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Abstract 
This paper presents a novel workflow for form-finding that sequentially integrates Vector-based Graphic 
Statics (VGS) and the Non-Linear Force Density Method (NLFDM) to address form-finding and 
nonlinear optimization challenges in structural design. The NLFDM typically necessitates appropriate 
initial force densities and boundary conditions to prevent degenerate outcomes, excelling in solving 
nonlinear optimizations. Besides, VGS can effectively achieve static equilibrium through interdependent 
form and force diagrams. The proposed integrated approach relies on the following steps: Initially, VGS 
transforms designer-specified structures into topologically valid form and force diagrams, enforcing 
interdependency between corresponding edges in the two diagrams using a parallelization algorithm. 
When the VGS produces a staged solution closer to the equilibrium than the input, the workflow 
transitions to NLFDM, adjusting the force densities of both diagrams to reach static equilibrium while 
fulfilling user-defined design constraints. This interplay between VGS and NLFDM ensures stability 
and reduces the occurrence of degenerate solutions. The approach is validated through one case study 
of a tension-compression structure. 

Keywords: form-finding, Vector-based Graphic Statics, Non-Linear Force Density Method, structural optimization, form 
diagram, force diagram. 

1. Introduction 
Vector-based Graphic Statics (VGS) (D’Acunto et al. [1]) and the Force Density Method (FDM) 
(Linkwitz and Schek [2], and Schek [3]) are computational form-finding approaches for the design of 
spatial network structures in static equilibrium [4]. While both methods are material-independent and 
focus on geometric stiffness (Veenendaal et al. [5]), their inputs and computational approaches differ. 
The present research focuses on integrating VGS and NLFDM to enhance the form-finding capabilities 
of the individual methods and align with nonlinear design-constrained optimization tasks. This 
integration leverages the strengths of each method: NLFDM requires suitable initial conditions and 
excels in nonlinear optimizations, while VGS achieves static equilibrium under linear constraints. 

1.1. Vector-based Graphic Statics  
VGS uses graphical constructions to create a force diagram from any form diagram with an underlying 
planar or non-planar graph (D’Acunto et al. [1]). The form diagram represents the geometry of the 
structure and its applied loads, whereas the force diagram shows the static equilibrium of the structure 
through closed cycles of force vectors that represent the forces applied on the structure's nodes. For static 
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equilibrium to be achieved, the edges in the form diagram must be parallel to their corresponding force 
vectors in the force diagram. By modifying the force diagram, the form diagram transforms accordingly 
under a set of geometric constraints to achieve equilibrium and vice versa (D’Acunto et al. [6]). Form-
finding occurs during this interdependent transformation between the two diagrams. Static equilibrium 
states are explored for specific load conditions in kinematically indeterminate systems, not necessarily 
for stabilized structural networks under multiple load cases. Various strategies have been explored to 
achieve equilibrium. The recently released VGS toolkit (Jasienski et al. [7]) used Kangaroo2 (Piker [8]) 
to facilitate an interactive form-finding process. The underlying principle relies on a projection-based 
dynamic relaxation solver (Bouaziz et al. [9]), which entails projecting particles onto constraints and 
cyclically adjusting to equilibrium in a pseudo-dynamic system with damping. An alternative method is 
an algebraic-based approach that utilizes a parallelization algorithm (Avelino et al. [10]) based on a 
least-squares solution (Traa [11]). 

1.2. Non-Linear Force Density Method  
FDM simplifies nonlinear equilibrium equations for unknown positions of free nodes in a structure into 
linear equations by introducing the force-to-length ratio as force density. To incorporate constraints for 
specific design targets, extended methods (i.e. Non-Linear Force Density Method (NLFDM)) were 
introduced by Schek (1974) [3], Malerba et al. (2012) [12], and Aboul-Nasr and Mourad (2015) [13] to 
impose further constraints to the FDM. These methods iteratively adjust the input force densities through 
a gradient-based optimization procedure that meets the specific design goals with constraints.  

VGS and NLFDM may face challenges in highly nonlinear optimization contexts, especially when 
dealing with tension-compression structures, risking entrapment in local optima or leading to degenerate 
solutions. In the current computational implementation of VGS (Jasienski et al. [7]), geometric and 
mechanical constraints can be easily described. However, the convergence speed is relatively slow 
compared to gradient-based optimization. Moreover, the form-finding result is highly sensitive to the 
initial status. Unreasonable initial conditions may lead to unstable convergence. The algebraic-based 
approach provides a clear mathematical framework with light computational resource requirements [14]. 
However, it is currently limited to handling linear constraints or objective functions. In NLFDM, when 
the input force densities significantly differ from the force densities in the final equilibrium structure, or 
in cases where structural optimization problems are non-convex global optimization challenges, the 
algorithm often converges to local optima, failing to identify solutions that satisfy all input design 
constraints (Malerba et al. [12]). Besides, the algorithm produces degenerate results when encountering 
singular matrix issues, especially in self-stressed structures. Addressing this issue necessitates additional 
strategies, such as minimizing an objective function of virtual work and pre-defining the length of 
compression (Miki et al. [15]) or analyzing the force densities using Singular Value Decomposition 
(SVD) (Pellegrino [16]). 

1.3. Objective and contribution 
The present research focuses on combining VGS and NLFDM to further broaden the solution range of 
both methods. The NLFDM requires appropriate initial force densities and boundary conditions to avoid 
degenerate outcomes and excels in solving nonlinear optimizations. VGS is a general geometric-based 
method that can effectively achieve static equilibrium and fulfill the linear constraints by imposing the 
geometric features of the form and force diagrams. Therefore, the two methods can provide a better 
starting point for each other, compensating for their respective limitations. In this regard, exploring a 
hybrid framework could significantly enhance form-finding capabilities and effectively align with 
nonlinear design-constrained optimization tasks. 

1.4. Nomenclature 

Table 1: Nomenclature of the concepts used in this paper 
Category Symbol Description 

Diagram 𝑭𝑭 Form diagram. 
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𝑭𝑭∗ Force diagram. 

𝑭𝑭�∗ Initial force diagram (not necessarily representing an equilibrium state). 

Graph 𝑭𝑭� Underlying (directed) graph of the form diagram. 

𝑭𝑭�∗ Underlying (directed) graph of the force diagram. 

Matrix 𝑪𝑪 Edge-node incidence matrix in [𝑒𝑒 × 𝑣𝑣]. 
𝑪𝑪𝑠𝑠 Subspace in C that contains the internal force elements and nodes exclusively  

𝑪𝑪∗ Edge-vertex incidence matrix in [𝑒𝑒 × 𝑣𝑣∗]. 
Parameters 𝒒𝒒 Force density [N/m] vector of a structure. 

𝑷𝑷 Set of loads [N] applying at the nodes of a structure. 

𝐿𝐿 Set of lengths [m] of all the elements in a structure. 

𝐿𝐿𝐿𝐿 Load path [N·m] of a structure [17]. 

Int. nodes Indices of intermittent fixed nodes (fixed in NLFDM and released in VGS). 

Linear 
Constraints 

𝐼𝐼𝐿𝐿 Constraining specific vertices of a structure to lie on a defined plane Ω. 

𝐸𝐸𝐿𝐿 Constraining specific elements of a structure to have equal length. 

𝐹𝐹𝐹𝐹 Constraining specific elements of a structure to have a given force magnitude. 

Nonlinear 
Objectives 

𝑚𝑚𝑚𝑚𝑚𝑚.𝐿𝐿𝐿𝐿 Objective of minimizing the load path of a structure. 

2. Integration of VGS and NLFDM 

2.1. Data-structure 
The link between VGS and NLFDM requires a shared data structure to synchronize their interplay 
mechanism. An incidence matrix 𝑪𝑪([𝑒𝑒 × 𝑣𝑣]) is used to depict the directed graph 𝑭𝑭� of a form diagram 𝑭𝑭 
in VGS with 𝑒𝑒 number of edges and 𝑣𝑣 number of nodes. This matrix is formed by augmenting 𝑪𝑪𝑠𝑠 with 
additional columns that indicate the end nodes of external force vectors and by adding extra rows to 
account for the edges related to the external forces (Fig. 1). Based on 𝑪𝑪, the matrix 𝑪𝑪∗([𝑒𝑒 × 𝑣𝑣∗]) for the 
directed graph 𝑭𝑭�∗ of force diagram 𝑭𝑭∗ can be built up, as described by Van Mele et al. [14]. This graph 
contains as many 𝑣𝑣∗ nodes as faces in 𝑭𝑭�, and the same number of edges 𝑒𝑒 as in 𝑭𝑭�. The column vectors 
of 𝑪𝑪∗ is generated from 𝑭𝑭� by cycling its faces in a counter-clockwise direction [14]. For each j-th column 
of 𝑪𝑪∗, the component 𝑐𝑐𝑖𝑖𝑖𝑖∗  is 1 if i-th edge is adjacent to the j-th face and is oriented in the same direction 
as the counter-clockwise cycle around the face in 𝑭𝑭�, -1 if opposite, and 0 if the edge is not adjacent to 
that face. After implementing the data-structure to describe the form and force diagram, the structure 
attains a compatible data format that connects the topology information in both VGS and NLFDM. 

2.2. Form-finding Workflow 
In the proposed form-finding workflow (Fig. 2), VGS imposes the geometric interdependency between 
form and force diagrams while approaching the locally linear constraints: IP, EL, and FM. NLFDM is 
initialized using the result produced by VGS, and it optimizes for the nonlinear objective: min. LP. Three 
indicators are defined to evaluate the form-finding results: the static equilibrium (R), the extent to which 
all the linear constraints (IP, EL, and FM) are fulfilled (ε), and to which the LP [17] is minimized. The 
constraints and objectives are met when these three indicators are near zero, i.e., within the specified 
tolerance (t). These indicators are formulated as follows: 

𝑅𝑅 = � cos−1 �
𝒖𝒖𝑖𝑖𝒗𝒗𝑖𝑖

|𝒖𝒖𝑖𝑖||𝒗𝒗𝑖𝑖|
�

𝑛𝑛

𝑖𝑖=1

, (1) 
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𝜀𝜀 = 𝒓𝒓𝑇𝑇𝒓𝒓, (2) 

∆𝐿𝐿𝐿𝐿 = |𝐿𝐿𝐿𝐿𝑛𝑛 − 𝐿𝐿𝐿𝐿𝑘𝑘|, (3) 

where 𝒖𝒖𝑖𝑖,𝒗𝒗𝑖𝑖 are the corresponding pairs of the i-th edge’s direction vectors in 𝑭𝑭 and 𝑭𝑭∗. 𝒓𝒓 is the residual 
vector of the constraints. 

 

Figure 1: Left column: topologies of form and force diagram are interpreted as directed graphs 𝑭𝑭� and 𝑭𝑭�∗. Right 
column: matrices of form and force diagrams that synchronize the data-structure between VGS and FDM. 

Initialization: As shown in Fig. 2, the workflow starts with the initial form diagram 𝑭𝑭0 derived from the 
user-defined input. The 𝑭𝑭�∗ is built based on the underlying graph 𝑭𝑭�. Given predefined applied loads P, 
initial q, linear constraints, and the fixed geometry of 𝑭𝑭0, the parallelization algorithm (Avelino et al. 
[10]) in VGS is used to adjust the force diagram 𝑭𝑭�∗ towards equilibrium. It is important to note that the 
fixed geometry of the initial 𝑭𝑭0 may prevent 𝑭𝑭�∗ from achieving exact equilibrium. Nonetheless, this 
initial step provides an effective foundation for the subsequent iterative steps. 

Iterative steps: Using P, 𝑪𝑪𝑠𝑠, 𝑭𝑭0, the updated q, and the support nodes as inputs to the NLFDM, the 
optimization process considers the gradient of the combined constraints and integrates it with the 
gradient of the design goal function. Thus, the objective function becomes to minimize a mixture of 
finite increments of difference of q and 𝒓𝒓 , as well as the Load Path (LP) with variable weights: 
𝑚𝑚𝑚𝑚𝑚𝑚.  𝑤𝑤1(∆𝒒𝒒𝑇𝑇∆𝒒𝒒+ 𝒓𝒓𝑇𝑇𝒓𝒓) + 𝑤𝑤2(𝐿𝐿𝐿𝐿). The NLFDM produces an equilibrium solution but not necessary 
fulfils all constraints. Taking over the updated  𝑭𝑭𝑖𝑖 , and 𝑭𝑭𝑖𝑖∗ , VGS further imposes the geometric 
interdependency between the form and force diagrams using the parallelization algorithm (PA, 𝒆𝒆//()). 
This procedure adjusts the form based on the IP, EL and FM constraints and updates the form and force 
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diagrams to 𝑭𝑭𝑘𝑘 and 𝑭𝑭𝑘𝑘∗ . This state fulfills the linear constraints and the equilibrium but not necessarily 
the user-defined nonlinear goals. Therefore, 𝑭𝑭𝑘𝑘, 𝑭𝑭𝑘𝑘∗ , and 𝒒𝒒𝑘𝑘 become the input to the NLFDM for a new 
round of gradient-based optimization for nonlinear goals with the updated boundary conditions, 
producing 𝑭𝑭𝑛𝑛 and 𝑭𝑭𝑛𝑛∗ . The iterative steps are repeated until both sets of constraints are met (𝑅𝑅, 𝜀𝜀 < 𝑡𝑡), 
and the difference of the objective function values in two algorithms is less than the tolerance (|𝐿𝐿𝐿𝐿𝑛𝑛 −
𝐿𝐿𝐿𝐿𝑘𝑘| < 𝑡𝑡). The nodes of the structure that can only move in VGS and are fixed in NLFDM are labeled 
as intermittent fixed nodes (int. nodes). 

 
Figure 2: The flowchart of the integrated workflow of VGS and NLFDM. 

3. Case study: a hexagonal prism tensegrity 

3.1. Initial setup and optimization goal 
A benchmark task is established to test the proposed form-finding workflow, as shown in Fig. 3. The 
structure consists of a hexagonal prism tensegrity with 12 nodes and 24 edges. Initial internal forces of 
10kN and -10kN in magnitude are assigned to the tensile and compressive members, respectively. The 
goal is to find the form that minimizes the Load Path (min. LP) subject to the following constraints: 

a. In-plane constraints (IP): the top nodes {V0, V1, ..., V5} can freely move within a plane Ω1, while 
the bottom nodes {V6, V7, ..., V11} are fixed in the plane Ω2. 

b. Equal length constraints (EL): the length set {l0-1, l1-2, …, l5-0} of the top edge elements should 
be equal and must exceed 5m; additionally, the two length sets {l0-6, l1-7, …, l5-11} and {l0-11, l1-

6, …, l5-10} of the middle elements should each have equal lengths within their respective sets. 

c. Force magnitude constraints (FM): Forces in the vertical elements must be equal to -20N. 

The form-finding process relies on two hypotheses: it focuses exclusively on the static equilibrium for 
the given loading conditions, excluding stability considerations; the self-weight of the structure is 
ignored, as it is considered negligible compared to the internal pre-stressing forces. 

 
Figure 3: The nonlinear optimization problem applied to a hexagonal prism tensegrity structure. 
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3.2. Form-finding using only VGS  
The use of the sole VGS with the parallelization algorithm for form-finding highlights this method's 
limitation. Starting from the state of F in Fig. 3, the optimization stalled at the state shown in Fig. 4 with 
an LP of 6058.10 N·m. It achieved a static equilibrium solution (R = 5.559e-6) but did not optimize min. 
LP, because nonlinear goals cannot be formulated within the algorithm. 

  
Figure 4: The benchmark test with VGS parallelization 

3.3. Form-finding using only NLFDM 
As shown in Fig. 5, when only the bottom vertices {V6, V7, ..., V11} are set as fixed nodes in the NLFDM, 
a singular solution (ε = 2032.56) is generated. The model can further incorporate V5 to achieve a valid 
solution (See Fig. 6) with ε = 143.48, meaning the linear constraints cannot be fulfilled while fixing the 
extra vertex V5. NLFDM is not always effective in form-finding tasks with flexible boundary conditions, 
leading to singular matrix issues, as highlighted by Miki et al. [15] and Pellegrino [16]. It may also 
perform poorly when initiated with an initial force density set that is far from the target, as discussed by 
Malerba et al. [12]. 

 
Figure 5: The benchmark test with NLFDM, in which only the V6-V11 are fixed.  
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Figure 6: The benchmark test with NLFDM, in which the V6-V11 and V5 (as the int. node) are fixed. 

3.4. Form-finding through VGS + NLFDM 
This section illustrates the application of the proposed VGS + NLFDM workflow described in Section 
2 to the benchmark test case. 

Initialization: The input for the form-finding process includes the form diagram 𝑭𝑭, the list of force 
densities q defined by the user, as well as the incidence matrix 𝑪𝑪 derived from 𝑭𝑭. Since the choice of the 
initial q is crucial in the gradient-based optimization process, an initialization strategy is applied to 
ensure the optimized result aligns closely with the user’s input. As illustrated in Fig. 7, a force diagram 
𝑭𝑭∗ is generated, which is topologically connected with 𝑭𝑭 but does not fulfill the condition of parallelism 
between the diagrams. Consequently, the parallelization algorithm is applied in VGS, the 𝑭𝑭∗ transforms 
according to the constraints (IP, EL) related to 𝑭𝑭, and the constraints (FM) related to 𝑭𝑭∗. Through the 
transformation, 𝑭𝑭 and 𝑭𝑭∗ turned to 𝑭𝑭′ and 𝑭𝑭∗′ tending toward the equilibrium state but without reaching 
it. The 𝒒𝒒′ derived from 𝑭𝑭′ and 𝑭𝑭∗′ is closer to an equilibrium configuration than the input q. Therefore, 
𝑭𝑭′ ,𝑭𝑭∗′, and 𝒒𝒒′ provide a starting point for the subsequent process. 

 
Figure 7: The initialization of the VGS+NLFDM framework. 

Iterative steps: After the initialization process,  the nodes in the structure are categorized into two types: 
free nodes (V0 – V4) and fixed nodes (V5 - V11), in which int. node V5 is fixed in NLFDM but released 
in VGS. Both types, along with the initialized list of force densities 𝒒𝒒′, the matrix 𝑪𝑪 and the constraints 
(Fig. 8), are fed into the NLFDM algorithm. Solving the nonlinear objective function (min. LP) in 
NLFDM with fixed int. node may prevent the fulfillment of certain constraints (Fig. 8 step 1a). The 
form-finding process then switches to VGS (Fig. 8 step 1b). During this phase, the int. node V5 is 
released to impose inter-parallelism and linear constraints between the two diagrams. Subsequently, a 
new iteration between NLFDM and VGS is started to approach the global optimal solution. After several 
iterations, the form-finding objectives and constraints are satisfied (Fig. 8 step 2). 
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Figure 8: The iterative steps of the integrated VGG and NLFDM workflow. In Step 1a, NLFDM optimizes min. 

LP but fails to retain the linear constraints because of the fixed V5; In Step 1b, the VGS only fulfills the 
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equilibrium and linear constraints but does not minimize the Load Path; In Step 2a NLFDM searches the optimal 
solution with the updated fixed V5; In Step 2b, VGS further relaxes the form and force diagrams, and the location 

of V5 does not change. The values of ∆𝐿𝐿𝐿𝐿, R, ε are all smaller than the tolerance. 

The case study demonstrates that integrating VGS and NLFDM methods effectively addresses specific 
form-finding problems that each method struggles with individually. VGS excels at solving equilibrium 
problems and adhering to linear constraints but cannot handle nonlinear objectives. Conversely, 
NLFDM effectively tackles nonlinear objectives through gradient-based optimization but requires 
certain nodes to be fixed, limiting its applicability. The integrated methods overcome these limitations. 

4. Conclusion 
This research introduced a form-finding workflow that merges VGS with NLFDM. By implementing 
the parallelization algorithm proposed by Avelino et al. [10] in the VGS framework (D’Acunto et al. 
[1], Jasienski et al. [7]) using an enhanced matrix data-structure based on Algebraic Graph Statics (Van 
Mele et al. [14]), the proposed workflow effectively addresses nonlinear design-constrained 
optimization challenges and prevent the risk of local optima and degenerate solutions in tension-
compression structures. The efficacy of this approach was demonstrated through a case study, 
illustrating the synergistic effects of VGS and NLFDM. Future research should further explore the 
following aspects: 

Enhancing data structure for non-planar graphs: The proposed workflow enhanced the data 
structure introduced by the Algebraic Graph Statics framework (Van Mele et al. [14]) to adapt to the 
VGS framework. The data structure should be further extended to cover the case of 3D structures with 
underlying non-planar graphs. 

Constraint-based parallelization: Methods should be investigated to steer the parallelization algorithm 
toward fulfilling design constraints while achieving static equilibrium. 

Automatic differentiation: Implementing Automatic Differentiation (AD) will be investigated to 
further optimize the gradient-informed form-finding methods in VGS and NLFDM, as demonstrated in 
the case of Combinatorial Equilibrium Modelling [18]. 
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