
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Online Coalition Formation for Fractional
Hedonic Games

Alexander Timothy Schlenga

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Online Coalition Formation for Fractional
Hedonic Games

Online Koalitionsbildung bei Fraktionalen
Hedonischen Spielen

Author: Alexander Timothy Schlenga
Supervisor: Prof. Dr. Felix Brandt
Advisor: René Romen, M.Sc.
Submission Date: 22.07.2024

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Garching bei München, 22.07.2024 Alexander Timothy Schlenga

Acknowledgments

I want to thank all members of the computational social choice and algorithmic game
theory group. First of all, Felix Brandt taught two excellent courses that awakened my
interest in the field and provided me with the necessary foundations to work on this
thesis. Felix Brandt, Chris Dong, Fabian Frank, Matthias Greger, Patrick Lederer, and
René Romen welcomed me cordially as part of their group. I had a great time working
there. I also want to thank Martin Bullinger for fruitful discussions on my work. Special
thanks go to René Romen for coming up with various interesting topic suggestions for
my thesis, patiently waiting for me to finish another project of my studies that took
longer than expected, and, in particular, for being a great advisor for this thesis although
he was advising four other students at the same time.

Abstract

Fractional hedonic games (FHGs) are an appealing class of hedonic coalition formation
games, in which the utility of an agent equals the average utility she ascribes to the
members of her coalition. We study the problem of maximizing the social welfare in
FHGs both in the offline and online setting. For the offline setting, where the problem
is known to be NP-hard, we show that no FPTAS exists. For the adversarial arrival
online model, with unrestricted utilities, it is known that no constant competitive ratio is
achievable with a deterministic algorithm. Therefore, we investigate two other interesting
models of online FHGs. In the first one, the agents arrive in a uniformly random order.
For this setting, we provide an asymptotically 1

6 -competitive algorithm and prove an
upper bound of 1

3 on the possible asymptotic competitive ratio. In the second model, an
algorithm may dissolve (at no cost) an existing coalition before assigning an arriving
agent to a coalition. Here, we show a 1

6+4
√

2
-competitive algorithm and prove an upper

bound of 1
3+2

√
2

on the possible competitive ratio. For the adversarial arrival model, we
show that a randomized algorithm achieves a better competitive ratio for symmetric
simple FHGs than any deterministic algorithm. We also provide new results on online
matching with random vertex arrival on general graphs, with an asymptotically 1

3 -
competitive algorithm and an upper bound of 1

3 on the possible asymptotic competitive
ratio.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Related Work . 2
1.2 Our Contribution . 4

2 Preliminaries 7

3 Offline Setting 13
3.1 Hardness . 13
3.2 Approximation . 15

4 Adversarial Arrival 21

5 Random Arrival 23
5.1 Iterated Doubling Approach . 25
5.2 No Sampling Phase . 28
5.3 Upper Bound . 29

6 Free Dissolution 43

7 Conclusion and Future Work 45

Abbreviations 47

List of Figures 49

List of Tables 51

List of Algorithms 53

Bibliography 55

vii

1 Introduction

When members of a society form or are assigned to groups, it is interesting to take a
mathematical point of view on the matter—may it be in the field of artificial intelligence,
social sciences, or other disciplines. The term “society” is to be understood very broadly
here, and the respective members can be people as well as, e.g., firms or computer
programs. In general, we can speak of the members of the society as agents and of the
groups as coalitions. When a society splits into coalitions, we call the resulting assignment
of agents a partition. The theory of cooperative games and coalition formation studies
precisely this kind of scenarios.

The justifications for this mathematical perspective are manifold. Here, we only want
to name a few. A widely accepted (though debatable) premise is that agents exhibit
rational preferences over the partitions which can form. These preferences can have a
comparable intensity. For instance, it is possible that interactions between agents yield
an intrinsic amount of utility for them, and agents want to be part of coalitions within
which they get the most utility out of interacting with the other coalition members. In
other situations, the utilities can be extrinsic in the sense that an external observer assigns
them to possible coalitions, fixed groups, or pairs of agents. Utilities are represented as
rational numbers (e.g., the quantity of possible economic cooperation of firms or the
inverse geographical distance of people’s homes to their friends’ homes, their work place,
or their common sports club) or indicators (e.g., 1 for friendship and 0 for other people).
But also models with agents expressing their preferred coalitions not via utilities but via
rankings are of great importance. They come into play whenever the intensities of the
agents’ preferences are unknown, cannot be measured or expressed, or are generally
of minor importance. Moreover, such preferences can render the treatment of coalition
formation as a voting process more natural.

For many scenarios, a particularly appealing class of coalition formation games are
hedonic games (Banerjee, Konishi, & Sönmez, 2001; Bogomolnaia & Jackson, 2002; Drèze
& Greenberg, 1980). Their central—hedonic—aspect is that the preferences of an agent
over the possible partitions depend only on the other members of the agent’s own
(prospective) coalition but not on the structure or members of other coalitions of the
partition. However, even under this natural restriction, writing down the partition
preferences of any agent may well take an exponential amount of space. From an
algorithmic point of view, this is unfortunate. Therefore, a significant amount of research
has been undertaken concerning hedonic games with inherently concise representations
(of the agents’ preferences). One way of achieving this is to derive an agent’s preferences
over coalitions from his preferences over other agents. We can, e.g., from each agent’s
perspective, assign a subjective utility to every other agent of the society. Then, the

1

1 Introduction

utility an agent receives from being in a certain coalition is determined by her respective
utilities for the other agents in that coalition. This approach gives rise to—among
others—the classes of additively separable hedonic games (ASHGs) (Banerjee, Konishi,
& Sönmez, 2001; Bogomolnaia & Jackson, 2002), fractional hedonic games (FHGs) (Aziz,
Brandl, Brandt, et al., 2019), and modified fractional hedonic games (MFHGs) (Elkind,
Fanelli, & Flammini, 2016; Olsen, 2012).

In this work, we focus on FHGs. In an FHG, the utility an agent assigns to a coalition
is the average utility she assigns to the members of that coalition (assuming a utility
of 0 for herself). From a modeling point of view, they are an apt choice for various
scenarios. In (network) clustering (see, e.g., Newman (2004) for a comparison of earlier
methods), they have the appeal of rewarding strong connections between agents in the
same coalition while preventing the formation of a single coalition containing all agents
from being a trivially optimal solution, even under the restriction of allowing only
positive utilities. So, FHGs could be used, e.g., to find communities of well connected
people on social networks. Aziz, Brandl, Brandt, et al. (2019) demonstrate a model
of the well-known game of Bakers and Millers as an FHG. The formation of political
parties or coalitions can be nicely modelled with FHGs. If we consider politicians to
express like-mindedness with other politicians via corresponding utilities, an FHG will
model the situation that they seek to form coalitions of similar opinions. Now, political
parties, in order to be successful, should neither be too small nor too large. With ASHGs
as the modeling choice, the size of a coalition would not be taken into consideration,
possibly leading to very few, very large parties. With MFHGs on the other hand, a
solution maximizing the utility of all politicians could always be one in which the largest
parties contain only three people (Bullinger, 2020). Besides political parties, also parties
in the sense of social events, and other similar scenarios, can be modeled as FHGs.
Imagine, people have to decide to which party they should go on a certain evening. At
a party, people are influenced by the presence of the others. They like talking to their
friends while not like talking to some other people. Then, they would like to attend
the parties in such a way that the average enjoyability of talking to people at the same
party is high. The fact that in FHGs we divide the sum of the individual utilities by the
coalition size cannot only be explained by the taking an average utility. It is also possible
that the utility of agents in a coalition scales with their share of a resource common to
the coalition. Last but not least, FHGs are already interesting from a graph-theoretic
perspective. Their nice aspect in this regard is that they represent a natural extension of
the notion of matchings, the only difference being that in matchings only coalitions of
size at most 2 are allowed.

1.1 Related Work

Offline FHG Setting Hedonic games have been first proposed by Banerjee, Konishi,
and Sönmez (2001), and Bogomolnaia and Jackson (2002), taking up ideas and ter-
minology by Drèze and Greenberg (1980). In their papers, they also introduce the

2

1.1 Related Work

subclass of ASHGs. Based on that idea of computing the individual utility for a coalition
from utilities for single agents, Aziz, Brandl, Brandt, et al. (2019) came up with the
concept of FHGs. Aziz and Savani (2016) give a survey on hedonic games. Several
authors studied various notions of stability in FHGs (Aziz, Brandl, Brandt, et al., 2019;
Bilò, Fanelli, Flammini, et al., 2015, 2018; Brandl, Brandt, & Strobel, 2015; Kaklamanis,
Kanellopoulos, & Papaioannou, 2016). The study of social welfare maximization for
FHGs has been initiated by Aziz, Gaspers, Gudmundsson, et al. (2015). In addition
to examining algorithms for (utilitarian) social welfare, they consider maximization of
egalitarian and Nash welfare. They prove NP-hardness of finding optimal partitions for
the different objectives and give approximation algorithms with polynomial running
time. Matching algorithms are shown to yield reasonable approximation ratios, in
particular, a maximum weight matching (MWM) is at least a 1

4 -approximation of social
welfare in general FHGs. That analysis was later improved and made tight by Flammini,
Kodric, Monaco, and Zhang (2021) who prove that a MWM is even a 1

2 -approximation.
In their paper, they furthermore propose to consider agents with the option to report
their utilities untruthfully and study strategyproofness in FHGs and ASHGs.

Online FHG Setting Online scenarios and algorithms for FHGs and ASHGs were
studied first by Flammini, Monaco, Moscardelli, et al. (2021)1. They investigate the
model where agents arrive in an adversarial order. Besides standard FHGs and ASHGs,
they consider settings with additional restrictions on the utility values or coalition size or
number. They give lower bounds and upper bounds for deterministic algorithms on the
achievable competitive ratio for maximizing the social welfare of a partition. Except for
simple FHGs, the results can be seen as rather discouraging because the competitiveness
depends on the utility values. More specifically, the best possible competitive ratio is

Umin
4·Umax

, where Umin and Umax are the minimal and maximal absolute value of non-zero
utilities, respectively. The situation is similar for ASHGs. In order to find more positive
results for ASHGs, Bullinger and Romen (2023) consider two relaxations of the online
model (separately). A first relaxation takes power from the adversary by letting agents
arrive in a uniformly random order instead of the worst possible. The second one
gives more power to the algorithm by allowing it to dissolve an existing coalition (into
singletons) before assigning a new agent. In both of the models they show how to get
rid of the dependency on utilities in the competitive ratio. Furthermore, in another
recent work, Bullinger and Romen (2024) study the stability and Pareto-optimality of
solutions concepts for ASHGs with online adversarial agent arrival.

Online Matching The literature on online matching algorithms is vast. A recent survey
is given by Huang, Tang, and Wajc (2024). Here, we only list the works which are the
closest and most relevant to our setting. For unweighted graphs, Gamlath, Kapralov,

1Flammini, Monaco, Moscardelli, et al. (2021) analyze the model as a “coalition structure generation
problem”, i.e., instead of talking about hedonic games with agents, utilities, and social welfare they
adopt a purely graph-theoretic perspective.

3

1 Introduction

Maggiori, et al. (2019) give the currently best known approximative online algorithm
for computing a maximum cardinality matching (MCM) with adversarial vertex arrival.
Kesselheim, Radke, Tönnis, and Vöcking (2013) study MWM with random vertex arrival
on one side of bipartite graphs and show that the upper bound of 1

e , which stems
from the fact that the scenario generalizes the secretary problem, can be matched
by an algorithm. Ezra, Feldman, Gravin, and Tang (2022) propose an algorithm for
approximating a MWM in general weighted graphs with random vertex arrival where
the total number of vertices to arrive is known in advance. The algorithm starts with
a sampling phase, i.e., the first half of the arriving vertices are simply left unmatched
for the moment. In the second half, in each step, it computes what would be a locally
(at the current time) optimal MWM. If the partner of the newly arrived vertex in that
locally optimal MWM is not matched yet, the algorithm matches the two in its solution.
Otherwise, the new vertex is left unmatched. They also show asymptotic tightness of
that algorithm’s competitive ratio by considering a family of graphs where all edge
weights differ by a large factor, so that there is only one really valuable edge for a
matching. Bullinger and Romen (2023) study online general vertex arrival for MWM
under free dissolution.

1.2 Our Contribution

We study the maximization of social welfare for FHGs in both the offline and online
setting. First, we tackle the open question of whether an approximation ratio of 1

2 for
maximizing social welfare offline in FHGs is the best guarantee achievable in polynomial
time (Chapter 3). While we ultimately leave the question open, we give some indicators
that if a polynomial-time algorithm with a better approximation ratio exists, it might
be hard to find. Moreover, we make progress on the side of hardness by showing
that (given P 6=NP) the problem does not admit a fully polynomial-time approximation
scheme (FPTAS).

With our main focus being different online models for FHGs, we there start by showing
that for symmetric simple FHGs with adversarial agent arrival, a randomized matching
algorithm can achieve a better competitive ratio than the bound for deterministic
algorithms given by Flammini, Monaco, Moscardelli, et al. (2021) (Chapter 4). Then,
inspired by the results of Bullinger and Romen (2023) for ASHGs, we get rid of the
competitive ratio’s dependence on the utilities for general FHGs by modifying the
setting—we investigate the random arrival (Chapter 5) and free dissolution (Chapter 6)
variants of online FHGs and show how to obtain constant competitive ratios by using
different online matching algorithms. We also provide upper bounds for the competitive
ratio in both models.

Online random vertex arrival for MWM problems with an unknown total number
of vertices, to the best of our knowledge, has not been covered by existing research
yet. Hence, we point out how our results for FHGs apply to that problem and that the
bounds become tight when only matchings are taken into consideration (Chapter 5).

4

1.2 Our Contribution

Problem Class Lower Bound Upper Bound

Adversarial FHG
General Umin

4·Umax
(a,f) Umin

4·Umax
* (f)

Simple 1
8 + ε (Cor. 2) ?

Symm. Simple 1
4 + 2ε (Thm. 5) ?

F. Dissolution FHG General 1
6+4

√
2

(Thm. 14) 1
3+2

√
2
* (Thm. 15)

Random FHG
Symm. Simple 1

3 −O(1
n) (Thm. 10) ?

General 1
6 −O(1

n) (Thm. 8) 1
3 (Thm. 12)

Random MWM General 1
3 −O(1

n) (Cor. 4) 1
3 (Cor. 5)

Random MCM General 2
3 −O(1

n) (Thm. 9) ?

Table 1.1: An overview of bounds for the competitive ratios for online FHGs and MWMs.
Umin and Umax are the minimal and maximal absolute value of non-zero
utilities, respectively. Entries “?” mean that only trivial upper bounds are
known. Upper bounds marked with * only hold for deterministic algorithms.
Results marked with (a) are by Aziz, Gaspers, Gudmundsson, et al. (2015) and
those marked with (f) are by Flammini, Monaco, Moscardelli, et al. (2021).

Class Approximation Hardness

(Symmetric) FHG 1
2 (f) No FPTAS (Thm. 1)

Symmetric Simple FHG 1
2 (f) NP-hard (a)

Table 1.2: An overview of known approximation ratios and hardness results for offline
FHGs. The problem for symmetric FHGs is the same as for general FHGs for
the reason explained in Remark 1. Results marked with (f) are by Flammini,
Kodric, Monaco, and Zhang (2021). Results marked with (a) are by Aziz,
Gaspers, Gudmundsson, et al. (2015).

5

2 Preliminaries

We begin by introducing some mathematical standard notations. After that, we give the
formal terms and definitions for FHGs and competitiveness needed for our results. We
conclude the chapter by discussing a small example.

Notation For i ∈ N, let [i] denote the set of all natural numbers smaller or equal to
it ({1, . . . , i}). For a set S, let (S

k) denote the set of all subsets of size k of S. We use
] to denote the disjoint union of sets, i.e., A] B denotes the union of sets A and B
where A ∩ B = ∅. For a graph G = (V, E) and a set of vertices S ⊆ V, let G[S] denote
the subgraph of G induced by S. By I(·), we denote the indicator function. It takes a
boolean argument and returns 1 if it is true and 0 otherwise.

Let N be a finite set of agents with n := |N|. A non-empty set C ⊆ N is called a coalition.
The set of coalitions containing a certain agent i is denoted by Ni := {C ⊆ N | i ∈ C}. A
set π of disjoint coalitions containing together exactly the members of N is a partition
of N (we have

⊎
C∈π C = N). For an agent i ∈ N and a partition π, let π(i) denote the

coalition in π which i belongs to. Given a subset of agents S ⊆ N and a partition π of N,
let π[S] denote the restriction of π to S, i.e., π[S] := {C | C 6= ∅ ∧ ∃C′ ∈ π : C = C′ ∩ S}.

Definition 1. A hedonic game is a pair (N,-) where N is the set of agents and - a set of
preferences (-i)i∈N of the agents. For agent i, -i is a partial order on Ni stating his preferences
over all possible coalitions of which he is a member.

Let ui(j) ∈ Q denote the utility of an agent i for another agent j. The preferences of
i over her possible coalitions will now be defined by the average utility she assigns to
the members of her coalition (while treating the utility assigned to herself as 0), i.e., the
utility agent i assigns to being in a coalition C is

ui(C) :=
∑j∈C\{i} ui(j)

|C| .

Definition 2. A hedonic game is called an FHG if it can be represented by a complete directed
weighted graph G = (N, w) such that

• the vertices of G are the agents N,

• the edge weights are the utilities, i.e, for an edge (i, j) ∈ N × N (where i 6= j) we have

w(i, j) = ui(j),

7

2 Preliminaries

• and for any i ∈ N and C1, C2 ∈ Ni we have

C1 -i C2 ⇐⇒ ui(C1) ≤ ui(C2).

Note that for singleton coalitions the utility of its member is always 0. We call an FHG
symmetric if for every pair of distinct agents i, j ∈ N, their utilities for each other are
equal, formally w(i, j) = w(j, i). Then, the game can be represented by an undirected
graph. We call an FHG simple if for every pair of distinct agents i, j ∈ N, the utility of
i for j is either 0 or 1, formally w(i, j) ∈ {0, 1}. Then, the game can be represented by
an unweighted graph (by an unweighted graph we mean a complete graph with edge
weights 1 and 0). A partition π of an FHG G is said to be Pareto-improved by a partition
π′ of G if all agents receive at least the same utility in π′ as in π and at least one agent
receives strictly more utility in π′ than in π. A partition is called Pareto-optimal if no
other partition Pareto-improves it.

Definition 3. The social welfare of a partition π of G is the sum of the utilities of all agents
for π.

SWG(π) := ∑
i∈N

ui(π(i))

We can write this in an alternative form which makes calculations easier.

∑
i∈N

ui(π(i)) = ∑
C∈π

∑
i∈C

ui(C) = ∑
C∈π

∑
i∈C

∑j∈C\{i} w(i, j)
|C|

= ∑
C∈π

1
|C| ∑

i∈C
∑

j∈C\{i}
w(i, j) = ∑

C∈π

1
|C| ∑

(i,j)∈C×C∧i 6=j
w(i, j)

Formally, the corresponding problem for which we investigate algorithms is the follow-
ing.

SocialWelfareFHG
Input: An FHG G
Solution: A partition π of G with maximum social welfare

For SocialWelfareFHG, we can assume instances to be symmetric w.l.o.g. thanks to
a simple modification of the edge weights.

Remark 1. Given an FHG as G = (N, w), we define a symmetrized (undirected) version
G′ = (N, w′) in the following manner where w′(i, j) = w′(j, i) is a shorthand notation for
w′({i, j}).

∀{i, j} ∈
(

N
2

)
: w′(i, j) :=

w(i, j) + w(j, i)
2

Then every (well-defined) partition π yields the same social welfare on G and G′.

8

Proof. Consider an arbitrary partition π of G.

SWG(π) = ∑
C∈π

1
|C| ∑

(i,j)∈C×C∧i 6=j
w(i, j) = ∑

C∈π

1
|C| ∑

{i,j}∈(C
2)

w(i, j) + w(j, i)

= ∑
C∈π

1
|C| ∑

{i,j}∈(C
2)

2w′(i, j) = ∑
C∈π

1
|C| ∑

i∈C
∑

j∈C\{i}
w′(i, j) = SWG′(π)

Notice, though, that an issue arises if there are restrictions imposed on the utilities of
the game, e.g., as in simple FHGs. This symmetrization turns simple FHGs into non-
simple ones if they were not symmetric before. Algorithms for welfare maximization
on simple FHGs cannot, without further ado, assume the input to be a symmetric
instance.

SocialWelfareSimpleFHG
Input: A simple FHG G
Solution: A partition π of G with maximum social welfare

Accordingly, we need to define a separate problem for the symmetric case there.

SocialWelfareSymmetricSimpleFHG
Input: A symmetric simple FHG G
Solution: A partition π of G with maximum social welfare

Another restriction we consider is one not on the input but on the output of the
algorithm.

Definition 4. A partition π is called a matching if and only if it contains only coalitions of
size at most two.

∀C ∈ π : |C| ≤ 2

We see that computing a MWM on graphs is a special case of welfare maximization
in FHGs.

MWM
Input: An FHG G
Solution: A matching µ of G with maximum social welfare

The same applies to MCMs for simple FHGs.

MCM
Input: A simple FHG G
Solution: A matching µ of G with maximum social welfare

We use the terms MWM and MCM to refer both to the problems and their solutions.

9

2 Preliminaries

Definition 5. A matching π∗ is a MWM on G if and only if its social welfare is optimal among
the matchings on G.

(∀C ∈ π∗ : |C| ≤ 2) ∧ (∀π : (∀C ∈ π : |C| ≤ 2) =⇒ SWG(π) ≤ SWG(π
∗))

This renders the next definition very simple.

Definition 6. A MCM is a MWM on a simple FHG.

Note that our definition of matchings differs slightly from the standard one. Since
we only consider complete graphs (as the descriptions of FHGs), every pair of vertices
shares an edge, may it be of zero or even negative weight. Accordingly, every pair of
vertices can be matched. However, due to the fact that we are exclusively interested in
social welfare, this has no impact.

Let us conclude the definitions with the competitiveness of online algorithms. Since
we take into account randomized algorithms, the competitive ratio is defined via the
expected performance of an algorithm. The randomness of the expectation here does not
only include inherently random behavior of the algorithm but also possible randomness
of the problem instance, e.g., in the random arrival setting (Chapter 5).

Definition 7. We say that an online algorithm ALG achieves a competitive ratio of c ∈ [0, 1]
(it is c-competitive) on a set of FHG instances G if and only if the ratio of the expected social
welfare of the algorithm’s output and the social welfare of the optimal partition π∗ is at least c
for all instances in G.

∀G ∈ G : c ≤ E [SWG (ALG(G))]

SWG(π∗)

ALG achieves a competitive ratio of c if and only if it does so on the entire domain. If SWG(π
∗) =

0, we define the competitive ratio of any algorithm to be 1 on {G}.

A Word on Terminology In our proofs, it is often simpler to only speak about the
graph representation of an FHG rather than about the utilities or preferences of agents,
especially because we focus mainly on symmetric FHGs. Therefore, we will regularly
refer to agents as vertices, and argue about edges instead of utilities.

An example of a symmetric FHG G is given in Figure 2.1. It consists of 6 agents—
represented by labeled vertices—with the respective utilities depicted by the labeled
edges among them. Pairs of agents between which no edge is drawn have a mutual
utility of 0. The colored areas show a possible partition π on G. The two coalitions in it

10

6

1

2

3

4

5
2

1

−3

2 1
8

5

Figure 2.1: A symmetric FHG with 6 agents. Edges not drawn have weight 0. The
colored areas represent a partition consisting of two coalitions.

are C1 = {1, 6} and C2 = {2, 3, 4, 5}. The social welfare of the partition is

SWG(π) = ∑
C∈π

1
|C| ∑

(i,j)∈C×C∧i 6=j
w(i, j)

=

 1
|C1| ∑

(i,j)∈C1×C1∧i 6=j
w(i, j)

+

 1
|C2| ∑

(i,j)∈C2×C2∧i 6=j
w(i, j)

=

 2
|C1| ∑

{i,j}∈(C1
2)

w(i, j)

+

 2
|C2| ∑

{i,j}∈(C2
2)

w(i, j)

=

(
2

|C1|
w(1, 6)

)
+

(
2

|C2|
(w(2, 3) + w(2, 4) + w(2, 5) + w(3, 4) + w(3, 5) + w(4, 5))

)
=

(
2
2
· 2

)
+

(
2
4
(1 + 0 + 0 + 5 + 2 + 8)

)
=2 + 8 = 10.

11

3 Offline Setting

In this chapter we study the offline setting where all agents and utilities are known
to the algorithm. Section 3.1 is about the computational hardness of the problem. In
Section 3.2, we are interested in guarantees on the worst-case performance of algorithms
with polynomial running time.

3.1 Hardness

It is known that SocialWelfareSymmetricSimpleFHG is NP-hard (Aziz, Gaspers,
Gudmundsson, et al., 2015). Of course, this implies NP-hardness of SocialWelfareFHG.
But for that problem, we can show a stronger hardness result using a reduction from
MinimumCliqueCover, which is well-known to be NP-hard (Karp, 1972).

MinimumCliqueCover

Input: An undirected unweighted graph G
Solution: A partition of G into the minimal possible number of cliques

Here, we mean an unweighted graph in the classical sense, with unweighted edges
and missing edges. Notice that it does not matter whether we require a partition of the
graph into cliques or only a set of cliques that covers all vertices.

Theorem 1. SocialWelfareFHG does not admit an FPTAS unless P=NP.

Proof. Given an instance G of MinimumCliqueCover with n vertices, turn it into a
complete weighted graph G′ such that all vertex pairs, which share an edge in G, share
an edge of weight 1 in G′, and all vertex pairs, which do not share an edge in G, share
an edge of weight −n in G′.

We interpret G′ as an FHG. Note that any reasonable solution to this FHG will
only form coalitions which are cliques in the original MinimumCliqueCover instance
because it would contain edges of highly negative weight otherwise. This allows for an
easy method of computing the social welfare. Let π be a partition of G′ which consists
of m cliques (in G).

SWG′(π) = ∑
C∈π

2
|C| ∑

{i,j}∈(C
2)

1 = ∑
C∈π

2
|C| ·

|C|(|C| − 1)
2

= ∑
C∈π

(|C| − 1) = n − m

Assume now, we have access to an oracle which, for any ε > 0, returns a (1 − ε)-
approximate solution to SocialWelfareFHG and whose running time is polynomial

13

3 Offline Setting

in the input size and in 1
ε . We call this oracle with ε = 1

n . Let π denote the partition
returned by the oracle and π∗ an optimal partition of G′.

SW(π)

SW(π∗)
≥ 1 − 1

n

Let m be the number of coalitions (cliques) in π and m∗ the number of cliques in π∗.
Note that π∗ solves MinimumCliqueCover optimally on G. We get

n − m
n − m∗ ≥ 1 − 1

n

n − m ≥
(

1 − 1
n

)
(n − m∗)

n − m ≥ n − m∗ − 1 +
m∗

n

−m ≥ −m∗ − 1 +
m∗

n

m ≤ m∗ + 1 − m∗

n
< m∗ + 1.

And clearly

SW(π) ≤SW(π∗)

n − m ≤n − m∗

n + m∗ ≤n + m

m∗ ≤m.

From m < m∗ + 1 and m∗ ≤ m we follow m = m∗. Thus, π would return the minimum
number of cliques on G and solve MinimumCliqueCover in polynomial time.

On a side note, observe that the constructed FHG instances only contain edges of
weight 1 and −n which allows them to be interpreted as a variant of aversion to
enemies-games. The hardness result applies already to this restricted class of FHGs.

In the proof, we applied a relatively straightforward reduction from MinimumClique-
Cover to SocialWelfareFHG. A slightly adapted version of this reduction can be
applied from related problems too, like, e.g., ChromaticNumber or even ColorSaving.
ChromaticNumber is essentially the same problem as MinimumCliqueCover but on
the complement graph, i.e., the objective is not to cover all graph vertices with cliques
but with (a minimum number of) independent sets (called “colors”). ColorSaving

has the same input and objective but a different measure of quality of the solution.
Instead of counting how many colors (independent sets) we need for the graph, we
pretend to have n = |V| colors at hand and count how many of them we do not need to
use in our solution. We want to show a close connection of SocialWelfareFHG and
ColorSaving approximability. Given an instance of ColorSaving, we first compute
the complement graph (which can clearly be done in polynomial time) and then change

14

3.2 Approximation

the objective to using a minimum number of cliques to cover it. Now, we apply the
above reduction to SocialWelfareFHG. Let us suppose the SocialWelfareFHG oracle
returns a solution with social welfare s. It consists of n − s cliques in the graph. Taking
the complement graph again, we return to the original graph and the n − s cliques
become n − s independent sets, i.e., colors with which we can cover the graph. We have
saved n − (n − s) = s colors. The achieved social welfare equals the number of saved
colors. Of course, this also holds if the oracle returns an optimal solution. As a result,
we get the following.

Corollary 1. If there is a polynomial-time algorithm achieving an approximation ratio of c for
SocialWelfareFHG, there is also a polynomial-time algorithm achieving an approximation
ratio of c for ColorSaving.

The best known approximation ratio for ColorSaving, however, currently is 193
240 (Athanas-

sopoulos, Caragiannis, Kaklamanis, & Kyropoulou, 2009) which is better than 1
2 , the

best known for SocialWelfareFHG.

3.2 Approximation

With the hardness results in mind, we want to see what we can actually achieve in
polynomial time. It has been discovered that matchings are a possible way of obtaining
worst-case guarantees for SocialWelfareFHG.

Theorem 2 (Flammini, Kodric, Monaco, and Zhang, 2021). Every MWM is a 1
2 -approximation

of SocialWelfareFHG.1 This bound is tight for MWMs.

Since a MWM can be computed in polynomial time (Gabow & Tarjan, 1991), this is
already quite encouraging and will also be helpful for online settings. For the offline
setting, the question arises whether there might be a simple way to further improve the
social welfare from the partition computed by a MWM. As such “simple improvements”
we consider beneficial coalition merges and Pareto-improvements. Note, however, that
computing Pareto-improvements for (symmetric) FHGs is in general NP-hard (Bullinger,
2020). We will see that neither of these two approaches results in a better approximation
ratio because there exist worst-case instances for which no such improvement is possible.

First, we look at beneficial coalition merges (we also say “extending” the matching).
A beneficial coalition merge is one which increases the social welfare of the partition.
Algorithm 1 is non-deterministic on purpose to demonstrate that for the approximation
ratio it is irrelevant with which (of possibly multiple) MWM it starts and in which order
the coalitions are merged. Its running time is clearly polynomial for any myopic choice
of the coalitions to be merged, e.g., according to some ranking.

Proposition 1. Algorithm 1 is only a 1
2 -approximation for SocialWelfareFHG.

1Flammini, Kodric, Monaco, and Zhang showed the theorem for symmetric FHGs and did not mention
that, because of the possible symmetrization, it holds for general FHGs.

15

3 Offline Setting

Algorithm 1 Extended MWM
Input: An FHG G
Output: A partition on G

1: Let µ be a MWM on G
2: Set π := µ

3: while Beneficial merge in π is possible do
4: Let C1 and C2 be two coalitions in π which can be beneficially merged
5: Set π := π ∪ {C1 ∪ C2} \ {C1, C2} . Merge the coalitions
6: return π

l1

l2

l3

l4l5

l6

l7

l8

l9
. . .

r1

r2

r3

r4 r5

r6

r7

r8

r9
. . .

Figure 3.1: Instances where extending a MWM does not improve the approximation
ratio. It is n = 2k, and the vertices are li and ri, where i ∈ [k]. Normal edges
have weight 1, thick edges have weight 1 + ε (where ε > 0 is very small),
and all edges not drawn have weight −n. The MWM contains all thick edges
as coalitions and cannot be extended. Its social welfare is k · (ε + 1). The
optimal partition puts the li vertices in one coalition and the ri vertices in the
other. Its social welfare is 2k − 2.

Proof. Theorem 2 implies that the approximation ratio is at least 1
2 because Algorithm 1

can never perform worse than a MWM. To see that it is at most 1
2 too, consider the

family of instances depicted in Figure 3.1. There are |V| = n = 2k agents who form two
disjoint cliques, each of size k, respectively. We have V = L] R where |L| = |R| = k,
L = {l1, l2, . . . , lk}, and R = {r1, r2, . . . , rk}. For all i, j ∈ [k] with i 6= j, we have
w(li, lj) = w(ri, rj) = 1, w(li, rj) = −n, and w(li, ri) = 1 + ε. Consider the parameter
ε > 0 to be very small.

Algorithm 1 starts with a MWM which is in this case µ = {{li, ri} | i ∈ [k]}. As no
beneficial merge is possible, it directly returns that partition and stops. The achieved
social welfare is k 2(1+ε)

2 = k + kε.
The optimal solution, though, is to form two coalitions consisting of the large cliques,

i.e., π∗ = {L, R}. It has social welfare 2 2(k
2)

k = 2k − 2. Now, for ε := 1
k and k → ∞ the

16

3.2 Approximation

approximation ratio approaches 1
2 .

lim
k→∞

SW(µ)

SW(π∗)
= lim

k→∞

k + kε

2k − 2
= lim

k→∞

k + 1
2k − 2

=
1
2

Next, we show an even stronger statement (regarding the upper bound of the approx-
imation ratio). However, the proof of Proposition 1 can still be considered interesting as
the used instances are not star-like (as opposed to most other proofs).

Proposition 2. Algorithm 1 is only a 1
2 -approximation for SocialWelfareFHG instances

where its returned partition is Pareto-optimal.

Proof. Consider the family of instances depicted in Figure 3.2 (for k = 9). The graphs
are spiders with a central vertex a, a set of inner vertices I, and outer vertices O. There
are |V| = n = 2k + 1 vertices in total. We have V = {a}] I] O where |I| = |O| = k,
I = {i1, i2, . . . , ik}, and O = {o1, o2, . . . , ok}. For all j, l ∈ [k] with j 6= l, we have
w(a, ij) = 1, w(ij, il) = 0, w(ij, oj) = ε, and w(a, oj) = w(ij, ol) = w(oi, oj) = −n. Again,
take the parameter ε > 0 to be very small.

Algorithm 1 starts with a MWM which is w.l.o.g. µ = {a, i1} ∪ {{ij, oj} | j ∈ [k] \
{1}}∪{o1}. As no beneficial merge is possible, it directly returns that partition and stops.
The returned partition is Pareto-optimal, meaning there exists no Pareto-improvement.
The achieved social welfare is 2 · 1

2 + (k − 1) · 2 · ε = 1 + 2kε − 2ε.
The optimal solution is to form one coalition consisting of the central vertex and

the inner vertices and put all outer vertices in singleton coalitions, i.e., π∗ = {{a} ∪
I} ∪ {{oj} | j ∈ [k]}}. It has social welfare 2 k

k+1 . Now, for ε := 1
k2 and k → ∞ the

approximation ratio approaches 1
2 .

lim
k→∞

SW(µ)

SW(π∗)
= lim

k→∞

1 + 2kε − 2ε

2 k
k+1

= lim
k→∞

1 + 2 1
k − 2 1

k2

2 k
k+1

=
1
2

The impression that it might be hard to achieve a competitive ratio better than 1
2 can

be backed by another observation. Even when having a minimum clique cover at hand
(which is itself NP-hard to compute), one cannot do better (in simple FHGs), although
that can be considered a quite powerful clustering/community-detection solution which
is stronger than a MCM.

Proposition 3. Any minimum clique cover is a 1
2 -approximation for SocialWelfareSymmet-

ricSimpleFHG.

Proof. First, we show that the approximation ratio is at least 1
2 . Assume, the minimum

clique cover returns k cliques. Then, the achieved social welfare is n − k. Regarding
the optimal partition, we can w.l.o.g. assume that it is the grand coalition (a coalition

17

3 Offline Setting

o1

o2

o3

o4

o5 o6

o7

o8

o9

i1
i2

i3

i4

i5 i6

i7

i8

i9

a
1

11
1

1

1
1 1

1

ε

ε

ε

ε

ε
ε

ε

ε

ε

Figure 3.2: Instance (with k = 9) of a family where extending a MWM does not improve
the approximation ratio while being Pareto-optimal. Dashed edges have
weight 0, edges not drawn have weight −n, edges from the central vertex a
to the inner vertices ij have weight 1, and edges from inner vertices ij to outer
vertices oj have weight ε. One MWM matches the edge {a, i1} and {ij, oj} for
j ∈ [9] \ {1}. It has social welfare 1 + 2kε − 2ε. The optimal partition is one
coalition with a and all ij while the other vertices are in singleton coalitions.
It has social welfare 2 k

k+1 .

18

3.2 Approximation

containing all agents). If the grand coalition is not optimal, consider any optimal
partition π∗ = {C∗

1 , C∗
2 , . . . } and suppose we would not return a global minimum clique

cover but the union of minimum clique covers on the subgraphs C∗
1 , C∗

2 , . . . , which
obviously yields at most the social welfare of a global minimum clique cover and lets
the following analysis work on the subgraphs as if they were FHGs themselves.

The unweighted graph of the game must have at least one edge missing between
all pairs of cliques returned by the minimum clique cover. Then, out of 1

2 · n · (n − 1)
possible edges, at least 1

2 · k · (k − 1) are missing, making a total of at most 1
2 · (n · (n −

1)− k · (k − 1)) edges. We can thus bound the social welfare of the grand coalition by

2 · 1
2 · (n · (n − 1)− k · (k − 1))

n

=
n · (n − 1)− k · (k − 1)

n

=
n2 − n − k2 + k

n
k≤n
≤ n2 − k2

n

=
(n − k)(n + k)

n
k≤n
≤ (n − k)2n

n
=2(n − k).

Second, we show that the approximation ratio is at most 1
2 . Consider the family of

stars, i.e., graphs of the form |V| := {a}] O where O = {o1, o2, . . . , on−1}, with edges
w(a, oi) = 1 and w(oi, oj) = 0 for all i, j ∈ [n − 1] where i 6= j. A minimum clique cover
coincides with a MCM here. It matches one edge of the star, say {a, o1}, and leaves the
other vertices as singletons. The social welfare is accordingly 1. The optimal partition
is to form the grand coalition, which gives a social welfare of 2(n−1)

n . For n → ∞, this
results in a competitive ratio of 1

2 .

It is an open problem whether for the upper bound of the proof other families of
triangle-free graphs work as well.

19

4 Adversarial Arrival

Now, after having examined the possibilities and impossibilities of the offline setting, let
us turn our attention to the main focus of this thesis, which is on online settings. The
first one we consider can be regarded as the classical one in the literature. However, it is
a pessimistic model. We study the competitive ratio of algorithms under the respective
worst-case arrival order of the agents (which we can imagine to be iteratively designed
by an “adversary”). This forbids a constant competitive for SocialWelfareFHG because
the utilities are unrestricted (Flammini, Monaco, Moscardelli, et al., 2021). The core
of the problem is the following. Suppose, the first two agents arrive, and they have a
mutual utility of α > 0. If the algorithm does not put them into a common coalition, the
adversary can stop the input, and the competitive ratio is unbounded. If the algorithm
does put them into one coalition, the adversary can let a third agent arrive which has a
utility of β for the first agent and a utility of −β for the second, where β is way larger
than α. Then, the optimal offline solution would be to put the first and third agent into a
coalition and achieve a social welfare of β. The competitive ratio is therefore bounded by
α
β . As a consequence, the best known deterministic algorithm for SocialWelfareFHG
under adversarial arrival is to greedily match edges whenever possible (Flammini,
Monaco, Moscardelli, et al., 2021). For restricted utilities, e.g., simple FHGs, the situation
is different and a constant competitive ratio can be obtained. There is a known upper
bound for deterministic algorithms.

Theorem 3 (Flammini, Monaco, Moscardelli, et al., 2021). For SocialWelfareSym-
metricSimpleFHG with adversarial arrival, there exists no deterministic algorithm with a
competitive ratio of 1

4 + ε for any constant ε > 0.

We can get a better competitiveness via a randomized matching algorithm.

Theorem 4 (Gamlath, Kapralov, Maggiori, et al., 2019). For MCM with adversarial arrival,
there exists a randomized algorithm with a competitive ratio of 1

2 + ε for some constant ε > 0.

From Theorem 2 and Theorem 4 we get the following result.

Theorem 5. For SocialWelfareSymmetricSimpleFHG with adversarial arrival, there exists
a randomized algorithm with a competitive ratio of 1

4 + ε for some constant ε > 0.

Let us consider simple FHGs which are not (necessarily) symmetric. To the best of
our knowledge, these were not studied before with respect to the maximization of social
welfare. If we just pretend that the instance we get was symmetric, i.e., every directed
edge would have a counterpart in the other direction, and then apply the online MCM

21

4 Adversarial Arrival

algorithm by Gamlath, Kapralov, Maggiori, et al. (2019), our solution of the real instance
must be at least half as good as on the assumed symmetric one. This is because the
obvious worst case is that every directed edge does not have a counterpart. As a result,
we also get a constant competitive ratio there.

Corollary 2. For SocialWelfareSimpleFHG with adversarial arrival, there exists a random-
ized algorithm with a competitive ratio of 1

8 + ε for some constant ε > 0.

22

5 Random Arrival

Here, we discuss the random arrival scenario. We assume that, for a fixed FHG, the
arrival order of all agents is determined by a permutation which is chosen uniformly
at random. This seems like a realistic take in many applications and allows for more
positive results. The imaginary adversary can now only determine the utilities but not
the arrival order. This makes it harder to trick an algorithm into creating coalitions which
turn out as unfortunate in the long run. Again, our approach is to look at matching
algorithms and use them for general FHGs. First, we present an existing algorithm for
approximating MWMs under online random arrival when the total number of agents
to come is known. Then, we study two methods of using it as a basis to create an
algorithm for an unknown total number of agents. The first approach, discussed in
Section 5.1, is based on repeatedly executing the algorithm for an exponentially growing
estimation of n. The second approach, discussed in Section 5.2, leads to better results by
directly turning the algorithm into a version that does not depend on knowledge of n.
In Section 5.3, we prove an upper bound on the possible competitive ratio.

Algorithm 2 is of crucial importance for our results. It is due to Ezra, Feldman, Gravin,
and Tang (2022). The gist of its technique is to compute the new MWM of the known
subgraph every time a vertex has arrived. If the partner of the new vertex in that local
MWM is yet unmatched in the algorithm’s solution, the edge connecting both gets
added to the solution. The algorithm has a parameter k, which can be chosen optimally
if n is known beforehand, as in the model studied by Ezra, Feldman, Gravin, and Tang
(2022). It is important to note that the algorithm assumes to be given a complete graph.
There must be no missing edges but only such of 0 weight. By having a complete graph
as the input, it follows that in every subgraph with an even number of vertices, there
exists a MWM in which the only unmatched vertices share only edges of non-positive
weight with other unmatched vertices. Since in the model of Ezra, Feldman, Gravin, and
Tang (2022), no edges of negative weight are considered, we have to adapt the algorithm
a little bit to make sure that such local MWMs are still complete. However, it is easy to
see that their analysis is still correct for our version. For computing the local MWMs,
our algorithm treats negative edges as if they had weight 0 (in the pseudocode, this is
reflected by the input specification). If such an edge (or one which originally had weight
0) is part of a local MWM (i.e., it is an et in line 12), it will not be added to the solution
which is output by the algorithm due to the check in line 15. There, we basically check
if the edge has positive weight. The reason why the comparison is against an ε and
not 0 is given by a measure to ensure the satisfaction of another requirement of the
algorithm, namely, that the MWM is always unique. We achieve this (with probability
1) by choosing a sufficiently small value ε > 0 and perturbing the weight of every

23

5 Random Arrival

edge by a random value in [0, ε]. “Sufficiently small” here means two things. First,
with our check in line 15, we must still be able to distinguish between edges which
originally had a positive weight and such edges which only became positive after the
perturbation. Second, the unique MWMs of the subgraphs must always also be a MWM
on the respective unperturbed subgraph.

Algorithm 2 Online MWM for random arrival
Input: A tuple (G, ε), where

• G = (V, w) is an undirected complete weighted graph with all edge weights
non-negative and pairwise different (its vertices arrive in random order)

• ε is the perturbation threshold

Output: A matching on G
1: Let v1, . . . , vn be the vertices in arrival order
2: A := V, µ := ∅ . A is the set of available vertices, µ is the returned matching
3: for t = k + 1 to n do
4: Let Vt := {v1, . . . , vt} . Vt is the set of vertices arrived up to time t
5: if t is odd then
6: Select rt ∈ {1, . . . , t − 1} uniformly at random
7: Set V ′

t := Vt \ {vrt} . delete a random vertex from v1, . . . , vt−1

8: else
9: Set V ′

t := Vt

10: Let µt be the MWM in G[V ′
t]

11: Let pt be the partner of vt in µt

12: Set et := {vt, pt}
13: if pt ∈ Vt ∩ A then
14: Remove vt and pt from A
15: if w(et) > ε then
16: Add et to µ . add the chosen edge to the matching
17: return matching µ

Theorem 6 (Ezra, Feldman, Gravin, and Tang, 2022). For MWM with random arrival,
Algorithm 2 achieves a competitive ratio of 1

3 +
k2

n2 − 4k3

3n3 −O(1
n).

All vertices arriving up to time k fall into a sampling phase. Here, the algorithm
refrains from matching any vertices and keeps them available for later use. If we set
k = b n

2 c, we get the best performance for the algorithm. This makes the algorithm
depend on knowledge of the total number of vertices.

Corollary 3 (Ezra, Feldman, Gravin, and Tang, 2022). For MWM with random arrival and
known n, there exists an algorithm with a competitive ratio of 5

12 −O(1
n).

By Theorem 2 and Corollary 3, we obtain the following result.

24

5.1 Iterated Doubling Approach

Lemma 1. For SocialWelfareFHG with random arrival and known n, Algorithm 2 achieves
a competitive ratio of 5

24 −O(1
n).

5.1 Iterated Doubling Approach

We can get rid of the dependency of a known n while still keeping a constant competitive
ratio. Our first approach sticks to the idea of a sampling phase.

Definition 8 (Bullinger and Romen, 2023). Let ALG be any online coalition formation
algorithm for known and even n. The iterated doubling variant of ALG (I-ALG) proceeds
as follows: It maintains a parameter i that is set to i = 0 in the beginning and increased by 1
whenever the next 2i+1 agents have arrived. We refer to the time during which the counter is set
to a certain value j as the jth phase. In the jth phase, I-ALG applies ALG to the agents arriving
in the jth phase, assuming that 2j+1 agents arrive.

Originally, the iterated doubling variant of an algorithm has been defined for the
use case of ASHGs. We make use of the fact that the technique also works for FHGs.
Moreover, we apply a more fine-grained analysis here, which uses Bullinger and Romen’s
analysis as a basis.

Lemma 2. Let ALG be an online algorithm for SocialWelfareFHG with random arrival
and known even n, which has a competitive ratio of c. Then, I-ALG has a competitive ratio of
c

12 −O(1
n) for SocialWelfareFHG with random arrival (and unknown n).

Proof. Assume that ALG is a c-competitive algorithm for SocialWelfareFHG under
random arrival with known and even n. Let us consider I-ALG. In the jth phase, if
it gets completed, 2j+1 agents arrive. Therefore, at the time it gets completed, exactly
2j+2 − 2 agents have arrived in total, as ∑

j
i=0 2i+1 = ∑

j+1
j=1 2i = (∑

j+1
j=0 2i)− 1 = 2j+2 − 2.

Let i∗ denote the largest index such that I-ALG completes phase i∗. We know n ≥
2i∗+2 − 2 and n < 2i∗+3 − 2.

2i∗+2 − 2 ≤ n < 2i∗+3 − 2
=⇒ 2i∗+2 ≤ n + 2 < 2i∗+3

=⇒ i∗ + 2 ≤ log2(n + 2) < i∗ + 3
=⇒ i∗ ≤ log2(n + 2)− 2 < i∗ + 1
=⇒ i∗ = blog2(n + 2)− 2c

= blog2(n + 2)c − 2

(5.1)

Since in phase j, 2j+1 agents arrive and the total number of agents n is less than 2i∗+3 − 2,
the fraction of agents arriving in that phase must be

2j+1

n
>

2j+1

2i∗+3 − 2
> 2j−i∗−2 =

1
2i∗−j+2 . (5.2)

In the following, we define x := i∗ − j + 2 for better readability.

25

5 Random Arrival

Let Jj ⊆ N with j ≤ i∗ be the random subset of agents in the jth (completed) iteration.
Then, it holds that

Eσ∼U(∑(N)) [SW(I-ALG(G, σ))] ≥
i∗

∑
j=0

EJj

[
Eσ∼U(∑(Jj))

[
SW(ALG(G[Jj], σ))

]]
≥

i∗

∑
j=0

EJj

[
c · SW(π∗(G[Jj]))

]
=c ·

i∗

∑
j=0

EJj

[
SW(π∗(G[Jj]))

]
. (5.3)

Let π∗ be a partition for G achieving maximum welfare. Moreover, define E∗ :={
{u, v} ∈ (N

2) | u ∈ π∗(v)
}

, i.e., the pairs of agents that are in a joint coalition in π∗.
Note that for every set {u, v} ∈ E∗ it holds that

Pr({u, v} ⊆ Jj)
(5.2)
>

n
2x · n

·
n
2x − 1
n − 1

=
1
2x ·

n−2x

2x

n − 1
=

1
4x · n − 2x

n − 1

>
1
4x · n − 2x

n
=

1
4x

(
1 − 2x

n

)
=

1
4x − 1

2x · n
. (5.4)

The first inequality holds because we have n different possible positions for u, from
which more than n

2x are in Jj, and after that n − 1 different possible positions for v, from
which more than n

2x − 1 are left in Jj. We want to use the sum of those probabilities for
all j ≤ i∗.

i∗

∑
j=0

Pr({u, v} ⊆ Jj)
(5.4)
>

i∗

∑
j=0

(
1
4x − 1

2x · n

)
=

i∗

∑
j=0

1
4x︸ ︷︷ ︸

=:A

−
i∗

∑
j=0

1
2x · n︸ ︷︷ ︸
=:B

We analyze the two parts of the sum, A and B, separately. Let m := 2i∗+2 and observe
that n+2

2 < m ≤ n + 2 considering Equation (5.1). For A we get

A =
i∗

∑
j=0

1
4i∗−j+2 =

i∗

∑
j=0

(
1

2i∗−j+2

)2

=
i∗

∑
j=0

(
2j

m

)2

=

(
1
m

)2 i∗

∑
j=0

4j

=

(
1
m

)2

· 1
3

(
4i∗+1 − 1

)
=

1
3m2

(
1
4
(2i∗+2)

2 − 1
)

=
1

3m2

(
1
4

m2 − 1
)
=

1
12

− 1
3m2

≥ 1
12

− 1

3
(n+2

2

)2 =
1
12

− 4
3n2 + 12n + 12

.

26

5.1 Iterated Doubling Approach

For B we get

B =
i∗

∑
j=0

1
2i∗−j+2 · n

=
i∗

∑
j=0

2j

m · n
=

1
m · n

i∗

∑
j=0

2j =
1

m · n

(
2i∗+1 − 1

)
=

1
m · n

(
1
2
· 2i∗+2 − 1

)
=

1
m · n

(
1
2

m − 1
)
<

1
m · n

· 1
2
· m =

1
2n

.

So
i∗

∑
j=0

Pr({u, v} ⊆ Jj) > A − B >
1
12

− 4
3n2 + 12n + 12

− 1
2n

. (5.5)

Recall that, for a given subset Jj ⊆ N, π∗[Jj] denotes the partition π∗ restricted to Jj. It
follows

i∗

∑
j=0

EJj

[
SW(π∗(G[Jj]))

]
≥

i∗

∑
j=0

EJj

[
SW(π∗[Jj])

]
≥

i∗

∑
j=0

∑
{u,v}∈E∗

Pr({u, v} ⊆ Jj)
2w(u, v)
|π∗(u)|

(5.5)
>

(
1
12

− 4
3n2 + 12n + 12

− 1
2n

)
SW(π∗)

=

(
1
12

−O
(

1
n

))
SW(π∗). (5.6)

The second inequality here holds because the coalitions of π∗ can potentially only
become smaller, not larger, when restricted to agents in a Jj. Therefore, the denominator
cannot become smaller by leaving out that restriction.

Putting it all together, we get

Eσ∼U(∑(N)) [SW(I-ALG(G, σ))]
(5.3)
= c ·

i∗

∑
j=0

EJj

[
SW(π∗(G[Jj]))

]
(5.6)
= c ·

(
1

12
−O

(
1
n

))
SW(π∗)

=

(
c

12
−O

(
1
n

))
SW(π∗).

When applying the iterated doubling technique to Algorithm 2, we get the first
algorithm with a constant competitiveness.

Theorem 7. For SocialWelfareFHG with random arrival, there exists an algorithm with a
competitive ratio of 5

288 −O(1
n).

Proof. By Lemma 1, Algorithm 2 with k = b n
2 c achieves a competitive ratio of 5

24 −O(1
n)

for SocialWelfareFHG with random arrival and known n. Then, its iterated doubling

variant, by Lemma 2, has a competitive ratio of
5
24−O(1

n)
12 −O(1

n) =
5

288 −O(1
n).

27

5 Random Arrival

5.2 No Sampling Phase

In the previous section we have seen how to achieve a constant competitive ratio via
repeated executions of a matching algorithm. It turns out that the approach of making
the sampling phases longer by time performs worse than having no sampling phase at
all. Moreover, having no sampling phase is a more simple way of getting a constant
competitive ratio. Observe that Algorithm 2 only needs to know n in advance if we
choose k depending on n. That means if we simply let k be a constant, then, by
Theorem 6, we still get a good competitive ratio without having to know the number
of agents1. Then, for n → ∞, the relative length of the sampling phase (and its impact)
vanishes.

Corollary 4. For MWM with random arrival, there exists an algorithm with a competitive ratio
of 1

3 −O(1
n).

In conjunction with Theorem 2, Corollary 4 directly shows the following.

Theorem 8. For SocialWelfareFHG with random arrival, there exists an algorithm with a
competitive ratio of 1

6 −O(1
n).

It remains unclear whether this result is tight in the sense that 1
6 is the best asymptotic

competitive ratio one can ascribe to Algorithm 2. Its obvious weakness is that it never
forms large coalitions. But in contrast to ASHGs, this is not such a big issue for FHGs.
Consider, e.g., an FHG given by a clique of size n with all edges of equal weight. It
represents the worst case for the approximation ratio of a MWM with respect to an
optimal partition. There are no heavy edges the matching could grab. Instead, the
welfare of a partition is solely influenced by the coalition size. Nevertheless, there is
a property of such instances that the algorithm can exploit. To see this, first observe
that in general graphs one challenge for the algorithm is the fact that, in expectation, it
learns about an (random) edge rather late. While the number of known vertices grows
linearly (each time a new vertex arrives, we know one more), that of known edges may
grow quadratically (when a new vertex arrives at step k, we get to know up to k − 1
new edges). Hence, when the algorithm matches a relatively heavy edge at an early
point in time, there is a high risk of that edge not being relatively heavy globally2. For
a (complete) graph in which all edges have equal weight this problem does not arise.
We will see that, as a result, Algorithm 2 (with constant k) maintains a competitive ratio
of 1

3 −O(1
n) on cliques with uniform edge weights. In fact, this competitive ratio is

achieved by the algorithm on the class of symmetric simple FHGs. This is an equivalent
statement because if an instance contains edges of weight 0 (instead of the uniform
edge weight), that cannot make the algorithm worse off, and scaling the uniform edge
weights by any constant factor does not change the algorithm’s performance.

Theorem 9. For MCM with random arrival, there exists an algorithm with a competitive ratio
of 2

3 −O(1
n).

1For the analysis of Ezra, Feldman, Gravin, and Tang to work we need k ≥ 3, though.
2Evading this is one of the ideas behind having a sampling phase.

28

5.3 Upper Bound

Proof. Ezra, Feldman, Gravin, and Tang (2022) show that the competitive ratio of
Algorithm 2 with respect to computing a MWM is given by

n

∑
t=k+1

(
1 − 2

3

(
1 − (t − 4)! · k!

(t − 1)! · (k − 3)!

))
· E

[
w(et)

w(µ∗)

]
,

where et is the candidate edge to be added in the tth step (see lines 12 and 16 of the
algorithm), and µ∗ is the (globally optimal) MWM. We apply the algorithm with k = 3.
As all edges are of the same weight, we know that for every time t > k, we have the
following inequality, which is asymptotically tight for cliques.

w(et)

w(µ∗)
≥ w(et)

b n
2 c · w(et)

≥ 2
n

We get the following competitive ratio in the MCM domain (recall that a MCM is a
MWM on an unweighted graph).

n

∑
t=4

(
1 − 2

3

(
1 − (t − 4)! · 6

(t − 1)!

))
· 2

n

=
n

∑
t=4

(
1 − 2

3

(
1 − 6

(t − 1)(t − 2)(t − 3)

))
· 2

n

=
n

∑
t=4

4
n · (t − 3)

− 8
n · (t − 2)

+
4

n · (t − 1)
+

2
3n

=
2
3
− 2

n − 2
+

4
n − 1

− 2
n
=

2
3
−O

(
1
n

)

This translates into a competitive ratio of 1
3 −O(1

n) for SocialWelfareSymmetric-
SimpleFHG because Theorem 2 is tight here.

Theorem 10. For SocialWelfareSymmetricSimpleFHG with random arrival, there exists
an algorithm with a competitive ratio of 1

3 −O(1
n).

5.3 Upper Bound

Now that we know a natural way of achieving a decent competitive ratio, let us take a
look at which upper bound for the competitive ratio we can determine in this setting.
We start by showing the following theorem. After that, we combine the techniques of
that proof with an additional idea to prove a better bound.

Theorem 11. For SocialWelfareFHG with random arrival, no algorithm has an asymptotic
competitive ratio better than 1

2 .

29

5 Random Arrival

To show this, we leverage a family of stars that exhibit only one relatively heavy edge.
An algorithm that wants to perform good has to maximize its chances of putting exactly
that edge in a coalition (returning a matching with only one matched edge). In many
aspects we follow a proof by Ezra, Feldman, Gravin, and Tang (2022, Theorem 4.1).

Proof of Theorem 11. Consider the family G :=
⋃

n∈N Gn of FHG instances. For every
n, the set Gn consists of all stars GN′ with |N′| = n − 1. A star GN′ = (N, w), where
N := a] N′, and N′ is an arbitrary finite non-empty subset of the natural numbers, has
a central vertex a and n − 1 outer vertices N′. The weights are w(a, i) := (αn)i for edges
between a and any outer vertex i ∈ N′. The factor α is an arbitrary positive rational
constant whose sole purpose is to prevent the algorithm from inferring knowledge
about n from the observed edge weights. Without it, the algorithm could, for every
pair of edge weights it knows, divide one by the other and know that the result must
be a power of n. Observe that, since for any such pair of edges the weights differ by
a factor of at least αn, there is only one really valuable edge when considering large n.
Let t := max(N′). We call the edge between a and t the top edge. Let w(i, j) < −(αn)t+1

for all edges between vertices i, j ∈ N′ of the outer type3.

Now, for an online algorithm to have a competitive ratio of c for a fixed instance GN′ ,
it must output a partition containing the coalition {a, t} (i.e., the top edge) in at least a
fraction c of all n! possible arrival orders, in expectation.

Claim 1. Let ALG be an algorithm for SocialWelfareFHG with random arrival. Fix an
arbitrary instance GN′ ∈ G. If ALG is c-competitive on GN′ , then it returns a partition
containing only the top edge with probability at least c − 1

αn . Moreover, in those cases the top
edge is the only non-singleton coalition.

Proof. First, notice that whenever a partition has a coalition containing an outer edge
{i, j} with i, j ∈ N′, its social welfare will be negative. Therefore, we restrict our attention
to algorithms returning at most one coalition of the form {a, i}, where i ∈ N′, and apart
from that only singleton coalitions.

Fix some GN′ and let π∗ be the corresponding optimal partition. We have

SW(ALG(GN′))

SW(π∗)
=

SW(ALG(GN′))

(αn)t ≥ c,

3The exact weights of those edges are not important as long as they are so highly negative that they
shall never be inside coalitions. We avoid defining w(i, j) := −(αn)t+1 as that might give an algorithm
information about the weight of the top edge.

30

5.3 Upper Bound

and so

c · (αn)t ≤SW(ALG(GN′))

= ∑
i∈N′

Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {i}

}
∪ {a, i}

]
· w(a, i)

= ∑
i∈N′

Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {i}

}
∪ {a, i}

]
· (αn)i

=Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {t}

}
∪ {a, t}

]
· (αn)t

+ ∑
i∈N′\{t}

Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {i}

}
∪ {a, i}

]
· (αn)i

=⇒ c ≤Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {t}

}
∪ {a, t}

]
+ ∑

i∈N′\{t}
Pr

[
ALG(GN′) =

{
{j} | j ∈ N′ \ {i}

}
∪ {a, i}

]
· (αn)i

(αn)t

≤Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {t}

}
∪ {a, t}

]
+ ∑

i∈N′\{t}
Pr

[
ALG(GN′) =

{
{j} | j ∈ N′ \ {i}

}
∪ {a, i}

]
· (αn)t−1

(αn)t

=Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {t}

}
∪ {a, t}

]
+

1
αn ∑

i∈N′\{t}
Pr

[
ALG(GN′) =

{
{j} | j ∈ N′ \ {i}

}
∪ {a, i}

]
≤Pr

[
ALG(GN′) =

{
{j} | j ∈ N′ \ {t}

}
∪ {a, t}

]
+

1
αn

=⇒ c − 1
αn

≤Pr
[
ALG(GN′) =

{
{j} | j ∈ N′ \ {t}

}
∪ {a, t}

]
.

So if an algorithm wants to accomplish a (good) constant competitive ratio, its one
and only goal must be to put the top edge in a coalition of size 2 and put all other agents
in singleton coalitions. As long as the central agent a has not arrived yet, the algorithm
can do nothing else but put agents in singleton coalitions. At the time a arrives, it may
form a coalition solely containing the currently heaviest edge—we say it “matches” the
“current top edge”—and hope that it is the top edge. If it does so, it has to put all
remaining arriving agents in singleton coalitions. If not, it may continue to observe the
incoming agents and in each step decide to commit and match the new edge or keep
waiting.

Claim 2. For every algorithm ALG achieving a competitive ratio of c on the instances G, there
exists an algorithm ALG′ achieving a competitive ratio of at least c − 1

αn on G obeying to the
following paradigms.

At every time step k ≥ 1, ALG′ may only match the current top edge (if possible) or create a
new singleton coalition. Its decision among the two alternatives only depends on

31

5 Random Arrival

• the time step: k

• the agents which have arrived: {i ∈ N | σ−1(i) ≤ k}

• the order in which the agents have arrived: σ|[k]

Proof. Consider an arbitrary algorithm ALG achieving a competitive ratio of c on the
instances G. We will modify it to an algorithm ALG′ that never matches an edge which
is not the current top edge and achieves a competitive ratio of at least c − 1

αn on G. If,
for any instance GN′ ∈ G and any arrival order σ, ALG matches an edge that is not
the current top edge with probability p > 0, ALG′ will—instead of matching that not
current top edge—not match at all but just keep waiting (by opening up a new singleton
coalition). Otherwise, ALG′ behaves as ALG. In the case where they behave differently,
suppose, ALG′ achieves a competitive ratio of c′σ on GN′ with σ given as the arrival
order. Now, consider ALG. Since it cannot match the top edge for arrival order σ when
matching a not current top edge at any time, its competitive ratio cσ for σ is upper
bounded by (1 − p)c′σ + p 1

αn . Then,

c′σ ≥ (1 − p)c′σ ≥ cσ − p
1

αn
≥ cσ −

1
αn

.

As a result, the competitive ratio of ALG′ is at least c − 1
αn on G.

Next, we show that we can even restrict our attention to history-independent al-
gorithms, i.e., algorithms not taking into account the order in which the agents have
arrived.

Claim 3. For every algorithm ALG achieving a competitive ratio of c on the instances G, there
exists an algorithm ALG′′ achieving a competitive ratio of at least c − 1

αn on G obeying to the
following paradigms.

At every time step k ≥ 1, ALG′′ may only match the current top edge (if possible) or create a
new singleton coalition. Its decision among the two alternatives only depends on

• the time step: k

• the agents which have arrived: {i ∈ N | σ−1(i) ≤ k}

Proof. We start with an algorithm ALG′ given by Claim 2. To such an algorithm ALG′

we construct an algorithm ALG′′ which is independent of the seen agent arrival order.
First, fix an arbitrary time step k and a set Nk of agents having arrived. Then, fix an
arrival order σk := σ|[k] up till then, satisfying σk([k]) = Nk. Assume that

• a ∈ Nk,

• ALG′ has not matched an edge yet,

• and that either

– σk(k) = a or

32

5.3 Upper Bound

– the latest arrived edge {a, σk(k)} is the current top edge.

If one of these conditions were not met, ALG′ would not make a match in step k. Let
ALG′′

σk be an algorithm that ignores the actual arrival order σk and instead randomly
generates a virtual arrival order σ′

k of Nk, where σ′
k(k) = a or the latest edge is the

current top edge, conditioned on the probability of ALG′ not having matched yet for σ′
k.

More specifically, define

X(s) := I
(

s([k]) = Nk ∧
(

s(k) = a ∨ {a, s(k)} = argmaxe∈(Nk
2)

w(e)
))

S := ∑
σ′

k

Pr
[
ALG′ would not have matched on σ′

k yet
]
· X(σ′

k).

Then,

Pr
[
ALG′′

σk generates σ′
k
]

:=
X(σ′

k)

S
Pr

[
ALG′ would not have matched on σ′

k yet
]

.

ALG′′
σk continues on the instance, assuming that the arrival order up to time k was σ′

k
and therefore is independent of the actually seen arrival order up to that time. Aside
from that, ALG′′

σk behaves as ALG′. As σ′
k is drawn from the same distribution as σk,

ALG′′
σk has, in expectation, the same competitive ratio as ALG′.

We define ALG′′ dynamically. It starts like ALG′ but at every time k satisfying above
assumptions, it starts to imitate the respective ALG′′

σk . An inductive argument shows
that the expected competitive ratio of ALG′′ is the same as of ALG′. Moreover, ALG′′ is
always independent of the seen arrival order.

Claim 3 shows that with respect to constant competitive ratios we can w.l.o.g. consider
only algorithms exclusively matching a current top edge and being oblivious to the
arrival order. Any such algorithm can be represented by a sequence of functions
fk : (N

k) → [0, 1] where k ∈ N. The function fk describes the behavior of the algorithm
at time k + 1. It takes as input the set of observed outer vertices (the natural numbers by
which they are named) and returns the probability with which the algorithm matches
the current top edge if possible.

We go one step further and show that we only get imprecise by an arbitrarily small
factor ε > 0 if we restrict our attention to algorithms not even taking into account the
(absolute) edge weights, meaning every function fk is a constant pk with error at most
ε. In other words, we show that for our instances the described cardinal setting is
equivalent to an ordinal setting where an algorithm can compare edge weights only
pairwise.

On a side note, the situation for an algorithm here is very similar to a well-known
problem where one should pick the larger of two numbers (Cover, 1987). In the problem,
there are two slips of paper with numbers written on the back side. After randomly
choosing one of them and inspecting the number written on it, one must decide whether
to stick with it or discard it and choose the unknown number on the other slip. Naively,
one would think that the probability of getting the larger number must be exactly 1

2 .

33

5 Random Arrival

But one can do better. By randomly generating a “split number” according to any
distribution covering all real numbers, the probability of winning can be increased
slightly above 1

2 . If the first observed number is lower than the split number, one chooses
the other, unknown number. Otherwise, one chooses the number at hand. An algorithm
for our star instances faces a decision of the same kind when the central vertex a arrives.
Either it matches the heaviest edge now, or it speculates that the (other vertex of the)
globally heaviest edge will arrive after a. In that case it must wait and try to get that
edge. The important observation is that for the mentioned problem with numbers on
slips of paper, an adversary writing the numbers can push ones winning probability
arbitrarily close to 1

2 by reducing the probability that the split number lies between the
two written ones. This idea generalizes to our setting.

Lemma 3 is based on the infinite version of Ramsey’s theorem (1930). Such applications
of Ramsey’s theorem have been used in various similar variations of secretary and
prophet inequality problems to show worst-case equivalence of the cardinal and ordinal
setting (Correa, Dütting, Fischer, & Schewior, 2019; Kaplan, Naori, & Raz, 2020; Moran,
Snir, & Manber, 1985).

Lemma 3 (Ezra, Feldman, Gravin, and Tang, 2022). For any n ∈ N, any collection of set
functions fk : (N

k) → [0, 1], k ∈ [n], and any ε > 0, there exists an infinite set T ⊂ N and
constants p1, . . . , pn ∈ [0, 1], such that fk(N′

k) = pk +O(ε) for all N′
k ∈ (T

k), k ∈ [n].

Since the total number of agents that will arrive is finite, for every instance GN′ ∈ Gn,
only a prefix of length n of the sequence fk is relevant. For every n̂ ∈ N, we can apply
Lemma 3 with ε ∈ O(1

n̂2) to obtain an infinite set T for which all algorithms ignoring the
absolute observed edge weights on GN′ , where N′ ⊂ T, could improve their probability
of matching the top edge on instances with n ≤ n̂ by at most O(1

n) if they would
incorporate the edge weights into their decisions.

To see this, let N′
k−1 := Nk \ {a} and consider any arrival order σ, a time k ∈ [n] \ {1},

and outer agents N′
k−1 ∈ (T

k−1) where σ−1(a) ≤ k ∧ σ−1(t) ≤ k ∧ σ(k) ∈ {a, t}. Assume,
an algorithm ALG achieves a competitive ratio c. Let ALG′ be an algorithm described by

34

5.3 Upper Bound

constant fks according to Lemma 3. Then,

c ≤Pr [{a, t} ∈ ALG(GN′ , σ)]

= fk−1(N′
k−1) · ∏

j
σ−1(a)≤j≤k

∀j′<j:w(a,j′)<w(a,j)

(1 − f j−1(N′
j−1))

=

(
pk−1 −O

(
1
n̂2

))
· ∏

j
σ−1(a)≤j≤k

∀j′<j:w(a,j′)<w(a,j)

(
1 − pj−1 +O

(
1
n̂2

))

=

pk−1 · ∏
j

σ−1(a)≤j≤k
∀j′<j:w(a,j′)<w(a,j)

(1 − pj−1)

±O(n) · O
(

1
n̂2

)

=

pk−1 · ∏
j

σ−1(a)≤j≤k
∀j′<j:w(a,j′)<w(a,j)

(1 − pj−1)

±O
(

1
n

)

= Pr
[
{a, t} ∈ ALG′(GN′ , σ)

]
±O

(
1
n

)
.

Hence, ALG′ has a competitive ratio of at least c −O(1
n). We can strengthen Claim 3 to

the following.

Claim 4. For every algorithm ALG achieving a competitive ratio of c on the instances G, there
exists an algorithm ALG′ achieving a competitive ratio of c −O(1

n) on G such that at every time
step k ≥ 1, ALG′ may only match the current top edge (if possible), and its (possibly randomized)
decision whether to do so only depends on the time step k.

With these simplifying assumptions for algorithms on instances GN′ ∈ G , it is now easy
to see that an algorithm has no significant way of telling when it is the right moment to
match an edge. The probability that a arrives before t is 1

2 . When an algorithm observes
the arrival of a it can either decide to match the current top edge, hoping that it is the
top edge, or not match yet, hoping that (t and) the top edge is yet to come. Knowledge
of the time step k does not help here because n is unknown to the algorithm. Its decision
has to be purely probabilistic. Thus, asymptotically, an algorithm cannot make the right
decision more than half of the times in expectation, meaning its competitive ratio is
upper bounded by 1

2 .

Next, we prove a better upper bound for the competitive ratio.

Theorem 12. For SocialWelfareFHG with random arrival, no algorithm has an asymptotic
competitive ratio better than 1

3 .

35

5 Random Arrival

a

li1

li2

li3

li4

li5

...

lt

rj1

rj2

rj3

rj4

rj5

...

ni1

ni2

ni3

ni4

ni5

nt

Figure 5.1: The star instances Sn for which an algorithm has to match the edge {a, lt} to
achieve a constant competitive ratio. The ratio between two edge weights is
always at least n.

To obtain this bound, we mix the star instances of the proof for Theorem 11 with
bistar (double star) instances where the heavy edge connects the two central vertices.
The key idea is that we do so in such a way that an algorithm cannot determine quick
enough whether the input is a star or a bistar. If it is a star, the algorithm must match
the heavy edge of the star, connecting the central vertex with an outer one. If it is a
bistar, though, it must wait until both central vertices have arrived and then match the
edge between them. Since an algorithm still can only match one edge, it has to guess
whether the input is a star or a bistar. And on the stars it still will not be able to perform
better than 1

2 .
For a simpler exposition, we will leave out the factor α in the edge weights this time,

which would technically also be needed here. It is easy to see that if it were included,
all arguments would still work the same.

Proof of Theorem 12. Consider the two families S :=
⋃

n∈N Sn and B :=
⋃

n∈N Bn of FHG
instances. The family Sn contains stars of size n with one central agent a, a set of outer
agents L, and extra agents R which are not connected to any agent (see Figure 5.1). It
is |L|+ |R|+ 1 = n. The family Bn contains bistars of size n with two central agents
a and b, and two sets of outer agents L and R of the same size (see Figure 5.2). It is

36

5.3 Upper Bound

a b

li1

li2

li3

li4

li5

...

lt

ri1

ri2

ri3

ri4

ri5

...

rt

nt+1

ni1

ni2

ni3

ni4

ni5

nt

ni1

ni2

ni3

ni4

ni5

nt

Figure 5.2: The bistar instances Bn for which an algorithm has to match the edge {a, b}
to achieve a constant competitive ratio. The ratio between two edge weights
is always at least n.

|L|+ |R|+ 2 = 2|L|+ 2 = n. By SL,R ∈ Sn we denote a star and by BL,R ∈ Bn a bistar
(with n vertices, respectively). For both stars and bistars, L and R can be represented by
finite subsets of the natural numbers. There are I, J ⊂ N such that L := {li | i ∈ I} and
R := {rj | j ∈ J}. For bistars B, we have I = J.

The stars have positive edges only between L and a. The bistars have them between b
and R too, and a heavy positive edge between a and b. More specifically, for SL,R ∈ Sn

and BL,R ∈ Bn, let t := max(I). Then, for all i, i1, i2 ∈ I with i1 6= i2 and j, j1, j2 ∈ J with
j1 6= j2, we have w(li, a) = ni and max{w(li1 , li2), w(rj1 , rj2), w(li, rj), w(a, rj)} < −nt+2,
which ensures a highly negative weight of those edges4. Moreover, for BL,R ∈ Bn we
have w(b, rj) = nj as well as w(a, b) = nt+1. In the instances B we call the heaviest edge
{a, b} the “bridge”.

As the bistars are symmetric (consider the automorphism mapping a to b and li to ri),
we can w.l.o.g. assume that a arrives before b and thus only have to consider half of the
arrival orders. An argument very similar to that of Claim 1 shows that an algorithm has
to match the bridge with probability at least cB − 1

n in order to achieve a competitive
ratio of cB on B.

4See the footnote in the proof of Theorem 11.

37

5 Random Arrival

We partition the event of matching the bridge according to the different possible
arrival times of b. The idea is that, before b arrives, an algorithm cannot distinguish
between a star and a bistar. Moreover, the set of all agents arriving before b forms a star
instance itself.

Let us now denote by cB(n) the competitive ratio that an algorithm achieves on Bn.

cB(n) ≤
1
n
+ Pr [match the bridge on Bn]

=
1
n
+

n

∑
k=2

Pr [match the bridge on Bn | σ(k) = b] · Pr [σ(k) = b]

≤ 1
n
+

n

∑
k=2

Pr [do not match before step k on Bn | σ(k) = b] · Pr [σ(k) = b]

=
1
n
+

n

∑
k=2

Pr [do not match on Sk−1] · Pr [σ(k) = b]

=
1
n
+

n

∑
k=2

Pr [do not match on Sk−1] ·
2(k − 1)
n(n − 1)

=
1
n
+

2
n(n − 1)

n−1

∑
k=1

Pr [do not match on Sk] · k

Assume for contradiction that an algorithm achieves a competitive ratio of c ≥ 1
3 + ε on

S ∪ B, where ε > 0 is a constant. Then,

1
3
+ ε ≤ 1

n
+

2
n(n − 1)

n−1

∑
k=1

Pr [do not match on Sk] · k. (5.7)

We want to show that under that restriction, an algorithm cannot maintain a competitive
ratio of 1

3 + ε for stars. Observe that Claims 1, 2, 3, and 4 still hold

• under the restriction of not matching at all with a given probability

• and with “extra” agents sharing no edge of positive weight with any other agent,

so we can apply them to S . Recall that this allows us to describe any algorithm (up to
an arbitrarily small error) as a sequence (pk)k∈N of probabilities, where pk represents
the probability of matching the current top edge at time step k, given that the algorithm
has the option to do so. To find the conflict, we define as fS (n) the probability of the
algorithm not matching at all on instances Sn and as c′S (n) its probability of matching
the top edge on Sn.

38

5.3 Upper Bound

We get

fS (1) =1 (5.8)

fS (n) =Pr [do not match on Sn]

=Pr [do not match on Sn | σ(n) = a] · Pr [σ(n) = a]

+ Pr [do not match on Sn | σ(n) 6= a] · Pr [σ(n) 6= a]

=(1 − pn) ·
1
n
+ Pr [do not match on Sn | σ(n) 6= a] · n − 1

n
(5.9)

and

Pr [do not match on Sn | σ(n) 6= a]

=Pr [do not match on Sn | σ(n) 6= a ∧ σ(n) 6= lt] · Pr [σ(n) 6= lt | σ(n) 6= a]

+ Pr [do not match on Sn | σ(n) 6= a ∧ σ(n) = lt] · Pr [σ(n) = lt | σ(n) 6= a]

= fS (n − 1) · n − 2
n − 1

+ (fS (n − 1) · (1 − pn)) ·
1

n − 1
, (5.10)

so

fS (n)
(5.9)(5.10)

= (1 − pn) ·
1
n
+

(
fS (n − 1) · n − 2

n − 1
+ (fS (n − 1) · (1 − pn)) ·

1
n − 1

)
· n − 1

n

=
1
n
(1 − pn + (n − 1 − pn) · fS (n − 1)) . (5.11)

Furthermore,

c′S (1) =1 (5.12)

c′S (n) =Pr [match the top edge on Sn]

=Pr [match the top edge on Sn | σ(n) = a] · Pr [σ(n) = a]

+ Pr [match the top edge on Sn | σ(n) 6= a] · Pr [σ(n) 6= a]

=pn ·
1
n
+ Pr [match the top edge on Sn | σ(n) 6= a] · n − 1

n
(5.13)

and

Pr [match the top edge on Sn | σ(n) 6= a]

=Pr [match the top edge on Sn | σ(n) 6= a ∧ σ(n) 6= lt] · Pr [σ(n) 6= lt | σ(n) 6= a]

+ Pr [match the top edge on Sn | σ(n) 6= a ∧ σ(n) = lt] · Pr [σ(n) = lt | σ(n) 6= a]

=c′S (n − 1) · n − 2
n − 1

+ (fS (n − 1) · pn)
1

n − 1
, (5.14)

so

c′S (n)
(5.13)(5.14)

= pn ·
1
n
+

(
c′S (n − 1) · n − 2

n − 1
+ (fS (n − 1) · pn)

1
n − 1

)
· n − 1

n

=
1
n
(

pn + pn · fS (n − 1) + (n − 2) · c′S (n − 1)
)

. (5.15)

39

5 Random Arrival

Consider fS (n) + c′S (n). We will see that pn does not play a role in this sum.

fS (n) + c′S (n) (5.16)
(5.11)(5.15)

=
1
n
(1 − pn + (n − 1 − pn) · fS (n − 1))

+
1
n
(

pn + pn · fS (n − 1) + (n − 2) · c′S (n − 1)
)

=
1
n
(
1 + (n − 1) · fS (n − 1) + (n − 2) · c′S (n − 1)

)
=

1
n
+ fS (n − 1)− 1

n
· fS (n − 1) + c′S (n − 1)− 2

n
· c′S (n − 1)

= fS (n − 1) + c′S (n − 1) +
1
n
(
1 − fS (n − 1)− 2 · c′S (n − 1)

)
≤ fS (n − 1) + c′S (n − 1) +

1
n

(
1 − fS (n − 1)− c′S (n − 1)−

(
1
3
+ ε − 1

n

))
(5.17)

= fS (n − 1) + c′S (n − 1) +
1
n

(
2
3
− ε +

1
n
− fS (n − 1)− c′S (n − 1)

)

The inequality (5.17) follows from c′S (n) ≥ 1
3 + ε − 1

n being true for every n. To see why,
let cS (n) denote the competitive ratio of the algorithm on Sn. Then, 1

3 + ε ≤ cS (n) ≤
c′S (n) +

1
n . In order to simplify the following calculations, we perform a substitution

and let s(n) := fS (n) + c′S (n) which gives us a recursively upper bounded sequence.

s(n) ≤s(n − 1) +
1
n

(
2
3
− ε +

1
n
− s(n − 1)

)
=

1
n2 +

2 − 3ε

3n
+

n − 1
n

s(n − 1)

The solution to the recurrence is

s(n) ≤ 3ε + 1 + 3Hn

3n
+

2
3
− ε

where Hn := ∑n
k=1

1
k denotes the nth harmonic number. And since fS (n) = s(n)− c′S (n)

and c′S (n) ≥ 1
3 + ε − 1

n , this means

fS (n) ≤
3ε + 1 + 3Hn

3n
+

2
3
− ε −

(
1
3
+ ε − 1

n

)
=

3ε + 4 + 3Hn

3n
+

1
3
− 2ε. (5.18)

40

5.3 Upper Bound

Combining this with our calculations for bistars, we know

1
3
+ ε

(5.7)
≤ 1

n
+

2
n(n − 1)

n−1

∑
k=1

Pr [do not match on Sk] · k

=
1
n
+

2
n(n − 1)

n−1

∑
k=1

fS (k) · k

(5.18)
≤ 1

n
+

2
n(n − 1)

n−1

∑
k=1

(
3ε + 4 + 3Hk

3k
+

1
3
− 2ε

)
· k

=
1
n
+

2
n(n − 1)

n−1

∑
k=1

ε +
4
3
+ Hk +

(
1
3
− 2ε

)
· k

=
1
n
+

n + 1
3(n − 1)

− 2nε

n − 1
+

2Hn

n − 1
+

4ε

n − 1
− 8 + 6ε

3(n − 1)n
.

But

lim
n→∞

(
1
n
+

n + 1
3(n − 1)

− 2nε

n − 1
+

2Hn

n − 1
+

4ε

n − 1
− 8 + 6ε

3(n − 1)n

)
=

1
3
− 2ε

shows that for sufficiently high n we get a contradiction. Consequently, an algorithm
cannot have a competitive ratio of 1

3 + ε on S ∪ B.
For the argumentation leading to the contradiction we assumed the algorithm to have

a strict (rather than asymptotic) competitive ratio of 1
3 + ε. Notice however that

• it is a natural assumption. Initially (for n ≤ 1), any algorithm has a competitive
ratio of 1 as well as a probability 1 of not having matched. Since the algorithm does
not know n, it makes no sense for it to perform poorly (and push the competitive
ratio under 1

3 + ε) up to some point but then eventually reach 1
3 + ε.

• when n0 is the step from which on the algorithm achieves a strict competitive ratio
of 1

3 + ε, we can, in Equations (5.8) and (5.12), consider the constants fS (n0) and
cS (n0) instead. In the following, we would then restrict our attention to steps
n > n0 (e.g., for Equations (5.7) and (5.17)) and all arguments work the same.

In the proof, we used edges of high negative weight to ensure certain agents do not
end up in a coalition together. Moreover, we effectively restricted the possible coalition
size to a maximum of 2. That means the bound holds for matching too (the negative
edges there even could be replaced by edges of weight 0).

Corollary 5. For MWM with random arrival, no algorithm has an asymptotic competitive ratio
better than 1

3 .

This upper bound matches the lower bound given by Corollary 4. Finally, we want to
mention that the upper bound proven in Theorem 12 applies to ASHGs and MFHGs
too and therefore is the new best known bound for online random arrival in those
models (to the best of our knowledge, online coalition formation for MFHGs has not
been studied yet at all).

41

6 Free Dissolution

The last setting we study is the same as the one in Chapter 4, except that we give more
options to the algorithms. At the time a new agent arrives, an algorithm may decide
to dissolve an existing coalition, i.e., all agents of that coalition are then in singleton
coalitions. Only after the possible dissolving of a coalition, the new agent has to be
assigned to one.

With this modification, it is easy to see that the algorithm proposed by Flammini,
Monaco, Moscardelli, et al. (2021) for the adversarial arrival, which creates a maximal
matching, is not optimal anymore. Consider the instance in Figure 6.1. The first two
agents who arrive share an edge of weight 1. The algorithm will put them into one
coalition. The third agent shares an edge of weight w with the first one. Similarly, the
fourth and last agent shares an edge of weight w with the second one. The maximal
matching algorithm will put both of them into singleton coalitions, yielding a social
welfare of 1, whereas the optimal solution would form the coalitions {1, 3} and {2, 4},
resulting in a social welfare of 2w. As a consequence, for this instance, the maximal
matching algorithm is only 2w-competitive.

In contrast, we show that using free dissolution, a constant competitive ratio is
possible. To this end, we make use of a MWM algorithm again.

Theorem 13 (Badanidiyuru Varadaraja, 2011; Bullinger and Romen, 2023). For online
MWM under free dissolution, the (1 +

√
2

2)-dissolution threshold algorithm (DTA) is 1
3+2

√
2
-

competitive1. No deterministic algorithm achieves a better competitive ratio.

1Bullinger and Romen (2023) showed this version of the theorem in unpublished improvements of their
work.

1

w

w

Figure 6.1: A bad instance for the maximal matching algorithm. The arrival order of the
vertices is from left to right. The algorithm will match the edge of weight
1 because it arrives first. The optimal solution would be to match the two
other edges, both of weight w > 1.

43

6 Free Dissolution

Together with Theorem 2 we obtain the following result.

Theorem 14. For online SocialWelfareFHG with free dissolution, the (1 +
√

2
2)-DTA is

1
6+4

√
2
-competitive.

The work of Badanidiyuru Varadaraja (2011) also allows for a convenient proof of an
upper bound of the possible competitiveness.

Theorem 15. For SocialWelfareFHG with free dissolution, no deterministic algorithm can
achieve a competitive ratio better than 1

3+2
√

2
.

Proof. The family of graphs that Badanidiyuru Varadaraja (2011) uses to show the upper
bound of Theorem 13 consists of trees only. As we have seen in previous chapters, in
trees we can insert edges of highly negative weight between vertices which did not share
an edge before to arrive at an FHG instance where every partition with non-negative
social welfare is a matching.

If we now assume that an algorithm could achieve a competitive ratio better than 1
3+2

√
2

for FHGs with free dissolution, that algorithm would also achieve a better competitive
ratio for MWM with free dissolution, which contradicts Theorem 13.

44

7 Conclusion and Future Work

We have investigated the maximization of social welfare in FHGs both in an offline and
online setting. In the offline setting, the optimal solution is not efficiently computable.
The best known approximation ratio feasible in polynomial time remains to be 1

2 ,
achieved by computing a MWM. For simple FHGs, no better guarantee is known either,
and even computing a minimum clique cover only is a 1

2 -approximation because of
instances where it reduces to a MCM. On the side of hardness, we made progress by
showing that no FPTAS exists. The exact inapproximability of the problem remains an
interesting open question. All of this, of course, only holds under the assumption that
P 6=NP.

Since in the online setting under adversarial arrival, a constant competitive ratio is only
possible for FHGs with bounded utilities, we provided improved results for the natural
class of simple FHGs, showing that for symmetric simple FHGs, a randomized algorithm
achieves 1

4 + 2ε (where ε > 0 is a small constant) and outperforms all deterministic ones,
where the known bound is 1

4 . The same algorithm achieves 1
8 + ε for general simple

FHGs. With the goal of getting more positive results, we considered the online models
of random arrival and free dissolution. In both versions, a constant competitive ratio
is possible. For random arrival, we achieve a lower bound of 1

6 −O(1
n) and show an

upper bound of 1
3 . For simple FHGs, we even get a competitive ratio of 1

3 −O(1
n). For

free dissolution, we achieve a lower bound of 1
6+4

√
(2)

and show an upper bound of
1

3+2
√
(2)

. It remains to see whether these upper or lower bounds for FHGs are tight.
Moreover, it would be interesting to study more restrictive models with bounded utilities
or a bounded coalition size or number in these online settings. Or maybe, interesting
results could be achieved in the framework of algorithms with predictions. Overall, in
online models, matching algorithms seem to be the best approach for social welfare
maximization. Last but not least, our study of the random arrival scenario has led to
intriguing new results about matching with random arrival. There, we achieve a lower
bound of 1

3 −O(1
n) in the weighted case, which we show to be asymptotically tight.

Since our proof of the upper bound only uses a family of bipartite graphs, the bounds
also apply for the restriction of the setting to bipartite graphs. Note, however that this
differs from the usual understanding of online bipartite matching where one side of
the vertices is present offline. In the unweighted case, we achieve a lower bound of
2
3 −O(1

n). It is an open question whether this bound is tight.
An interesting generalization of the free dissolution model would be to allow for

arbitrary restructuring of existing coalitions but have the algorithm pay a cost accordingly.
Investigating that setting would be a further step towards real-world applications. It

45

7 Conclusion and Future Work

has also not been studied yet, which guarantees can be achieved for MFHGs in online
settings. Another parameter that could be changed for different results is the welfare
notion. The maximization of Nash welfare or egalitarian welfare in online hedonic
games has not been studied yet.

46

Abbreviations

FHG fractional hedonic game

ASHG additively separable hedonic game

MFHG modified fractional hedonic game

MCM maximum cardinality matching

MWM maximum weight matching

DTA dissolution threshold algorithm

FPTAS fully polynomial-time approximation scheme

47

List of Figures

2.1 A symmetric FHG with 6 agents. Edges not drawn have weight 0. The
colored areas represent a partition consisting of two coalitions. 11

3.1 Instances where extending a MWM does not improve the approximation
ratio. It is n = 2k, and the vertices are li and ri, where i ∈ [k]. Normal
edges have weight 1, thick edges have weight 1 + ε (where ε > 0 is very
small), and all edges not drawn have weight −n. The MWM contains
all thick edges as coalitions and cannot be extended. Its social welfare is
k · (ε + 1). The optimal partition puts the li vertices in one coalition and
the ri vertices in the other. Its social welfare is 2k − 2. 16

3.2 Instance (with k = 9) of a family where extending a MWM does not
improve the approximation ratio while being Pareto-optimal. Dashed
edges have weight 0, edges not drawn have weight −n, edges from the
central vertex a to the inner vertices ij have weight 1, and edges from
inner vertices ij to outer vertices oj have weight ε. One MWM matches the
edge {a, i1} and {ij, oj} for j ∈ [9] \ {1}. It has social welfare 1 + 2kε − 2ε.
The optimal partition is one coalition with a and all ij while the other
vertices are in singleton coalitions. It has social welfare 2 k

k+1 18

5.1 The star instances Sn for which an algorithm has to match the edge {a, lt}
to achieve a constant competitive ratio. The ratio between two edge
weights is always at least n. 36

5.2 The bistar instances Bn for which an algorithm has to match the edge
{a, b} to achieve a constant competitive ratio. The ratio between two edge
weights is always at least n. 37

6.1 A bad instance for the maximal matching algorithm. The arrival order
of the vertices is from left to right. The algorithm will match the edge of
weight 1 because it arrives first. The optimal solution would be to match
the two other edges, both of weight w > 1. 43

49

List of Tables

1.1 An overview of bounds for the competitive ratios for online FHGs and
MWMs. Umin and Umax are the minimal and maximal absolute value
of non-zero utilities, respectively. Entries “?” mean that only trivial
upper bounds are known. Upper bounds marked with * only hold for
deterministic algorithms. Results marked with (a) are by Aziz, Gaspers,
Gudmundsson, et al. (2015) and those marked with (f) are by Flammini,
Monaco, Moscardelli, et al. (2021). 5

1.2 An overview of known approximation ratios and hardness results for
offline FHGs. The problem for symmetric FHGs is the same as for general
FHGs for the reason explained in Remark 1. Results marked with (f) are
by Flammini, Kodric, Monaco, and Zhang (2021). Results marked with
(a) are by Aziz, Gaspers, Gudmundsson, et al. (2015). 5

51

List of Algorithms

1 Extended MWM . 16
2 Online MWM for random arrival . 24

53

Bibliography

Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., & Kyropoulou, M. (2009). An
improved approximation bound for spanning star forest and color saving. In
R. Královi & D. Niwiski (Eds.), Mathematical foundations of computer science 2009
(MFCS 2009) (pp. 90–101, Vol. 5734). Springer Berlin Heidelberg. https://doi.
org/10.1007/978-3-642-03816-7_9

Aziz, H., Brandl, F., Brandt, F., Harrenstein, P., Olsen, M., & Peters, D. (2019). Fractional
hedonic games (D. Pennock & I. Segal, Eds.). ACM Transactions on Economics and
Computation (TEAC), 7(6), 1–29. https://doi.org/10.1145/3327970

Aziz, H., Gaspers, S., Gudmundsson, J., Mestre, J., & Täubig, H. (2015, July 25). Welfare
maximization in fractional hedonic games. In Q. Yang & M. Wooldridge (Eds.),
Proceedings of the twenty-fourth international joint conference on artificial intelligence
(IJCAI 2015) (pp. 461–467). AAAI Press.

Aziz, H., & Savani, R. (2016, May 5). Hedonic games. In F. Brandt, V. Conitzer, U. Endriss,
J. Lang, & A. D. Procaccia (Eds.), Handbook of computational social choice (pp. 356–
376). Cambridge University Press. https://doi.org/10.1017/cbo9781107446984.
016

Badanidiyuru Varadaraja, A. (2011). Buyback problem - approximate matroid intersec-
tion with cancellation costs. In L. Aceto, M. Henzinger, & J. Sgall (Eds.), Automata,
languages and programming: 38th international colloquium, ICALP 2011 (pp. 379–390).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-22006-7_32

Banerjee, S., Konishi, H., & Sönmez, T. (2001). Core in a simple coalition formation game.
Social Choice and Welfare, 18, 135–153. https://doi.org/10.1007/s003550000067

Bilò, V., Fanelli, A., Flammini, M., Monaco, G., & Moscardelli, L. (2015, May 4). On the
price of stability of fractional hedonic games. In G. Weiss & P. Yolum (Eds.),
AAMAS’15: Proceedings of the 2015 international conference on autonomous agents
and multiagent systems.

Bilò, V., Fanelli, A., Flammini, M., Monaco, G., & Moscardelli, L. (2018). Nash stable
outcomes in fractional hedonic games: Existence, efficiency and computation
(F. Rossi, Ed.). Journal of Artificial Intelligence Research, 62, 315–371. https://doi.
org/10.1613/jair.1.11211

Bogomolnaia, A., & Jackson, M. O. (2002). The stability of hedonic coalition structures
(E. Kalai, Ed.). Games and Economic Behavior, 38, 201–230. https://doi.org/10.
1006/game.2001.0877

Brandl, F., Brandt, F., & Strobel, M. (2015, May 4). Fractional hedonic games: Individual
and group stability. In G. Weiss & P. Yolum (Eds.), AAMAS’15: Proceedings of the
2015 international conference on autonomous agents and multiagent systems.

55

https://doi.org/10.1007/978-3-642-03816-7_9
https://doi.org/10.1007/978-3-642-03816-7_9
https://doi.org/10.1145/3327970
https://doi.org/10.1017/cbo9781107446984.016
https://doi.org/10.1017/cbo9781107446984.016
https://doi.org/10.1007/978-3-642-22006-7_32
https://doi.org/10.1007/s003550000067
https://doi.org/10.1613/jair.1.11211
https://doi.org/10.1613/jair.1.11211
https://doi.org/10.1006/game.2001.0877
https://doi.org/10.1006/game.2001.0877

Bibliography

Bullinger, M. (2020, May 13). Pareto-optimality in cardinal hedonic games. In A. E. F.
Seghrouchni & G. Sukthankar (Eds.), AAMAS’20: Proceedings of the 19th inter-
national conference on autonomous agents and multiagent systems (pp. 213–221).
International Foundation for Autonomous Agents; Multiagent Systems.

Bullinger, M., & Romen, R. (2023, August 30). Online coalition formation under random
arrival or coalition dissolution. In I. L. Gørtz, M. Farach-Colton, S. J. Puglisi,
& G. Herman (Eds.), 31st annual european symposium on algorithms (ESA 2023)
(27:1–27:18, Vol. 274). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. https:
//doi.org/10.4230/LIPIcs.ESA.2023.27

Bullinger, M., & Romen, R. (2024, March 24). Stability in online coalition formation.
In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the thirty-eighth
AAAI conference on artificial intelligence (pp. 9537–9545, Vol. 38). Association for
the Advancement of Artificial Intelligence (AAAI). https://doi.org/10.1609/
aaai.v38i9.28809

Correa, J., Dütting, P., Fischer, F., & Schewior, K. (2019, June 17). Prophet inequalities for
i.i.d. random variables from an unknown distribution. In A. Karlin (Ed.), EC’19:
Proceedings of the 2019 ACM conference on economics and computation (pp. 3–17).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3328526.
3329627

Cover, T. M. (1987). Pick the largest number. In T. M. Cover & B. Gopinath (Eds.),
Open problems in communication and computation (p. 152). Springer-Verlag Berlin
Heidelberg New York.

Drèze, J. H., & Greenberg, J. (1980). Hedonic coalitions: Optimality and stability (H.
Sonnenschein, Ed.). Econometrica: Journal of the Econometric Society, 48(4), 987–1003.
https://doi.org/10.2307/1912943

Elkind, E., Fanelli, A., & Flammini, M. (2016, February 21). Price of pareto optimality in
hedonic games. In D. Leake, J. Lester, Z. Kolter, C. Monteleoni, P. Doherty, & M.
Ghallab (Eds.), Proceedings of the thirtieth AAAI conference on artificial intelligence
(pp. 475–481, Vol. 30). Association for the Advancement of Artificial Intelligence
(AAAI). https://doi.org/10.1609/aaai.v30i1.10048

Ezra, T., Feldman, M., Gravin, N., & Tang, Z. G. (2022, July 13). General graphs are
easier than bipartite graphs: Tight bounds for secretary matching. In D. M.
Pennock (Ed.), EC’22: Proceedings of the 23rd ACM conference on economics and
computation (pp. 1148–1177). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3490486.3538290

Flammini, M., Kodric, B., Monaco, G., & Zhang, Q. (2021). Strategyproof mechanisms for
additively separable and fractional hedonic games. Journal of Artificial Intelligence
Research (JAIR), 70, 1253–1279. https://doi.org/10.1613/jair.1.12107

Flammini, M., Monaco, G., Moscardelli, L., Shalom, M., & Zaks, S. (2021). On the online
coalition structure generation problem. Journal of Artificial Intelligence Research
(JAIR), 72, 1215–1250. https://doi.org/10.1613/jair.1.12989

56

https://doi.org/10.4230/LIPIcs.ESA.2023.27
https://doi.org/10.4230/LIPIcs.ESA.2023.27
https://doi.org/10.1609/aaai.v38i9.28809
https://doi.org/10.1609/aaai.v38i9.28809
https://doi.org/10.1145/3328526.3329627
https://doi.org/10.1145/3328526.3329627
https://doi.org/10.2307/1912943
https://doi.org/10.1609/aaai.v30i1.10048
https://doi.org/10.1145/3490486.3538290
https://doi.org/10.1613/jair.1.12107
https://doi.org/10.1613/jair.1.12989

Bibliography

Gabow, H. N., & Tarjan, R. E. (1991). Faster scaling algorithms for general graph matching
problems. Journal of the ACM, 38(4), 815–853. https://doi.org/10.1145/115234.
115366

Gamlath, B., Kapralov, M., Maggiori, A., Svensson, O., & Wajc, D. (2019). Online matching
with general arrivals. In Y. Rabani (Ed.), 2019 IEEE 60th annual symposium on
foundations of computer science (FOCS) (pp. 26–37). Institute of Electrical and
Electronics Engineers (IEEE). https://doi.org/10.1109/FOCS.2019.00011

Huang, Z., Tang, Z. G., & Wajc, D. (2024). Online matching: A brief survey (I. Lo &
S. Taggart, Eds.). ACM SIGecom Exchanges, 22(1), 135–158.

Kaklamanis, C., Kanellopoulos, P., & Papaioannou, K. (2016). The price of stability of
simple symmetric fractional hedonic games. In M. Gairing & R. Savani (Eds.),
Algorithmic game theory: 9th international symposium (pp. 220–232). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-662-53354-3_18

Kaplan, H., Naori, D., & Raz, D. (2020). Competitive analysis with a sample and
the secretary problem. In S. Chawla (Ed.), Proceedings of the fourteenth annual
ACM-SIAM symposium on discrete algorithms (SODA) (pp. 2082–2095). Society
for Industrial; Applied Mathematics (SIAM). https : / / doi . org / 10 . 1137 / 1 .
9781611975994.128

Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller, J. W.
Thatcher, & J. D. Bohlinger (Eds.), Complexity of computer computations: Proceedings
of a symposium on the complexity of computer computations (pp. 85–103). Springer,
Boston, MA. https://doi.org/10.1007/978-1-4684-2001-2_9

Kesselheim, T., Radke, K., Tönnis, A., & Vöcking, B. (2013). An optimal online algorithm
for weighted bipartite matching and extensions to combinatorial auctions. In
H. L. Bodlaender & G. F. Italiano (Eds.), Algorithms — ESA 2013 (pp. 589–600).
Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_50

Moran, S., Snir, M., & Manber, U. (1985). Applications of ramsey’s theorem to decision
tree complexity. Journal of the ACM (JACM), 32, 938–949. https://doi.org/10.
1145/4221.4259

Newman, M. E. J. (2004). Detecting community structure in networks. The European
Physical Journal B: Condensed Matter and Complex Systems, 38, 321–330. https :
//doi.org/10.1140/epjb/e2004-00124-y

Olsen, M. (2012, January 31). On defining and computing communities. In J. Mestre
(Ed.), Proceedings of the eighteenth computing: The australasian theory symposium
(pp. 97–102). Australian Computer Society, Inc.

Ramsey, F. P. (1930). On a problem of formal logic. Proceedings of the London Mathematical
Society, s2-30, 264–286. https://doi.org/10.1112/plms/s2-30.1.264

57

https://doi.org/10.1145/115234.115366
https://doi.org/10.1145/115234.115366
https://doi.org/10.1109/FOCS.2019.00011
https://doi.org/10.1007/978-3-662-53354-3_18
https://doi.org/10.1137/1.9781611975994.128
https://doi.org/10.1137/1.9781611975994.128
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-642-40450-4_50
https://doi.org/10.1145/4221.4259
https://doi.org/10.1145/4221.4259
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1112/plms/s2-30.1.264

	Acknowledgments
	Abstract
	Contents
	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Offline Setting
	Hardness
	Approximation

	Adversarial Arrival
	Random Arrival
	Iterated Doubling Approach
	No Sampling Phase
	Upper Bound

	Free Dissolution
	Conclusion and Future Work
	Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

