, the computational costs are shown in Fig. 26. The mesh adaptation problem is solved in a single step, i.e., 𝑛𝑖𝑛𝑐 = 1.
The timing for one data transfer step is approximately 50 s on average, and the average timing for a mesh refitting step is around
𝑡𝑚𝑟 = 70 s. Finally, the total simulation time is approximately 27 h for this example, wherein the total computational time required for
mesh adaptation accounts for a share of only ≈ 5%. This underlines again the efficiency of the proposed mesh adaptation approach,
in particular when comparing it to remeshing schemes.

5. Conclusion

In the present work, a novel mesh adaptation scheme has been proposed for finite element-based models of mechanical, or more
general multi-physics, problems involving a strong mesh distortion. The central building block of this mesh adaptation scheme is
a novel mesh refitting approach, also denoted as mesh regularization, based on the definition of an element distortion potential
considering contributions from different distortion modes such as skewness and aspect ratio of the elements. The regularized mesh
is obtained by minimizing this potential. Moreover, based on the concept of spatial localization functions, the method allows to
specify tailored requirements on mesh resolution and quality for regions with strongly localized mechanical deformation and mesh
distortion. To address also problems involving significant surface deformation, the usage of a mortar mesh-sliding scheme has
been proposed to allow for a tangential motion of boundary nodes without changing the boundary topology. To transfer tensor-
valued history data from the old to the new mesh, the novel mesh refitting approach is combined with structure-preserving tensor
interpolation schemes as proposed in our previous work [22].

Based on two elementary test cases, i.e. large deformation mechanical problems involving frictional contact interaction, it has
been demonstrated that the mesh refitting approach together with the mesh-sliding scheme enables a significantly improved mesh
relaxation as compared to approaches with fixed boundary nodes. Moreover, as a practically relevant application scenario, the
thermo-mechanical expansion of materials such as foams involving extreme volume changes by up to two orders of magnitude along
with large and strongly localized strains as well as thermo-mechanical contact interaction has been considered. For this scenario it
has been demonstrated that the proposed regularization approach preserves a high mesh quality with a maximal element skewness
below 30%. Moreover, in the investigated numerical examples, the computation time for mesh adaptation was typically in the order
of only a few percent of the total simulation time. In contrast, simulations without mesh adaption have been shown to lead to
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Fig. 23B. Example 3: Deformed states at steps 360, 400, and 428 are illustrated in columns 1, 2, and 3, respectively. Row 1: +x-plane view, Row 2: +x-plane
detailed view around the fillet, Row 3: +z-plane view, and Row 4: +z-plane detailed view at the center (c.f. Figs. 22(a) and 22(b)).
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Fig. 24. Example 3: von Mises equivalent stress in MPa at steps 360, 400, and 425 are illustrated in columns 1, 2, and 3, respectively. Row 1: +x-plane view,
Row 2: 3D view, Row 3: +z-plane view, and, Row 4: +z-plane detailed view at the center (c.f. Figs. 22(a) and 22(b)).
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Fig. 25. Example 3: (a) percentage change in volume over time. (b) minimum and maximum skewness near the corner.

Fig. 26. Example 3: Computation time for mesh refitting step 𝑡𝑚𝑟 per incrementation steps 𝑛𝑖𝑛𝑐 and data mapping 𝑡𝑑 𝑎𝑡𝑎 time for each mesh adaptation step.

significant mesh distortion with larger element aspects ratios and a maximal element skewness close to 100%, i.e., neighboring
element edges that are almost parallel, and eventually, to non-convergence of the numerical solution scheme.

In cases were the global shape change of the discretized mechanical body is very anisotropic, an increase of the element aspect
ratios can be reduced, but not completely avoided, with regularization schemes that preserve the mesh connectivity. For such
scenarios, a future combination of the proposed mesh regularization scheme with element subdivision procedures is considered
promising.
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Appendix A. Residual and system matrix: distortion potential

For sake of simplicity, the distortion potential in (40) is denoted in a abstract from as

𝜋𝑚 =
𝑛𝑐 𝑜
∑

𝑘=1

1
2
𝜀𝑘 𝐺2

𝑘(𝐝), (A.1)

where 𝜀𝑘 can be {�̄�𝐸 , ̂𝜀𝐸 , 𝜀𝐴}, 𝐺𝑘 ∈ {�̄�𝑖
𝐸 , (𝐺𝐸 )𝑗 , 𝐺𝑚𝑛

𝐴 }, and 𝑛𝑐 𝑜 is the number of total constraints. The residual of the distortion
otential is given as

𝐟𝑑𝑢 =
𝜕 𝜋𝑚
𝜕𝐝

=
𝑛𝑐 𝑜
∑

𝑘=1
𝜀𝑘 𝐺𝑘

𝜕 𝐺𝑘
𝜕𝐝

. (A.2)

Exemplary the first derivative of �̄�𝑖
𝐸 (37), (𝐺𝐸 )𝑗 (38), and 𝐺12

𝐴 (39) reads
𝜕�̄�𝑖

𝐸
𝜕𝐝

= �̄�𝑖

(�̄�𝑖 ⋅ �̄�𝑖)1∕2
𝜕�̄�𝑖
𝜕𝐝

, (A.3)

𝜕(𝐺𝐸 )𝑗
𝜕𝐝

= 1
(�̄�𝑖 ⋅ �̄�𝑖)

𝜕(𝒗𝑖𝑗 ⋅ 𝒗
𝑖
𝑗 )

𝜕𝐝
−

((𝐺𝐸 )𝑗 + 1)
(�̄�𝑖 ⋅ �̄�𝑖)

𝜕(�̄�𝑖 ⋅ �̄�𝑖)
𝜕𝐝

, (A.4)

𝜕 𝐺12
𝐴
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= 1

∥ 𝒗11 ∥∥ 𝒗21 ∥

𝜕(𝒗11 ⋅ 𝒗
2
1)

𝜕𝐝
− 1

2
(𝒗11 ⋅ 𝒗

2
1)

(𝒗11 ⋅ 𝒗
1
1)

3∕2 ∥ 𝒗21 ∥

𝜕(𝒗11 ⋅ 𝒗
1
1)

𝜕𝐝
− 1

2
(𝒗11 ⋅ 𝒗

2
1)

(𝒗21 ⋅ 𝒗
2
1)

3∕2 ∥ 𝒗11 ∥

𝜕(𝒗21 ⋅ 𝒗
2
1)

𝜕𝐝
, (A.5)

respectively. Next, linearization yields the system matrix 𝐊𝑑 as

𝐊𝑑 =
𝜕𝐟𝑑𝑢
𝜕𝐝

=
𝑛𝑐 𝑜
∑

𝑘=1
𝜀𝑘

𝜕 𝐺𝑘
𝜕𝐝

𝜕 𝐺𝑘
𝜕𝐝

+
𝑛𝑐 𝑜
∑

𝑘=1
𝜀𝑘 𝐺𝑘

𝜕2𝐺𝑘

𝜕𝐝2
. (A.6)

Finally, discrete matrix vector system:

𝐊𝑑𝛥𝐝 = −𝐟𝑑𝑢 . (A.7)

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2024.117444.
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