Technische Universität München Tum School of Natural Sciences

N-Heterocyclic-Imine Stabilized Heavier Tetrylenes Towards Small Molecule Activation and Catalysis

Lisa Eva Maria Spirkl

Vollständiger Abdruck der von der TUM School of Natural Sciences der Technischen

Universität München zur Erlangung einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Dr. Barbara Lechner

Prüfende der Dissertation:

- 1. Prof. Dr. Shigeyoshi Inoue
- 2. Prof. Dr. Klaus Köhler

Die Dissertation wurde am 14.10.2024 bei der Technischen Universität München eingereicht und durch die TUM School of Natural Sciences am 25.11.2024 angenommen.

Diese Arbeit wurde in der Zeit von Mai 2019 bis März 2024 im Rahmen der Professur für Siliciumchemie der Technischen Universität München unter Betreuung von Herrn Prof. Dr. Shigeyoshi Inoue durchgeführt.

ACKNOWLEDGMENTS

Zunächst möchte ich meinen besonderen Dank meinem Doktorvater *Prof. Dr. Shigeyoshi Inoue* aussprechen. Er hat mich in seiner Arbeitsgruppe willkommen geheißen und mir ein spannendes Promotionsthema bereitgestellt. Obwohl ich vor meiner Promotion noch keine Erfahrungen in seinem Lehrstuhl oder in der Hauptgruppenchemie im Allgemeinen sammeln konnte, hat er mich von Anfang an mit großem Vertrauen in meine Fähigkeiten aufgenommen und mich immer mit zahlreichen "crazy ideas" und einem offenen Ohr unterstützt, wenn mir die eigene Inspiration gefehlt hat.

Als nächstes möchte ich allen meinen Kolleginnen und Kollegen aus dem Lehrstuhl für die gute Zusammenarbeit danken. Ihr habt meinen Arbeitsalltag stets bereichert, ob mit angeregten Diskussionen, Hilfe bei täglichen (Labor)problemen oder auch mit dem ein oder anderen lustigen Grillabend. Dazu zählen nicht nur die ehemaligen und gegenwärtigen forschenden Doktorandinnen und Doktoranden und Post-Doktorandinnen und Post-Doktorandinnen und Post-Doktoranden, sondern natürlich auch *Melanie Lorenz* für Ihre wertvolle administrative Arbeit für den Lehrstuhl. Besonders möchte ich zudem bei *Dr. Franziska Hanusch* danken, die mich nicht nur in meiner Anfangszeit im Labor immer mit Rat und Tat unterstützt hat und sich stets Zeit für meine Fragen genommen hat. Zum andern gilt mein besonderer Dank auch *Simone Hirmer, Sebastian Stigler* und *Moritz Ludwig.* Ohne euch wäre meine Promotionszeit nur halb so lustig gewesen und ich bin sehr froh euch nicht nur Kolleg*innen, sondern auch sehr gute Freunde nennen zu können.

Weiterhin gilt mein Dank meinen engagierten und interessierten Forschungspraktikant*innen und Bachelorand*innen *Nadine Schmaus*, *Malte Kubisz*, *Stefan Kopf* und *Robert Wolf*, die mich in meiner Forschung unterstütz und wertvolle Ergebnisse geliefert haben. Außerdem möchte ich mich bei *Herrn Prof. Dr. Dominik Munz* für die Zusammenarbeit bei einer gemeinsamen Veröffentlichung bedanken, für welche er die zeitaufwändigen theoretischen Berechnungen durchgeführt hat.

Zum Schluss möchte ich meiner Familie nicht nur für den emotionalen Rückhalt, sondern auch dafür danken, dass sie mein langwieriges Studium überhaupt erst ermöglicht und immer unterstützt haben. Meiner Frau, *Katharina Spirkl*, kann ich gar nicht genug danken. Ohne dein Verständnis, deine Unterstützung und deine Geduld hätte ich die Promotionszeit nicht überstanden.

"[...] some are so ignorant, that they grow sullen and silent,

and are chilled with horror at the sight of any thing that bears the semblance of learning,

in whatever shape it may appear;

and should the spectre appear in the shape of woman,

the pangs which they suffer are truly dismal."

Elisabeth Fulhame

"Don't ask me how I did it. I just did it. It was hard!" Chandler Matkins

LIST OF ABBREVIATIONS

Alk	alkyl group		
AO	atomic orbital		
во	bond order		
cf.	Latin (confer): "compare"		
С	chalcogen		
DABCO	1,4-Diazabicyclo[2.2.2]octane		
DBU	1,8-Diazabicyclo[5.4.0]undec-7-en		
Dipp	2,6-di-isopropyl-phenyl	2,6- <i>i</i> Pr ₂ C ₆ H ₃	
^{Dipp} Ter	1,3-bis-diisopropylphenyl-benzene		
E	main group element		
e.g.	Latin (exempli gratia): "for example"		
EDA	Energy Deposition Analysis		
E _{hyb}	hybridization energy/efficiency of s-p mixing		
Eind	1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl		
НОМО	highest occupied molecular orbital		
i.e.	Latin (id est): "that is"		
IDipp	1,3-bis(2,6-diisopropylphenyl)imidazoline-2-ylidene		
IMe ₄	1,3,4,5-tetramethyl-imidazol-2-ylidene		
IMes	1,3,4,5-tetramethylimidazolin-2-ylidene		
<i>i</i> Pr	<i>iso</i> -propyl	C_3H_7	
l <i>t</i> Bu	1,3- <i>tert</i> -butyl-2-ylidene		
L	ligand		
LDA	di-iso-propylamide		
LUMO	lowest occupied molecular orbital		

Μ	transition metal	
Mes	mesityl	C ₆ H ₃ (CH ₃) ₃
MesTer	1,3-di-mesityl-benzene	
Naph	naphthalenide	$C_{10}H_8^-$
NHC	N-heterocyclic carbene	
NHCP	N-heterocyclic carbene-phosphinidene	
NHI	N-heterocyclic imine	
Nuc	nucleophile	
Ph	phenyl	C_6H_5
QTAIM	Quantum Theory of Atoms in Molecules	
red	reduction / reducing agent	
<i>t</i> Bu	<i>tert</i> -butyl	C(CH ₃) ₃
Ter	1,3-diphenylbenzene	
Тірр	2,4,6-tri-isopropylphenyl	2,4,6- <i>i</i> Pr ₂ C ₆ H ₃
TippTer	1,3-bis-triisopropylphenyl-benzene	
Х	halide	
$\Delta E_{\rm ST}$	singlet-triplet gap energy	

Results of the work on hand have been published in the following contributions:

Publications

- Ligand Assisted CO₂ Activation and Catalytic Valorization by an NHI-Stabilized Stannylene
 Debotra Sarkar⁺, Lisa Groll⁺, Dominik Munz, Franziska Hanusch, Shigeyoshi Inoue
 ChemCatChem, 2022, 14, e202201048
- Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO₂ and N₂O Lisa Groll, John A. Kelly, Shigeyoshi Inoue Chem. Asian J., 2024, 19, e2023009

Conference Contributions

- Poster: Synthesis and Reactivity of N-Heterocyclic Imine Stabilized Tetrylenes
 Lisa Groll, Shiori Fujimori, Shigeyoshi Inoue
 44th International Conference on Coordination Chemistry (ICCC), Rimini, Italy, August
 2022
- Oral Contribution: CO₂ Activation and Catalytic Reduction by NHI-stabilized Stannylenes - Ligand Influences
 Lisa Groll, Debotra Sarkar, Shigeyoshi Inoue
 29th International Conference on Organometallic Chemistry (ICOMC), Prague, Czech Republic, July 2022

ABSTRACT

Heavier tetrylenes, such as germylenes and stannylenes, display a unique reactivity due to their ambiphilic nature. With their filled s-orbital and empty p-orbital, they can engage in donor-acceptor type reactivity and are capable of activating a range of strong bonds in small molecules such as CO₂, NH₃, H₂, ethylene, and so on. Promising research has already been done, that showcases the potential of heavier tetrylenes for small molecule activation and catalysis, but there is still lots of work to be done to demonstrate the full potential of those complexes. This doctoral thesis attempts to contribute a small part to this endeavor by presenting the synthesis and reactivity of *N*-heterocyclic imine (NHI) stabilized germanium and tin complexes.

To begin with, the reactivity of aryl(imino)stannylene ^{Mes}Ter(IDippN)Sn: with CO₂ is considered. By reacting equimolar amounts of the lithiated ligand precursor (IDippN)Li with the chlorostannylene MesTer(CI)Sn:, the heteroleptic stannylene MesTer(IDippN)Sn: was obtained in good yields. Reaction with CO₂ revealed the unique stabilization capability of the NHI ligand, which allows the oxidation state +II of the tin center to stay intact upon activation of the small molecule. Instead of oxidation of the metal center, a tin-carboxylate is formed, which then can release C1 feedstock upon reduction with HBpin stoichiometrically and catalytically. Experimental and computational comparison of MesTer(IDippN)Sn:, MesTer(IDippP)Sn:, and ^{Mes}Ter(Ph₂N)]Sn: reveals the inherent character of the Sn-L bond to be the deciding factor that enables reversible CO₂ uptake. While the Sn–N bond in the aryl(imino)stannylene is a strongly polarized single bond, the Sn-P bond of ^{Mes}Ter(IDippP)Sn: exhibits double-bond character and is too stable to allow CO₂ insertion. In contrast, ^{Mes}Ter(Ph₂N)Sn: does react with CO₂, but the Sn–N bonds affinity to re-form the stannylene upon reduction with HBpin is too low due to the low bond order single bond. Instead, the ammine-borane Ph₂N-Bpin is formed. Only MesTer(IDippN)Sn: is capable of reversible dissociation of the Sn-N bond, enabling efficient catalytic hydroboration of CO₂ with HBpin under mild conditions.

Secondly, the synthesis of I*t*BuN stabilized tetrylenes $[(Me_3Si)_2N](I$ *t*BuN)Sn:, (I*t* $BuN)_2Sn:, and (I$ *t* $BuN)_2Ge: as well as their reactivity towards CO₂ and N₂O are discussed. While <math>[(Me_3Si)_2N](ItBuN)Sn:$ can be obtained *via* ligand exchange reaction of $[(Me_3Si)_2N]_2Sn:$ with free (I*t*BuN)H, the homoleptic tetrylenes are synthesized by reacting (I*t*BuN)Li with the respective ECl₂·dioxane salt (E = Ge, Sn). While (I*t*BuN)₂Sn: forms a dimer in solid-state as well as in solution at -80 °C, as determined by SC-XRD and VT-NMR, the other tetrylenes

could only be observed as monomers. Upon reaction of CO_2 with the germylene, one molecule of CO_2 bridges each of the Ge–N bonds respectively, while they themselves stay intact, forming 4-rings. In the case of the homoleptic stannylene, the Sn–N bonds dissociate and form carbamato groups upon insertion of CO_2 . Upon reaction of $(ItBuN)_2Sn$: with N₂O, partial oxidation can be observed, giving a bis-stannylene with a central Sn_2N_2 ring coordinated by stannanolate moieties. In contrast, the heteroleptic stannylene [(Me₃Si)₂N](ItBuN)Sn: does not react selectively with CO_2 or N₂O.

ZUSAMMENFASSUNG

Schwere Tetrylene wie Germylene und Stannylene weisen aufgrund ihres ambiphilen Charakters eine einzigartige Reaktivität auf. Aufgrund eines gefüllten s-Orbitals und eines leeren p-Orbital können sie Donor-Akzeptor-Reaktivität mit einer Reihe starker Bindungen in kleinen Molekülen wie CO₂, NH₃, H₂, Ethylen usw. zeigen. Es wurden bereits vielversprechende Forschungsarbeiten durchgeführt, die das Potenzial schwerer Tetrylene für die Aktivierung und Katalyse kleiner Moleküle demonstrieren, aber es bleibt noch viel zu tun, um das volle Potenzial dieser Komplexe auszuschöpfen. Diese Doktorarbeit versucht, einen kleinen Teil zu diesem Unterfangen beizutragen, indem sie die Reaktivität von *N*-heterozyklisch-Imin (NHI) stabilisierten Germanium- und Zinnkomplexen zeigt.

Zunächst wird die Reaktivität des Aryl(imino)stannylens ^{Mes}Ter(IDippN)Sn: mit CO₂ betrachtet. Durch Reaktion äquimolarer Mengen des lithiierten Ligandenvorläufers (IDippN)Li mit dem Chlorostannylen ^{Mes}Ter(CI)Sn: wurde das heteroleptische Stannylen ^{Mes}Ter(IDippN)Sn: in guten Ausbeuten erhalten. Die Reaktion mit CO2 offenbarte die bemerkenswerte Stabilisierungsfähigkeit des NHI-Liganden, der es ermöglicht, dass der Oxidationszustand +II des Zinnzentrums bei Aktivierung des kleinen Moleküls erhalten bleibt. Anstelle der Oxidation des Metallzentrums wird ein Zinncarboxylat gebildet. Das Stannylen ist zudem in der katalytischen Hydroborierung von CO2 mit Pinacolboran als Reduktionsmittel aktiv. Der Vergleich mit ^{Mes}Ter(IDippN)Sn:, ^{Mes}Ter(IDippP)Sn: und ^{Mes}Ter(Ph₂N)]Sn: zeigt, dass der Charakter der Sn–L Bindung der entscheidende Faktor ist, der eine reversible CO₂-Aufnahme und somit Katalyse ermöglicht. Während die Sn-N Bindung im Aryl(imino)stannylen eine stark polarisierte Einfachbindung ist, weist die Sn-P Bindung von ^{Mes}Ter(IDippP)Sn: Doppelbindungscharakter auf und ist zu stabil, um eine CO₂-Insertion zu ermöglichen. MesTer(Ph2N)Sn: reagiert zwar mit CO2, hier ist jedoch die Sn-N Bindung zu schwach und die Affinität zur Neubildung des Stannylens bei Reduktion mit HBpin zu gering. Stattdessen wird das Amminboran Ph₂N–Bpin gebildet. Nur ^{Mes}Ter(IDippN)Sn: ist zur reversiblen Dissoziation der Sn-N Bindung fähig, was eine effiziente katalytische Hydroborierung von CO₂ mit HBpin unter milden Bedingungen ermöglicht.

Zweitens werden die Synthesen der I*t*BuN-stabilisierten Tetrylene [(Me₃Si)₂N](I*t*BuN)Sn:, (I*t*BuN)₂Sn: und (I*t*BuN)₂Ge: sowie deren Reaktivität gegenüber CO₂ und N₂O diskutiert. Während [(Me₃Si)₂N](I*t*BuN)Sn: durch Ligandenaustauschreaktion von [(Me₃Si)₂N]₂Sn: mit freiem (I*t*BuN)H erhalten wird, werden die homoleptischen Tetrylene durch Reaktion von

(I*t*BuN)Li mit dem jeweiligen Chlorid-salz (ECl₂·dioxane, E = Ge, Sn) synthetisiert. Während (I*t*BuN)₂Sn: sowohl als Feststoff als auch in Lösung bei –80 °C ein Dimer bildet, wie durch SC-XRD und VT-NMR verifiziert, konnten die anderen Tetrylene nur als Monomere beobachtet werden. Bei der Reaktion von CO₂ mit dem Germylen überbrückt jeweils ein Molekül CO₂ die Ge–N Bindungen, während die Bindungen selbst intakt bleiben, wodurch sich 4-Ringe bilden. Im Fall des homoleptischen Stannylens dissoziieren die Sn–N Bindungen und bilden bei Insertion von CO₂ Carbamatogruppen. Bei der Reaktion von (I*t*BuN)₂Sn: mit N₂O kann eine partielle Oxidation beobachtet werden, bei der ein Bis-Stannylen mit einem zentralen Sn₂N₂-Ring gebildet wird.

TABLE OF CONTENTS

ACKNOWLEDGMENTS I
LIST OF ABBREVIATIONSIII
LIST OF PUBLICATIONS AND CONFERENCE CONTRIBUTIONS
ABSTRACT
ZUSAMMENFASSUNG
TABLE OF CONTENTSX
1. INTRODUCTION
2. State of the Art
2.1. CARBENES
2.2. N-HETEROCYCLIC IMINES
2.3. Heavier Tetrylenes
2.3.1. GERMYLENES
2.3.2. Stannylenes
3. SCOPE OF THIS WORK
4. LIGAND ASSISTED CO_2 ACTIVATION AND CATALYTIC VALORIZATION BY AN NHI-STABILIZED
STANNYLENE
5. REACTIVITY OF NHI-STABILIZED HEAVIER TETRYLENES TOWARDS CO2 and N2O46
6. SUMMARY AND OUTLOOK
6.1. Hydroboration of CO_2 by an NHI-stabilized Tetrylene
6.2. SMALL MOLECULE ACTIVATION BY HEAVIER BIS-NHI-TETRYLENES
6.3. Outlook
7. BIBLIOGRAPHY
8. APPENDIX
8.1. SUPPORTING INFORMATION FOR CHAPTER 4
8.2. SUPPORTING INFORMATION FOR CHAPTER 5
8.3. LICENSE FOR CHAPTER 4159
8.4. LICENSE FOR CHAPTER 5

1. INTRODUCTION

In research, as well as the chemical industry, catalytic processes are an established cornerstone that receives continuing attention and study. While already utilized in the enzymatic fermentation to drinking alcohol and vinegar for thousands of years, the chemical concept behind catalysis was first described by Elizabeth Fulhame in 1794 in her book on oxidation-reduction reactions.^[1-3] Almost 40 years later, in 1836, Berzelius coined the term *catalysis* based on his research. The word is derived from the Greek word καταλύειν (katalū́ō), meaning "to loosen".^[1] Followed by several breakthroughs in the early 20th century, such as the Haber-Bosch- or the Ostwald-process, which both utilize catalytic processes, industrial chemistry is no longer imaginable without them.^[4-6]

"Anyone who knows about Mozart, Ravel, and Gershwin should know about catalysis as well. There is no life without the miracles of catalytic reactions in plants, animals, and human beings."

> Excerpt from Catalysis from A to Z: A Concise Encyclopedia^[7]

In the last decades, however, arguments for environmentally friendly and more cost-effective chemistry have become an increasingly more burning topic. Transition metals and their catalytically active complexes are often toxic and hard to source. Naturally, an effort to utilize more abundant elements and ecological alternatives has been made and continues to be explored. One effort to create novel catalytic systems is to move away from transition metals to other elements in the periodic table.

As such, elements of the p-block have received increasing attention. Among them are elements that are much more abundant and more eco-friendly than many industrially relevant transition metals (e.g. platinum, vanadium, etc.).^[8-11] Long overlooked, however, was their potential to exist in previously unobserved oxidation states and coordination environments,

1. INTRODUCTION

enabling them to perform outstanding reactivity. Before several seminal breakthroughs in the late 1970s and 80s, chemists believed that heavier p-block elements followed quite rigid and predictable patterns. For example, it was generally believed that they could not form stable double bonds (known as the "double bond rule").^[12-13] This rule was, however, thoroughly refuted by the early pioneers in this field. As such, Lappert presented the first heavy alkene analogs of germanium and tin, followed by the synthesis of disilene, diphosphene, and silaethene by West, Yoshifuji, and Brook.^[14-18]

With the previously untapped potential of those elements now made clear, the rush towards new developments picked up and has not slowed down since. In the last 40 years, many milestones were reached, and heavier main-group compounds showed reactivity in small molecule and bond activation as well as in an increasing number of catalytic applications, slowly attempting to close the gap toward transition-metal organometallic chemistry.

Special attention has been given to heavier elements of group 14 (*i.e.* Si, Ge, Sn, Pb). While the high reactivity of low-coordinate and low-oxidation-state congeners (e.g., tetrylenes, tetrylones, tetryliumylidene ions, etc.) of this group makes them challenging to stabilize, it is also crucial for enabling activation of enthalpically strong bonds. With deliberately constructed ligands, highly active but stable complexes with free coordination sites can be created and utilized in small molecule activation and catalysis.^[19-22] Especially germanium and tin complexes, whose central elements contain an inherent flexibility between the +II and +IV oxidation states, have resulted in big strides in that field.^[23-25] Facile switching between oxidation and reductive elimination).^[26]

2. STATE OF THE ART

2.1. CARBENES

BASICS

Carbon, the lightest element of group 14 in the periodic table, can be observed in a virtually unmatched diversity of structures. The range of appearances of the pure element alone, such as graphite, diamond, or fullerene, already demonstrates this. The variety is further expanded exponentially once hydrogen and other heteroatoms (*i.e.* N, O) are introduced, giving way to the entire field of organic chemistry.^[27]

One class of carbon compounds that is now indispensable in organic and organometallic chemistry is the carbenes. Here, a neutral carbon atom forms two covalent bonds, leaving two free valence electrons. While they initially have only been observed as highly reactive transient intermediates, a wide variety of persistent carbenes are known today and are applied as catalysts and ligands.^[28-30] Due to their electronic configuration, carbenes can be observed in the singlet (spin-paired) as well as triplet (unpaired) ground state (Figure 1).

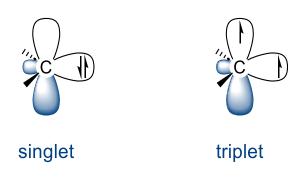
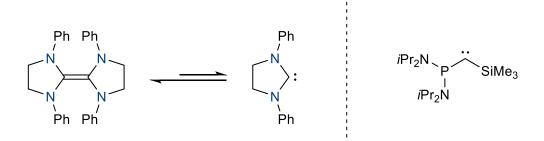
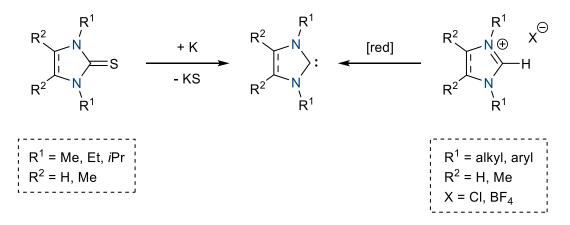



Figure 1. Non-bonding orbital depiction of the singlet and triplet states of carbenes.

While the simplest congener, transient methylene (H₂C:), is a ground state triplet ($\Delta E_{ST} = -14.0 \text{ kcal mol}^{-1}$)^[31], persistent carbenes are more often observed in the singlet ground state, significantly influenced by the electronic and steric environment around the central carbon.^[31-32] Consequently, carbenes can be stabilized by introducing strong electron donors and sterically demanding moieties as substituents.^[29, 33-34]

2.1. CARBENES

Initial attempts to isolate a stable carbene employed amino moieties.^[33, 35-36] The most promising first attempt was presented by Wanzlick in 1962 with a bis-(1,3-diphenyl-2-imdazolinylidene). The compound can be interpreted as a dimer with a considerable tendency to dissociate into the respective carbenes. In fact, reactivity studies revealed a carbene-like reactivity, indicating an equilibrium between monomer and dimer.


Scheme 1. Left: Dissociation of bis-(1,3-diphenyl-2-imdazolinylidene) to respective un-isolated carbene monomer.^[33] Right: first stable carbene.^[37]

Still, it took over 20 years until the first instance of a persistent carbene was reported in 1988. Bertrand *et al.* isolated a (phosphino)(silyl)carbene, presumably stabilized by a strong P–C multiple bond character and a push-pull effect between the phosphine and the silyl moiety.^[36-38]

N-HETEROCYCLIC CARBENES – STRUCTURE AND SYNTHESIS

Remarkably stable *N*-heterocyclic carbenes (NHCs), discovered in 1991 by Arduengo *et al.,* are arguably the most popular and widely applied carbenes. While other types of NHCs are known, the term is usually understood to refer to imidazoline-2-ylidenes. NHCs are ground-state singlets, where the carbene carbon is neighbored by nitrogen atoms in a five-membered heterocycle (Scheme 2, middle).

Thermodynamic stabilization is provided on the one hand by the *N*-lone-pairs, donating electron density into the empty carbon p-orbital perpendicular to the ring plane, resulting in 6π aromaticity.^[29-30] On the other hand, σ -donation from the carbene to the nitrogen centers also contributes to thermodynamic stability. Additionally, kinetic stability can be influenced by the steric bulk of substituents on the imine moieties, which can be varied relatively easily depending on the required properties. This results in a stable but electron-rich, nucleophilic carbene that is suitable as a ligand for a wide variety of organometallic complexes as well as an organocatalyst on its own.^[29-30, 39-41]

Scheme 2. Synthesis of Arduengo-type NHCs from thione^[42] (left) or imidazolium salt^[43-44] (right). [red] = reducing agent (*e.g.*, KOtBu, NaH).

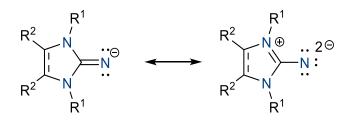
Depending on the steric bulk of the amine substituents, two synthesis pathways towards NHCs are applied most frequently. Smaller NHCs, such as IMe₄ (1,3,4,5-tetramethyl-imidazol-2-ylidene), can be obtained *via* reductive desulfurizing of the respective imidazole-2-(3H)-thiones.^[42] Larger congeners are usually synthesized by reduction of imidazolium salts (Scheme 2).^[43, 45]

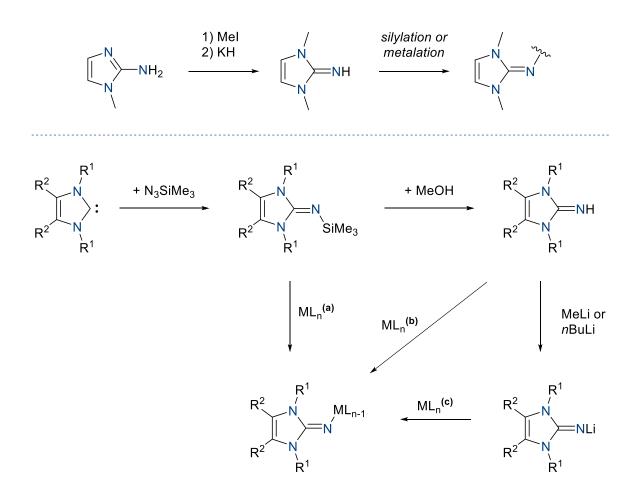
2.2. N-HETEROCYCLIC IMINES

STRUCTURE

As the name suggests, *N*-heterocyclic imines (NHIs) are a structural evolution from NHCs, in which an exocyclic imine nitrogen is introduced at the 2-position of the ring. Along the ylidic C=N bond, the nitrogen atom accepts σ - and π -electron density. At the same time, due to the orthogonal orientation of the nitrogen lone pair, no π -back-donation can occur. Therefore, the electron-rich aromatic cycle pushes further electron density into the terminal imino-nitrogen.

NHIs can act as 2σ , 2π -electron donors as well as 2σ , 4π -electron donors (Figure 2). All this results in a more basic and stronger donor ligand than the parent NHC, making them ideal candidates for stabilizing early transition metals and other more electrophilic metal centers.^[46-49]



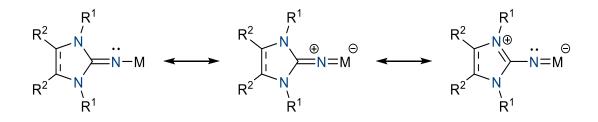

Figure 2. Canonical resonance structures of the anionic NHI Ligand (R = organyl). Adapted from Inoue et al.[49]

Besides anionic monodentate NHIs, donor-functionalized, neutral imine moieties can also act as ligands. Consequently, this opens up the possibility of bi- or even tri-dentate ligand systems.^[50]

SYNTHESIS

While the seemingly most clear-cut synthesis towards *N*-heterocyclic imines - introducing NH₃ to parent carbene - does not lead to the desired product, several pathways to NHIs with varying steric composition have been reported.^[51] The first established synthesis of 1,3-dimethyl-2-imino-imidazoline with satisfactory yield ensues by reaction of 1-methyl-1H-imidazole-2-amine with iodomethane and subsequent reduction with potassium hydride (Scheme 3, top).^[52] This route is, however, not transferable to longer iodoalkanes.

2.2. N-HETEROCYCLIC IMINES



Scheme 3. *Top:* Synthesis of 1,3-dimethyl-2-imino-imidazoline.^[51-53] *Bottom:* Synthesis of commonly used NHI-ligand transfer reagents (R¹ = alkyl, aryl; R² = CH₃, H) and introduction to various metal centers as a ligand. $ML_n^{(a)} = e.g.$, GeCl₄, CpTiCl₃, Re₂O₇, V(N-2,6-Me₂C₆H₃)Cl₃; $ML_n^{(b)} = e.g.$, [(Me₃Si)₂N]₂Sn:; $ML_n^{(c)} = e.g.$, SnCl₂·Dioxane, Me₃CC=W(OCCMe₃)₃.^[54-60]

The most versatile route for bigger NHIs up to date was first established by Tamm *et al.* and involves a *Staudinger*-type mechanism of the respective NHC with trimethylsilylazide, giving *N*-silylated imines (Scheme 3, bottom).^[55, 61] *Via* this approach, it is possible to generate NHIs with a wide variety of substituents on the endocyclic nitrogen moieties, ranging from small methyl groups up to much more sterically demanding substituents, such as Dipp (2,6-di-isopropyl-phenyl). These *N*-silylated precursors can then either be introduced directly to a variety of metal centers or desilylated with methanol to give free NHI–H, which opens up further reaction pathways to organometallic complexes.^[55, 61] If silylated or free NHIs do not show sufficient reactivity to be introduced to a metal center, additional lithiation of the ligand can be interposed.^[60, 62]

NHI SUPPORTED COMPLEXES

Due to the 2σ and up to 4π electron-donating nature of the NHI, metal complexes can display a degree of metalla-2-aza-allene or metalimide character (Figure 3). In terms of structure, this can be observed in a wide C–N–M bond angle, approaching 180°, and an elongation of the C–N bond alongside a respective shortening of the N–M bond.^[49]

Figure 3. Selected resonance structures of a model complex of anionic NHI Ligand with M⁺ (R = organyl). Adapted from Inoue *et al.*^[49]

As a result of their exceptional donor properties, NHIs have been employed as ligands in many compounds. In fact, examples of transition metal complexes with NHIs can be found along the whole d-block of the periodic table, as well as among lanthanides and actinides (*e.g.,* Figure 4, **1-3**).^[50, 63-65] The first NHI-supported organometallic compound, the dimeric titanium complex (**1**), was published in 1997 by Kuhn *et al.*^[66]

Since then, a number of transition metal complexes that utilize NHIs have been developed for catalysis.^[50, 67] Examples include transfer hydrogenation by actinidine complexes, alkyne metathesis by tungsten and molybdenum compounds (*e.g.*, PhC=M[OC(CF₃)₂Me]₂(I*t*BuN); M = Mo, W; Figure 4, **2a,b**), hydroboration by hafnium complexes, and more.^[60, 62, 68-70] Especially titanium complexes seem to benefit from the stabilization by NHIs and were shown to enable various polymerization as well as the catalytic synthesis of urea derivates.^[71-74]

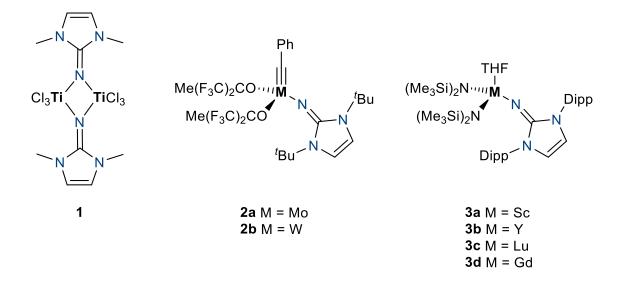
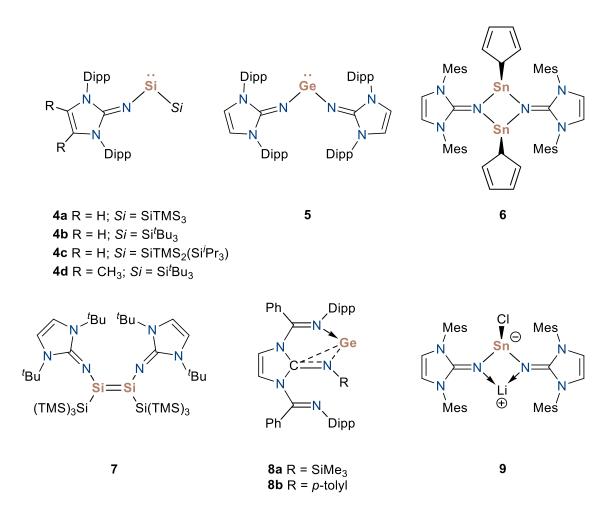
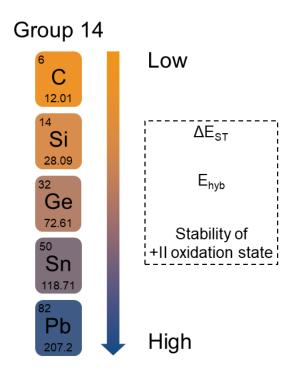
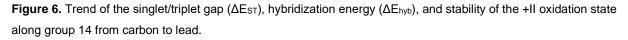


Figure 4. Selected examples of NHI-supported transition metal complexes.[66, 68, 75]

Besides application in transition-metal compounds, NHIs have proven to be particularly suitable for stabilizing a considerable selection of electron-deficient low-valent p-block complexes. It could be shown that the electrophilic main-group-metal center benefits from kinetic and thermodynamic stabilization by NHIs.

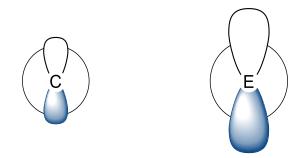
Pertinent group 13 complexes span for examples from dimeric aluminum-hydride [μ -IDippNAIH₂]₂, capable of catalytic reduction of CO₂, and bis-Ga(I) [IDippN-Ga]₂, both with a central E₂N₂ ring (E = AI, Ga), to cyclic five-membered E(I) carbenoids (E = Ga, In, TI).^[76-78] Moving further to group 14, a compelling number of homo- and heteroleptic tetrel compounds can be mentioned. The selected examples **4-9** ^[54, 59, 79-85] (Figure 5) illustrate the structural influence of a sterically demanding substituent at the endocyclic *N*-moieties. While the use of bulky ligands tends to result in the formation of monomeric structures with one coordination center, smaller NHIs can lead to dimerization, as in disilene **7**. Besides that, dimerization can also occur *via* bridging of two element centers by the NHI, such as in compounds **1** and **6**.


Figure 5. Selected examples of low valent group 14 complexes stabilized by N-heterocyclic imines.^[54, 59, 79-85]

In some cases, further stabilization by silylene ligands has proven beneficial. For example, the homoleptic IDippN₂Si: (the silylene congener of **5**) could not be isolated but instead undergoes an irreversible ligand rearrangement after N–C bond cleavage on the side-arms.^[54] However, upon the introduction of a silyl moiety to form heteroleptic silylenes, **4a-d** were described.^[79-82. 86] Here, it should be mentioned that the NHI's backbone significantly affects the complex's structure. While transient silylenes **4a-c**, which bear ligands with unsubstituted backbones, undergo reversible intramolecular C–C bond activation to the respective silepins (*i.e.* sila-2,4,6-heptatrienes), complex **4d**, which is ligated by an NHI with a methylated backbone, can be isolated in acyclic form. Notably, **4d** can still undergo C–C bond activation. In fact, reversible intermolecular C–C insertion of the silicon center can be observed with benzene and fluorobenzene as well as ring opening of pyridine and DMAP.^[82] The first Ge(0) π -complex **8** was recently reported, utilizing a modified NHI ligand with imino-moieties on the wingtips, allowing additional σ -donation towards the germanium center.^[85]

BASICS


As carbenes (*vide supra*), heavier analogs of group 14 contain a central atom in the oxidation state +II, coordinated by two ligands. In contrast to the lightest congener, heavier tetrylenes R_2E : (E = Si, Ge, Sn, Pb) show markedly different electronic and chemical behavior (*cf.* Figure 6). This aspect can be best explained by taking a step back and looking at quantum-mechanic considerations of the bonding nature in heavier carbon analogs.

Unlike carbon, which shows very effective hybridization, s-p mixing becomes increasingly less efficient descending group 14.^[87] This can be traced back to an increasing difference in diffusion (*i.e.* "size") of the valence s- and p-orbitals (Figure 7). In the case of carbon, the valence s- and p-orbital are close in energy due to them experiencing a similar amount of attraction towards the nucleus. This results in a very similar amount of diffusion of the valence 2s and 2p orbitals in the carbon atom, enabling facile hybridization.^[88]

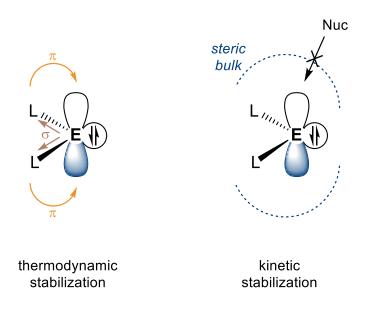
Moving on to heavier elements, relativistic effects lead to a contraction of the s-orbitals, resulting in a larger energy separation between np- and ns- valence orbitals. In other words, the valence p-orbital becomes "bigger" faster than the respective valence s-orbital, hindering hybridization. This effect increases the further the respective valence shell is from the core, i.e. the heavier the element becomes.

Figure 7. Similar size of 2s- and 2p- valence orbitals in carbon (left) compared to an increased size separation of ns- and np- valence orbitals in heavier group 14 elements (right). Adapted from Gernot *et al.*^[88]

Returning to tetrylenes, the consequence is increasing the stability of the singlet ground state with growing energy difference of the valence orbitals going down the group. This can, for example, be observed in the trend of singlet-triplet gaps of parent tetrylenes H₂E: (E = C, Si, Ge, Sn, Pb). While the carbene is a ground-state triplet with a negative ΔE_{ST} (*c.f.* chapter 2.1), the heavier congeners are ground-state singlets with increasing singlet-triplet energy differences (Table 1). In regards to structure, this can be observed in a narrowing of the L–E–L angle with increased ΔE_{ST} due to the lone pair occupying more space.^[89]

tetrylene	ΔE _{st} [kcal/mol ⁻¹]	ground state	
H ₂ C:	- 12.7	triplet	
H ₂ Si:	16.7		
H ₂ Ge:	21.8	singlet	
H₂Sn:	24.8		
H ₂ Pb:	34.8		

Table 1. Calculated singlet-triplet energy gaps (ΔE_{ST}) for tetrylenes H₂E: (E = group 14 element) and their respective ground states.^[31]


Another consequence of the s-orbital being so much lower in energy is the so-called *inert-pair-effect*.^[23-25] This relativistic effect describes the increased hesitancy of the lone pair to participate in bonding, which can, for example, be observed in the decreasing tendency of tetrylenes to dimerize with the increasing size of the central element. While disilenes form strong Si=Si bonds, which have been observed to persist in solution, digermenes already tend to dissociate at least partially to form an equilibrium between the monomer and the dimer. Going down the group, this inertia increases and the E=E bonds get longer and weaker.

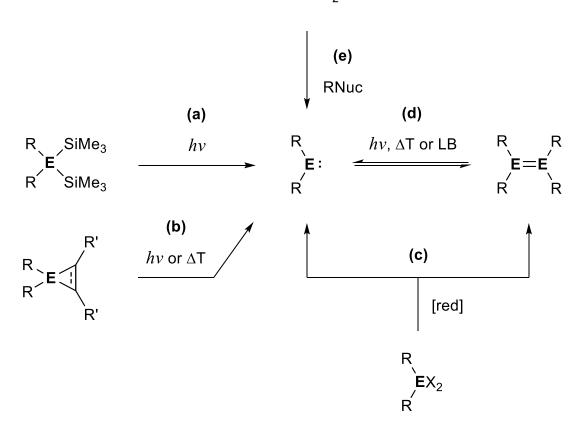
With the lone pair (predominantly s-character) capable of electron donation, and the vacant orbital (predominantly p-character) being electrophilic in ground-state triplet tetrylenes, they can display ambiphilic reactivity and are capable of multifaceted follow-up reactivity.^[23, 89] In turn, tetrylenes are highly reactive and require deliberate ligand stabilization.

LIGAND INFLUENCES

The rational synthesis of tetrylenes is a balancing act between stabilization and ensuring selective reactivity. The electronic and steric properties of the ligands have a significant influence on the reactivity of the compound.

So far, a combination of both thermodynamic and kinetic stabilization, often realized in the same ligand, has been proven effective (*cf.* Figure 8). On the one hand, thermodynamic stabilization can be achieved by the inductive effect of σ -accepting groups, which increase the s-character of the non-bonding σ -orbital (*i.e.* lowering the HOMO energy level). On the other hand, electronegative, π -donating moieties push electron density into the vacant p-orbital, thereby increasing the energy of the LUMO, providing a mesomeric effect. Similarly, the LUMO energy can be increased by employing additional *Lewis* bases, donating electron density into the vacant p-orbital. In all cases, the result is a widened HOMO-LUMO gap and, therefore, increased stability of the tetrylene. ^[23, 28]

Figure 8. Thermodynamic and kinetic approaches to stabilize heavier tetrylenes in their singlet state and protect the empty p-orbital from nucleophilic attack (nuc = nucleophile) Adapted from Tokitoh *et al.*^[23]


Kinetic stabilization can be achieved by shielding the metal center with sterically encumbering substituents. Bulky Ligands protect the empty p-orbital from nucleophilic attacks by steric repulsion. This can also prevent the tetrylene from reacting with itself and prevents dimerization or oligomerization, which is often observed for smaller E(II) complexes or salts, such as ECI_2 ·dioxane.^[60, 89] Another thing to consider with bulky ligands is their influence on the L–E–L angle and, therefore, the singlet-triplet gap due to changes in geometry. With the widening of the L–E–L angle, the p-character of the lone pair increases, lowering ΔE_{ST} .^[90-91]

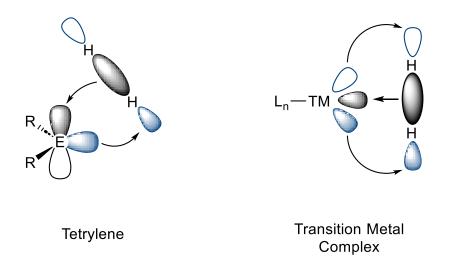
While stabilizing the central atom is of fundamental importance to obtain an isolable tetrylene, ligand properties that potentially increase reactivity can also be incorporated into the design of suitable ligands. Especially for heavier tetrylenes, where the singlet ground state is inherently more stable and ΔE_{ST} is larger, increasing reactivity by utilizing ligands that decrease the HOMO-LUMO or singlet-triplet gap can enable follow-up reactivity. One approach that seems to be a productive middle ground is using strongly σ -donating but sterically demanding ligands, such as bulky boryls^[92-94] and silyls^[95], to provide kinetic stabilization but increased reactivity at the same time. The NHI-Ligands combine these aspects by providing (activating) σ -donation and (stabilizing) π -donation with sterically demanding wingtips.

SYNTHESIS

Tetrylenes are most commonly synthesized by the following pathways, with their respective efficacy depending on the central atom (Scheme 4).^[23, 96-97] The first method is the reduction of a precursor in the +IV oxidation state. This can be achieved by reductive elimination *via* photochemical or thermal reduction or with the use of a reducing agent.

The Photochemical reduction can be applied to silyl-substituted precursors $R_2E(SiR'_3)_2$ via liberation of a disilene (route (a), Scheme 4). Furthermore, metalliranes or metallirenes (3-membered heterocycles resembling the [2+1] cycloaddition product of a tetrylene and an alkene or alkyne) can be driven to photochemical or thermal reductive elimination by means of releasing the respective olefin or alkyne (route (b), Scheme 4). Using an additional reducing agent, such as KC₈, NaNaph or alkali metals, halide substituted species R_2EX_2 (E = Si, Ge, Sn, Pb; X = Cl, Br, I) can be reduced as well (route (c), Scheme 4). Depending on the compound, this can lead to the tetrylene or the respective dimeric dimetallene.

 $LB \rightarrow EX_2$


Scheme 4. Common synthetic routes to generate stable tetrylenes ([red] = reducing agent (e.g. KC₈, NaNaph, alkali metals), LB = *Lewis* base (e.g. polar solvent, NHC, dioxane, etc.), Nuc = Li, MgBr, SiMe₃, X = Cl, Br, I).^[23, 96-97]

The second pathway starts from precursors already in the +II oxidation state. As such, the splitting of dimetallene can be achieved by photochemical or thermal means, or using an additional *Lewis* base, such as IMe₄ or dioxane (route **(d)**, Scheme 4). Another route starting from +II precursors is the salt-metathesis reaction from a halide-salt EX₂ (E = Si, Ge, Sn, Pb; X = CI, Br, I) with an organometallic nucleophile, such as RLi or RMgBr (route **(e)**, Scheme 4). This method was initially only used for germanium, tin, and lead since their di-halides are easily accessible. Silicon(II)-halides are highly reactive and require bulky donors for stabilization. Still, since the synthesis of *Lewis* base stabilized compounds, such as IDipp \rightarrow SiCl₂ or CAAC \rightarrow Sil₂, this route also became accessible for silylenes.^[98-100] Generally, using additional *Lewis* bases for heavier halides can improve solubility and aid in stabilizing potential transition states. Similar to silicon, but to a lesser degree, the +II oxidation state of germanium also profits from additional stabilization by a donor.^[101]

SMALL MOLECULE ACTIVATION AND CATALYSIS BY HEAVIER TETRYLENES

The reason why transition metals are so predestined for small molecule activation and catalysis is their flexibility to switch between oxidation states and their reactivity on multiple coordination sites, due to their access to (partially occupied) valence d-orbitals of low energy difference.^[26, 102] This made them the prime target for the exploration of new catalytic routes and applications in organometallic chemistry. However, the research on (heavier) tetrylenes for small molecule activation and catalysis was long neglected and only gradually got more widespread attention. This is due to the initial motivation of imitating bonding motifs found in carbon chemistry, such as double or triple bonds. Chemists at that time were more interested in the similarities with the lightest element of the group than exploring the potential in the marked differences from it.

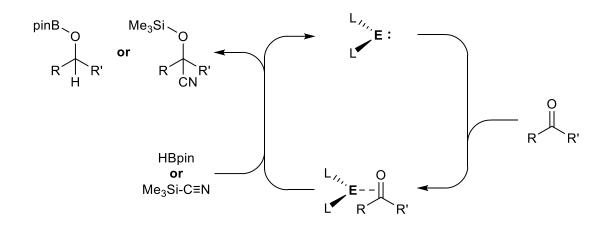
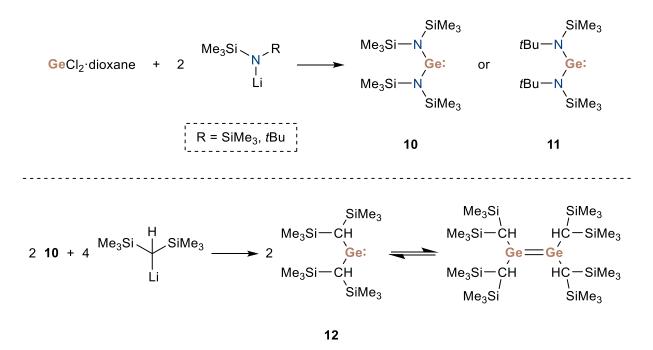

Power first highlighted the potential and similarities of tetrylenes with transition metal catalysts in his seminal 2010 review *"Main-group elements as transition metals"*.^[102] Due to their ambiphilic nature and low HOMO-LUMO or singlet-triplet energy gaps, they can react similarly to transition metals.

Figure 9. Frontier orbital interaction of tetrylenes (left) and transition metal complexes (right) with small molecules, specifically H₂. Adapted from Power *et al.* and Inoue *et al.*^[26, 102]

Their reactivity towards small molecules can be illustrated by looking at the frontier orbital interaction of tetrylenes as well as transition metals with H₂ (Figure 9).^[20, 26, 102] Adding H₂ to transition metal complexes can occur under mild conditions and signify the first step in a catalytic cycle, the oxidative addition. In the case of a tetrylene, the filled s-orbital attacks the antibonding σ^* -orbital of H₂, weakening and polarizing the H-H bond. In turn, the electrophilic p-orbital of the tetrylene accepts electron density from the H₂ σ -orbital. Under the right conditions, the H₂ bond is sufficiently weakened, and oxidative addition occurs. Pertinent to this, the first activation of H₂ by a stable main-group complex was achieved in 2005 by Power and coworkers with a germanium alkyne analog.^[103] The digermyne was irreversibly oxidated to a mixture Ge(II) and Ge(IV) compounds under mild conditions. In terms of stable heavier tetrylenes, H₂ could first be activated by the diaryl-stannylene ^{Dipp}Ter₂Sn: giving bridged (^{Dipp}TerSn(µ-H))₂ dimer *via* ligand elimination in 2008 (*c.f.* Scheme 17).^[104]

A persistent challenge of applying tetrylenes in catalysis is their lack of coordinative or oxidative flexibility in contrast to transition metals. While they have proven capable of oxidative addition in many instances, closing the catalytic cycle and recovering the low oxidation state is still a significant obstacle. The oxidized product tends to be very stable, and reductive elimination is unfavored. Because of this, progress has primarily been made in redox-based catalytic cycles that utilize external, stochiometric reducing agents that are strong enough to provide the required driving force to close the cycle and release the product. As such, hydroboration or cyanosilylation has been successfully achieved by heavier tetrylenes (*c.f.* Scheme 5).^[19, 105-108]


Scheme 5. Schematic catalytic cycle for the cyanosilylation or hydroboration of carbonyl compounds by tetrylenes (R = alkyl, aryl; R' = alkyl, aryl, H).

Since those first discoveries, the number of examples of small molecule activation and catalysis by tetrylenes has grown steadily and the drive towards more efficient and novel catalytic applications is still going strong. In the following chapters, a selection of acyclic germylenes and stannylenes and their reactivity will be illuminated in more detail, since the results of this present work concerns tetrylenes of germanium and tin.

2.3.1. GERMYLENES

In the infancy of germylene chemistry, the generation of transient, small germylenes as a proof of concept was the contemporary research focus. They were more seen as starting materials or precursors for other compounds, not only owing to limited synthetical and characterization methods.^[109-111] The first stable germylenes were reported in 1974 by Lappert *et al.* with the amido-germylenes [(Me₃Si)₂N]₂Ge: (**10**) and [(Me₃Si)(Me₃C)N]₂Ge: (**11**) (Scheme 6, top).^[112] The complexes were obtained *via* the aforementioned salt-metathesis route (*c.f.* route (e), Scheme 4) with the lithiated amides [(Me₃Si)₂N]Li or [(Me₃Si)(Me₃C)N]Li respectively.

2.3.1. GERMYLENES

Scheme 6. Top: Synthesis of the first stable germylenes (**10** and **11**), published by Lappert *et al.* in 1974 ($R = SiMe_3$, *t*Bu).^[112] Bottom: Synthesis of germylene **12**, which can be observed as dimer in solid state.^[14, 113]

Shortly after, the same group isolated the homoleptic alkyl derivative [(Me₃Si)₂CH]₂Ge: by reacting complex **10** with [(Me₃Si)₂CH]Li. The resulting germylene **12** is monomeric in solution and the gas phase, but dimerizes in solid state to the digermene [(Me₃Si)₂CH]₂Ge=Ge[CH(SiMe₃)₂]₂ (Scheme 6, bottom).^[14, 113] Increasing the steric bulk of one of the alkyl ligands by an additional trimethylsilyl-group (i.e. (Me₃Si)₃C vs. (Me₃Si)₂CH), prevents this dimerization.[97, 111]

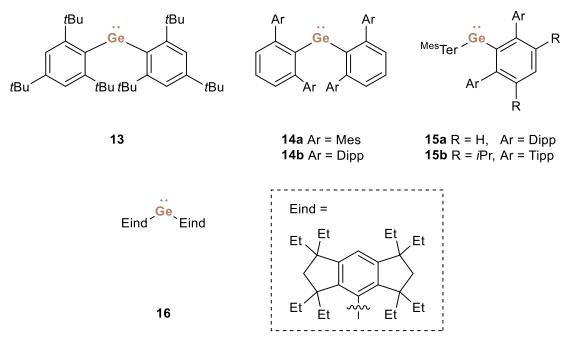


Figure 10. A selection of aryl-stabilized germylenes (Eind = 1,1,3,3,5,5,7,7-octaethyl-s-hydrindacen-4-yl).^[114-118]

Thermodynamically stabilized aryl-germylenes also belong to one of the earlier congeners of the compound class and continue to show interesting reactivity towards small molecules (Figure 10). The first upon them, 2,4,6-tri-*t*-butylphenyl-stabilized germylene **13**, was prepared in 1987 by du Mont *et al. via* the by now familiar salt-metathesis route from GeCl₂-dioxane and the lithiated ligand precursor.^[114]

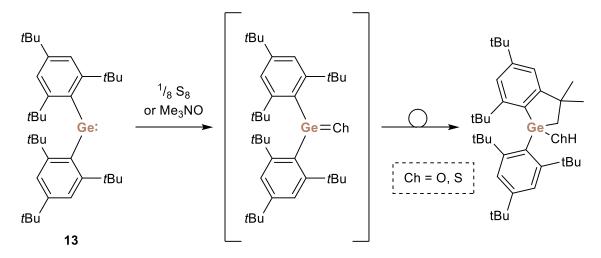
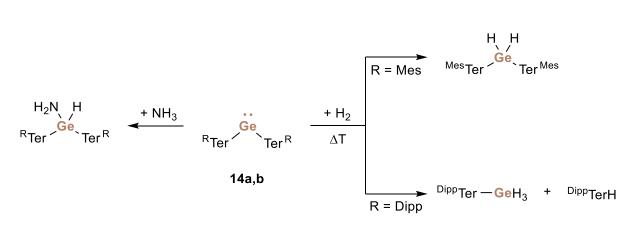
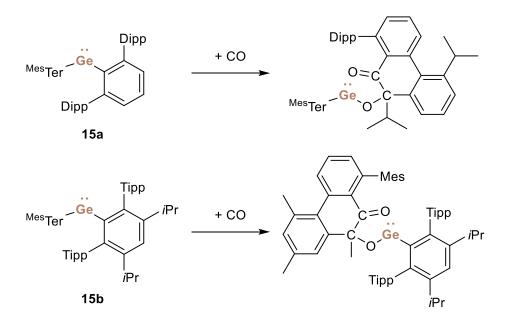
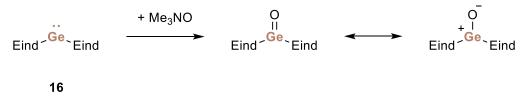



Figure 11. Reactivity of aryl-germylene 13 with sulfur and trimethylamine N-oxide (Ch = O, S).^[114, 119]

They observed reactivity towards sulfur, giving a transient germathion, which undergoes intermolecular C–H insertion by the germanium center into one of the ortho-*tert*-butyl groups. Later, Jutzi and coworkers observed the formation of a germaindanol upon treatment of


2.3.1. GERMYLENES

complex **13** with trimethylamine *N*-oxide, postulated *via* an intermediate germanone similar to the reaction with sulfur.^[119]


Scheme 7. Contrasting reactivity of germylenes 14a (R = Mes) and 14b (R = Dipp) with NH₃ and H₂.^[115-116]

Complexes **14a** and **14b**, which were again obtained *via* salt metathesis, were investigated on their reactivity towards NH₃ and H₂.^[115-116] While both compounds reacted with NH₃ at elevated temperatures to the oxidative addition products L₂GeH(NH₂) (L = Mes or Dipp respectively), they showed contrasting reactivity towards hydrogen (Scheme 7). On one hand, the sterically less encumbered metal center in complex **14a** reacts with hydrogen in the same fashion as with ammonia, giving the oxidative addition product. Germylene **14b** on the other hand decomposes to $^{Dipp}Ter-GeH_3$ and free ligand. Theoretical calculations revealed, that ligand elimination to give hydrido-germylene $^{Dipp}Ter-GeH$ is more favored than the oxidative addition to $^{Dipp}Ter_2GeH_2$ due to the increased steric bulk. The intermediate then reacts further to $^{Dipp}Ter-GeH_3$ with an additional equivalent of H₂. Compound **14a** also showed oxidative addition reactivity towards Methanol and H₂O as well as reversible activation of P₄.^[120-121]

Scheme 8. Contrasting reactivity of germylenes 15a and 15b with CO.^[117]

The first reactivity towards CO at room temperature was observed with the heteroleptic germylenes **15a** and **15b**.^[117] In both cases, the authors observed the insertion of two equivalents of CO into one of the respective Ge–C bonds. Calculations propose the formation of an intermediate germaketene with a weak Ge–CO bond. Pertinently, this bonding motif is similar to the later discovered room-temperature stable silicon-carbonyl complexes $[(Me_3Si)_3Si](^{t}Bu_3Si)Si:-CO and [L(Br)Ga]_2Si:-CO (L = HC[C(CH_3)N(2,6-^{$ *i* $}Pr_2-C_6H_3)]_2) by our group and Schulz$ *et al.*respectively.^[122-123] Reaction with another CO molecule and rearrangement subsequently leads to the formation of cyclic decomposition products (Scheme**8**). The authors also observed reactivity of previously discussed germylenes**14a**and**14b**towards CO, however no selective product formation was reported.

Scheme 9. Synthesis of the first stable germanone from germylene 16 with trimethylamine N-oxide.[118]

A milestone in mimicking common carbon bonding motives with heavier congeners was achieved with Eind (Eind = 1,1,3,3,5,5,7,7-octaethyl-*s*-hydrindacen-4-yl)-stabilized germylene **16**.^[118] The rigid and bulky Eind ligand enabled the formation of a stable germanone upon reaction of complex **16** with trimethylamine *N*-oxide (Scheme 9). While the Ge=O bond is highly

polarized, the shortened bond length compared to a single bond and theoretical calculations support the existence of a double bond.

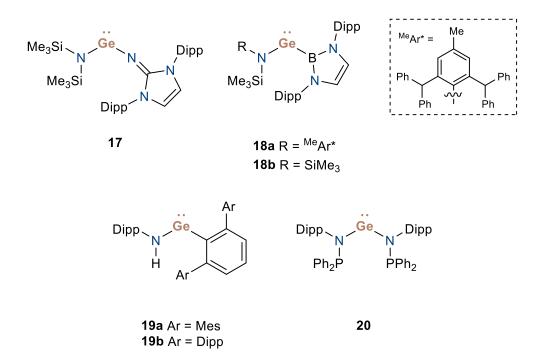
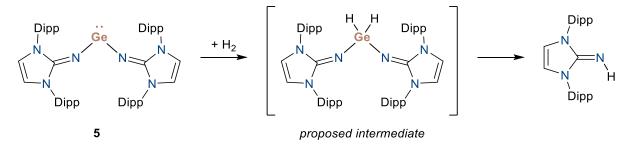
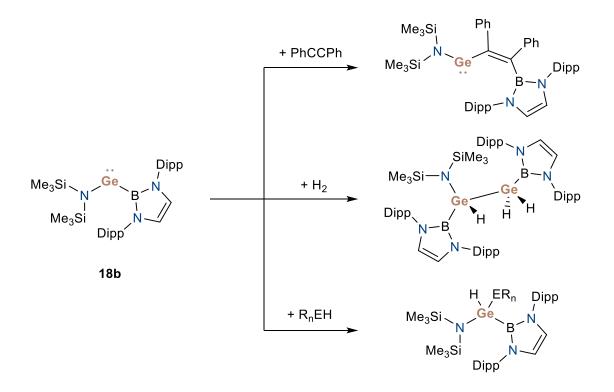
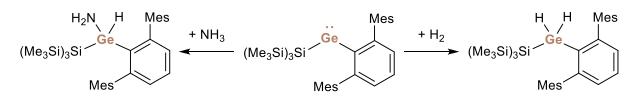



Figure 12. Selected examples of amine- and imine-stabilized germylenes.^[94, 124-127]


Since the discovery of Lappert's amido-germylene, the use of amine- and imine-type ligands continues to be a lucrative approach to stabilizing germylenes (**17-20**, Figure 12; **5**, Figure 5). ^[54, 94, 96, 105, 124-130] The *N*-moieties' σ -accepting and π -donating properties make them a suitable target for stabilization, as discussed earlier. Most amido-ligands are also markedly bulky, using Mes, Dipp or even larger substituents, and therefore also provide thermodynamic stabilization. As such, (IDippN)₂Ge: (**5**, Figure 5), stabilized by two bulky NHI ligands, reacts with H₂ to give (IDippN)H, presumed by the authors *via* the oxidative addition product (IDippN)₂GeH₂, which could however not be observed (Scheme 10).^[54]

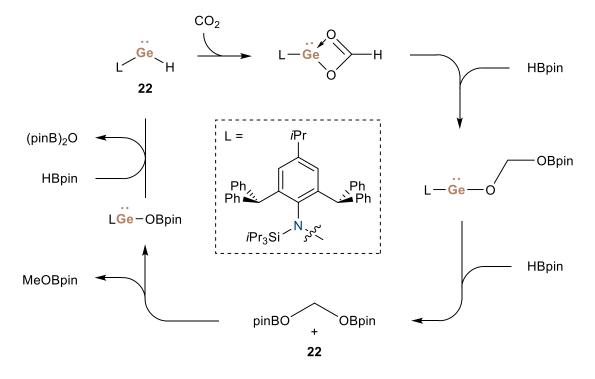
Scheme 10. Reaction of the NHI-stabilized germylene 5 with H_2 via the proposed intermediate oxidative addition product (IDippN)₂GeH₂.^[54]


2.3.1. GERMYLENES

The first heteroleptic NHI-stabilized germylene was synthesized by our group with complex **17**.^[124] The compound was obtained by a ligand exchange reaction using Lappert's germylene (**10**) and the free ligand (IDippN)H. While no small molecule activation was presented, the nucleophilicity of the germanium center could be demonstrated by its use as a ligand to form the respective iron carbonyl complex.

Scheme 11. Selected reacitivty of imino(boryl)germylene 18b.[125-126]

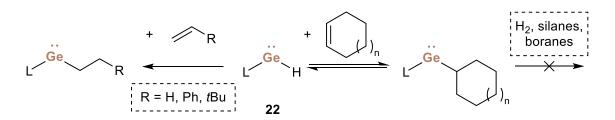
Nevertheless, combining amido-ligands with other substituents, to give heteroleptic compounds, opens the possibility to fine-tune certain properties, such as increased reactivity, of the complex and the element-ligand bonds. For example, boryl-substituted amido germylene **18b** irreversibly inserts one equivalent of phenylacetylene into the Ge–B bond under mild conditions (Scheme 11).^[126] The authors proposed an activation route *via* a [2+1] cycloaddition to a Ge(IV) intermediate, followed by reduction back to Ge(II) in the insertion product. While they could not isolate the germanium intermediate, they were able to isolate said [2+1] cycloaddition product with the respective silylene analog. In that case, however, reduction of the Si(IV) center and insertion of the substrate into the Si–B bond, could not be observed. Complex **18b** was also found to activate hydrogen and other E–H bonds.^[125] In the reaction with compounds with polarized E–H bonds, such as SiH₃ and BH₂·NMe₃, oxidative addition took place to give the respective Ge(IV) product. Upon reaction with H₂ however, an unsymmetrical digermane forms.



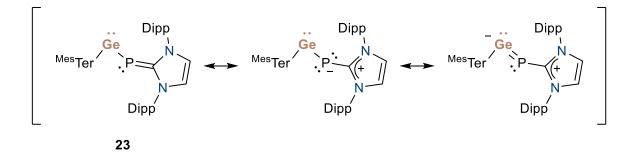
21

Scheme 12. Activation of NH₃ and H₂ by aryl(silyl)germylene 21 via oxidative addition.^[125]

In the case of germylenes **19a,b** an amine- alongside a bulky aryl-moiety does not provide sufficient activation of the germanium center.^[125] This was investigated in a reactivity study of a number of mesityl-terphenyl-stabilized germylenes with a variety of additional ligands possessing weak to strong π -donor capabilities. While boryl-substituted germylene ^{Mes}Ter[B(NDippCH)₂]Ge: is too reactive to be isolated and undergoes intramolecular C–H activation, the silyl-substituted compound ^{Mes}Ter[(Me₃Si)₃Si]Ge: (**21**) selectively forms oxidative addition products with H₂ and NH₃ (Scheme 12).^[125]


The use of germylenes for catalytic applications is still a relatively young field, nevertheless noteworthy examples can be named.^[19] While the first instance of a germylene-based catalysis - a cyanosilylation - was achieved by a N-heterocyclic germylene, the first hydroboration was achieved by an acyclic germylene and stannylene (vide infra) with impressive TOF.^[131] Using 22, the authors first observed hydrogermylation of carbonyl substrates at a much faster rate under milder conditions with previously reported three-coordinate and than (^{Dip}Nacnac)GeH.^[105, 132] Subsequently, they explored hydroboration using HBpin and a selection of aldehydes and ketones. They could observe TOFs up to 6000 h⁻¹ with least sterically encumbered cyclohexane-carboxaldehyde. As expected, more sterically demanding substrates required a higher catalyst loading and longer reaction times for quantitative yields and aldehydes generally performed better than ketones. While the reactions were overall slower than with the respective stannylene, 22 was more stable under catalytic conditions. Also. significant cis/trans selectivity was observed in the hvdroboration of 2-methylcyclohexanon, which could not be achieved with the corresponding stannylenehydride (vide infra) as the catalyst.

Scheme 13. One of the two proposed reaction mechanisms for the catalytic hydroboration of CO₂ with hydridogermylene **2**.^[129]


The substrate scope was later expanded to CO_2 , catalytically accessing methanol equivalents (>99 % MeOBpin and O(Bpin)₂) upon hydroboration with HBpin.^[129] Here, the mechanism was investigated using DFT calculations. The authors found two main viable pathways. In both cases, the first two steps are the insertion of CO_2 into the Ge–H bond of the germylene to give a germanium-formate, followed by reaction with HBpin to give an acetal intermediate (Scheme 13). The following steps either involve the release of formaldehyde from the intermediate or the introduction of another HBpin molecule to release MeOBpin. In both cases, the resulting borate ester then releases (pinB)₂O with a last equivalent of HBpin and re-forms germylene **22**. Both routes have a similar energy profile and can be assumed to take place simultaneously.

2.3.1. GERMYLENES

Scheme 14. Reactivity of hydrido-germylene **22** towards acyclic and cyclic alkenes. Valorization of hydrogermylation products with cyclic alkenes by reacting with H₂ or hydridic reagents was unsuccessful.^[128]

Germylene **22** is also active in the hydrometalation of various alkenes (Scheme 14).^[128] While reactions with acyclic alkenes and alkynes irreversibly led to anti-Markovnikov insertion products, hydrogermylation of cyclohexene and cyclooctene were reversible. The authors observed a temperature-dependent equilibrium of the germylene, the cycloalkene, and the hydrogermylation product. DFT calculations and experimental confirmation revealed a β -hydride elimination mechanism for the reverse reaction. Despite this reversibility, none of the hydrogermylation products further reacted with hydrogen, boranes or silanes, preventing further catalytic utilization.

Scheme 15. Resonance structures of NHCP-stabilized germylene 23, illustrating the partial double bond character of the Ge–P bond.^[133]

A *N*-heterocyclic carbene-phosphinidene (NHCP) stabilized germylene **23** was presented by our group in 2019 (Scheme 15).^[133] While the ligand class is structurally very similar to NHIs, the decreased electronegativity and hardness of phosphor compared to nitrogen leads to a more pronounced double bond character between germanium and phosphor according to DFT calculations. Consequently, calculations also revealed a strong dative character of the NHC–P bond. Despite this, efforts to remove the carbene from the complex by a strong *Lewis* acid were unsuccessful. The complex was however moderately active in the hydroboration of benzaldehyde (5 mol% cat. loading, r.t., 3h, 67% conversion) with HBpin.

More and more instances mainly of catalytic cyanosilylation and hydroboration by different types of Ge(II) species have been published in recent years and efforts to improve reaction conditions and develop new applications are ongoing.^[19, 106-107, 133-135]

2.3.2. STANNYLENES

As with germylenes, Lappert *et al.* set the first milestone in regards to stable acyclic stannylenes with several alkyl- and amine-stannylenes published in 1974 and 1976 (Figure 13).^[14, 112, 136] The compounds were either obtained *via* salt metathesis of SnCl₂ and the respective lithiated ligand precursor (**24** and **25**) or from ligand exchange of the previously isolated amine-stannylene (**26**).

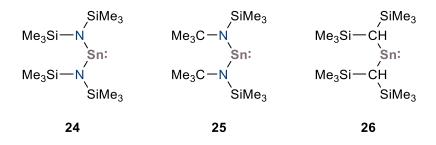
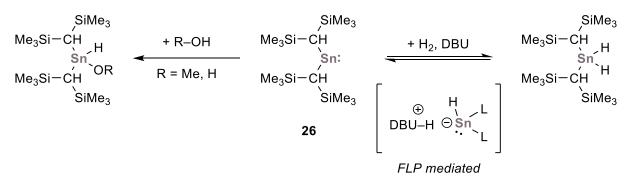



Figure 13. The first stable stannylenes, published by Lappert et al. in 1974 and 1976.^[14, 112, 136-137]

While the focus was not yet on small molecule activation at that time, their high reactivity was already recognized. Lappert and coworkers reported insertion-, redistribution-, photochemicaland metathesis-reactions as well as oxidative addition with the methyl iron complex Cp(OC)₂FeMe upon reaction with stannylene **24**.^[112] Similar to the respective alkyl germylene (**12**), stannylene **26** could be observed as a dimer in solid state.^[14] Furthermore, the weak *Lewis*-acid and strong *Lewis*-base properties of complex **26** could be illustrated upon reaction with a selection of transition metal complexes. Also, oxidative addition reactivity could be demonstrated with a number of alkyl-halides as well as 2,3-dimethylbuta-1,3-diene.^[136] The reactivity of **26** with H₂O and MeOH was later investigated, resulting in the respective Sn(IV) oxidative addition products (Scheme 16.).^[120]

Scheme 16. Oxidative addition of stannylene 26 upon reaction with methanol or water as well as DBU catalyzed and reversible H_2 activation.^[120, 138]

Stannylene (Me₃Si)₂CH]₂Sn: (**26**) was also investigated regarding its reactivity towards hydrogen.^[138] While the compound alone did not react with the small molecule, the addition of amines as catalysts enables oxidative addition at the metal center. When DBU (1,8-Diazabicyclo[5.4.0]undec-7-en) was used, the reaction was observed to be reversible, therefore also enabling reductive elimination. The authors proposed a mechanism involving **26** as a *Lewis* acid in a frustrated *Lewis* pair. Respective hydrogenation catalysis has not yet been reported.

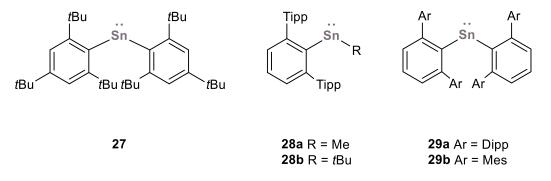
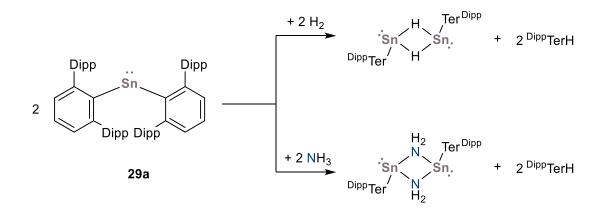



Figure 14. A selection of aryl-stabilized stannylenes.^[104, 115, 139-140]

Following a similar pattern as the previous chapter, the next iteration of acyclic stannylenes were aryl-ligated ones (Figure 14). Complex **27** was the first aryl stannylene that did not dimerize to the distannene due to the extremely bulky 2,4,6-tri-tert-butylphenyl ligands.^[139] The compound was obtained by ligand exchange reaction of stannylene **24** with the lithiated ligand precursor. The heteroleptic stannylenes **28a** and **28b** were obtained by reacting the terphenyl-substituted chloro-stannylene precursor with MeLi or *t*BuLi respectively.^[140] **28a** could then be further reacted to a valence isomer of an alkene, ^{Tipp}TerSn–SnMe₂Mes^{Tipp}. **28b** did not show further reactivity, presumably due to the increased steric bulk of the *t*Bucompared to the methyl-group.

The first account of reactivity towards hydrogen with an acyclic tetrylene was observed with the ^{Dipp}Ter-stabilized stannylene **29a** (Scheme 17).^[104] In contrast to the previously discussed terphenyl-substituted germylenes **14a** and **14b**, the oxidation state +II of the tin center stays intact and a bridging hydride is formed alongside arene elimination.

Scheme 17. Reactivity of stannylene DippTer2Sn: (29a) with hydrogen and ammonia.[104]

Reacting **29a** with ammonia, a similar bonding pattern is observed, giving a dimeric structure with symmetrically bridged NH₂ moieties. This bonding motif has also been reported earlier, however not *via* direct synthesis from the stannylene.^[141-142] Interestingly, **29b**^[115] did not show any reactivity towards H₂, in contrast to the respective germylene ^{Mes}Ter₂Ge: (**14a**). The authors presumed the wider bite angle of **29a** necessary to sufficiently lower the HOMO-LUMO gap in order to enable reactivity with hydrogen.^[141-142]

Power *et al.* continued to explore the reactivity of **29b** and again observed the formation of bridged [^{Mes}TerSn(μ -OH)]₂ and [^{Mes}TerSn(μ -OMe)]₂ upon reaction with water or methanol respectively.^[120] Furthermore, alkene- and alkyne-arylstannylation of **29a** could be achieved with terminal and non-terminal alkynes as well as ethylene.^[143-144] Here, the mono-insertion into the Sn–L bond is observed for ethylene, phenylacetylene, diphenylacetylene and 1-hexyne. If trimethylsilyl acetylene is used, ligand exchange takes place giving distannene [(^{Dipp}Ter)Sn(CCSiMe₃)]₂.

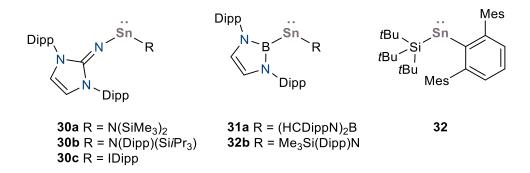
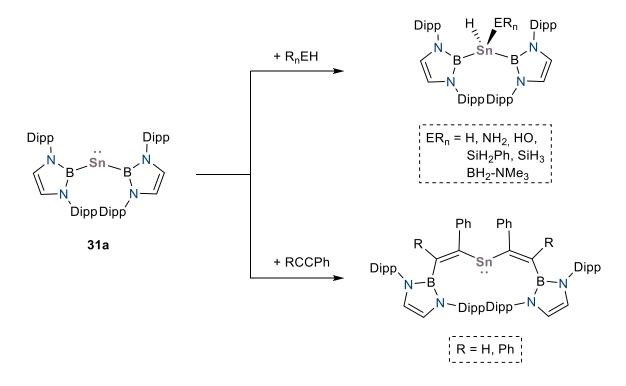
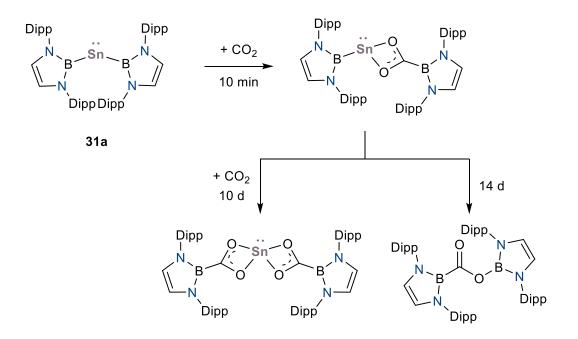



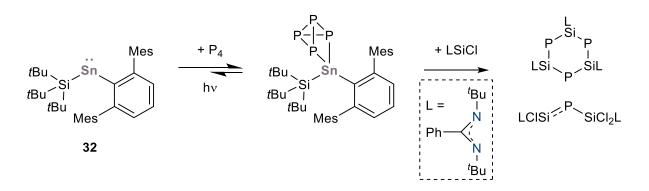
Figure 15. Selected examples of imino-, boryl- and silyl-substituted stannylenes.[58, 92, 126, 145-147]

Pertinent to this work, some examples of homo- and heteroleptic NHI-stabilized stannylenes have been reported in our group (**6**, Figure 5; **30a-c**, Figure 15), however, no small molecule activation could be achieved with these compounds at that point.^[58, 83, 145-146]

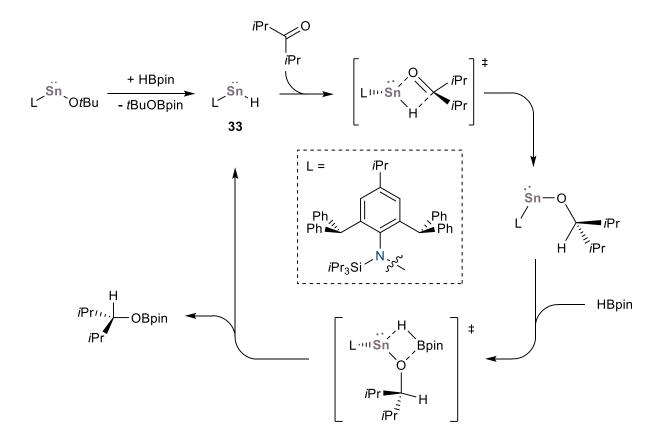


Scheme 18. Reactivity of bis-borylstannylene 31a with various E-H bonds and phenylacetylenes. [92, 126]

In terms of reactivity, other heteroatom-substituted stannylenes showed more potential. As such, Aldridge *et al.* showcased the oxidative addition capability of bis-borylstannylene **31a** with H₂, NH₃, and H₂O as well as silanes and amineborane BH₃–NMe₃ (Scheme 18).^[92] Upon reaction with ammonia, adduct formation takes place first, followed by oxidative addition as with the other R_nEH-type substrates. After 4 days, reductive elimination products (HCDippN₂)B–H and (HCDippN₂)B–NH₂ alongside the reduction of the metal center to mostly


2.3.2. STANNYLENES

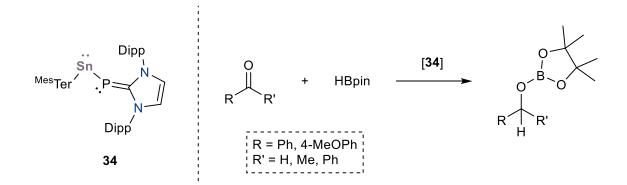
elemental tin could be observed. Furthermore, **31a** as well as **31b** cleanly insert phenylacetylene into the respective Sn–B bond(s) to give vinylstannylenes without oxidizing the metal center.^[126]


Scheme 19. Insertion reaction of CO2 with bis-borylstannylene 31a.^[93]

The reaction of CO₂ and N₂O with **31a** was also investigated.^[93] Rather than oxidative addition taking place, the molecule inserts into one of the Sn–B bonds, initially giving a mono-carboxylate (Scheme 19). If the solution is left under a CO₂ atmosphere, the double insertion product is formed. Reductive elimination is observed however, when the mono-carboxylate is left in hexane for 14 days in the absence of CO₂. Similarly, upon the reaction of complex **31a** with N₂O, the initial insertion of one oxygen atom into the Sn–B bond is observed. The compound slowly dissociates in solution to again give stannylene **31a** alongside the bis(boryloxy)stannylene product.

Scheme 20. Reversible activation of P₄ by heteroleptic silyl-stannylene **32** and irreversible P-atom transfer to a silylene chloride.^[147]

Silyl-substituted stannylene **32** can activate P_4 and displays phosphorus transfer reactivity (Scheme 20).^[147] Upon reaction of **32** with white phosphorus, oxidative addition takes place, coordinating a P_4 cluster at the metal center. The reaction proved to be reversible with the use of UV light. Attempts to further utilize the activated phosphorus were successful in the P-atom transfer with the silylene chloride PhC(N*t*Bu)₂SiCl. Theoretical calculations revealed a higher nucleophilicity and a more electron rich metal center compared to the homoleptic stannylene **29a**, rationalizing the increased reactivity of **32**.



Scheme 21. Proposed mechanism for the catalytic hydroboration of diisopropylketone with hydrido-stannylene **33** and HBpin.^[105]

Moving on to catalytic applications, the parallels to germylenes are again apparent. A hydridostannylene presented by Jones *et al.* in the same course as the previously discussed germylene showed hydroboration capability as well.^[105, 129] Compared to the germylene (**22**), hydrido-stannylene **33** L(H)Sn: (L = N(Ar[†])[Si*i*Pr₃], Ar[†] = C₆H₂-2,6-[C(H)Ph₂]₂-4-*i*Pr) showed a significantly faster reaction rate in the hydroboration of utilized ketones, aldehydes, and CO₂. With a catalyst loading of only 0.5 mol% they achieved a TOF of up to 1330 h⁻¹, which is similar to commonly used transition metal complexes for those types of reactions. Due to **33** slowly decomposing in solution, pre-catalyst L(O*t*Bu)Sn: was used after initial investigations (Scheme 21). While the mechanism for the CO₂ reduction could not be identified conclusively by DFT calculations, they suggested a mechanism for hydroboration of the bulky ketone O=C*i* Pr_2 . Here, the authors propose an initial attack of the substrate's oxygen moiety on the stannylene center, forming an alkoxide *via* a four-membered transition state. In the next step, HBpin and the alkoxide react in a σ -bond metathesis to give borate ester as the product and regenerate the hydrido-stannylene (**33**).

2.3.2. STANNYLENES

Analogously to the respective hydrido-germylene (**22**), complex **33** also displayed hydroelementation activity.^[128] While the hydrostannylation of acyclic alkenes irreversibly gave isolable products, the reversible hydrostannylation of cyclopentene showed the slow formation of decomposition products over time. Since no decomposition can be observed when an excess of cyclopentene is used, this observation can be attributed to the instability of the hydrido stannylene. Again, the hydrostannylation products could not be utilized in any follow up reactivity.

Scheme 22. NHCP stabilized stannylene 34 (left) and catalytic hydroboration of aldehydes and ketones by 34 (right).^[133]

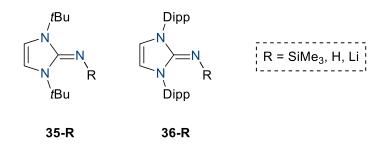
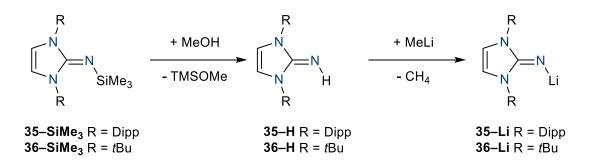
NHCP-substituted stannylene ^{Mes}Ter(IDippP)Sn: (**34**), the tin analog of germylene **23**, shows very similar structural properties with a partial double bond character of the Sn–P bond. Theoretical calculations revealed a slightly lower Wiberg bond index of the element-phosphor bond (Ge–P in **23**: 1.300, Sn–P in **34**: 1.063) and slightly smaller HOMO-LUMO gap (**23** = 3.49 eV, **34** = 3.34 eV) of **34**, which is in accordance to the higher reactivity of the stannylene (**41**) in hydroboration. Full conversion could be achieved in the hydroboration of several aldehydes and ketones in ≤ 2.5 hours with a catalyst loading of ≤ 0.5 mol% with HBpin as reducing agent. While **23** was only active towards benzaldehyde with conversion of 67 % after three hours, **34** fully consumed (> 99% conversion) the compound in less than 15 minutes with a catalyst loading of 0.1 mol%.

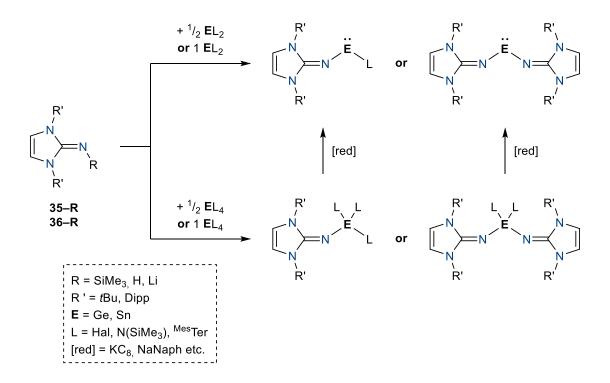
As with germylenes, investigations into broader and more effective applications of stannylenes and other Sn(II) species for small molecule activations and catalysis continue to be published and indicate ongoing interest and further development in the future.^[19, 107, 148-151]

3. SCOPE OF THIS WORK

As elaborated in the previous chapter, heavier tetrylenes – especially germylenes and stannylenes – bear an inherent potential for application in small molecule activation and catalysis. While a lot of early work has been done and showed great promise, there is still much room for further exploration. As such, deliberately designed ligands can enhance the desired properties of novel tetrylenes, and the resulting complexes could display more efficient or new applications than previously observed. As such, this work aims to design novel, imine-ligand stabilized germylenes and stannylenes and explore their suitability for small molecule activation and catalysis.

The goal of the present work can be separated into multiple parts. The first step is synthesizing a library of NHI-stabilized germanium and tin complexes. The choice of *N*-heterocyclic imines (NHIs) as ligand types comes down to their strong donor abilities and their variability in steric bulk, providing thermodynamic and kinetic stabilization of the metal center. Selected ligands **35** and **36** were the most promising candidates (Figure 16).^[55-56, 61, 152]

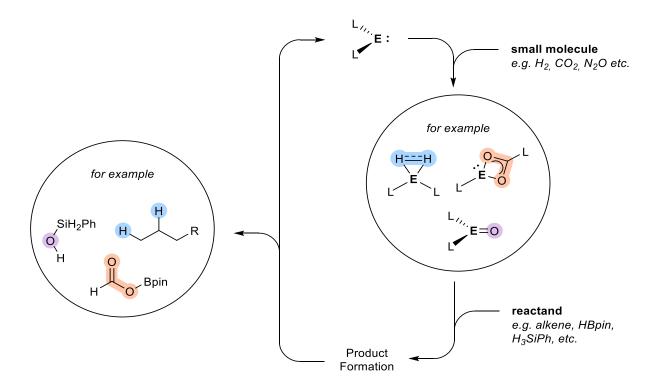




Figure 16. Selected examples of applied ligands with leaving groups -SiMe3, -H, and -Li.

A few avenues can be explored to introduce the ligand to the metal center. Suitable leaving groups on the ligand include $-SiMe_3$ and -Li. The free ligand (NHI–H) can also be utilized in some cases, given a strong enough driving force to form the new complex. Generally, trimethylsilyl as a leaving group provides the best reaction economy since the free and the lithiated ligands are generated from it (Scheme 23).

Scheme 23. Synthesis of free and lithiated ligand precursors NHI ligands from trimethylsilyl-substituted congener.^[55, 60-61, 153]

This ligand class has previously been utilized in similar low-valent group 14 complexes as well as late transition metal complexes, showcasing their suitability.^[49, 55-56, 59-61, 79, 84, 146, 152-153] Introduction of the ligand to the metal center can occur by metathesis reactions of a tetrylene salt or complex (Scheme 24). Preferably, a compound with the oxidation state +II is utilized, such as ECl_2 ·dioxane, ^{Mes}Ter(CI)Sn: or [(Me₃Si)₂N]₂E: (E = Ge, Sn), to obtain novel complexes in a one-step synthesis. In the case of ECl_2 ·dioxane or [(Me₃Si)₂N]₂E:, homo- or heteroleptic complexes can be obtained depending on the equivalents of the ligand used.



Scheme 24. Synthesis of NHI and stabilized homo- and heteroleptic germylenes and stannylenes.

Alternatively, the ligand can be introduced to a +IV germanium or tin precursor, such as the respective halide salts, to first obtain a tetravalent complex. The following reduction, for

example, by common reducing agents KC₈ or NaNaph, leads then to the desired low-oxidation state compound.

With the imine-stabilized tetrylenes in hand, the next step is the exploration of their reactivity towards small molecules. For that, different bonding types and molecules can be considered. Of the most interest are industrially relevant compounds, such as H_2 , CO_2 , ethylene, NH_3 , N_2O , and more.

Scheme 25. Selected potential pathways of activation and catalytic utilization of small molecules with tetrylenes.

Activation should occur either by the metal center's oxidative addition or by insertion into the metal-ligand bond (Scheme 25). In both cases, the reversibility of the reaction is an important aspect of the potential future utilization of the activated small molecule. If a selective activation can be observed, catalytic applications such as hydroboration or hydrosilylation must be considered. For that, suitable reducing substrates, such as boranes or silanes of varying steric demand and reactivity, must be compared. Ideally, a tetrylene that can activate and catalytically metabolize small molecules under mild conditions and with high selectivity should be obtained.

4. LIGAND ASSISTED CO₂ ACTIVATION AND CATALYTIC VALORIZATION BY AN NHI-STABILIZED STANNYLENE

TITLE: "Ligand Assisted CO₂ Activation and Catalytic Valorization by an NHI-Stabilized Stannylene"^[154]

- STATUS: Research Article, published online: August 23rd 2022
- JOURNAL: ChemCatChem
- PUBLISHER: Wiley-VCH GmbH
- DOI: 10.1002/cctc.202201048
- *AUTHORS:* Dr. Debotra Sarkar[†], <u>Lisa Groll[†]</u>, Prof. Dominik Munz, Dr. Franziska Hanusch, Prof. Shigeyoshi Inoue^a

Reprinted with permission of Wiley-VCH Verlag. ® 2024 Wiley-VCH Verlag

[†] Authors contributed equally

^a D. Sarkar and L. Groll planned and carried out the experiments, analyzed experimental data and co-wrote the manuscript. D. Munz performed theoretical calculations and contributed to writing the manuscript. F. Hanusch carried out the SC-XRD measurements and refined the crystallographic data. All work was carried out under the supervision of S. Inoue.

CONTENT:

Aryl(imino)stannylene ^{Mes}Ter(IDippN)Sn: was obtained by the metathesis reaction of clorostannylene ^{Mes}Ter(Cl)Sn: with lithiated ligand (IDippN)–Li. In many previous instances where activation of CO₂ *via* insertion into the ligand–metal bond of an acyclic stannylene could be observed, the resulting Sn(II)carboxylates quickly decomposed due to the relatively high oxophilicity of the corresponding ligands. In the case of ^{Mes}Ter(IDippN)Sn: however, with the introduction of a strongly donating and nucleophilic NHI-ligand to the Sn-center, a highly polarized but stable (Löwdin's Partial Charges, Sn: +0.4 a.u., N: –0.4 a.u.; Mayer Bond Order

4. LIGAND ASSISTED CO2 ACTIVATION AND CATALYTIC VALORIZATION BY AN NHI-STABILIZED STANNYLENE

Sn–N: 1.1) Sn–N bond was formed, enabling formation of a persistent Sn(II)carboxylate upon CO₂ insertion and regeneration of the complex *via* catalytic conversion.

Insertion of CO₂ into the Sn–N bond takes place under mild conditions and leads to the quantitative formation of a thermodynamically stable Sn(II)-carboxylate within 10 minutes. Addition of HBpin led to the formation of hydroboration products, indicating catalytic activity. In fact, the optimal conditions for CO₂ hydroboration by $^{\text{Mes}}$ Ter(IDippN)Sn: with HBpin as reductant (5 mol% cat. Loading, THF, 50 °C, 1 bar CO₂) lead to complete conversion of HBpin to MeOBpin and pinBOBpin with a TOF of 4.2 h⁻¹.

Theoretical and experimental comparison of the catalyst with aryl(amido)stannylene ^{Mes}Ter(Ph₂N)Sn: and aryl(phosphinidene)stannylene ^{Mes}Ter(IDippP)Sn:, revealed the intrinsic properties of the Sn–N bond in the catalyst to be the deciding factor for the observed reactivity.

ChemCatChem

Research Article doi.org/10.1002/cctc.202201048

www.chemcatchem.org

Ligand Assisted CO₂ Activation and Catalytic Valorization by an NHI-Stabilized Stannylene

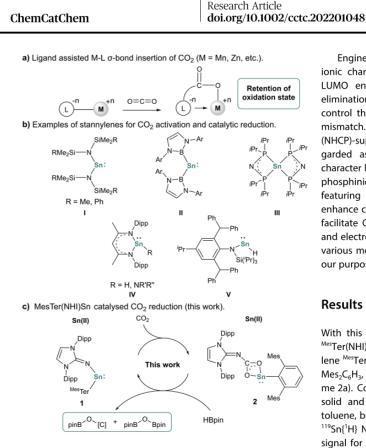
Debotra Sarkar^{+, [a]} Lisa Groll^{+, [a]} Dominik Munz,^{*[b, c]} Franziska Hanusch,^[a] and Shigeyoshi Inoue^{*[a]}

The aryl(imino)stannylene ^{Mes}Ter[N(IDipp)]Sn could be obtained by treating NHILi (NHI = N(IDipp), IDipp = C[N-(2,6-'Pr₂C₆H₃)CH]₂) with ^{Mes}TerSnCl (^{Mes}Ter = 2,6-Mes₂C₆H₃) and offers a unique reactivity pattern compared to conventional single site tetrylene catalyzed CO₂ reduction reactions. The Sn(II) center, stabilized by the NHI ligand enabled the sequestration and valorization of CO₂ to C1 feedstock stoichiometrically, as well as catalytically, utilizing HBpin (pin = pinacolato) as reductant. The experimental comparison with aryl(amido)stannylene ^{Mes}Ter(NPh₂)Sn and aryl(phosphinidene)stannylene ^{Mes}Ter[P(IDipp)]Sn, as well as

Introduction

CO₂ is ubiquitous in our environment and therefore presents an attractive resource for value-added C1 feedstock, especially in the face of current challenges associated with climate change and increasing global energy demands.⁽¹⁾ A lot of efforts to activate this thermodynamically robust molecule have been made. Frequently, transition-metal complexes with dynamic oxidation state variability, usually in redox-based mechanisms are applied, but also the use metal free systems and main group complexes, has been reported.^[2] Particularly, the use of

[a]	Dr. D. Sarkar, ⁺ L. Groll, ⁺ Dr. F. Hanusch, Prof. S. Inoue Department of Chemistry
	WACKER-Institute of Silicon Chemistry and Catalysis Research Center
	Technische Universität München
	Lichtenbergstraße 4
	85748 Garching (Germany)
	E-mail: s.inoue@tum.de
[b]	Prof. D. Munz
	Department of Chemistry and Pharmacy
	General and Inorganic Chemistry
	Friedrich-Alexander-University Erlangen-Nuremberg (FAU)
	Egerlandstraße 1
	91058 Erlangen (Germany)
	E-mail: dominik.munz@uni-saarland.de
[c]	Prof. D. Munz
	Inorganic Chemistry: Coordination Chemistry
	Saarland University
	Geb. C4.1
	66123 Saarbrücken (Germany)
[+]	These authors contributed equally to this work.
	Supporting information for this article is available on the WWW under $https://doi.org/10.1002/cctc.202201048$
Special Collection	Main Group Special Collection
ſ	© 2022 The Authors. ChemCatChem published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used
	in any meaning provided the original work is properly ched and is not used


ChemCatChem 2022, e202201048 (1 of 7)

for commercial purposes.

computational analysis, rationalize the electronic features and key role of the NHI ligand in the CO_2 reduction process. In case of the phosphorus congener, Sn–P bonding with pronounced double-bond character is obtained, which prevents swift dissociation, thus preventing CO_2 uptake. Instead, hard/soft mismatch between tin and the NHI induces zwitterionic and single-bond character, switching on the intermediate dissociation of Sn(II)/NHI, followed by a tin hydride mediated reduction step, and thus allows for efficient catalysis under mild conditions.

low valent p-block compounds in small molecule (e.g. CO_2) activation and catalysis has made great progress in recent years.^[2a,c,3] In this context, low valent heavier group 14 carbene homologues, namely tetrylenes [R₂E:] (E=Si, Ge, Sn), which are in the + II oxidation state, gave new impetus.^[3b,4] While silylene, germylene and stannylene mediated CO_2 activation is known, their catalytic application in CO_2 conversion is still scarce.^[4I] The main challenge for utilizing tetrylenes in redox-based catalysis is enabling reductive elimination, and thereby release of the functionalized substrates.^[2c,5]

An elegant approach to circumvent this challenge is reversible metal-ligand σ -bond cleavage and subsequent valorization to commodity chemicals. Here, the spatial proximity between nucleophilic and electrophilic reaction sites of ligand and metal allows for the insertion of CO_{2} to form a new M–O bond, leaving the metal's oxidation state unchanged (Scheme 1a).^[6] Initial decrease of C–O bond strength upon CO₂ insertion into the M-L bond, with concomitant formation of a relatively weak M–O bond, enables functionalization.^[6e] To date, a plethora of homogeneous transition-metal catalysts have been developed for thermal, photochemical, and electrochemical conversion of CO₂, utilizing this strategy.^[1] Additionally, finetuning of the ancillary ligand could also promote CO2 insertion and facilitate catalyst regeneration. Therefore, appropriate metal choice, understanding the impact of the ancillary ligand, and additional effects, such as solvent, temperature, etc. on CO2 activation is crucial for rational catalyst design. In contrast to transition-metals, a limited number of low valent main-group metal-initiated CO₂ activations and catalytic functionalizations have been reported.[3a,4m, 7] Pertinent to this work, insertion of CO_2 via stanna-amination by $(Sn[N(SiMe_2R)_2]_2 (R=Me, Ph) I_1^{[4g,h]})$ stanna-borylation by Sn[B(NDippCH)2]2 II,[41] as well as reversible CO2 uptake by P,P-chelated stannylene [(i-Pr2P)2N]2Sn III,[4]] rendering Sn(II)carboxylates, could be demonstrated (Scheme 1b). Nonetheless, poor stability of these Sn(II)carboxylates

Scheme 1. a) Insertion of CO₂ by transition metal-ligand bond cleavage. b) Recent examples of stannylenes for CO₂ activation and catalytic reduction $\frac{|G_{2}|}{|G_{2}|} = 0$ Ture, coordinate charandres (b) Interpret to the standard box.

reduction.^(4g-I) c) Two- coordinate stannylene-NHI synergy (Dipp = 2,6-'Pr₃(C₆H₃), Mes = 2,4,6-Me₃(C₆H₂), ^{Mes}Ter = 2,6-Mes₂C₆H₃, pin = pina-colato, R'R'' = 'Pr₂; R' = H, R'' = Dipp).

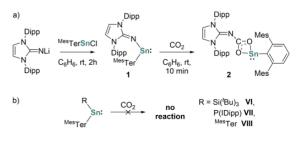
leads to undesired rearrangement reactions, such as diboration of CO₂ in case of II or the 1,3-shift of a trimethylsilyl group from the ligand to inserted CO₂ in case of I.^(49–i) This is attributed to the comparatively high oxophilicity of the corresponding ligand functional groups, which impede their catalytic use in CO₂ reduction.^(49–j,8)

To the best of our knowledge, merely one example of tetrylene-mediated single-site CO2 activation and catalytic conversion has been reported to date, where the high reactivity of the E(II)-H group facilitates the reduction of CO2 (V, Scheme 1b).^[4] However, synergistic activation of CO₂ via tetrylene-ligand cooperation and subsequent conversion to value added products is not yet reported. Based on these previous accounts, and considering the high electrophilicity of stannylenes, a Sn(II) center connected to an electron-rich and consequently nucleophilic ligand should therefore be an excellent choice to procure CO₂ activation and conversion while bypassing the requirement for Sn(II)-Sn(IV) redox shuttling.^[4h-k,8a,9] Additionally, the reduced bond strength of Sn(II)-O in comparison to E(II)-O (E=Si, Ge) bonds renders Sn(II) an ideal metal center for CO₂ functionalization.^[10]

ChemCatChem 2022, e202201048 (2 of 7)

Engineering the Sn-ligand bond, viz. polarization or zwitterionic character, may likewise allow to achieve small HOMO-LUMO energy gaps, and thus control of bond activation, elimination, and eventually catalysis.^[11] A convenient method to control the polarization of formal multiple bonds is hard-soft mismatch. Recently, we reported N-heterocyclic phosphinidene (NHCP)-supported stannylene NHCP=SnAr, which can be regarded as heavier nitrile congener with multiple bonded character between P and Sn.^[9b] Moving from the "N-heterocyclic phosphinidene (NHCP)" to an N-heterocyclic imine (NHI), featuring an electronegative nitrogen atom, should strongly enhance charge separation in the Sn=E bond and consequently facilitate CO₂ activation.^[12] Due to the readily adjustable steric and electronic properties of NHIs, they are frequently applied in various metalorganic complexes and are an ideal candidate for our purpose.[12a,13]

Chemistry Europe


European Chemical Societies Publishing

Results and Discussion

With this insight in mind, the heteroleptic NHI stannylene 1 ^{Mes}Ter(NHI)Sn was synthesized *via* treatment of chlorostannylene ^{Mes}Ter(Cl)Sn with one equivalent of LiN(IDipp), (^{Mes}Ter=2,6-Mes₂C₆H₃, NHI = N(IDipp), IDipp = C[N-(2,6^{-I}Pr₂C₆H₃)CH]₂), (Scheme 2a). Compound 1 was isolated in 75% yield as a dark red solid and is highly soluble in tetrahydrofuran, benzene, or toluene, but poorly soluble in pentane, hexane, or heptane. The ¹¹⁹Sn{¹H</sup> NMR spectrum of compound 1 shows a characteristic signal for the tin center at 967.8 ppm, which falls in the range of reported heteroleptic, two-coordinate (aryl)stannylenes (δ = 197-1919 ppm).^[9b,14]

Single crystal X-ray diffraction (SC-XRD) analysis confirmed the structural identity of compound 1, with the two-coordinate Sn center bound by one NHI and one *m*-terphenyl group (Figure 1). The Sn–N bond length in complex 1 is 2.041(2) Å, which is longer than a Sn–N double bond (1.92 Å) and slightly shorter than a Sn–N single bond of amido-stannylenes (2.08– 2.09 Å).^(14b,16) The ∠C1–Sn1–N1 bond angle in 1 is 95.62(10)° and is acute in regard to other heteroleptic two coordinate aryl Sn(II) complexes (96.9–117.6°).^(9b,14)

To understand the electronic structure of 1, we performed a computational analysis (PBE0). The HOMO relates to the

Scheme 2. a) Synthesis and reactivity of ^{Mes}Ter(NHI)Sn, b) Heteroleptic two coordinated (aryl)stannylenes inert towards CO₂ (IDipp = C[N-(2,6-'Pr₂C₆H₃)CH]₂, Dipp = 2,6-'Pr₂(C₆H₃), Mes = 2,4,6-Me₃(C₆H₂), ^{Mes}Ter = 2,6-Mes₂C₆H₃).

ChemCatChem

Research Article doi.org/10.1002/cctc.202201048

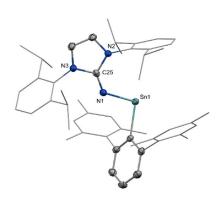


Figure 1. Molecular structure of compound 1 in the solid state. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Sn1–N1 2.041(2), Sn1–C1 2.232(3), N1–Sn1–C1 95.62(10).

stannylene's lone pair, whereas the LUMO is associated with the Sn–N antibonding π -type orbital, which features strong Sn(p_z) character. The two frontier orbitals are separated by 3.83 eV $(E^{s/t} = 241 \text{ kJmol}^{-1};$ Figure 2), which is larger than in VI (MesTer(Si'Bu₃)Sn, 3.08 eV) yet in the same order of magnitude as found in VII (MesTer[P(IDipp)]Sn, 3.88 eV).[9b,14a] However, the Sn-N bonding in 1 differs distinctly from Sn-P bonding in VII (Figure S21). In 1, the HOMO-2 relates to the lone pair at the NHI, which profits from delocalization within the π -system of the imidazoline substituent, thus leading to a weak Sn–N π interaction. In contrast, the HOMO-1 of VII demonstrates a genuine Sn–P π -bond.^[9b] Accordingly, Mayer's Bond Order and Löwdin's partial charge analysis corroborate the strongly polarized nature of the $Sn^{\delta+}-N^{\delta-}$ single bond (Mayer Bond Order, Sn-N: 1.1; Löwdin's Partial Charges, Sn: +0.4 a.u., N: -0.4 a.u.), whereas the Sn-P bond is rather multiple-covalent in VII (Sn=P: 1.6; Sn: +0.2 a.u., P: +0.2 a.u.). In case of 3 (vide infra), the electronic structure changes, and the HOMO (-5.41 eV) represents the amine's lone pair, which is delocalized within the

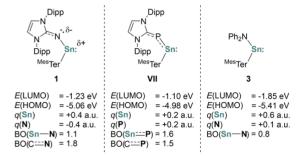


Figure 2. Frontier orbital energies and population analysis (Löwdin charges, Mayer Bond Order, PBE0/def-TZVPP//PBE0-D3/def2-SVP) of 1 and comparison with VII and 3. (Dipp = 2,6-'Pr_2(C_6H_3), Mes = 2,4,6-Me_3(C_6H_2), ^{Mes}Ter = 2,6-Me_5,C_6H_3).

ChemCatChem 2022, e202201048 (3 of 7)

aryl substituents, while the HOMO-1 relates to the Sn lone pair (-6.11 eV).

Motivated by our interest in small molecule activation, we were enticed to determine, whether compound 1 shows reactivity towards CO₂. A trial NMR scale reaction of 1 with CO₂ (1 bar) at room temperature in C₆D₆ afforded a color change from red to colorless within 10 min. Heteronuclear NMR analysis confirmed the quantitative conversion of 1 to a tin-carboxylate complex 2. The ¹¹⁹Sn{¹H} NMR spectrum revealed resonances for a distinct ¹¹⁹Sn nucleus at 323.3 ppm, which resonates in the up-field region compared to 1 and literature reported tincarbamate complex ($\delta = +393$ ppm).^[8a] Further, in the ¹³C NMR of 2, a characteristic signal was observed at 175.6 ppm, which is indicative of a carbamate carbon. Compound 2 evolved thermodynamically stable and did not convert back to 1, neither at elevated temperatures nor under reduced pressure. [MesTerSn(CO₂)N(IDipp)] was therefore isolated on a preparative scale as a colorless solid in 96% yield. SC-XRD of 2 confirmed the insertion of CO2 into the Sn-NHI bond, yielding a tetrahedral tin center, $\kappa^2 O, O'$ coordinated by the carbamato group (Figure 3, Sn1-O1 2.2066(12), Sn1-O2 2.1971(12)).

This facile access to a tin-carbamate complex directly from CO_2 presents an attractive entry to carbon dioxide valorization.^[41,j. 8a] Notably, ^{Mes}Ter(Si'Bu₃)Sn VI (3.08 eV) and ^{Mes}Ter(^{Mes}Ter)Sn VIII (3.51 eV) are not able to activate CO_2 , despite their lower HOMO-LUMO gaps (Scheme 2b). Also VII, which 1,2 adds ketenes and catalytically reduces aldehydes and ketones, does not react with CO_2 .^[9b]

The mechanisms for the CO₂ activation by **1** and **VII** were calculated (DLPNO-CCSD(T)/def2-TZVPP//PBE0-D3/def2-SVP) including correction for solvation in benzene. The computations reveal that two mechanisms are feasible in case of **1** (Scheme 3). The transition state, which is higher in energy ($\Delta G^+ = +$ 81 kJ mol⁻¹), is to be understood as nucleophilic attack of the *N*-heterocyclic imine at carbon dioxide. Note that the comparatively higher barrier is consistent with the HOMO being located at tin, whereas the NHI lone pair is the HOMO-2. The other,

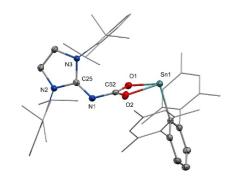
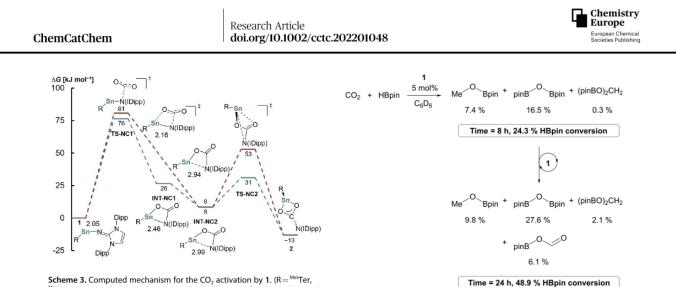
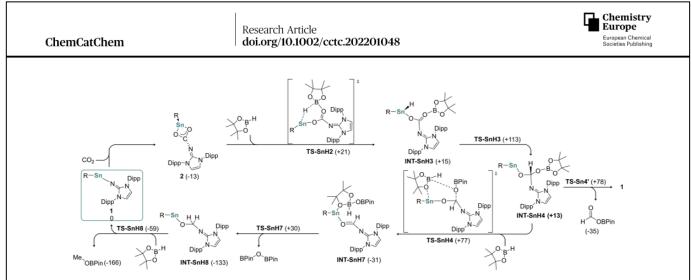



Figure 3. Molecular structures of compound 2 in the solid state. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles ["]: Sn1–O1 2.2066(12), Sn1–O2 2.1971(12), O1–C52 1.2842(19), O2–C52 1.2787(19), N1–C52 1.360(2), N1–C25 1.300(2), N2–C25 1.3729(19), N3–C25 1.3721(19), O1–Sn1–O2 59.71(4).

Scheme 3. Computed mechanism for the CO₂ activation by 1. ($R = {}^{Mes}Ter$, ${}^{Mes}Ter = 2,6-Mes_2C_6H_3$, $Mes = 2,4,6-Me_3(C_6H_2)$, $Dipp = 2,6-Pr_2(C_6H_3)$, $IDipp = C-[N-(2,6-Pr_2C_6H_3)CH]_2$.

more favorable transition state relates to the 1,2-addition across the strongly polarized π -system of the Sn–N moiety (**TS-NC1**, $\Delta G^{\pm} = +76 \text{ kJ mol}^{-1}$). This latter mechanism affords first intermediate **INT-NC1** ($\Delta G = +26 \text{ kJ mol}^{-1}$), where a Sn–N bond is still present. Barrierless dissociation gives **INT-NC2** ($\Delta G = +8 \text{ kJ mol}^{-1}$), which affords the μ^3 -coordinate adduct **2** ($\Delta G = -13 \text{ kJ mol}^{-1}$) via **TS-NC2** ($\Delta G^{\pm} = +31 \text{ kJ mol}^{-1}$).

In case of the phosphorus congener, where the phosphorus atom lacks distinct nucleophilic properties, the activation proceeds through the 1,2-addition mechanism only (*cf.* Scheme S1). The activation of CO₂ is predicted to be facile with $\Delta G^{+} = +84 \text{ kJ mol}^{-1}$ for **TS-PC1**. However, the transition state **TS-PC2**, which breaks the Sn–P bond, is high in energy ($\Delta G^{+} = +128 \text{ kJ mol}^{-1}$). Accordingly, Sn–P bond cleavage to give **PC2**, which is the P-congener of **2**, proceeds overall endergonic ($\Delta G = +39 \text{ kJ mol}^{-1}$). We thus conclude that enhanced covalency in the phosphorus-tin compound **VII** thermodynamically disfavors CO₂ activation, whereas hard-soft mismatch (orbital-energy mismatch, respectively) facilitates bond activation through strong polarization of the Sn–N bond in **1**.

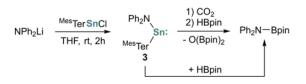

Consequently, we were interested, if 1 would be applicable for the hydroboration of CO₂ using HBpin (pin=pinacolato) as reductant. As anticipated, treating 2 with equimolar amounts of HBpin in C₆D₆ at room temperature led to the formation of MeOBpin (9%) and pinBOBpin (5%) after 30 minutes. Additionally, in this mixture a new septet was observed at 3.19 ppm (cf. Figure S14), which possibly stems from an unidentified active catalyst species. Despite several attempts, isolation of this active catalyst from the reaction mixture was unsuccessful. However, alternating addition of 1 bar of CO₂ and one equivalent of HBpin to this reaction mixture clearly shows the increasing formation of MeOBpin (31% yield after three alternating additions). This observation implies, that 1 could also act as a precatalyst. Indeed, 5 mol% of 1 catalytically converts CO₂ to MeOBpin, pinBOBpin, (pinBO)₂CH₂ and pinBO(C=O)H (Scheme 4).

Scheme 4. Hydroboration products obtained from the reaction of HBpin with CO_2 (1 bar) with 1 (5 mol%) as catalyst at 25 °C (in C_6D_6). Overall HBpin conversion based on ¹¹B NMR integrals, ratio of products based on ¹H NMR integrals relative to 0.33 eq. of 1,3,5-trimethoxybenzene as internal standard.

Solvent optimization studies revealed a moderately higher reaction rate in polar (e. g., rt, THF-d₈, $TOF = 1.8 \text{ h}^{-1}$) than in nonpolar solvents (e.g., rt, $C_6 D_{6r}$, $TOF = 1.2 h^{-1}$). With the above points in mind and after temperature optimization, we found that using 5 mol% of 1 with HBpin in THF at 50 °C provides the optimal reaction conditions for complete conversion of HBpin to MeOBpin, and pinBOBpin ($TOF = 4.2 \text{ h}^{-1}$, 1 bar CO₂). The longevity of the catalyst could be demonstrated by repeating the reaction multiple times, where gradual decrease of the catalytic activity was observed (e.g., 50 °C, THF-d₈ TOF(Run 1) = 4.2 h⁻¹ vs. $TOF(Run 4) = 2.9 h^{-1}$). After the seventh run, no catalytic conversion was observed and the formation of black precipitate at the bottom of the NMR tube indicated decomposition of the catalyst into metallic tin. To rule out hidden boron catalysis by in situ formed BH₃ (BH₄⁻, respectively) and to assess the stability of 1, we conducted a stoichiometric reaction of 1 with HBpin in absence of CO2. [17] Here, no reaction between the complex and the reductant, as well as no formation of aforementioned boranes, could be observed. Additionally, a control experiment with the free NHI ligand HN(IDipp) (5 mol% HN(IDipp), 1 eq. HBpin, 1 bar CO₂, in C₆D₆ at 25 °C) was performed, which showed no notable conversion of HBpin after eiaht hours.

To elucidate the mechanism for CO₂ reduction, further computations were conducted. Especially the hydrogenation step proved intriguing. The computations for two isomers corroborate that the direct borylation of the CO₂ group by HBpin is indeed facile (Scheme S3, **TS-BH1**, $\Delta G^+ = +59 \text{ kJmol}^{-1}$). In contrast, the hydride transfer from the borohydride to the central carbon atom of the CO₂ group (Scheme S3, **TS-BH2**) is associated with a high activation energy of at least $\Delta G^+ = +132 \text{ kJmol}^{-1}$. These values are hardly consistent with an experimental reaction temperature of 50 °C, which relates to a barrier around $\Delta G^+ = +100 \text{ kJmol}^{-1}$, even

ChemCatChem 2022, e202201048 (4 of 7)



Scheme 5. Proposed mechanism of $^{Mes}Ter[N(IDipp)]$ Sn catalyzed hydroboration of CO_2 . ΔG (kJ mol⁻¹) values are given in parentheses. ($R = ^{Mes}Ter = 2,6-Mes_2C_6H_3$, Dipp = 2,6- $^{IP}r_3(C_6H_3)$, Mes = 2,4,6-Me₃(C_6H_2), $^{Mes}Ter = 2,6-Mes_2C_6H_3$, pin = pinacolato). See Schemes S3, S4, S6 for more details including intermediates, which have been omitted for clarity.

more so if considering that 2 (*cf.* Scheme 3, $\Delta G = -13 \text{ kJ mol}^{-1}$) is the resting state of the catalytic cycle. However, forming the stanna-hydride **INT-SnH3** is very facile (Scheme 5, $\Delta G^* = +21 \text{ kJ mol}^{-1}$, $\Delta G = +15 \text{ kJ mol}^{-1}$). Also, the subsequent migration of the hydride to give the formyl derivative **INT-SnH4**, is predicted to occur under comparatively mild conditions ($\Delta G^* = +113 \text{ kJ mol}^{-1}$, $\Delta G = +13 \text{ kJ mol}^{-1}$). These values are in much better agreement with the experimental conditions.

The release of the reduced products through hydrogenation by HBpin proceeds with lower barriers as was found for the previous step, which thus represents the rate-determining transition state of the overall catalytic cycle. A second borylation step (**TS-SnH4**, $\Delta G^{+} = +77 \text{ kJ mol}^{-1}$) may give **INT**-SnH7, ($\Delta G = -31 \text{ kJmol}^{-1}$). Subsequent hydride transfer via TS- $(\Delta G^{+} = +30 \text{ kJ mol}^{-1})$ affords INT-SnH8 SnH7 $(\Delta G =$ –133 kJ mol^{–1}), which may reversibly eliminate $(\Delta G =$ -127 kJ mol⁻¹) formaldehyde (Scheme S5; TS-Sn8, $\Delta G^{\dagger} =$ -59 kJ mol⁻¹), thereby regenerating 1. Analogously, H-(CO)OBpin may be released reversibly from a conformer of INT-SnH4 (Scheme S5; TS-Sn4', $\Delta G^{\pm} = +78 \text{ kJ mol}^{-1}$; $\Delta G =$ -35 kJ mol⁻¹), whereas borylation of, for instance, **INT-SnH8** will eventually lead to the formation of MeOBPin ($\Delta G =$ -166 kJ mol⁻¹).

In order to highlight the relevance of the NHI ligand in the catalytic CO₂ reduction with **1**, we synthesized ^{Mes}Ter(NPh₂)Sn **3** with a similarly low oxophilic –NPh₂ group replacing the NHI moiety.^[49-j,Ba] **3** was obtained *via* the reaction of ^{Mes}Ter(CI)Sn with LiNPh₂ (Scheme 6) and characterized by single-crystal XRD and standard NMR techniques (*cf.* SI). Treatment of **3** with 1 bar CO₂ in C₆D₆ leads to a gradual color change from deep red to yellow in about 10 minutes. According to ¹H and ¹³C NMR, as well as mass spectrometry (*cf.* SI), the formation of a new compound, which we hypothesize to be a CO₂ adduct of **3**, presumably a tin-carboxylate, is observed. In agreement, the computational analysis indicates that the insertion of CO₂ into **3** should be exergonic by -27 KJmol^{-1} (Scheme S2). However, the compound could not be isolated and the characterization

Scheme 6. Synthesis and reactivity of $^{Mes}Ter(NPh_2)Sn$ with CO_2 and HBpin. (Mes = 2,4,6-Me_3(C_6H_2), $^{Mes}Ter = 2,6-Mes_2C_6H_3$, pin = pinacolato).

by ¹¹⁹Sn¹H NMR spectroscopy was unsuccessful. Upon addition of equimolar amounts of HBpin to the mixture, the formation of amineborane Ph_2N -Bpin and pinBOBpin was observed, rendering the regeneration of **3** unsuccessful (Scheme 6). Unlike the conversion of CO₂ with NHI stabilized stannylene **1**, no other products indicative of a hydroboration reaction, were found. Similarly, **3** is unstable in the presence of HBpin, leading to the formation of aforementioned amineborane, protonated ligand, and deposition of elemental tin.

This outcome is in good agreement with the computational analysis of the electronic structure of **3** (*cf.* Figure 2). Indeed, and as expected due to the small HOMO-LUMO energy gap of only 3.56 eV and the polarized character of the Sn–N bond (Sn: +0.6 a.u., N: +0.1 a.u.), **3** activates CO₂ readily. However, the low bond order indicates a weaker Sn–N bond and a more nucleophilic amide, rendering it susceptible to the irreversible and undesired reaction with HBpin. Thus, this study signifies the importance of the unique donor abilities of the NHI, enabling stabilization of tin-carboxylate complex **2** as well as regeneration of **1** in this stannylene-mediated CO₂ reduction.

Conclusion

In summary, the ligand assisted activation and catalytic reduction of CO_2 to commodity chemicals by an NHI-stabilized stannylene is reported for the first time. Both experimental and

ChemCatChem 2022, e202201048 (5 of 7)

^{© 2022} The Authors. ChemCatChem published by Wiley-VCH GmbH

	Research Article	Chemistry Europe
I	doi.org/10.1002/cctc.202201048	European Chemical Societies Publishing

computational investigations revealed the effectiveness of the tunable Sn/NHI interaction, involving Sn/NHI dissociation and the intermediate formation of tin hydrides. Thus, our design protocol to translate the concept of ligand assisted transitionmetal ligand σ -bond cleavage to main group chemistry indicates a promising avenue towards the cooperativity between a heavy p-block element and a ligand.

Experimental Section

General Information

ChemCatChem

All experiments and manipulations were carried out under a dry argon atmosphere using standard Schlenk techniques or a glovebox. All glass junctions were coated with PTFE-based grease Merkel Triboflon III. N-hexane, n-pentane, THF, benzene and toluene were refluxed over sodium/benzophenone, freshly distilled and deoxygenated prior to use. The ¹H, ¹³C, and ¹¹⁹Sn NMR spectra were measured on Bruker 400 MHz and 500 MHz spectrometers. Chemical shifts were referenced to residual solvent signals (1H and 13C NMR). ¹¹⁹Sn NMR chemical shifts were referenced to Me₄Sn (¹¹⁹Sn). Deuterated solvent C6D6 and THF-d8 were obtained from Deutero Deutschland GmbH and were dried over 4 Å molecular sieves prior to use. Unless otherwise stated, all reagents were purchased from commercial sources and used as received. Elemental analyses (EA) were conducted with a EURO EA (HEKA tech) instrument equipped with a CHNS combustion analyzer. Thereby, all samples were prepared in THF solutions, filtered and injected into the spectrometers. TOF analyzation in cationic mode resulted in the obtained spectra (see SI), which were resolved by mass-to-charge values. Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS) was performed in an inert atmosphere glovebox with a Thermo Fisher Scientific Exactive Plus Orbitrap equipped with an ion source from Linden CMS.57.^[18] NHILi, I^{Mes} TerSnCI] and Ph₂NLi were synthesized according to literature procedures.^[15a,19]

MesTer[N(IDipp)]Sn (1)

A benzene (5 mL) solution of NHILi (0.5 g, 1.22 mmol, 1.00 eq) was added to MesTerSnCl (0.57 g, 1.22 mmol, 1.00 eq) in benzene (3 mL) at room temperature. The color of the solution rapidly changed from orange to dark red. After stirring the solution for 2 h, the solvent was removed in vacuo. The obtained residue was washed with pentane $(3 \times 2 \text{ mL})$, extracted with a mixture of toluene (10 mL) + hexane (2 mL) and filtered through a microfiber glass filter. The solution was concentrated to approximately 2 mL and placed at -25 °C and after two weeks compound 1 was obtained as an analytically pure red crystalline material (0.77 g, 0.54 mmol, 75 %). ¹ H NMR (400.13 MHz, 298 K, C_6D_6): $\delta = 1.09$, 1.11, 1.14 (m, 24H, CH(CH₃)₂, NHI), 2.08 (s, 12H, 4×C^{2,6}-CH₃, Mes), 2.29 (s, 6H, 2xC⁴-CH₃, Mes), 3.06 (hept, ³J_{H-H}=6.7 Hz, 4H, CH(CH₃)₂), 5.94 (s, 2H, N-CH), 6.65 (s, 4H, 2×C^{3,5}-H, Mes), 6.85, 6.88 (2H, C^{3,5}-C₆H₃), 7.04-7.06 (4H, $2 \times C^{3,5}$ -H, Dipp, NHI), 7.16-7.23 (3H, C^4 -C₆H₃, $2 \times C^4$ -H, Dipp) ppm. ¹³C {¹H} NMR (125.83 MHz, 298 K, C₆D₆): $\delta = 21.6-21.9$ (C^{2.4,6}-CH₃, Mes), 23.4 (CH(CH₃)₂), 24.9 (CH(CH₃)₂), 29.2 (CH(CH₃)₂), 114.8 (N-CH-, NHI), 124.3-148.1 (Ar-C, Mes, NHI), 155.8 (NCN) ppm. ¹¹⁹Sn{¹H} NMR (149.20 MHz, 298 K, THF-d₈): 967.8 ppm. Anal. Calcd. [%] for C₅₁H₆₁N₃Sn: C, 73.38; H, 7.37; N, 5.03. Found C, 73.12; H, 7.21; N, 4.89

[^{Mes}TerSn(CO₂)N(IDipp)] (2)

The benzene (2 mL) solution of 1 (100 mg, 0.11 mmol, 1.00 eq) in a Schlenk flask was freeze-pump-thaw degassed two times before being refilled with 1 bar of CO2. After refilling with CO2, the red solution immediately turned colorless. The solution was stirred for 15 minutes, followed by the removal of all volatiles. The resulting solid was dissolved in a mixture of THF (2 mL) and n-hexane (2 mL) and placed at -35 °C for eight days, which yielded colorless crystals of compound 2 (102 mg, 0.12 mmol, 97%). ¹H NMR (400.13 MHz, 298 K, C₆D₆): δ = 1.09–1.31 (m, 24H, CH(CH₃)₂, NHI), 2.12 (s, 12H, 4× $\mathsf{C}^{2.6}\text{-}CH_{3^{*}}$ Mes), 2.30 (s, 6H, 2×C^4-CH_{3^{*}} Mes), 2.92 (hept, ${}^{3}J_{H-H}=6.7$ Hz, 4H, CH(CH_{3})₂), 5.90 (s, 2H, N-CH), 6.86 (s, 4H, 2×C^{3.5}-H, Mes), 6.98-7.03 {6H, (2H, C^{3,5}-C₆H₃), (4H, 2×C^{3,5}-H, Dipp, NHI)}, 7.10–7.21 {3H, C⁴-C₆H₃, (2×C⁴-H, Dipp)} ppm. ¹³C{¹H} NMR (125.83 MHz, 298 K, C₆D₆): $\delta = 21.3 - 21.5 (C^{2,4,6} - CH_3, Mes), 23.6 (CH(CH_3)_2), 24.7 (CH(CH_3)_2), 29.1$ (CH(CH₃)₂), 115.9 (N-CH-, NHI), 124.2-147.6 (Ar-C, Mes, NHI), 169.9 (NCN), 175.6 (OCO) ppm. ¹¹⁹Sn{¹H} NMR (149.20 MHz, 298 K, C₆D₆): 323.1 ppm. Anal. Calcd. [%] for C₅₂H₆₁N₃O₂Sn: C, 71.07; H, 7.00; N, 4.78. Found C, 70.88; H, 6.81; N, 4.71.

MesTer(NPh2)Sn (3)

 $^{\text{Mes}}\text{TerSnCl}$ (100 mg, 0.21 mmol, 1.00 eq.) and Ph_2NLi (37.46 mg, 0.21 mmol, 1.00 eq.) were each dissolved in THF (5 ml) respectively. The Ph₂NLi solution was then added dropwise to the ^M ^sTerSnCl solution at room temperature while stirring, giving an orange mixture. The mixture was then stirred for another 60 minutes. Subsequently, the volatiles were removed in vacuo and the red residue was extracted with Et_2O (2×3 mL) and filtered through a microfiber glass filter. After once more drying in vacuo, the raw product was recrystallized in a minimal amount of pentane at 35 °C, resulting in the formation of dark red crystals of compound 3 (65.5 mg, 0.11 mmol, 51%). ¹H NMR (400.13 MHz, 298 K, C₆D₆): $\delta\!=\!2.15$ (s, 12H, 4xC^{2.6}-CH_2), 2.17 (s, 6H, 2xC^4-CH_3, Mes), 6.48 (d, $^3J_{\rm H}\!=\!7.7$ Hz, 4H, 2xC^{3.6}-H, Ph), 6.88-6.79 (m, 6H, 2xC^{3.2}-H, Mes, 2xC^4, Ph), 7.06-6.95 (m, 6H, 2xC^{3,5}-H, Ph, C^{3,5}-H, Ter), 7.23 (t, ³J_{H-H}=7.5 Hz, 1H, C⁴-H, Ter) ppm. ¹³C{¹H} NMR (75 MHz, 298 K, C₆D₆): $\delta = 21.14-$ 21.55 (C^{2,4,6}-CH₃, Mes), 118.24-129.55 (Ar-C, MesTer, Ph), 135.79 (Sn-C), 153.82 (N-C) ppm. ¹¹⁹Sn{¹H} NMR (149.20 MHz, 298 K, C₆D₆): 903.81 ppm. LIFDI-MS Calcd. for C₃₆H₃₅NSn: 601.17914 Found: 601.17546. Anal. Calcd. [%] for C₃₆H₃₅NSn: C, 72.02; H, 5.88; N, 2.33; Sn, 19.77. Found: C, 68.56; H, 5.88; N, 2.29; Sn, 19.70. (N.B. Despite several attempts, elemental analysis showed consistently low C values with simultaneously excellent agreement of H and N values, presumably due to formation of incombustible material).

Adduct-formation upon Reaction of 3 with CO₂

MesTer(NPh2)Sn (20 mg, 0.07 mmol; 1.00 eq.) was dissolved in 0.5 mL benzene in a Schlenk flask and freeze-pump-thaw degassed two times. Subsequently, the flask was refilled with 1 bar of CO₂, resulting in a color change from deep red to yellow in the span of about 10 minutes. The reaction was quantitative according to NMR spectroscopy, however the product could not be isolated in solid state. ¹H NMR (400.13 MHz, 298 K, C₆D₆): δ = 2.17 (s, 12H, 4xC^{2,6}-CH₃, Mes), 2.27 (s, 6H, 2×C⁴-CH₃, Mes), 6.84 (s, 4H, 2×C^{3,5}-H, Mes), 7.01 $(d_{\tau}^{3})_{H-H} = 7.5 \text{ Hz}, 2H, C^{3.5}_{-H}, \text{Ter}), 7.08-7.15 (m, 10H, Ar-H, Ph), 7.25 (t, <math>^{3}J_{H-H} = 7.5 \text{ Hz}, 1H, C^{4}-H, \text{Ter})$ ¹³C (^{1}H) NMR (101 MHz, 298 K, C₆D₆): $\delta = 21.41$ (C⁴-CH₃, Mes), 21.68 (C^{2,6}-CH₃, Mes), 124.35-128.96 (Ar-CH, Mes, Ph), 136.37 (Ar-CH, Mes), 138.83 (C3.5-CH, Ter) 142.90 (Ar-C, Ph), 147.98 (C4-CH, Ter), 160.81 (OCO) ppm. LIFDI-MS Calcd. for C37H36NO2Sn: 645.16897 Found: 645.16863.

ChemCatChem 2022, e202201048 (6 of 7)

Research Article doi.org/10.1002/cctc.202201048

Catalytic Hydroboration of CO₂ by 1

All catalytic reactions were performed according to the following procedure in either C_6D_6 at room temperature, or in THF- d_8 at room temperature or 50 °C respectively. 2.9 mg of ^{Mes}Ter[N((IDipp)]Sn (0.003 mmol, 0.05 eq.) were dissolved in 0.4 ml of the respective deuterated solvent in a *J*-young NMR tube. Then, 10 µl of HBpin (8.82 mg, 0.063 mmol, 1.0 eq.) and 0.046 ml of a 0.5 M solution of 1,3,5-methoxybenzene in C_6D_6 (0.023 mmol, 0.33 eq.) were added. The NMR tube was freeze-pump-thaw degassed two times before being refilled with 1 bar of CO₂. The reactions at room temperature were terminated after 24 h, the reaction at 50 °C after 6 h. Time course data of product yields and overall conversion were determined by ¹H- and ¹¹B-NMR data.

Acknowledgements

We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft (In 234/7-1), and DAAD (fellowship for D.S.). D.M. thanks the RRZ Erlangen for computational resources and the Fonds der chemischen Industrie im Verband der chemischen Industrie e.V. for a Liebig fellowship. We are also thankful for M. Muhr for providing Mass Spectrometric data. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: Tin \cdot Small Molecule Activation \cdot CO₂ Activation \cdot Stannylene \cdot Tetrylenes

- a) Q. Liu, L. Wu, R. Jackstell, M. Beller, Nat. Commun. 2015, 6, 5933; b) C. Maeda, Y. Miyazaki, T. Ema, Catal. Sci. Technol. 2014, 4, 1482–1497; c) C. C. Chong, R. Kinjo, ACS Catal. 2015, 5, 3238–3259; d) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, Angew. Chem. Int. Ed. 2011, 50, 8510–8537; Angew. Chem. 2011, 123, 8662–8690; e) W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, E. Fujita, Chem. Rev. 2015, 115, 12936–12973.
- [2] a) S. Kostera, M. Peruzzini, L. Gonsalvi, Catalysts 2021, 11, 58; b) X. Yin, J. R. Moss, Coord. Chem. Rev. 1999, 181, 27–59; c) C. Weetman, S. Inoue, ChemCatChem 2018, 10, 4213–4228; d) T. Biswal, K. P. Shadangi, P. K. Sarangi, R. K. Srivastava, Chemosphere 2022, 298, 134299; e) K. A. Grice, Coord. Chem. Rev. 2017, 336, 78–95; f) S. P, S. K. Mandal, Chem. Sci. 2020, 11, 10571–10593; g) K. Kuciński, G. Hreczycho, Green Chem. 2020, 22, 5210–5224.
- [3] a) S. Yadav, S. Saha, S. S. Sen, ChemCatChem 2016, 8, 486–501; b) S.
 Fujimori, S. Inoue, Eur. J. Inorg. Chem. 2020, 3131–3142; c) F. Hanusch, L.
 Groll, S. Inoue, Chem. Sci. 2021, 12, 2001–2015.
- [4] a) D. Wendel, A. Porzelt, F. A. D. Herz, D. Sarkar, C. Jandl, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 8134–8137; b) A. V. Protchenko, P. Vasko, D. C. H. Do, J. Hicks, M. Á. Fuentes, C. Jones, S. Aldridge, Angew. Chem. Int. Ed. 2019, 58, 1808–1812; Angew. Chem. 2019, 131, 1822–1826; c) D. Reiter, P. Frisch, D. Wendel, F. M. Hörmann, S. Inoue, Dalton Trans. 2020, 49, 7060–7068; d) A. Jana, D. Ghoshal, H. W. Roesky, I.

ChemCatChem 2022, e202201048 (7 of 7)

Objartel, G. Schwab, D. Stalke, J. Am. Chem. Soc. 2009, 131, 1288–1293; e) A. Jana, G. Tavčar, H. W. Roesky, M. John, Dalton Trans. 2010, 39, 9487–9489; f) G. Tan, W. Wang, B. Blom, M. Driess, Dalton Trans. 2014, 43, 6006–6011; g) L. R. Sita, J. R. Babcock, R. Xi, J. Am. Chem. Soc. 1996, 118, 10912–10913; h) J. R. Babcock, L. Liable-Sands, A. L. Rheingold, L. R. Sita, Organometallics 1999, 18, 4437–4441; i) A. V. Protchenko, M. Á. Fuentes, J. Hicks, C. McManus, R. Tirfoin, S. Aldridge, Dalton Trans. 2021, 9059–9067; j) D. A. Dickie, E. N. Coker, R. A. Kemp, Inorg. Chem. 2011, 50, 11288–11290; k) A. Jana, H. W. Roesky, C. Schulzke, A. Döring, Angew. Chem. Int. Ed. 2009, 48, 1106–1109; Angew. Chem. 2009, 121, 126– 1129; I) T. J. Hadlington, C. E. Kefalidis, L. Maron, C. Jones, ACS Catal. 2017, 7, 1853–1859; m) C. Shan, S. Yao, M. Driess, Chem. Soc. Rev. 2020, 49, 6733–6754.

- [5] a) T. Chu, G. I. Nikonov, Chem. Rev. 2018, 118, 3608–3680; b) P. P. Power, Nature 2010, 463, 171–177.
- [6] a) C. Erken, A. Kaithal, S. Sen, T. Weyhermüller, M. Hölscher, C. Werlé, W. Leitner, Nat. Commun. 2018, 9, 4521; b) A. Kumar, P. Daw, N. A. Espinosa-Jalapa, G. Leitus, L. J. W. Shimon, Y. Ben-David, D. Milstein, Dalton Trans. 2019, 48, 14580–14584; c) S. P. Cronin, J. M. Strain, M. S. Mashuta, J. M. Spurgeon, R. M. Buchanan, C. A. Grapperhaus, Inorg. Chem. 2020, 59, 4835–4841; d) S. Chakraborty, O. Blacque, H. Berke, Dalton Trans. 2015, 44, 6560–6570; e) N. Hazari, J. E. Heimann, Inorg. Chem. 2017, 56, 13655–13678.
- [7] a) X. Wang, C. Xia, L. Wu, *Green Chem.* **2018**, *20*, 5415–5426; b) N. von Wolff, G. Lefèvre, J. C. Berthet, P. Thuéry, T. Cantat, *ACS Catal.* **2016**, *6*, 4526–4535; c) B.-X. Leong, J. Lee, Y. Li, M.-C. Yang, C.-K. Siu, M.-D. Su, C.-W. So, J. Am. Chem. Soc. **2019**, *141*, 17629–17636.
- [8] a) L. A. M. Harris, M. P. Coles, J. R. Fulton, *Inorg. Chim. Acta* 2011, 369, 97–102; b) K. P. Kepp, *Inorg. Chem.* 2016, 55, 9461–9470.
- [9] a) S. Weiß, M. Widemann, K. Eichele, H. Schubert, L. Wesemann, *Dalton Trans.* 2021, *50*, 4952–4958; b) V. Nesterov, R. Baierl, F. Hanusch, A. E. Ferao, S. Inoue, *J. Am. Chem. Soc.* 2019, *141*, 14576–14580; c) T. J. Hadlington, M. Hermann, G. Frenking, C. Jones, *J. Am. Chem. Soc.* 2014, *136*, 3028–3031; d) A. V. Protchenko, J. I. Bates, L. M. A. Saleh, M. P. Blake, A. D. Schwarz, E. L. Kolychev, A. L. Thompson, C. Jones, P. Mountford, S. Aldridge, *J. Am. Chem. Soc.* 2016, *138*, 4555–4564.
- [10] J. A. Dean, N. A. Lange, in *Lange's Handbook of Chemistry*, 15 ed., McGraw-Hill Professional Publishing, New York, **1998**, pp. 4.41-44.53.
- [11] D. Munz, K. Meyer, Nat. Chem. Rev. 2021, 5, 422-439.
- [12] a) T. Ochiai, D. Franz, S. Inoue, *Chem. Soc. Rev.* 2016, *45*, 6327–6344;
 b) L. F. B. Wilm, T. Eder, C. Mück-Lichtenfeld, P. Mehlmann, M. Wünsche, F. Buß, F. Dielmann, *Green Chem.* 2019, *21*, 640–648.
- [13] a) M. Tamm, S. Randoll, T. Bannenberg, E. Herdtweck, *Chem. Commun.* 2004, 876–877; b) M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones, J. Grunenberg, *Org. Biomol. Chem.* 2007, *5*, 523–530; c) A. Doddi, M. Peters, M. Tamm, *Chem. Rev.* 2019, *119*, 6994– 7112; d) N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, D. Bläser, R. Boese, *Z. Naturforsch.* B 1995, *50*, 1779–1784; e) P. Raja, R. S, T. Ghatak, *Eng. Sci.* 2020, *12*, 23–37.
- [14] a) D. Sarkar, C. Weetman, D. Munz, S. Inoue, Angew. Chem. Int. Ed. 2021, 60, 3519–3523; Angew. Chem. 2021, 133, 3561–3565; b) L. Pu, M. M. Olmstead, P. P. Power, B. Schiemenz, Organometallics 1998, 17, 5602–5606; c) Brian P. Johnson, S. Almstätter, F. Dielmann, M. Bodensteiner, M. Scheer, Z. Anorg. Alig. Chem. 2010, 636, 1275–1285.
 [15] a) R. S. Simons, L. Pu, M. M. Olmstead, P. P. Power, Organometallics
- a) R. S. Simons, L. Pu, M. M. Olmstead, P. P. Power, Organometallics 1997, 16, 1920–1925; b) P. Wilfling, K. Schittelkopf, M. Flock, R. H. Herber, P. P. Power, R. C. Fischer, Organometallics 2015, 34, 2222–2232.
 a) G. Ossig, A. Meller, S. Freitag, R. Herbst-Irmer, J. Chem. Soc. Chem.
- [16] a) G. Ossig, A. Meller, S. Freitag, R. Herbst-Irmer, J. Chem. Soc. Chem. Commun. **1993**, 497–499; b) T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power, A. J. Thorne, Chem. Commun. **1983**, 639–641.
- [17] a) A. D. Bage, T. A. Hunt, S. P. Thomas, Org. Lett. 2020, 22, 4107–4112;
 b) K. Fujiwara, S. Yasuda, T. Mizuta, Organometallics 2014, 33, 6692–6695.
- [18] M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden, R. A. Fischer, *Dalton Trans.* 2021, *50*, 9031–9036.
- [19] a) D. Franz, E. Irran, S. Inoue, *Dalton Trans.* 2014, 43, 4451–4461; b) M. M. Melzer, S. Jarchow-Choy, E. Kogut, T. H. Warren, *Inorg. Chem.* 2008, 47, 10187–10189.

Manuscript received: August 22, 2022 Revised manuscript received: August 22, 2022 Accepted manuscript online: August 23, 2022 Version of record online:

5. Reactivity of NHI-Stabilized Heavier Tetrylenes towards \mbox{CO}_2 and $N_2\mbox{O}$

TITLE:	"Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO2 and N2O" $^{\left[155\right]}$
STATUS:	Research Article, published online: November 23rd 2023
JOURNAL:	Chemistry – An Asian Journal
PUBLISHER:	Wiley-VCH GmbH
DOI:	10.1002/asia.202300941
AUTHORS:	Lisa Groll, Dr. John A. Kelly, Prof. Shigeyoshi Inoue ^a

Reprinted with permission of Wiley-VCH Verlag. ® 2024 Wiley-VCH Verlag

^a L. Groll planned and carried out the experiments, analyzed experimental data and wrote the manuscript. J. Kelly carried out the SC-XRD measurements, refined the crystallographic data and helped in writing the manuscript. All work was carried out under the supervision of S. Inoue.

CONTENT:

This paper expands the library of highly reactive but stably acyclic heavier tetrylenes by three new compounds. Firstly, the heteroleptic stannylene $[(Me_3Si)_2N](ItBuN)Sn:$ could be obtained via ligand exchange reaction of $[(Me_3Si)_2N]_2Sn:$ with the free ligand (ItBuN)H. Secondly, the homoleptic congeners $(ItBuN)_2E:$ (E = Ge, Sn) were isolated from the reaction of ECl_2 ·dioxane and (ItBuN)Li. While $[(Me_3Si)_2N](ItBuN)Sn:$ and $(ItBuN)_2Ge:$ appear monomeric in solid state as well as in solution (determined by SC-XRD and NMR-spectroscopy), the solid state structure of $(ItBuN)_2Sn:$ is dimeric according to SC-XRD. However, solution state VT-NMR experiments (¹H- and ¹¹⁹Sn-NMR) reveal an approximate 1:1 ratio of monomer and dimer at - 80 °C with the monomer being the predominant state at room temperature.

While $[(Me_3Si)_2N](ItBuN)Sn$: did not show selective reactivity towards CO₂ or N₂O, the homoleptic congeners showed interesting and contrasting reactivity with CO₂. Stannylene $(ItBuN)_2Sn$: activates CO₂ by inserting one equivalent of the molecule into each Sn–N bond, to give two carbamato groups. In contrast, the metal-ligand bonds in germylene stay intact upon reaction with CO₂. Instead, the small molecule bridges each of the Ge–N bonds in an N,O coordination mode, giving two 4-membered metallacycles.

Upon reaction of $(ItBuN)_2Sn$: with N₂O, partial oxidation takes place, giving a bis-stannylene with a central Sn₂N₂ ring ligated by two stannanolate-type ligands ((ItBuN)₃SnO–). Germylene (ItBuN)₂Ge: showed no selective reactivity towards N₂O and gave only free ligand as determinable decomposition product.

doi.org/10.1002/asia.202300941

CHEMISTRY AN ASIAN JOURNAL Research Article

www.chemasianj.org

Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO_2 and N_2O

Lisa Groll,^[a] John A. Kelly,^[a] and Shigeyoshi Inoue^{*[a]}

A heteroleptic amino(imino)stannylene (TMS₂N)(l⁴BuN)Sn: (TMS = trimethylsilyl, l⁴Bu = C[(N-⁴Bu)CH]₂) as well as two homoleptic NHI-stabilized tetrylenes, (l⁴BuN)₂E: (NHI = *N*-heterocyclic imine, E=Ge, Sn) are presented. VT-NMR investigations of (l⁴BuN)₂Sn: (**2**) reveal an equilibrium between the monomeric stannylene at room temperature and the dimeric form at -80 °C as well as in the solid state. Upon reaction of the homoleptic tetrylenes with CO₂, both compounds insert two

Introduction

One of the most pressing goals in contemporary chemical research is the utilization of CO₂ as a source of a C₁ building block. This is due to its ubiquity and status as a greenhouse gas. CO₂ as well as N₂O, contribute significantly to climate change, due to their considerable heat-trapping potency.^[1] One approach to curb global warming, is the utilization of these climate critical gases in the production of value added chemicals, which can be achieved with the use of transitionmetal compounds as catalysts.^[2] However, due to their often costly and toxic nature, there have been efforts towards more economically viable alternatives. As such, metal-free systems as well as abundant main-group element compounds have been investigated.^[3] Pertinent to this, low valent group 14 compounds are of interest, since they have been shown to mimic the reactivity of transition metal complexes when isolated in a low oxidation state.^[3a,4] In particular, heavier tetrylenes R_2E : (E = Si, Ge, Sn) demonstrated considerable potential in this respect due to their ambiphilic nature and small HOMO-LUMO gap. For example the uptake of CO_2 and N_2O by diborylstannylene $[(CHDippN)_2B]_2Sn: I (Dipp = 2,6-iPr_2(C_6H_3)) and N-heterocyclic$ tetrylene hydrides CH[(CMe)(DippN)]2EH II, the formation of a

[a] L. Groll, Dr. J. A. Kelly, Prof. S. Inoue TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center Technische Universität München Lichtenbergstraße 4, 85748 Garching (Germany) E-mail: s.inoue@tum.de

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/asia.202300941
- This manuscript is part of a special collection on 17th International Conference on the Coordination and Organometallic Chemistry of Germanium, Tin and Lead (ICCOC-GTL).
- © 2023 The Authors. Chemistry An Asian Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

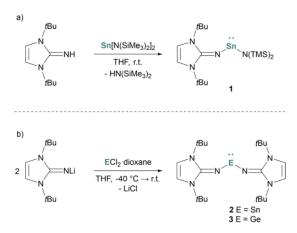
Chem Asian J. 2024, 19, e202300941 (1 of 5)

equivalents of CO₂, however differing bonding modes can be observed. (l'BuN)₂Sn: (2) inserts one equivalent of CO₂ into each Sn–N bond, giving carbamato groups coordinated $\kappa^2 O, O'$ to the metal center. With (l'BuN)₂Ge: (3), the Ge–N bonds stay intact upon activation, being bridged by one molecule of CO₂ respectively, forming 4-membered rings. Furthermore, the reactivity of 2 towards N₂O was investigated, resulting in partial oxidation to form stannylene dimer [((l'BuN)₃SnO)(l'BuN)Sn:]₂ (6).

germanone (IDippN)₂Ge=O (IDipp=C[(N-Dipp)CH]₂) upon reaction of (IDippN)₂Ge: **III** with N₂O with subsequent O-atom transfer, or the catalytic reduction of CO₂ to methanol by tetrylene hydride complexes N(Ar)(Si[']Pr₃)EH (Ar=C₆H₂Pr[']{C(H)Ph₂}₂-4,2,6, E=Ge, Sn) **IV** have been reported (cf. Scheme 1).^[5]

With our recently reported aryl(imino)stannylene (^{Mes}Ter)(IDippN)Sn: V (^{Mes}Ter=2,6-Mes₂C₆H₃), which showed catalytic activity in CO₂ hydroboration with HBpin, we could showcase the notable suitability of NHI (*N*-heterocyclic imine) ligated stannylenes for small molecule activation and catalysis.⁽⁶⁾ Here, the zwitterionic nature of the Sn–Imine bond due to

 $\begin{array}{l} \mbox{Scheme 1. Selected tetrylenes } E_2R \; (E=Ge, Sn) \; capable \; of \; activating \; CO_2 \; and/ \\ or \; N_2O \; (a), \begin{subarray}{c} Saba-gi \\ swell \; as \; catalytic \; reduction \; of \; CO_2 \; (b)^{[Sd,6]} \; (Ar=Dipp=2,6-iPr_2(C_6H_3), \end{subarray} \; MerTer=2,6-Mes_2C_6H_3, \end{subarray} \; MerTer=2,6-Mes_2C_6H_3, \end{subarray} \end{subarray}$


ACES Asian Chemica Editorial Socie

distinct properties of the NHI ligand allows activation and subsequent reduction of CO₂ under mild conditions. In comparison, amine or NHCP (*N*-heterocyclic phospinidine) substituted congeners were not able to reduce CO₂. NHIs are exceptionally strong π - as well as σ -donors and also allow facile modification of their steric demand at the endocyclic nitrogen moieties and backbone, making them excellent ligands for an electrophilic metal center.^[7] With this in mind, we set out to further expand the library of NHI stabilized tetrylenes and explore their capabilities in small molecule activation.

Results and Discussion


Heteroleptic stannylene (TMS₂N)(I^tBuN)Sn: $(I^{t}Bu =$ 1 C[(N-^tBu)CH]₂) was synthesized via a ligand exchange reaction with Lappert's stannylene^[8] (TMS₂N)₂Sn: with protonated ligand, (I'BuN)H at room temperature (Scheme 2a) and characterized by standard NMR and SC-XRD techniques (see SI). Subsequent introduction of a second equivalent of (I^tBuN)H to 1 gave bis-NHI-substituted stannylene (I'BuN)₂Sn: 2, however in poor yield and purity. Alternatively, introduction of two equivalents lithiated ligand, (I'BuN)Li to SnCl2 · dioxane with one additional equivalent of DMAP lead to the formation of 2 more selectively. In a similar manner, the analogous germylene (I^tBuN)₂Ge: (3) could be obtained by the reaction of GeCl₂·dioxane with (I'BuN)Li (Scheme 2b). It should be noted that parent aminogermylene (TMS₂N)₂Ge: showed no reactivity towards (l^tBuN)H.

The ¹¹⁹Sn-NMR Signal of **2** (122.07 ppm) is significantly upfield shifted compared to **1** (401.35 ppm) as well as $(TMS_2N)_2Sn$: (767 ppm), but within the range of previously reported twocoordinate, NHI-stabilized stannylenes (-208.0-967.8 ppm).^{(6,8-9]} While solution state ¹H-NMR characterization shows one set of signals attributed to the ligand indicating a symmetrical molecule, the solid state structure of **2** exhibits a dimer with two distinct ligand environments (Figure 1). The compound

Scheme 2. a) Synthesis of heteroleptic stannylene 1 via ligand exchange of Lappert's stannylene with free (l'BuN)H. b) Homoleptic tetrylenes 2 and 3 obtained via imination of ECl₂·dioxane with (l'BuN)Li (l'Bu=C[(N-'Bu)CH]₂, E=Sn, Ge).

Chem Asian J. 2024, 19, e202300941 (2 of 5)

CHEMISTRY

1861471x.

2024

, 2, Downloaded

onlinelibrary.wiley.com/doi/10.1002/asia.202300941, Wiley Online Library on [08/07/2024]. See the Terms

and Conditions

(https

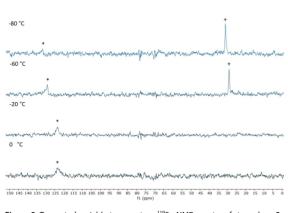
on Wiley Online

Library

ē

rule

use; OA articles


are governed by the applicable Creative

LICENSE

Figure 1. Molecular structure of Stannylene 2 in the solid state. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Sn1–N1 2.0985(16), Sn1–N2 2.1841(16), Sn1–N2* 2.1880(16), N2–Sn1–N2* 75.96(6), Sn1–N2–Sn1* 104.04(6).

displays a nearly planar Sn_2N_2 ring (sum of internal bond angles = 359.5°) with terminal ligand moieties *trans* oriented in respect to the Sn_2N_2 ring, and two imines bridging the Sn centers. The Sn–N bond lengths are in the range of previously reported amido- and iminato-stannylene single bonds (2.041(2)–2.227(7) Å).^[6,9c,10]

In order to elucidate the structure of 2 in solution, VT-NMR experiments in toluene-d₈ were conducted (Figure 2). ¹H- and ¹¹⁹Sn-NMR measurements show the gradual appearance of a second species upon cooling, with an approximate 1:1 ratio at -80 °C (determined by ¹H-NMR integral ratios, *cf.* Figure S18). The new ¹¹⁹Sn signal displays further up-field at 130.6 ppm, while the ¹H-NMR shows the emergence of two new distinct sets of ligand signals, as expected according to the molecular

Figure 2. Truncated variable temperature ¹¹⁹Sn NMR spectra of stannylene **2** in Toluene-d_a at -80° C, -60° C, -20° C and 0° C. (* = signals corresponding to monomeric stannylene, + = signals corresponding to di-stannylene). For experimental details and corresponding 1H NMR spectra see supporting information.

ACES Asian Chemica Editorial Socie

structure of **2** in the solid state. This confirms an equilibrium between the monomer and dimer of **2** in solution, with the monomer being the preferred form at room temperature.

Germylene **3** displays a monomeric molecular structure in solution as well as in solid state, according to ¹H-NMR and SC-XRD characterization (Figure 3). Compared to previously reported germylene (IDippN)₂Ge: (III), Ge–N bond lengths of 1.8739(17) Å are elongated and the Ge–N–Ge angle of 94.17(9) is more acute (III: 1.819(15) Å, 99.48(10)°). Overall, **3** is highly symmetrical with the imidazole rings being perpendicular to the N–Ge–N moiety (Ge1–N1–C1–N2=90°).

With 1–3 in hand, we wanted to explore their reactivity towards small molecules, in particular CO_2 and N_2O . Both homoleptic tetrylenes 2 and 3 reacted with 1 bar of CO_2 at room temperature instantaneously to give colorless crystals suitable for SC-XRD analysis (Scheme 3). In contrast, 1 did not selectively react with CO_2 , likely due to decomposition of the amido-ligand via silyl migration, a commonly observed phenomenon when utilizing silyl-amido-ligands.⁽¹¹⁾

Stannylene **2** inserts one molecule of CO_2 into each Sn–N bond, giving a distorted seesaw structure with both carbamato groups coordinated $\kappa^2 O, O'$ around the metal center (Compound **4**, Figure 4, Sn1–O 2.1578(15)–2.2410(15) Å). The ¹H- as well as

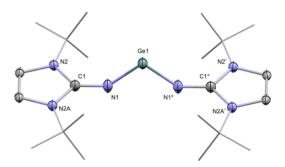
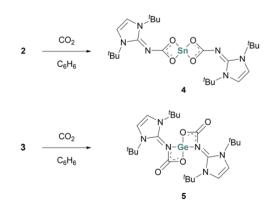



Figure 3. Molecular structure of compound 3 in the solid state. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Ge1–N1 1.8738(17), Ge1–N1* 1.8739(17), N1–Ge–N1* 94.17(9), Ge1–N1–C1–N2 90.000(1).

Scheme 3. Reaction of tetrylenes 2 and 3 with 1 bar of \mbox{CO}_2 in benzene at room temperature.

Chem Asian J. 2024, 19, e202300941 (3 of 5)

CHEMISTRY AN ASIAN JOURNAL Research Article

1861471x, 2024, 2, Downloaded from https

//aces

onlinelibrary.wiley.com/doi/10.1002/asia.202300941, Wiley Online Library on [08/07/2024]. See the Terms

and Conditions

(https://onlinelibrary.wiley.

.com/

and-conditions) on Wiley Online Library for rules of use; OA articles

are governed by the applicable Creative Commons

license

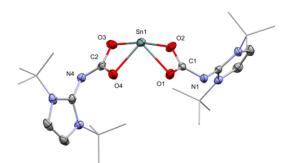


Figure 4. Molecular structure of compound 4. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Sn1–O1 2.1846(16), Sn1–O2 2.2054(15), Sn1–O3 2.1578(15), Sn1–O4 2.2410(15), O1–Sn1–O2 59.79(5), O1–Sn1–O3 83.71(6).

¹³C-NMR spectroscopic analysis confirms a quantitative conversion and a ¹³C-NMR signal at 167.40 ppm, characteristic for the formation of a tin-carbamate carbon (161.6–175.6 ppm)^[6,12] can be observed. Compound **4** shows very poor solubility in THF and C₆H₆ but is soluble in acetonitrile, nevertheless no ¹¹⁹Sn-NMR signal could be observed. The insertion of CO₂ is irreversible and **2** could not be recovered upon heating or under reduced pressure.

Germylene **3** also irreversibly activates two equivalents of CO_2 to give compound **5**. Here, the Ge–N bonds stay intact, and we observe a N,O coordination mode as opposed to the O,O mode as seen in **4**. This is presumably due to the higher bond strength of Ge–N bonds (364 kJ/mol) compared to Sn–N bonds (324 kJ/mol).^[13] The central germanium is surrounded by the ligands in a distorted seesaw fashion, with an almost perpendicular O–Ge–O angle (94.4(3)°) and nearly planar four membered metallacycles (sum of internal bond angles = 178.4°) (*cf.* Figure 5).

Reaction of **2** with N₂O gives bis-stannylene $[((I'BuN)_3SnO)(I'BuN)Sn:]_2$ (**6**) with a central Sn₂N₂ ring (Scheme 4). The + II oxidation state is retained by the central Sn atoms, which are bridged by imine moieties similarly to stannylene **2**. However, the other two Sn centers get oxidized and form stannanolate (IDippN)_3SnO– ligands. We propose that

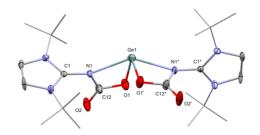
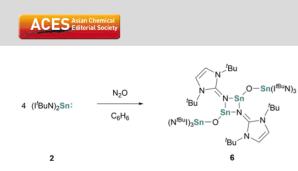



Figure 5. Molecular structure of compound 5 in the solid state. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Ge1–O1 1.904(5), Ge1–N1 2.288(5), O1*–Ge1–O1 94.4(3), O1–Ge1–N1 63.64(18), O1–Ge1–N1* 91.25(19).

Scheme 4. Reaction of tetrylene 2 with 1 bar of $N_2 O$ in benzene at room temperature.

the initial step in the mechanism is the formation of a transient stannone intermediate, as suggested for the reaction of I and N₂O. This transient stannone reacts with one equivalent of 2 giving the final product 6 after dimerising (a proposed mechanism is in the SI, Figure S22)^[5a] Pertinently, the formation of a silanolate-ligated bis-stannylene when (TMS₂N)₂Sn: was treated with CO2 as well as NHI ligand rearrangements have been reported.^[11a,14] The ¹H- and ¹³C-NMR spectra show two sets of signals corresponding to the distinct ligand environments. Due to the low solubility of compound 6 in most common NMR solvents and only slight solubility in acetonitrile, no ¹¹⁹Sn-NMR signal could be observed. The molecular structure of 6 displays a planar Sn_2N_2 ring (sum of internal bond angles = 360.0°) with Sn-N bond lengths (Sn2-N1 2.185(6) Å, Sn2-N1* 2.173(6) Å) shorter than 2 and the stannanolate moieties trans oriented to the ring center (Figure 6).

Treatment of 1 as well as 3 with N₂O, lead to the formation of mostly protonated ligand and indeterminable decomposition products. The reaction outcome for 3 and N₂O is in stark contrast to the previously reported reaction of (IDippN)₂Ge: with N₂O, which leads to the isolation of a stable germanone.^[5c] This is likely due to the I¹⁸N ligands not offering sufficient kinetic protection to the polarized Ge=O bond compared to the more sterically imposing IDippN. The comparison of 1 and 2 in terms of small molecule activation showcases once again the benefits of utilizing the robust NHI ligand system for the stabilization of low valent tin compounds, enabling selective reactivity.

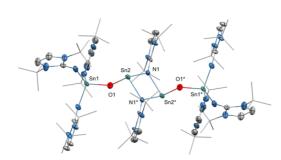


Figure 6. Molecular structure of compound 6. Ellipsoids are set at the 50% probability level; hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: 1: Sn1–O1 1.930(6), Sn2–O1 2.022(7), Sn2–N1 2.185(6), Sn2–N1* 7.3(6), O1–Sn2–N1* 8.2(2), O1–Sn2–N1* 97.0(3), Sn2–N1–Sn2* 102.4(3), N1–Sn2–N1* 77.6(3).

Chem Asian J. 2024, 19, e202300941 (4 of 5)

Conclusions

The isolation and reactivity of three novel NHI-stabilized tetrylenes has been reported. While the heteroleptic amino(imino)stannylene (TMS₂N)(l'BuN)Sn: (1) does not selectively react with N₂O or CO₂, the homoleptic congener (l'BuN)₂Sn: (2) shows defined activation of both small molecules. Also, the reaction of (l'BuN)₂Ge: (3) with CO₂ could be observed, which led to a rare bonding mode (N,O) for germanium. These tetrylenes expand the library of low valent group 14 compounds capable of small molecule activation and the investigation of their reactivity towards a broader substrate scope as well as their potential catalytic applications is currently underway.

CHEMISTRY

AN ASIAN JOURNAL Research Article 1861471x, 2024, 2, Downloaded

onlinelibrary.wiley.com/doi/10.1002/asia.202300941, Wiley Online Library on [08/07/2024]. See the Terms

and Conditions

(https

-and-conditions) on Wiley Online Library for rules of use; OA articles

are governed by the applicable Creative

license

Acknowledgements

We want to thank the Deutsche Forschungsgemeinschaft for their financial support (In 234/7-1). We are also thankful for T. Weng for providing mass spectrometric data. Furthermore, we thank F. Hanusch, S. Fujimori and S. Stigler for providing crystallographic data as well as F. Tschernuth for assisting with VT-NMR experiments. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interests

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords: Germylene \cdot Stannylene \cdot *N*-heterocyclic Imine \cdot CO₂ Activation \cdot N₂O Activation

- a) W. Steffen, J. Rockström, K. Richardson, T. M. Lenton, C. Folke, D. Liverman, C. P. Summerhayes, A. D. Barnosky, S. E. Cornell, M. Crucifix, J. F. Donges, I. Fetzer, S. J. Lade, M. Scheffer, R. Winkelmann, H. J. Schellnhuber, *Proc. Nat. Acad. Sci.* 2018, *115*, 8252–8259; b) P. J. Crutzen, A. R. Mosier, K. A. Smith, W. Winiwarter, *Atmos. Chem. Phys.* 2008, *8*, 389–395; c) H. Tian, R. Xu, J. G. Canadell, R. L. Thompson, W. Winiwarter, P. Suntharalingam, E. A. Davidson, P. Ciais, R. B. Jackson, G. Janssens-Maenhout, M. J. Prather, P. Regnier, N. Pan, S. Pan, G. P. Peters, H. Shi, F. N. Tubiello, S. Zaehle, F. Zhou, A. Arneth, G. Battaglia, S. Berthet, L. Bopp, A. F. Bouwman, E. T. Buitenhuis, J. Chang, M. P. Chipperfield, S. R. S. Dangal, E. Dlugokencky, J. W. Elkins, B. D. Eyre, B. Fu, B. Hall, A. Ito, F. Joos, P. B. Krummel, A. Landolfi, G. G. Laruelle, R. Lauerwald, W. Li, S. Lienert, T. Maavara, M. MacLeod, D. B. Millet, S. Olin, P. K. Patra, R. G. Prinn, P. A. Raymond, D. J. Ruiz, G. R. van der Werf, N. Vuichard, J. Wang, R. F. Weiss, K. C. Wells, C. Wilson, J. Yang, Y. Yao, *Nature* 2020, *586*, 248– 256.
- [2] a) Q. Liu, L. Wu, R. Jackstell, M. Beller, *Nat. Commun.* 2015, *6*, 5933; b) M. Cokoja, C. Bruckmeier, B. Rieger, W. A. Herrmann, F. E. Kühn, *Angew. Chem. Int. Ed.* 2011, *50*, 8510-8537; c) S. Fawzy, A. I. Osman, J. Doran, D. W. Rooney, *Environ. Chem. Lett.* 2020, *18*, 2069–2094; d) F. Le Vaillant, A. Mateos Calbet, S. González-Pelayo, E. J. Reijerse, S. Ni, J. Busch, J.

ACES Asian Chemica Editorial Socie

Cornella, Nature 2022, 604, 677–683; e) R. Sen, A. Goeppert, S. Kar, G. K. S. Prakash, J. Am. Chem. Soc. 2020, 142, 4544–4549; f) B. G. Schieweck, P. Jürling-Will, J. Klankermayer, ACS Catal. 2020, 10, 3890–3894; g) J. Schneidewind, R. Adam, W. Baumann, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2017, 56, 1890–1893; h) J. Zhu, B. Yang, Y. Deng, M. Chen, H. Wang, A. Wang, W. Gao, J. She, M. Luo, Y. Liu, Z. Fu, Appl. Catal. B. 2022, 318, 121861; l) T. Biswal, K. P. Shadangi, P. K. Sarangi, R. K. Srivastava, Chemosphere 2022, 298, 134299; j) K. A. Grice, Coord. Chem. Rev. 2017, 336, 78–95.

[3] a) C. Weetman, S. Inoue, ChemCatChem 2018, 10, 4213–4228; b) S. Kostera, M. Peruzzini, L. Gonsalvi, Catal. 2021, 11, 58; c) K. Kuciński, G. Hreczycho, Green Chem. 2020, 22, 5210–5224; d) S. P, S. K. Mandal, Chem. Sci. 2020, 11, 10571–10593; e) G. Kiefer, T. Riedel, P. J. Dyson, R. Scopelliti, K. Severin, Angew. Chem. Int. Ed. 2015, 54, 302–305; f) K. Severin, Chem. Soc. Rev. 2015, 44, 6375–6386; g) A. G. Tskhovrebov, L. C. E. Naested, E. Solari, R. Scopelliti, K. Severin, Angew. Chem. Int. Ed. 2015, 54, 1289–1292.

[4] a) F. Hanusch, L. Groll, S. Inoue, Chem. Sci. 2021, 12, 2001–2015; b) S. Fujimori, S. Inoue, Eur. J. Inorg. Chem. 2020, 2020, 3131–3142; c) J. A. Kelly, F. J. Kiefer, A. Kostenko, S. Inoue, in Advances in Inorganic Chemistry, Vol. 82 (Eds.: K. Meyer, R. Van Eldik), Academic Press, 2023, pp. 157–187; d) A. V. Protchenko, P. Vasko, D. C. H. Do, J. Hicks, M. A. Fuentes, C. Jones, S. Aldridge, Angew. Chem. Int. Ed. 2019, 58, 1808–1812; e) N. Weyer, M. Heinz, J. I. Schweizer, C. Bruhn, M. C. Holthausen, U. Siemeling, Angew. Chem. Int. Ed. 2011, 58, 1861–8614; g) M. K. Sharma, S. Sinhababu, P. Mahawar, G. Mukherjee, B. Pandey, G. Rajaraman, S. Nagendran, Chem. Sci. 2019, 10, 4402–4411; h) C. Gendy, J. Mikko Rautiainen, A. Mailman, H. M. Tuononen, Chem. Eur. J. 2021, 27, 14405–14409; i) M. Asay, C. Jones, M. Driess, Chem. Rev. 2011, 111, 354–396; j) G. Tan, W. Wang, B. Blom, M. Driess, Dalton Trans. 2014, 43, 6006–6011.

- [5] a) A. V. Protchenko, M. Á. Fuentes, J. Hicks, C. McManus, R. Tirfoin, S. Aldridge, *Dalton Trans.* 2021, *50*, 9059–9067; b) M. W. Lui, C. Merten, M. J. Ferguson, R. McDonald, Y. Xu, E. Rivard, *Inorg. Chem.* 2015, *54*, 2040–2049; c) X.-X. Zhao, T. Szilvási, F. Hanusch, S. Inoue, *Chem. Eur. J.* 2021, *27*, 15914–15917; d) T. J. Hadlington, C. E. Kefalidis, L. Maron, C. Jones, *ACS Catal.* 2017, *7*, 1853–1859; e) A. Jana, H. W. Roesky, C. Schulzke, *Dalton Trans.* 2010, *39*, 132–138; f) A. Jana, D. Ghoshal, H. W. Roesky, I. Objartel, G. Schwab, D. Stalke, *J. Am. Chem. Soc.* 2009, *131*, 1288–1293; g) A. Jana, H. W. Roesky, C. Schulzke, A. Döring, *Angew. Chem. Int. Ed.* 2009, *48*, 1106–1109.
- [6] D. Sarkar, L. Groll, D. Munz, F. Hanusch, S. Inoue, ChemCatChem 2022, 14, e202201048.

CHEMISTRY

1861471x

2024

, 2, Downloaded

.wiley.

.com/doi/10.1002/asia.202300941

, Wiley Online

Library on [08/07/2024]. See

the Terms

and Conditions

(https

on Wiley Online Library for

use; OA articles are

governed by the

applicable

license

Research Article

- [7] a) T. Ochiai, D. Franz, S. Inoue, Chem. Soc. Rev. 2016, 45, 6327–6344; b) A. Doddi, M. Peters, M. Tamm, Chem. Rev. 2019, 119, 6994–7112; c) N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, D. Bläser, R. Boese, Z. Naturforsch. B 1995, 50, 1779–1784; d) P. Raja, R. S, T. Ghatak, Eng. Sci. 2020, 12, 23–37; e) M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones, J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523–530; f) M. Tamm, S. Randoll, T. Bannenberg, E. Herdtweck, Chem. Commun, 2004, 876–877.
- [8] M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc. Dalton Trans. 1977, 2004–2009.
- [9] a) C. D. Schaeffer, L. K. Myers, S. M. Coley, J. C. Otter, C. H. Yoder, J. Chem. Educ. 1990, 67, 347; b) L. Broeckaert, J. Turek, R. Olejník, A. Růžička, M. Biesemans, P. Geerlings, R. Willem, F. De Proft, Organometallics 2013, 32, 2121–2134; c) T. Ochiai, D. Franz, E. Irran, S. Inoue, Chem. Eur. J. 2015, 21, 6704–6707; d) X.-X. Zhao, T. Szilvási, F. Hanusch, J. A. Kelly, S. Fujimori, S. Inoue, Angew. Chem. Int. Ed. 2022, 61, e202208930.
- [10] a) T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power, A. J. Thorne, J. Chem. Soc. Chem. Commun. **1983**, 639–641; b) T. Ochiai, D. Franz, X.-N. Wu, E. Irran, S. Inoue, Angew. Chem. Int. Ed. **2016**, 55, 6983–6987; c) X.-X. Zhao, S. Fujimori, J. A. Kelly, S. Inoue, Chem. Eur. J. **2023**, 29, e202202712.
- [11] a) L. R. Sita, J. R. Babcock, R. Xi, J. Am. Chem. Soc. 1996, 118, 10912– 10913; b) C. A. Stewart, D. A. Dickie, B. Moasser, R. A. Kemp, Polyhedron 2012, 32, 14–23; c) J. R. Babcock, L. Liable-Sands, A. L. Rheingold, L. R. Sita, Organometallics 1999, 18, 4437–4441.
- [12] L. A. M. Harris, M. P. Coles, J. R. Fulton, Inorg. Chim. Acta 2011, 369, 97– 102.
- [13] a) M. J. Evans, F. M. Burke, P. M. Chapple, J. R. Fulton, *Inorg. Chem.* 2021, 60, 8293–8303; b) M. J. Evans, M. D. Anker, A. Mouchfig, M. Lein, J. R. Fulton, *Chem. Eur. J.* 2020, 26, 2606–2609; c) R. Becerra, R. Walsh, *Phys. Chem. Chem. Phys.* 2019, 21, 988–1008; d) S. R. Whittleton, R. J. Boyd, T. B. Grindley, *Can. J. Chem.* 2009, 87, 974–983.
- [14] a) R. Holzner, A. Porzelt, U. S. Karaca, F. Kiefer, P. Frisch, D. Wendel, M. C. Holthausen, S. Inoue, *Dalton Trans.* **2021**, *50*, 8785–8793; b) M. Ludwig, D. Franz, A. Espinosa Ferao, M. Bolte, F. Hanusch, S. Inoue, *Nat. Chem.* **2023**, *15*, 1452–1460.

Manuscript received: October 26, 2023 Revised manuscript received: November 22, 2023 Accepted manuscript online: November 23, 2023 Version of record online: December 7, 2023

6. SUMMARY AND OUTLOOK

NHI ligands have long been discussed for their inherent suitability to stabilize electron-deficient metal centers since their introduction to the scientific community by Tamm *et al.* ^[49-50, 55, 60-61, 64, 153] Nevertheless, instances of NHI-stabilized heavier tetrylenes, especially those active in small molecule activation, have mostly been reserved for silylenes.^[20, 80, 86, 156] NHI-stabilized germylenes and stannylenes, on the other hand, often did not show activity towards small molecules or have simply not been explored for that purpose.^[58, 83, 124, 145-146] This is somewhat surprising since the increased stability of the +II oxidation state going down group 14 should facilitate the synthesis of those complexes as well as reductive elimination, which is a crucial step in redox-based catalysis. NHIs can support this reactivity by providing strong σ - as well as π -donation to the metal center, which can stabilize and increase the reactivity of the compound at the same time. With this work, this gap could be partially bridged, and a collection of NHI-stabilized germylenes and stannylenes active in small molecule activation and/or catalysis were presented.

6.1. HYDROBORATION OF CO_2 BY AN NHI-STABILIZED TETRYLENE

The aryl(imino)stannylene ^{Mes}Ter(IDippN)Sn: (I) was synthesized as a dark red solid via salt metathesis of (IDippN)Li and ^{Mes}Ter(CI)Sn: in a 75 % yield. The compound was thoroughly characterized by ¹H-, ¹³C{¹H}-, and ¹¹⁹Sn-NMR, as well as elemental analysis and SC-XRD. The length of the Sn–N bond is in the range of a short single bond (2.042(2) Å), and density functional theory calculations identified a highly polarized single bond with a weak π-component. The compound was also compared theoretically with the known NHCP-stabilized stannylene ^{Mes}Ter(IDippP)Sn: (**34**)^[133] as well as amido stannylene ^{Mes}Ter(Ph₂N)Sn: (**III**), which was also synthesized and fully characterized for this account. The calculations revealed the lowest HOMO-LUMO gap in **III** (3.56 eV) and similar values for stannylenes **34** and **I** (3.88 eV and 3.83 eV respectively). Furthermore, Löwdin's Partial Charges and Mayer's Bond Orders indicated a strong covalent Sn–P bond with double bond character in ^{Mes}Ter(IDippP)Sn: and a weak and polarized single bond in ^{Mes}Ter(Ph₂N)Sn:.

The reactivity of I towards CO_2 was then examined. It turned out that the stannylene reacts readily with CO_2 (1 bar) at room temperature in less than 10 minutes, and the product [^{Mes}TerSn(CO₂)N(IDipp)] (II) could be isolated in a 96 % yield as a colorless solid. ¹³C{¹H}-NMR revealed a signal at 175.6 ppm characteristic for a carbamate carbon and SC-XRD confirmed

the identity of the compound. One molecule of CO₂ inserts into the Sn–N bond of ^{Mes}Ter(IDippN)Sn: (I) to give a tetrahedral tin center. Calculations of the mechanism suggest a 1,2-addition of CO₂ across the Sn–N bond followed by a barrierless dissociation of the metal-ligand bond. Comparing this to ^{Mes}Ter(IDippP)Sn: (**34**), which does not react with CO₂, a similar 1,2-addition is theoretically feasible, however the bond dissociation is unfavored. This indicates that the nature of the Sn–N is the deciding factor that allows CO₂ activation with the imino-stannylene.

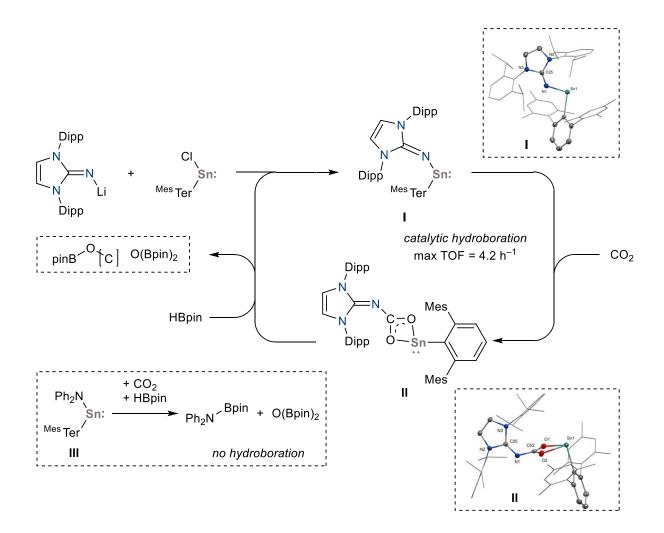
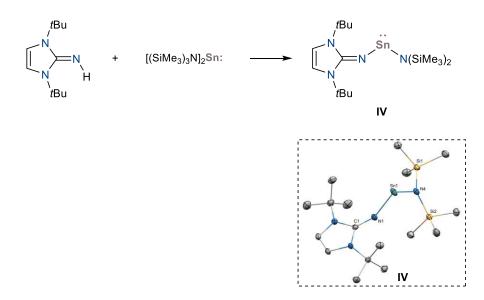
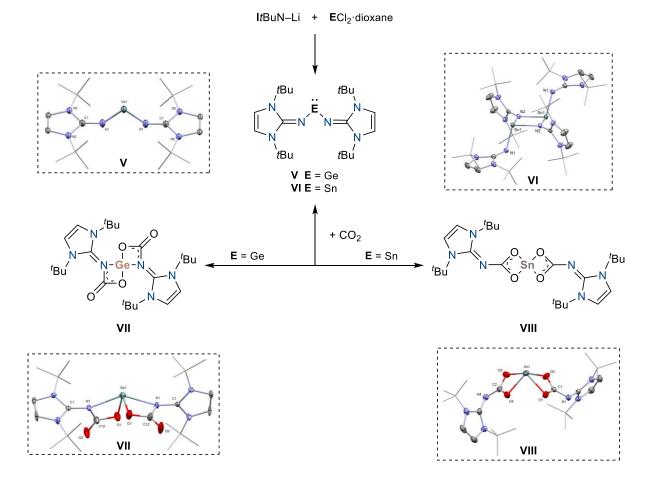


Figure 17. Synthesis, CO_2 activation, and catalytic hydroboration activity of NHI-stabilized stannylene (I) and comparison with amine-stabilized stannylene (III).


This rapid and mild activation of CO_2 gave impetus to explore the utilization of the activated molecule in follow-up reactivity. While the direct release of CO_2 from compound **II** could not be observed, even at reduced pressure or elevated temperatures, it reacted with stoichiometrical amounts of pinacolborane (Figure 17). In fact, alternating between addition of 1 bar of CO_2 and one equivalent of HBpin three times led to the formation of 31 % yield of MeOBpin. Under

optimized catalytic conditions (THF, 50 °C, 5 mol% catalyst loading), 1 bar of CO_2 and equimolar amounts of HBpin led to the full conversion of CO_2 to MeOBpin and O(Bpin)₂ with a TOF of 4.2 h⁻¹. Theoretical calculations revealed the tin carboxylate (**II**) to be the resting state of the catalytic cycle and the rate-determining step to be the hydrogenation of the reduced products by HBpin. Overall, three equivalents of HBpin are consumed per equivalent of CO_2 in one cycle, and the calculated mechanism is in agreement with the applied reaction conditions.

The importance of the NHI ligand for the observed catalysis could further be illustrated by comparing the reactivity of ^{Mes}Ter(Ph₂N)Sn: (**III**) with CO₂. The –NPh₂ moiety was chosen for its similarly low oxophilicity compared to the NHI ligand. While stannylene **III** reacts with CO₂ to presumably give a tin-carboxylate analogously to the NHI-stabilized congener (not isolated, but in line with ¹H- and ¹³C-NMR as well as mass spectroscopic measurements), the addition of HBpin to the reaction mixture led to the formation of Ph₂N–Bpin and O(Bpin)₂. This is in good agreement with the calculated weak Sn–N bond and low HOMO–LUMO gap of complex **III**. While reactivity can be observed, the regeneration of the tetrylene is unfavored upon the addition of HBpin, giving the respective decomposition products.


6.2. SMALL MOLECULE ACTIVATION BY HEAVIER BIS-NHI-TETRYLENES

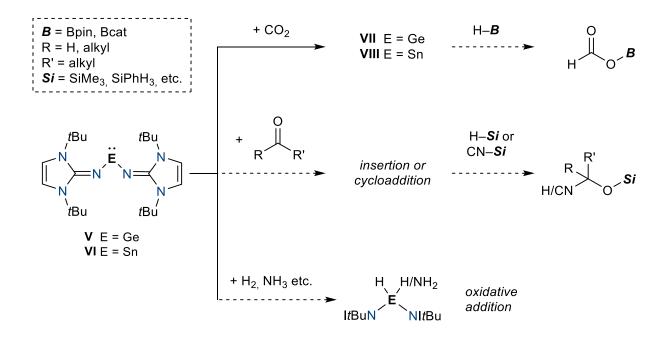
The differences in structure and reactivity of heteroleptic stannylene [(Me₃Si)₂N](I*t*BuN)Sn: (**IV**) homoleptic tetrylenes (I*t*BuN)₂Ge: (**V**) and (I*t*BuN)₂Sn: (**VI**) have been discussed in this chapter. Stannylene **IV** readily forms upon treatment of Lappert's stannylene [(Me₃Si)₂N]₂Sn:^[112, 137] with the free NHI ligand (I*t*BuN)H (Scheme 26). In the case of the bis-NHI-stabilized tetrylenes **V** and **VI**, a salt metathesis route *via* treating ECl₂ dioxane (E = Ge, Sn) with the lithiated ligand precursor (I*t*BuN)Li gave the best results. All compounds have been fully characterized by multinuclear NMR experiments, SC-XRD, as well as elemental analysis. According to NMR experiments, all tetrylenes appear monomeric in solution at room temperature. SC-XRD spectroscopy, however, showed a dimeric structure for stannylene **VI** in the solid state. Due to this observation, ¹H and ¹¹⁹Sn VT-NMR experiments were performed, which revealed an equilibrium between the monomeric and dimeric form with about a 1:1 ratio of both at – 80 °C (according to ¹H integral ratios).

Scheme 26. Synthesis and molecular structure of heteroleptic stannylene IV.

Next, the tetrylenes were evaluated regarding their reactivity towards CO_2 and N_2O . While **IV** reacted with both small molecules, no selective product formation could be observed. In Contrast, homoleptic tetrylenes **V** and **VI** both reacted selectively with CO_2 in swift reactions at room temperature. The activations are irreversible, and even under elevated temperatures or reduced pressure, no release of CO_2 could be observed in both cases. Germylene **V** undergoes a [2+2]-cycloaddition alongside each of the Ge–N bonds of the complex to give a doubly N,O-coordinated germylene (**VII**). In the case of stannylene **VI**, insertion of CO_2 into each of the Sn–N bonds take place and the doubly κ^2O ,O' coordinated bis-carbamate (**VIII**) is formed. The difference between these activation modes is presumed to be due to a stronger Ge–N bond than the Sn–N bond in the respective complexes.

Scheme 27. Synthesis and reactivity towards CO2 of NHI-stabilized tetrylenes V and VI.

While the reaction of germylene **V** led to decomposition upon exposure to N_2O , stannylene **VI** reacted selectively with N_2O in a partial oxidation. The compound can be described as a stannanolate-ligated bis-stannylene with a central Sn_2N_2 ring, confirmed by SC-XRD measurements. The mechanism potentially follows the transient formation of a stannone followed by a reaction with another equivalent of unreacted stannylene and rearrangement.


6.3. OUTLOOK

UNEXPLORED REACTIVITY

As a first step into further research, the scope of small molecule activation and catalysis with the presented tetrylenes should be expanded (Scheme 28). As such, other industrially relevant small molecules (*e.g.* H_2 , NH_3 , or CO) should be explored in regard to their reactivity with the tetrylenes. If the reactivity of the respective tetrylene is not high enough, the introduction of an amine or another *Lewis* base could increase activity. In previous accounts, for example in the

6.3. OUTLOOK

case of dialkyl-stannylene **33** (*c.f.* chapter 2.3.2, Scheme 16) or a cyclic alkylsilylene (2,2,5,5-tetrakis(trimethylsilyl)silacyclopentane-1,1-diyl), frustrated *Lewis* pairs of a tetrylene with an amine enabled activation of hydrogen.^[138, 157]

Scheme 28. Unexplored reactivity with NHI-stabilized tetrylenes V and VI.

Since aryl(imino)stannylene I showed activity in hydroboration of CO₂, the homoleptic tetrylenes (I*t*BuN)₂Ge: (V) and (I*t*BuN)₂Sn: (VI) should also be investigated in that regard. As such, the reactivity of the respective carbamates (VII and VIII) towards HBpin or other boranes should be investigated. Besides hydroboration, (catalytic) silylation of CO₂ or cyanosilylation of aldehydes and ketones should also be investigated not only for tetrylenes V and VI, but also for stannylene I.

LIGAND MODIFICATION

Modification of the NHI ligand, not only on the endocyclic *N*-substituents but also in the backbone area, could lead to interesting new compounds (Figure 18). Introducing a methylated backbone to the NHI has proven to have a notable impact on the structure and reactivity of silylenes. While (IDippN)(silyl)silylenes with an unmodified backbone (*c.f.* **4a-c**, Figure 5) react with the aromatic wingtip moiety to form silepins, (^{Me}IDippN)(Si*t*Bu₃)Si: (**4d**) is stable as an acyclic silylene.

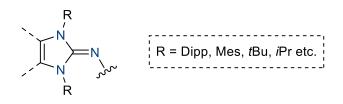
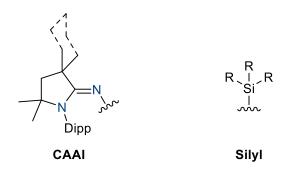



Figure 18. Potential ligand modifications of the backbone or wingtips of the NHI ligand.

It would be interesting to see, what impact backbone modification could have on the respective germylene or stannylene analog. Modification of the wingtips would mostly change the steric bulk of the ligand and therefore the geometry around the metal center of a potential tetrylene. This could have an influence on dimerization tendencies as well as the HOMO–LUMO gap (and therefore the reactivity) of the compound as well, as previously observed in similar silylenes and silepins.^[79-82, 86]

ALTERNATIVE SYNTHESIS ROUTE AND LIGANDS

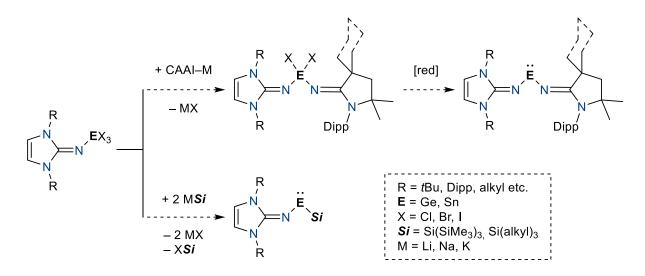

While the previously presented accounts all utilize the direct synthesis of tetrylenes *via* introduction of a ligand precursor to a metal source of the oxidation state +II (*i.e.* EX₂·dioxane, [(Me₃Si)₂N]₂Sn:, ^{Mes}Ter(CI)Sn:), using reagents where the group 14 element is in the +IV oxidation state can also lead to useful precursor compounds. While this route requires a multi-step synthesis, that ultimately leads to the desired tetrylene *via* reduction (*c.f.* Scheme 4), intermediary compounds can be more stable and easier to handle. This is especially the case for germanium (and silicon) complexes, where hybridization is still more effective than for tin or led, making the tetravalent compound generally more stable. The stoichiometric introduction of ligands to the metal center tends to be more selective, allowing a potentially more facile synthesis of heteroleptic compounds.

Figure 19. CAAI and Silyl moieties as secondary ligands for the synthesis of heteroleptic tetrylenes (R = SiMe₃, *t*Bu, Me, etc).

6.3. OUTLOOK

The introduction of silyl or cyclic alkyl(amino)iminate (CAAI) groups as secondary ligands could for example be considered (Figure 19). As mentioned above (*c.f.* chapter 2.3), silyl ligands are strong σ -donors and can be varied in steric bulk relatively easily. By this, they can theoretically increase reactivity and provide thermodynamic stabilization to the metal center at the same time. CAAIs are a newer evolution of imine ligands derived from the respective parent carbenes. First published in 2019 by Braunschweig *et al.*, this compound class has found quick acceptance in the scientific community.^[152] As in NHIs, CAAIs bear a terminal imine introduced at the former carbene position. The presence of only one endocyclic nitrogen leads to a less electron-rich heterocycle with a weaker inductive effect on the 2-position of the ring, just as in the parent CAAC. Looking at the structure and comparing earlier accounts regarding NHIs, one can expect CAAIs to be weaker π -donors and stronger σ -donors, respectively.^[158] Nevertheless, CAAIs can also be described as 2σ - and up to 4π -electron donors, visualized by the resonance structures. Synthesizing heteroleptic tetrylenes with one NHI and one CAAI ligand could also lead to new highly reactive compounds.

Scheme 29. Proposed synthesis routes to NHI- and silyl- or CAAI-substituted heteroleptic tetrylenes.

Both silyl and CAAI moieties could be introduced as alkali metal salts (e.g. R₃Si–K or CAAI–Li) to an NHI-substituted E(IV) halide via salt metathesis (Scheme 29), followed by reduction to give a tetrylene. Reduction of L₂EX₂ type compounds to the respective tetrylenes L₂E: could for example successfully demonstrated for a number of silyl ligated silylenes and disilenes, such as [(Me₃Si)₃Si](*t*Bu₃Si)Si: and (*t*Bu₂MeSi)₂Si=Si(SiMe*t*Bu₂)₂ as well as (IDippN)₂Ge: (**5**, Figure 5).^[54, 159-160] Furthermore, if the secondary ligand is a strong enough reductant, which is often the case for silanides, introduction of the secondary ligand and reduction can occur in one step. *In situ* reduction and ligand exchange using LEX₃ complexes and silanides as ligand precursor and reducing agent proved successful in NHI-stabilized

6.3. OUTLOOK

silylenes and disilenes, such as **4a-c** (Figure 5) and (RSi)(ItBuN)Si=Si(ItBuN)(SiR) ($R = (SiMe_3)_3$, tBu_3 , tBu_2Me).^[84, 161]

In conclusion, the obtained NHI-stabilized tetrylenes and stannylenes showcased their capability in small molecule activation and catalysis. The introduction of modified NHIs or other new ligands in combination with NHIs to low-valent germanium and tin centers could further advance the field and give more insights into the yet unrealized possibilities of these compounds.

- [1] J. M. A.P. Kieboom, P.W.N.M. van Leeuwen and R.A. van Santen, in *Catalysis: An Integrated Approach*, second ed. (Ed.: P. W. N. M. v. L. R.A. van Santen, J.A. Moulijn, B.A. Averill), Elsevier Science, Amsterdam, **2000**, pp. 3 27.
- [2] E. Fulhame, An Essay on Combustion, With a View to a New Art of Dying and Painting. Wherein the Phlogistic and Antiphlogistic Hypotheses are Proved Erroneous, Printed for the Author by J. Cooper, London, **1794**.
- [3] A. C.-B. K. J. Laidler, in *New Beer in an Old Bottle: Eduard Buchner and the Growth of Biochemical Knowledge* (Ed.: A. Cornis-Bowden), Universitat de València, València, **1997**, pp. 123-126.
- [4] M. Thiemann, E. Scheibler, K. W. Wiegand: "Nitric Acid, Nitrous Acid, and Nitrogen Oxides", in Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release, Wiley-VCH, Weinheim, 2000.
- [5] J. Hagen, in *Industrial Catalysis: A Practical Approach* (Ed.: J. Hagen), Wiley-VHC, Weinheim, **2015**, pp. 1-16.
- [6] M. Appl: "Ammonia, 2. Production Processes", in *Ullmann's Encyclopedia of Industrial Chemistry, Electronic Release*, Wiley-VCH, Weinheim, **2011**.
- [7] W. A. H. B. Cornils, R. Schlögl, C.-H. Wong, in *Catalysis from A to Z: A Concise Encyclopedia, Vol. 1*, fourth ed. (Ed.: W. A. H. B. Cornils, C.-H. Wong, H.-W. Zanthoff), Wiley-VCH, Weinheim, **2013**, p. VIII.
- [8] B. Yang, J. He, G. Zhang, J. Guo, in *Vanadium Extraction, Manufacturing, and Applications*, Elsevier, Amsterdam, **2021**, pp. 415-443.
- [9] Y. Watanabe, in *Encyclopedia of Interfacial Chemistry* (Ed.: K. Wandelt), Elsevier, Oxford, **2018**, pp. 398-405.
- [10] S. Inoue, R. L. Melen, S. Harder, Eur. J. Inorg. Chem. 2022, 2022, e202200414.
- [11] Z. Zhou, *Npj Comput. Mater.* **2021**, *7*, 209.
- [12] L. E. Gusel'nikov, N. S. Nametkin, Chem. Rev. 1979, 79, 529-577.
- [13] P. Jutzi, Angew. Chem., Int. Ed. Engl. 1975, 14, 232-245.
- [14] P. J. Davidson, D. H. Harris, M. F. Lappert, J. Chem. Soc., Dalton Trans. 1976, 2268-2274.
- [15] D. E. Goldberg, D. H. Harris, M. F. Lappert, K. M. Thomas, *J. Chem. Soc., Chem. Commun.* **1976**, 261-262.
- [16] R. West, M. J. Fink, J. Michl, *Science* **1981**, *214*, 1343-1344.
- [17] M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, T. Higuchi, *J. Am. Chem. Soc.* **1981**, *103*, 4587-4589.
- [18] A. G. Brook, F. Abdesaken, B. Gutekunst, G. Gutekunst, R. K. Kallury, *J. Chem. Soc., Chem. Commun.* **1981**, 191-192.
- [19] N. Sen, S. Khan, *Chem. Asian J.* **2021**, *16*, 705-719.
- [20] T. Chu, G. I. Nikonov, *Chem. Rev.* **2018**, *118*, 3608-3680.
- [21] P. K. Majhi, T. Sasamori, *Chem. Eur. J.* **2018**, *24*, 9441-9455.
- [22] S. Stigler, S. Fujimori, A. Kostenko, S. Inoue, *Chem. Sci.* 2024, *15*, 4275-4291.
- [23] Y. Mizuhata, T. Sasamori, N. Tokitoh, *Chem. Rev.* **2009**, *109*, 3479-3511.
- [24] N. V. Sidgwick, in *The Electronic Theory of Valency*, Claredon Press, Oxford, **1927**, pp. 178-181.
- [25] R. S. Drago, J. Phys. Chem. 1958, 62, 353-357.
- [26] C. Weetman, S. Inoue, ChemCatChem 2018, 10, 4213-4228.
- [27] N. Wiberg, E. Wiberg, A. Holleman, in Lehrbuch für Anorganische Chemie, Band 1: Grundlagen und Hauptgruppenelemente (Ed.: A. Holleman), De Gruyter, Berlin, Boston, 2017, pp. 994-1215.
- [28] D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, *Chem. Rev.* **2000**, *100*, 39-92.
- [29] F. Glorius, in *N-Heterocyclic Carbenes in Transition Metal Catalysis* (Ed.: F. Glorius), Springer Verlag, Berlin, Heidelberg, **2007**, pp. 1-20.
- [30] J. L. Moore, T. Rovis, in *Asymmetric Organocatalysis* (Ed.: B. List), Springer Berlin Heidelberg, Berlin, Heidelberg, **2009**, pp. 118-144.
- [31] G. Trinquier, J. Am. Chem. Soc. 1990, 112, 2130-2137.
- [32] A. Nemirowski, P. R. Schreiner, J. Org. Chem. 2007, 72, 9533-9540.
- [33] H. W. Wanzlick, Angew. Chem., Int. Ed. Engl. 1962, 1, 75-80.

- [34] S. Gronert, J. R. Keeffe, R. A. More O'Ferrall, J. Am. Chem. Soc. 2011, 133, 3381-3389.
- [35] R. Breslow, J. Am. Chem. Soc. **1958**, 80, 3719-3726.
- [36] D. Bourissou, G. Bertrand, in *Advances in Organometallic Chemistry, Vol. 44* (Eds.: R. West, A. F. Hill), Academic Press, **1999**, pp. 175-219.
- [37] A. Igau, H. Grutzmacher, A. Baceiredo, G. Bertrand, *J. Am. Chem. Soc.* **1988**, *110*, 6463-6466.
- [38] N. Emig, J. Tejeda, R. Réau, G. Bertrand, *Tetrahedron Lett.* **1995**, *36*, 4231-4234.
- [39] W. A. Herrmann, *Angew. Chem., Int. Ed.* **2002**, *41*, 1290-1309.
- [40] C. M. Crudden, D. P. Allen, *Coord. Chem. Rev.* **2004**, 248, 2247-2273.
- [41] V. Nesterov, D. Reiter, P. Bag, P. Frisch, R. Holzner, A. Porzelt, S. Inoue, *Chem. Rev.* **2018**, *118*, 9678-9842.
- [42] N. Kuhn, T. Kratz, Synthesis **1993**, 1993, 561-562.
- [43] A. J. Arduengo, III, H. Bock, H. Chen, M. Denk, D. A. Dixon, J. C. Green, W. A. Herrmann, N. L. Jones, M. Wagner, R. West, *J. Am. Chem. Soc.* **1994**, *116*, 6641-6649.
- [44] X. Bantreil, S. P. Nolan, *Nat. Protoc.* **2011**, *6*, 69-77.
- [45] M. A. Wünsche, P. Mehlmann, T. Witteler, F. Buß, P. Rathmann, F. Dielmann, *Angew. Chem., Int. Ed.* **2015**, *54*, 11857-11860.
- [46] A. Das, P. Sarkar, S. Maji, S. K. Pati, S. K. Mandal, *Angew. Chem., Int. Ed.* **2022**, *61*, e202213614.
- [47] Y. K. Loh, M. Ángeles Fuentes, P. Vasko, S. Aldridge, *Angew. Chem., Int. Ed.* **2018**, *57*, 16559-16563.
- [48] L. F. B. Wilm, M. Das, D. Janssen-Müller, C. Mück-Lichtenfeld, F. Glorius, F. Dielmann, *Angew. Chem., Int. Ed.* **2022**, *61*, e202112344.
- [49] T. Ochiai, D. Franz, S. Inoue, Chem. Soc. Rev. 2016, 45, 6327-6344.
- [50] X. Wu, M. Tamm, Coord. Chem. Rev. 2014, 260, 116-138.
- [51] N. Kuhn, M. Göhner, M. Grathwohl, J. Wiethoff, G. Frenking, Y. Chen, *Z. anorg. allg. Chem.* **2003**, *629*, 793-802.
- [52] N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, D. Bläser, R. Boese, Z. Naturforsch. B 1995, 50, 1779-1784.
- [53] N. Kuhn, U. Abram, C. Maichle-Mößmer, J. Wiethoff, *Z. anorg. allg. Chem.* **1997**, *6*23, 1121-1124.
- [54] M. W. Lui, C. Merten, M. J. Ferguson, R. McDonald, Y. Xu, E. Rivard, *Inorg. Chem.* **2015**, *54*, 2040-2049.
- [55] M. Tamm, S. Randoll, T. Bannenberg, E. Herdtweck, *Chem. Commun.* 2004, 876-877.
- [56] M. Tamm, S. Beer, E. Herdtweck, Z. Naturforsch. B 2004, 59, 1497-1504.
- [57] S. Zhang, M. Tamm, K. Nomura, *Organometallics* **2011**, *30*, 2712-2720.
- [58] T. Ochiai, D. Franz, E. Irran, S. Inoue, Chem. Eur. J. 2015, 21, 6704-6707.
- [59] T. Ochiai, D. Franz, X.-N. Wu, E. Irran, S. Inoue, *Angew. Chem., Int. Ed.* **2016**, *55*, 6983-6987.
- [60] S. Beer, K. Brandhorst, C. G. Hrib, X. Wu, B. Haberlag, J. Grunenberg, P. G. Jones, M. Tamm, *Organometallics* **2009**, *28*, 1534-1545.
- [61] M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones, J. Grunenberg, *Org. Biomol. Chem.* **2007**, *5*, 523-530.
- [62] S. Beer, C. G. Hrib, P. G. Jones, K. Brandhorst, J. Grunenberg, M. Tamm, *Angew. Chem., Int. Ed.* **2007**, *46*, 8890-8894.
- [63] S. Revathi, P. Raja, S. Saha, M. S. Eisen, T. Ghatak, *Chem. Commun.* 2021, *57*, 5483-5502.
- [64] Alexandra G. Trambitas, Tarun K. Panda, M. Tamm, *Z. anorg. allg. Chem.* **2010**, 636, 2156-2171.
- [65] A. G. Trambitas, T. K. Panda, J. Jenter, P. W. Roesky, C. Daniliuc, C. G. Hrib, P. G. Jones, M. Tamm, *Inorg. Chem.* **2010**, *49*, 2435-2446.
- [66] N. Kuhn, R. Fawzi, M. Steimann, J. Wiethoff, Z. anorg. allg. Chem. 1997, 623, 769-774.
- [67] P. Raja, R. S, T. Ghatak, *Eng. Sci.* **2020**, *12*, 23-37.
- [68] B. Haberlag, X. Wu, K. Brandhorst, J. Grunenberg, C. G. Daniliuc, P. G. Jones, M. Tamm, *Chem. Eur. J.* **2010**, *16*, 8868-8877.
- [69] H. Deka, N. Fridman, M. Koneczny, M. Tamm, M. S. Eisen, *Catal. Sci. Technol.* **2023**, *13*, 352-361.
- [70] M. Khononov, N. Fridman, M. Tamm, M. S. Eisen, *Eur. J. Org. Chem.* **2020**, 2020, 3153-3160.

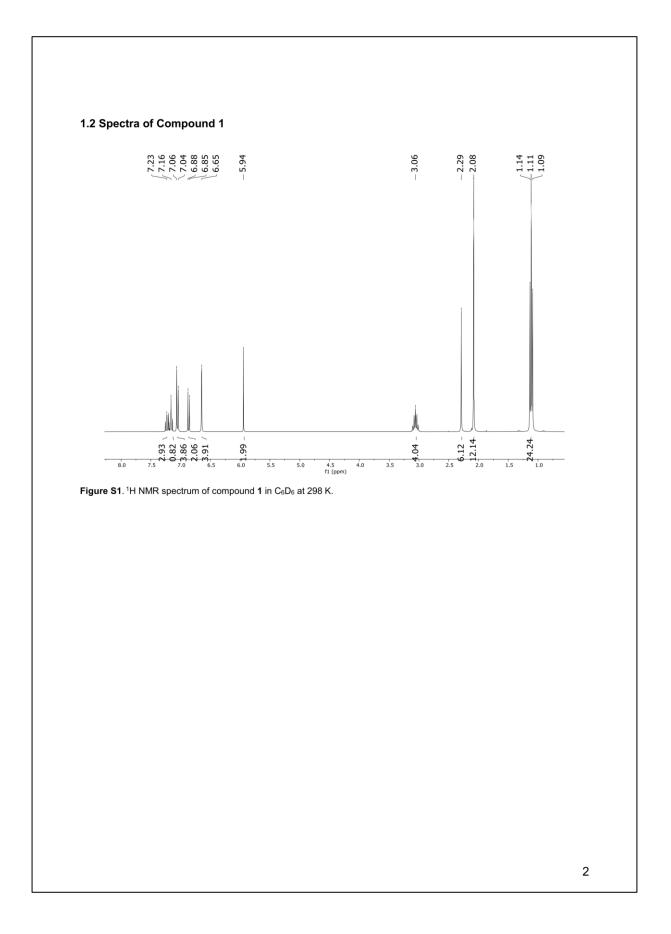
- [71] S. H. Stelzig, M. Tamm, R. M. Waymouth, *J. Polym. Sci., Part A: Polym. Chem.* **2008**, *46*, 6064-6070.
- [72] M. Sharma, H. S. Yameen, B. Tumanskii, S.-A. Filimon, M. Tamm, M. S. Eisen, J. Am. Chem. Soc. 2012, 134, 17234-17244.
- [73] D. Shoken, L. J. W. Shimon, M. Tamm, M. S. Eisen, Organometallics 2016, 35, 1125-1131.
- [74] K. Naktode, S. Das, J. Bhattacharjee, H. P. Nayek, T. K. Panda, *Inorg. Chem.* 2016, 55, 1142-1153.
- [75] M. Park, C. Schmidt, S. Türck, F. Hanusch, S. V. Hirmer, I. Ott, A. Casini, S. Inoue, *ChemPlusChem* 2024, 89, e202300557.
- [76] D. Franz, L. Sirtl, A. Pöthig, S. Inoue, Z. anorg. allg. Chem. 2016, 642, 1245-1250.
- [77] B. Wang, W. Chen, J. Yang, L. Lu, J. Liu, L. Shen, D. Wu, *Dalton Trans.* **2023**, *52*, 12454-12460.
- [78] L. Denker, B. Trzaskowski, R. Frank, Chem. Commun. 2021, 57, 2816-2819.
- [79] D. Wendel, A. Porzelt, F. A. D. Herz, D. Sarkar, C. Jandl, S. Inoue, B. Rieger, J. Am. Chem. Soc. 2017, 139, 8134-8137.
- [80] D. Wendel, D. Reiter, A. Porzelt, P. J. Altmann, S. Inoue, B. Rieger, *J. Am. Chem. Soc.* **2017**, *139*, 17193-17198.
- [81] T. Eisner, A. Kostenko, F. Hanusch, S. Inoue, *Chem. Eur. J.* **2022**, *28*, e202202330.
- [82] H. Zhu, A. Kostenko, D. Franz, F. Hanusch, S. Inoue, J. Am. Chem. Soc. 2023, 145, 1011-1021.
- [83] T. Ochiai, S. Inoue, *RSC Adv.* **2017**, *7*, 801-804.
- [84] D. Wendel, T. Szilvási, C. Jandl, S. Inoue, B. Rieger, *J. Am. Chem. Soc.* **2017**, *139*, 9156-9159.
- [85] M. Segizbayev, M. Tho Nguyen, D. G. Gusev, A. Dmitrienko, M. Pilkington, A. van der Est, G. I. Nikonov, *Chem. Eur. J.* **2023**, *29*, e202301981.
- [86] H. Zhu, F. Hanusch, S. Inoue, *Isr. J. Chem.* **2023**, 63, e202300012.
- [87] W. Kutzelnigg, Angew. Chem., Int. Ed. Engl. **1984**, 23, 272-295.
- [88] L. Zhao, S. Pan, N. Holzmann, P. Schwerdtfeger, G. Frenking, *Chem. Rev.* 2019, 119, 8781-8845.
- [89] M. S. Nechaev, *Organometallics* **2021**, *40*, 3408-3423.
- [90] M. S. Gordon, Chem. Phys. Lett. **1985**, 114, 348-352.
- [91] P. P. Gaspar, A. M. Beatty, T. Chen, T. Haile, D. Lei, W. R. Winchester, J. Braddock-Wilking, N. P. Rath, W. T. Klooster, T. F. Koetzle, S. A. Mason, A. Albinati, *Organometallics* **1999**, *18*, 3921-3932.
- [92] A. V. Protchenko, J. I. Bates, L. M. A. Saleh, M. P. Blake, A. D. Schwarz, E. L. Kolychev, A. L. Thompson, C. Jones, P. Mountford, S. Aldridge, *J. Am. Chem. Soc.* **2016**, *138*, 4555-4564.
- [93] A. V. Protchenko, M. A. Fuentes, J. Hicks, C. McManus, R. Tirfoin, S. Aldridge, *Dalton Trans.* 2021, 50, 9059-9067.
- [94] A. V. Protchenko, K. H. Birjkumar, D. Dange, A. D. Schwarz, D. Vidovic, C. Jones, N. Kaltsoyannis, P. Mountford, S. Aldridge, *J. Am. Chem. Soc.* **2012**, *134*, 6500-6503.
- [95] C. Marschner, *Eur. J. Inorg. Chem.* **2015**, 2015, 3805-3820.
- [96] M. He, C. Hu, R. Wei, X.-F. Wang, L. L. Liu, *Chem. Soc. Rev.* 2024, 53, 3896-3951.
- [97] V. Y. Lee, A. Sekiguchi, in *Organometallic Compounds of Low-Coordinate Si, Ge, Sn and Pb* (Eds.: V. Y. Lee, A. Sekiguchi), John Wiley & Sons Ltd, Chichester, **2010**, pp. 139-197.
- [98] R. S. Ghadwal, H. W. Roesky, S. Merkel, J. Henn, D. Stalke, *Angew. Chem., Int. Ed.* **2009**, *48*, 5683-5686.
- [99] R. S. Ghadwal, R. Azhakar, H. W. Roesky, Acc. Chem. Res. 2013, 46, 444-456.
- [100] Y. Li, Y.-C. Chan, Y. Li, I. Purushothaman, S. De, P. Parameswaran, C.-W. So, *Inorg. Chem.* **2016**, *55*, 9091-9098.
- [101] M. K. Denk, M. Khan, A. J. Lough, K. Shuchi, *Acta Crystallogr., Sec. C* **1998**, *54*, 1830-1832.
- [102] P. P. Power, *Nature* **2010**, *4*63, 171-177.
- [103] G. H. Spikes, J. C. Fettinger, P. P. Power, J. Am. Chem. Soc. 2005, 127, 12232-12233.
- [104] Y. Peng, B. D. Ellis, X. Wang, P. P. Power, J. Am. Chem. Soc. 2008, 130, 12268-12269.
- [105] T. J. Hadlington, M. Hermann, G. Frenking, C. Jones, *J. Am. Chem. Soc.* **2014**, *136*, 3028-3031.
- [106] Y. Wu, C. Shan, Y. Sun, P. Chen, J. Ying, J. Zhu, L. L. Liu, Y. Zhao, Chem. Commun. 2016, 52, 13799-13802.
- [107] R. Dasgupta, S. Das, S. Hiwase, S. K. Pati, S. Khan, Organometallics 2019, 38, 1429-1435.

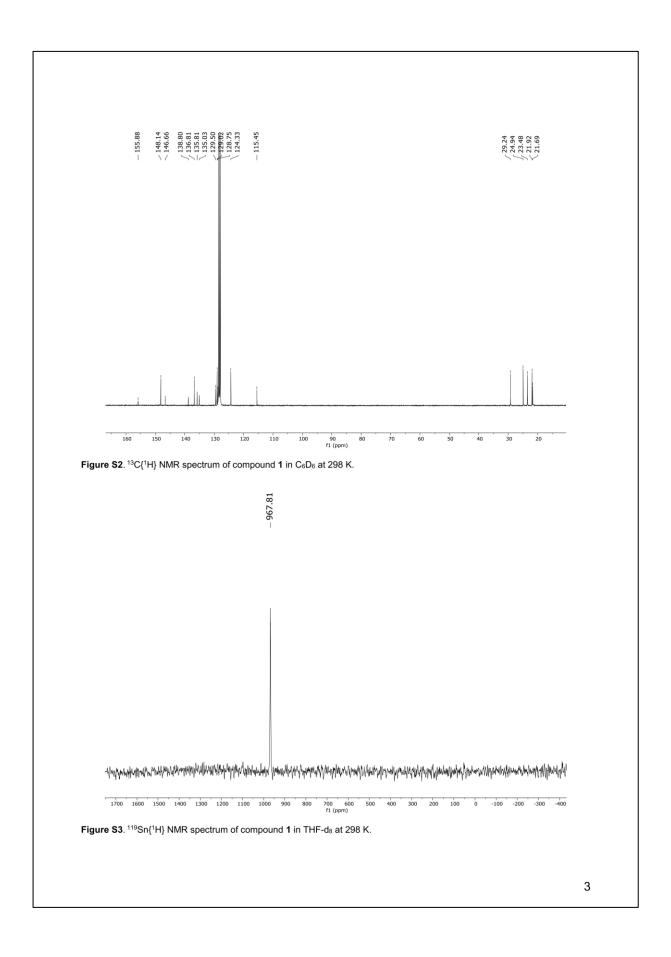
- [108] V. K. Singh, P. C. Joshi, H. Kumar, R. K. Siwatch, C. K. Jha, S. Nagendran, *Dalton Trans.* 2022, 51, 16906-16914.
- [109] W. P. Neumann, *Chem. Rev.* **1991**, *91*, 311-334.
- [110] J. Satge, *Pure. Appl. Chem.* **1984**, *56*, 137-150.
- [111] P. Jutzi, A. Becker, H. G. Stammler, B. Neumann, Organometallics 1991, 10, 1647-1648.
- [112] D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1974, 895-896.
- [113] D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland, B. E. R. Schilling, *J. Chem. Soc., Dalton Trans.* **1986**, 2387-2394.
- [114] L. Lange, B. Meyer, W.-W. du Mont, J. Organomet. Chem. 1987, 329, C17-C20.
- [115] R. S. Simons, L. Pu, M. M. Olmstead, P. P. Power, Organometallics 1997, 16, 1920-1925.
- [116] Y. Peng, J.-D. Guo, B. D. Ellis, Z. Zhu, J. C. Fettinger, S. Nagase, P. P. Power, J. Am. Chem. Soc. 2009, 131, 16272-16282.
- [117] X. Wang, Z. Zhu, Y. Peng, H. Lei, J. C. Fettinger, P. P. Power, *J. Am. Chem. Soc.* **2009**, *131*, 6912-6913.
- [118] L. Li, T. Fukawa, T. Matsuo, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, *Nat. Chem.* **2012**, *4*, 361-365.
- [119] P. Jutzi, H. Schmidt, B. Neumann, H.-G. Stammler, Organometallics 1996, 15, 741-746.
- [120] J. D. Erickson, P. Vasko, R. D. Riparetti, J. C. Fettinger, H. M. Tuononen, P. P. Power, *Organometallics* **2015**, *34*, 5785-5791.
- [121] J. W. Dube, C. M. E. Graham, C. L. B. Macdonald, Z. D. Brown, P. P. Power, P. J. Ragogna, *Chem. Eur. J.* **2014**, *20*, 6739-6744.
- [122] C. Ganesamoorthy, J. Schoening, C. Wölper, L. Song, P. R. Schreiner, S. Schulz, *Nat. Chem.* **2020**, *12*, 608-614.
- [123] D. Reiter, R. Holzner, A. Porzelt, P. Frisch, S. Inoue, *Nat. Chem.* 2020, *12*, 1131-1135.
- [124] T. Ochiai, D. Franz, X.-N. Wu, S. Inoue, *Dalton Trans.* 2015, 44, 10952-10956.
- [125] M. Usher, A. V. Protchenko, A. Rit, J. Campos, E. L. Kolychev, R. Tirfoin, S. Aldridge, *Chem. Eur. J.* 2016, 22, 11685-11698.
- [126] A. V. Protchenko, M. P. Blake, A. D. Schwarz, C. Jones, P. Mountford, S. Aldridge, Organometallics 2015, 34, 2126-2129.
- [127] S. Pal, R. Dasgupta, S. Khan, Organometallics 2016, 35, 3635-3640.
- [128] T. J. Hadlington, M. Hermann, G. Frenking, C. Jones, *Chem. Sci.* 2015, 6, 7249-7257.
- [129] T. J. Hadlington, C. E. Kefalidis, L. Maron, C. Jones, ACS Catal. 2017, 7, 1853-1859.
- [130] A. Meller, C.-P. Gräbe, *Chem. Ber.* **1985**, *118*, 2020-2029.
- [131] R. K. Siwatch, S. Nagendran, Chem. Eur. J. 2014, 20, 13551-13556.
- [132] A. Jana, H. W. Roesky, C. Schulzke, *Dalton Trans.* 2010, 39, 132-138.
- [133] V. Nesterov, R. Baierl, F. Hanusch, A. E. Ferao, S. Inoue, *J. Am. Chem. Soc.* **2019**, *141*, 14576-14580.
- [134] J. Schneider, C. P. Sindlinger, S. M. Freitag, H. Schubert, L. Wesemann, *Angew. Chem., Int. Ed.* **2017**, *56*, 333-337.
- [135] M. M. D. Roy, S. Fujimori, M. J. Ferguson, R. McDonald, N. Tokitoh, E. Rivard, Chem. Eur. J. 2018, 24, 14392-14399.
- [136] J. D. Cotton, P. J. Davidson, M. F. Lappert, J. Chem. Soc., Dalton Trans. 1976, 2275-2286.
- [137] M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, *J. Chem. Soc., Dalton Trans.* **1977**, 2004-2009.
- [138] R. C. Turnell-Ritson, J. S. Sapsford, R. T. Cooper, S. S. Lee, T. Földes, P. A. Hunt, I. Pápai,
 A. E. Ashley, *Chem. Sci.* 2018, *9*, 8716-8722.
- [139] M. Weidenbruch, J. Schlaefke, A. Schäfer, K. Peters, H. G. von Schnering, H. Marsmann, *Angew. Chem., Int. Ed. Engl.* **1994**, 33, 1846-1848.
- [140] B. E. Eichler, P. P. Power, *Inorg. Chem.* **2000**, *39*, 5444-5449.
- [141] C. Stanciu, S. S. Hino, M. Stender, A. F. Richards, M. M. Olmstead, P. P. Power, *Inorg. Chem.* **2005**, *44*, 2774-2780.
- [142] E. Rivard, R. C. Fischer, R. Wolf, Y. Peng, W. A. Merrill, N. D. Schley, Z. Zhu, L. Pu, J. C. Fettinger, S. J. Teat, I. Nowik, R. H. Herber, N. Takagi, S. Nagase, P. P. Power, J. Am. Chem. Soc. 2007, 129, 16197-16208.
- [143] W. Zou, K. L. Mears, J. C. Fettinger, P. P. Power, Chem. Commun. 2023, 59, 13203-13206.
- [144] T. Y. Lai, J.-D. Guo, J. C. Fettinger, S. Nagase, P. P. Power, *Chem. Commun.* **2019**, *55*, 405-407.
- [145] X.-X. Zhao, S. Fujimori, J. A. Kelly, S. Inoue, Chem. Eur. J. 2023, 29, e202202712.

- [146] X.-X. Zhao, T. Szilvási, F. Hanusch, J. A. Kelly, S. Fujimori, S. Inoue, Angew. Chem., Int. Ed. 2022, 61, e202208930.
- [147] D. Sarkar, C. Weetman, D. Munz, S. Inoue, Angew. Chem., Int. Ed. 2021, 60, 3519-3523.
- [148] J. D. Erickson, T. Y. Lai, D. J. Liptrot, M. M. Olmstead, P. P. Power, Chem. Commun. 2016, 52, 13656-13659.
- [149] K. V. Arsenyeva, A. V. Klimashevskaya, K. I. Pashanova, O. Y. Trofimova, M. G. Chegerev, A. A. Starikova, A. V. Cherkasov, G. K. Fukin, I. A. Yakushev, A. V. Piskunov, *Appl. Organomet. Chem.* **2022**, *36*, e6593.
- [150] O. Mozdiak, Z. Růžičková, M. Erben, L. Dostál, R. Jambor, *Eur. J. Inorg. Chem.*, *n*/a, e202400193.
- [151] H. J. Robertson, M. N. Fujiwara, A. L. Liberman-Martin, Polyhedron 2024, 250, 116837.
- [152] J. T. Goettel, H. Gao, S. Dotzauer, H. Braunschweig, *Chem. Eur. J.* **2020**, *26*, 1136-1143.
- [153] D. Franz, E. Irran, S. Inoue, *Dalton Trans.* **2014**, *43*, 4451-4461.
- [154] D. Sarkar, L. Groll, D. Munz, F. Hanusch, S. Inoue, *ChemCatChem* **2022**, *14*, e202201048.
- [155] L. Groll, J. A. Kelly, S. Inoue, *Chem. Asian J.* 2024, *19*, e202300941.
- [156] S. Fujimori, S. Inoue, *Eur. J. Inorg. Chem.* **2020**, 2020, 3131-3142.
- [157] Z. Dong, Z. Li, X. Liu, C. Yan, N. Wei, M. Kira, T. Müller, Chem. Asian J. 2017, 12, 1204-1207.
- [158] S. Huynh, M. Arrowsmith, L. Meier, M. Dietz, M. Härterich, M. Michel, A. Gärtner, H. Braunschweig, *Dalton Trans.* **2023**, *52*, 3869-3876.
- [159] D. Reiter, R. Holzner, A. Porzelt, P. J. Altmann, P. Frisch, S. Inoue, *J. Am. Chem. Soc.* **2019**, *141*, 13536-13546.
- [160] A. Sekiguchi, S. Inoue, M. Ichinohe, Y. Arai, J. Am. Chem. Soc. 2004, 126, 9626-9629.
- [161] R. Holzner, A. Porzelt, U. S. Karaca, F. Kiefer, P. Frisch, D. Wendel, M. C. Holthausen, S. Inoue, *Dalton Trans.* **2021**, *50*, 8785-8793.

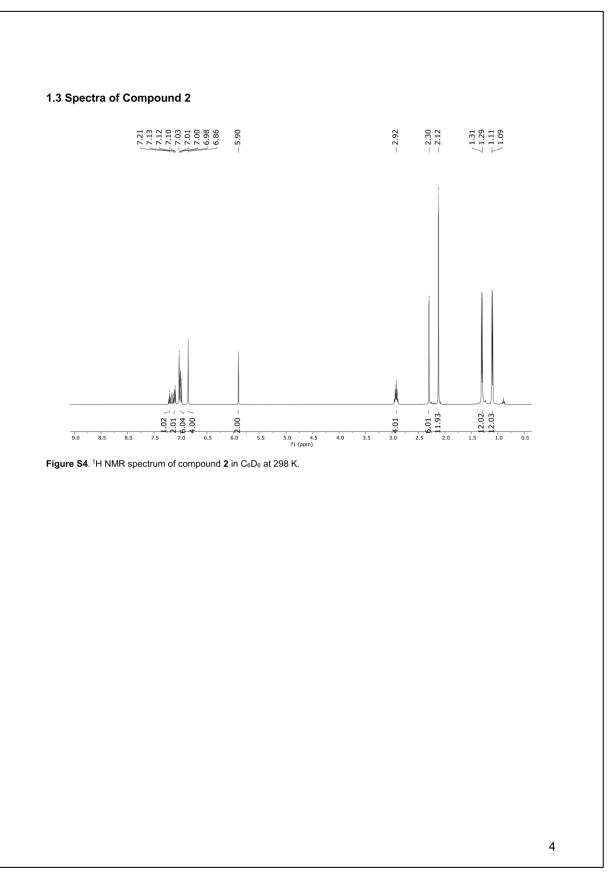
8. APPENDIX

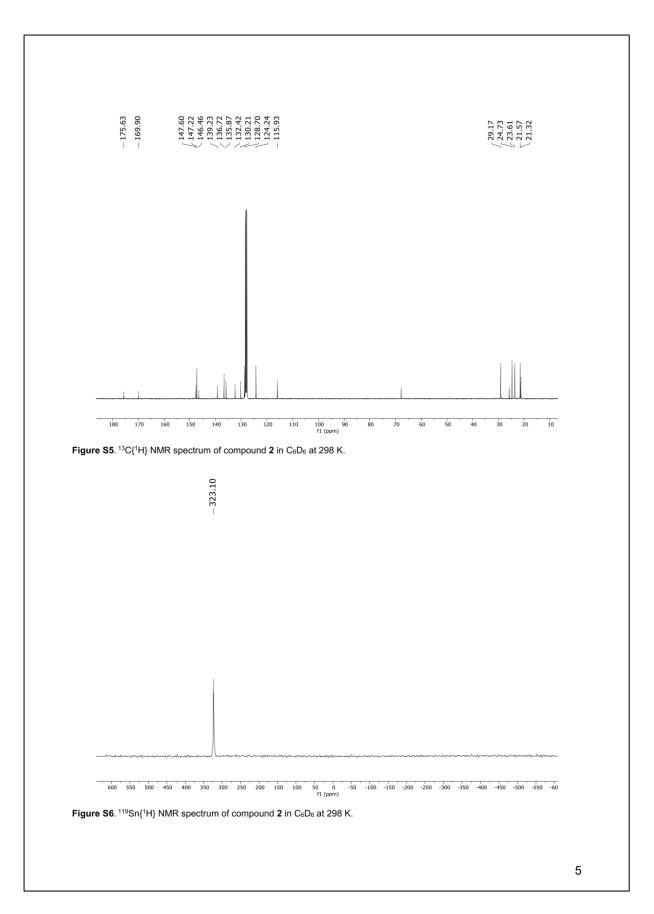
8.1. SUPPORTING INFORMATION FOR CHAPTER 4

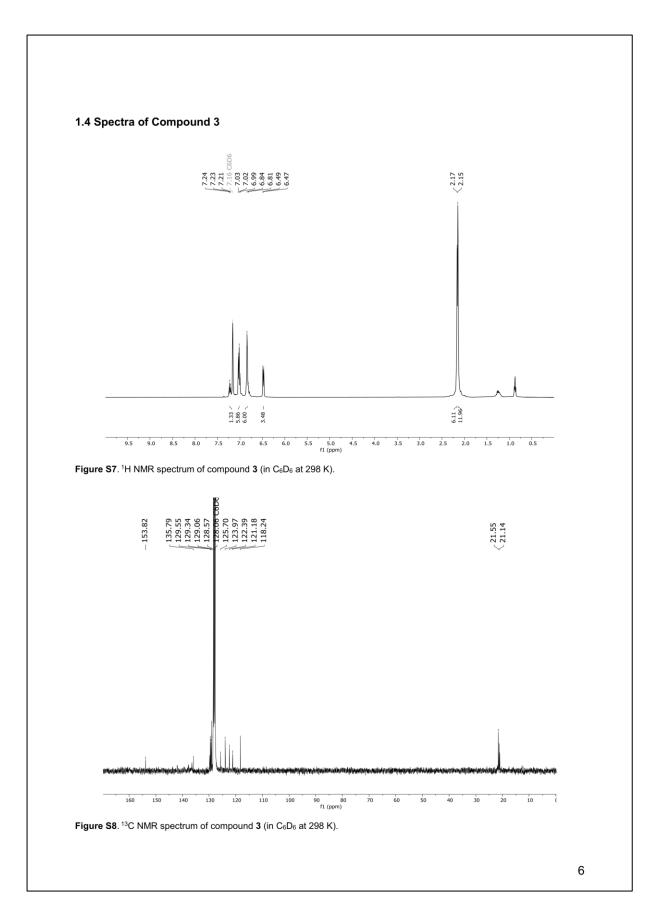

Table of Contents

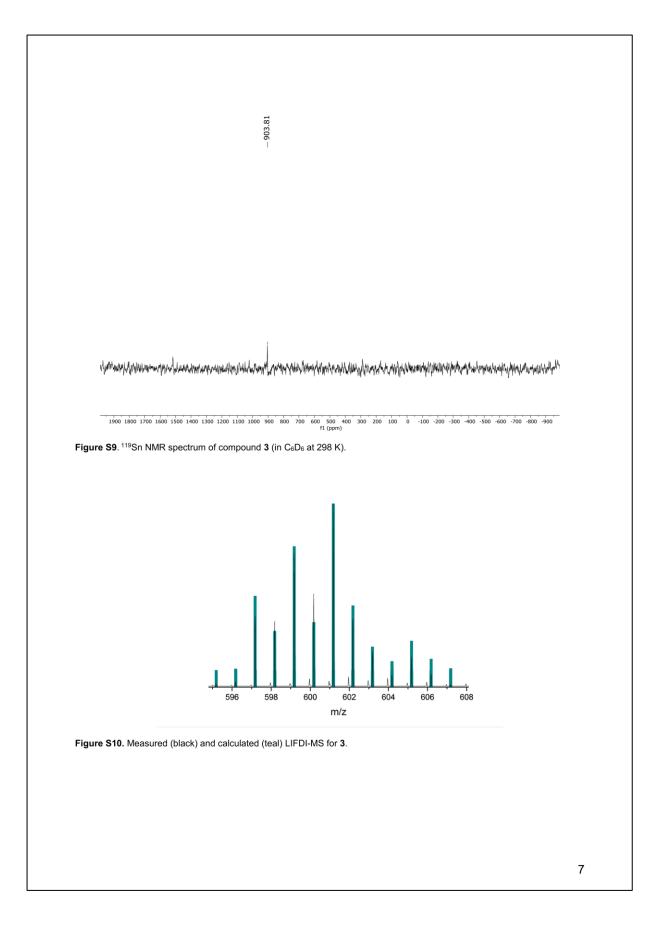

1. Experimental Procedures	1
1.1 General Information	1
1.2 Spectra of Compound 1	2
1.3 Spectra of Compound 2	4
1.4 Spectra of Compound 3	6
1.5 Spectra of Adduct-formation upon Reaction of 3 with CO2	8
1.6 Catalytic Hydroboration of CO ₂ by ^{Mes} Ter[N(IDipp)]Sn	10
2. X-Ray Crystallography	15
2.1 General Information	15
2.2 Crystal Data and Structure Refinement for Compound 1, 2, and 3	15
3. Computations	17
4. References	69

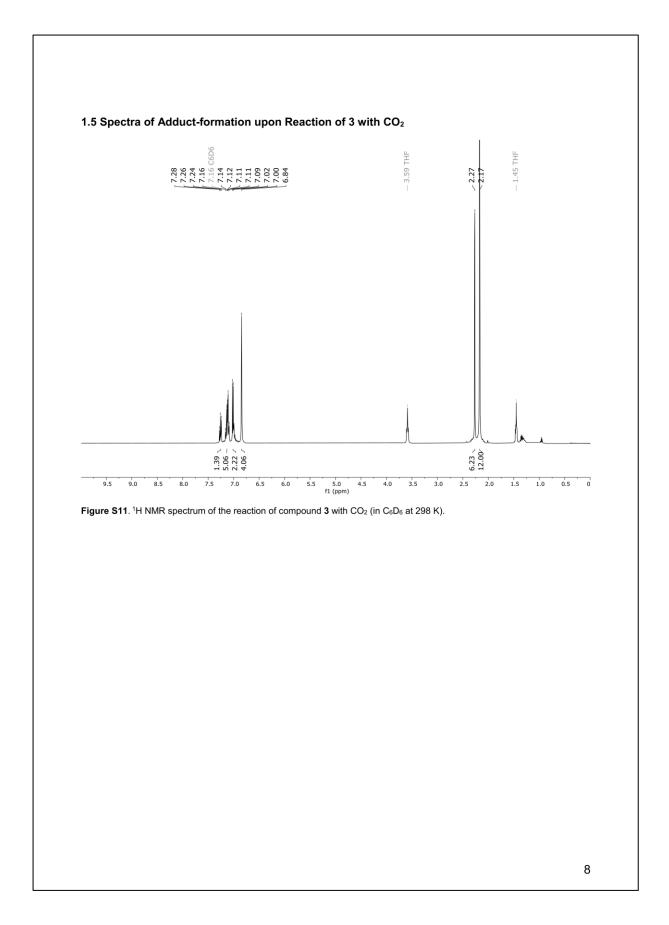
1. Experimental Procedures

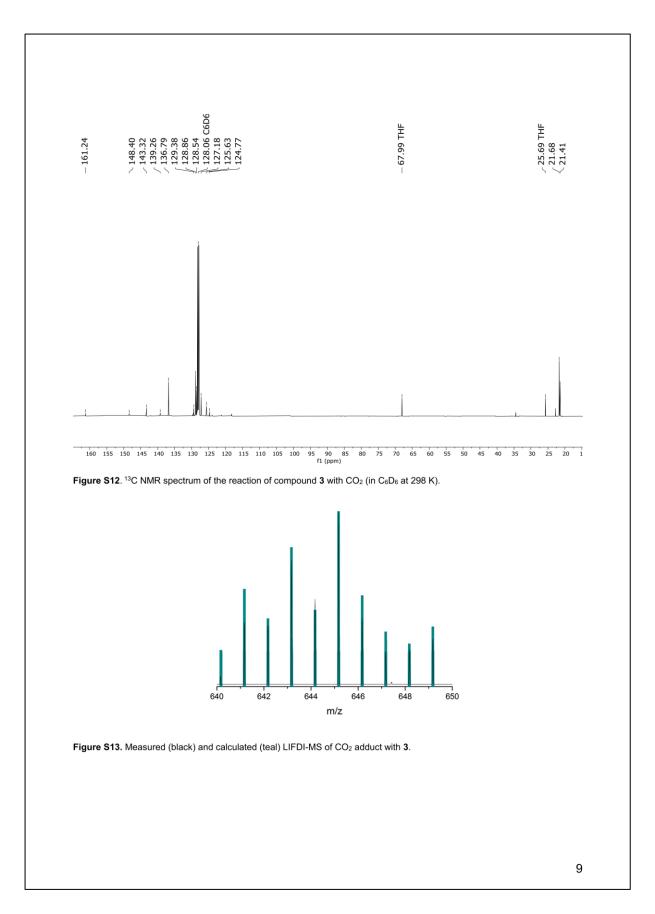

1.1 General Information


All experiments and manipulations were carried out under a dry argon atmosphere using standard Schlenk techniques or in a glovebox. All glass junctions were coated with PTFE-based grease Merkel Triboflon III. N-hexane, n-pentane, THF, benzene and toluene were refluxed over sodium/benzophenone, freshly distilled and deoxygenated prior to use. The ¹H, ¹³C, and ¹¹⁹Sn NMR spectra were measured on Bruker 400 MHz and 500 MHz spectrometers. Chemical shifts were referenced to residual solvent signals (¹H and ¹³C NMR). ¹¹⁹Sn NMR chemical shifts was referenced to Me₄Sn (¹¹⁹Sn). Deuterated solvent C₆D₆ and THF-d₈ were obtained from *Deutero* Deutschland GmbH and were dried over 4 Å molecular sieves prior to use. Unless otherwise stated, all reagents were purchased from commercial sources and used as received. Abbreviations: s = singlet, br = broad, d = doublet, t = triplet, m = multiplet. Elemental analyses (EA) were conducted with a EURO EA (HEKA tech) instrument equipped with a CHNS combustion analyzer. Thereby, all samples were prepared in THF solutions, filtered and injected into the spectrometers. TOF analyzation in cationic mode resulted in the obtained spectra, which were resolved by mass-to-charge values. Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS) was performed in an inert atmosphere glovebox with a Thermo Fisher Scientific Exactive Plus Orbitrap equipped with an ion source from Linden CMS.S7.^[S1] NHILi, [^mTerSnCl] and Ph₂NLi were synthesized according to literature procedures.^[S2]









1.6 Catalytic Hydroboration of CO₂ by ^{Mes}Ter[N(IDipp)]Sn

All catalytic reactions were performed according to the following procedure. As an internal standard, 0,33 equivalents of 1,3,5-Methoxybenzene were added before the start of the reaction, with the characteristic signal at 6.25 ppm in C_6D_6 (6.07 ppm in THF-d₈ respectively) chosen for referencing product yields. Identity of pinBO(C=O)H^[S3], pinBO(CH₂)OBpin^[S4], MeOBpin^[S3b, 5] and pinBOBpin^[S3b, 5] were determined by ¹H- and ¹¹B-NMR.

 $CO_2 + HBpin \frac{5 \text{ mol}\%}{C_8 D_6} \text{ Me}^{-O_Bpin} + \text{ pinB}^{-O_Bpin} + (\text{pinBO})_2 CH_2 + \text{ pinB}^{-O_C} O$

2,9 mg of ^{Mes}Ter[N(IDipp)]Sn (0.003 mmol, 0,05 eq.) were dissolved in 0,4 ml of the respective deuterated solvent in a *J-young* NMR tube. Then, 10 μ l of HBpin (8.82 mg, 0.063 mmol, 1.0 eq.) and 0.046 ml of a 0.5 M solution of 1,3,5-Methoxybenzene in C₆D₆ (0.023 mmol, 0.33 eq.) were added. The NMR tube was freeze-pump-thaw degassed two times before being refilled with 1 bar of CO₂. For respective solvent and temperature conditions see Table **S1** below.

Table S1. Overview of reaction conditions of performed Hydroboration reactions. All Reactions were performed with 2,9 mg of ^{Mes}Ter[N(IDipp)]Sn (0.003 mmol), 10 μ l of HBpin (8.82 mg, 0.063 mmol, 1.0 eq.) and 0,046 ml of a 0,5 M solution of 1,3,5-Methoxybenzene in C₆D₆ as internal standard. [a] Overall conversion calculated from ¹¹B NMR, due to too much overlap in methyl region of ¹H spectra.

Entry	Catalyst Loading [mol%]	Temperature [°C]	Solvent	Time [h]	Conversion ^[a] [%]
1	5	25	C_6D_6	24	48.87
2	5	25	THF-d ₈	24	94.94
3	5	50	THF-d ₈	6	96.81

Figure S14. Stacked ¹H NMR spectra, compound **1** (5.0 mol%) in C₆D₆, with HBpin (8.8 mg), 25° C and CO₂ (1 bar). *Left:* Full spectra with pinBO(C=O)H and pinBO(CH₂)OBpin assigned. *Right:* truncated spectra with pinBOMe and characteristic signal of isopropyl protons of [N(IDipp)] moiety of the active catalyst assigned. full conversion reaction time was not measured. pinBOBpin cannot be unambiguously identified in the ¹H NMR due to too much overlap in the methyl region.

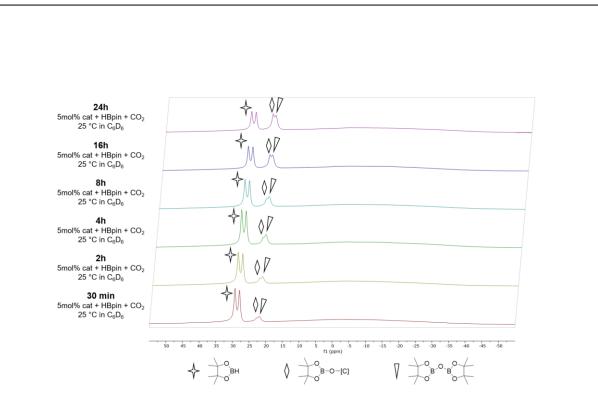
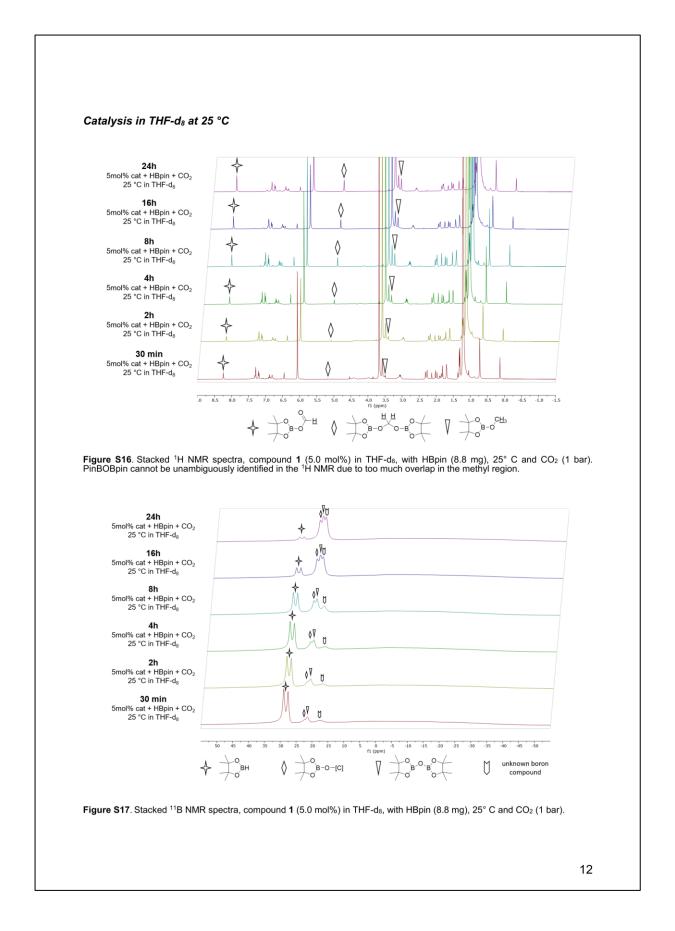



Figure S15. Stacked ¹¹B NMR spectra, compound 1 (5.0 mol%) in C_6D_6 , with HBpin (8.8 mg), 25° C and CO₂ (1 bar), full conversion reaction time was not measured.

Table S2. Product distribution in % over time in the catalytic CO₂ reduction by **1**. Reaction conditions: (5.0 mol%) **1** in C₆D₆, with HBpin (10.0 μ l), 25° C and CO₂ (1 bar). Individual product yields were calculated based on 1,3,5-trimethoxybenzene as internal standard. [a] Overall conversion calculated from ¹¹B-NMR, due to overlap in methyl region of ¹H-NMR spectra.

Reaction Time	Conversion ^[a] [%]	pinBOMe [%]	H(CO)OBpin [%]	CH2(OBpin)2 [%]	O(Bpin)2 [%]
30 min	15.68	4.73	-	-	10.90
2h	19.90	5.37	-	0.13	14.36
4h	24.26	7.39	-	0.27	16.53
8h	28.85	8.02	0.34	0.50	19.96
16h	42.26	9.59	5.15	1.22	25.97
24h	48.87	9.77	6.09	2.07	27.63

Table S3. Product distribution over time in the catalytic CO₂ reduction by **1**. Reaction conditions: (5.0 mol%) **1**, with HBpin (10.0 μl), and CO₂ (1 bar), in THF-d₉ at 25 C. HBpin conversion and Product yields are given in [%] and were calculated based on 1,3,5-trimethoxybenzene as internal standard. [a] Overall conversion calculated from ¹¹B-NMR, due to overlap in methyl region of ¹H-NMR spectra.

Reaction Time	Conversion ^[a] [%]	pinBOMe [%]	H(CO)OBpin [%]	CH ₂ (OBpin) ₂ [%]	O(Bpin) ₂ [%]
30 min	26.88	-	10.51	0.19	-
2h	31.52	6.46	10.89	1.82	-
4h	35.19	6.77	11.13	2.65	14,84
8h	66.07	7.56	14.53	5.42	21,41
16h	87.69	11.69	23.03	9.60	23,33
24h	94.94	13.13	27.04	10.85	29,40

Catalysis in THF-d₈ at 50 °C

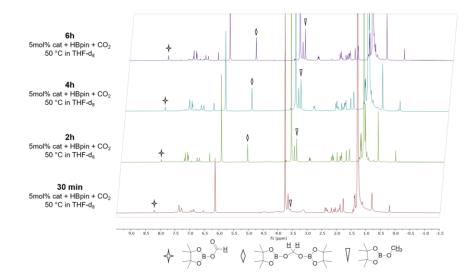


Figure S18. Stacked ¹H NMR spectra, compound 1 (5.0 mol%) in THF-d₈, with HBpin (8.8 mg), 50° C and CO₂ (1 bar). PinBOBpin cannot be unambiguously identified in the ¹H NMR due to too much overlap in the methyl region.

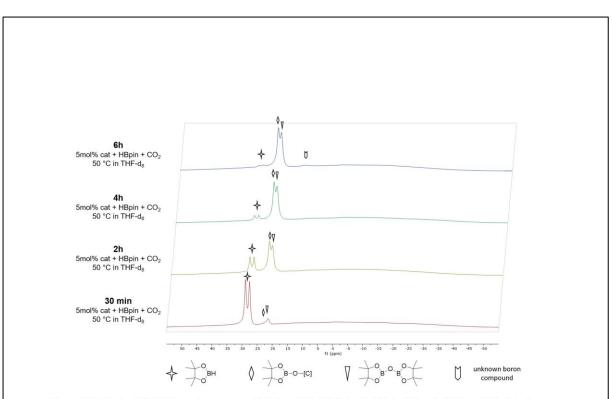


Figure S19. Stacked ¹¹B NMR spectra, compound 1 (5.0 mol%) in THF-d₈, with HBpin (8.8 mg), 50° C and CO₂ (1 bar).

Table S4. Product distribution over time in the catalytic CO_2 reduction by **1**. Reaction conditions: (5.0 mol%) **1** in THF-d₈, with HBpin (10.0 μ l), 50 °C and CO_2 (1 bar). Product yields were calculated based on 1,3,5-trimethoxybenzene as internal standard. [a] HBpin conversion calculated as sum of product yields. [a] Overall conversion calculated from ¹B-NMR, due to overlap in methyl region of ¹H-NMR spectra.

Reaction Time	Conversion ^[a] [%]	pinBOMe [%]	H(CO)OBpin [%]	CH ₂ (OBpin) ₂ [%]	O(Bpin)2 [%]
30 min	14.38	7,07	5.22	0,20	-
2h	73.23	13,38	5,60	14.36	32.53
4h	91.83	20.50	8,00	18.75	36.68
6h	96.81	20.82	8,78	19.10	37.47

2. X-Ray Crystallography

2.1 General Information

Single crystal diffraction data were recorded on a Bruker instrument equipped with a Helios optic monochromator, a Mo IMS microsource (λ = 0.71073 Å) and a CMOS plate or Photon area detector. The data collection was performed, using the APEX III software package^[S6] on single crystals coated with Fomblin ® Y as perfluorinated ether. The single crystals were picked on a micro sampler, transferred to the diffractometer and measured frozen under a stream of cold nitrogen (100 K). A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT.^[S7] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[S7] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps, and were refined against all data using the APEX III software in conjunction with SHELXL-2014^[S8] and SHELXLE.^[S9] H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and Uiso(H) = 1.2 Ueq(C). Nonhydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma w (Fo^2 - Fc^2)^2$ with the SHELXL-97 weighting scheme.^[S10] Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography.^[S11] The images of the crystal structures were generated by Mercury.^[S12] The CCDC numbers CCDC-2166130 to CCDC-2166132 contain the supplementary crystallographic data for the structures 1 to 3. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

2.2 Crystal Data and Structure Refinement for Compound 1, 2, and 3

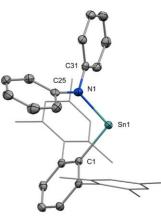
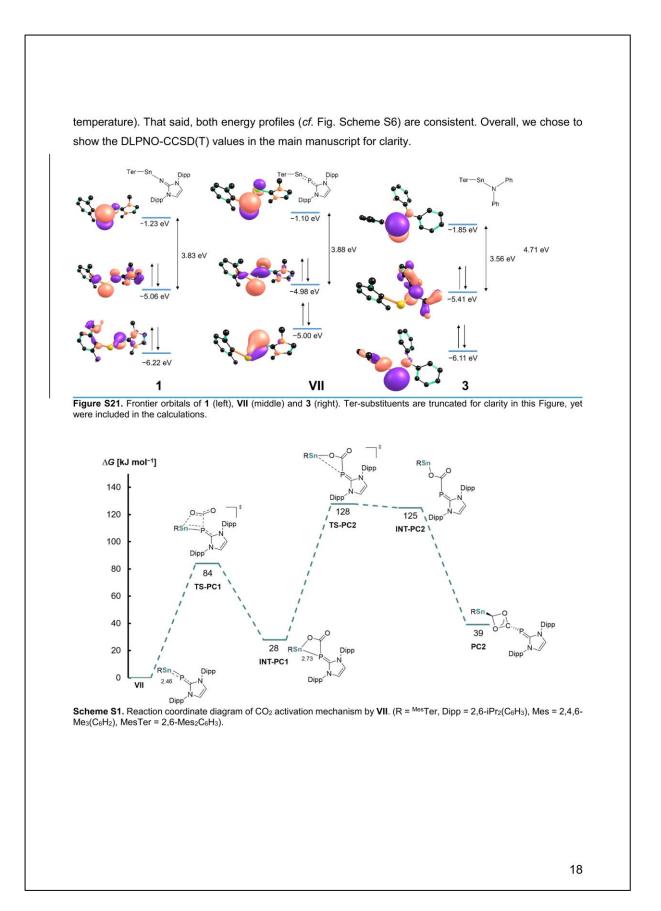
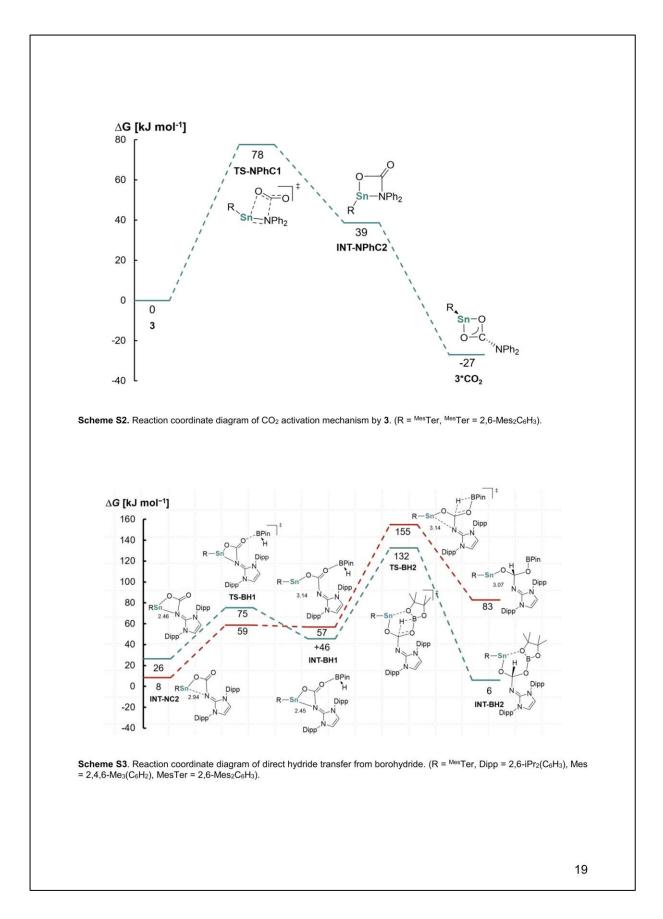
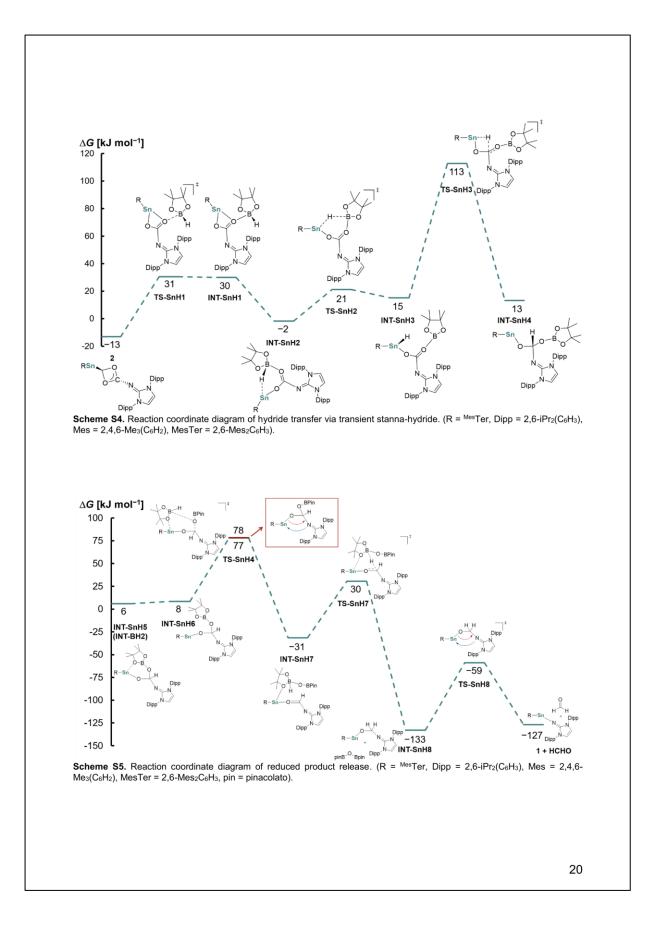


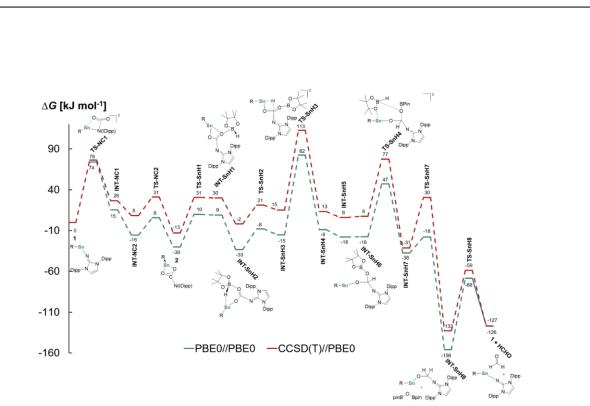
Figure S20. Molecular structures of compound 3 in the solid state. Ellipsoids are set at 50% probability level, hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Sn1-C1 2.202(2), Sn1-N1 2.118(2), N1-C25 1.416(2), N1-C31 1.402(2), C1-Sn1-N1 98.63(7).

 Table S5. Crystal data and structure refinement for compound 1, 2, and 3.


Compound #	1	2	3	
CCDC Number	2166130	2166131	2166132	
Chemical formula	C51 H61 N3 Sn	C52 H61 N3 O2 Sn, 2(C7 H8)	C36 H35 N Sn	
Formula weight	Formula weight 834.74 g mol ⁻¹		600.36 g/mol	
Temperature	100 K	1063.02 g/mol 100 K	100 K	
Wavelength	0.71073 Å	0.71073 Å	1.54178 Å	
Crystal size	0.199 x 0.187 x 0.126 mm	0.328 x 0.264 x 0.200 mm	0.228 x 0.195 x 0.117 mm	
Crystal habit	clear orange fragment	clear colourless fragment	clear red fragment	
Crystal system	triclinic	triclinic	triclinic	
Space group	P -1	P -1	P-1	
Unit cell dimensions	a = 10.5490(13) Å; α = 86.474(4)°	a = 12.235(3) Å; α = 89.851(7)°	a = 9.833(6) Å; α = 109.69(2)°	
	b = 11.1754(10) Å; β = 88.379(4)°	b = 12.398(3) Å; β = 89.874(7)°	b = 12.487(7) Å; β = 105.32(3)°	
	c = 20.812(3) Å; γ = 63.707(3)°	c = 19.346(4) Å; γ = 75.165(7)°	c = 14.536(9) Å; γ = 97.02(2)°	
Volume	2195.5(5) Å ³	2836.8(11) Å ³	1576.3(17) Å ³	
Z	2	2	2	
Density (calculated)	1.263 g/cm ³	1.245 g/cm ³	1.265 g/cm ³	
Radiation source	IMS microsource	IMS microsource	IMS microsource	
Theta range for data collection	2.04 to 25.35°	2.00 to 25.35°	2.21 to 25.35°	
Index ranges	-12<=h<=12, -13<=k<=13, -25<=l<=25	-14<=h<=14, -14<=k<=14, -22<=l<=23	-11<=h<=11, -15<=k<=15, -17<=l<=17	
Reflections collected	36727	116862	58406	
Independent reflections	8019	10376	5763	
Completeness	0.998	0.999	0.999	
Absorption correction	Multi-Scan	Multi-Scan	Multi-Scan	
Max. and min. transmission	0.7452 and 0.6355	0.7453 and 0.7073	0.7453 and 0.6860	
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	
Function minimized	$\Sigma \text{ w}(\text{F}_{o}^2 - \text{F}_{c}^2)^2$	$\Sigma \text{ w}(F_o^2 - F_c^2)^2$	$\Sigma \text{ w}(\text{F}_{o}^2 - \text{F}_{c}^2)^2$	
Data / restraints / parameters	8019 / 0 / 510	10376 / 0 / 664	5763 / 0 / 349	
Goodness-of-fit on F ²	0.963	0.992	0.988	
Final R indices [I>2sigma(I)]	R1 = 0.0343, wR2 = 0.0726	R1 = 0.0225, wR2 = 0.0603	R1 = 0.0189, wR2 = 0.0492	
R indices (all data)	R1 = 0.0542, wR2 = 0.0811	R1 = 0.0237, wR2 = 0.0613	R1 = 0.0198, wR2 = 0.0498	
Largest diff. peak and hole	0.576 and –0.564 eÅ ⁻³	0.339 and –0.329 eÅ ⁻³	0.879 and –0.300 eÅ ⁻³	


3. Computations


All calculations were performed with ORCA v4.2.1, except the ones depicted in Scheme S2 (Table S6, respectively), which were run with ORCA v5.0.3.[S10]


The geometric parameters of all compounds were optimized without constraints using the PBE0 functional,^[S13] with dispersion correction D3(BJ)^[S14] and the def2-SVP basis set.^[S15] PBE0 has been chosen, since it is a robust functional with good performance for structural parameters of main-group compounds in combination with reasonable barrier heights at reasonable computational cost and convergence.^[S16] For tin, the def2-ECP was used.^[S17] The RIJCOSX approximation^[S18] was used in combination with the def/J[S18] auxiliary basis set. Tighter than default scf ("tightscf") and optimization criteria ("tightopt") were chosen in conjunction with finer than default grid values ("grid5"; "nofinalgrid"; "gridx4"). The optimized geometric parameters were verified as true minima by the absence of negative eigenvalues in the harmonic vibrational frequency analysis. The connectivity of all transition states with the respective ground states was verified through following the imaginary modes to the respective ground states. A plethora of further isomers and transition states were calculated, turned out to be considerably higher in energy, and are consequently not shown for clarity. For refinement of the electronic energies, single-point calculations were performed at the DLPNO-CCSD(T)^[S19] level of theory using "normalpno" and frozen-core settings and the def2-TZVPP basis set for all atoms ("def2/J", "def2-TZVPP/C", "RIJCOSX", "tightscf).^[S15, 20] PBE0-D3BJ(SMD)/def2-TZVPP single-points with likewise tightened convergence criteria ("tightscf"; "grid6", "finalgrid7") were used to account for solvation effects in benzene using the SMD model.^[S21] This approach follows the suggested procedure by Neese and colleagues prior to inclusion of PCM in DLPNO-CCSD.^[S22] Note that the potential energy surface is very flat for a couple of transitions states (vide infra) and, thus, some transitions states could not be located.

DLPNO-CCSD(T) energies have been reported to overestimate reaction barriers, particularly for large molecules.^[S23] This seems to be also the case herein (the rate determining transition state is calculated at ΔG^{\ddagger} = 112.5+12.5 kJ = 125.0 mol⁻¹; PBE0-D3(SMD)/def2-TZVPP//PBE0-D3/def2-SVP predicts ΔG^{\ddagger} = 82+33 kJ mol⁻¹= 115.0 kJ mol⁻¹, which is better in agreement with the experiment (slow reaction at room

Scheme S6. Comparison of computational methods for the whole mechanism: PBE0(SMD)//PBE0 vs. DLPNO-CCSD(T)(SMD)//PBE0.

Energies:

Table S3. Energies for structures of small molecules.

	N	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	E(SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
CO ₂	0	-188.244338	-188.254517	-188.467345	-188.467731	-188.331725
со	0	-113.096486	-113.109776	-113.231305	-113.226993	-113.15806
BPinH	0	-411.106476	-410.947321	-411.558783	-411.566091	-411.184837
Bpin_OMe	0	-525.485346	-525.295793	-526.067106	-526.075761	-525.603554
Bpin_O_Bpin	0	-896.241482	-895.91635	-897.226822	-897.242083	-896.427501
H2CO	0	-114.284899	-114.278714	-114.420105	-114.422496	-114.336457

 Table S4. Energies and imaginary frequencies of structures shown in Scheme 3.

	<i>NImag/</i> <i>Frequency</i> [cm ⁻¹]	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	<i>E</i> (SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
1	0	-2354.91507	-2353.99868	-2357.15706	-2357.19466	-2354.23483
TS-NC1	-285	-2543.15454	-2542.22868	-2545.61096	-2545.65014	-2542.5522
TS-NC1isomer	-234	-2543.16005	-2542.23193	-2545.61591	-2545.65456	-2542.55337
INT-NC1	0	-2543.18675	-2542.25608	-2545.63971	-2545.67756	-2542.57753
INT-NC2	0	-2543.19058	-2542.26281	-2545.64514	-2545.6865	-2542.57805
TS_NC2	-29	-2543.18119	-2542.25292	-2545.63613	-2545.67879	-2542.56859
TS-NC2isomer	-12	-2543.16718	-2542.24033	-2545.6238	-2545.66603	-2542.55917
2	0	-2543.2061	-2542.27768	-2545.66019	-2545.69276	-2542.59578

 Table S5. Energies and imaginary frequencies of structures shown in Scheme S1.

	<i>NImag/</i> <i>Frequency</i> [cm ⁻¹]	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	<i>E</i> (SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
VII	-	-2641.39323	-2640.48099	-2643.68745	-2643.72719	-2640.47112
TS-PC1	i261	-2829.62488	-2828.70467	-2832.13588	-2832.17705	-2828.78418
INT-PC1	-	-2829.64889	-2828.72521	-2832.15939	-2832.20141	-2828.80846
TS-PC2	i41	-2829.62143	-2828.69785	-2832.13318	-2832.16618	-2828.77892
INT-PC2	-	-2829.62205	-2828.70028	-2832.13367	-2832.16618	-2828.77872
PC2	-	-2829.64052	-2828.71931	-2832.15298	-2832.19536	-2828.80127

Table S6. Energies and imaginary frequencies of structures shown in Scheme S2.

	<i>NImag/</i> <i>Frequency</i> [cm ⁻¹]	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	<i>E</i> (SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
3	-	-1659.27249	-1658.73127	-1660.89953	-1660.93377	-1658.69054
TS-NArC1	i264	-1847.50393	-1846.95246	-1849.35534	-1849.38916	-1847.01019
INT-NArC1	-	-1847.51879	-1846.96598	-1849.36931	-1849.40723	-1847.02241
INT-NArC2	-	-1847.55705	-1847.00558	-1849.39661	-1849.434	-1847.04686

Table S7. Energies and imaginary frequencies of structures shown in Scheme S3.

	<i>NImag/</i> <i>Frequency</i> [cm ⁻¹]	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	<i>E</i> (SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
TS-BH1	i100	-2954.30304	-2953.19073	-2957.20218	-2957.24675	-2953.7632
INT-BH1	-	-2954.31425	-2953.20028	-2957.21067	-2957.25668	-2953.77492
TS-BH2	i746	-2954.28902	-2953.17863	-2957.18521	-2957.23098	-2953.73812
INT-BH2	-	-2954.33609	-2953.21992	-2957.23461	-2957.27934	-2953.79361
TS-BH1isomer	i77	-2954.31445	-2953.20088	-2957.21449	-2957.25895	-2953.77102
INT-BH1isomer	-	-2954.31852	-2953.20364	-2957.2163	-2957.2614	-2953.77243
TS-BH2isomer	i656	-2954.27961	-2953.16929	-2957.17768	-2957.2241	-2953.72879
INT-BH2isomer	-	-2954.32927	-2953.19073	-2957.22832	-2957.27142	-2953.78812

Table S8. Energies and imaginary frequencies of structures shown in Scheme S4.

	<i>NImag/</i> <i>Frequency</i> [cm ⁻¹]	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	<i>E</i> (SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
TS-SNH1	i70	-2954.32492	-2953.21124	-2957.22321	-2957.26617	-2953.78347
INT-SnH1	-	-2954.32558	-2953.21243	-2957.22303	-2957.26606	-2953.78305
INT-SnH2	-	-2954.34214	-2953.22850	-2957.23751	-2957.28314	-2953.79316
TS-SnH2	i23	-2954.3351	-2953.22281	-2957.23226	-2957.27846	-2953.78929
INT-SnH3	-	-2954.32791	-2953.21526	-2957.22622	-2957.27483	-2953.7827
TS-SnH3	i859	-2954.29359	-2953.18119	-2957.19326	-2957.237	-2953.74972
INT-SnH4	-	-2954.33078	-2953.21627	-2957.23049	-2957.27424	-2953.79015

	NImag/ Frequency [cm ⁻¹]	<i>E</i> [Eh]	G [Eh]	<i>E</i> (SP) [Eh]	<i>E</i> (SMD,SP) [Eh]	<i>E</i> (CCSD(T)) [Eh]
INT-SnH5	-	-2954.33609	-2953.21992	-2957.23461	-2957.27934	-2953.79361
INT-SnH6	-	-2954.33185	-2953.21751	-2957.23285	-2957.27742	-2953.79181
TS-SnH4	i107	-3365.45928	-3364.1567	-3368.79936	-3368.84428	-3364.98169
TS-SnH4isomer	i120	-2954.29957	-2953.18676	-2957.20033	-2957.24306	-2953.76445
INT-SnH7	-	-3365.49419	-3364.19650	-3368.83657	-3368.88512	-3365.02112
TS-SnH7	i175	-3365.47283	-3364.17521	-3368.81553	-3368.86428	-3364.99118
INT-SnH8	-	-2469.24649	-2468.29857	-2471.61624	-2471.65417	-2468.60098
TS-SnH8	i197	-2469.20665	-2468.26313	-2471.57766	-2471.61607	-2468.56758

Table S9. Energies and imaginary frequencies of structures shown in Scheme S5.

XYZ Coordinates:

Jina	II Molecul			H H	12.52727 12.42784	13.80814 15.10192	4.29574 5.52203
				С	8.79507	15.65079	3.49913
4				н	8.59409	15.98934	2.47282
	aldeyhde			н	8.06101	14.87023	3.74834
С	8.25462	-0.35830	9.87952	н	8.64841	16.49968	4.18242
0	7.28615	-0.09676	10.53089	c	11.21893	16.20225	3.26244
н	8.25034	-0.33691	8.75975	н	11.22501	16.95942	4.06113
н	9.23335	-0.64319	10.34354	н	12.23343	15.80026	3.14812
	5.20000	0.04010	10.04004	н	10.94629	16.70053	2.32080
3				С	9.63707	10.53750	3.16374
CO2				н	9.85076	10.61281	4.24143
C	-2.16028	4.50402	2.16110	н	8.58569	10.23201	3.03439
0	-2.20055	4.58237	1.00518	н	10.27601	9.75598	2.72473
0	-2.120033	4.42567	3.31702	п	10.27001	9.75590	2.12415
0	-2.12001	4.42307	3.31702	43			
22					O_Pin		
22 HBPi	n					14 65767	2 7/16/
		1 47904	1.73629	0	9.51294	14.65767	2.74164
0	2.42799	-1.47894		C	9.92670	15.37004	3.91788
C	2.53603	-0.28750	2.53848	В	9.46644	13.33660	3.08391
B	2.10122	-2.50125	2.57291	С	10.70571	14.26461	4.71785
С	2.79682	-0.87302	3.97199	0	10.03454	13.06617	4.30067
0	2.17381	-2.16904	3.89045	0	8.93967	12.38608	2.27311
Н	1.77982	-3.59238	2.18563	0	8.73648	10.02828	1.94170
С	3.65425	0.57735	1.98959	В	8.48383	11.16448	2.65346
н	3.82223	1.45349	2.63394	С	7.94312	8.98450	2.52713
н	4.59313	0.01592	1.90414	0	7.71640	10.95597	3.76666
Н	3.38404	0.93747	0.98646	С	7.68093	9.53724	3.97590
С	1.20185	0.44079	2.42720	С	10.61452	14.38584	6.22645
н	0.98672	0.62440	1.36499	н	9.57649	14.30802	6.57323
н	0.38211	-0.16573	2.83914	Н	11.19023	13.57655	6.69837
н	1.21970	1.40718	2.95109	н	11.03173	15.34508	6.56831
С	4.27447	-1.11406	4.25652	С	12.16022	14.13748	4.28068
н	4.36334	-1.72647	5.16517	н	12.57581	13.21177	4.70399
н	4.75367	-1.66098	3.43162	н	12.24007	14.07660	3.18528
н	4.81879	-0.17244	4.41555	Н	12.76899	14.98360	4.62984
С	2.16330	-0.09036	5.10624	С	8.65997	15.82467	4.63451
н	1.07237	-0.03802	5.00261	н	8.04858	16.41116	3.93407
н	2.38844	-0.58181	6.06367	н	8.06326	14.96234	4.96670
н	2.56427	0.93364	5.14510	н	8.88752	16.45128	5.50867
				С	10.76103	16.56635	3.50508
26				Н	11.16165	17.08624	4.38841
PinO	Me			н	11.59680	16.27051	2.85858
0	10.32753	14.08355	2.56325	н	10.13535	17.27671	2.94560
С	10.21717	15.10452	3.56406	С	6.33974	9.15222	4.56846
в	10.05527	12.89530	3.18527	н	5.50816	9.53116	3.96102
С	10.49277	14.30436	4.88767	н	6.24934	8.05871	4.65147
0	9.99535	12.99929	4.55431	н	6.24508	9.58048	5.57678
0	9.87083	11.75094	2.49720	С	8.80749	9.21052	4.94990
С	9.75890	14.81968	6.11095	н	8.67112	9.81703	5.85639
н	8.67089	14.78832	5.97223	н	8.81344	8.14834	5.23341
н	10.00691	14.19494	6.98141	н	9.78762	9.46836	4.52249
н	10.05639	15.85474	6.33756	С	6.66873	8.87132	1.69916
С	11.98043	14.15595	5.18464	Ĥ	6.94321	8.69328	0.64962
H	12.10983	13.40698	5.97917	н	6.03303	8.04138	2.03930

н	6.08347	9.80152	1.74342	н	2.18334	1.47195	8.98962	
С	8.72517	7.68641	2.47722	С	1.03519	-2.66859	11.58244	
н	9.71982	7.80195	2.92592	н	0.05382	-2.27018	11.28441	
н	8.18777	6.88481	3.00596	н	0.95376	-3.75727	11.69570	
н	8.86032	7.37599	1.43106	н	1.25764	-2.26143	12.58345	
				N	0.93908	-5.97809	7.40104	
				С	-0.12173	-6.13388	8.31733	
				С	-1.10635	-7.12867	8.17418	
				С	-0.23021	-5.26075	9.41532	
Sche	eme 2			С	-2.14900	-7.23966	9.09216	
				С	-1.27191	-5.38033	10.32781	
73				С	-2.24348	-6.37125	10.17664	
3				н	-1.05511	-7.82252	7.33402	
C	3.19507	-5.61882	10.16110	Н	0.51875	-4.47819	9.55393	
C	3.37785	-6.86802	10.79015	H H	-2.89916 -1.32848	-8.02270 -4.68307	8.95123 11.16749	
C	3.33184	-4.44336	10.93071	Н	-3.06454	-4.00307	10.89151	
C	3.64392	-6.94929	12.16167	С	-3.06454 0.79713	-6.43652 -6.70402	6.17737	
C	3.60169	-4.54561	12.30367	c	1.52360	-7.88086	5.94533	
н	3.77799	-7.92874	12.63006	c	-0.07300	-6.25150	5.17250	
н	3.70865	-3.63061	12.89304	C	1.41767	-8.56265	4.73303	
С	3.74985	-5.78597	12.91836	c	-0.18431	-6.94039	3.96781	
Н	3.96293	-5.84409	13.98884	С	0.56544	-8.09413	3.73652	
Sn	3.13698	-5.85819	7.92487	н	2.16403	-8.28438	6.73564	
С	3.31786	-8.11704	9.96503	н	-0.66588	-5.35304	5.34827	
С	4.46406	-8.54432	9.25482	н	2.00330	-9.47190	4.57484	
С	2.13624	-8.89399	9.92614	н	-0.86429	-6.56681	3.19781	
C	4.38265	-9.69668	8.46297	Н	0.48059	-8.62717	2.78661	
C	2.10667	-10.03880	9.12763	76				
C	3.21303	-10.45247	8.37753		NArC1			
Н	5.26994	-10.01845	7.90976	С	4.50006	-3.36904	8.65201	
H C	1.18722 3.21785	-10.63128 -3.08244	9.09507 10.32311	С	5.22819	-4.52630	8.98691	
0	4.24933	-2.59053	9.49422	С	4.37373	-2.33238	9.59553	
c	2.10161	-2.26579	10.59913	С	5.77078	-4.65102	10.27322	
c	4.11331	-1.33011	8.90905	С	4.92081	-2.47287	10.87641	
c	1.99929	-1.01781	9.97559	Н	6.33319	-5.55307	10.53155	
0	2.98473	-0.53435	9.11498	H C	4.81090 5.61057	-1.66422 -3.63549	11.60505 11.21411	
H	4.92021	-0.95704	8.27049	н	6.03899	-3.74600	12.21374	
н	1.11868	-0.40023	10.17941	Sn	3.69687	-2.89763	6.62814	
С	5.77725	-7.82362	9.39077	C	5.45334	-5.60182	7.97408	
н	6.11737	-7.82760	10.43829	c	6.50427	-5.47835	7.04489	
н	6.55207	-8.29795	8.77304	c	4.61399	-6.73370	7.93989	
Н	5.71397	-6.76389	9.09601	c	6.68146	-6.47940	6.08246	
С	0.95008	-8.53292	10.77150	c	4.82642	-7.70733	6.96426	
Н	0.06878	-9.12520	10.49248	C	5.85186	-7.59868	6.02071	
Н	1.16406	-8.71870	11.83680	н	7.49929	-6.37886	5.36191	
Н	0.68834	-7.46951	10.68246	Н	4.15745	-8.57286	6.93073	
С	3.13483	-11.67714	7.51176	С	3.66915	-1.07500	9.19241	
Н	2.44844	-11.51875	6.66370	С	4.38148	-0.05509	8.52313	
Н	4.11799	-11.94728	7.10153	С	2.29718	-0.90319	9.47562	
H	2.75107	-12.54149	8.07565	С	3.70037	1.09926	8.12350	
C	5.50591	-3.38004	9.24256	С	1.65891	0.26604	9.05705	
Н	5.81231	-3.95763	10.12652	С	2.33840	1.27740	8.37288	
H	5.38793	-4.10050	8.41250	н	4.25714	1.88610	7.60536	
H	6.33256	-2.71305	8.95893	Н	0.59317	0.38857	9.27271	
C	2.83238	0.78918	8.42217	С	7.45267	-4.31043	7.09019	
H H	3.80412 2.37844	1.28312 0.65958	8.27402 7.42516	н	7.93670	-4.22516	8.07559	
1	2.3/044	0.00900	1.42010					

н	8.23855	-4.41185	6.32874	н	3.76853	-5.60948	13.78327
н	6.94208	-3.34899	6.91843	Sn	3.10575	-5.39774	7.69445
С	3.49589	-6.89078	8.93001	С	3.28483	-7.84664	9.72800
Н	2.86290	-7.75232	8.67590	С	4.44247	-8.25249	9.02805
н	3.87889	-7.03515	9.95317	С	2.12560	-8.65493	9.69108
Н	2.85934	-5.99367	8.95927	С	4.39668	-9.41641	8.25129
С	6.04429	-8.65902	4.97405	С	2.12809	-9.80902	8.90440
н	5.13554	-8.78115	4.36294	С	3.24910	-10.20448	8.16692
н	6.87605	-8.41401	4.29838	н	5.29546	-9.72094	7.70664
н	6.25800	-9.63906	5.43035	н	1.22361	-10.42480	8.87430
С	5.85634	-0.18456	8.26115	С	3.20034	-2.80393	10.11432
н	6.41319	-0.37677	9.19104	С	4.25205	-2.34792	9.29130
н	6.08441	-1.02839	7.58917	С	2.09998	-1.95859	10.36549
н	6.25668	0.72824	7.79879	С	4.15435	-1.09029	8.69183
С	1.61667	2.50636	7.89951	С	2.03940	-0.71414	9.73385
н	2.30625	3.35016	7.75290	С	3.04618	-0.26399	8.87975
н	1.11549	2.31986	6.93480	н	4.97622	-0.74413	8.05705
Н	0.83934	2.81808	8.61291	н	1.16894	-0.07569	9.91459
С	1.53832	-1.95551	10.23001	С	5.72754	-7.47880	9.12844
Н	0.46432	-1.72504	10.25684	н	5.96821	-7.23372	10.17359
Н	1.67096	-2.93981	9.75928	н	6.56299	-8.04993	8.70048
н	1.89996	-2.04178	11.26704	н	5.67931	-6.51818	8.58659
N	0.48768	-5.29135	6.58308	С	0.91958	-8.31413	10.51741
С	-0.78508	-4.82912	7.03245	н	0.05576	-8.92834	10.23011
С	-1.88250	-4.92241	6.17065	н	1.11817	-8.48764	11.58758
С	-0.95944	-4.31619	8.32003	н	0.63686	-7.25711	10.41823
С	-3.14135	-4.50524	6.59391	С	3.21687	-11.45466	7.33448
С	-2.21938	-3.88956	8.73295	н	2.40239	-11.42165	6.59326
С	-3.31448	-3.98318	7.87538	н	4.16141	-11.60484	6.79313
н	-1.74079	-5.32923	5.16703	н	3.04231	-12.34472	7.96019
н	-0.10469	-4.24634	8.99226	С	5.49551	-3.16653	9.05513
н	-3.99210	-4.58295	5.91257	н	5.72223	-3.83306	9.89868
н	-2.34552	-3.48750	9.74127	н	5.41938	-3.80096	8.15093
н	-4.30199	-3.65280	8.20594	н	6.36274	-2.51142	8.88672
С	0.57186	-6.61051	6.04690	С	2.92957	1.05223	8.16755
С	-0.05083	-7.65950	6.73288	н	3.91687	1.48993	7.95876
С	1.24050	-6.87348	4.84725	н	2.41631	0.92375	7.19977
С	-0.00191	-8.95556	6.22651	н	2.34711	1.77999	8.75140
С	1.29376	-8.17463	4.35358	С	0.99442	-2.33819	11.31464
С	0.67483	-9.22082	5.03665	н	0.02879	-1.93776	10.97117
н	-0.57761	-7.45089	7.66653	н	0.89996	-3.42488	11.44007
н	1.73139	-6.06062	4.31356	н	1.17881	-1.91937	12.31862
н	-0.49238	-9.76524	6.77241	N	0.64272	-5.53093	7.14297
Н	1.82161	-8.36861	3.41649	С	-0.37285	-5.83982	8.11278
Н	0.71683	-10.23847	4.64145	С	-1.28303	-6.88557	7.93914
С	1.59987	-4.48697	6.66907	С	-0.45281	-5.04835	9.26632
0	1.50987	-3.31726	7.15309	С	-2.25283	-7.13489	8.91096
0	2.71887	-4.90960	6.25110	С	-1.42919	-5.29786	10.22300
76				С	-2.33531	-6.34622	10.05459
INT-	NArC2			н	-1.24638	-7.50182	7.04061
С	3.15693	-5.33100	9.93342	н	0.25293	-4.22828	9.41101
С	3.31018	-6.59271	10.54826	н	-2.95920	-7.95461	8.75742
С	3.26840	-4.16601	10.72375	н	-1.47883	-4.66417	11.11186
С	3.51938	-6.68707	11.92978	н	-3.10199	-6.54123	10.80758
С	3.48193	-4.28421	12.10461	С	0.57113	-6.28344	5.90748
H	3.63370	-7.67191	12.39193	С	1.16894	-7.54809	5.86219
Н	3.57324	-3.37744	12.70895	C	-0.08234	-5.78490	4.77754
С	3.59805	-5.53436	12.70614	C	1.11996	-8.30426	4.69428
				-			

С	-0.11356	-6.54419	3.60757
С	0.48298	-7.80197	3.55968
н	1.66283	-7.94929	6.75225
н	-0.56328	-4.80760	4.82734
н	1.59398	-9.28850	4.67162
н	-0.61825	-6.14314	2.72520
Н	0.45328	-8.39069	2.63979
C	0.75648	-4.01228	6.93554
0	-0.19595 1.92411	-3.39618 -3.61483	6.54557 7.25100
76	1.92411	-3.01403	7.25100
	ArC1		
С	3.19507	-5.61882	10.16110
С	3.37785	-6.86802	10.79015
С	3.33184	-4.44336	10.93071
С	3.64392	-6.94929	12.16167
С	3.60169	-4.54561	12.30367
н	3.77799	-7.92874	12.63006
н	3.70865	-3.63061	12.89304
С	3.74985	-5.78597	12.91836
н	3.96293	-5.84409	13.98884
Sn	3.13698	-5.85819	7.92487
С	3.31786	-8.11704	9.96503
С	4.46406	-8.54432	9.25482
C	2.13624	-8.89399	9.92614
C	4.38265 2.10667	-9.69668 -10.03880	8.46297
C C	3.21303	-10.03000	9.12763 8.37753
Н	5.26994	-10.43247	7.90976
н	1.18722	-10.63128	9.09507
С	3.21785	-3.08244	10.32311
c	4.24933	-2.59053	9.49422
c	2.10161	-2.26579	10.59913
С	4.11331	-1.33011	8.90905
С	1.99929	-1.01781	9.97559
С	2.98473	-0.53435	9.11498
н	4.92021	-0.95704	8.27049
Н	1.11868	-0.40023	10.17941
С	5.77725	-7.82362	9.39077
н	6.11737	-7.82760	10.43829
Н	6.55207	-8.29795	8.77304
Н	5.71397	-6.76389	9.09601
C	0.95008 0.06878	-8.53292 -9.12520	10.77150 10.49248
H H	1.16406	-9.12520 -8.71870	10.49248
H	0.68834	-7.46951	10.68246
С	3.13483	-11.67714	7.51176
H	2.44844	-11.51875	6.66370
н	4.11799	-11.94728	7.10153
н	2.75107	-12.54149	8.07565
С	5.50591	-3.38004	9.24256
н	5.81231	-3.95763	10.12652
н	5.38793	-4.10050	8.41250
н	6.33256	-2.71305	8.95893
С	2.83238	0.78918	8.42217
Н	3.80412	1.28312	8.27402
н	2.37844	0.65958	7.42516
н	2.18334	1.47195	8.98962

С	1.03519	-2.66859	11.58244				
н	0.05382	-2.27018	11.28441				
Н	0.95376	-3.75727	11.69570				
Н	1.25764	-2.26143	12.58345				
Ν	0.93908	-5.97809	7.40104				
С	-0.12173	-6.13388	8.31733				
С	-1.10635	-7.12867	8.17418				
С	-0.23021	-5.26075	9.41532				
С	-2.14900	-7.23966	9.09216				
С	-1.27191	-5.38033	10.32781				
С	-2.24348	-6.37125	10.17664				
н	-1.05511	-7.82252	7.33402				
н	0.51875	-4.47819	9.55393				
н	-2.89916	-8.02270	8.95123				
н	-1.32848	-4.68307	11.16749				
н	-3.06454	-6.45852	10.89151				
С	0.79713	-6.70402	6.17737				
С	1.52360	-7.88086	5.94533				
С	-0.07300	-6.25150	5.17250				
С	1.41767	-8.56265	4.73303				
С	-0.18431	-6.94039	3.96781				
С	0.56544	-8.09413	3.73652				
н	2.16403	-8.28438	6.73564				
н	-0.66588	-5.35304	5.34827				
н	2.00330	-9.47190	4.57484				
н	-0.86429	-6.56681	3.19781				
н	0.48059	-8.62717	2.78661				
С	1.06622	-3.81910	6.99778				
0	-0.00976	-3.50845	6.68383				
0	2.22151	-3.67500	7.24991				
Scheme 3							
119							
113							

IS-N	IC2_isomer		
Sn	9.48648	7.11348	13.82910
Ν	11.73944	8.14713	15.85290
С	8.26896	8.10059	12.23953
С	8.61100	8.38477	10.91067
Ν	14.15345	8.40120	15.82230
Ν	13.23333	7.12274	17.33594
С	7.66786	8.99504	10.07188
н	7.94031	9.21983	9.03671
С	6.39655	9.31501	10.54444
н	5.67074	9.78758	9.87767
С	6.04929	9.03352	11.86503
н	5.05352	9.28247	12.24276
С	9.96319	8.04973	10.38097
С	6.98453	8.42987	12.70967
С	12.26689	8.64833	9.98674
н	13.08619	9.36188	10.10790
С	11.02105	8.96263	10.53608

2	12.49389	7.45367	9.30363	н	11.67073	12.26245	16.69608
2	10.17301	6.82632	9.71692	н	11.33633	11.13158	15.36319
2	11.43678	6.54636	9.19358	С	15.14294	7.12705	13.43940
ł	11.59601	5.59543	8.67547	н	14.73699	6.66963	14.35398
2	10.81813	10.24468	11.28707	С	16.65217	6.88211	13.42691
1	10.03185	10.86092	10.82326	н	16.87109	5.80272	13.42595
1	11.74732	10.82929	11.32703	н	17.14656	7.32836	14.30337
ł	10.50122	10.04149	12.32152	Н	17.11568	7.31929	12.52798
2	13.82793	7.15125	8.68365	С	14.45200	6.45021	12.25870
4	14.60524	7.83987	9.04540	н	14.88329	6.77301	11.29931
1	13.78715	7.24603	7.58580	н	13.37959	6.68605	12.25194
+	14.15280	6.12320	8.90651	Н	14.57683	5.35757	12.32068
	9.05111	5.83665	9.57319	С	12.25381	6.30420	17.97168
1	8.65222	5.53588	10.55554	С	12.21470	4.93747	17.63520
4	9.38179	4.93158	9.04476	С Н	11.24060	4.14883	18.25094
ł	8.20202	6.26830	9.02118	н С	11.18194	3.08426	18.01789
	6.69482	8.10380	14.14033	н	10.33365	4.70482	19.14909
2	6.30312 6.18743	6.79259 6.45513	14.49122 15.84282	С	9.57620 11.34168	4.07139 6.89387	19.61716 18.86007
	5.89753	5.43461	16.10994	c	13.14382	4.36410	16.58143
+	5.89753 6.44641	5.43461 7.38145	16.85487	Н	13.14382	4.36410	16.59421
5	6.78873	8.68437	16.48549	С	12.52524	4.95972	15.18820
ł	6.98036	9.42813	17.26443	н	12.29401	5.56483	14.94587
	6.91588	9.06793	15.14820	н	11.58544	3.94783	15.11650
2	7.31753	10.46863	14.79369	н	13.21396	4.13915	14.41665
ł	6.67638	10.88451	14.00333	С	13.54154	2.91611	16.84865
ł	8.35221	10.47976	14.41883	н	14.31508	2.59973	16.13270
ł	7.26692	11.12621	15.67267	н	12.69135	2.22666	16.72688
	6.40353	6.97906	18.29978	н	13.94222	2.78386	17.86529
ł	7.40454	6.66006	18.63693	С	11.35656	8.37660	19.16816
ł	5.71480	6.13831	18.46752	Ĥ	12.21713	8.81577	18.64139
ł	6.09152	7.81469	18.94326	c	10.09815	9.05835	18.62799
2	14.83277	8.60872	13.49955	Ĥ	10.00055	8.89207	17.54575
5	15.02972	9.42287	12.38366	н	10.14608	10.14434	18.80667
1	15.42352	8.98401	11.46429	Н	9.19359	8.67713	19.12958
2	14.70596	10.77553	12.41979	С	11.55152	8.63814	20.66110
4	14.85788	11.39480	11.53220	н	12.46728	8.15933	21.04051
)	14.17581	11.34057	13.57407	н	10.70529	8.25515	21.25326
ł	13.91154	12.40042	13.58494	н	11.62539	9.71953	20.85465
)	13.98144	10.57355	14.72711	С	10.38195	6.06147	19.44588
)	14.33240	9.21513	14.66523	н	9.65850	6.48744	20.14539
)	14.59338	7.17143	17.60923	С	11.31501	8.44989	14.62544
ł	15.02264	6.64169	18.45374	0	11.75289	7.88047	13.57912
)	15.16397	7.96375	16.67246	0	10.16886	9.05848	14.57580
ł	16.19399	8.27421	16.52911				
)	12.95092	7.89837	16.24282	119			
)	6.03471	5.76777	13.42631	TS-N	IC2		
ł	5.59704	4.85554	13.85411	Sn	9.81970	9.46895	13.19713
ł	6.96020	5.48070	12.89831	N	11.55128	8.90635	16.21710
ł	5.35629	6.15983	12.65454	С	8.24295	11.00712	13.05069
)	13.43063	11.21128	15.98712	С	7.01496	10.81664	13.69311
ł	13.28807	10.41378	16.73173	N	13.62400	7.79425	15.72392
)	14.43295	12.20646	16.57311	N	13.07960	8.00459	17.82045
ł	15.40462	11.72951	16.77265	С	6.03992	11.81648	13.62268
ł	14.05595	12.62320	17.52025	н	5.07760	11.68060	14.12399
ł	14.60938	13.04750	15.88385	С	6.30135	12.98798	12.90877
)	12.06565	11.85744	15.75111	н	5.53845	13.76911	12.85526
ł	12.13333	12.69304	15.03637	С	7.52239	13.17160	12.25669

H C	7.71414 6.84223	14.08992	11.69480	С	16.53606	9.21467	13.95161 14.38999
		9.51257	14.39958	Н	16.67907	8.21498	
	8.50191	12.17566 7.13664	12.32631	Н	17.24670	9.90143	14.43734
J H	6.38299 6.05868	6.26402	14.29231 13.71715	H C	16.80519 14.92954	9.14790 11.12469	12.88499 13.56650
п С	6.42201	8.38180	13.66312	н	15.15848	11.12469	12.49017
5	6.74410	6.97997	15.63410	Н	15.61521	11.81530	14.08101
5	7.20368	9.37971	15.75539	Н	13.90328	11.47222	13.74237
5	7.14339	8.11164	16.34525	C	11.95337	5.71990	14.61326
H	7.42816	8.00960	17.39553	н	12.29991	5.85152	15.64959
5	6.01755	8.51965	12.22259	C	12.34740	4.30581	14.18640
H	5.20611	9.25399	12.10474	н	11.90185	3.56205	14.86502
H	5.68187	7.55856	11.80943	н	13.43969	4.17093	14.19915
÷	6.84917	8.88926	11.60149	н	11.99419	4.07579	13.16883
2	6.70434	5.62539	16.27993	C	10.43628	5.90456	14.62081
H	5.70863	5.16505	16.18234	Ĥ	10.01457	5.82694	13.60608
ł	6.95062	5.68201	17.34902	н	10.16568	6.88614	15.03633
H	7.42460	4.93931	15.80546	н	9.95958	5.13188	15.24352
C	7.67269	10.56520	16.54463	С	12.44099	8.47711	19.00606
+	8.65431	10.89981	16.17110	С	11.55698	7.61944	19.67919
H	7.78037	10.31300	17.60833	С	10.96569	8.09183	20.85378
H	6.97781	11.41270	16.44969	н	10.27213	7.45218	21.40372
С	9.83161	12.24678	11.64827	С	11.24132	9.37171	21.32341
С	10.94349	12.82835	12.28931	н	10.76980	9.72580	22.24332
С	12.19157	12.76393	11.65549	С	12.72444	9.78170	19.44538
H	13.05321	13.21434	12.15530	С	11.18485	6.27060	19.10015
С	12.37082	12.13526	10.42527	н	11.98157	5.97907	18.39796
С	11.25257	11.56871	9.80437	С	9.89453	6.41020	18.28928
H	11.36709	11.07788	8.83307	н	9.99254	7.19306	17.52203
С	9.98756	11.61791	10.38956	н	9.05635	6.68584	18.94988
С	8.80349	11.01054	9.69173	н	9.63704	5.46064	17.79463
H	7.98605	11.73918	9.58322	С	11.08020	5.16876	20.14919
H	8.38169	10.16914	10.26550	Н	10.90582	4.19695	19.66235
H	9.07687	10.64016	8.69420	н	10.24047	5.33726	20.84155
C	13.72218	12.06491	9.77492	н	11.99988	5.09012	20.74880
H	14.02098	11.02056	9.58858	С	13.69262	10.67832	18.70045
+	14.49444	12.53176	10.40196	Н	13.74904	10.32651	17.66026
H	13.72410	12.57632	8.79907	С	13.21835	12.12418	18.61289
2	12.64357	6.76471	13.75655	н	12.21695	12.18105	18.16421
2	12.46790	6.76284	12.37027	н	13.89776	12.69662	17.96459
H	11.82165	6.00978	11.91341	н	13.19904	12.62098	19.59618
C .	13.09127	7.71334	11.56951	С	15.08787	10.57876	19.32041
H	12.93050	7.70588	10.48870	н	15.45622	9.54157	19.32677
2	13.91741	8.67698	12.13814	Н	15.08359	10.93699 11.18996	20.36267
H C	14.40762 14.13196	9.41323 8.72116	11.49857 13.51931	H C	15.80787 12.10516	10.20776	18.75400 20.62396
2	13.47308	7.75965	14.30567	н	12.30091	11.21470	20.02390
5	14.26377	7.28387	17.77203	C	11.60376	10.09328	15.55071
, H	14.75568	6.93799	18.67562	0	12.56534	10.85886	15.57070
5	14.60042	7.15045	16.46643	0	10.49251	10.42542	14.89783
- H	15.43942	6.64930	15.99407	0	10.43231	10.42042	14.03703
5	12.66720	8.31797	16.55666	119			
5	10.83390	13.46235	13.64342		IC1_isomer		
H	11.56673	14.27431	13.75477	Sn	9.70484	9.12250	15.28785
÷	11.04410	12.70873	14.42122	N	11.19793	7.67771	15.47533
÷	9.82844	13.86164	13.82995	C	8.27153	8.01840	14.01511
5	15.09999	9.71643	14.12423	c	7.32146	7.18052	14.61682
H	14.87430	9.77485	15.19855	N	13.51402	8.34946	15.56786
-							

N	12.68625	7.46043	17.37721	С	7.56990	11.03024	12.97513
С	6.44028	6.44463	13.81621	Н	7.24714	12.03544	12.66894
Н	5.70619	5.78404	14.28663	н	7.74890	11.06843	14.06368
С	6.48646	6.56864	12.42876	Н	6.74151	10.32737	12.81179
Н	5.80178	5.98685	11.80653	С	12.90057	11.14731	15.15485
С	7.37343	7.46527	11.83473	Н	12.32712	10.50191	15.84014
Н	7.36819	7.60519	10.75005	С	14.03386	11.77920	15.96554
C	7.18365	7.18289	16.10664	Н	14.68183	11.01733	16.42231
C	8.25953	8.20653	12.62357	н	13.62664	12.40386	16.77613
0	7.60312	6.28386	18.31307	Н	14.66276	12.41870	15.32548
H	8.08444	5.52875	18.93936	С	11.93843	12.21002	14.63411
0	7.79188	6.21648	16.92628	н	12.46212	12.99450	14.06496
C	6.83760	7.27987	18.91047	н	11.42912	12.70235	15.47605
0	6.38790	8.19857	16.69516	н	11.16988	11.77478	13.97789
C	6.23662	8.23238	18.07970	С	14.53591	6.60065	13.48814
H	5.61934	9.01954	18.52375	Н	14.09107	6.31387	14.44990
C	8.65016	5.12148	16.36920	С	16.04342	6.36378	13.57976
н	8.59050	5.06132	15.27651	н	16.25411	5.30074	13.77483
Н	8.37155	4.14766	16.80014	н	16.49791	6.95269	14.39086
H	9.70247	5.30568	16.63748	Н	16.55175 13.89728	6.64098 5.70888	12.64212
C	6.65069	7.34329	20.39824	С		5.85300	12.42503
H	7.18222 5.58523	6.52770 7.27551	20.90767 20.67020	н	14.36161 12.82131	5.90762	11.43603 12.32632
Н	7.02293	8.29777	20.80493	н	14.01683	4.65052	12.69987
C	5.68285	9.21319	15.84135	C	11.82714	4.05052 6.92718	18.38848
H	6.39243	9.81810	15.25857	c	11.92902	5.56418	18.72098
H	5.07422	9.89195	16.45485	c	11.16378	5.10082	19.79743
н	5.02709	8.72431	15.10447	н	11.22395	4.04686	20.07746
C	9.13304	9.25710	12.01832	С	10.34708	5.95834	20.52135
c	8.80448	10.61820	12.22147	н	9.76582	5.57705	21.36473
c	9.62875	11.60885	11.68077	С	11.00333	7.81594	19.10686
H	9.36596	12.65891	11.84375	c	12.87801	4.61615	18.01587
c	10.75987	11.29607	10.92604	н	13.25068	5.12405	17.11742
c	11.04814	9.94854	10.71093	C	12.17811	3.34465	17.54215
H	11.92595	9.67871	10.11799	н	11.33675	3.58367	16.87892
C	10.25653	8.92273	11.23427	н	11.80539	2.74038	18.38485
C	10.59994	7.49400	10.93276	н	12.88156	2.71859	16.97246
H	10.42873	6.84473	11.80066	C	14.06822	4.28226	18.91772
H	11.65150	7.40505	10.62437	H	14.78768	3.64100	18.38503
H	9.97825	7.10754	10.10798	Н	13.74532	3.74445	19.82368
С	11.61243	12.38214	10.33716	Н	14.60177	5.18716	19.24565
Н	12.57961	11.99227	9.98967	С	10.97591	9.29978	18.80205
Н	11.80725	13.18176	11.06868	Н	11.21751	9.42452	17.73459
н	11.11589	12.85203	9.47190	С	9.60473	9.92890	19.02027
C	14.23438	8.06602	13.25508	H	8.81088	9.36390	18.50813
С	14.53092	8.65326	12.02062	н	9.59617	10.95747	18.62967
Н	14.95170	8.03560	11.22403	н	9.34503	9.98278	20.08942
С	14.30930	10.00571	11.80000	С	12.05567	10.03310	19.60053
H	14.55831	10.44832	10.83232	Н	13.05920	9.63729	19.38524
С	13.76395	10.79888	12.80369	н	11.87763	9.93096	20.68297
н	13.58157	11.85694	12.61210	н	12.05675	11.10691	19.35501
С	13.44640	10.26176	14.05242	С	10.26785	7.30290	20.17608
С	13.70169	8.89236	14.25910	н	9.62391	7.96823	20.75229
С	14.02622	7.71521	17.61444	С	11.23265	5.91374	14.58185
н	14.48691	7.48194	18.56876	0	12.10948	5.32037	15.12609
С	14.54019	8.26491	16.49161	0	10.38493	5.94992	13.75910
H	15.54438	8.60434	16.25828				
С	12.34047	7.84339	16.09546	119			

TS-N	C1			С	12.98843	6.86796	13.02289	
Sn	9.22668	8.41254	16.15527	С	13.48494	5.77240	16.38016	
N	11.00483	7.93577	15.02470	н	13.91014	5.22073	17.21320	
С	7.79682	8.89142	14.44822	С	13.88199	5.87901	15.09432	
С	6.55133	8.23261	14.58061	н	14.72013	5.42873	14.57251	
Ν	12.98420	6.70896	14.43957	С	11.97959	7.14178	15.30975	
N	12.33841	6.53942	16.52371	С	8.01789	12.35255	14.71842	
С	5.53415	8.40596	13.63321	н	8.16046	13.37750	15.08818	
Н	4.58286	7.88346	13.76825	н	7.94028	11.68272	15.59002	
С	5.72363	9.24892	12.54467	Н	7.04767	12.29864	14.20129	
Н	4.93132	9.38317	11.80369	С	14.93114	8.52054	13.23133	
С	6.92124	9.94590	12.42668	Н	14.60461	8.49598	14.28019	
Н	7.07184	10.64403	11.59812	С	16.30130	7.84372	13.13724	
С	6.24654	7.36346	15.76031	н	16.26469	6.79232	13.45854	
С	7.94800	9.78918	13.36913	н	17.03610	8.36550	13.77024	
С	5.87313	5.17668	16.73077	н	16.67750	7.85746	12.10171	
Н	5.82744	4.08951	16.61162	С	15.02536	9.98640	12.81978	
С	6.16654	5.96372	15.61460	Н	15.40510	10.10145	11.79205	
С	5.65690	5.73440	17.99244	н	15.71933	10.52174	13.48587	
С	5.96233	7.95089	17.01257	Н	14.04645	10.47609	12.88873	
С	5.68974	7.12497	18.10651	С	11.20991	5.03404	12.89370	
н	5.48798	7.58724	19.07752	н	11.26411	5.16626	13.98288	
С	6.39978	5.31492	14.28131	С	11.68851	3.61366	12.58946	
Н	5.53538	5.44850	13.61158	Н	11.06470	2.87408	13.11623	
Н	6.57393	4.23511	14.39153	н	12.73222	3.46761	12.90696	
Н	7.26097	5.76087	13.76561	Н	11.63388	3.39336	11.51137	
С	5.42587	4.86077	19.19090	С	9.75445	5.23787	12.48398	
Н	4.89505	3.93571	18.92248	н	9.61958	5.14394	11.39510	
H	4.84370	5.37879	19.96663	н	9.39629	6.23311	12.78404	
H	6.38567	4.56321	19.64774	Н	9.11264	4.48317	12.96184	
С	5.95192	9.44134	17.18685	С	11.61134	6.69248	17.73449	
н	6.97770	9.83459	17.30916	С	10.65229	5.72026	18.07491	
н	5.38462	9.72861	18.08299	С	9.87751	5.94241	19.21643	
Н	5.52095	9.94973	16.31294	н	9.10674	5.22147	19.49421	
С	9.13741	10.67413	13.19992	С	10.06951	7.07637	19.99780	
С	9.14693	11.93546	13.82203	Н	9.44408	7.24115	20.87825	
С	10.24441	12.77877	13.63309	С	11.85797	7.82101	18.53904	
H	10.25435	13.75229	14.13250	С	10.44072	4.49531	17.20690	
C C	11.33081 11.28676	12.40586	12.83931	н С	11.39099	4.29405 4.76330	16.68714	
		11.15841	12.21250		9.37981 9.65777		16.14236	
H	12.12109 10.20993	10.84280 10.28472	11.57951 12.38098	H H	9.65777 8.41192	5.60935 4.99465	15.49584 16.60873	
C C			11.74669			4.99465 3.88493		
H	10.22445 9.27514	8.93078 8.70114	11.24084	H C	9.24499 10.08966	3.00493 3.24887	15.49176 18.01324	
n H	9.27514 10.37616	8.17649	12.53391	н	10.08382	2.36494	17.35729	
H	11.04595	8.83401	11.02532	н	9.08654	3.32207	18.46178	
С	12.53392	13.29273	12.70015	Н	9.08054 10.81156	3.06978	18.82423	
н	12.95408	13.24797	11.68424	C	12.98280	8.78103	18.21098	
	13.33167		13.39437	н	13.14103	8.74410	17.12306	
H H	12.29406	12.97857 14.34171	12.92672	С	12.68092	10.22831	18.58827	
С	12.13148	6.05467	12.25822	н	11.71441	10.56246	18.18465	
c	12.18841	6.16301	10.86680	Н	13.46167	10.89055	18.18504	
H	11.53056	5.54296	10.25327	н	12.66526	10.37253	19.68021	
С	13.07244	7.04237	10.25315	C	14.28487	8.30902	18.86536	
H	13.10272	7.11489	9.16316	н	14.26467	7.29835	18.53205	
С	13.92532	7.82131	11.02632	Н	14.36196	8.28825	19.96239	
H	14.63031	8.49649	10.53629	Н	15.11346	8.98741	18.60904	
С	13.91020	7.74610	12.42301	С	11.06177	7.99555	19.67323	
0	10.01020	1.14010	12.72001	0	11.00177	1.00000	10.01020	

Н	11.21578	8.86861	20.30966	н	13.50216	7.65809	11.16780
С	11.67909	9.99423	15.30432	С	14.91983	9.01698	12.03583
0	12.78584	10.00391	14.93922	н	15.27353	9.37356	11.06505
0	10.69352	10.41637	15.81777	С	15.45624	9.54239	13.20402
				н	16.22099	10.32015	13.14637
119				С	15.01221	9.11025	14.45659
INT-	NC2			С	14.02922	8.10701	14.48631
Sn	9.05353	8.60366	14.03293	С	13.63554	6.52590	17.68287
N	11.36146	8.54111	15.92765	Н	13.86240	5.93020	18.56136
С	7.74862	10.35602	13.66714	С	14.36060	6.78553	16.57158
С	6.73018	10.63693	14.58548	н	15.34768	6.45085	16.26992
Ν	13.60066	7.61606	15.75797	С	12.39504	7.87812	16.36283
N	12.43159	7.20509	17.55514	С	10.66406	12.50087	12.58003
С	5.94362	11.78183	14.42202	н	11.35952	13.20792	12.10455
н	5.15371	12.01405	15.14186	Н	11.14776	12.08623	13.47899
С	6.17560	12.62666	13.33593	н	9.77312	13.05025	12.90916
н	5.56374	13.52318	13.20767	С	15.57939	9.72267	15.72137
С	7.17695	12.33652	12.40648	н	14.94354	9.39435	16.55639
н	7.34143	12.99809	11.55119	С	17.00412	9.22986	15.98083
С	6.53505	9.62064	15.66034	н	17.05880	8.13209	16.04229
С	7.97336	11.19845	12.57049	н	17.39067	9.64153	16.92650
С	5.40808	7.62333	16.43422	н	17.68461	9.54867	15.17503
H	4.60527	6.88845	16.31673	C	15.51414	11.24843	15.69404
С	5.49384	8.67385	15.52364	Ĥ	16.18092	11.67376	14.92715
c	6.33243	7.46559	17.47394	н	15.83544	11.65621	16.66579
c	7.46906	9.49276	16.71202	н	14.48411	11.57290	15.49751
c	7.35580	8.40296	17.59130	C	12.38465	6.49320	13.38926
H	8.09533	8.29651	18.39016	н	11.69627	6.78383	14.19969
С	4.51488	8.77420	14.38898	C	12.97749	5.12826	13.74621
H	3.90819	9.69013	14.45572	н	12.17901	4.37513	13.83873
н	3.83254	7.91291	14.37721	н	13.52456	5.15203	14.69935
н	5.03483	8.82276	13.41926	н	13.67580	4.79101	12.96367
С	6.20591	6.31834	18.43345	C	11.54621	6.39517	12.30307
н	5.33778	6.45291	19.09950	н	12.12411	5.98304	11.27664
H	7.10043	6.22724	19.06332	Н		7.37536	
H				Н	11.15120		11.80997
С	6.05890	5.36473	17.90247	С	10.69029	5.72462	12.28751
	8.52650	10.52970	16.97549	c	11.44969	7.33972	18.58045
Н	8.85984	11.04512	16.06573		10.61499	6.24197	18.85016
Н	9.40445	10.06826	17.44803	С	9.72893	6.35403	19.92526
Н	8.13114	11.29655	17.66250	Н	9.08804	5.51128	20.18788
С	9.04594	10.78634	11.61790	С	9.64625	7.53358	20.65848
С	10.32345	11.37867	11.64650	Н	8.93982	7.60831	21.48904
С	11.32304	10.85944	10.81551	С	11.37962	8.55133	19.29404
Н	12.32072	11.30572	10.85975	С	10.62900	5.02725	17.94142
С	11.09513	9.78748	9.95486	Н	11.67698	4.83185	17.66129
С	9.81636	9.22279	9.93067	С	9.86750	5.34420	16.64965
Н	9.60806	8.39076	9.25087	н	10.24898	6.25319	16.16326
С	8.78753	9.70345	10.74305	н	8.80007	5.51479	16.86125
С	7.41159	9.10256	10.64039	н	9.94683	4.50841	15.93666
н	6.66090	9.87484	10.41141	С	10.09084	3.76055	18.59459
н	7.08449	8.63725	11.58388	Н	10.22808	2.90297	17.91890
н	7.37453	8.33693	9.85309	н	9.01159	3.83542	18.80153
С	12.17540	9.27152	9.04945	Н	10.60565	3.53365	19.54072
н	12.18732	8.17092	9.02284	С	12.30211	9.71378	18.97278
н	13.16721	9.62025	9.36973	н	12.43393	9.74914	17.88052
н	12.02184	9.61633	8.01330	С	11.73385	11.07127	19.37088
С	13.45654	7.56642	13.31932	н	10.72098	11.22249	18.97096
С	13.92394	8.04726	12.09414	н	12.37264	11.86813	18.96305

Н	11.69750	11.20430	20.46424	С	12.04744	10.72415	10.46665
С	13.68022	9.50714	19.60838	н	12.10280	10.04661	9.60231
Н	14.14835	8.56567	19.28607	Н	12.90598	10.49782	11.11990
н	13.60518	9.48998	20.70757	Н	12.16477	11.75773	10.10738
Н	14.35616	10.32891	19.32510	С	13.25991	6.73436	12.15096
С	10.44634	8.62448	20.33313	С	13.68274	7.14418	10.88215
н	10.35253	9.54761	20.90665	Н	13.27409	6.65479	9.99493
С	11.53138	9.72940	15.23938	С	14.62915	8.15086	10.73993
0	12.46645	10.49466	15.42648	н	14.95361	8.45570	9.74207
0	10.54322	10.01551	14.42498	С	15.17189	8.76983	11.86280
				Н	15.92365	9.55165	11.73546
119				С	14.76256	8.41792	13.14959
INT-I				С	13.79038	7.40960	13.26000
Sn	9.19178	8.72075	16.21808	С	13.39797	5.47870	16.22410
N	11.26689	8.04056	15.09538	Н	13.59222	4.70326	16.95857
С	7.39278	9.04815	14.86012	С	14.11117	5.90449	15.16026
С	6.17777	8.72000	15.50974	Н	15.04737	5.55489	14.73795
N	13.40679	6.94274	14.55995	С	12.24649	7.17237	15.25587
N	12.25492	6.25918	16.28046	С	8.80555	12.40652	13.90797
С	4.95396	9.22879	15.05615	н	9.32249	13.35359	13.69878
Н	4.03357	8.95251	15.57908	н	9.08262	12.09526	14.92671
С	4.90891	10.06752	13.94813	Н	7.72118	12.58895	13.89508
Н	3.95479	10.47168	13.60033	С	15.38487	9.06669	14.36889
С	6.08599	10.36422	13.26912	Н	14.71245	8.86342	15.21505
Н	6.06120	10.98873	12.37145	С	16.74948	8.44355	14.67420
С	6.12873	7.75724	16.65443	н	16.68340	7.35615	14.83151
С	7.31910	9.85919	13.70411	н	17.18245	8.88895	15.58400
С	5.83340	5.48498	17.43688	н	17.45683	8.61575	13.84708
Н	5.66718	4.42612	17.21396	С	15.48613	10.58342	14.23985
C	5.92487	6.39042	16.37611	н	16.18827	10.88325	13.44559
С	5.91640	5.89782	18.76847	н	15.86090	11.01637	15.18061
C	6.18595	8.19870	17.99180	Н	14.49570	11.00828	14.03222
С	6.08723	7.26025	19.02244	С	12.27843	5.58793	12.30012
H C	6.12839 5.73934	7.61029 5.91908	20.05866	H C	12.21007 12.76059	5.33692 4.32791	13.36967 11.58296
	4.76082	6.24351	14.96151 14.57172	н	12.06298	3.49515	11.76295
H H	4.78082 5.78476	4.82298	14.89558	н	13.75762	4.02127	11.93460
Н	6.49195	4.82298 6.34817	14.28484	н	12.82154	4.47598	10.49356
С	5.83889	4.90595	19.89319	С	10.88320	6.00432	11.85050
н	5.31231	3.98996	19.58898	н	10.86771	6.23761	10.77426
н	5.31769	5.32518	20.76632	н	10.55524	6.90180	12.39131
н	6.84552	4.60559	20.23340	н	10.35524	5.19963	12.03148
С	6.34160	9.65634	18.30937	С	11.38275	6.33376	17.40643
н	7.34753	10.01841	18.03075	c	10.27599	5.46999	17.46757
н	6.21149	9.84814	19.38318	c	9.41804	5.60652	18.56044
н	5.62377	10.27101	17.74699	н	8.53086	4.97797	18.62976
С	8.50959	10.12902	12.85030	С	9.66607	6.55216	19.55121
c	9.21238	11.34392	12.93134	н	8.96906	6.65111	20.38664
c	10.33654	11.52424	12.12638	С	11.66823	7.28638	18.39852
н	10.90865	12.45162	12.22138	c	10.00460	4.47201	16.35831
С	10.77337	10.54351	11.23471	н	10.98290	4.13261	15.97812
c	10.01953	9.37486	11.12232	С	9.26681	5.14532	15.19901
н	10.32086	8.61294	10.39817	н	9.84841	5.96669	14.75760
С	8.89109	9.15031	11.91635	н	8.31034	5.55614	15.55332
c	8.07906	7.89422	11.75796	н	9.04734	4.42035	14.39988
н	7.01372	8.12613	11.60540	С	9.24290	3.23993	16.83531
H	8.12880	7.26338	12.65972	н	9.24290	2.49179	16.02986
н	8.42935	7.29789	10.90444	н	8.20591	3.48901	17.10931
	0.72300	1.20100	10.00		0.20001	0.40001	11.10001

н	9.72410	2.77254	17.70786	н	15.50427	6.12386	9.86890	
С	12.87738	8.19820	18.32013	С	13.45332	5.51615	10.07153	
H	13.40392	7.98457	17.37793	С	13.71504	4.64958	11.26896	
С	12.48223	9.67422	18.28971	н	13.31114	3.63582	11.13076	
H	11.81047	9.90280	17.45015	н	13.22454	5.06759	12.16210	
H	13.37741	10.30505	18.18047	н	14.79181	4.57396	11.47408	
H	11.97323	9.97376	19.21956	С	15.40238	7.86457	7.78488	
С	13.85929	7.90321	19.45426	н	16.34775	7.30263	7.81025	
H	14.17832	6.84998	19.44699	н	15.56291	8.79605	8.35368	
H	13.40997	8.11029	20.43842	н	15.19813	8.14793	6.74236	
4	14.75689	8.53312	19.35785	С	14.34138	9.53284	13.82851	
С	10.78321	7.37466	19.47748	С	14.18576	10.49914	12.83291	
4	10.96715	8.11174	20.26257	н	14.87858	10.51781	11.98859	
С	11.49140	9.40871	14.76843	С	13.14490	11.42067	12.88884	
С	12.50258	9.82571	14.24452	Н	13.02916	12.15978	12.09235	
C	10.49021	10.11996	15.18724	С	12.24428	11.39849	13.94756	
				Н	11.42751	12.12326	13.97723	
119				С	12.36723	10.46401	14.98070	
2	40.00400	7 0 1000	44 50000	С	13.42911	9.54653	14.89759	
Sn	10.88493	7.64983	11.56689	С	14.22034	7.51900	17.75773	
N	11.61394	7.21336	15.44432	Н	14.69767	7.17155	18.66839	
2	10.31587	5.50642	11.24219	С	14.49283	8.57471	16.95628	
C	9.29076	4.77959	11.87719	Н	15.25553	9.34406	17.02280	
N	13.56465	8.56386 6.85947	15.92119	C	12.70236	7.50849	16.08424	
N C	13.12698 8.99433		17.21301 11.45239	С	10.52530 10.51664	6.59728 7.24394	7.86642 6.97824	
J H	8.19578	3.47726 2.92563	11.95687	H H	9.82942	7.02689	8.60614	
2	9.69862	2.88749	10.40613	Н	9.82942	5.61574	7.59261	
H	9.45232	1.87289	10.08290	C	11.40582	10.49235	16.15305	
5	10.72099	3.59332	9.77791	н	11.57975	9.58992	16.75564	
H	11.29246	3.13802	8.96378	C	11.69873	11.69697	17.04877	
2	8.51096	5.35036	13.01150	н	12.73921	11.68787	17.40820	
2	11.02747	4.89364	10.19324	н	11.03385	11.69587	17.92668	
2	8.12921	5.56126	15.38473	н	11.54000	12.64350	16.50771	
H	8.41878	5.30891	16.40834	C	9.94502	10.45191	15.70903	
5	8.87165	5.02770	14.33143	Ĥ	9.67102	11.35076	15.13377	
5	7.04968	6.41862	15.16589	н	9.28549	10.41460	16.58962	
2	7.42190	6.20269	12.76416	н	9.74403	9.56635	15.08850	
2	6.71163	6.72630	13.84706	С	15.45999	8.51468	13.75192	
4	5.86498	7.39228	13.65226	н	15.24646	7.73724	14.50072	
С	10.06062	4.15577	14.61331	С	16.80323	9.15548	14.10479	
4	9.88083	3.10941	14.31688	н	17.60933	8.40509	14.09312	
H	10.32194	4.17663	15.67988	н	16.78601	9.61928	15.10276	
H	10.93727	4.49393	14.04212	н	17.06511	9.94387	13.38127	
С	6.30290	7.02771	16.31728	С	15.50721	7.81736	12.39643	
H	6.28632	6.35587	17.18837	н	15.76632	8.51119	11.58139	
H	5.26313	7.26412	16.04720	н	14.53495	7.36386	12.16752	
H	6.78082	7.96815	16.64043	н	16.26903	7.02181	12.40383	
С	7.02508	6.55075	11.35655	С	12.48487	5.68521	17.70143	
H	7.81089	7.12667	10.83953	С	13.00565	4.43308	17.32975	
H	6.10616	7.15337	11.33949	С	12.31365	3.29689	17.75544	
H	6.86233	5.64808	10.74767	н	12.68228	2.30653	17.48280	
С	12.14913	5.63922	9.54843	С	11.15027	3.41104	18.51204	
С	11.90946	6.46715	8.43283	н	10.61585	2.51040	18.82344	
С	12.97625	7.17260	7.86966	С	11.32923	5.82952	18.48414	
H	12.78561	7.82060	7.00884	С	14.24389	4.33160	16.45976	
С	14.27411	7.06918	8.37428	н	14.84959	5.23260	16.64965	
С	14.49212	6.22786	9.46765	С	13.87233	4.34046	14.97518	

н	13.29741	5.23326	14.69293	С	9.09183	9.07576	12.17769
н	13.26147	3.45897	14.72352	С	8.69496	10.40415	11.91122
н	14.77948	4.31358	14.35165	С	9.55352	11.23617	11.19229
С	15.11482	3.12622	16.79877	н	9.24304	12.26519	10.98577
н	16.05538	3.16931	16.22936	С	10.79077	10.78525	10.72220
н	14.62316	2.17754	16.53228	С	11.16755	9.47419	11.01091
н	15.36392	3.08975	17.87014	н	12.13689	9.10674	10.66763
С	10.80787	7.19137	18.89475	С	10.34375	8.61074	11.73906
н	11.54422	7.93795	18.56055	С	10.79312	7.21753	12.05976
С	9.48643	7.51889	18.20192	Н	10.01135	6.47748	11.83355
Н	9.59484	7.46462	17.10915	н	11.01774	7.13351	13.13762
Н	9.15445	8.53355	18.47340	Н	11.69908	6.96048	11.49467
H	8.69332	6.81860	18.50848	С	11.68225	11.70013	9.93392
C	10.69949	7.31295	20.41395	Н	12.62827	11.20977	9.66600
H	11.65672	7.08616	20.90772	н	11.92156	12.61153	10.50578
H	9.94107	6.62683	20.82258	Н	11.19553	12.02575	9.00054
H	10.40367	8.33523	20.69652	С	14.36559	8.05513	13.41549
C	10.66714	4.66231	18.87715	С	14.76125	8.45897	12.13694
H C	9.75805	4.73671	19.47852	H C	15.23886 14.57084	7.73821	11.46881
	11.40579 12.31450	7.39017	14.13045 13.25017		14.57084	9.76940 10.07170	11.71271 10.71533
0 0	12.31450	7.14390 7.74106	13.70604	H C	13.94770	10.69308	12.54512
0	10.23340	7.74100	13.70004	н	13.78412	11.71223	12.19118
116				C	13.52629	10.33372	13.82706
1				c	13.76841	9.01648	14.25196
Sn	9.62248	9.33311	15.45594	c	14.04065	8.03596	17.66066
N	11.18587	8.01869	15.56496	н	14.50403	7.81572	18.61759
c	8.18940	8.08292	14.29526	C	14.54177	8.60168	16.54436
C	7.20334	7.33495	14.95730	H	15.53469	8.98027	16.32300
N	13.51783	8.66360	15.60700	С	12.33099	8.13894	16.13139
N	12.70424	7.74420	17.41915	С	7.36182	10.91072	12.38214
С	6.25229	6.61481	14.22325	н	7.22425	11.96873	12.11919
н	5.49832	6.02600	14.75398	н	7.25609	10.80982	13.47399
С	6.25897	6.65788	12.83109	н	6.53563	10.33154	11.94152
н	5.51745	6.09174	12.26166	С	12.88273	11.34469	14.75243
С	7.19629	7.44649	12.16787	н	12.31044	10.77429	15.50138
н	7.18668	7.51623	11.07613	С	13.94634	12.14618	15.50466
С	7.12582	7.33230	16.44694	н	14.60738	11.48937	16.08967
С	8.15208	8.16693	12.89455	Н	13.47644	12.85871	16.20068
С	7.63035	6.30777	18.57410	Н	14.57486	12.71936	14.80392
н	8.14885	5.53311	19.14228	С	11.89722	12.25664	14.02941
С	7.80780	6.35172	17.18884	н	12.40891	12.95547	13.34832
С	6.82028	7.22398	19.24437	Н	11.33597	12.86285	14.75653
С	6.31556	8.28269	17.10421	н	11.17237	11.67914	13.43549
C	6.18221	8.21470	18.49220	С	14.64045	6.64385	13.89826
H	5.55071	8.95124	18.99866	Н	14.10648	6.51435	14.85080
C	8.71254	5.37606	16.49976	С	16.13214	6.44615	14.17277
H	8.17045	4.78312	15.74681	н	16.32228	5.43761	14.57280
H	9.18047	4.69345	17.22188	н	16.50901	7.17517	14.90451
H	9.51440	5.91360	15.97011	н	16.72378	6.56048	13.25039
C	6.65931	7.17292	20.73589	С	14.11333	5.57911	12.94075
Н	7.06599	6.24121	21.15397	н	14.59990	5.63474	11.95425
Н	5.60080	7.24380	21.02990	н	13.02971	5.67746	12.79427
H	7.18379	8.01352	21.22047	Н	14.31186	4.57472	13.34565
C	5.59416	9.34337	16.32242	С	11.91189	7.01601	18.34879
Н	6.29901	9.98082	15.76459	С	12.08276	5.61923	18.41722
H	5.00049	9.98998	16.98350	С	11.40465	4.93230	19.42770
H	4.92235	8.90091	15.57104	Н	11.52058	3.85077	19.51728

	5587 4.66345 15.38474
C 11.08085 7.71764 19.23716 H 9.33 C 12.96810 4.89476 17.41978 C 6.52 H 13.76184 5.58722 17.14906 H 6.96 C 12.19869 4.57633 16.13572 H 5.45 H 11.76189 5.48186 15.68874 H 6.99 H 12.86636 4.10949 15.39485 H 6.46 C 13.62242 3.64135 17.97366 H 5.08 H 12.88794 2.84225 18.18094 C 9.09 H 14.183793 3.23869 17.27366 H 5.08 H 12.88794 2.84225 18.18094 C 9.09 H 14.14945 3.84933 18.93422 C 8.80 C 10.94792 9.22417 19.15648 C 9.68 H 11.21511 9.51669 18.12862 H 9.45 C 9.52344 9.70543 19.40830 C 10.88 H 9.22130 9.55485 20.45714 C 10.22 C 10.94792 9.927417 19.15648 H 2.00 H 9.22130 9.55485 20.45714 C 10.22 C 11.94097 9.90753 20.09784 C 10.55 H 9.44440 10.78284 19.19858 H 2.20 H 9.22130 9.55485 20.45714 C 10.22 C 11.94097 9.90753 20.09784 C 10.55 H 11.27613 9.63823 21.14671 H 11.43 H 11.86964 11.00294 20.00810 H 9.76 C 10.43064 6.98777 20.23573 C 11.77 H 11.86964 11.00294 20.00810 H 9.76 C 10.43064 6.98777 20.23573 C 11.77 H 9.78390 7.50455 20.94708 H 12.27 H 11.5904 7.50455 20.94708 H 12.27 H 13.64710 8.53599 15.6321 C 13.86 C 14.46 VII C 10.43064 6.9877 20.23573 C 11.77 H 9.78390 7.50455 20.94708 H 12.27 H 13.64710 8.53599 15.6321 C 7.54 Scheme S1 C 14.66 C 14.46 C 14.46 C 14.46 C 14.45 C 7.14400 7.24067 14.70689 C 12.55 C 7.14400 7.24067 14.70689 H 7.42 C 6.22459 6.51926 13.93433 H 7.53 C 7.58210 6.12681 18.32781 C 14.56 C 7.2005 7.39922 11.91929 C 13.99 H 5.54457 6.02494 11.94560 H 12.33 C 7.58210 6.41371 16.94022 H 14.35 C 7.2005 7.39924 11.91720 C 13.94 H 5.54457 6.02494 11.94560 H 12.33 C 7.58210 6.41371 16.94022 H 14.35 C 7.58210 6.41371 16.94022 H 11.35 C 7.58210 6.41371 16.94022 H 11.35 C 7.58210 6.41371 16.94022 H 1	
C 12.96810 4.89476 17.41978 C 6.52 H 13.78184 5.58722 17.14906 H 6.96 C 12.19869 4.57633 16.13572 H 5.45 H 11.76189 5.48186 15.68874 H 6.99 H 12.86636 4.10949 15.39485 H 6.46 C 13.62242 3.64135 17.99056 H 5.08 H 14.35393 3.23869 17.27366 H 5.06 H 12.86794 2.84285 18.18094 C 9.09 H 14.14945 3.84933 18.93422 C 8.80 C 10.94792 9.22417 19.15648 C 9.06 C 9.5244 9.7053 20.45714 C 10.22 C 11.34097 9.90753 20.09784 C 10.55 H 9.22130 9.55485 20.49714 H 17.49 H 11.80964 11.00294 20.09784 C 10.55 <t< td=""><td></td></t<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H 11.76189 5.48186 15.68874 H 6.99 H 11.37801 3.87173 16.34161 C 5.69 H 12.86636 4.10949 15.39485 H 6.64 C 13.62242 3.64135 17.99056 H 5.08 H 14.35393 3.23869 17.27366 H 5.08 H 14.365393 3.23869 17.27366 H 5.08 H 12.86794 2.84285 18.1994 C 9.09 C 10.94792 9.22417 19.15648 C 9.68 H 11.26753 C 11.31 1.1.31 1.1.31 G 9.52344 9.70543 19.40830 C 10.82 C 9.17814 18.77253 C 11.1.31 11.32 H 9.4440 10.78284 19.19858 H 12.00 H 12.97802 9.61728 19.87267 H 10.73 H 11.80964 11.00294 20.00810 H 12.77 <	
H 11.37801 3.87173 16.34161 C 5.69 H 12.86636 4.10949 15.39485 H 6.46 C 13.62242 3.64135 17.97366 H 5.06 H 14.35393 3.23869 17.27366 H 5.06 H 14.35393 3.23869 17.27366 H 5.06 H 14.35393 3.23869 17.27366 H 5.06 C 10.94792 9.22417 19.15648 C 9.68 H 11.21511 9.51669 18.12862 H 9.45 C 9.52344 9.70543 19.40830 C 10.88 H 9.22130 9.55485 20.45714 C 10.26 H 9.27128 19.87267 H 10.76 H 11.73613 9.63823 21.14671 H 11.42.07 H 11.86964 11.00294 20.00810 H 9.76 C 10.43064 6.89777 20.23573 C 11.77 H <td< td=""><td>5513 7.11137 20.76604</td></td<>	5513 7.11137 20.76604
H 12.86636 4.10949 15.39485 H 6.46 C 13.62242 3.64135 17.99056 H 5.08 H 14.35393 3.23869 17.27366 H 5.08 H 12.88794 2.84285 18.18094 C 9.09 H 14.14945 3.84933 18.93422 C 8.80 C 10.94792 9.22417 19.15648 C 9.68 H 11.21511 9.51669 18.12662 H 9.45 C 9.52344 9.70543 19.40830 C 10.88 H 9.44440 10.78284 19.19858 H 12.02 C 11.94097 9.90753 20.09784 C 10.53 H 12.97802 9.61728 19.87267 H 10.77 H 11.86964 11.00294 20.00810 H 9.277 C 10.43064 6.98777 20.23573 C 11.76 H 13.77 15.30265 H 12.27 Scheme S1	
C 13.62242 3.64135 17.99056 H 5.08 H 14.35393 3.23669 17.27366 H 5.06 H 12.88794 2.84285 18.18094 C 9.09 H 14.14945 3.84933 18.93422 C 8.80 C 10.94792 9.22417 19.15648 C 9.68 H 11.21511 9.51669 18.12862 H 9.45 C 9.52344 9.70543 19.40830 C 10.83 H 9.76668 9.17814 18.77253 C 11.11 H 9.44440 10.78284 19.19858 H 12.04 H 9.27130 9.55485 20.45714 C 10.57 H 12.97802 9.61728 19.87267 H 10.77 H 11.89964 11.00294 20.00810 H 9.76 C 10.43064 6.98777 20.23573 C 11.73 G 14.34 H 15.22 H 13.67 G	
H 14.35393 3.23869 17.27366 H 5.06 H 12.88794 2.84285 18.18094 C 9.09 H 14.14945 3.84933 18.93422 C 8.80 C 10.94792 9.22417 19.15648 C 9.686 H 11.21511 9.51669 18.12862 H 9.455 C 9.52344 9.70543 19.40830 C 10.88 H 8.70668 9.17814 18.77253 C 11.17 H 9.44440 10.78284 19.19858 H 12.00 H 9.22130 9.55485 20.45714 C 10.26 C 11.94097 9.90753 20.09784 C 10.56 H 11.73613 9.63823 21.14671 H 11.74 H 11.73613 9.63823 21.14671 H 11.74 H 11.0294 20.09708 H 12.77 H 9.78390 7.50455 20.94708 H 12.76 K <td< td=""><td></td></td<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H 14.14945 3.84933 18.93422 C 8.80 C 10.94792 9.22417 19.15648 C 9.68 H 11.21511 9.51669 18.12862 H 9.45 C 9.52344 9.70543 19.40830 C 10.88 H 8.79668 9.17814 18.7253 C 11.13 H 9.44440 10.78284 19.19858 H 12.00 H 9.22130 9.55485 20.45714 C 10.26 C 11.94097 9.90753 20.09784 C 10.56 H 12.97802 9.61728 19.87267 H 10.75 H 11.86964 11.00294 20.00810 H 9.76 C 10.43064 6.98777 20.23573 C 11.76 H 9.78390 7.50455 20.94708 H 12.77 H 9.78390 7.50455 20.94708 H 12.77 H 9.78390 7.50455 20.94708 H 12.77	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C 9.52344 9.70543 19.40830 C 10.83 H 8.79668 9.17814 18.77253 C 11.11 H 9.44440 10.78284 19.19858 H 12.04 H 9.22130 9.55485 20.45714 C 10.26 C 11.94097 9.90753 20.09784 C 10.55 H 12.97802 9.61728 19.87267 H 10.75 H 11.36964 11.00294 20.00810 H 9.76 C 10.43064 6.98777 20.23573 C 11.73 H 9.78390 7.50455 20.94708 H 12.77 H 9.78390 7.50455 20.94708 H 12.70 H 11.32 C 14.48 C 14.48 Scheme S1 C 13.86 H 14.43 P 11.15904 7.27195 15.13086 C 14.04 Sc 7.14400 7.24067 14.70689 C 12.55 C 7.14400 <td></td>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5242 12.32975 11.18645
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5969 10.78530 10.65361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
H 9.78390 7.50455 20.94708 H 12.72 H 12.07 H 11.33 C 14.44 C 14.43 C 14.43 C 14.43 H 15.22 Scheme S1 C 13.93 H 13.74 C 13.94 H 13.74 C 13.64 Sn 9.59641 9.15742 15.32884 H 14.43 P 11.15904 7.27195 15.13086 C 14.52 C 8.12486 8.03029 14.08265 H 15.53 C 7.14400 7.24067 14.70689 C 12.53 N 12.79241 7.61593 17.42098 H 7.42 N 12.79241 7.61593 17.42098 H 7.42 C 6.26407 6.58970 12.54390 C 12.99 H 5.46819 5.90691 14.43407 H 6.65 C 7.21005 7.39922 11.91929 C 13.94 <t< td=""><td></td></t<>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8150 11.72164 9.92746
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
H 15.26 Scheme S1 C 14.56 H 14.82 H Scheme S1 C 13.92 116 C 13.60 VII C 13.82 Sn 9.59641 9.15742 15.32884 H 14.43 P 11.15904 7.27195 15.13086 C 14.50 C 8.03029 14.08265 H 15.53 C 8.12486 8.03029 14.08265 H 15.53 C 7.14400 7.24067 14.70689 C 12.55 N 13.64710 8.53549 15.66321 C 7.54 N 12.79241 7.61593 17.42098 H 7.42 C 6.22459 6.51926 13.93433 H 7.53 H 5.46819 5.90691 14.43407 H 6.65 C 6.26407 6.58970 12.54390 C 12.99 H	
Scheme S1 C 14.56 116 C 13.92 VII C 13.86 Sn 9.59641 9.15742 15.32884 H 14.43 P 11.15904 7.27195 15.13086 C 14.56 C 8.03029 14.08265 H 15.52 C 8.12486 8.03029 14.08265 H 15.53 C 7.14400 7.27195 15.66321 C 7.54 N 12.79241 7.61593 17.42098 H 7.42 C 6.22459 6.51926 13.93433 H 7.53 H 5.46819 5.90691 14.43407 H 6.65 C 6.26407 6.58970 12.54390 C 12.99 H 5.54457 6.02494 11.94560 H 12.36 C 7.2005 7.39922 11.91929 C 13.94 C 7.03287 7.20561 16.19648	
Scheme S1 H 14.83 C 116 C 13.96 H VII C 13.60 C Sn 9.59641 9.15742 15.32884 H 14.43 C P 11.15904 7.27195 15.13086 C 14.04 C C 7.24067 14.08265 H 15.53 C 7.14400 7.24067 14.70689 C 12.53 C N 13.64710 8.53549 15.66321 C 7.54 N N 12.79241 7.61593 17.42098 H 7.42 C C 6.22459 6.51926 13.93433 H 7.53 C H 5.46819 5.90691 14.43407 H 6.65 C C 6.26407 6.58970 12.54390 C 12.99 H 12.30 C C 7.21005 7.39922 11.91929 C 13.94 H 14.62 C 13.94 H 14.62 C 13.94 H 14.62 C 13.94 H 14.62 C 13.94 H 14.62 C 13.94 H	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5964 10.61516 12.61871
116C13.89VIIC13.89Sn9.596419.1574215.32884H14.43P11.159047.2719515.13086C14.62C8.124868.0302914.08265H15.53C8.124868.0302914.08265H15.53C7.144007.2406714.70689C7.53N13.647108.5354915.66321C7.54N12.792417.6159317.42098H7.42C6.224596.5192613.93433H7.53H5.468195.9069114.43407H6.65C6.264076.5897012.54390C12.92H5.544576.0249411.94560H12.36C7.230477.4820910.82852H14.62C7.032877.2056116.19648H13.42C7.433606.1268118.32781C11.90H7.832365.2994718.89867H14.23C7.582106.1437116.94022H11.32C6.698647.1251418.99746H11.22C6.313628.2284016.85525C14.72C6.162228.1714818.24138H14.42	
VIIC10.02Sn 9.59641 9.15742 15.32884 H 14.02 P 11.15904 7.27195 15.13086 C 14.02 C 8.12486 8.03029 14.08265 H 15.52 C 8.12486 8.03029 14.08265 H 15.52 C 7.14400 7.24067 14.70689 C 12.52 N 13.64710 8.53549 15.66321 C 7.54 N 12.79241 7.61593 17.42098 H 7.42067 K 5.46819 5.90691 14.43407 H $6.656666666666666666666666666666666666$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C 8.12486 8.03029 14.08265 H 15.53 C 7.14400 7.24067 14.70689 C 12.53 N 13.64710 8.53549 15.66321 C 7.54 N 12.79241 7.61593 17.42098 H 7.42 C 6.22459 6.51926 13.93433 H 7.53 H 5.46819 5.90691 14.43407 H 6.65 C 6.26407 6.58970 12.54390 C 12.39 H 5.54457 6.02494 11.94560 H 12.39 C 7.21005 7.39922 11.91929 C 13.94 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 8.13646 8.12391 12.67965 H 14.55 C 7.40360 6.12681 18.32781 C 11.93 <	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
N 12.79241 7.61593 17.42098 H 7.42 C 6.22459 6.51926 13.93433 H 7.53 H 5.46819 5.90691 14.43407 H 6.65 C 6.26407 6.58970 12.54390 C 12.92 H 5.54457 6.02494 11.94560 H 12.36 C 7.21005 7.39922 11.91929 C 13.94 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.32 C 6.69864 7.12514 18.99746 H 11.27 C 6.31362 8.22840 16.85525 C 14.72 <	3631 7.87612 16.10533
C 6.22459 6.51926 13.93433 H 7.53 H 5.46819 5.90691 14.43407 H 6.65 C 6.26407 6.58970 12.54390 C 12.92 H 5.54457 6.02494 11.94560 H 12.36 C 7.21005 7.39922 11.91929 C 13.94 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.36 C 7.58210 6.14371 16.94022 H 11.32 C 6.69864 7.12514 18.99746 H 11.27 C 6.31362 8.22840 16.85525 C 14.72 C 6.16222 8.17148 18.24138 H 14.42	
H 5.46819 5.90691 14.43407 H 6.65 C 6.26407 6.58970 12.54390 C 12.93 H 5.54457 6.02494 11.94560 H 12.36 C 7.21005 7.39922 11.91929 C 13.94 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 8.13646 8.12391 12.67965 H 14.52 C 7.40360 6.12681 18.32781 C 11.93 C 7.58210 6.14371 16.94022 H 11.33 C 6.69864 7.12514 18.99746 H 11.23 C 6.31362 8.22840 16.85525 C 14.75 C 6.16222 8.17148 18.24138 H 14.42	
C 6.26407 6.58970 12.54390 C 12.92 H 5.54457 6.02494 11.94560 H 12.32 C 7.21005 7.39922 11.91929 C 13.94 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 8.13646 8.12391 12.67965 H 14.55 C 7.40360 6.12681 18.32781 C 11.93 C 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.33 C 6.69864 7.12514 18.99746 H 11.27 C 6.31362 8.22840 16.85525 C 14.74 U 5.60600 49.041732 H 14.42	
H 5.54457 6.02494 11.94560 H 12.32 C 7.21005 7.39922 11.91929 C 13.92 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 8.13646 8.12391 12.67965 H 14.52 C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.30 C 6.69864 7.12514 18.99746 H 11.27 C 6.31362 8.22840 16.85525 C 14.72 C 6.16222 8.17148 18.24138 H 14.42	
C 7.21005 7.39922 11.91929 C 13.94 H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 8.13646 8.12391 12.67965 H 14.52 C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.30 C 6.69864 7.12514 18.99746 H 11.22 C 6.31362 8.22840 16.85525 C 14.72 C 6.16222 8.17148 18.24138 H 14.42	
H 7.23047 7.48209 10.82852 H 14.62 C 7.03287 7.20561 16.19648 H 13.42 C 8.13646 8.12391 12.67965 H 14.52 C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.30 C 6.69864 7.12514 18.99746 H 11.22 C 6.31362 8.22840 16.85525 C 14.72 C 6.16222 8.17148 18.24138 H 14.42	
C 7.03287 7.20561 16.19648 H 13.43 C 8.13646 8.12391 12.67965 H 14.55 C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.30 C 6.69864 7.12514 18.99746 H 11.27 C 6.31362 8.22840 16.85525 C 14.79 C 6.16222 8.17148 18.24138 H 14.42	
C 7.40360 6.12681 18.32781 C 11.90 H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.30 C 6.69864 7.12514 18.99746 H 11.20 C 6.31362 8.22840 16.85525 C 14.75 C 6.16222 8.17148 18.24138 H 14.42	3183 12.74750 16.31003
H 7.83236 5.29947 18.89867 H 12.33 C 7.58210 6.14371 16.94022 H 11.33 C 6.69864 7.12514 18.99746 H 11.27 C 6.31362 8.22840 16.85525 C 14.75 C 6.16222 8.17148 18.24138 H 14.42	
C 7.58210 6.14371 16.94022 H 11.33 C 6.69864 7.12514 18.99746 H 11.2 C 6.31362 8.22840 16.85525 C 14.75 C 6.16222 8.17148 18.24138 H 14.42	
C 6.69864 7.12514 18.99746 H 11.2' C 6.31362 8.22840 16.85525 C 14.7' C 6.16222 8.17148 18.24138 H 14.4'	
C 6.31362 8.22840 16.85525 C 14.75 C 6.16222 8.17148 18.24138 H 14.42	
C 6.16222 8.17148 18.24138 H 14.42	
	2097 6.44343 14.91467
	5567 6.24533 13.84677
C 8.36976 5.05886 16.27267	

н	16.44554	5.22341	14.21035	С	3.92690	0.23527	1.43948	
н	16.82252	6.94412	14.48091	c	5.29879	0.48997	1.43854	
н	16.66332	6.31506	12.82591	н	5.83090	0.56575	0.48573	
С	13.95302	5.56228	13.03865	C	6.02243	0.62562	2.62853	
н	14.23364	5.60664	11.97424	c	7.51579	0.80000	2.58326	
н	12.87792	5.77483	13.12477	н	7.85220	1.72821	3.07110	
н	14.12938	4.53284	13.38821	н	7.87950	0.80985	1.54699	
С	11.95323	4.55264 6.85146	18.29129	н	8.01893	-0.01669	3.12364	
c	12.07864			C	3.22256	0.10711	5.18452	
c	11.31764	5.45318 4.72864	18.27340					
			19.19516	н	3.64000	-0.71156	5.79072	
Н	11.39101	3.63855 5.37609	19.21237	н	2.15682 3.30727	-0.09555	5.01221	
С	10.47260		20.08894	н		1.02805	5.78549 0.15343	
Н	9.89059	4.79284	20.80689	С	3.16216	0.12240		
C	11.07847	7.53093	19.15478	н	2.82266	1.11477	-0.18838	
С	13.00116	4.73635	17.30744	н	2.26869	-0.50787	0.26957	
Н	13.42002	5.48920	16.62405	н	3.78155	-0.30315	-0.64950	
С	12.23782	3.73710	16.44116	С	7.43187	3.79782	6.93529	
н	11.42749	4.24244	15.89691	С	8.35361	4.49913	6.12821	
н	11.80152	2.92446	17.04314	С	8.58102	5.85710	6.37774	
н	12.91203	3.27831	15.70137	н	9.30081	6.39555	5.75319	
С	14.17247	4.08273	18.03966	C	7.92902	6.53522	7.40677	
н	14.85297	3.59697	17.32260	С	7.03679	5.81548	8.20452	
н	13.82399	3.31257	18.74597	н	6.50560	6.33153	9.00919	
н	14.75297	4.82249	18.61245	С	6.78292	4.45863	8.00063	
С	10.93609	9.03862	19.11127	C	5.83318	3.73067	8.90737	
н	11.27189	9.36542	18.11329	н	6.37281	3.03675	9.57184	
С	9.48744	9.49060	19.26221	н	5.10075	3.13525	8.34351	
н	8.82212	8.96223	18.56403	н	5.28029	4.43958	9.53871	
н	9.40539	10.56916	19.06091	С	9.14109	3.80954	5.04455	
н	9.11080	9.31877	20.28315	н	9.33764	2.75745	5.29303	
С	11.83288	9.71245	20.15096	н	10.10241	4.31827	4.88503	
н	12.89278	9.45351	20.01150	н	8.62004	3.81579	4.07041	
н	11.54633	9.40815	21.17061	С	8.19801	7.98610	7.67919	
н	11.74311	10.80808	20.08660	н	8.91828	8.10548	8.50609	
С	10.34742	6.76130	20.06177	н	7.27612	8.51273	7.96517	
н	9.65571	7.25294	20.74785	н	8.62187	8.49102	6.79885	
				С	3.51285	3.86123	6.13129	
119				С	2.41216	6.39636	5.79280	
TS-P	°C2			С	1.24420	8.19402	5.04025	
Sn	5.68102	3.59115	4.01574	н	1.00834	9.24811	4.93077	
0	3.40682	2.86530	6.82070	С	0.64523	7.08521	4.55178	
0	3.78339	3.83239	4.83507	н	-0.24701	6.96506	3.94672	
N	2.33237	7.76807	5.78012	С	0.91728	4.64217	4.79695	
N	1.36753	5.98469	4.99674	С	1.15078	4.02279	3.55432	
Р	3.50269	5.55807	6.89955	С	0.64196	2.73682	3.36874	
С	6.38669	2.07950	5.47222	н	0.81056	2.22664	2.41916	
С	7.12017	2.37296	6.62950	C	-0.04965		4.38515	
С	7.54262	1.32340	7.45407	н	-0.43108	1.07386	4.22317	
н	8.11864	1.54361	8.35675	C	-0.24718	2.71003	5.60902	
С	7.24284	0.00290	7.12208	н	-0.78185	2.18707	6.40457	
н	7.58151	-0.80861	7.77073	C	0.22721	4.00479	5.84124	
С	6.52203	-0.28993	5.96453	c	-0.04417	4.68926	7.16539	
н	6.29502	-1.32708	5.70220	н	0.60231	5.57599	7.22094	
С	6.09368	0.75022	5.13512	C	0.33697	3.80996	8.35382	
c	5.34089	0.52306	3.86465	н	-0.32618	2.93512	8.44914	
c								
c	3.95547	0.24682 0.10793	3.88739 2.67197	Н	0.25576 1.37317	4.38629	9.28859	
н	3.28136 2.20905	-0.10793	2.67197	H C	-1.49550	3.45426 5.16518	8.25267 7.23615	
	2.20903	-0.10030	2.09541	C	-1.49550	5.10518	7.23013	

н	-1.73542	5.84735	6.40561	н	7.20930	-0.58197	4.88656	
H	-1.73542 -1.68093	5.84735 5.70248	8.17989	С	6.31295	1.37806	4.88656	
Н	-2.19786	4.31746	7.18660	c	5.55897	1.10121	3.64576	
С	1.93779	4.70977	2.45549	c	4.38606	0.32159	3.68437	
H	2.61531	5.42159	2.95403	c	3.69421	0.08047	2.49566	
С	2.79691	3.73383	1.65528	Н	2.77569	-0.51313	2.53348	
Н	3.34637	3.04273	2.31013	С	4.13801	0.57337	1.26697	
н	3.52231	4.27958	1.03311	С	5.32131	1.31347	1.24592	
н	2.18494	3.12056	0.97463	н	5.70161	1.68944	0.29110	
С	1.02700	5.49004	1.50388	С	6.04502	1.57977	2.41132	
н	0.31412	4.81218	1.00750	С	7.32610	2.35885	2.33674	
Н	1.62079	5.98749	0.72085	н	7.18685	3.38951	2.70958	
Н	0.44615	6.26565	2.02027	н	7.68609	2.42965	1.30097	
С	3.26800	8.62914	6.42043	н	8.11303	1.90386	2.95586	
С	4.43367	8.98470	5.72054	С	3.89154	-0.27499	4.97004	
С	5.31260	9.87437	6.34119	Н	4.38442	-1.24215	5.16580	
H	6.22565	10.17617	5.82271	н	2.80773	-0.45062	4.93028	
С	5.04666	10.37191	7.61377	н	4.10567	0.37028	5.83134	
H	5.74750	11.06792	8.08160	С	3.34972	0.33503	0.01204	
C H	3.90060 3.71105	9.97873 10.36217	8.29645 9.30182	H H	3.98411 2.54624	0.40408 1.08312	-0.88361 -0.09567	
н С		9.09387	9.30182 7.71522		2.54624 2.87141	-0.65563	-0.09567 0.01760	
c	2.98701 1.75177	9.09387 8.65066	8.47212	н С	6.94571	4.12265	7.47693	
н	1.21273	7.93316	7.83488	c	7.76660	4.12203 5.17768	7.04062	
С	2.12622	7.91029	9.75571	c	7.79021	6.36991	7.77113	
H	2.76411	7.04366	9.52706	н	8.43161	7.18778	7.42981	
н	1.21998	7.54451	10.26346	C	7.04853	6.52669	8.94221	
н	2.66304	8.56538	10.46049	c	6.24337	5.46373	9.35689	
С	0.81207	9.82541	8.74023	н	5.65003	5.56709	10.27051	
н	1.28848	10.58510	9.38019	С	6.17520	4.26451	8.64712	
н	-0.10061	9.48313	9.25222	С	5.28177	3.15700	9.12320	
н	0.51180	10.32045	7.80387	н	5.82045	2.20053	9.19255	
С	4.74571	8.41890	4.35087	н	4.44138	2.99772	8.43051	
Н	3.94523	7.70930	4.09491	н	4.85630	3.39055	10.10925	
С	6.05134	7.62690	4.37517	С	8.67388	5.00473	5.85351	
Н	6.91985	8.27713	4.56759	н	9.46318	4.26717	6.07217	
Н	6.21883	7.12688	3.40822	Н	9.15966	5.95265	5.58264	
H	6.02290	6.86160	5.16547	Н	8.14535	4.62046	4.96831	
С	4.75293	9.50968	3.28153	С	7.16338	7.76690	9.77948	
Н	3.79101	10.04355	3.24647	н	7.79446	7.58254	10.66496	
H	4.93727	9.07454	2.28687	н	6.18039	8.09791	10.14597	
Н	5.54177	10.25494	3.47162	Н	7.61534	8.59461	9.21605	
119				C C	2.65585 2.72868	2.81479 6.27148	6.15615 5.52653	
TS-P	C1			c	2.72000	8.22926	5.52653 4.63467	
Sn	4.95258	4.15853	4.50858	н	2.01863	8.22926 9.28391	4.38404	
0	2.28607	2.48322	7.22044	C	1.04346	7.31142	4.43167	
0	2.86870	2.59651	4.99868	н	0.07130	7.39205	3.95675	
N	3.03916	7.58519	5.30418	C	0.67284	4.94052	4.98692	
N	1.48446	6.12058	4.97956	c	0.53666	4.21678	3.79151	
P	3.72658	5.14383	6.51450	C	-0.33365	3.12352	3.79805	
С	6.19513	2.62054	5.56713	н	-0.45962	2.53353	2.88820	
С	6.95449	2.82889	6.73624	С	-1.01740	2.76218	4.95196	
С	7.78504	1.81230	7.22855	н	-1.68619	1.89818	4.93958	
Н	8.36645	1.99940	8.13580	С	-0.84014	3.48114	6.12993	
С	7.87758	0.58691	6.57718	н	-1.36155	3.16745	7.03481	
Н	8.52847	-0.19807	6.97011	С	0.00699	4.58981	6.17687	
С	7.14202	0.37242	5.41618	С	0.19343	5.39008	7.45160	

) ;	3.41114 2.27875	4.69971 0.23645	3.26004 5.54245	С Н	7.01322 6.83720	3.84844 4.19957	6.59820 7.61560
1	6.30334	4.83975	3.09737	C	6.49062 7.01322	4.57545	5.52465
	5.19066	5.95966	1.60488	С	6.72983	4.07631	4.22926
)	4.40991	2.20867	3.81061	н	8.28690	5.47166	2.51942
)	3.47255	3.20178	5.51153	С	7.22165	5.54202	2.32421
'n	4.31373	1.10219	5.82447	н	6.85092	6.92921	0.62484
C2				C	6.52717	6.24758	1.40511
19				C	5.02745	5.08383	2.64949
				C	3.85066	3.23580	4.29925
	5.89246	9.86477	2.74285	н	4.38525	4.48886	10.25700
	5.24688		1.64168	н	2.98078		11.32816
	4.15909	9.04162 9.47412	2.76393	н	4.31812	3.19343	11.47465
	5.16517	9.04162	2.65680	С	3.71587	3.77018	10.75849
	7.01599	6.59092	4.29679	Н	3.64219	-1.07378	7.80590
	7.60779 6.80297	8.04236 6.75786	3.46098 2.53564	H H	2.14350 3.65332	-1.38181 -1.07378	8.67644 9.58194
	6.79061 7.60779	7.30425 8.04236	3.49098 3.46098	С	3.06710 2.14350	-0.78448 -1 38181	8.69907 8.67644
	4.66913	7.17834	3.58735	Н	0.37690	4.27295	7.10597
	5.43270	7.96402	3.70836	Н	1.03496	3.19941	5.84924
	1.68510	10.30967	7.40734	Н	-0.35652	2.67150	6.81293 5.84024
	1.05822	9.54608	8.88971	С	0.59260	3.22519	6.85585
	2.57250	10.47688	8.93956	С	1.54100	2.61875	7.84554
	1.97588	9.78128	8.32828	Н	1.87900	4.46739	8.88117
	3.71402	8.31378	9.96912	С	2.13013	3.40332	8.83662
	2.17758	7.43389	9.81771	С	3.04778	2.87854	9.75230
	3.64465	6.79911	9.02129	Н	4.02568	1.07747	10.41342
	3.09584	7.71669	9.27950	С	3.33430	1.51551	9.68739
	2.08465	7.86229	7.41825	С	2.76107	0.68746	8.71419
	2.74970	8.50198	8.01575	С	1.88255	1.25156	7.76570
	3.98707	8.78513	7.18754	Н	5.75846	-0.52155	-0.51992
	4.93278	9.97314	8.71449	н	6.44525	-1.93257	0.32213
	5.02255	9.56519	7.70534	н	5.03844	-2.12567	-0.74190
	6.96216	10.44414	7.37654	С	5.50706	-1.45783	0.00040
	6.16463	9.82701	6.95587	н	2.18232	2.08125	2.39013
	7.20694	9.50509	5.10226	н	1.41859	1.29369	0.99788
	6.30021	9.30180	5.67593	н	0.83283	0.96156	2.65128
	5.29076	8.51829	5.10999	С	1.72769	1.13905	2.04132
	4.14359	8.28699	5.88236	н	2.91392	-3.08782	4.87990
	-0.01204	6.23560	1.96145	н	4.60460	-3.47719	4.45785
	0.99672	5.60013	0.64152	н	4.22442	-2.09047	5.50158
	-0.41653	4.67939	1.21047	С	3.89129	-2.65650	4.61571
	0.42008	5.31798	1.53613	С	3.79246	-1.78335	3.39541
	1.20218	2.69187	1.43464	н	5.42031	-2.76953	2.39197
I	2.64009	3.67064	1.08510	С	4.66447	-1.98100	2.32156
	2.53176	2.76657	2.61300	С	4.58746	-1.20859	1.16075
;	1.95595	3.35574	1.88750	н	3.53803	0.40938	0.20257
ł	2.12458	5.25486	2.83579	C	3.61172	-0.21378	1.09880
;	1.30830	4.57692	2.53752	c	2.72239	0.02188	2.15033
	-1.78018	6.31508	7.47698	c	2.81319	-0.77305	3.30866
	-0.56189 -0.53436	7.20555	6.59531 8.37099	H C	1.88040	-0.54984	3.59094 4.45146
		7.26533			0.80435	-1.74045	
	0.67117 -0.72047	3.66955 6.61671	8.68722 7.46968	H C	0.60435	-1.39358 -1.13065	4.44558
	0.30737	5.15872	9.59457	С	-0.26707 -1.25902	-0.93540	5.51512 5.50006
	-1.01765	4.23496	8.86870	Н	-0.55275	-0.00861	7.45033
	0.02496	4.55761	8.71694	С	0.12597	-0.16135	6.60630
	0.00100	4 55304	7.45614	~	0.40507	0 40405	0.00000

H C	8.16064			0	3.58359	2.94196	6.71512
С	0.10004	2.14454	7.24703	0	3.99477	4.14944	4.86904
	7.96993	2.21812	5.10319	N	2.25652	7.83723	5.93440
н	8.53437	1.29530	4.95167	N	1.36579	6.05560	5.06309
С	7.44908	2.89137	3.99493	Р	3.40696	5.61046	7.05027
C	7.66632	2.33430	2.60216	С	6.37516	1.97423	5.43864
н	7.09395	2.95811	1.89950	С	7.12096	2.26055	6.58986
С	7.12593	0.91176	2.46969	С	7.52428	1.20892	7.42059
Н	7.63924	0.21388	3.14993	н	8.10927	1.42217	8.31916
н	7.28201	0.54213	1.44445	С	7.19308	-0.10708	7.09916
н	6.04953	0.88183	2.68260	н	7.51715	-0.92128	7.75191
C	9.14142	2.40912	2.20567	С	6.45735	-0.39252	5.94876
н	9.53603	3.43440	2.27403	н	6.20248	-1.42620	5.69848
н	9.28309	2.06033	1.17086	С	6.04832	0.65067	5.11346
Н	9.76103	1.77459	2.85913	С	5.26855	0.44264	3.85613
C	5.73800	5.87251	5.74927	С	3.87055	0.24067	3.90489
н	4.96338	5.93588	4.96776	С	3.16645	0.14212	2.70323
C	4.98829	5.91183	7.07591	н	2.08501	-0.01622	2.74536
н	4.33177	5.03458	7.17504	С	3.79460	0.24145	1.45825
Н	4.35756	6.81314	7.11568	С	5.17773	0.41956	1.43215
Н	5.66724	5.95430	7.94339	н	5.69413	0.47294	0.46936
C	6.66704	7.07775	5.58995	С	5.93079	0.51047	2.60889
Н	7.46064	7.07132	6.35458	С	7.42885	0.62016	2.53782
н	6.09840	8.01527	5.69894	н	7.80738	1.55496	2.98164
Н	7.15178	7.09464	4.60195	н	7.77782	0.57627	1.49733
C	4.11064	6.59269	0.92380	н	7.90788	-0.19275	3.10458
C	3.61499	7.79939	1.44815	С	3.15966	0.13706	5.21869
C	2.57385	8.42282	0.75603	н	3.54568	-0.70538	5.81311
Н	2.16763	9.36451	1.13257	н	2.08074	-0.00583	5.07126
C	2.04547	7.85693	-0.39971	н	3.31164	1.05095	5.81586
Н	1.22960	8.35855	-0.92590	С	2.99620	0.17681	0.18912
C	2.54403	6.65250	-0.88512	н	2.52194	1.14936	-0.02521
Н	2.11159	6.21194	-1.78661	н	2.19017	-0.56892	0.25668
С	3.58923	5.99264	-0.23336	н	3.62800	-0.07615	-0.67400
C	4.11237	4.67032	-0.75260	С	7.44880	3.68609	6.87513
Н	4.96418	4.38021	-0.11896	С	8.36081	4.37292	6.04463
C	3.05411	3.57791	-0.60814	С	8.57521	5.74092	6.25426
н	2.73687	3.48978	0.44044	н	9.28504	6.26917	5.60986
н	3.45884	2.60509	-0.92879	С	7.92371	6.44008	7.26843
Н	2.16684	3.79362	-1.22459	С	7.05063	5.73177	8.09793
C	4.62298	4.78858	-2.18744	н	6.52374	6.26391	8.89472
н	3.81299	5.05135	-2.88607	С	6.80804	4.36818	7.93355
н	5.04922	3.83078	-2.52408	С	5.88206	3.65443	8.87550
H	5.40355	5.56000	-2.27595	н	6.44224	2.99165	9.55462
C	4.18012	8.41472	2.71270	н	5.15269	3.03375	8.33629
H	4.93541	7.72321	3.11378	н	5.32663	4.37494	9.49159
C	3.10595	8.56988	3.78778	С	9.15897	3.65996	4.98253
Н	2.31762	9.27405	3.47801	н	9.30214	2.59864	5.22654
Н	3.54980	8.95581	4.71898	н	10.14664	4.12915	4.86766
H	2.64012	7.59787	4.00758	н	8.67967	3.70089	3.98782
C	4.88932	9.73566	2.41578	С	8.16197	7.90430	7.49182
H	5.69345	9.60371	1.67559	н	8.80238	8.07121	8.37392
Н	5.33602	10.14817	3.33397	Н	7.21450	8.43486	7.66838
Н	4.18898	10.48692	2.01739	н	8.65991	8.37017	6.62906
110				C	3.63237	4.01038	6.13588
119 NT D	~ 2			С	2.36667	6.46915	5.91247
INT-P		2 50522	2 06525	С	1.18262	8.25888	5.17097
Sn	5.75551	3.50532	3.96525	н	0.92387	9.30952	5.08190

С	0.63007	7.15062	4.62832	н	4.98549	9.04793	2.39380	
Н	-0.24044	7.02766	3.99280	н	5.72700	10.13838	3.58146	
С	0.95788	4.70808	4.80818					
С	1.23921	4.13478	3.55246	119				
С	0.74659	2.85240	3.30390	INT-F	PC1			
H	0.94537	2.38005	2.34097	Sn	5.08601	4.13498	4.34606	
С	0.02654	2.15861	4.27109	0	2.39571	2.83217	6.96718	
H	-0.34554	1.15348	4.05771	0	3.18767	3.12141	4.89339	
С	-0.21221	2.73537	5.51107	N	3.05402	7.55426	5.27615	
H	-0.76768	2.17964	6.26962	N	1.49376	6.08312	4.97256	
С	0.24152	4.02466	5.80530	Р	3.79187	5.18338	6.50845	
С	-0.07965	4.64982	7.14719	С	6.25088	2.61855	5.52760	
H	0.52053	5.56470	7.24095	С	6.96593	2.82629	6.72281	
С	0.33709	3.74509	8.30465	С	7.75783	1.79857	7.25621	
H	-0.28256	2.83555	8.35976	Н	8.30900	1.98335	8.18265	
H	0.22416	4.27959	9.26062	С	7.84781	0.56318	6.62394	
+	1.39060	3.44605	8.19848	Н	8.47270	-0.22730	7.04693	
С	-1.55389	5.04725	7.22001	С	7.13426	0.34127	5.45027	
+	-1.82163	5.74522	6.41138	Н	7.18789	-0.62635	4.94334	
+	-1.77404	5.54052	8.18013	С	6.34230	1.35678	4.90214	
H	-2.21243	4.16788	7.13486	С	5.59158	1.08443	3.63895	
2	2.05334	4.86497	2.50199	С	4.35225	0.40902	3.68165	
H	2.73339	5.53711	3.04961	С	3.67819	0.17131	2.48219	
2	2.90840	3.91548	1.66596	Н	2.71749	-0.35103	2.51745	
+	3.42524	3.17038	2.28800	С	4.18733	0.57941	1.24665	
-	3.66467	4.47711	1.09759	С	5.42492	1.22288	1.22624	
H	2.29990	3.36128	0.93340	н	5.85701	1.52661	0.26785	
C	1.17462	5.70391	1.56994 1.03300	С	6.14269	1.47233	2.40020	
-	0.45673	5.06314		С	7.49535	2.12296	2.33084	
-	1.79307	6.21971	0.81843	H H	7.47711	3.14644	2.74359	
H C	0.60271 3.20734	6.47144 8.70449	2.10706 6.54529	Н	7.84789 8.23836	2.19057 1.56558	1.29237 2.92045	
5	4.35841	9.04544	5.81226	С	3.75094	-0.03648	4.98136	
2	5.25640	9.04544 9.93654	6.40268	н	4.50025	-0.49340	5.64305	
- H	6.15930	9.93034	5.86003	н	2.94485	-0.49340 -0.76378	4.80944	
2	5.02181	10.22020	7.67450	н	3.31962	0.82398	5.51744	
- H	5.73754	11.14962	8.11753	С	3.41255	0.34371	-0.01723	
c	3.88770	10.07796	8.38650	н	4.05646	0.41341	-0.90588	
H	3.72219	10.47668	9.39015	н	2.60868	1.09033	-0.13113	
5	2.95661	9.19049	7.83751	н	2.93427	-0.64733	-0.01770	
2	1.73874	8.75946	8.62852	C	6.92485	4.11308	7.47543	
H	1.17709	8.04563	8.00651	C	7.71945	5.19688	7.06158	
2	2.14377	8.01776	9.90236	C	7.72367	6.37146	7.82029	
H	2.77024	7.14673	9.65951	н	8.35008	7.20824	7.49778	
H	1.24985	7.65841	10.43576	C	6.98442	6.48558	8.99834	
I	2.70453	8.67062	10.59038	C	6.19323	5.40146	9.38337	
2	0.81625	9.94156	8.92231	Ĥ	5.59901	5.47207	10.29966	
H	1.31585	10.69720	9.54931	C	6.14379	4.21767	8.64471	
H	-0.08465	9.60654	9.45929	C	5.25718	3.09223	9.09416	
ł	0.49458	10.43955	7.99463	H	5.80161	2.13825	9.14308	
С	4.64662	8.44544	4.45130	н	4.41513	2.93512	8.40122	
+	3.77194	7.84511	4.16061	н	4.83197	3.30195	10.08571	
С	5.83747	7.49008	4.52945	С	8.61325	5.07406	5.85889	
H	6.76893	8.02816	4.76556	н	9.37292	4.29128	6.01349	
H	5.98400	6.97629	3.56615	н	9.13147	6.02026	5.64910	
H	5.67344	6.73335	5.31166	н	8.06087	4.77682	4.95441	
С	4.84076	9.51577	3.38001	С	7.08926	7.70057	9.87331	
H	3.96887	10.18458	3.31570	н	7.72135	7.49305	10.75279	

I 7.53 2.95i 2.03i 2 2.03i 2 2.08i 1 2.08i 2 1.05 1 0.07i 2 0.4i 0 0.65i 2 0.4ii 1 -0.57i 2 0.88i 1 -1.79i 2 0.88i 1 -1.39i 2 0.15i 1 -0.86i 1 0.24ii 1 1.28i 2 0.15i 1 -0.55i 1 -0.67i 1 -0.55i 1 -0.67i 1 -0.45i 2 -0.67i 1 -0.45i 2 -0.67i 1 -0.45i 2 -0.67i 1 -0.45i 2 -0.67i 2 1.87ii 2 2.07ii 2 1.25ii <td< th=""><th>5001 3671 2531 3165 5123 7479 5492 446 8855 7447 9960 9562 8039 9423 9423 9423 9423 9423 9423 9423 94</th><th>8.54878 3.48060 6.24662 8.19398 9.24806 7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531 5.23605</th><th>9.33762 6.10988 5.50232 4.61323 4.36082 4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319 1.50437</th><th>141 TS-E Sn N C C N N C H C H C H C C C H C C C C</th><th>7.56774 6.79815 7.12962 5.03915 4.01607 5.09783 5.72111 eme S3 3H2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077 6.45270</th><th>8.23573 6.93210 6.71207 9.09618 9.46386 8.72383 9.95668 9.95668 9.95668 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537 8.59473</th><th>3.28844 2.36223 4.09559 2.66490 2.83257 1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462 16.87139</th><th></th></td<>	5001 3671 2531 3165 5123 7479 5492 446 8855 7447 9960 9562 8039 9423 9423 9423 9423 9423 9423 9423 94	8.54878 3.48060 6.24662 8.19398 9.24806 7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531 5.23605	9.33762 6.10988 5.50232 4.61323 4.36082 4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319 1.50437	141 TS-E Sn N C C N N C H C H C H C C C H C C C C	7.56774 6.79815 7.12962 5.03915 4.01607 5.09783 5.72111 eme S3 3H2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077 6.45270	8.23573 6.93210 6.71207 9.09618 9.46386 8.72383 9.95668 9.95668 9.95668 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537 8.59473	3.28844 2.36223 4.09559 2.66490 2.83257 1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462 16.87139	
2.730 2.021 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.07 2.044 1.09 1.179 2.004 1.179 2.004 2.004 1.128 1.128 1.128 1.086 1.086 1.081 2.0151 1.021 1.022 1.257 1.111 2.0172 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.253 2.016 2.1257 <t< td=""><td>3671 2531 3165 5123 7479 5492 38446 1855 7447 9960 9562 8039 9423 9423 9423 9423 9423 9423 9423 94</td><td>6.24662 8.19398 9.24806 7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531</td><td>5.50232 4.61323 4.36082 4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319</td><td>Н С Н Н Н S cha 141 Т S E S N C C N N C H C H C H C C C H C C C C C C C H C C C C</td><td>7.12962 5.03915 4.01607 5.09783 5.72111 eme S3 BH2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077</td><td>6.71207 9.09618 9.46386 8.72383 9.95668 9.15418 7.51097 8.75499 8.08024 8.08506 7.55849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537</td><td>4.09559 2.66490 2.83257 1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462</td><td></td></t<>	3671 2531 3165 5123 7479 5492 38446 1855 7447 9960 9562 8039 9423 9423 9423 9423 9423 9423 9423 94	6.24662 8.19398 9.24806 7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	5.50232 4.61323 4.36082 4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	Н С Н Н Н S cha 141 Т S E S N C C N N C H C H C H C C C H C C C C C C C H C C C C	7.12962 5.03915 4.01607 5.09783 5.72111 eme S3 BH2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	6.71207 9.09618 9.46386 8.72383 9.95668 9.15418 7.51097 8.75499 8.08024 8.08506 7.55849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	4.09559 2.66490 2.83257 1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
2.02: 1 2.08 1.05 1.05 1 0.07. 2 0.65. 2 0.44. 1 -0.57. 2 -1.39. 2 0.00. 1 -1.39. 2 0.04. 1 -0.88. 1 -1.39. 2 0.00. 2 0.24. 1 1.28. 2 0.155. 1 -0.86. 1 0.86. 1 0.48. 1 -0.45. 2 -1.72. 1 -0.55. 1 -0.41. 2 -0.75. 1 -0.41. 2 -0.75. 1 2.172. 2 1.87. 1 2.43. 1 -0.44. 2 -0.41. 2 5.30. 2	2531 3165 5123 7479 5492 3446 1855 7447 9960 9960 9962 8039 9423 9423 9423 9423 9423 9423 9423 94	8.19398 9.24806 7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.352052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.26867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	4.61323 4.36082 4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	С Н Н Н Н Н Sche 1411 Т S-E S N C C N N C H C H C C C C H C C C C C C C C C C C	5.03915 4.01607 5.09783 5.72111 eme S3 BH2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.20725 7.70654 6.99995 6.78319 5.95077	9.09618 9.46386 8.72383 9.95668 9.95668 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	2.66490 2.83257 1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11886 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I 2.08 I 1.05 I 0.07. C 0.65. C 0.48. C -0.57. C -0.88. I -1.79. C 0.00. C 0.24. I 1.28. C 0.15. I 0.57. C 0.04. I 1.28. C 0.15. I -0.57. I 0.55. I -0.48. I 0.48. I 0.48. I 0.55. I -0.55. I -0.55. I 2.077. I 1.25. I 2.111. C 0.36. I -0.48. I 0.94. I 0.36. I -0.48. I 0.04. C 5.30. C 5.06. C	3165 5123 7479 5492 3846 1855 7477 9960 9962 8039 9423 9423 9423 9423 9423 9423 9423 94253 5551 7154 5188 5349 2806 5125 7883 7883 7883 7883 7883 73796 7139 1526	9.24806 7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.52339 2.52524 3.52052 3.23139 4.59943 5.352052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	4.36082 4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	Н Н 141 Т 5-Е Sn N C C N N C H C H C C C H C C C C C C C C C C C C	4.01607 5.09783 5.72111 BIP2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	9.46386 8.72383 9.95668 9.95668 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	2.83257 1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11886 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
1.05 1.05 0.074 0.652 0.488 0.048 0.057 1.057 1.057 1.09 1.179 0.000 0.244 1.286 0.000 0.244 1.286 0.055 1.055 1.055 1.045 1.055 1.055 1.045 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.072 1.2071 1.111 0.361 1.048 0.044 0.044 0.044 0.044 0.044 0.044 0.044	5123 7479 5492 3446 1855 9960 9960 9962 8039 9423 0427 4824 3758 5896 5896 5896 5896 5895 5896 5895 5895	7.27429 7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	4.42118 3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.02381 5.0387 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	Н Н 141 Т 5-Е S n С С N N C H C H C C C H C C C C C C C C C C C C	5.09783 5.72111 eme S3 BH2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	8.72383 9.95668 9.15418 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	1.63054 2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I 0.074 C 0.654 C 0.48 C -0.41 I -0.57 C -1.09 I -1.79 C 0.004 C 0.244 I 1.28 C 0.004 C 0.244 I 1.28 C 0.156 I -0.86 I 0.45 I -0.87 C 0.677 I -0.55 I -0.67 I -0.55 I -0.45 I -0.45 I -0.55 I -0.67 I -0.45 I -0.45 I -0.45 I 2.071 I 1.119 C 0.361 I -0.48 I 0.944 I -0.044 C 5.063 I 7.019<	7479 5492 3446 1855 7447 9960 9960 9962 8039 9423 0427 4824 3758 5896 5896 5896 5896 5895 5896 5895 5895	7.34747 4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	3.95423 5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	Н 141 Т 5-Е Sn N C C N N C H C H C C C H C C C C C C C C C C C C	5.72111 eme S3 3H2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	9.95668 9.15418 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	2.75487 15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
0.65- 0.48- -0.41- -0.57- -1.09 -1.79 -0.88 -1.39 0.000 0.244 1.287 0.000 0.244 1.287 0.000 0.244 1.287 0.156 0.048 0.048 0.048 0.048 0.488 0.488 0.481 0.481 0.481 0.445 1.055 1.045 1.207 1.257 1.2172 1.257 1.2172 1.257 1.2172 1.257 1.2172 1.257 1.2172 1.257 1.2112 1.257 1.2112 1.2112 1.2112 1.2112	5492 3446 1855 7447 9960 9562 98039 9423 0427 4824 3758 5896 56979 3453 1551 7154 5188 5349 2806 5125 77883 77883 77883 77883 77883 77883 77883 77896 7139 1526 5804	4.91895 4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	5.00859 3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	Sche 141 TS-E Sn N C C N N C H C H C C C H C C C C C C C C C C C C	BH2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	9.15418 7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	15.30019 16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3446 1855 7447 9960 9562 8039 9423 0427 4824 3758 8896 6979 8453 1551 7154 5185 5349 2806 5125 7883 3796 7139 1526 5804	4.18533 3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	3.82432 3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	141 TS-E Sn N C C N N C H C H C H C C C H C C C C	3H2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27654 6.99995 6.78319 5.95077	7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
-0.41 -0.57 -1.09 -1.79 -0.88 -1.39 -1.39 -0.88 -1.39 -0.24 1 -0.24 1 -0.86 -0.41 -0.86 -0.41 -0.86 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.41 -0.45 -0.45 -0.45 -1.72 -1.25 -1.25 -0.41 2.076 -1.125 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25 -1.25	1855 7447 9960 9562 8039 9423 0427 4824 8758 8896 6979 8453 1551 7154 5185 5349 2806 5125 7883 7883 7883 7883 7883 7396 7139 1526 5804	3.12082 2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	3.85655 2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	141 TS-E Sn N C C N N C H C H C H C C C H C C C C	3H2_isomer 8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27654 6.99995 6.78319 5.95077	7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7447 9960 9562 8039 9423 74824 8758 8896 9979 8453 1551 7154 5188 5349 2806 5125 77883 7883 7883 7883 7883 7883 73796 7139	2.52339 2.79751 1.95524 3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.26910 7.26910 7.26910 7.26910 7.2697 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	2.95618 5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	тя-е 5 л с с л л с н с н с н с с с н с с с с	8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9960 9562 8039 9423 9423 9424 8758 8896 5896 58979 8453 1551 7154 5188 5349 2806 5125 77883 7883 7883 7883 73796 7139 1526 5804	2.79751 1.95524 3.52052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	5.02381 5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	ς Σ C C Z Z C H C H C H C H C C C C H C C C C	8.92227 11.45371 7.30918 6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I -1.79 -0.88 -1.39 I -1.39 C 0.00 C 0.244 I 1.28 I -0.86 I 0.86 I 0.86 I 0.48 I 0.86 I 0.48 I 0.48 I 0.48 I 0.45 I -0.45 I -0.45 I -0.45 I 2.077 I 1.112 C 1.361 I 2.431 I 2.431 I 2.431 I 0.361 I -0.48 I 0.941 C 5.306 C 5.301 C 5.061 C 5.061 I 7.018 C 5.062 I 4.986 C 2.766 I 2.118 <td>9562 8039 9423 44824 8758 55896 95896 95896 95896 95895 94553 1551 7154 5188 5349 2806 5125 57883 77883 3796 7139 1526 5804</td> <td>1.95524 3.52052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.26910 7.26867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531</td> <td>5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319</td> <td>х о о х х о т о т о т о х х о о х</td> <td>$\begin{array}{c} 11.45371\\ 7.30918\\ 6.22499\\ 13.81727\\ 13.08626\\ 5.09960\\ 4.26210\\ 5.06401\\ 4.18992\\ 6.14430\\ 6.11791\\ 6.37473\\ 7.27678\\ 7.20725\\ 7.70654\\ 6.99995\\ 6.78319\\ 5.95077\end{array}$</td> <td>7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537</td> <td>16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462</td> <td></td>	9562 8039 9423 44824 8758 55896 95896 95896 95896 95895 94553 1551 7154 5188 5349 2806 5125 57883 77883 3796 7139 1526 5804	1.95524 3.52052 3.23139 4.59943 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.26910 7.26867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	5.03087 6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	х о о х х о т о т о т о х х о о х	$\begin{array}{c} 11.45371\\ 7.30918\\ 6.22499\\ 13.81727\\ 13.08626\\ 5.09960\\ 4.26210\\ 5.06401\\ 4.18992\\ 6.14430\\ 6.11791\\ 6.37473\\ 7.27678\\ 7.20725\\ 7.70654\\ 6.99995\\ 6.78319\\ 5.95077\end{array}$	7.51097 8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	16.16463 13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
-0.88 -1.39 0.000 0.244 1.28 0.05 0.158 1.28 0.067 1.28 1.28 1.086 0.155 1.0.48 1.0.55 1.0.45 1.207 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.257 1.111 0.361 0.944 0.944 0.944 0.2630 2.300 2.301 3.302 3.3031 3.3032 3.304 3.3052 3.3061 3.307 3.3081 3.3081 3.3091 3.3091	8039 9423 0427 4824 8758 6896 6979 9453 1551 7154 5188 5349 2806 65125 57883 77883 3796 7139 1526 6804	3.52052 3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	6.19077 7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	0 0 2 2 0 1 0 1 0 1 0 0 0 1 0 0 0 0	$\begin{array}{c} 7.30918\\ 6.22499\\ 13.81727\\ 13.08626\\ 5.09960\\ 4.26210\\ 5.06401\\ 4.18992\\ 6.14430\\ 6.11791\\ 6.37473\\ 7.27678\\ 7.20725\\ 7.70654\\ 6.99995\\ 6.78319\\ 5.95077\end{array}$	8.75499 8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	13.83588 14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I -1.39 0.004 0.244 1.28 0.156 0.156 0.48 1 0.816 1 0.48 0.155 -0.67 1 -0.55 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 2.074 1 2.57 1 1.119 1 0.361 1 -0.48 1 0.944 1 -0.48 1 0.944 1 -0.48 1 -0.416 2 5.061 2 5.062 2 5.061 2 5.061 2 5.061 2 5.061 2 2.764 1 2.112	9423 9427 4824 8758 6896 9453 6551 7154 5188 5349 2806 5125 77883 7883 7883 7883 7796 7139 1526 6804	3.23139 4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	7.10803 6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	о z z о т о т о т о с о о о	6.22499 13.81727 13.08626 5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	8.08024 8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	14.41695 15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0427 4824 4824 3758 5896 56979 5453 1551 1551 1551 17154 5188 55349 2806 5125 7883 7883 3796 7139 1526 56804	4.59943 5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	6.21311 7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	х х о т о т о т о т о о о о	$\begin{array}{c} 13.81727\\ 13.08626\\ 5.09960\\ 4.26210\\ 5.06401\\ 4.18992\\ 6.14430\\ 6.11791\\ 6.37473\\ 7.27678\\ 7.20725\\ 7.70654\\ 6.99995\\ 6.78319\\ 5.95077\end{array}$	8.05506 7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	15.84355 17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
0.244 1.28 1.28 0.154 -0.86 0.48 0.861 0.861 0.48 0.861 0.48 0.861 0.55 0.055 0.45 1.055 1.045 1.25 1.25 1.25 1.25 1.2571 1.2571 1.2571 1.2571 1.2571 1.316 0.366 1.094	4824 3758 5896 6979 3453 1551 7154 5188 5349 2806 5125 7883 3796 7139 1526 5804	5.39203 5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	7.48269 7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	х о т о т о т о о о т о о о о	$\begin{array}{c} 13.08626\\ 5.09960\\ 4.26210\\ 5.06401\\ 4.18992\\ 6.14430\\ 6.11791\\ 6.37473\\ 7.27678\\ 7.20725\\ 7.70654\\ 6.99995\\ 6.78319\\ 5.95077\end{array}$	7.58849 7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	17.84691 13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3758 5896 6979 3453 1551 7154 5188 5349 2806 5125 7883 3796 7139 1526 5804	5.75487 4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	7.44344 8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	0	5.09960 4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	7.75382 7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	13.65615 14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
0.150 1 -0.86 1 0.810 2 -0.67 1 -0.55 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 -0.45 1 -0.43 2 1.870 1 2.577 1 2.571 1 -0.44 2 0.366 1 -0.44 2 5.306 2 5.306 2 6.207 1 7.013 2 5.066 2 5.066 1 7.013 2 5.066 2 4.088 2 2.766 1 2.113	5896 6979 3453 1551 7154 5188 5349 2806 5125 7883 7883 3796 7139 1526 5804	4.54001 4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	8.74351 8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	нононооносо	4.26210 5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	7.22150 8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	14.11586 12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I -0.86 I 0.48 I 0.67 I -0.67 I -0.55 I -0.45 I -0.45 I -0.45 I -1.72 I 2.073 I 2.43 I 2.57 I 1.11 C 0.366 I -0.48 I -0.48 I 0.94% I -0.48 I 0.94% I -0.48 I 0.044 C 5.306 C 6.20° I 7.013 C 5.066 I 4.98% C 2.076 I 2.766 I 2.111	6979 8453 1551 7154 5188 5349 2806 5125 7883 7883 3796 7139 1526 5804	4.20268 5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	8.94754 9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	о н о н о о о н о о о о	5.06401 4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	8.10006 7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	12.30592 11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I 0.48 I 0.81 C -0.67 I -0.55 I -0.45 I -0.45 I -0.45 I -1.72 C 1.25 I 2.077 I 2.43 I 2.43 I 2.43 I 2.677 I 1.11 C 0.366 I -0.48 I -0.48 I 0.944 C 4.166 C 5.306 C 6.207 I 7.013 C 5.066 C 5.066 I 4.986 C 2.076 I 2.113	8453 1551 7154 5188 5349 2806 5125 7883 7883 3796 7139 1526 5804	5.13018 3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	9.61387 8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	ноносоносос	4.18992 6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	7.84606 8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	11.70105 11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I 0.81: C -0.67 I -0.55 I -0.45 I -1.72 C 1.25 I 2.077 I 2.57 I 2.57 I 2.57 I 0.36i I -0.48 I 0.944 C 5.30i C 5.30i C 5.30i C 6.20' I 7.018 C 5.06i C 5.06i I 4.98i C 5.06i I 4.98i C 2.76i I 2.11:	1551 7154 5188 5349 2806 5125 7883 3796 7139 1526 6804	3.66344 6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	8.65134 7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	сносоносо	6.14430 6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	8.75821 9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	11.71935 10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
-0.67 -0.55 -0.45 -1.72 1.25 1.274 1.274 1.274 1.274 1.275 1.2774 1.2774 1.2774 1.2774 1.2774 1.2774 1.2774 1.2774 1.2774 1.2774 1.27774 <tr< td=""><td>7154 5188 5349 2806 5125 7883 37883 3796 7139 1526 5804</td><td>6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531</td><td>7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319</td><td>носоносо</td><td>6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077</td><td>9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537</td><td>10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462</td><td></td></tr<>	7154 5188 5349 2806 5125 7883 37883 3796 7139 1526 5804	6.61169 7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	7.55403 6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	носоносо	6.11791 6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	9.01509 7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	10.65666 15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I -0.55 I -0.45 I -1.72 I 2.57 I 2.07 I 2.07 I 2.07 I 2.07 I 2.43 I 2.57 I 2.11 I 0.36 I -0.48 I 0.94 I -0.04 I -0.04 I -0.04 I -0.04 I -0.01	5188 5349 2806 5125 7883 7883 3796 7139 1526 5804	7.26910 7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	6.67928 8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	с с с т с с с с	6.37473 7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	7.70704 9.08922 6.18914 5.25208 6.48380 7.04537	15.85612 12.47600 17.54701 17.80871 16.19482 18.56462	
I -0.45 I -1.72 I 2.07 I 2.07 I 2.07 I 2.07 I 2.43 I 2.57 I 1.11 I 0.36 I -0.48 I -0.416 I 5.306 I 5.306 I 5.066 I 7.013 I 5.066 I 4.988 I 4.988 I 2.766 I 2.113	5349 2806 5125 7883 7883 3796 7139 1526 5804	7.20867 6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	8.45388 7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	С С Н С С С С	7.27678 7.20725 7.70654 6.99995 6.78319 5.95077	9.08922 6.18914 5.25208 6.48380 7.04537	12.47600 17.54701 17.80871 16.19482 18.56462	
I -1.72 1.25 1.25 I 2.073 I 2.43 I 2.57 I 1.113 I 0.366 I -0.48 I -0.48 I -0.04 I -0.04 I -0.33 I -0.23 I -0.16 I -0.013 I -0.014 I -0.014 <td< td=""><td>2806 5125 7883 7883 3796 7139 1526 5804</td><td>6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531</td><td>7.60027 2.55788 2.83514 1.94176 2.69505 1.13319</td><td>C H C C C C</td><td>7.20725 7.70654 6.99995 6.78319 5.95077</td><td>6.18914 5.25208 6.48380 7.04537</td><td>17.54701 17.80871 16.19482 18.56462</td><td></td></td<>	2806 5125 7883 7883 3796 7139 1526 5804	6.30297 4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	7.60027 2.55788 2.83514 1.94176 2.69505 1.13319	C H C C C C	7.20725 7.70654 6.99995 6.78319 5.95077	6.18914 5.25208 6.48380 7.04537	17.54701 17.80871 16.19482 18.56462	
1.25 1.257 1.277 1.277 1.277 1.277 1.119 2.377 1.119 2.377 1.119 2.376 1.119 2.376 1.119 2.376 1.119 2.376	5125 7883 7883 3796 7139 1526 6804	4.50687 5.17961 3.25850 2.68813 3.53846 2.59531	2.55788 2.83514 1.94176 2.69505 1.13319	нсссс	7.70654 6.99995 6.78319 5.95077	5.25208 6.48380 7.04537	17.80871 16.19482 18.56462	
1 2.074 1 2.43 1 2.57 1 2.57 1 1.11 2 0.364 1 -0.48 1 0.94: 1 -0.04 2 5.300 2 6.200 1 7.013 2 5.063 1 4.988 2 2.064 3 4.988 2 2.766 1 2.111	7883 7883 3796 7139 1526 5804	5.17961 3.25850 2.68813 3.53846 2.59531	2.83514 1.94176 2.69505 1.13319	с с с с	6.99995 6.78319 5.95077	6.48380 7.04537	16.19482 18.56462	
1.874 2.433 2.577 1.111 0.366 1.0.48 0.944 1.0.048 1.0.048 1.0.048 1.0.046 2.5306 2.5306 2.5306 2.5306 2.5306 2.5306 3.6207 1.7018 2.5068 1.4088 2.7666 1.22766 1.22766	7883 3796 7139 1526 5804	3.25850 2.68813 3.53846 2.59531	1.94176 2.69505 1.13319	C C C	6.78319 5.95077	7.04537	18.56462	
1 2.43 1 2.57 1 1.11 2 0.36 1 -0.48 1 0.94 1 0.044 2 5.300 2 5.300 2 6.201 1 7.013 2 5.066 3 4.986 2 2.766 1 2.113	3796 7139 1526 5804	2.68813 3.53846 2.59531	2.69505 1.13319	C C	5.95077			
1 2.57 1 1.11 2 0.36 4 -0.48 4 0.94 4 -0.04 4 -0.04 5 5.30 2 6.33 4 7.23 2 6.20° 4 7.011 2 5.066 2 5.068 4 4.986 2 2.766 4 2.111	7139 1526 5804	3.53846 2.59531	1.13319	С				
I 1.111 C 0.366 I -0.48 I 0.943 I -0.044 I -0.042 I -0.043 I -0.043 I -0.333 I 7.233 C 6.207 I 7.011 C 5.066 I 4.988 C 4.011 C 2.766 I 2.111	1526 6804	2.59531			6.15876	8.24428	18.20650	
0.36i -0.48 0.943 -0.04 </td <td>6804</td> <td></td> <td></td> <td>н</td> <td>5.82706</td> <td>8.93116</td> <td>18.99054</td> <td></td>	6804			н	5.82706	8.93116	18.99054	
I -0.48 I 0.943 I -0.04 I -0.04 I -0.04 I -0.04 I -0.04 I -0.04 I -0.33 I 7.233 I 7.233 I 7.013 I 5.063 I 7.013 I 2.063 I 4.011 I 2.766 I 2.111	8134		1.54372	С	7.40592	5.51086	15.12991	
I -0.04 C 4.16 C 5.30 C 6.33 I 7.23 C 6.20 I 7.01 C 5.06 I 7.01 C 5.06 I 4.98 C 4.01 C 2.76 I 2.11		4.60353	1.24023	н	6.55961	5.28046	14.46589	
2 4.16; 2 5.30; 2 6.33; 4 7.23; 2 6.20; 4 7.01; 2 5.06; 4 98; 2 4.01; 2 2.76; 4 2.11;	4268	5.48484	0.63790	н	7.76613	4.57413	15.57391	
5.300 6.330 1 7.230 2 6.200 1 7.010 2 5.060 1 4.980 2 4.010 2 2.760 1 2.110	4657	6.17211	1.94686	н	8.21006	5.90367	14.48908	
6.33 7.23 7.23 6.20 7.01 5.063 4.98 4.98 2.76 1.2.11	6305	8.24813	5.85800	С	6.95945	6.67333	20.00739	
I 7.23 C 6.20 I 7.01 C 5.06 I 4.98 C 4.01 C 2.76 I 2.11	0878	8.48703	5.08289	н	7.80108	5.98005	20.14270	
 6.20 7.01 5.06 4.98 4.01 2.76 2.11 	3098	9.23968	5.66712	н	6.05300	6.17905	20.39535	
I 7.01 C 5.06 I 4.98 C 4.01 C 2.76 I 2.11	3830	9.44573	5.09619	н	7.13790	7.56053	20.63254	
5.063 4.980 4.013 2.766 2.766 2.113	0707	9.73237	6.96125	С	5.29030	9.89525	16.51479	
4.98 4.01 2.76 2.71		10.32571	7.39478	н	5.97410	10.55382	15.95377	
2 4.01 2 2.76 1 2.11		9.47258	7.70730	н	4.96080	10.43349	17.41390	
2.76 2.11		9.86158	8.72416	н	4.42039	9.73559	15.86014	
2.11		8.71926	7.17510	С	8.42984	9.78529	11.83560	
		8.45907	7.99192	С	8.47872	11.19521		
3 08		7.78912	7.41114	С	9.53826	11.84004	11.19710	
		7.73833	9.30035	н	9.56844	12.93423	11.19417	
3.65		6.81774	9.10640	С	10.55596	11.12248	10.56093	
1 2.15		7.46615	9.82081	С	10.49431	9.72955	10.58615	
H 3.66		8.37522	9.98303	н	11.28543	9.14890	10.10314	
1.97		9.74898	8.22463	С	9.44762	9.03909	11.20936	
2.56	0372 1	10.47641	8.81007	С	9.43317	7.54003	11.21281	
	- 100	9.53846	8.77919	н	8.43458	7.14316	10.97986	
			7.27272	н	9.70936	7.14901	12.20459	
	0458 1	10.22875		н С	10.15013	7.13747	10.48460	
4.70	0458 1 2260 1		3.65549 3.53639		11.68886	11.83938	9.88396	

12.35800 12.29533 11.31820 14.69071 14.82219 15.40400 14.20924 14.31275 13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	11.13756 12.40972 12.56362 7.41354 7.69649 7.02184 8.80865 9.00654 9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.565646 11.99376 13.07303 11.77930	9.36572 10.60778 9.14164 13.66592 12.30401 11.67142 11.74221 10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.38364 16.53202 12.51190 12.38604	СНСНННСННСНСООВО	10.99583 11.15454 9.55774 8.83911 9.38684 9.32695 11.98245 13.02689 11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314 11.12645	9.18248 9.19568 9.62601 8.91755 10.60705 9.73369 10.15831 9.89164 10.17036 11.18164 7.16967 7.72697 6.99314 6.36020 7.56632	19.00871 17.91919 19.24397 18.80606 18.77533 20.31617 19.65394 19.43476 20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
11.31820 14.69071 14.82219 15.40400 14.20924 14.31275 13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	12.56362 7.41354 7.69649 7.02184 8.80865 9.00654 9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	9.14164 13.66592 12.30401 11.67142 11.74221 10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	СНННСННСНСООВО	9.55774 8.83911 9.38684 9.32695 11.98245 13.02689 11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	9.62601 8.91755 10.60705 9.73369 10.15831 9.89164 10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	19.24397 18.80606 18.77533 20.31617 19.65394 19.43476 20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
14.69071 14.82219 15.40400 14.20924 14.31275 13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	7.41354 7.69649 7.02184 8.80865 9.00654 9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	13.66592 12.30401 11.67142 11.74221 10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	нннсннснсоово	8.83911 9.38684 9.32695 11.98245 13.02689 11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	8.91755 10.60705 9.73369 10.15831 9.89164 10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	18.80606 18.77533 20.31617 19.65394 19.43476 20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
15.40400 14.20924 14.31275 13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	7.02184 8.80865 9.00654 9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930	11.67142 11.74221 10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.73094 16.38364 16.53202 12.51190	нсннснсоово	9.32695 11.98245 13.02689 11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	9.73369 10.15831 9.89164 10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	20.31617 19.65394 19.43476 20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
14.20924 14.31275 13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	8.80865 9.00654 9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930	11.74221 10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	нсннснсоово	11.98245 13.02689 11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	9.73369 10.15831 9.89164 10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	20.31617 19.65394 19.43476 20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
14.31275 13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	9.00654 9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	н н н с н с о о в о	13.02689 11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	9.89164 10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	19.43476 20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	10.67234 12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	н н н с н с о о в о	11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
13.45885 12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	9.67154 10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	12.53446 12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	н нснсоо во	11.86043 11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	10.17036 11.18164 7.16967 7.72697 6.99314 6.36020	20.74892 19.28256 20.49843 20.97847 14.99052 14.14823
12.97837 13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	10.53480 9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	12.07670 13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	Н С Н С О О В О	11.81411 10.53954 9.73478 11.01159 11.84585 9.96314	11.18164 7.16967 7.72697 6.99314 6.36020	19.28256 20.49843 20.97847 14.99052 14.14823
13.31115 13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	9.44550 8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	13.90399 14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	С Н С О В О	10.53954 9.73478 11.01159 11.84585 9.96314	7.16967 7.72697 6.99314 6.36020	20.49843 20.97847 14.99052 14.14823
13.93312 14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	8.30482 7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	14.44147 17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	H C O B O	9.73478 11.01159 11.84585 9.96314	7.72697 6.99314 6.36020	20.97847 14.99052 14.14823
14.41766 14.91629 14.87146 15.84652 12.69461 7.39957 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	7.94990 7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	17.97112 18.93504 16.73094 16.38364 16.53202 12.51190	C O B O	11.01159 11.84585 9.96314	6.99314 6.36020	14.99052 14.14823
14.91629 14.87146 15.84652 12.69461 7.39957 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	7.95996 8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	18.93504 16.73094 16.38364 16.53202 12.51190	0 0 8 0	11.84585 9.96314	6.36020	14.14823
14.87146 15.84652 12.69461 7.39957 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	8.23499 8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	16.73094 16.38364 16.53202 12.51190	O B O	9.96314		
15.84652 12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	8.56095 7.65646 11.99376 13.07303 11.77930 11.74338	16.38364 16.53202 12.51190	B O		1.00002	14.44319
12.69461 7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	7.65646 11.99376 13.07303 11.77930 11.74338	16.53202 12.51190	0	11.12040	5.11118	14.40725
7.39957 7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	11.99376 13.07303 11.77930 11.74338	12.51190		10.22236	4.62847	13.42302
7.56321 7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	13.07303 11.77930 11.74338		0	11.92558	4.03316	14.87550
7.35462 6.40473 12.54501 11.99329 13.49500 14.20365	11.77930 11.74338	12.30004				
6.40473 12.54501 11.99329 13.49500 14.20365	11.74338		с с	10.53417 11.25989	3.27003	13.17205
12.54501 11.99329 13.49500 14.20365		13.59200	c		2.83638	14.49740
11.99329 13.49500 14.20365	10 44077	12.11250		10.26849	2.45883	15.59652
13.49500 14.20365	10.41377 9.81130	14.78655	Н	9.50381 9.76510	3.24005	15.71400
14.20365		15.52702	н		1.50308	15.39016
	11.33539	15.55529	Н	10.80754 9.25177	2.36523	16.55020
10 00705	10.76963	16.17771	С		2.51177	12.87233
12.92785	12.00664	16.21982	н	8.81572	2.89086	11.93602
14.07911	11.95933	14.85993	н	9.44102	1.43373	12.75135
11.50670	11.22327	14.02081	Н	8.50839	2.65595	13.66725
11.96632	11.95416	13.33741	С	11.46415	3.21803	11.96061
10.87694	11.79476	14.72037	н	12.40993	3.73672	12.17267
10.85761	10.58083	13.40422	н	11.68594	2.18726	11.64451
15.36486	6.19048	14.25564	Н	10.97527	3.74264	11.12692
15.04791	6.10458	15.30589	С	12.29569	1.73843	14.33138
16.88603	6.35369	14.23775	н	11.83997	0.81570	13.94066
						13.65274
						15.30749
			н	10.39412	5.64584	15.42017
				—	/	
						15.30904
						16.45769
12.60113	5.69414			7.31025	8.49050	14.00258
						14.67090
						16.16258
10.82461	5.87486	20.92552	N	12.95367	7.94579	18.18121
10.24248	5.43074	21.73700	С	5.00246	7.73152	14.08574
11.26701	7.76339		н	4.19295	7.21516	14.60891
13.71442	4.88213	18.64883	С	4.79054	8.28072	12.82012
14.14897	5.47771	17.83239	н	3.80603	8.20333	12.35181
13.19676	3.59108	18.01815	С	5.83119	8.91210	12.13924
12.50392	3.80488	17.19214	н	5.66489	9.31248	11.13512
12.69182	2.94956	18.75803	С	6.66132	7.23259	15.97790
14.03713	3.01583	17.59822	С	7.09907	9.02479	12.72639
14.82976	4.61438	19.65988	С	7.69795	5.40967	17.17397
15.66605	4.08222	19.18073	н	8.09507	4.39139	17.17682
14.47305	3.99179	20.49569		7.15292	5.90813	15.99162
15.22087	5.55003	20.08875	С	7.78600	6.17993	18.33669
	11.84130 12.05068 10.82461 10.24248 11.26701 13.71442 14.14897 13.19676 12.50392 12.69182 14.03713 14.82976 15.66605 14.47305	17.20922 7.26953 17.26659 6.41098 14.93257 4.89944 15.16543 4.91346 13.85627 4.73182 15.46329 4.04158 12.29967 7.00620 12.60113 5.69414 11.84130 5.14583 12.05068 4.12800 10.82461 5.87486 10.24248 5.43074 11.26701 7.76339 13.71442 4.88213 14.1897 5.47771 13.19676 3.59108 12.69182 2.94956 14.03713 3.01583 14.82976 4.61438 15.66605 4.08222 14.47305 3.99179	17.209227.2695314.7567317.266596.4109813.2054814.932574.8994413.5644515.165434.9134612.4880413.856274.7318213.6997715.463294.0415814.0069812.299677.0062018.8844612.601135.6941419.2836111.841305.1458320.3231012.050684.1280020.6601410.824615.8748620.9255210.242485.4307421.7370011.267017.7633919.4664013.714424.8821318.6488314.148975.4777117.8323913.196763.5910818.0181512.503923.8048817.1921412.691822.9495618.7580314.037133.0158317.5982214.829764.6143819.6598815.666054.0822219.1807314.473053.9917920.49569	17.20922 7.26953 14.75673 H 17.26659 6.41098 13.20548 H 14.93257 4.89944 13.56445 141 13.86627 4.73182 13.69977 TS-B 15.46329 4.04158 14.00698 Sn 12.29967 7.00620 18.88446 N 12.60113 5.69414 19.28361 C 11.84130 5.14583 20.32310 C 12.05068 4.12800 20.66014 N 10.82461 5.87486 20.92552 N 10.24248 5.43074 21.73700 C 11.26701 7.76339 19.46640 H 13.71442 4.88213 18.64883 C 14.14897 5.47771 17.83239 H 13.19676 3.59108 18.01815 C 12.60182 2.94956 18.75803 C 14.03713 3.01583 17.59822 C 14.382976 4.61438 19.65988 C 15.66605 4.08222 19.18073 H	17.20922 7.26953 14.75673 H 12.74897 17.26659 6.41098 13.20548 H 10.39412 14.93257 4.89944 13.56445 141 13.85627 4.73182 13.69977 TS-BH1_isomer 15.46533 4.91346 12.48804 141 12.29967 7.00620 18.8446 N 11.41239 12.60113 5.69414 19.28361 C 7.31025 11.84130 5.14583 20.32310 C 6.26539 12.05068 4.12800 20.66014 N 13.78112 10.82461 5.87486 20.92552 N 12.95367 10.24248 5.43074 21.73700 C 5.00246 11.26701 7.76339 19.46640 H 4.19295 13.71442 4.88213 18.64883 C 4.79054 14.14897 5.47771 17.83239 H 3.80603 13.19676 3.59108 18.01815 C 5.83119 12.50392 3.80488 17.19214 H 5.66489	17.20922 7.26953 14.75673 H 12.74897 1.50855 17.26659 6.41098 13.20548 H 10.39412 5.64584 14.93257 4.89944 13.56445 141 1 13.86627 4.73182 13.69977 TS-BH1_isomer 1 15.46329 4.04158 14.00698 Sn 9.07041 8.83851 12.29967 7.0620 18.88446 N 11.41239 7.45916 12.60113 5.69414 19.28361 C 7.31025 8.49050 11.84130 5.14583 20.32310 C 6.26539 7.83552 12.05068 4.12800 20.66014 N 13.78112 7.89498 10.82461 5.87486 20.92552 N 12.95367 7.94579 10.24248 5.43074 21.73700 C 5.00246 7.73152 11.26701 7.76339 19.46640 H 4.19295 7.21516 13.71442 4.88213 18.64883 C 4.79054 8.20333 13.19676 3.59108 18.01815

С	6.70235	8.02060	17.15297	н	10.96855	10.12868	13.24869
С	7.27240	7.47654	18.31288	С	15.22019	5.67369	15.03143
H	7.31030	8.08455	19.22147	н	14.85593	5.81554	16.05972
С	7.14908	5.07575	14.74733	С	16.74333	5.82141	15.04226
H	6.20385	5.17053	14.19506	н	17.19979	5.08710	15.72403
H	7.32249	4.01774	14.98216	н	17.06247	6.82608	15.36015
H	7.96253	5.39115	14.07491	н	17.16110	5.65037	14.03711
С	8.46346	5.63389	19.55438	С	14.80621	4.26815	14.61092
H	9.54789	5.81626	19.49314	н	15.16957	4.02743	13.59900
H	8.31519	4.54783	19.64432	н	13.71474	4.14378	14.63465
H	8.10469	6.11556	20.47478	н	15.24956	3.52667	15.29387
С	6.07342	9.38672	17.18468	С	12.09499	7.79538	19.30956
H	6.35419	10.00100	16.31528	С	12.24172	6.64207	20.10113
H	6.34923	9.93117	18.09839	С	11.48307	6.56501	21.27270
H	4.97494	9.30324	17.15654	н	11.57643	5.69073	21.91870
С	8.23862	9.64505	11.99278	С	10.59804	7.58150	21.61653
С	8.38365	11.04672	11.93821	н	10.01195	7.50177	22.53525
С	9.45064	11.59182	11.22362	С	11.18682	8.82298	19.61641
H	9.56046	12.68016	11.18459	С	13.12804	5.49706	19.64875
С	10.38071	10.78437	10.56048	н	13.98838	5.93316	19.11609
С	10.22497	9.40093	10.63849	С	12.37435	4.61361	18.64814
H	10.94222	8.75075	10.12852	н	12.02005	5.17619	17.77279
С	9.17117	8.81019	11.34691	Н	11.49596	4.15203	19.12676
С	9.04808	7.31640	11.40723	Н	13.02230	3.80347	18.27980
H	8.00118	6.99200	11.32322	С	13.68900	4.66964	20.79938
H	9.42505	6.91390	12.36270	Н	14.41438	3.93762	20.41432
H	9.62412	6.84918	10.59674	Н	12.90217	4.09805	21.31657
С	11.52671	11.39930	9.81033	н	14.20000	5.29729	21.54572
H	12.11664	10.63894	9.27907	С	11.05650	10.03749	18.71724
H	12.20764	11.93685	10.49157	Н	11.17062	9.67336	17.68370
H	11.17341	12.13300	9.06896	С	9.68549	10.69778	18.79622
С	14.59063	6.75385	14.17549	Н	8.88068	9.96543	18.63714
С	14.70205	6.72304	12.78280	н	9.59628	11.46843	18.01599
Н	15.23101	5.89506	12.30549	Н	9.51854	11.19378	19.76582
С	14.11934	7.71122	11.99851	С	12.16396	11.05753	18.99068
Н	14.19243	7.65406	10.90970	н	13.16595	10.62621	18.85468
С	13.43527	8.77096	12.58839	Н	12.09659	11.44192	20.02092
H	12.98041	9.53460	11.95685	н	12.07509	11.91314	18.30309
С	13.32437	8.86728	13.97749	С	10.43657	8.68745	20.78816
С	13.89993	7.83522	14.74306	н	9.72080	9.46394	21.06195
С	14.29919	8.27772	18.27532	С	11.09517	6.68605	15.36921
Η	14.75876	8.50745	19.23137	0	11.73652	5.68216	15.03902
C	14.81192	8.24157	17.02659	0	9.99605	7.03615	14.74908
H	15.81334	8.44056	16.65909	В	10.57646	3.99918	14.48333
2	12.62084	7.69746	16.87294	0	10.00429	4.33683	13.26881
С	7.40999	11.93841	12.65439	0	11.54905	3.01848	14.31889
4	7.66207	12.99893	12.51563	С	10.81738	3.76935	12.24045
H	7.39842	11.72684	13.73591	С	11.43931	2.53803	12.97688
4	6.37998	11.77830	12.30133	С	10.49434	1.33845	13.00066
2	12.65733	10.05636	14.64620	н	9.48916	1.64159	13.32804
H	12.06590	9.66492	15.49009	Н	10.41299	0.85510	12.01585
C	13.69652	11.02428	15.21696	Н	10.87901	0.60202	13.72084
+	14.36550	10.53717	15.94001	С	9.93454	3.43001	11.05382
4	13.19858	11.85899	15.73480	Н	9.54558	4.35726	10.60815
Η	14.31628	11.44611	14.40975	Н	10.50180	2.89108	10.27928
C	11.68905	10.80152	13.73875	Н	9.07514	2.81751	11.35568
H	12.21232	11.34662	12.93799	С	11.87623	4.79169	11.84500
H	11.12184	11.54626	14.31725	н	12.51619	5.03692	12.70111

н	12.49976	4.43369	11.01202	Н	12.02720	12.65058	10.85016
н	11.38223	5.72143	11.53603	С	13.30762	7.35814	12.66303
С	12.80104	2.10637	12.46648	С	13.75229	8.09369	11.56063
н	12.73371	1.76759	11.42099	н	13.23119	7.99992	10.60514
н	13.53121	2.92059	12.52626	С	14.86389	8.92292	11.66276
н	13.17491	1.26867	13.07394	н	15.19896	9.49157	10.79200
н	9.97357	4.13198	15.51830	С	15.57150	9.01113	12.85862
				н	16.46676	9.63415	12.90987
141				С	15.14816	8.32546	13.99812
тs-в	H1			С	13.98930	7.54123	13.87460
Sn	9.06801	8.57462	16.35737	С	13.30016	5.23835	16.52787
N	11.39201	8.00421	15.50457	н	13.39777	4.38097	17.18650
С	7.32644	8.92270	14.93545	С	14.08981	5.69388	15.52999
С	6.11040	8.44745	15.48694	н	15.01754	5.30871	15.12179
N	13.50283	6.84363	15.02186	С	12.33804	7.10136	15.68948
N	12.23266	6.11342	16.62881	С	8.76805	12.28198	14.66974
С	4.87277	8.90875	15.01824	н	8.25503	13.20829	14.35997
н	3.95461	8.51610	15.46527	н	9.67508	12.55425	15.22777
С	4.81242	9.85135	13.99919	н	8.08638	11.74418	15.34223
Н	3.84698	10.22249	13.64587	С	15.96606	8.33803	15.27501
С	5.99328	10.30212	13.42017	н	15.32510	7.94501	16.07911
н	5.96277	11.02226	12.59756	С	17.17071	7.40280	15.12209
С	6.05491	7.39289	16.54834	н	16.88414	6.38898	14.80415
С	7.24070	9.84155	13.86271	Н	17.72112	7.31938	16.07213
С	5.76778	5.06143	17.13741	Н	17.86703	7.79328	14.36290
Ĥ	5.65040	4.01853	16.82568	C	16.41991	9.72442	15.71316
С	5.91716	6.04509	16.15635	Ĥ	17.10309	10.18032	14.97766
c	5.72954	5.37592	18.49792	н	16.97908	9.64738	16.65890
c	5.99441	7.73364	17.91478	н	15.56805	10.39894	15.87471
c	5.84089	6.71847	18.86267	C	12.21526	6.31773	12.51602
H	5.78775	6.99128	19.92127	Ĥ	11.98145	5.92723	13.51667
С	5.85323	5.67519	14.70136	C	12.73110	5.13549	11.69233
H	4.89207	5.99040	14.26389	н	11.96923	4.34176	11.63665
н	5.95013	4.58952	14.56030	н	13.64262	4.70538	12.13551
н	6.63369	6.18100	14.11521	н	12.97431	5.44155	10.66254
С	5.59373	4.30223	19.53827	C	10.92269	6.88457	11.95142
Ĥ	5.06879	3.41987	19.14462	Ĥ	11.05643	7.26027	10.92555
н	5.04451	4.66154	20.42061	н	10.55633	7.71926	12.56328
Н	6.58306	3.96125	19.89089	Н	10.14365	6.10762	11.91939
С	6.08253	9.16481	18.35415	С	11.21616	6.06123	17.62886
H	7.11395	9.54854	18.25095	C	10.15866	5.15270	17.45841
Н	5.80001	9.27656	19.40987	C	9.17081	5.12707	18.44533
н	5.44265	9.81710	17.74280	Ĥ	8.32208	4.45292	18.33807
С	8.42833	10.31227	13.09424	C	9.24267	5.97049	19.54764
c	9.13921	11.46157	13.46989	Ĥ	8.45154	5.94110	20.30045
c	10.23198	11.85689	12.69484	C	11.31181	6.93516	18.72677
H	10.80262	12.72662	13.01918	C	10.05373	4.29384	16.21207
С	10.62266	11.16389	11.55180	Ĥ	11.07736	4.03176	15.89740
c	9.86445	10.05576	11.16516	C	9.41053	5.09361	15.07669
H	10.13570	9.51087	10.25556	Ĥ	9.99203	5.99049	14.81937
С	8.77521	9.61595	11.91883	Н	8.40204	5.41621	15.37280
c	7.97882	8.41940	11.47720	н	9.31660	4.48028	14.16686
H	6.94078	8.69425	11.23193	C	9.29832	2.98938	16.44027
н	7.91436	7.66288	12.27487	н	9.37319	2.34959	15.54818
н	8.42638	7.95040	10.58984	н	8.22715	3.17106	16.61960
С	11.85327	11.56582	10.79234	н	9.69882	2.42797	17.29799
н	11.78869	11.28436	9.73047	С	12.46393	7.91360	18.86291
н	12.74357	11.06871	11.21444	н	12.73263	8.25569	17.85074
	12.1 4007	11.00071	11.21.44		12.10200	0.20000	11.00014

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	9.16432 9.63854 9.90023 8.94534 7.23087 6.36908 6.87224 7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.65868 13.81218 13.18790 14.67074	19.65408 19.25494 19.58439 20.72198 19.46353 18.86421 20.48321 19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492 15.60871	ноннонноннносоноснос	4.24741 7.08418 8.12369 6.67683 7.10725 5.11836 5.84513 4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530 11.96444	8.56447 6.30437 6.67024 6.53948 5.21263 6.06375 5.24751 5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981 10.76448	18.34534 14.35278 14.37950 13.35949 14.47673 18.97619 19.09483 18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
H 12 H 12 H 14 14 14 15 14 14 14 16 14 17 14 18 12 19 14 10 10 11 10 11 11 12 12 14 12 14 12 15 14 16 14 17 14 18 12 19 14 10 14 11 15 12 14 14 15 14 15 14 14 15 14 16 14 17 14 18 12 11 14 12 14 14 14	2.91218 1.93889 3.69544 4.02404 3.48253 4.53541 0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	9.90023 8.94534 7.23087 6.36908 6.87224 7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	19.58439 20.72198 19.46353 18.86421 20.48321 19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	ннгоннгоннгостооно	8.12369 6.67683 7.10725 5.11836 5.84513 4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	6.67024 6.53948 5.21263 6.06375 5.24751 5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	14.37950 13.35949 14.47673 18.97619 19.09483 18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.93889 3.69544 4.02404 3.48253 4.53541 0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	8.94534 7.23087 6.36908 6.87224 7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.63023 15.63868 13.81218 13.18790	20.72198 19.46353 18.86421 20.48321 19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	нтонттонттосотосто	6.67683 7.10725 5.11836 5.84513 4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	6.53948 5.21263 6.06375 5.24751 5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	13.35949 14.47673 18.97619 19.09483 18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.69544 4.02404 3.48253 4.53541 0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	7.23087 6.36908 6.87224 7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	19.46353 18.86421 20.48321 19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	ногногниосносто	7.10725 5.11836 5.84513 4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	5.21263 6.06375 5.24751 5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	14.47673 18.97619 19.09483 18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.02404 3.48253 4.53541 0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	6.36908 6.87224 7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	18.86421 20.48321 19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	с	5.11836 5.84513 4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	6.06375 5.24751 5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	18.97619 19.09483 18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
H 13 H 14 14 14 10 10 11 10 12 11 13 12 14 10 15 11 15 12 16 12 17 12 18 12 19 13 14 13 15 14 16 14 17 14 18 14 19 14 11 14 12 14 13 14 14 14 14 14 15 14 16 14 17 14	3.48253 4.53541 0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	6.87224 7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	20.48321 19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	ннгоннгосносно	5.84513 4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	5.24751 5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	19.09483 18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.53541 0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	7.94061 6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 15.63023 15.05868 13.81218 13.18790	19.51963 19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	нноннносонсонс	4.11095 5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	5.61525 6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	18.99082 19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
C 10 H 10 11 10 12 11 13 12 14 12 15 14 16 12 17 12 18 12 19 12 14 13 14 13 14 13 14 13 14 13 14 14 15 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15	0.29999 0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	6.86254 7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 15.63023 15.05868 13.81218 13.18790	19.68753 20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	ноннносоносно	5.19279 4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	6.72066 10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	19.85580 16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.92015 12.67316 12.85267 12.19954	
H 10 H 10 11 11 D 11 D 11 D 11 D 11 D 12 12 14 D 12 14 12 15 14 16 14 17 14 18 14 19 14 19 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 12 14 12	0.33163 1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	7.52894 9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 15.63023 15.63023 15.05868 13.81218 13.18790	20.55045 15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	снннссснсснс	4.43782 5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	10.20907 10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	16.20294 16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
11 12 13 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 14 15 16 17 17 18 17 17 18 17 17 18 17 17 18 18 19 11 11 12 13 14 14 15 16 17 18 17 18 18 17 18 <td>1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370</td> <td>9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790</td> <td>15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492</td> <td>нннссснсснс</td> <td>5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530</td> <td>10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981</td> <td>16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954</td> <td></td>	1.57243 2.67285 0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	9.38370 9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	15.38583 15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	нннссснсснс	5.23258 3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	10.95221 10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	16.02492 17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
D 1;	2.67285 0.45317 2.79869 4.15991 2.06753 4.3019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	9.93493 10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	15.27197 15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	нносоносно	3.88138 3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	10.50959 10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	17.10127 15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
D 10 11 3 12 12 1 12 14 1 12 14 1 12 12 1 12 12 1 12 12 1 13 14 1 14 13 1 14 14 1 14 14 1 14 14 1 14 14 1 14 14 1 14 14 1 14 14 1 14 14	0.45317 2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	10.00789 11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	15.51534 16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	нссснсснс	3.76335 8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	10.27417 11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	15.33556 12.68025 12.92015 12.67316 12.85267 12.19954	
3 12 14 12 12 14 12 12 12 12 12 12 12 12 13 13 14 13 14 13 14 14 15 14 14 14 15 14 14 14 15 14 14 14 14 14 15 14 14 14 15 14 14 14 15 14 16 14 17 14	2.79869 4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	11.71143 11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	16.35211 16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	ссснсснс	8.77039 8.83157 10.02911 10.07425 11.16470 11.08530	11.29133 12.67423 13.35194 14.43110 12.68900 11.30981	12.68025 12.92015 12.67316 12.85267 12.19954	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.15991 2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	11.97753 12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	16.25616 15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	С С Н С С Н С	8.83157 10.02911 10.07425 11.16470 11.08530	12.67423 13.35194 14.43110 12.68900 11.30981	12.92015 12.67316 12.85267 12.19954	
D 1: D 1: C 14 15: 14 16: 15: 17: 16: 18: 17: 19: 16: 19: 17: 10: 17: 10: 17: 11: 17: 12: 14: 14: 15: 14: 14: 14: 12: 14: 12: 14: 12: 14: 12: 14: 12: 14: 12:	2.06753 4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	12.69166 12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	15.68111 15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	С Н С Н С	10.02911 10.07425 11.16470 11.08530	13.35194 14.43110 12.68900 11.30981	12.67316 12.85267 12.19954	
C 14 12 12 12 12 14 13 14 13 14 14 15 14 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15 14 15	4.33019 2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	12.99016 13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	15.26196 15.36589 16.53202 17.45590 16.33617 16.69492	н сс нс	10.07425 11.16470 11.08530	14.43110 12.68900 11.30981	12.85267 12.19954	
12 12 12 12 14 13 14 13 14 13 14 13 14 14 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 13 14 13 14 13	2.97131 2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	13.75107 14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	15.36589 16.53202 17.45590 16.33617 16.69492	С С Н С	11.16470 11.08530	12.68900 11.30981	12.19954	
12 12 14 13 14 13 14 14 15 15 14 17 15 16 14 17 14 16 14 16 14 17 14 17 14 12 14 12 14 12 14 12 14 12 14 12 14 12	2.94204 3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	14.73829 14.26059 15.63023 15.05868 13.81218 13.18790	16.53202 17.45590 16.33617 16.69492	С Н С	11.08530	11.30981		
H 10 H 10 H 10 H 11 H 10 H 10 H 10 H 10	3.29907 3.55537 1.90267 5.55752 6.45855 5.66370	14.26059 15.63023 15.05868 13.81218 13.18790	17.45590 16.33617 16.69492	H C			11 00000	
H 10 H 11 C 15 H 10 H 15 H 15 H 15 H 15 H 15 H 15 H 10 H 10 H 11 H 11 H 11 H 11 H 11 H 11	3.55537 1.90267 5.55752 6.45855 5.66370	15.63023 15.05868 13.81218 13.18790	16.33617 16.69492	С	11.50444	10.70440	11.99608 11.64236	
H 11 C 18 H 16 H 18 H 18 H 18 H 18 C 14 H 18 C 12 H 18 H 18 H 18 H 18 H 18 H 18 H 18 H 18	1.90267 5.55752 6.45855 5.66370	15.05868 13.81218 13.18790	16.69492		0 00620			
10 10 H 10 H 10 H 10 H 11 H 12 H 13 H 14 H 12 H 13 H 13 H 13 H 13 H 13 H 13	5.55752 6.45855 5.66370	13.81218 13.18790			9.90628 9.84896	10.59755 9.12049	12.22577 11.98408	
H 10 H 11 C 14 H 15 C 14 H 15 C 12 H 15 C 12 H 15 H 12 H 12 H 12	6.45855 5.66370	13.18790	10.00071	н	9.04090 9.08559	9.12049 8.86916	11.23038	
I 15	5.66370		15.51216	Н	9.58478	8.58688	12.90880	
I 1! I 12 I 12 I 12 I 14 I 14 I 14 I 15 I 15 I 15 I 15 I 15 I 15		14.07074	14.92774	Н	10.81933	8.74192	11.64543	
14 14 1 14 1 14 1 14 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15	0.01004	14.18144	16.64144	С	12.42997	13.43886	11.89535	
H 1: H 14 H 15 H 15 H 15 H 15 H 15		12.32213	13.90094	н	12.42997	14.33689	12.52257	
H 14 H 15 C 12 H 10 H 12 H 12 H 12		11.71280	13.64926	Н	12.45065	13.76936	10.84322	
H 19 C 12 H 10 H 12 H 12 H 12		13.06134	13.10536	н	13.31691	12.80868	12.05770	
2 12 H 13 H 12 H 12		11.65127	13.93934	C	12.10735	6.07700	12.48833	
H 1: H 1: H 1 ⁻		14.45822	14.09427	c	11.98767	6.37292	11.12852	
H 12 H 1 ⁷		15.27313	13.85243	н	11.25634	5.83440	10.52481	
H 1'		13.77281	13.24014	C	12.78065	7.34748	10.52996	
	1.54341	14.89662	14.23028	н	12.67303	7.55544	9.46271	
	2.35448	11.13049	17.31324	c	13.68384	8.07666	11.29246	
				Ĥ	14.27848	8.86327	10.82236	
41				C	13.84038	7.82308	12.65883	
	isomer			C	13.06791	6.79738	13.22485	
_	8.30537	9.71366	15.96782	C	14.41391	5.22438	16.13326	
	1.37666	6.92602	15.89799	н	15.08235	4.61757	16.73602	
		9.79516	14.00692	С	14.49846	5.63417	14.84821	
		9.04295	14.06693	н	15.24651	5.44198	14.08630	
	3.36233	6.38751	14.56333	С	12.56413	6.45724	15.68371	
	3.23209	5.73040	16.64168	C	7.62861	13.41209	13.43668	
		9.03820	12.99785	н	7.87192	14.45741	13.67411	
		8.43783	13.06255	н	7.22628	12.93635	14.34534	
		9.79335	11.86003	н	6.80716		12.70275	
		9.79717	11.02227	С	14.81405	8.64240	13.47985	
		10.53669	11.78752	н	14.64317	8.39321	14.53796	
		11.11799	10.88904	С	16.26496	8.30601	13.13253	
		8.24827	15.30378	н	16.49417	7.24161	13.29134	
; 7	7.49538	10.53991	12.84823	н	16.95797	8.89542	13.75284	
		6.26462	16.65076	н	16.48241	8.53509	12.07684	
	6.49370	5.26146	16.76416	С	14.54425	10.13728	13.33042	
		6.94776	15.44746	н	14.76658	10.49038	12.31029	
		6.82455	17.70306	н	15.17863	10.70789	14.02511	
		8.82724	16.35201	н	13.49629	10.36455	13.56235	
	.00014	8.10736	17.53165	С	11.25232	5.00488	13.13935	

16.37920

16.99429 15.31926

16.54373 16.70832

5.12764 4.38239 5.99437 6.82738 5.83779 6.09687 6.37869 6.76276 7.39228 7.69837 7.65213 8.14162 7.31973 7.56020 6.70026 6.45928 7.45072 7.17396 7.94106 5.94857 5.00563 4.04728 5.24221 4.19612 3.85139 3.32288 4.59434 8.78422 9.29199 9.43772 8.67865 5.66735 4.66389 5.73056 6.39693 6.56312 5.52744 5.28943 4.46862 6.07304 7.15671 7.79315 7.42152 8.59176 8.99083 8.27847 9.40020 4.71202 5.33330 3.89784

н	11.01443	5.35979	14.15443	С	10.15964	13.23154	
C	12.01232	3.68153	13.25797	Ĥ	10.53179	14.06472	
н	11.39087	2.92525	13.76332	н	10.32506	13.45878	
н	12.94265	3.78851	13.83479	н	9.07374	13.15275	
н	12.27624	3.29169	12.26168	н	11.03474	8.92966	
С	9.91471	4.80029	12.43715		11.00474	0.02000	
н	10.03044	4.33019	11.44743	141			
н	9.37928	5.75221	12.30831	INT-E	3H2		
н	9.27677	4.13514	13.03825	Sn	0.59977	0.28254	
С	12.76355	5.59442	17.97945	0	2.86254	2.95450	
c	11.72827	4.68243	18.24816	õ	1.56610	1.89672	
c	11.30442	4.56085	19.57379	N	1.65207	6.34081	
Ĥ	10.49815	3.86398	19.81580	N	-0.08839	5.44177	
С	11.88873	5.31575	20.58594	N	1.99082	4.15203	
Ĥ	11.54554	5.20263	21.61712	С	1.59404	-1.31675	
C	13.34684	6.39491	18.97543	c	2.94606	-1.44823	
C	11.06291	3.87274	17.15434	c	3.37938	-2.62357	
Ĥ	11.59062	4.08879	16.21431	Ĥ	4.42621	-2.70460	
C	9.60795	4.30486	16.96431	С	2.49646	-3.66835	
H	9.55484	5.38179	16.75113	H	2.85381	-4.57798	
Н	9.00592	4.08814	17.86188	С	1.15071	-3.53487	
н	9.15512	3.76128	16.11921	н	0.43694	-4.32822	
С	11.18773	2.37096	17.40532	С	0.70163	-2.36473	
н	10.75190	1.80453	16.56759	С	-0.75668	-2.14454	
н	10.65715	2.06469	18.32088	С	-1.50875	-1.47778	
н	12.24034	2.06679	17.51082	С	-2.83135	-1.12690	
С	14.40930	7.42786	18.65474	н	-3.40990	-0.60185	
н	14.53896	7.44778	17.56236	С	-3.43469	-1.42826	
С	13.96493	8.82938	19.06906	С	-2.68866	-2.13574	
н	13.02981	9.10711	18.56318	н	-3.14744	-2.39648	
Н	14.72364	9.57192	18.77958	С	-1.36071	-2.50531	
Н	13.81542	8.90559	20.15781	С	-0.57267	-3.23664	
С	15.75691	7.05164	19.27039	Н	0.28324	-2.63303	
н	16.09246	6.06006	18.92939	н	-1.19306	-3.48061	
н	15.70138	7.02257	20.37034	H C	-0.14367	-4.16837	
н С	16.52859	7.78605 6.22554	18.99217	н	-0.89340	-1.16415	
н	12.89736 13.33559	6.82801	20.28824 21.08765	н	-0.57276 -1.60240	-2.08679 -0.63844	
С	10.85645	8.11998	15.53460	н	0.00949	-0.54458	
õ	11.61695	8.99744	14.76937	С	-4.84555	-0.99846	
õ	9.56675	8.13991	15.30608	н	-5.16949	-1.30853	
В	11.54426	9.94091	15.82738	н	-4.94727	0.09738	
0	12.68703	10.55669	16.34441	н	-5.54993	-1.42847	
0	10.46428	10.91785	15.81343	С	3.90810	-0.32685	
C	12.39610	11.92634	16.61483	С	4.85862	-0.37203	
С	10.83609	11.93279	16.76947	С	5.65648	0.75051	
С	10.40789	11.51520	18.17395	н	6.38043	0.72587	
н	10.88689	10.57470	18.48261	С	5.55228	1.90407	
н	10.66405	12.29475	18.90526	С	4.67696	1.88349	
н	9.31994	11.36377	18.20731	н	4.59742	2.76873	
С	13.15176	12.35947	17.85857	С	3.85736	0.78531	
н	14.23213	12.32060	17.65664	С	2.92014	0.82332	
Н	12.89502	13.39307	18.13726	н	2.71568	-0.17973	
Н	12.94562	11.70053	18.71095	Н	1.96521	1.26990	
С	12.84884	12.74423	15.41179	Н	3.32837	1.44510	
н	12.28165	12.45383	14.51775	С	5.02974	-1.62284	
н	12.72144	13.82431	15.57598	н	5.39517	-2.45557	
Н	13.91373	12.54498	15.22792	н	5.75352	-1.47974	

н	4.07412	-1.96064	4.28297	н	2.60441	7.42272	10.96681	
С	6.31411	3.15018	5.73640	C	3.52181	7.18676	4.80508	
H	7.20968	2.93571	5.13487	н	2.42775	7.07868	4.75205	
н	6.61942	3.69599	6.64135	C	4.12672	6.14033	3.87017	
н	5.66899	3.83026	5.15633	н	5.22718	6.20161	3.86380	
С	1.71856	3.03908	5.27821	н	3.78020	6.29972	2.83629	
c	1.22914	5.17348	6.20696	н	3.83721	5.12445	4.17525	
c	0.63611	7.28659	6.83425	C	3.85575	8.61163	4.36550	
Ĥ	0.78208	8.27248	7.26436	н	3.39083	9.35694	5.02892	
С	-0.43884	6.73554	6.23275	н	3.49411	8.79309	3.34113	
н	-1.43255	7.13013	6.04400	н	4.94247	8.79274	4.36722	
С	-1.01454	4.47022	5.36893	В	2.97136	2.05075	3.40896	
c	-1.35758	4.44777	4.00527	0	3.65292	2.29439	2.24897	
c	-2.23270	3.44856	3.56885	0	2.32639	0.80349	3.36209	
				c				
н С	-2.50887	3.39942	2.51253	c	3.55804	1.14479	1.40631	
	-2.73614	2.50334	4.45630		2.29221	0.40414	1.97108	
Н	-3.39385	1.70916	4.09511	С	0.98737	0.92947	1.38549	
С	-2.39821	2.55716	5.80534	н	0.94128	2.02618	1.43676	
Н	-2.80136	1.80724	6.48901	н	0.86579	0.62251	0.33735	
С	-1.54097	3.54776	6.29270	Н	0.14337	0.52990	1.96696	
С	-1.23472	3.65499	7.77305	С	3.41075	1.60910	-0.03125	
Н	-0.34257	4.28694	7.88755	н	4.33829	2.10569	-0.35014	
С	-0.90925	2.30815	8.40352	н	3.22979	0.75743	-0.70429	
Н	-1.77061	1.62367	8.38230	Н	2.58977	2.32944	-0.13866	
Н	-0.61564	2.43534	9.45657	С	4.83864	0.34217	1.57725	
н	-0.06958	1.83925	7.87249	Н	4.93175	-0.01817	2.60835	
С	-2.38840	4.35441	8.49534	Н	4.88479	-0.51560	0.89116	
н	-2.58276	5.35111	8.07142	н	5.69314	1.00222	1.37129	
Н	-2.15694	4.47916	9.56477	С	2.34440	-1.10582	1.87397	
н	-3.31693	3.76642	8.41446	н	2.41098	-1.41618	0.82081	
С	-0.78055	5.45130	3.02675	н	3.20216	-1.51961	2.41593	
н	-0.14278	6.13757	3.60389	Н	1.42568	-1.54354	2.29208	
С	0.11033	4.77810	1.98280	Н	0.85793	3.20153	4.59331	
н	0.94425	4.23740	2.45453					
н	0.54419	5.52919	1.30467	141				
н	-0.46119	4.06380	1.36865	INT-B	H1_isomer			
С	-1.88022	6.28419	2.36932	Sn	8.82113	9.07565	15.14120	
н	-2.55214	5.65877	1.75989	N	11.38117	7.82488	16.46818	
н	-1.44358	7.04652	1.70554	С	7.24898	8.41779	13.72208	
н	-2.49725	6.79964	3.12092	С	6.22358	7.68060	14.33414	
С	3.00499	6.53938	7.21699	N	13.72735	8.26778	16.12740	
С	3.93328	6.93647	6.24117	N	13.04520	7.91745	18.16611	
С	5.26896	7.07511	6.63017	С	5.08091	7.32532	13.61728	
н	6.01655	7.37048	5.89023	н	4.28405	6.75017	14.09636	
С	5.65796	6.83393	7.94267	С	4.96890	7.70976	12.27981	
н	6.70657	6.94617	8.22929	н	4.07723	7.43761	11.70948	
С	4.71822	6.44778	8.89452	С	5.99189	8.42680	11.66065	
н	5.03892	6.25725	9.92058	н	5.90769	8.70375	10.60604	
С	3.37415	6.28712	8.54963	С	6.52579	7.31674	15.74796	
С	2.35652	5.77638	9.54816	С	7.14119	8.78660	12.37844	
Ĥ	1.36552	6.11298	9.20266	C	7.59898	5.82433	17.30951	
С	2.35164	4.24616	9.53450	Ĥ	8.04406	4.84840	17.52032	
H	2.23373	3.85636	8.51244	C	7.05322	6.04183	16.04274	
н	1.54051	3.84839	10.16503	C	7.65412	6.82430	18.28475	
н	3.30470	3.86024	9.93128	c	6.51238	8.33218	16.73970	
С	2.56158	6.32280	10.95675	c	7.08773	8.06396	17.99247	
н	3.49127	5.94388	11.40991	н	7.08690	8.84988	18.75390	
н	1.73543	6.00480	11.61097	C	7.12508	4.97422	14.99565	
		0.00400	. 1.01007	0	1.12000	7.01722	14.00000	

н	6.21618	4.93914	14.38011	н	17.30516	5.67781	15.36893
н	7.28361	3.98941	15.45471	н	17.04038	7.40767	15.02700
Н	7.98357	5.15452	14.32564	н	17.07841	6.23826	13.69579
С	8.36710	6.59573	19.58015	С	14.86896	4.72618	14.48003
Н	9.41993	6.90358	19.48442	н	15.11367	4.51286	13.42700
н	8.36567	5.53469	19.86656	н	13.79980	4.51992	14.63970
Н	7.92745	7.18084	20.40104	н	15.44528	4.01530	15.09318
С	5.78833	9.63449	16.51471	С	12.31583	7.41576	19.29002
Н	5.91615	10.02436	15.49421	С	12.19156	6.02221	19.43712
Н	6.11747	10.40102	17.23006	С	11.62486	5.55896	20.62922
Η	4.70430	9.48767	16.65190	н	11.51693	4.48396	20.78306
С	8.26765	9.50594	11.72128	С	11.19441	6.44332	21.61206
С	8.27445	10.91385	11.65009	Н	10.76154	6.05618	22.53769
С	9.33103	11.55504	11.00193	С	11.84332	8.33523	20.24217
H	9.33367	12.64809	10.94631	С	12.66599	5.05861	18.36650
C	10.38042	10.83570	10.42101	Н	12.57027	5.56088	17.39332
C	10.35747	9.44394	10.51588	С	11.80611	3.80321	18.26078
H	11.16782	8.86182	10.06756	н	10.73746	4.05737	18.21057
C	9.32367	8.75873	11.16458	н	11.96596	3.11493	19.10693
0	9.34415	7.26140	11.25406	Н	12.04781	3.27441	17.32703
H	8.36146	6.82940	11.01530	С	14.14133	4.70081	18.55863
н	9.59805	6.90113	12.26603	н	14.47624	4.04331	17.74206
H	10.08384	6.84152	10.55928	н	14.29575	4.16901	19.51146
C	11.51224	11.54951	9.73970	Н	14.78691	5.59216	18.56132
Н	12.16183	10.84939	9.19519	С	11.87534	9.82345	19.95575
Н	12.14054	12.08955	10.46839	Н	12.78912	10.02933	19.37444
H	11.14214	12.29812	9.02240	С	10.68323	10.19929	19.06990
C C	14.48577 14.51377	7.20740	14.07926 12.68125	н	10.65846	9.60025	18.14716
		7.19523		Н	10.72422	11.26459	18.79401
H	15.04085	6.39046	12.16445	Н	9.73636	10.02240	19.60551
C	13.86212 13.87687	8.17629 8.13786	11.94615	С Н	11.93265 12.75826	10.68894 10.39185	21.20835
H C	13.18886	9.21129	10.85411 12.58928	H	10.99702	10.39185	21.87278 21.78705
H	12.68331	9.21129	11.99452	Н	12.08014	11.74366	20.93157
C	13.14216	9.28294	13.98270	С	11.28398	7.81827	21.41378
c	13.78643	8.25662	14.69944	н	10.91034	8.49831	22.18062
c	14.38845	8.26010	18.23225	С	10.91034	6.96880	15.54482
H	14.91313	8.30269	19.18142	0	11.57097	5.90704	15.25735
C	14.81081	8.47723	16.96643	õ	9.79152	7.20064	14.98958
H	15.78393	8.75559	16.57522	В	10.75710	4.60493	14.84657
C	12.62617	7.93638	16.86875	0	10.18996	4.68662	13.52274
c	7.16121	11.70896	12.27070	õ	11.75042	3.55393	14.80605
H	7.29937	12.78677	12.10794	c	10.88798	3.80117	12.67214
H	7.10247	11.53329	13.35737	c	11.44546	2.74682	13.68764
н	6.18169	11.41765	11.86165	c	10.37618	1.73023	14.09526
C	12.45685	10.43316	14.69928	н	9.44174	2.24116	14.36901
H	11.85309	9.99102	15.51017	н	10.16068	1.00341	13.29758
C	13.47650	11.38047	15.33702	н	10.73529	1.18166	14.97876
H	14.14100	10.86304	16.04322	C	9.92502	3.23897	11.63830
H	12.96064	12.18031	15.89096	Ĥ	9.58287	4.04560	10.97227
H	14.10409	11.85315	14.56467	н	10.40866	2.46755	11.01829
с	11.50020	11.21445	13.80777	н	9.03811	2.80392	12.11717
H	12.03518	11.79962	13.04299	C	12.01151	4.56482	11.97060
H	10.91449	11.92458	14.41061	н	12.72602	4.95368	12.70623
H	10.79237	10.56115	13.27461	н	12.54984	3.94496	11.23676
с С	15.24078	6.15313	14.86638	н	11.57881	5.42663	11.44484
H	14.97407	6.26540	15.92727	C	12.69284	2.01214	13.22606
с С	16.74822	6.38620	14.73636	н	12.49231	1.43573	12.30954

Н	13.51978	2.70512	13.02936	С	12.85539	7.33096	10.22619
Н	13.01913	1.30800	14.00628	Н	12.85654	7.32843	9.13359
н	9.90945	4.51953	15.73935	С	13.57481	8.29450	10.91856
				Н	14.13435	9.04759	10.36369
141				С	13.60367	8.32557	12.31822
INT-E		0.57054	10.01010	С	12.86016	7.34425	12.99719
Sn	8.74665	8.57251	16.24613	С	13.56515	6.30500	16.35052
N	10.95626	8.39427	15.21091	Н	14.03434	5.75742	17.16198
С	7.30578	8.77267	14.52626	С	13.90663	6.43356	15.04452
С	6.14535	7.97792	14.68442	Н	14.73939	6.02484	14.48210
N	12.94933	7.22719	14.43493	C C	12.03338	7.61459	15.36423
N C	12.40099	7.02151 8.03133	16.53910 13.75250	н	7.37418 7.42769	12.30330	14.64614
н	5.10309		13.90220	Н		13.37991	14.85815
С	4.21598 5.18969	7.40928 8.88436	12.65696	Н	7.43689 6.38349	11.77321 12.07766	15.61134 14.22345
н	4.37430	8.93159	11.93018	С	14.44719	9.36377	13.02674
С	6.31295	9.69024	12.50137	н	13.93403	9.62825	13.96401
н	6.38338	9.09024 10.37911	11.65487	C	15.83614	8.80603	13.35365
С	5.99422	7.08393	15.87381	н	15.80197	7.96726	14.06294
c	7.36859	9.65078	13.42381	н	16.45800	9.59036	13.80991
c	6.08504	4.88660	16.88222	н	16.34452	8.46081	12.43882
н	6.23904	3.80780	16.77859	C	14.58523	10.65038	12.22060
С	6.19219	5.69378	15.74782	Ĥ	15.24759	10.52443	11.34874
c	5.78165	5.41422	18.14007	н	15.00133	11.43607	12.85929
c	5.63386	7.62950	17.12339	н	13.60933	11.01304	11.87371
c	5.54470	6.78581	18.23433	C	11.31279	5.29402	13.04034
H	5.27315	7.21736	19.20248	Ĥ	11.07230	5.67716	14.04278
С	6.49325	5.08266	14.40901	C	12.15484	4.02576	13.20395
H	5.59860	5.07544	13.76628	Ĥ	11.59322	3.24833	13.74486
н	6.83845	4.04456	14.51352	н	13.08370	4.21680	13.75989
н	7.25570	5.65738	13.86316	н	12.43223	3.61796	12.21919
С	5.72965	4.53335	19.35458	С	9.98423	4.97198	12.36003
н	5.35457	3.52823	19.11198	н	10.13191	4.46824	11.39260
н	5.08569	4.95961	20.13698	н	9.38804	5.87855	12.18420
н	6.73452	4.40772	19.79333	н	9.39283	4.29067	12.98845
С	5.35773	9.09780	17.27927	С	11.51754	6.85484	17.66554
н	6.28964	9.67595	17.42250	С	10.74033	5.67925	17.69139
н	4.72882	9.28804	18.16015	С	9.81962	5.52780	18.73087
н	4.86472	9.51660	16.39113	н	9.19033	4.63594	18.76222
С	8.51153	10.57884	13.19194	С	9.68894	6.49833	19.71506
С	8.48909	11.87291	13.73867	н	8.95393	6.37090	20.51344
С	9.54999	12.73903	13.47242	С	11.42501	7.84061	18.66213
н	9.53659	13.73971	13.91305	С	10.87723	4.57400	16.66400
С	10.63832	12.35946	12.68523	н	11.56791	4.91206	15.88019
С	10.63713	11.06612	12.15581	С	9.54662	4.26105	15.99064
Н	11.47327	10.73576	11.53307	Н	9.11856	5.15579	15.51655
С	9.59213	10.17155	12.39397	Н	8.80218	3.89052	16.70952
С	9.63385	8.78591	11.82357	Н	9.67652	3.49010	15.21628
Н	8.72688	8.55214	11.24450	С	11.49810	3.32396	17.28839
Н	9.69854	8.04424	12.63422	н	11.64258	2.54129	16.52720
H	10.50876	8.64966	11.17523	н	10.85376	2.91112	18.08027
С	11.79244	13.29004	12.46353	Н	12.47680	3.54413	17.74081
H	12.22627	13.16422	11.45974	С	12.31733	9.05926	18.70085
н	12.58224	13.08500	13.20764	Н	12.62581	9.32114	17.67745
H	11.48618	14.34041	12.57590	С	11.62453	10.29065	19.27508
C	12.10226	6.36752	12.31861	н	10.66400	10.47664	18.77145
С	12.12297	6.37915 5.62528	10.92263	Н	12.25906	11.16538	19.08608
н	11.54541	5.63528	10.37237	н	11.44434	10.20124	20.35847

C	12 50551	9 70700	10 40071	ц	9 74402	E 44772	12 72750	
C H	13.58551	8.72730	19.49271 19.02612	H C	8.74403 8.56462	5.44773 4.98569	13.72750 19.22464	
	14.16130	7.91253						
Н	13.33655	8.41603	20.52021	н	9.60998	5.31953	19.31997	
Н	14.23604	9.61213	19.55198	н	8.57137	3.88697	19.17448	
С	10.49235	7.63006	19.68416	Н	8.04018	5.29249	20.14043	
Н	10.39043	8.38466	20.46478	С	5.96262	8.68591	16.99781	
С	11.09756	9.75275	15.43646	Н	6.44725	9.49488	16.42642	
0	12.24930	10.27846	15.34761	Н	5.86718	9.01687	18.04099	
0	10.03382	10.33861	15.78402	Н	4.95364	8.57530	16.57202	
В	12.62882	11.75263	15.84069	С	8.35562	9.74919	11.92348	
0	13.29683	11.63476	17.12346	С	8.36404	11.15313	12.04930	
0	13.65016	12.20861	14.91364	С	9.36556	11.88645	11.41197	
С	14.67214	11.89451	16.95486	н	9.37120	12.97610	11.51608	
С	14.66567	12.80966	15.68756	С	10.35886	11.26581	10.64724	
С	14.24881	14.24385	16.02535	С	10.33317	9.87586	10.54080	
н	13.34183	14.24644	16.64642	н	11.10183	9.36974	9.94854	
н	15.04189	14.79839	16.54956	С	9.35337	9.10066	11.17279	
н	14.01874	14.77116	15.08773	С	9.39522	7.60546	11.06875	
С	15.21600	12.55232	18.21324	н	8.38670	7.17382	11.00195	
н	15.18993	11.83828	19.05135	н	9.87830	7.15752	11.95437	
н	16.26035	12.87464	18.07765	н	9.96594	7.29704	10.18146	
н	14.60928	13.42232	18.49647	С	11.43106	12.07934	9.98151	
С	15.40992	10.57915	16.69682	н	12.10226	11.44889	9.38108	
H	15.04735	10.11885	15.76854	Н	12.04737	12.61171	10.72488	
Н	16.50047	10.71321	16.62829	Н	11.00046	12.84465	9.31656	
Н	15.20315	9.88391	17.52245	C	14.91003	6.94013	14.17885	
С	15.97453	12.83655	14.91653	C	15.05178	6.99092	12.78938	
H	16.78614	13.24379	15.53956	н	15.72899	6.29120	12.29464	
н	16.26845	11.83519	14.57704	C	14.33324	7.90715	12.02946	
н	15.87411	13.48070	14.02987	н	14.43788	7.91541	10.94143	
н	11.58177	12.37901	15.87791	C	13.49776	8.83157	12.64903	
	11.50177	12.57 501	15.07751	н	12.96051	9.56094	12.04303	
141				C	13.34116	8.83708	14.03691	
	BH2_isomer			c	14.01440	7.84509	14.03091	
	_	0 62121	15.22740	c				
Sn	9.24388	8.63121		н	14.18177	8.26747	18.31900	
N C	11.48681	6.96821	16.51303	С	14.57597	8.56155	19.28665	
	7.55411	8.30411	13.80623		14.74648	8.26912	17.09655	
С	6.57065	7.48227	14.38140	Н	15.72993	8.59034	16.77246	
N	13.80579	7.78920	16.18432	С	12.62716	7.45185	16.85251	
N	12.88979	7.78406	18.17831	С	7.31851	11.84686	12.87517	
С	5.33306	7.30300	13.75834	Н	7.45627	12.93697	12.86193	
Н	4.57838	6.65468	14.21288	Н	7.35075	11.50885	13.92371	
С	5.07633	7.94803	12.54874	Н	6.30350	11.62133	12.51429	
Н	4.11130	7.81528	12.05324	С	12.53824	9.91486	14.74116	
С	6.05306	8.74989	11.95957	Н	11.94881	9.41967	15.53150	
Н	5.85768	9.23255	10.99754	С	13.45577	10.93199	15.42559	
С	6.96353	6.79320	15.64825	н	14.12672	10.46309	16.15769	
С	7.29534	8.93477	12.58210	Н	12.85569	11.68552	15.95995	
С	8.12434	4.98396	16.75301	н	14.07402	11.45705	14.67976	
Н	8.66268	4.03330	16.69476	С	11.56088	10.64538	13.83298	
С	7.65611	5.56278	15.57246	н	12.08219	11.27437	13.09513	
	7.95093	5.58898	17.99956	Н	10.91752	11.31594	14.42333	
С		7.40094	16.90449	н	10.91818	9.95880	13.25945	
С	6.73510			С	15.75392	5.99154	15.00852	
C C	6.73510 7.23987	6.78942	18.05683					
С С С	7.23987	6.78942			15.28954	5.93198	16.00480	
С С С Н		6.78942 7.26947	19.02612	н	15.28954 17.16699	5.93198 6.56187	16.00480 15.16849	
С С С Н С	7.23987 7.07703 7.93098	6.78942 7.26947 4.91435	19.02612 14.24872	H C	17.16699	6.56187	15.16849	
С С С Н С Н С Н	7.23987 7.07703 7.93098 7.05073	6.78942 7.26947 4.91435 4.93761	19.02612 14.24872 13.59097	н С Н	17.16699 17.76875	6.56187 5.93227	15.16849 15.84261	
С С С Н	7.23987 7.07703 7.93098	6.78942 7.26947 4.91435	19.02612 14.24872	H C	17.16699	6.56187	15.16849	
С С С Н С Н С Н	7.23987 7.07703 7.93098 7.05073	6.78942 7.26947 4.91435 4.93761	19.02612 14.24872 13.59097	н С Н	17.16699 17.76875	6.56187 5.93227	15.16849 15.84261	

15.62492

4.33416 7.43475 6.24035 8.31900 8.88805 7.50334 3.21058 2.72673 1.90358 1.54218 1.53275 0.89014 1.96323 1.64393 2.78774 3.09562 4.13597 4.29441 5.09206 3.47874 2.47531 1.82265 2.26000 1.13670 1.51755 0.47494 0.53629 5.06392 4.53914 5.89698 5.47765 3.71541 3.97816 2.83108 4.55252 3.00949 2.16961 2.42919 1.77365 3.48649 4.29745 5.12779 4.08572 5.01700 4.47872 5.69933 5.64113 0.98967 0.28014 0.45676 1.28750 3.73629

н	17.67911	6.59810	14.19369	н	10.41152	5.50170
С	15.82588	4.57099	14.45677			
н	16.35632	4.53707	13.49104	Sche	me S4	
н	14.82825	4.14016	14.30778			
н	16.39060	3.93132	15.15317	141		
С	12.03163	7.49585	19.27480	TS-S	nH3	
С	12.26342	6.32415	20.01713	Sn	3.01147	0.97173
С	11.48348	6.11018	21.15759	0	3.02303	0.29607
н	11.64517	5.21538	21.76152	0	3.05552	2.17406
С	10.49298	7.01529	21.52307	Ν	-0.05442	3.59281
н	9.89125	6.83085	22.41640	Ν	2.07054	3.50361
С	11.01659	8.40993	19.60758	Ν	1.16660	1.72950
С	13.25821	5.28572	19.53815	С	1.62498	2.31810
н	14.01670	5.80684	18.93262	С	0.41595	1.78059
С	12.54614	4.29051	18.61628	С	-0.42126	2.54308
Н	12.03571	4.81353	17.79416	н	-1.35742	2.10807
н	11.79168	3.71593	19.17818	С	-0.05354	3.83388
Н	13.26407	3.57772	18.18117	н	-0.70865	4.42802
С	13.99429	4.57560	20.66898	С	1.16326	4.35548
н	14.76589	3.90830	20.25601	н	1.47757	5.35331
н	13.31960	3.94905	21.27359	С	2.01224	3.60365
н	14.48814	5.29026	21.34509	С	3.35867	4.17657
С	10.79409	9.65163	18.76728	С	3.53057	5.11007
н	11.01442	9.36680	17.72612	С	4.76882	5.73260
С	9.35250	10.14349	18.79388	н	4.88679	6.47267
н	8.65107	9.33528	18.53956	С	5.86130	5.42815
Н	9.21633	10.94869	18.05644	С	5.68073	4.47658
Н	9.07150	10.55062	19.77855	н	6.52086	4.22074
С	11.75847	10.77069	19.16578	С	4.44654	3.85409
н	12.80837	10.45597	19.08267	С	4.29364	2.86788
Н	11.58028	11.08883	20.20565	н	4.18515	1.83804
н	11.62135	11.64765	18.51359	н	5.17069	2.88299
С	10.24943	8.14306	20.74507	н	3.39533	3.07432
Н	9.45296	8.83173	21.03121	С	2.39863	5.42868
С	11.08841	6.32235	15.31368	н	1.58516	5.94952
0	12.18422	5.67855	14.67934	н	2.73038	6.06374
0	10.41132	7.13592	14.43640	Н	1.97953	4.49914
В	12.03336	4.92883	13.56561	С	7.19628	6.07140
0	11.04597	5.03476	12.61920	н	7.09070	7.13476
0	12.90207	3.89343	13.29530	н	7.84529	5.99857
С	11.41045	4.17477	11.53153	Н	7.72214	5.58085
C C	12.31751	3.11589	12.24516 12.90429	С	0.06523 0.58293	0.35657
н	11.50872 10.68934	2.00370		C C		-0.65259 -1.98589
Н		2.42080 1.31315	13.50855 12.16372	н	0.25835	-2.76424
Н	11.08023 12.16870	1.43305	13.57347	С	0.66074 -0.58156	-2.34635
С	10.14667	3.62696	10.89872	c	-1.08727	-1.32999
н	9.58169	4.45121	10.43921	н	-1.75248	-1.58653
н	10.38607	2.89347	10.11400	С	-0.77292	0.01596
н	9.49746	3.15144	11.64524	c	-1.28802	1.06714
C	12.19514	5.01252	10.52897	н	-1.64763	1.95444
н	13.11752	5.40255	10.98308	н	-0.48856	1.40105
н	12.45607	4.43448	9.63090	н	-2.10635	0.68460
н	11.58286	5.87144	10.22568	С	1.44572	-0.30224
C	13.42018	2.52856	11.38576	H	0.90440	0.34291
н	13.00013	2.00346	10.51472	н	1.77386	-1.20521
н	14.11003	3.30507	11.03245	н	2.34167	0.26474
н	14.00076	1.80354	11.97468	С	-0.91893	-3.78826

Н	-0.03378	-4.35061	4.07549	Н	-0.50128	1.47832	9.44433
Н	-1.28004	-4.28034	2.81977	С	-1.87919	-0.09509	9.19019
н	-1.69538	-3.89406	4.50728	н	-2.95773	-0.31747	9.16990
С	2.30968	1.33518	6.86992	н	-1.43510	-0.69993	9.99383
С	1.09645	2.85316	8.14589	н	-1.42524	-0.41952	8.24280
С	0.20907	4.67803	9.15006	С	-2.13068	1.86339	10.78393
н	-0.56904	5.38911	9.40722	н	-1.84421	2.90888	10.97786
С	1.51247	4.62578	9.49538	н	-1.73972	1.24654	11.60789
н	2.10459	5.27042	10.13753	Н	-3.23061	1.80882	10.81409
С	3.22421	2.83668	9.42780	В	2.57736	-0.92523	7.82923
С	3.02019	1.97414	10.52320	0	1.28161	-1.29884	8.05530
c	4.12702	1.30533	11.05024	0	3.47872	-1.93448	8.01748
H	3.99125	0.62645	11.89549	c	1.28233	-2.73399	8.15962
С	5.39570	1.49935	10.52031	c	2.76777	-3.04435	8.57393
н	6.25132	0.96391	10.93853	c	2.98998	-3.01258	10.08151
С	5.57724	2.37917	9.46166	н	2.57503	-2.09612	10.52182
н				н			
	6.57848	2.52841	9.05594		2.53854	-3.88102	10.58224
C	4.50213	3.06763	8.89118	Н	4.07200	-3.01927	10.27598
С	4.74268	4.04879	7.76604	С	0.24430	-3.16571	9.17643
H	3.80883	4.10715	7.19233	н	-0.76176	-2.91832	8.81003
С	5.83097	3.57059	6.81068	н	0.29147	-4.25336	9.33653
Н	6.83300	3.61682	7.26713	Н	0.38774	-2.66325	10.14132
Н	5.84610	4.20164	5.91285	С	0.92442	-3.26922	6.78034
Н	5.63274	2.53861	6.49068	Н	1.66866	-2.96756	6.02895
С	5.06208	5.43765	8.32163	н	0.83642	-4.36486	6.77501
Н	4.24727	5.82545	8.95176	Н	-0.03730	-2.83599	6.47607
н	5.22011	6.15326	7.49925	С	3.32658	-4.32757	7.98822
Н	5.97808	5.41999	8.93439	н	2.74788	-5.19922	8.32929
С	1.66757	1.78440	11.17942	н	3.31896	-4.30394	6.89135
н	0.91595	2.31444	10.57955	н	4.36807	-4.45743	8.31601
С	1.25871	0.31557	11.22465	н	1.72344	0.48498	5.67584
н	1.20858	-0.11142	10.21346				
н	0.26871	0.20593	11.69193	141			
н	1.96594	-0.28063	11.82185	TS-S	nH1		
С	1.64549	2.41817	12.57053	Sn	5.24044	1.36469	6.25373
н	2.36688	1.92956	13.24444	0	3.08089	0.43987	6.39181
н	0.64515	2.32458	13.02142	0	3.45917	2.49882	7.01161
н	1.89964	3.48779	12.52567	N	-0.19625	3.56318	6.77273
С	-1.35083	3.31551	7.78077	N	0.83219	3.32267	8.69057
С	-2.11578	2.26782	8.32796	N	1.29197	1.74469	6.90517
С	-3.42213	2.09607	7.86454	С	5.04597	2.54972	4.37117
н	-4.03445	1.29420	8.28173	С	4.52125	2.01287	3.18357
С	-3.95807	2.93363	6.89403	С	4.41755	2.81743	2.04116
н	-4.98529	2.78919	6.55126	н	4.01410	2.38914	1.11951
С	-3.18041	3.94858	6.35465	С	4.84600	4.14230	2.07141
H	-3.59926	4.59506	5.58062	Н	4.76392	4.76374	1.17592
С	-1.86238	4.15406	6.77453	C	5.40238	4.66837	3.23540
C	-1.04759	5.25793	6.13481	H	5.77371	5.69690	3.25348
H	-0.00962	5.15212	6.48287	C	5.51402	3.87622	4.38524
с С	-1.03840	5.11284	4.61568	c	6.21771	4.43065	5.58351
H	-0.58495	4.16132	4.30581	c	5.57628	5.33505	6.45650
н	-0.46148	5.92409	4.14927	c	6.30365	5.90197	7.50320
н	-2.05418	5.15612	4.19419	н	5.80119	6.61300	8.16635
С	-1.54441	6.63957	6.56075	C	7.64376	5.58211	7.73639
н	-2.57953	6.81052	6.22436	c	8.25629	4.67418	6.87413
	-0.91380	7.42792	6.12125		9.30825	4.41642	7.02871
H				н			
H C	-1.52777	6.76182	7.65422	С	7.57354	4.10066	5.79544
0	-1.59239	1.38202	9.43535	С	8.30165	3.16608	4.87039

Н	8.04550	2.11233	5.07286	С	-1.09095	-0.09850	9.58560
Н	9.38973	3.26308	4.98912	н	-0.34317	-0.42628	8.84788
Н	8.04150	3.35114	3.81841	н	-2.09845	-0.27219	9.17731
С	4.13398	5.69669	6.26766	н	-0.99268	-0.73375	10.48054
Н	4.00324	6.36683	5.40428	С	-1.94721	1.87049	10.93458
Н	3.73761	6.21103	7.15443	н	-1.86848	1.32688	11.88920
Н	3.53003	4.79699	6.08627	н	-2.96501	1.71583	10.54397
С	8.38025	6.18244	8.89770	н	-1.82431	2.94297	11.15006
Н	8.21579	7.26915	8.95913	С	-0.64519	3.32175	5.43318
Н	9.46244	6.00360	8.82842	С	-1.48357	2.21508	5.19011
н	8.03098	5.74858	9.84990	С	-1.95531	2.03719	3.88866
С	4.15909	0.56861	3.13580	н	-2.60353	1.18820	3.66750
С	5.19588	-0.38834	3.11918	С	-1.61334	2.92156	2.87063
С	4.86714	-1.74658	3.13443	н	-2.00102	2.76688	1.86104
н	5.67395	-2.48638	3.12759	С	-0.76377	3.98662	3.13155
С	3.54293	-2.18176	3.14271	н	-0.47835	4.66092	2.32165
С	2.53640	-1.21628	3.10713	С	-0.24618	4.20001	4.41409
Н	1.49144	-1.53771	3.10876	С	0.72208	5.34085	4.64693
С	2.81419	0.15056	3.11712	н	1.14202	5.22628	5.65852
С	1.68445	1.13544	3.18337	С	1.88440	5.27564	3.65918
Н	1.86910	2.03520	2.58169	н	2.43643	4.32920	3.74710
н	1.51999	1.46387	4.22287	н	2.59447	6.09393	3.84099
н	0.74317	0.68204	2.84403	н	1.54151	5.36992	2.61761
С	6.64210	0.02330	3.04064	С	0.01131	6.69321	4.58591
Н	6.78958	0.85297	2.33368	н	-0.42987	6.86364	3.59086
Н	7.26883	-0.82202	2.72370	н	0.71928	7.51276	4.78419
Н	7.03733	0.37146	4.00993	Н	-0.80269	6.76068	5.32370
С	3.20355	-3.63640	3.25314	C	-1.90402	1.27235	6.29844
H	2.96950	-3.86353	4.30606	Н	-1.07847	1.22989	7.02093
Н	4.04037	-4.27736	2.93945	C	-2.10506	-0.16237	5.82323
Н	2.32200	-3.89712	2.64872	H	-2.97319	-0.26762	5.15294
С	2.59772	1.56563	6.80300	Н	-2.27866	-0.81863	6.68855
c	0.74088	2.81162	7.42198	н	-1.20809	-0.53159	5.30535
c	-0.67695	4.54655	7.62534	C	-3.14989	1.81601	7.00070
H	-1.42589	5.26197	7.30115	Ĥ	-2.97911	2.82322	7.41095
С	-0.04094	4.39760	8.81072	н	-3.44835	1.15994	7.83285
H	-0.13763	4.94267	9.74415	н	-3.99688	1.88015	6.29887
С	1.34894	2.60253	9.82244	В	1.95390	-1.15530	6.45933
c	0.49551	1.66000	10.42695	0	2.86406	-2.19391	6.26247
c	0.96450	0.98599	11.55676	0	1.50609	-1.16350	7.78852
H	0.32037	0.25093	12.04415	c	3.25768	-2.68882	7.53772
С	2.23267	1.23489	12.06304	c	2.01915	-2.32652	8.42910
H	2.58497	0.69391	12.94442	C	0.92862	-3.39453	8.37235
С	3.05493	2.17156	11.44867	н	0.69939	-3.66157	7.33045
н	4.04974	2.35980	11.85434	н	1.20975	-4.30714	8.91867
С	2.63376	2.88024	10.31880	н	0.01310	-2.98750	8.82608
c	3.52876	3.93100	9.70027	С	3.54305	-4.17602	7.41535
н	3.25634	3.99988	8.63900	н	4.41844	-4.32786	6.76636
С	5.00100	3.53739	9.75975	н	3.76441	-4.62085	8.39780
н	5.40587	3.59527	10.78298	н	2.69581	-4.71208	6.96841
н	5.59882	4.20863	9.12938	C	4.52515	-1.96344	7.98157
n H	5.15231	4.20003 2.51172	9.39207	н	4.32945	-1.96344 -0.89659	8.14834
п С	3.29345		9.39207 10.35319	н	4.32945 4.94145		8.90537
		5.29421				-2.39173	
H	2.24965	5.62494	10.24204	Н	5.27930	-2.05224	7.18528
H	3.93760	6.05889	9.89129	С	2.35306	-2.00383	9.87595
H	3.52192	5.26508	11.43081	Н	2.85898	-2.85109	10.36440
C	-0.90642	1.37749	9.92877	Н	2.99115	-1.11399	9.95285
Н	-1.06196	1.94684	9.00237	н	1.42907	-1.79365	10.43290

Н	1.22674	-0.80339	5.56428	H C	-0.49305 1.11041	-2.89478 0.93509	6.32567 6.74407
141				c	0.44926	2.71656	8.24642
INT-S	SnH4			c	-0.09942	4.64644	9.34201
Sn	2.62725	0.85881	4.13898	н	-0.73588	5.46961	9.64929
0	2.32787	0.55225	7.40668	C	1.17268	4.34520	9.67028
0	1.45867	1.65965	5.61862	н	1.87024	4.83817	10.34022
N	-0.54517	3.66837	8.46542	C	2.63080	2.39791	9.49835
	1.52838	3.16761	9.00845	c	2.43155	1.60022	10.63736
N				c			
N	0.22372	1.67656	7.53378		3.53840	0.93131	11.17008
C	1.58200	2.13050	2.65371	Н	3.41096	0.29783	12.05123
С	0.29564	1.69606	2.29260	С	4.79355	1.05669	10.58911
С	-0.44499	2.41326	1.34979	Н	5.64943	0.53047	11.01882
H	-1.44532	2.07308	1.06782	С	4.95852	1.82625	9.44263
С	0.09881	3.56053	0.77047	Н	5.93995	1.87844	8.96890
Н	-0.47952	4.12273	0.03272	С	3.88038	2.49869	8.86657
С	1.37631	3.99291	1.12398	С	4.03589	3.27647	7.57793
Н	1.79825	4.89331	0.66844	Н	3.05033	3.27194	7.08771
С	2.12740	3.27643	2.06508	С	5.01140	2.60542	6.61568
С	3.49451	3.71555	2.46772	Н	6.05781	2.69933	6.94864
С	3.65274	4.62804	3.53106	Н	4.95122	3.07462	5.62200
С	4.93903	5.03804	3.88309	Н	4.78438	1.53310	6.52027
Н	5.05888	5.75918	4.69737	С	4.42160	4.72973	7.85374
С	6.07636	4.54428	3.23776	Н	3.66091	5.23786	8.46508
С	5.89740	3.62237	2.20604	Н	4.52662	5.29106	6.91289
Н	6.77428	3.22019	1.68990	Н	5.38157	4.78742	8.39210
С	4.62474	3.20359	1.80314	С	1.05631	1.39456	11.23991
С	4.46703	2.22504	0.67451	Н	0.38509	2.15419	10.81230
н	3.96842	1.30049	1.00790	С	0.51159	0.02278	10.83805
н	5.44096	1.95068	0.24632	Н	0.47638	-0.08145	9.74387
Н	3.83649	2.63781	-0.12770	Н	-0.50783	-0.12157	11.22889
С	2.45455	5.13185	4.27940	Н	1.14476	-0.78281	11.24371
н	1.75091	5.64193	3.60559	С	1.03313	1.58899	12.75322
н	2.74515	5.83109	5.07568	н	1.63774	0.83114	13.27582
н	1.89787	4.29834	4.73821	н	0.00322	1.50465	13.13349
С	7.44431	4.98807	3.66723	н	1.41982	2.57999	13.03522
н	7.55175	6.08179	3.59259	С	-1.81995	3.64136	7.83616
н	8.23080	4.52667	3.05386	С	-2.75750	2.66777	8.22937
н	7.63370	4.71842	4.71890	С	-4.01158	2.67458	7.61304
С	-0.19392	0.46246	2.97665	Н	-4.75184	1.92448	7.90178
С	0.34736	-0.79256	2.61709	С	-4.33334	3.62260	6.64864
С	0.03602	-1.91642	3.39708	Н	-5.32134	3.61640	6.18240
н	0.47057	-2.88309	3.12546	С	-3.39197	4.57259	6.27102
С	-0.81276	-1.83209	4.49963	н	-3.64721	5.30623	5.50323
С	-1.38358	-0.59040	4.79756	С	-2.11544	4.59354	6.84100
н	-2.05527	-0.50249	5.65627	С	-1.10657	5.63183	6.38733
С	-1.08243	0.56117	4.07062	н	-0.12263	5.33071	6.77915
С	-1.61576	1.88867	4.51056	С	-0.99002	5.70067	4.86566
Н	-2.03602	2.46723	3.67586	Н	-0.72096	4.72646	4.43472
н	-0.78677	2.46917	4.94465	Н	-0.21430	6.42589	4.57939
Н	-2.38070	1.77878	5.28999	Н	-1.92995	6.03089	4.39658
С	1.18770	-0.94984	1.37789	С	-1.44151	7.00976	6.96288
н	0.58642	-0.74322	0.47810	н	-2.41670	7.36261	6.59013
н	1.58646	-1.97027	1.29757	н	-0.68108	7.75027	6.66964
н	2.03205	-0.24474	1.34185	н	-1.49514	6.99541	8.06129
С	-1.06214	-3.01313	5.38901	С	-2.45601	1.63609	9.29546
н	-0.74451	-3.95391	4.91663	н	-1.42270	1.79754	9.62691
н	-2.12525	-3.10260	5.65777	С	-2.52380	0.22097	8.72588

н	-3.53258	-0.02055	8.35341	Н	4.37316	2.40941	-0.32836
н	-2.26774	-0.52064	9.49785	С	2.01647	5.05486	3.51295
н	-1.80213	0.12445	7.90281	Н	1.14642	5.12257	2.84385
С	-3.36093	1.81175	10.51420	Н	1.99509	5.92181	4.18778
н	-3.28401	2.82919	10.92719	н	1.88401	4.14066	4.11131
н	-3.08001	1.10066	11.30753	С	6.34743	7.22425	2.16836
н	-4.41922	1.63172	10.26594	н	5.81999	8.18822	2.10666
В	2.68254	-0.73473	7.56409	н	7.10283	7.19562	1.37030
0	1.86872	-1.82445	7.33465	н	6.88332	7.20990	3.13217
0	3.94952	-1.08816	7.94925	С	2.07613	-0.72899	3.26113
С	2.72865	-2.97399	7.31340	С	3.12546	-1.63543	3.02243
С	3.93203	-2.49557	8.20084	С	3.26837	-2.74229	3.86037
С	3.67310	-2.68605	9.69123	Н	4.09607	-3.43634	3.68363
н	2.68571	-2.29054	9.97070	С	2.41109	-2.96553	4.93876
н	3.72766	-3.74340	9.98756	С	1.35871	-2.07153	5.13630
н	4.42925	-2.12069	10.25379	н	0.67774	-2.22432	5.97880
С	1.98189	-4.17558	7.85820	С	1.17288	-0.95885	4.31455
н	1.17179	-4.45874	7.17096	С	0.05274	0.00197	4.58265
н	2.65820	-5.03809	7.95883	н	-0.68734	0.00988	3.76739
н	1.53608	-3.96040	8.83761	н	0.43165	1.03010	4.67115
С	3.12498	-3.20364	5.85933	н	-0.47097	-0.24239	5.51523
н	3.69397	-2.34735	5.46729	С	4.12271	-1.40290	1.92214
н	3.72908	-4.11394	5.73469	н	3.66587	-0.93602	1.03805
н	2.21074	-3.30191	5.25609	н	4.60009	-2.34538	1.61779
С	5.27674	-3.08072	7.81514	н	4.93528	-0.72974	2.25238
Н	5.27082	-4.17742	7.90577	С	2.66834	-4.07866	5.90715
н	5.54870	-2.81151	6.78645	н	3.39184	-3.72852	6.66159
н	6.05441	-2.68475	8.48425	н	3.09637	-4.96299	5.41202
н	0.59825	-0.00202	6.46572	н	1.75115	-4.38445	6.43119
				С	2.58950	1.41039	6.58699
141				С	1.02829	2.90519	7.49846
INT-	SnH2			С	-0.46843	4.54165	7.89272
Sn	4.53520	1.70729	4.08789	Н	-1.44413	5.01605	7.89652
0	3.07723	0.23519	6.82555	С	0.73413	4.97782	8.33067
0	3.08246	2.19559	5.71674	Н	1.02063	5.90364	8.81911
N	-0.28524	3.26727	7.37213	С	2.93644	3.89982	8.74491
N	1.66409	3.97353	8.08266	С	2.97145	3.32798	10.03136
N	1.48587	1.70893	7.26669	С	4.19479	3.31098	10.70627
С	2.81003	1.59511	2.63638	Н	4.24912	2.86705	11.70249
С	1.94191	0.50340	2.43583	С	5.33831	3.84350	10.12629
С	0.94396	0.56977	1.45462	Н	6.28701	3.82245	10.66792
Н	0.28567	-0.29085	1.30656	С	5.28036	4.39061	8.85072
С	0.79291	1.70971	0.66909	Н	6.18792	4.78939	8.39680
Н	0.01074	1.75088	-0.09372	С	4.08351	4.42933	8.12947
С	1.64997	2.79154	0.85052	С	4.04601	5.04184	6.74678
Н	1.55076	3.68673	0.22947	Н	3.24365	4.53031	6.19576
С	2.65948	2.73438	1.81972	С	5.34776	4.80949	5.98568
С	3.60844	3.88549	1.93603	н	6.16716	5.43674	6.37257
С	3.29333	5.00829	2.72706	Н	5.21990	5.06309	4.92370
С	4.18439	6.08257	2.76840	Н	5.66310	3.75783	6.05367
Н	3.92639	6.95799	3.37224	С	3.71339	6.53345	6.81451
С	5.39338	6.06975	2.06874	Н	2.72420	6.71742	7.25941
С	5.69354	4.94266	1.30274	Н	3.71231	6.97142	5.80469
н	6.63468	4.90922	0.74606	н	4.46005	7.07618	7.41608
С	4.82043	3.85482	1.21638	С	1.75509	2.71348	10.69179
С	5.17917	2.66400	0.37605	Н	0.89072	2.87591	10.03224
Н	5.33385	1.76643	0.99840	С	1.94131	1.20402	10.84461
Н	6.10215	2.84272	-0.19220	н	2.13064	0.73174	9.86962

н	1.04239	0.74517	11.28441	141			
н	2.79008	0.97460	11.50787	INT-S			
С	1.42190	3.38754	12.02209	Sn	5.23508	1.35245	6.195
н	2.22202	3.24207	12.76470	0	3.02524	0.38934	6.405
н	0.49787	2.96292	12.44485	0	3.43709	2.45782	6.944
н	1.27357	4.47097	11.89728	N	-0.20989	3.56582	6.774
С	-1.32687	2.43967	6.84391	N	0.81535	3.30745	8.691
С	-1.76634	1.33003	7.59068	N	1.25951	1.72863	6.910
С	-2.83196	0.58378	7.08038	С	5.03521	2.56339	4.335
н	-3.18866	-0.28291	7.64145	С	4.49718	2.03319	3.151
С	-3.44172	0.92343	5.87997	С	4.38222	2.84473	2.015
н	-4.27818	0.33022	5.50340	н	3.96828	2.42433	1.095
С	-2.97531	2.00972	5.15126	С	4.81307	4.16921	2.052
н	-3.44593	2.25948	4.19838	н	4.72331	4.79697	1.161
С	-1.90199	2.78123	5.60566	С	5.37971	4.68874	3.214
c	-1.41009	3.93857	4.75825	Ĥ	5.74994	5.71758	3.235
Ĥ	-0.45357	4.28502	5.18012	C	5.50140	3.88911	4.358
С	-1.14208	3.50269	3.31788	c	6.20525	4.43072	5.562
н	-0.37165	2.72088	3.26119	c	5.56326	5.32964	6.440
н	-0.79647	4.35585	2.71728	С	6.28831	5.88511	7.494
н	-2.05079	3.11631	2.83189	Н	5.78572	6.59177	8.162
С	-2.39363	5.10986	4.80452	С	7.62631	5.55818	7.731
н	-3.36793	4.82423	4.37722	С	8.23878	4.65466	6.864
н	-2.00922	5.96284	4.22395	н	9.28910	4.39175	7.021
н	-2.57531	5.45483	5.83353	С	7.55868	4.09288	5.777
С	-1.13924	0.90527	8.90186	С	8.28907	3.16449	4.847
н	-0.31074	1.58960	9.11723	н	8.04989	2.10762	5.056
С	-0.53832	-0.49565	8.78702	н	9.37693	3.27537	4.955
н	-1.30411	-1.24394	8.52791	н	8.01679	3.34344	3.798
н	-0.08763	-0.80134	9.74304	С	4.12221	5.69570	6.250
н	0.25036	-0.51107	8.02126	Ĥ	3.99466	6.37243	5.392
c	-2.13349	1.01596	10.05733	н	3.72455	6.20389	7.140
н	-2.53936	2.03574	10.14217	н	3.51620	4.79929	6.059
н	-1.64255	0.76491	11.01083	С	8.35983	6.14614	8.900
	-2.98375	0.32710	9.93208	н	8.19603	7.23229	8.900
Н							
В	4.39740	-0.15106	6.31082	н	9.44202	5.96690	8.832
0	5.46423	0.71646	6.70488	Н	8.00696	5.70306	9.846
0	4.72897	-1.47611	6.64926	С	4.13271	0.58949	3.119
С	6.36077	-0.05428	7.49457	С	5.17131	-0.36755	3.109
С	6.11867	-1.50023	6.93786	С	4.84408	-1.72475	3.160
С	6.87879	-1.75730	5.63745	н	5.65117	-2.46409	3.161
н	6.73136	-0.93255	4.92429	С	3.52041	-2.16035	3.200
н	7.95849	-1.88465	5.80491	С	2.51242	-1.19723	3.154
н	6.48396	-2.67547	5.17836	н	1.46837	-1.51936	3.181
С	7.77108	0.47400	7.30626	С	2.78830	0.16990	3.126
н	7.84420	1.48746	7.72854	С	1.65538	1.15159	3.187
н	8.50579	-0.16444	7.82107	Ĥ	1.85457	2.06885	2.618
н	8.03488	0.53316	6.24220	н	1.45731	1.44700	4.230
C	5.93300	0.08292	8.95461	н	0.72564	0.70620	2.807
	4.93202			C			
н		-0.34645	9.10626		6.61550	0.04373	2.994
н	6.63831	-0.40417	9.64493	н	6.74911	0.85272	2.26
н	5.87785	1.15320	9.20092	н	7.23797	-0.80950	2.69
С	6.39068	-2.61647	7.93050	Н	7.02815	0.42179	3.945
н	7.43704	-2.59904	8.27223	С	3.18476	-3.61017	3.363
н	5.73012	-2.53604	8.80325	н	2.98069	-3.79799	4.430
Н	6.20395	-3.59045	7.45356	н	4.01344	-4.26123	3.048
н	4.25249	-0.05274	4.95599	н	2.28706	-3.88911	2.791
				С	2.55493	1.53987	6.790

С	0.71883	2.80601	7.42188
c	-0.68407	4.54775	7.63251
н	-1.42841	5.26952	7.31199
c	-0.04957	4.38763	8.81758
н	-0.14258	4.92723	9.75454
С	1.33786	2.57834	9.81516
c	0.48719	1.63265	10.41742
c	0.46719	0.95322	11.54137
н	0.32134	0.95522	12.02553
С	2.23253	1.19868	12.02333
н	2.23255	0.65240	12.91858
С	3.05449	2.13407	11.42557
н	4.05352	2.31537	11.82406
С	2.62828	2.84704	10.30048
c	3.52788	3.88804	9.67189
н	3.23688	3.97206	8.61632
С	4.99381	3.46742	9.70017
н	5.41844	3.51317	10.71579
Н	5.59246	4.13083	9.06222
н	5.11805	2.43980	9.32766
С	3.32842	2.43980 5.24981	10.33942
н	2.28718	5.59649	10.25576
Н	3.97313	6.00891	9.86934
н	3.58086	5.20802	11.41118
С	-0.90980	1.33903	9.91307
	-0.90980	1.92514	8.99847
н С	-1.06123	-0.13332	9.53804
	-0.28905		
Н		-0.43421	8.81289
н	-2.05729 -0.96851	-0.31734	9.10674
н		-0.78215	10.42378
С	-1.96234	1.79044	10.92577
н	-1.87543	1.22909	11.86927
н	-2.97575	1.62254	10.52925
н	-1.86248 -0.66059	2.86070	11.16364
C		3.33366	5.43277
C	-1.49561	2.22615	5.18201
С	-1.96861	2.05870	3.87941
Н	-2.61445	1.20958	3.65212
С	-1.63122	2.95267	2.86862
н С	-2.01989 -0.78515	2.80536 4.01868	1.85832 3.13741
н	-0.78515	4.01008	2.33294
С	-0.26654	4.22300	4.42080
c	0.69423	5.36861	4.66236
н	1.12641	5.24085	5.66735
С	1.84619	5.33354	3.66100
н	2.40666	4.38991	3.72185
Н	2.40000	6.15393	3.85317
н	1.49106	5.44847	2.62565
С	-0.03005	6.71504	4.63111
н	-0.48234	6.89704	3.64314
н	-0.46234	7.53810	4.83619
Н	-0.83781	6.76275	5.37714
С	-0.83781	1.27171	6.28094
н	-1.09663	1.23318	7.01150
С	-2.09248	-0.16249	5.79471
н	-2.94632	-0.16249	5.10727
Н	-2.94032	-0.27333	6.65333
	-2.21023	-0.02404	0.00000

н	-1.18061	-0.52028	5.29469
c	-3.17192	1.79800	6.97604
н	-3.01511	2.80585	7.39074
н	-3.46716	1.13549	7.80424
н	-4.01543	1.85483	6.26935
В	2.10038	-1.01456	6.51651
0	3.00699	-2.09413	6.32256
0	1.65137	-1.06526	7.87789
С	3.36428	-2.61136	7.59160
С	2.09652	-2.28042	8.44955
С	0.99223	-3.32273	8.26651
н	0.81531	-3.51245	7.19786
н	1.22643	-4.27641	8.76335
н	0.06100	-2.92814	8.69915
С	3.67031	-4.09340	7.44978
н	4.56688	-4.22538	6.82518
н	3.86393	-4.55807	8.42915
н	2.84200	-4.62658	6.96515
С	4.60745	-1.88538	8.10638
н	4.39014	-0.82653	8.30269
н	4.99989	-2.33553	9.03082
Н	5.39075	-2.33555	7.33504
	2.37080	-1.93650	
С			9.93034 10.37957
н	2.83853	-2.96289	
н	3.02043	-1.20331	10.09589
н	1.42628	-1.88261	10.46011
н	1.26349	-0.84165	5.64629
Sche	eme S5		
June	ine oo		
163			
TCC			
13-3	inH7		
Sn	in H7 1.10021	4.80885	5.61369
		4.80885 1.79655	5.61369 3.25539
Sn	1.10021		
Sn O O	1.10021 1.34615 -0.22695	1.79655 3.46941	3.25539 6.69569
Sn O O N	1.10021 1.34615 -0.22695 -0.27191	1.79655 3.46941 -0.64857	3.25539 6.69569 7.48538
Sn O O N N	1.10021 1.34615 -0.22695 -0.27191 -2.21211	1.79655 3.46941 -0.64857 -0.69670	3.25539 6.69569 7.48538 6.48633
Sn O O N N N	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163	1.79655 3.46941 -0.64857 -0.69670 1.44706	3.25539 6.69569 7.48538 6.48633 6.70529
Sn O N N C	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466
Sn O O N N C C	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015
Sn O N N C C	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999
Sn O O N N N C C C H	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162
Sn O O N N N C C C H C	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607
Sn O O N N N C C C H C H	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215
Sn O O N N N C C C H C H C	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747
SOONN N C C C H C H C H	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796
SOONN N N N N N N N N N N N N N N N N N	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508
S O O Z Z Z C C C H C H C H C C	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680
^s оохххсснононос	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970
⁵ 00ZZZCCCHCHCHCCCC	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831
⁶ 002220010101010001	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55688 2.53938 3.62395 3.59270	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495
800 Z Z Z C C C H C H C H C C C C Z Z C C C R	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395 3.59270 4.73121	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379
5 0 0 2 2 2 2 0 0 2 2 2 0 0 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 0 2 0	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395 3.59270 4.73121 4.74952	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213 5.34116	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379 7.02910
500 z z z с с с н с н с с с с с н с т	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.65295 3.59270 4.73121 4.74952 5.61281	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213 5.34116 5.62298	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379 7.02910 6.41941
5 0 0 2 2 2 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395 3.59270 4.73121 4.74952	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213 5.34116 5.62298 6.23318	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379 7.02910
500 z z z с с с н с н с с с с с н с т	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395 3.59270 4.73121 4.74952 5.61281 3.68053 3.69909	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213 5.34116 5.62298	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379 7.02910 6.41941
5 0 0 2 2 2 2 0 0 1 0 1 0 1 0 1 0 1 0 1 0	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395 3.59270 4.73121 4.74952 5.61281 3.68053 3.69909 2.90308	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213 5.34116 5.62298 6.23318	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379 7.02910 6.41941 7.13852
5 0 0 2 2 2 2 0 0 2 2 2 0 0 2 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 2 0 0 2 0 0 2 0	1.10021 1.34615 -0.22695 -0.27191 -2.21211 -1.25163 0.32215 -0.83956 -0.94679 -1.86280 0.07391 -0.03256 1.22273 2.03249 1.34136 2.55568 2.53938 3.62395 3.59270 4.73121 4.74952 5.61281 3.68053 3.69909	1.79655 3.46941 -0.64857 -0.69670 1.44706 6.49630 7.28760 8.28816 8.88480 8.51902 9.30127 7.73565 7.88519 6.73872 5.86579 4.63027 3.76272 2.79631 4.09213 5.34116 5.62298 6.23318 7.54294	3.25539 6.69569 7.48538 6.48633 6.70529 6.98466 7.06015 8.03999 8.08162 8.95607 9.71215 8.90747 9.62796 7.93508 7.90680 8.58970 8.43831 8.94495 7.65379 7.02910 6.41941 7.13852 6.40635

Н	3.50851	8.38666	7.08623	н	-4.97401	2.47644	9.00195
С	1.38033	4.24778	9.46187	н	-6.26340	1.79180	7.99643
Н	1.25575	4.96437	10.28842	С	-4.53790	-0.24785	8.69011
Н	1.52774	3.24469	9.88381	н	-5.56543	-0.63238	8.58918
Н	0.43883	4.24573	8.89390	н	-4.40981	0.10482	9.72580
С	5.85026	3.11130	7.46254	Н	-3.84856	-1.09124	8.53969
Н	6.02439	2.51690	8.37185	С	0.83529	-0.21492	8.27731
Н	6.79032	3.61437	7.19478	С	0.58675	0.14571	9.61294
H	5.60973	2.40518	6.65032	С	1.69394	0.45176	10.41063
С	-2.02053	7.11513	6.16668	Н	1.54193	0.73750	11.45379
С	-2.21349	7.99479	5.08406	С	2.98410	0.38520	9.89557
С	-3.36867	7.87783	4.30956	Н	3.83685	0.61167	10.54010
H	-3.50812	8.55385	3.46009	С	3.19558	0.05599	8.55932
С	-4.33432	6.90305	4.57408	Н	4.21130	0.04149	8.16010
С	-4.13135	6.05576	5.66386	С	2.12359	-0.23736	7.71324
H	-4.88216	5.29444	5.89695	С	2.33770	-0.55629	6.24561
С	-2.99295	6.14456	6.47221	Н	1.39294	-0.33873	5.72103
С	-2.82079	5.21568	7.63807	С	3.41107	0.31925	5.60425
н	-2.45044	5.74990	8.52541	н	3.22320	1.38750	5.79191
н	-2.08293	4.43126	7.40394	н	3.41343	0.17821	4.51408
Н	-3.77108	4.72854	7.89481 4.75096	Н	4.41669	0.07324	5.98254
С	-1.17698	9.02943		С	2.63530	-2.04260 -2.32906	6.03945
Н	-1.07415	9.77632	5.55362	Н	3.57269 2.74212		6.54269
Н	-1.42748	9.55728	3.82013	н		-2.26194	4.96610
H C	-0.18289	8.57009	4.63385	H C	1.83212	-2.68123	6.43615
	-5.52452	6.73513 6.25076	3.67560		-0.82136	0.23433	10.16898
H	-6.36241 -5.27087	6.25076 6.10051	4.19772 2.80866	H C	-1.49723	-0.24330	9.44412 10.30200
H H	-5.87544	7.69995	3.28007	н	-1.26217 -0.63688	1.69340 2.23394	11.02993
С	-0.14930	2.19317	6.53504	Н	-2.30617	1.74829	10.64855
c	-1.20199	0.15001	6.86299	Н	-1.19726	2.21959	9.33934
c	-0.72425	-1.96177	7.51542	С	-0.97681	-0.52564	9.33934 11.48323
н	-0.14729	-2.74431	7.99752	н	-0.66381	-1.57564	11.38028
С	-1.92614	-1.98804	6.90003	н	-2.02944	-0.51357	11.80517
н	-2.61070	-2.80729	6.70932	н	-0.38285	-0.07312	12.29272
С	-3.34472	-0.34770	5.68513	В	1.65507	1.03519	2.20964
c	-4.37829	0.41332	6.26530	0	0.89404	0.82564	1.07416
c	-5.49079	0.69305	5.46979	0	2.85142	0.33334	2.15112
н	-6.30912	1.28642	5.87841	c	1.71407	0.14578	0.12419
С	-5.57159	0.23131	4.15883	c	2.76621	-0.56574	1.04710
н	-6.45150	0.46433	3.55457	c	2.25869	-1.90009	1.58729
С	-4.53369	-0.51011	3.61148	Ĥ	1.25392	-1.78705	2.02053
н	-4.60116	-0.85505	2.57783	н	2.22156	-2.67699	0.80980
С	-3.39107	-0.81464	4.35971	н	2.93660	-2.23888	2.38441
c	-2.28876	-1.65696	3.74426	C	0.84937	-0.79018	-0.70107
н	-1.40632	-1.58299	4.39922	н	0.14923	-0.20180	-1.31207
С	-1.86102	-1.16300	2.36424	н	1.46391	-1.40185	-1.37933
H	-2.67597	-1.25495	1.62829	н	0.25571	-1.45671	-0.06275
н	-1.03000	-1.78400	1.99555	C	2.34865	1.20536	-0.77122
н	-1.52556	-0.11670	2.39700	Ĥ	2.99288	1.87817	-0.18613
С	-2.71049	-3.12810	3.67916	н	2.94738	0.75975	-1.57879
H	-3.01053	-3.52831	4.65906	н	1.54935	1.81035	-1.22337
н	-1.88478	-3.74919	3.29833	С	4.14361	-0.73772	0.43463
н	-3.56709	-3.25568	2.99806	Ĥ	4.09828	-1.36290	-0.47013
С	-4.28433	0.89385	7.70147	н	4.59004	0.23061	0.17521
H	-3.25357	1.25709	7.83497	н	4.80900	-1.23126	1.15849
С	-5.19867	2.07501	8.00227	н	0.84765	1.73185	6.64774
H	-5.05395	2.88696	7.27495	В	0.09824	2.35018	3.70550
-				2			

0	-1.07680	1.86899	3.05967	н	8.06711	6.18275	1.95269
0	0.00481	3.83143	3.65192	С	4.01251	0.09453	8.19386
С	-1.96199	2.94461	2.81200	С	4.84331	0.57110	9.23038
С	-0.98152	4.14949	2.65751	С	4.34950	0.61030	10.53961
н	0.08297	2.05289	4.96251	н	4.99756	0.99093	11.33494
С	-1.58405	5.49781	2.96733	С	3.06628	0.17015	10.85934
н	-1.95484	5.53708	3.99707	С	2.28082	-0.34903	9.82836
н	-0.83628	6.29549	2.83486	н	1.27350	-0.71282	10.05485
Н	-2.42485	5.71785	2.29333	C	2.73033	-0.39892	8.50912
С	-0.28377	4.16496	1.29980	С	1.83064	-0.97043	7.45354
H	-0.96379	4.50852	0.50596	н н	1.77477	-2.06909	7.53553
H L	0.56848 0.09210	4.85891	1.34789 1.03495		2.20279 0.80856	-0.73005 -0.57675	6.45166 7.54788
H C	-2.89239	3.16677 3.11562	4.00915	H C	6.25648	1.01489	8.97295
н	-2.33346	3.39418	4.91306	н	6.71635	0.45194	8.14917
н	-3.66488	3.87606	3.82445	н	6.87243	0.88856	9.87483
н	-3.38493	2.15536	4.20876	н	6.29879	2.08415	8.69999
С	-2.76578	2.63747	1.55934	C	2.53196	0.26398	12.25898
н	-3.35979	3.50974	1.24454	н	2.08878	-0.68899	12.58749
н	-2.10559	2.33286	0.73683	н	1.74042	1.02871	12.32667
н	-3.46135	1.80993	1.76377	н	3.32066	0.53721	12.97435
	0.10100	1.00000	1.10011	c	1.35028	2.29618	6.22947
141				c	1.83498	5.16917	6.11984
	nH4 isomer			C	0.97652	7.08764	7.07358
Sn	4.08862	3.25539	7.12226	Ĥ	0.95758	7.93662	7.75034
0	1.78442	1.55784	5.19146	С	0.14121	6.73569	6.07862
0	1.81972	2.15456	7.34969	н	-0.74424	7.22791	5.69135
N	1.99825	6.14963	7.11759	С	0.00135	4.96061	4.38518
N	0.64201	5.57854	5.49199	С	0.55389	5.10271	3.09311
N	2.52587	4.12878	5.83253	С	-0.15097	4.53116	2.02904
С	4.65242	1.33638	6.09185	н	0.24537	4.60681	1.01716
С	4.51058	0.11557	6.78390	С	-1.36681	3.88373	2.22558
С	4.89317	-1.08478	6.17198	н	-1.90191	3.46364	1.37052
н	4.77139	-2.02571	6.71655	С	-1.90189	3.77704	3.50128
С	5.44215	-1.08304	4.89143	н	-2.85833	3.27121	3.64723
н	5.73375	-2.02432	4.41833	С	-1.22698	4.30288	4.60652
С	5.66275	0.12587	4.23737	С	-1.84640	4.18182	5.98885
н	6.14408	0.14280	3.25544	н	-1.06485	4.43416	6.72366
С	5.28891	1.33369	4.84119	С	-2.34057	2.76678	6.29751
С	5.67445	2.62001	4.18894	н	-3.23233	2.51368	5.70180
С	4.91514	3.17350	3.14358	н	-2.62946	2.69303	7.35719
С	5.37573	4.33887	2.52029	н	-1.58262	1.99752	6.09292
Н	4.80016	4.75028	1.68907	С	-2.99184	5.18167	6.16818
С	6.54751	4.98179	2.91489	н	-2.66970	6.21759	5.99518
С	7.28141	4.42126	3.96291	н	-3.40185	5.12161	7.18838
н	8.21187	4.89995	4.28383	н	-3.80982	4.96508	5.46266
С	6.87301	3.24822	4.59850	С	1.84692	5.86924	2.85568
С	7.73169	2.64336	5.67304	н	2.61131	5.40067	3.50209
Н	7.19585	2.56134	6.63047	С	2.32734	5.78358	1.41172
н	8.63753	3.24316	5.83764	н	2.46270	4.74759	1.07254
Н	8.03388	1.61831	5.40713	н	3.29319	6.29884	1.31359
С	3.61857	2.55525	2.71770	н	1.62391	6.28147	0.72481
н	3.61261	1.46505	2.83937	С	1.74459	7.35094	3.23681
н	3.38983	2.79285	1.66923	н	0.94322	7.84622	2.66479
Н	2.80403	2.94262	3.35194	н	2.69043	7.85977	2.99424
С	7.00801	6.24487	2.24705	н	1.55125	7.51385	4.30351
н	6.91435	7.10824	2.92691	С	2.98409	6.13041	8.13874
н	6.41655	6.46381	1.34647	С	4.19118	6.81790	7.92257

С	5.16895	6.73933	8.91801	С	0.64518	5.30086	8.19327
Н	6.12586	7.24492	8.77650	С	-0.26115	6.16968	8.81589
С	4.93631	6.02825	10.09084	С	0.08362	6.79440	10.02042
н	5.71501	5.97447	10.85584	н	-0.63202	7.46106	10.51091
С	3.71848	5.38988	10.30012	С	1.34062	6.57505	10.58418
Н	3.55358	4.83457	11.22470	н	1.60564	7.06285	11.52566
С	2.71738	5.42036	9.32678	С	2.26856	5.75524	9.94090
С	1.39432	4.70909	9.53688	н	3.26372	5.60590	10.36967
н	1.00952	4.44431	8.53995	С	1.92477	5.12525	8.74041
С	1.53086	3.40627	10.31648	С	2.87400	4.27053	7.96930
н	2.29639	2.74786	9.88438	С	2.82655	2.87108	8.12378
н	0.57938	2.85434	10.29219	С	3.66438	2.07420	7.34308
Н	1.77996	3.58576	11.37488	н	3.61236	0.98801	7.46073
С	0.37790	5.63874	10.20436	С	4.53796	2.62423	6.40210
н	0.72541	5.94167	11.20526	С	4.57282	4.01349	6.26709
н	-0.59081	5.12797	10.32267	н	5.25034	4.46320	5.53480
н	0.20661	6.55031	9.61463	С	3.75756	4.84962	7.03479
С	4.42940	7.57637	6.63181	С	3.82062	6.34085	6.86346
н	3.44015	7.87332	6.24815	Н	2.83368	6.76098	6.61103
С	5.07117	6.67610	5.57564	Н	4.52497	6.61901	6.06760
н	6.06409	6.32853	5.90107	Н	4.13355	6.83959	7.79377
н	5.19942	7.22283	4.62862	С	1.85295	2.24955	9.07524
н	4.45719	5.78807	5.36226	н	1.79094	2.80765	10.02031
С	5.24184	8.85180	6.83257	н	2.11948	1.20876	9.28855
н	4.80415	9.49586	7.61066	н	0.84758	2.25591	8.62404
н	5.27985	9.42658	5.89461	С	5.35702	1.73915	5.51315
н	6.28344	8.63527	7.11827	н	6.24215	2.25983	5.11932
В	1.01498	0.66888	4.50770	н	4.73933	1.41461	4.65992
0	1.46512	0.03568	3.39153	н	5.69287	0.83416	6.04094
0	-0.23160	0.27908	4.90893	С	-1.56118	6.43502	8.13371
С	0.57491	-1.06881	3.16340	С	-1.65709	7.49408	7.20825
С	-0.74286	-0.59377	3.88277	С	-2.86595	7.70299	6.53718
С	-1.63576	0.24685	2.98315	н	-2.93563	8.52305	5.81562
н	-1.06625	1.05508	2.50368	С	-3.98548	6.90312	6.77457
н	-2.11646	-0.36211	2.20462	С	-3.86615	5.85911	7.69454
н	-2.42036	0.70990	3.59779	н	-4.73074	5.21869	7.88687
С	0.43743	-1.28816	1.66968	С	-2.67107	5.60148	8.36983
н	1.40332	-1.61233	1.25656	С	-2.54885	4.43206	9.30099
н	-0.30586	-2.07092	1.45627	н	-1.99892	4.69587	10.21548
н	0.14145	-0.36697	1.15247	н	-1.98485	3.62105	8.81297
С	1.20560	-2.28873	3.82389	н	-3.53585	4.04103	9.58527
н	1.28887	-2.15532	4.91118	С	-0.47835	8.38624	6.94213
н	0.63100	-3.20453	3.62520	н	-0.10694	8.84593	7.87043
н	2.22244	-2.41567	3.42628	н	-0.73657	9.18584	6.23432
С	-1.53951	-1.70267	4.54127	н	0.36939	7.81973	6.52266
н	-1.86586	-2.44234	3.79510	С	-5.29193	7.16839	6.08352
н	-0.95318	-2.21494	5.31433	н	-5.97758	7.73249	6.73791
Н	-2.43569	-1.28114	5.01901	н	-5.80080	6.23081	5.81304
Н	0.39289	2.80448	6.03842	Н	-5.15195	7.75910	5.16665
				C	-0.32391	1.62106	5.79535
163				С	-1.77907	-0.29008	6.03392
	inH4			C	-1.89550	-2.38223	6.94540
Sn	0.31789	4.60874	6.09586	н	-1.55102	-3.22108	7.54177
0	0.00416	2.02965	4.37398	C	-3.02723	-2.19580	6.24401
0	-0.40018	2.69701	6.59995	Ĥ	-3.88675	-2.84003	6.08669
N	-1.11537	-1.22818	6.81969	C	-3.95829	-0.43811	4.79528
N	-2.95846	-0.93321	5.67508	c	-4.89980	0.48345	5.27755
N	-1.53649	0.91707	5.66608	c	-5.94344	0.85474	4.42228
	1.00040	0.01101	5.00000	0	0.04044	0.00777	1.12220

H	-6.69016 -6.05291	1.57314	4.76881	С	-2.37366 -2.40662	3.24708	1.96410
С		0.30580	3.15035	С		4.34391	3.08840
H	-6.88426	0.59344	2.50226 2.69071	С	-1.53051	5.54894	2.76863
C	-5.10047 -5.19125	-0.60090 -1.00992	1.68351	H H	-0.50721 -1.94685	5.23467 6.14151	2.51470 1.94142
H C	-4.02444	-0.98013	3.49578	н	-1.94665 -1.47344	6.19255	3.65866
c	-4.02444	-0.98013	2.99084	С	-1.47344	3.78445	0.56252
н	-2.60780	-2.52725	3.83739	н	-2.10356	2.94856	-0.15139
С	-1.70714	-1.07865	2.55820	н	-2.99515	4.44497	0.27432
н	-1.94731	-0.44940	1.68780	н	-1.22440	4.34439	0.47872
н	-0.87521	-1.74297	2.27765	С	-3.57703	2.32382	2.01485
н	-1.35695	-0.40427	3.35147	н	-3.71069	1.91224	3.02414
С	-3.37461	-2.83768	1.87888	н	-4.50236	2.83643	1.71714
H	-4.27368	-3.40688	2.16037	н	-3.41375	1.48225	1.32840
Н	-2.57460	-3.55732	1.64905	C	-3.79197	4.78726	3.51328
н	-3.59397	-2.29461	0.94600	H	-4.31775	5.27833	2.68041
С	-4.80038	1.05890	6.67230	Н	-4.39385	3.94166	3.86786
H	-3.97880	0.53683	7.18359	н	-3.69927	5.50619	4.33961
С	-4.43015	2.53852	6.62787	н	0.56091	1.00046	6.03511
Н	-3.48890	2.69458	6.08214	В	1.71314	2.54020	4.06771
Н	-4.29350	2.91861	7.64944	0	1.54899	3.45508	3.01202
н	-5.22480	3.13646	6.15109	0	2.46542	1.44370	3.64196
С	-6.07050	0.81577	7.48503	С	2.39775	3.04096	1.94373
Н	-6.93567	1.35115	7.06211	С	2.57896	1.50547	2.21909
Н	-5.93594	1.17604	8.51694	н	1.94578	2.93625	5.20588
Н	-6.32634	-0.25405	7.52786	С	3.93493	0.95491	1.80932
С	0.08495	-1.13689	7.58661	н	4.75610	1.45372	2.33937
С	-0.04661	-0.95085	8.97793	Н	3.98367	-0.11923	2.04184
С	1.09791	-1.10683	9.76339	Н	4.09288	1.07392	0.72639
Н	1.03193	-0.98395	10.84529	С	1.47682	0.65110	1.60011
С	2.32490	-1.40969	9.18206	н	1.58816	0.57830	0.50806
Н	3.21046	-1.52663	9.81147	Н	1.54472	-0.36381	2.01907
С	2.43565	-1.55062	7.80308	н	0.47925	1.04791	1.82348
Н	3.40755	-1.77857	7.36442	С	3.70354	3.81911	2.08484
С	1.31560	-1.43430	6.97308	н	4.19829	3.57799	3.03747
С	1.41272	-1.67721	5.47649	Н	4.40301	3.61933	1.25997
Н	0.75645	-0.94325	4.97884	н	3.46818	4.89317	2.09190
С	2.81750	-1.46372	4.92733	С	1.73237	3.36300	0.61883
Н	3.20390	-0.46514	5.16933	Н	2.32961	2.98163	-0.22375
Н	2.79907	-1.54173	3.83107	н	0.72735	2.92792	0.57245
H	3.51903	-2.22807	5.29794	Н	1.64245	4.45394	0.50490
C	0.90975	-3.07558	5.10447	100			
Н	1.52186	-3.85033	5.59348	120	~U0		
H	0.98206	-3.22362	4.01563	TS-S		1 40705	E 01150
H	-0.13811	-3.23595	5.39311	Sn	2.48960 1.81149	1.40765	5.21159
С ц	-1.38879 -2 16072	-0.58203	9.58307	H O		1.97339	2.11844 3.53853
H		-1.12834	9.01670	_	0.93194		
	-1.67265 -0.96936	0.91172 1.51407	9.40542 10.00105	N	2.01474 0.38223	5.05768 5.00348	5.69793 4.23974
H	-0.96936 -2.69274	1.15014	9.74599	N N	1.98023	5.00348 3.21374	4.23974 4.10956
н	-1.57780	1.23852	8.36012	C	4.30913	0.42272	4.22045
0	-1.53451	-0.99164	11.04378	c	4.30913 5.17180	-0.14339	5.19037
H	-1.31601	-0.99104	11.19614	c	6.28780	-0.14339	4.82295
H	-2.56447	-2.03972	11.38316	н	6.92343	-0.90740 -1.32867	5.60710
н	-0.87009	-0.40984	11.70198	С	6.58286	-1.12773	3.48408
B	-0.99974	2.67641	3.65805	н	7.45651	-1.71802	3.19647
0	-1.22989	2.45299	2.33725	C	5.73996	-0.59797	2.51480
0	-1.78899	3.65620	4.19093	н	5.94138	-0.77569	1.45439
-		0.00020			0.0 1100	0.17000	

С	4.60888	0.15420	2.86674	С	-1.85751	1.67741	5.32565
С	3.76366	0.58911	1.71918	Н	-2.86087	1.38005	4.98064
С	2.80299	-0.29482	1.19252	Н	-1.77797	1.38043	6.38277
С	2.06054	0.10028	0.07571	Н	-1.10819	1.10871	4.75527
H	1.30018	-0.58057	-0.31893	С	-2.67872	3.98410	5.96053
С	2.26406	1.33389	-0.54797	н	-2.47609	5.06427	5.91100
С	3.24665	2.17811	-0.02669	н	-2.68947	3.68996	7.02168
Н	3.43487	3.14241	-0.50620	Н	-3.68697	3.81131	5.55058
С	3.98901	1.83437	1.10618	С	0.60297	5.93243	1.55238
С	4.97622	2.79829	1.69125	н	0.87959	6.52129	2.44107
н	4.62048	3.14012	2.67538	С	1.83877	5.13697	1.13238
H	5.10360	3.68011	1.04817	Н	2.15631 2.67960	4.43934	1.92179
H C	5.95943	2.33181	1.85228 1.85088	н		5.81065 4.54318	0.90121
н	2.53391	-1.61542		H C	1.61979		0.23154
	3.46164 1.86208	-2.17687 -2.23472	2.03318		0.17668	6.91166	0.46457
H			1.24036	Н	0.00003	6.40546	-0.49776
H C	2.05557 1.41805	-1.45549 1.76546	2.83014 -1.71037	H H	0.96968 -0.74322	7.65540 7.45124	0.29362 0.73693
н	1.02573	0.90339	-2.26912	С	-0.74322 3.20127	4.84332	6.44982
H	1.98331	0.90339 2.39945	-2.40953	c	4.44037	4.84332 5.21192	5.88408
H	0.55069	2.39945 2.35297	-2.40955	c	4.44037 5.56139	5.19485	6.71467
С	4.94907	0.02984	6.65892	н	6.53384	5.48255	6.31289
c	5.67147	1.01415	7.35835	C	5.45914	4.81862	8.05181
c	5.49082	1.13735	8.73856	н	6.34811	4.83019	8.68750
н	6.04880	1.90960	9.27564	С	4.24078	4.40590	8.57217
С	4.62000	0.30625	9.44394	н	4.17831	4.07797	9.61184
c	3.93155	-0.68062	8.73358	С	3.08675	4.40332	7.78157
н	3.25021	-1.34921	9.26859	c	1.76078	3.96363	8.37041
С	4.08958	-0.84349	7.35631	н	1.05311	3.85879	7.53266
c	3.34652	-1.92487	6.62862	C	1.86488	2.60394	9.05876
H	4.02412	-2.53247	6.00996	Ĥ	2.29621	1.84459	8.39081
н	2.59651	-1.49990	5.93886	н	0.86616	2.25861	9.36863
Н	2.81863	-2.58685	7.32880	н	2.49101	2.65152	9.96324
С	6.63183	1.90731	6.62902	С	1.20032	5.01626	9.32811
н	7.39328	1.32004	6.09458	н	1.87309	5.16166	10.18854
н	7.14025	2.59287	7.31853	н	0.21924	4.70202	9.71766
н	6.11347	2.51287	5.87015	н	1.07066	5.99115	8.83675
С	4.44167	0.44852	10.92780	С	4.52933	5.63860	4.43055
н	5.05338	-0.28700	11.47637	н	3.83894	4.98300	3.87396
н	3.39440	0.28494	11.22334	С	5.91975	5.44033	3.83776
н	4.74134	1.44798	11.27550	н	6.65254	6.14386	4.26397
С	0.93045	1.70750	2.71417	н	5.89359	5.61853	2.75268
С	1.52619	4.29127	4.63068	н	6.29249	4.41815	4.00059
С	1.20228	6.16600	5.92529	С	4.07072	7.08541	4.23070
Н	1.44474	6.89433	6.69253	н	3.03886	7.24510	4.57303
С	0.19811	6.13111	5.02771	н	4.11303	7.35300	3.16296
Н	-0.63260	6.81051	4.86112	н	4.72425	7.78146	4.78091
С	-0.57462	4.53271	3.30628	н	-0.02934	2.15737	2.39890
С	-0.50060	4.98469	1.97663				
С	-1.44155	4.49228	1.06805	120			
Н	-1.40684	4.81385	0.02544	INT-	SnH8		
С	-2.42880	3.59977	1.47883	Sn	3.95482	1.81259	2.58993
Н	-3.15643	3.22497	0.75494	н	0.87530	2.16321	4.81752
С	-2.49692	3.18512	2.80531	0	2.30506	2.60566	3.44441
Н	-3.27713	2.48559	3.11233	N	1.77838	6.08430	5.51170
С	-1.56673	3.63766	3.74627	N	0.20046	4.95726	4.48443
С	-1.62974	3.18090	5.18997	N	2.12015	3.76877	5.44992
Н	-0.65058	3.40068	5.64195	С	4.38212	0.35610	4.23356

C H	-1.79875 -1.92785	2.69457 2.45263	2.34324 1.28643	163 INT-S	SnH7		
5	-0.82904	3.63038	2.71925		2.00101	5000	0.02100
2	-0.70201	6.64555 3.92842	4.08586	Н	0.04203 2.53161	1.76586	5.32496
С Н	-0.13994 -1.06230	6.31162 6.64555	4.44521 3.98098	H H	4.82205 6.04283	8.16798 7.78323	2.36698 3.58723
ł	0.93603	8.06413	5.27493	Н	4.81763	9.02987	3.92647
C .	0.82958	7.00126	5.08100	С	4.98327	8.05168	3.44933
2	1.40935	4.79604	5.15303	Н	3.64245	4.84774	3.70861
С	1.92294	2.51675	4.78785	Н	4.27144	5.68620	2.26394
H	8.03435	6.01499	3.44664	н	5.36042	5.28084	3.61784
H	8.80488	5.92849	5.04143	С	4.34438	5.61888	3.36113
H	9.56614	5.14143	3.63538	н	3.02321	7.25879	3.71729
5	8.60475	5.35583	4.12398	C	4.05112	6.97934	4.00177
H	6.63344	0.25109	2.48401	Н	1.18193	7.58904	9.16854
I	8.34825	0.71053	2.35454	н	0.44051	6.18530	9.97829
H	7.76883	-0.30204	3.70697	Ĥ	2.13337	6.60476	10.30394
5	7.52155	0.55470	3.06109	C	1.36643	6.56057	9.51436
4	5.37053	3.69255	7.57494	н	2.86811	4.17870	9.56383
- -	4.05392	3.39613	6.35930	н	2.29427 1.14297	3.80974	9.32673
С Н	5.06554 4.85392	3.00307 2.01984	6.77490 7.21582	С Н	2.04137 2.29427	4.21734 3.57495	8.83564 7.98043
2	6.11099 5.06554	2.93468	5.70298	Н	0.95069	5.61668	7.65053
H	6.74410	4.94989	6.06612	С	1.78866	5.64974	8.36311
C .	6.89659	4.06318	5.44573	С	2.98941	6.19443	7.61720
2	7.83583	4.10007	4.41561	Н	4.21487	6.36538	9.38432
H	8.75507	2.94708	2.84087	С	4.16756	6.50859	8.30216
	8.01006	2.94953	3.64262	Н	6.18109	7.26494	8.17841
2	7.26669	1.79056	3.87713	С	5.27269	7.01160	7.62609
2	6.29742	1.78671	4.90603	Н	6.10735	7.57956	5.72691
H	-1.73191	-0.46522	1.00628	С	5.22954	7.19068	6.24572
1	-0.61258	0.44512	-0.03019	С	4.08379	6.86920	5.51430
-	-0.75439	-1.31174	-0.21918	С	2.96878	6.38520	6.22561
2	-0.74547	-0.49857	0.52306	Н	-0.99806	6.20826	1.68316
H	1.51701	-0.12566	5.90267	н	-0.00310	5.91809	0.23920
1	-0.21090	-0.15149	5.45551	н	-1.55593	5.07051	0.43778
+	0.66974	-1.66676	5.73884	С	-0.66555	5.43564	0.97505
2	0.75636	-0.65368	5.31303	Н	-0.19028	2.91762	-0.01211
+	4.73299	-1.79560	2.35878	н	1.37961	3.73636	0.05384
1	3.98319	-2.31027	0.82562	н	1.02905	2.41085	1.19603
ł	4.58040	-0.65848	1.00296	С	0.59535	3.27456	0.67331
С	4.07374	-1.47850	1.54082	н	0.92298	4.69260	2.22214
С	2.70697	-1.08318	2.04369	С	0.05642	4.28631	1.68080
H	1.87356	-1.08620	0.05853	н	-3.12638	4.61701	6.87482
5	1.65865	-0.95490	1.12399	Н	-1.84611	5.02142	8.04672
5	0.35217	-0.68250	1.52987	H	-1.77973	5.68116	6.39727
+	-0.91996	-0.39380	3.24051	C	-2.04442	4.79200	6.98753
5	0.10005	-0.59153	2.90030	н	-0.99242	1.47389	7.13328
Č	1.11067	-0.71858	3.85471	н	-1.23953	2.60029	8.48507
c C	2.43858	-0.91438	3.42226	Ĥ	-2.61709	2.12350	7.48043
5	3.57609	-0.78753	4.37750	C	-1.54388	2.37086	7.45272
ł	3.22078	-2.59787	5.50657	н	-0.17743	3.78914	6.67663
5	3.84638	-1.70807	5.39477	c	-1.24724	3.56225	6.54778
, I	5.13342	-2.21510	7.05097	C	-1.45862	3.26448	5.07411
2	4.91992	-0.19569	6.25946	н	-3.00149	2.32390	4.04949 5.38811
С Н	5.72466 6.56437	-0.36233 -0.19569	6.11854 6.79907	H C	-3.33526 -2.39913	2.32396	2.98214 4.64949
2	E 70400	0.00000	0 11051		2 22526	1.32712	0.0004.4

Sn	0.91987	4.45601	5.15710	н	-0.41289	-3.41879	8.34375
0	-0.12270	1.96541	3.44974	С	-1.88933	-2.20039	7.20846
0	-0.05979	2.95383	6.45812	н	-2.74293	-2.81597	6.94670
N	-0.02855	-1.32058	7.99692	С	-2.92900	-0.10810	6.31370
N	-1.82685	-0.86001	6.84702	С	-3.74091	0.57389	7.23867
N	-0.31225	0.94801	7.42558	С	-4.83578	1.28458	6.74024
С	0.17354	5.94019	6.72676	н	-5.48306	1.82643	7.43340
С	-0.95893	6.77515	6.82079	С	-5.10154	1.31737	5.37912
С	-1.10886	7.63701	7.92062	н	-5.95346	1.88757	5.00152
н	-2.00397	8.26342	7.97576	С	-4.27587	0.64396	4.48726
С	-0.15581	7.69976	8.92993	н	-4.47968	0.71632	3.42016
н	-0.29024	8.38100	9.77418	С	-3.16722	-0.08667	4.92361
С	0.96191	6.87649	8.85748	С	-2.27496	-0.79591	3.91511
н	1.72018	6.89477	9.64618	н	-1.22945	-0.58125	4.20001
С	1.12246	6.00279	7.77673	С	-2.48269	-0.29291	2.48869
С	2.31476	5.09622	7.78475	н	-3.45967	-0.62033	2.09727
С	2.27207	3.89902	8.52991	н	-1.72024	-0.72384	1.82575
С	3.37456	3.04036	8.49592	н	-2.41522	0.79855	2.39019
н	3.32654	2.10291	9.05760	С	-2.46543	-2.31690	3.93152
С	4.52753	3.34789	7.77122	Н	-2.15017	-2.78252	4.87295
С	4.56752	4.56022	7.07777	н	-1.86746	-2.77675	3.12989
н	5.46980	4.83080	6.52095	н	-3.52127	-2.57711	3.75401
С	3.48459	5.44173	7.07495	С	-3.47514	0.57764	8.73205
С	3.55953	6.73392	6.31468	н	-2.58360	-0.03525	8.92919
н	2.88058	6.72739	5.44401	С	-3.17244	1.99080	9.23024
н	4.57626	6.91818	5.94127	н	-2.29427	2.40848	8.71809
н	3.24973	7.58516	6.93895	н	-2.96810	1.98470	10.31123
С	1.07248	3.54903	9.35788	н	-4.02224	2.66781	9.05525
н	0.91832	4.28346	10.16372	С	-4.62912	-0.06264	9.50383
н	1.18711	2.55338	9.80556	н	-5.55909	0.51674	9.39395
н	0.16607	3.54146	8.73720	н	-4.39382	-0.10965	10.57851
С	5.69099	2.40022	7.72714	н	-4.82856	-1.08636	9.15210
н	5.62835	1.65138	8.52970	С	1.21158	-1.15253	8.68828
н	6.64905	2.93262	7.82715	С	1.19049	-1.10829	10.09372
н	5.72014	1.85719	6.76793	С	2.41443	-0.96466	10.75177
С	-2.08220	6.81221	5.83781	н	2.43603	-0.92042	11.84235
С	-2.23302	7.92763	4.99618	С	3.60306	-0.86437	10.03585
С	-3.37434	8.03055	4.19301	н	4.55075	-0.75433	10.56841
н	-3.48057	8.89706	3.53288	С	3.58926	-0.88796	8.64625
С	-4.37244	7.05711	4.20634	н	4.52556	-0.78986	8.09403
С	-4.19859	5.95340	5.04589	С	2.39119	-1.02273	7.93859
н	-4.96446	5.17169	5.07047	С	2.39537	-1.04070	6.42490
С	-3.07559	5.81324	5.86236	н	1.37375	-0.83359	6.07489
С	-2.95799	4.63945	6.78564	С	3.28764	0.05149	5.84014
н	-2.89608	4.96769	7.83566	Н	3.08422	1.02406	6.31365
н	-2.04739	4.05947	6.58639	н	3.08678	0.15614	4.76666
н	-3.81609	3.96340	6.67621	н	4.35671	-0.17755	5.97558
С	-1.18195	9.00037	4.94322	С	2.77032	-2.42904	5.90509
н	-1.20672	9.63911	5.84053	Н	3.79424	-2.70158	6.20777
н	-1.32181	9.64706	4.06519	н	2.72308	-2.45183	4.80589
н	-0.17096	8.56798	4.90217	н	2.08953	-3.20382	6.29024
С	-5.57843	7.16143	3.31957	С	-0.11076	-1.11362	10.87142
н	-6.50592	6.95999	3.87769	н	-0.88640	-1.56082	10.23076
н	-5.52584	6.42622	2.49941	С	-0.53696	0.32755	11.15887
н	-5.66311	8.15960	2.86695	H	0.19445	0.82575	11.81492
С	-0.25367	1.71741	6.35983	н	-1.51607	0.35131	11.66252
C	-0.68966	-0.31309	7.36707	Н	-0.60615	0.91291	10.23094
С	-0.76428	-2.49045	7.90441	С	-0.04846	-1.94939	12.14604

н	0.29865	-2.97416	11.94434	С	-1.04518	6.99094	8.03785
н	-1.04578	-2.01162	12.60698	н	-2.06972	7.36653	7.96732
н	0.62512	-1.50670	12.89608	С	-0.20627	7.42315	9.06759
В	0.57298	1.22421	2.59586	н	-0.58351	8.12789	9.81315
0	0.50965	1.22521	1.21458	С	1.11647	6.98402	9.14221
0	1.52272	0.30838	3.04701	н	1.77303	7.34871	9.93731
С	1.63517	0.50214	0.72186	С	1.60574	6.07855	8.19323
С	1.98185	-0.44594	1.92536	С	3.02233	5.60888	8.15247
С	1.19559	-1.75208	1.89920	С	3.37636	4.35805	8.69409
Н	0.12302	-1.56230	1.75807	С	4.68772	3.89611	8.53228
Н	1.54099	-2.42721	1.10337	Н	4.95302	2.91835	8.94585
H	1.32302	-2.26052	2.86614	С	5.65673	4.64186	7.86155
С	1.24202	-0.21011	-0.55850	С	5.28532	5.88435	7.33941
Н	1.01642	0.53367	-1.33636	Н	6.02853	6.48447	6.80524
Н	2.05951	-0.85051	-0.92298	С	3.98707	6.38020	7.46986
Н	0.34498	-0.82568	-0.41458	С	3.61721	7.70728	6.87196
С	2.74174	1.51466	0.43994	Н	2.80800	7.59937	6.13233
Н	3.04757	2.03317	1.36048	н	4.48003	8.17487	6.37769
Н	3.62816	1.04525	-0.01021	Н	3.23741	8.40112	7.63713
H	2.35866	2.27071	-0.25996	С	2.36618	3.51774	9.41442
С	3.46383	-0.74406	2.07631	н	1.67643	4.13590	10.00608
Н	3.86118	-1.21207	1.16274	н	2.86152	2.79967	10.08136
н	4.04036	0.16608	2.28402	Н	1.74998	2.94302	8.70333
H	3.62629	-1.44364	2.90893	С	7.06586	4.14094	7.72939
H	-0.33121	1.28735	5.34368	н	7.10645	3.04208	7.74729
B	-1.24881	2.93525	3.33610	н	7.69464	4.50685	8.55854
0	-1.79468	2.97308	2.01088	Н	7.53047	4.48673	6.79419
0	-0.69928	4.34459	3.53365	С	-1.32374	5.62185	5.88824
С	-1.71557	4.25778	1.44942	С	-1.01663	6.19358	4.63061
С	-0.53255	4.93398	2.22715	С	-1.60807	5.66053	3.48224
Н	-2.04011	2.69037	4.24602	н	-1.36810	6.10365	2.51092
С	-0.63404	6.44139	2.34456	С	-2.49468	4.58477	3.54255
н	-1.54670	6.74714	2.86542	С	-2.80828	4.05606	4.79628
н	0.22756	6.84173	2.90357	Н	-3.49226	3.20584	4.86877
Н	-0.62005	6.90261	1.34533	С	-2.24133	4.55466	5.97102
С	0.82648	4.55748	1.64239	С	-2.55757	3.92428	7.29143
Н	0.99267	5.07162	0.68474	н	-2.88807	4.66992	8.03052
Н	1.63153	4.86500	2.32739	н	-1.65492	3.43242	7.68346
Н	0.90261	3.47858	1.47249	н	-3.33118	3.15396	7.17961
С	-3.03898	4.97877	1.69573	С	-0.09878	7.38046	4.51892
н	-3.19847	5.12791	2.77138	н	-0.34731	8.15065	5.26383
н	-3.09039	5.95659	1.19326	н	-0.15984	7.82712	3.51696
Н	-3.84989	4.34403	1.30884	Н	0.95580	7.11130	4.69762
С	-1.46218	4.11812	-0.04493	С	-3.04616	3.98843	2.28252
н	-1.26566	5.09182	-0.52053	н	-3.21348	4.75511	1.51117
н	-0.62124	3.43830	-0.23075	н	-3.99809	3.46919	2.46353
Н	-2.35329	3.68142	-0.51994	Н	-2.32882	3.25489	1.87821
				С	0.13601	1.55587	5.95857
141				С	-1.25264	-0.14324	6.89764
	SnH6			С	-1.12556	-2.21117	7.85203
Sn	1.40805	4.18439	5.63422	Н	-0.64328	-3.05778	8.33028
0	-0.14387	2.06977	4.62694	С	-2.42371	-1.98067	7.57243
0	0.57099	2.61233	6.70476	н	-3.30018	-2.60448	7.71662
N	-0.38530	-1.09956	7.43247	С	-3.70331	-0.07020	6.56722
N	-2.51189	-0.72725	6.98121	С	-4.58232	0.42219	7.54738
N	-1.08616	1.03052	6.42246	С	-5.74850	1.06700	7.11949
С	0.75266	5.61363	7.18680	Н	-6.45003	1.45684	7.86024
С	-0.56217	6.08831	7.08591	С	-6.01310	1.23575	5.76777

Н	-6.92102	1.75351	5.44912	С	0.69427	-1.00092	1.77830
С	-5.11998	0.75381	4.81369	н	-0.37247	-0.84583	1.99324
Н	-5.33960	0.90384	3.75608	Н	0.79514	-1.36997	0.74773
С	-3.95216	0.08668	5.18815	н	1.06743	-1.77625	2.46293
С	-2.98898	-0.47151	4.15664	С	0.13728	1.22967	-0.00431
+	-1.98054	-0.19864	4.50510	н	-0.26499	2.16228	-0.42649
С	-3.16097	0.14777	2.77677	н	0.82627	0.79145	-0.74194
+	-4.13615	-0.10230	2.32899	Н	-0.70200	0.53960	0.15081
+	-2.39051	-0.23580	2.09280	С	1.86079	2.66186	1.10067
H	-3.05604	1.23963	2.81013	н	2.39526	2.87994	2.03742
C	-3.08067	-1.99706	4.07448	н	2.59819	2.43228	0.31853
+	-2.87866	-2.47866	5.04138	Н	1.31281	3.56974	0.81112
-	-2.34696	-2.38581	3.35065	С	2.95325	0.05761	1.68018
H	-4.08301	-2.31062	3.74076	н	3.09467	-0.05865	0.59505
2	-4.30436	0.26477	9.02952	н	3.57070	0.89495	2.02851
H	-3.25937	-0.06173	9.13329	н	3.31653	-0.85618	2.16980
2	-4.44152	1.57995	9.79345	н	0.92897	0.78955	5.83904
-	-3.81459	2.36629	9.35120				
-	-4.13280	1.44382	10.84163	141	0.115		
H	-5.48168	1.94125	9.80531		SnH5	0.00054	5 40704
2	-5.19247	-0.81845	9.64394	Sn	0.59977	0.28254	5.12764
+	-6.25702	-0.54389	9.57180	0	2.86254	2.95450	4.38239
-	-4.95265	-0.96141	10.70937	0	1.56610	1.89672	5.99437
H	-5.06774	-1.78572	9.13526	N	1.65207	6.34081	6.82738
2	0.88026	-0.79687	8.02380	N	-0.08839	5.44177	5.83779
2	0.88866	-0.20080	9.29834	N	1.99082	4.15203	6.09687
2	2.12746	0.04069	9.89784	с с	1.59404	-1.31675	6.37869
H C	2.16227	0.50257	10.88685	c	2.94606	-1.44823	6.76276
	3.31017	-0.29131	9.24953		3.37938 4.42621	-2.62357 -2.70460	7.39228
H C	4.27080	-0.08916	9.73004	н С			7.69837
	3.27765 4.21528	-0.87977 -1.13338	7.98871 7.49218	н	2.49646 2.85381	-3.66835 -4.57798	7.65213 8.14162
H C	2.06406	-1.15231	7.35232	С	1.15071	-4.57796 -3.53487	7.31973
2	2.00400	-1.84614	6.00552	н	0.43694	-3.33487 -4.32822	7.56020
- H	1.11502	-1.48156	5.48539	С	0.43094	-4.32822	6.70026
2	3.21395	-1.52576	5.12133	c	-0.75668	-2.30473	6.45928
- H	3.32279	-0.44365	4.96555	c	-1.50875	-2.14434	7.45072
÷	3.08102	-1.99370	4.13501	c	-2.83135	-1.12690	7.17396
÷	4.15256	-1.92317	5.53866	н	-3.40990	-0.60185	7.94106
5	1.86877	-3.35901	6.18442	С	-3.43469	-1.42826	5.94857
-	2.73227	-3.77331	6.72900	c	-2.68866	-2.13574	5.00563
4	1.81137	-3.86084	5.20581	н	-3.14744	-2.39648	4.04728
÷	0.96017	-3.61808	6.74526	С	-1.36071	-2.50531	5.24221
2	-0.39267	0.19432	10.00388	c	-0.57267	-3.23664	4.19612
- H	-1.22890	-0.21318	9.41935	н	0.28324	-2.63303	3.85139
5	-0.55826	1.71246	10.03156	н	-1.19306	-3.48061	3.32288
- H	0.19892	2.18150	10.67786	н	-0.14367	-4.16837	4.59434
-i	-1.54945	1.98235	10.42622	С	-0.89340	-1.16415	8.78422
÷	-0.45729	2.13639	9.02229	н	-0.57276	-2.08679	9.29199
5	-0.49657	-0.41489	11.39941	н	-1.60240	-0.63844	9.43772
H	-0.40768	-1.51149	11.36852	н	0.00949	-0.54458	8.67865
÷	-1.46905	-0.16304	11.85101	С	-4.84555	-0.99846	5.66735
4	0.28503	-0.03030	12.07342	н	-5.16949	-1.30853	4.66389
3	0.35088	1.55516	3.48756	н	-4.94727	0.09738	5.73056
2	-0.09638	1.98414	2.26261	н	-5.54993	-1.42847	6.39693
с С	1.35180	0.61729	3.39512	C	3.90810	-0.32685	6.56312
5	0.85615	1.53116	1.29584	c	4.85862	-0.32003	5.52744
2	1.48805	0.27876	2.00612	c	5.65648	0.75051	5.28943
-	1.40000	0.21010	2.00012	0	0.00040	0.10001	0.20040

н	6.38043	0.72587	4,46862	С	4.71822	6.44778	8.89452
С	5.55228	1.90407	6.07304	н	5.03892	6.25725	9.92058
С	4.67696	1.88349	7.15671	С	3.37415	6.28712	8.54963
Ĥ	4.59742	2.76873	7.79315	C	2.35652	5.77638	9.54816
С	3.85736	0.78531	7.42152	Ĥ	1.36552	6.11298	9.20266
c	2.92014	0.82332	8.59176	C	2.35164	4.24616	9.53450
н	2.71568	-0.17973	8.99083	Ĥ	2.23373	3.85636	8.51244
н	1.96521	1.26990	8.27847	н	1.54051	3.84839	10.16503
н	3.32837	1.44510	9.40020	н	3.30470	3.86024	9.93128
С	5.02974	-1.62284	4.71202	C	2.56158	6.32280	10.95675
н			5.33330	н		5.94388	11.4099
	5.39517	-2.45557 -1.47974			3.49127		
н	5.75352		3.89784	н	1.73543	6.00480	11.6109
Н	4.07412	-1.96064	4.28297	н	2.60441	7.42272	10.9668
С	6.31411	3.15018	5.73640	С	3.52181	7.18676	4.80508
н	7.20968	2.93571	5.13487	н	2.42775	7.07868	4.75205
н	6.61942	3.69599	6.64135	С	4.12672	6.14033	3.87017
н	5.66899	3.83026	5.15633	н	5.22718	6.20161	3.86380
С	1.71856	3.03908	5.27821	н	3.78020	6.29972	2.83629
С	1.22914	5.17348	6.20696	н	3.83721	5.12445	4.17525
С	0.63611	7.28659	6.83425	С	3.85575	8.61163	4.36550
Н	0.78208	8.27248	7.26436	Н	3.39083	9.35694	5.02892
С	-0.43884	6.73554	6.23275	н	3.49411	8.79309	3.34113
н	-1.43255	7.13013	6.04400	н	4.94247	8.79274	4.36722
С	-1.01454	4.47022	5.36893	В	2.97136	2.05075	3.40896
С	-1.35758	4.44777	4.00527	0	3.65292	2.29439	2.24897
С	-2.23270	3.44856	3.56885	0	2.32639	0.80349	3.36209
H	-2.50887	3.39942	2.51253	C	3.55804	1.14479	1.40631
С	-2.73614	2.50334	4.45630	C	2.29221	0.40414	1.97108
н	-3.39385	1.70916	4.09511	c	0.98737	0.92947	1.38549
С	-2.39821	2.55716	5.80534	н	0.94128	2.02618	1.43676
н	-2.80136	1.80724	6.48901	н	0.86579	0.62251	0.33735
С	-2.80130	3.54776	6.29270	н	0.14337	0.52990	1.96696
c				С			
	-1.23472	3.65499	7.77305		3.41075	1.60910	-0.03125
Н	-0.34257	4.28694	7.88755	н	4.33829	2.10569	-0.35014
С	-0.90925	2.30815	8.40352	н	3.22979	0.75743	-0.70429
н	-1.77061	1.62367	8.38230	н	2.58977	2.32944	-0.13866
Н	-0.61564	2.43534	9.45657	С	4.83864	0.34217	1.57725
Н	-0.06958	1.83925	7.87249	Н	4.93175	-0.01817	2.60835
С	-2.38840	4.35441	8.49534	Н	4.88479	-0.51560	0.89116
н	-2.58276	5.35111	8.07142	н	5.69314	1.00222	1.37129
н	-2.15694	4.47916	9.56477	С	2.34440	-1.10582	1.87397
н	-3.31693	3.76642	8.41446	н	2.41098	-1.41618	0.82081
С	-0.78055	5.45130	3.02675	н	3.20216	-1.51961	2.41593
н	-0.14278	6.13757	3.60389	н	1.42568	-1.54354	2.29208
С	0.11033	4.77810	1.98280	н	0.85793	3.20153	4.59331
н	0.94425	4.23740	2.45453				
н	0.54419	5.52919	1.30467				
н	-0.46119	4.06380	1.36865				
С	-1.88022	6.28419	2.36932				
н	-2.55214	5.65877	1.75989				
н	-1.44358	7.04652	1.70554				
н	-2.49725	6.79964	3.12092				
С	3.00499	6.53938	7.21699				
c	3.93328	6.93647	6.24117				
c	5.26896	7.07511	6.63017				
н	6.01655	7.37048	5.89023				
С	5.65796	6.83393	5.89023 7.94267				
н	6.70657	6.94617	8.22929				
	0.70007	0.54017	0.22323				

4. References

- [S1] M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden, R. A. Fischer, Dalton Transactions 2021, 50, 9031-9036.
- [S2] a) D. Franz, E. Irran, S. Inoue, *Dalton. Trans.* 2014, *43*, 4451-4461; b) R. S. Simons, L. Pu, M. M. Olmstead,
 P. P. Power, *Organometallics* 1997, *16*, 1920-1925; c) M. M. Melzer, S. Jarchow-Choy, E. Kogut, T. H.
 Warren, *Inorganic Chemistry* 2008, *47*, 10187-10189.
- [S3] a) B.-X. Leong, J. Lee, Y. Li, M.-C. Yang, C.-K. Siu, M.-D. Su, C.-W. So, Journal of the American Chemical Society 2019, 141, 17629-17636; b) S. R. Tamang, M. Findlater, Dalton Transactions 2018, 47, 8199-8203.
- [S4] L. J. Murphy, H. Hollenhorst, R. McDonald, M. Ferguson, M. D. Lumsden, L. Turculet, Organometallics 2017, 36, 3709-3720.
- [S5] J. Fan, J.-Q. Mah, M.-C. Yang, M.-D. Su, C.-W. So, Journal of the American Chemical Society 2021, 143, 4993-5002.
- [S6] 2015.5-2 ed., Bruker AXS Inc, Madison, Wisconsin, USA, **2015**.
- [S7] 7.56a and 2008/1 ed., Bruker AXS Inc, Madison, Wisconsin, USA, 2008.
- [S8] G. M. Sheldrick, University of Göttingen, Göttingen, Germany, **2014**.
- [S9] C. B. Hubschle, G. M. Sheldrick, B. Dittrich, Journal of Applied Crystallography 2011, 44, 1281-1284.
- [S10] G. M. Sheldrick, University of Göttingen, Göttingen, Germany, **1998**.
- [S11] A. J. C. Wilson, V. Geist, Vol. C, Kluwer Academic Publishers (published for the International Union of Crystallography), Dordrecht/Boston/London, 1992, pp. Tables 6.1.1.4 (pp 500-502), 504.502.506.508 (pp. 219-222) and 504.502.504.502 (pp. 193-199).
- [S12] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, *Journal of Applied Crystallography* 2008, 41, 466-470.
- [S13] a) J. P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 1996, 105, 9982-9985; b) C. Adamo, V. Barone, J. Chem. Phys. 1999, 110, 6158-6170.
- [S14] a) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104; b) S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem. 2011, 32, 1456-1465.
- [S15] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
- [S16] a) L. Goerigk, A. Hansen, C. Bauer, S. Ehrlich, A. Najibi, S. Grimme, *Physical Chemistry Chemical Physics* 2017, 19, 32184-32215; b) É. Brémond, M. Savarese, N. Q. Su, Á. J. Pérez-Jiménez, X. Xu, J. C. Sancho-García, C. Adamo, *Journal of Chemical Theory and Computation* 2016, 12, 459-465.
- [S17] B. Metz, H. Stoll, M. Dolg, J. Chem. Phys. 2000, 113, 2563-2569.
- [S18] F. Weigend, *Phys. Chem. Chem. Phys.* **2006**, *8*, 1057-1065.
- [S19] W. B. Schneider, G. Bistoni, M. Sparta, M. Saitow, C. Riplinger, A. A. Auer, F. Neese, J. Chem. Theory Comput. 2016, 12, 4778-4792.
- [S20] A. Hellweg, C. Hättig, S. Höfener, W. Klopper, *Theor Chem Acc* 2007, *117*, 587-597.
- [S21] C. J. Cramer, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 760-768.
- [S22] M. Garcia-Ratés, U. Becker, F. Neese, J Comput Chem 2021, 42, 1959-1973.
- [S23] P. Paiva, M. J. Ramos, P. A. Fernandes, J Comput Chem 2020, 41, 2459-2468.

Author Contributions

D. Sarkar, L. Groll, and S. Inoue conceived and designed the experiments. D. Sarkar and L. Groll carried out the synthetic experiments and analyzed experimental data. D. Munz performed the theoretical calculations. F. Hanusch collected and refined the crystallographic data. S. Inoue supervised the study. D. Sarkar, L. Groll, D. Munz, and S. Inoue wrote the manuscript. All the authors discussed the results and commented on the manuscript.

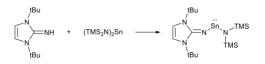
8.2. SUPPORTING INFORMATION FOR CHAPTER 5

Table of Contents

1. Experimental Procedures	. 2
1.1 General Information	. 2
1.2 Synthesis of (TMS ₂ N)(I ^t BuN)Sn: (1)	. 2
1.3 Synthesis of (I′BuN)₂Sn: (2)	. 5
1.4 Synthesis of (I'BuN)₂Ge: (3)	. 7
1.5 Synthesis of (I′BuN-CO₂)₂Sn: (4)	. 9
1.6 Synthesis of (I'BuN-CO ₂) ₂ Ge: (5)	11
1.7 Synthesis of [((I′BuN)₃SnO)(I′BuN)Sn:]₂ (6)	12
2. VT-NMR Experiment of (I ^t BuN) ₂ Sn: (2)	14
3. Suggested Mechanism for the Formation of [((I'BuN) ₃ SnO)(I'BuN)Sn:] ₂ (6)	17
4. X-Ray Crystallography	18
4.1 General Information	18
4.2 Crystal Data and Structure Refinement for Compounds 1-6	18
5. References	21

1. Experimental Procedures

1.1 General Information


All experiments were carried out under a dry argon atmosphere using standard *Schlenk* techniques or a glovebox. All glass junctions were coated with PTFE-based grease *Merkel* Triboflon III. All used reaction solvents were refluxed over sodium/benzophenone, freshly distilled and deoxygenated prior to use. Unless otherwise stated, all reagents were purchased from commercial sources and used as received. fbu NHI $^{[S1]}$, fbu NHI $^{[S2]}$ and (TMS₂N)₂Sn $^{[S3]}$ were synthesized according to literature procedures.

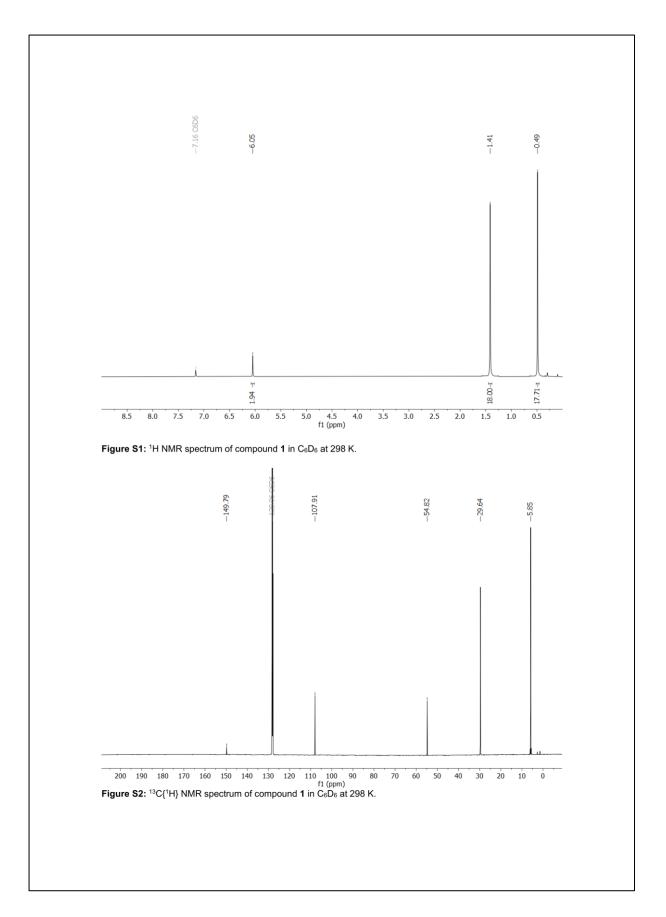
The ¹ H, ¹³C, ²⁹Si, and ¹¹⁹Sn NMR spectra were measured on *Bruker* 400 MHz and 500 MHz spectrometers. All NMR samples were prepared in PTFE valve J-Young NMR tubes in an argon atmosphere. Chemical shifts were referenced to residual solvent signals (¹H and ¹³C NMR). ¹¹⁹Sn NMR chemical shifts were referenced to Me₄Sn (¹¹⁹Sn). Deuterated solvents C₆D₆, THF-d₈ and CD₃CN were obtained from *Deutero* Deutschland GmbH. C₆D₆ and THF-d₈ were dried over 4 Å molecular sieves prior to use, CD₃CN was dried with CaH₂, distilled and stored over 3 Å molecular sieves prior to use. Abbreviations: s = singlet. The spectra were processed and analyzed with the Mestrenova software.

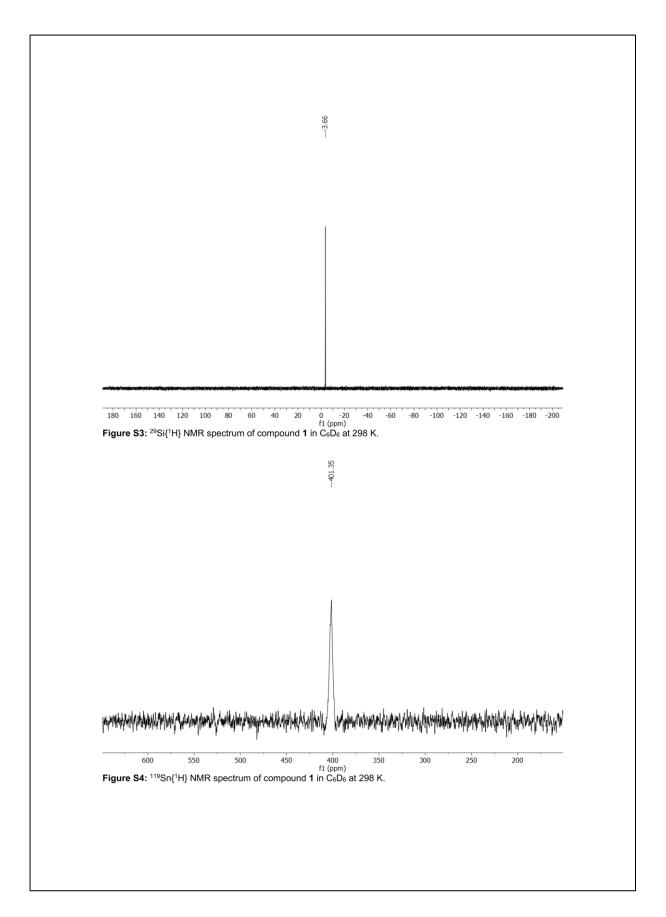
Elemental Analysis (CHNS) was carried out by the central analytics laboratory of the TUM Catalysis Research Center on a EURO EA (HEKAtech) instrument equipped with a CHNS combustion analyzer. The highly reactive and air-sensitive nature impaired the accuracy of the measurements.

Liquid Injection Field Desorption Ionization Mass Spectrometry (LIFDI-MS) was performed in an inert atmosphere glovebox with a *Thermo Fisher* Scientific Exactive Plus Orbitrap equipped with an ion source from Linden CMS.S7.^[S4] Thereby, all samples were prepared in THF solutions, filtered and injected into the spectrometers. TOF analyzation in cationic mode resulted in the obtained spectra, which were resolved by mass-to-charge values. Due to the very poor solubility of the CO₂ and N₂O activation products (Compounds **4**, **5** and **6**) in conventional solvents suitable for LIFDI-MS (such as THF and Toluene) as well as decomposition in Propanenitrile, no satisfactory Mass Spectrometry could be obtained for those compounds.

1.2 Synthesis of (TMS₂N)(I^tBuN)Sn: (1)

A solution of ^{IB}uNHIH (1.0 eq., 1.28 mmol, 250.0 mg) in 10 ml Pentane was added to a stirring solution of (TMS₂N)₂Sn (1.1 eq., 1.41 mmol, 618.8 mg) in Pentane. After stirring at room temperature for 30 min, a bright red solution was obtained, which was then reduced to approximately halve its volume *in vacuo*. The solution was left to crystallize over night at -35 °C, to give bright 587.0 mg of red crystals suitable for SC-XRD characterization. After removing all volatiles, 587.0 mg (1.24 mmol, 97 %) of a bright red solid was obtained.


¹H-NMR (400MHz, C₆D₆): δ (ppm) = 6.05 (s, 2H, NC*H*), 1.41 (s, 18H, C(C*H*₃)₃), 0.49 (s, 18H, Si(C*H*₃)₃). ¹³C{¹H NMR (125.83 MHz, 298 K,C₆D₆): δ (ppm) = 149.79 (NCN), 107.91 (NCCN), 54.82 (*C*(CH₃)₃), 29.64 (C(*C*H₃)₃), 5.85 (Si(*C*H₃)₃).


²⁹Si{¹H} NMR (99.41 MHz, 298 K, C₆D₆): δ (ppm) = -3.66 (2H, Si(CH₃)₃).

¹¹⁹Sn{¹H} NMR (149.20 MHz, 298 K, C₆D₆): δ (ppm) = 401.35.

 $\label{eq:LIFDI-MS} LIFDI-MS \ calcd. \ for \ C_{17}H_{38}N_4Si_2Sn; \ 474.16569; \ Found: \ 474.16369.$

Anal. Calcd. [%] for $C_{17}H_{38}N_4Si_2Sn$: C 43.13, H 8.09, N 11.84. Found: C 42.91, H 8.14, N 11,46.

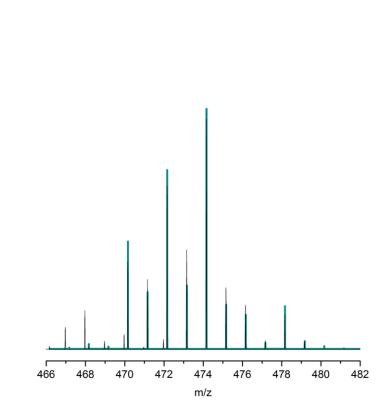
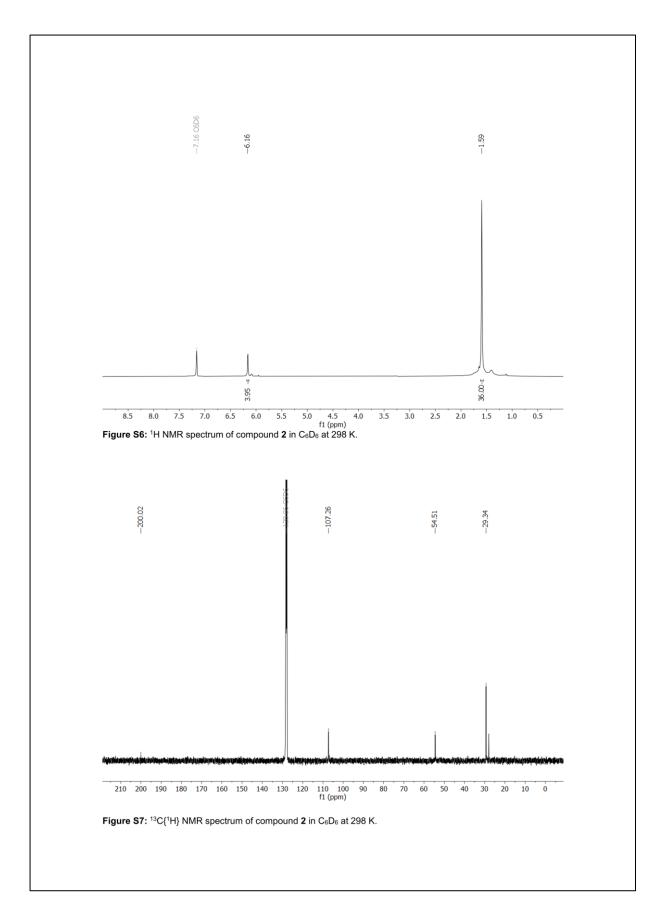
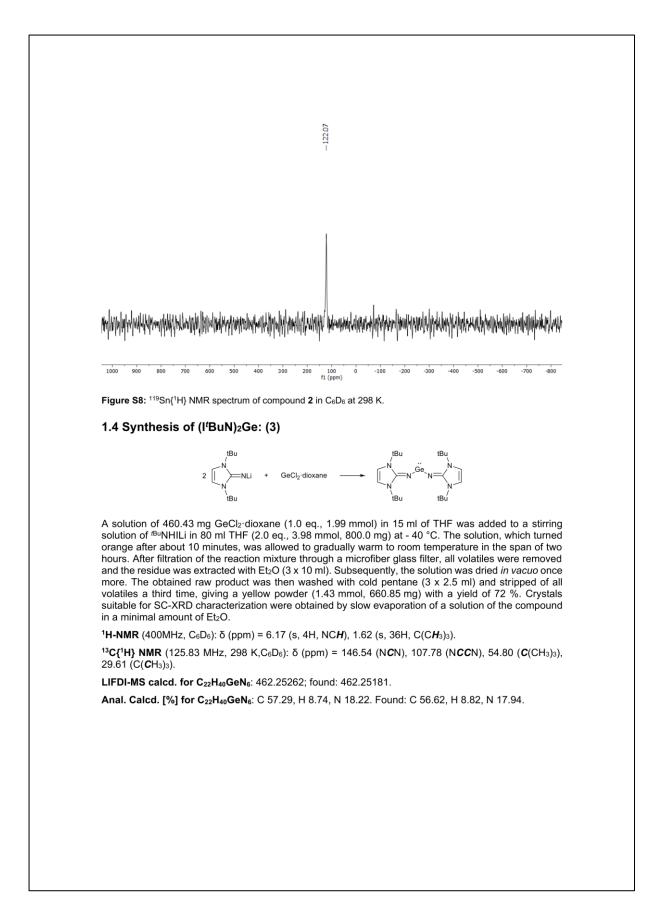
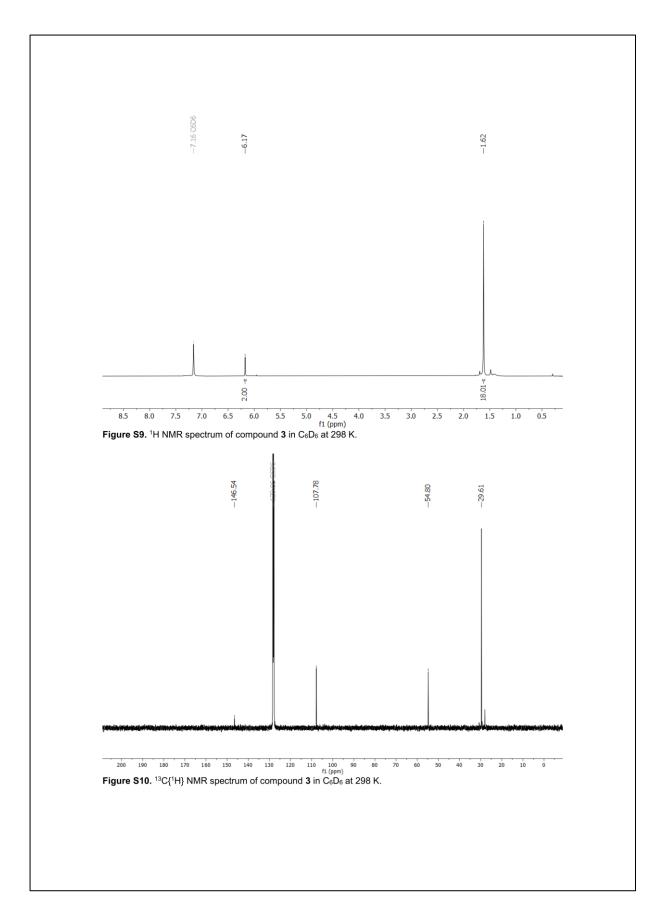


Figure S5. Measured (black) and calculated (teal) LIFDI-MS for 1.

1.3 Synthesis of (I^tBuN)₂Sn: (2)


A solution of ^{rBu}NHILi in 10 ml C₆H₆ (2.0 eq., 1.22 mmol, 250.0 mg) was added to a stirring solution of SnCl₂·dioxane (1.0 eq., 0.61 mmol, 170.0 mg) and 4-(Dimethylamino)pyridine (1.0 eq., 0.61 mmol, 74.5 mg) in 10 ml of THF at -40 °C. The solution, which turned red after about 10 min, was allowed to gradually warm to room temperature in the course of 2h. All volatiles were removed *in vacuo* and the residue was extracted with C₆H₆ (3 x 5 ml). The resulting solution was dried *in vacuo* once more and recrystallized in pentane giving a yellow powder (226.2 mg, 0.446 mmol) with a yield of 73 %. Crystals suitable for SC-XRD characterization were obtained by vapor diffusion of pentane into a solution of ^{rBu}NHI₂Sn in a minimal amount of THF.


¹**H-NMR** (400MHz, C_6D_6): δ (ppm) = 6.16 (s, 4H, NC*H*), 1.59 (s, 36H, C(C*H*₃)₃).


¹³C{¹H} NMR (125.83 MHz, 298 K,C₆D₆): δ (ppm) = 200.02 (NCN), 107.26 (NCCN), 54.51 (C(CH₃)₃), 29.34 (C(CH₃)₃).

¹¹⁹Sn{¹H} NMR (149.20 MHz, 298 K, C₆D₆): 122.07 ppm.

Anal. Calcd. [%] for $C_{22}H_{40}N_6Sn$: C 52.09, H 7.95, N 16.57. Found: C 52.09, H 8.20, N 16.19.

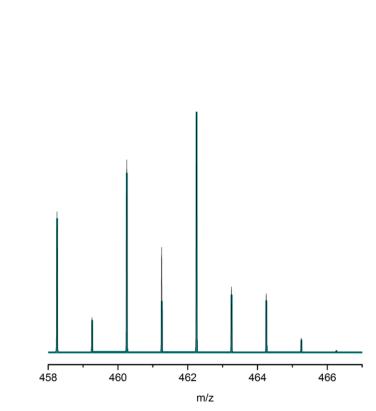
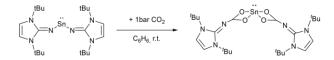
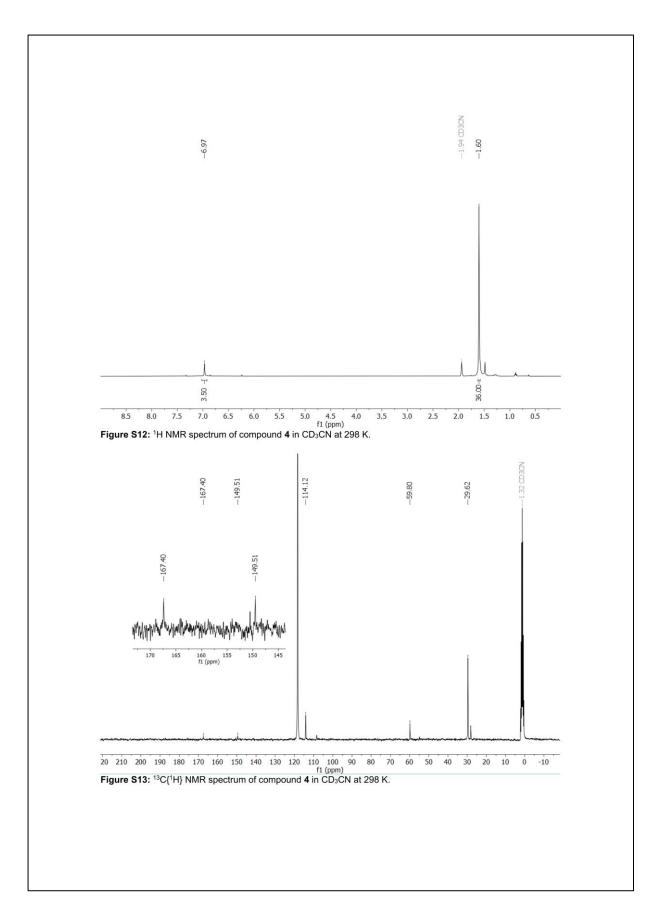
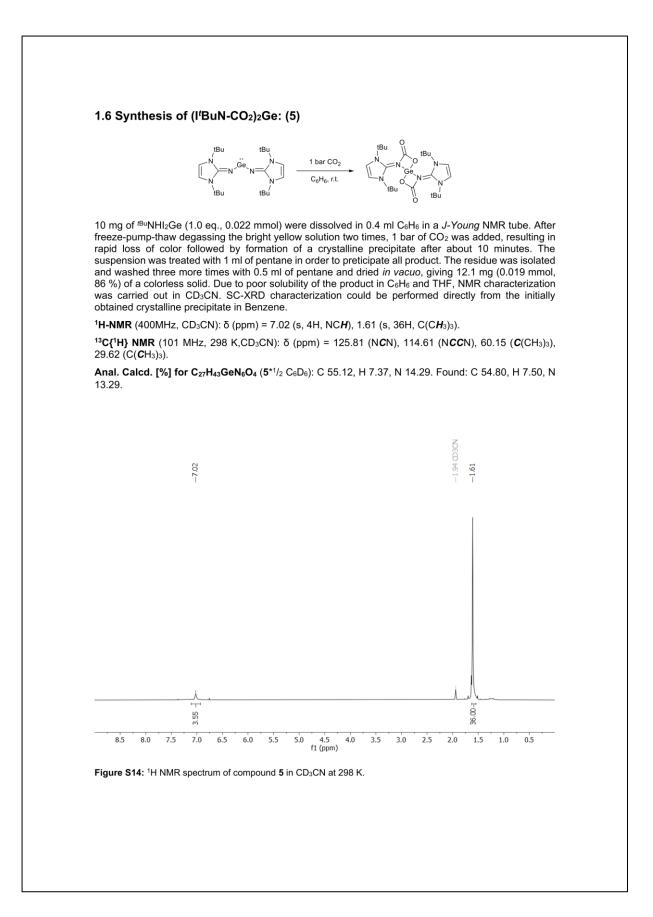
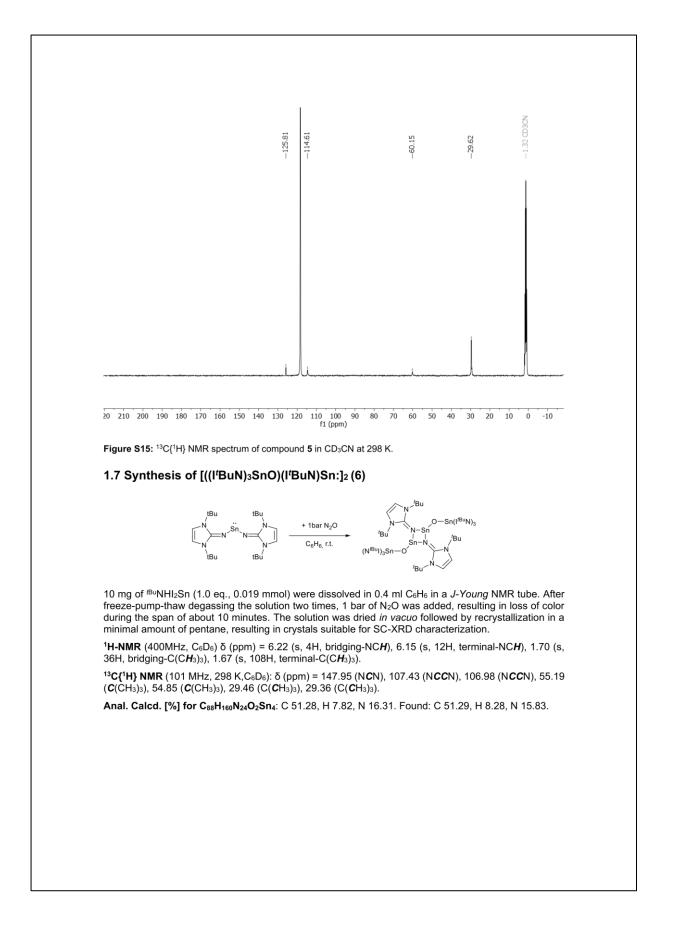



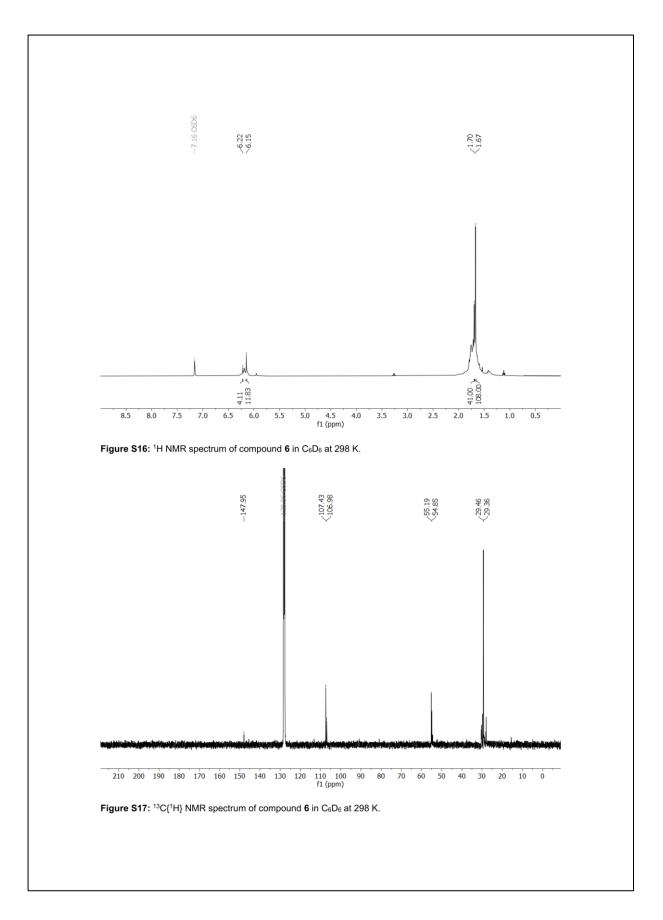
Figure S11. Measured (black) and calculated (teal) LIFDI-MS for 3.

1.5 Synthesis of (I^tBuN-CO₂)₂Sn: (4)




10 mg of ^{rBu}NHI₂Sn (1.0 eq., 0.019 mmol) were dissolved in 0.4 ml C₆H₆ in a *J*-Young NMR tube. After freeze-pump-thaw degassing the orange-red solution two times, 1 bar of CO₂ was added, resulting in rapid loss of color followed by formation of a crystalline precipitate after about 10 minutes. The suspension was treated with 1 ml of pentane in order to preticipate all product. The residue was isolated and washed three more times with 0.5 ml of pentane and dried *in vacuo*, giving 11.3 mg (0.019 mmol, 96 %) of a colorless solid. Due to poor solubility of the product in C₆H₆ and THF, NMR characterization was carried out in MeCN-d₃. SC-XRD characterization could be performed directly from the initially obtained crystalline precipitate in Benzene.


¹H-NMR (400MHz, CD₃CN): δ (ppm) = 6.97 (s, 4H, NC*H*), 1.60 (s, 36H, C(C*H*₃)₃).


¹³C{¹H} NMR (125.83 MHz, 298 K, CD₃CN): δ (ppm) = 167.40 (NCO₂),149.51 (NCN), 114.12 (NCCN), 59.80 (C(CH₃)₃), 29.62 (C(CH₃)₃).

Anal. Calcd. [%] for C_{30}H_{46}N_6O_4Sn (4*C_6D_6): C 53.51, H 6.89, N 12.48. Found: C 53.61, H 6.87, N 11.54

2. VT-NMR Experiment of (I'BuN)₂Sn: (2)

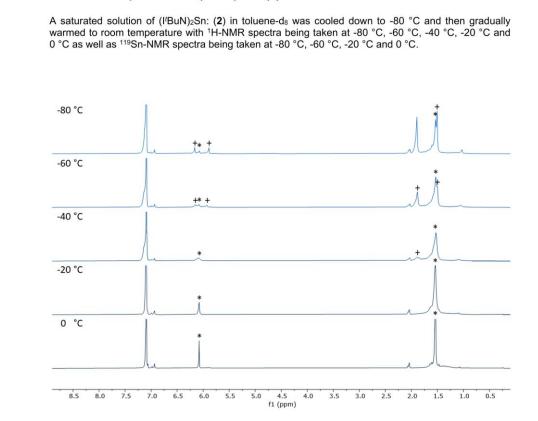
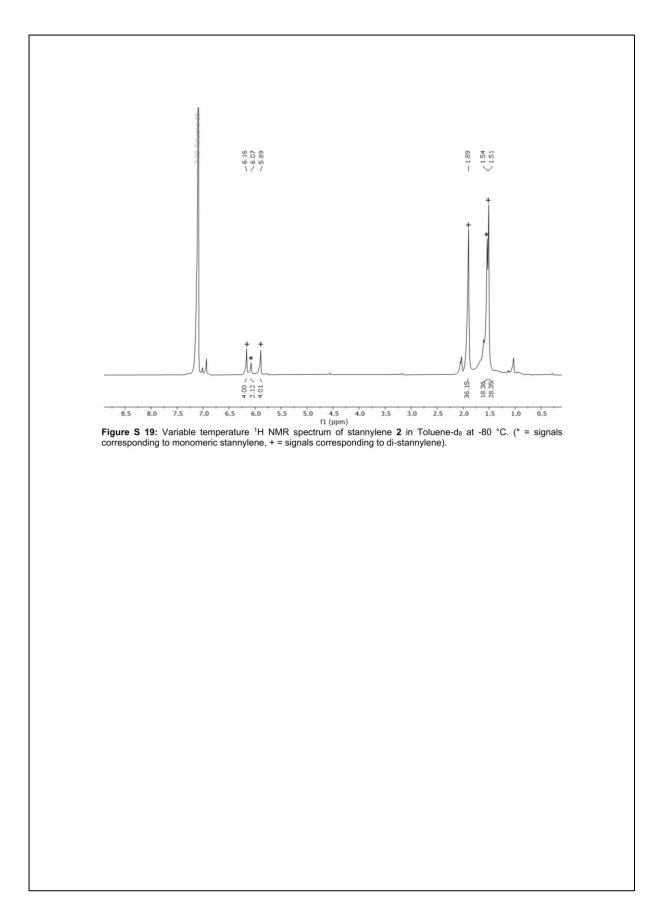
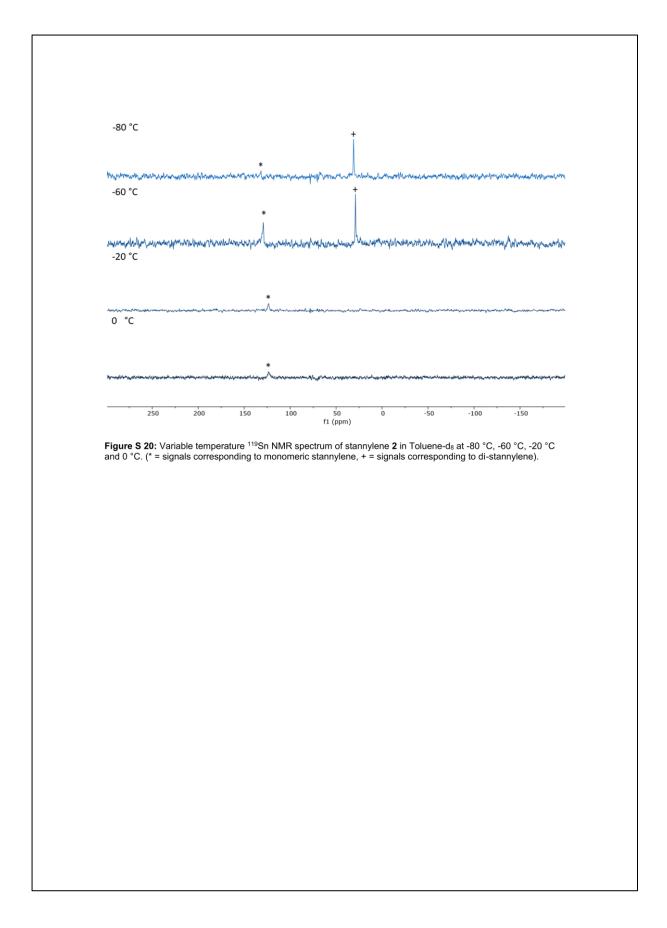
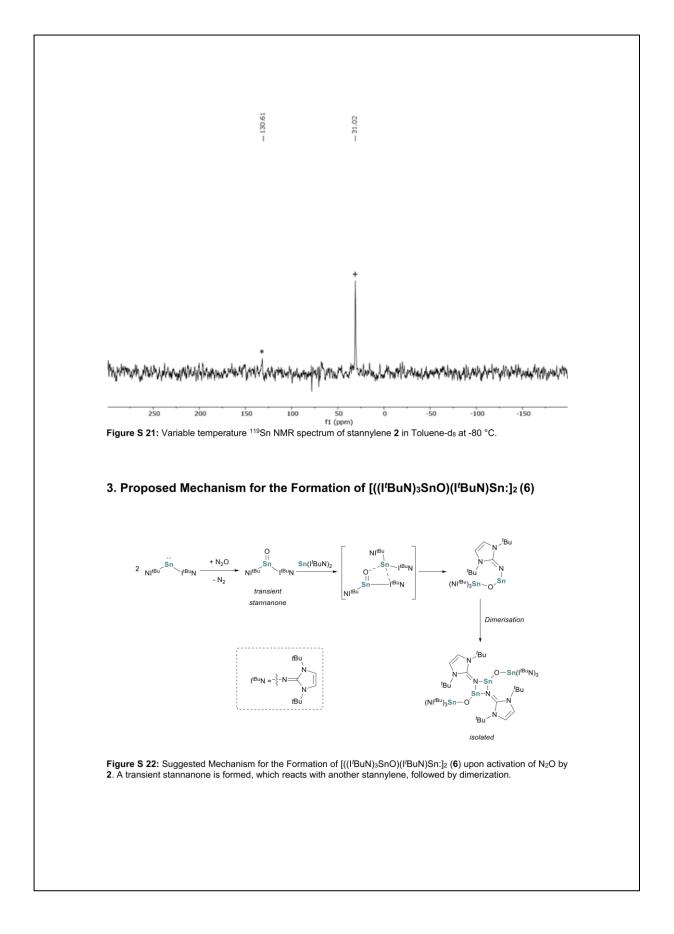





Figure S 18: Variable temperature ¹H NMR spectrum of stannylene 2 in Toluene-d₈ at -80 °C, -60 °C, -40 °C, -20 °C and 0 °C respectively. (* = signals corresponding to monomeric stannylene, + = signals corresponding to di-stannylene).

4. X-Ray Crystallography

4.1 General Information

Single crystal diffraction data were recorded on a Bruker Photon D8 Venture DUO IMS system equipped with a Helios optic monochromator and a Mo IMS microsource (I = 0.71073 Å) The data collection was performed, using the APEX III & IV software package^[S5] on single crystals coated with Fomblin®Y as perfluorinated ether. The single crystals were picked on a micro sampler, transferred to the diffractometer, and measured frozen under a stream of cold nitrogen (100 K). A matrix scan was used to determine the initial lattice parameters. Reflections were merged and corrected for Lorenz and polarization effects, scan speed, and background using SAINT. [S6] Absorption corrections, including odd and even ordered spherical harmonics were performed using SADABS.^[S6] Space group assignments were based upon systematic absences, E statistics, and successful refinement of the structures. Structures were solved by direct methods with the aid of successive difference Fourier maps and were refined against all data using the APEX IV software in conjunction with SHELXL-2014^[S7] and SHELXLE.[S8] H atoms were placed in calculated positions and refined using a riding model, with methylene and aromatic C-H distances of 0.99 and 0.95 Å, respectively, and U_{iso}(H) = 1.2 U_{eq(C)}. Nonhydrogen atoms were refined with anisotropic displacement parameters. Full-matrix least-squares refinements were carried out by minimizing $\Sigma_w(Fo^2-Fc^2)^2$ with the SHELXL weighting scheme.^[S9] Neutral atom scattering factors for all atoms and anomalous dispersion corrections for the non-hydrogen atoms were taken from International Tables for Crystallography. [S10] The images of the crystal structures were generated by Mercury.^[S11] The data (CCDC numbers 2302960-2302965) can be obtained free of charge from the Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

4.2 Crystal Data and Structure Refinement for Compounds 1-6

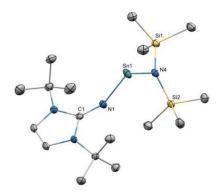


Figure S 23: Molecular structures of compound 1 in the solid state. Ellipsoids are set at 50% probability level, hydrogen atoms are omitted for clarity. Selected bond lengths [Å] and bond angles [°]: Sn1-N1 1.9891(15), Sn1-N4 2.1115(16), N1-C1 1.289(2), N4-Si1 1.7177(16), N4-Si2 1.7231(18), N1-Sn1-N4 97.37(6).

	1	2	3
CCDC Number	2302960	2302962	2302961
Empirical formula	C ₁₇ H ₃₈ N ₄ Si ₂ Sn	C ₂₂ H ₄₀ N ₆ Sn	C ₂₂ H ₄₀ GeN ₆
Formula weight	473.4	507.29	461.19
Temperature/K	100	100	100.15
Crystal system	triclinic	monoclinic	cubic
Space group	P-1	P21/n	lm-3
a/Å	9.5891(4)	12.1212(5)	15.657(5)
b/Å	11.3820(5)	13.6549(5)	15.657(5)
c/Å	12.0183(5)	15.3306(6)	15.657(5)
α/°	87.537(2)	90	90
β/°	67.803(2)	103.9420(10)	90
γ/°	78.202(2)	90	90
Volume/Å ³	1188.00(9)	2462.67(17)	3838(4)
z	2	4	6
ρ _{calc} g/cm³	1.323	1.368	1.197
µ/mm ⁻¹	1.183	1.057	1.216
F(000)	492	1056	1476
Crystal size/mm ³	0.137 × 0.112 × 0.107	0.8 × 0.7 × 0.4	0.09 × 0.05 × 0.04
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.68 to 50.7	3.862 to 51.402	3.678 to 51.47
Index ranges	-11 ≤ h ≤ 11, -13 ≤ k ≤ 13, -14 ≤ l ≤ 14	-14 ≤ h ≤ 14, -16 ≤ k ≤ 16, -18 ≤ l ≤ 18	-19 ≤ h ≤ 19, -19 ≤ k ≤ 19, -19 ≤ l ≤ 19
Reflections collected	39646	82900	88048
Independent reflections	4350 [R _{int} = 0.0485, R _{sigma} = 0.0216]	4690 [R _{int} = 0.0649, R _{sigma} = 0.0198]	693 [R _{int} = 0.0964, R _{sigma} = 0.0093]
Data/restraints/parameters	4350/0/229	4690/0/274	693/0/47
Goodness-of-fit on F ²	1.059	1.036	1.083
Final R indexes [I>=2σ (I)]	R ₁ = 0.0192, wR ₂ = 0.0396	R ₁ = 0.0201, wR ₂ = 0.0480	R ₁ = 0.0266, wR ₂ = 0.0690
Final R indexes [all data]	R ₁ = 0.0218, wR ₂ = 0.0404	R ₁ = 0.0251, wR ₂ = 0.0500	R ₁ = 0.0298, wR ₂ = 0.0705
Largest diff. peak/hole / e Å ⁻³	0.32/-0.36	0.35/-0.39	0.20/-0.30

Table S 1. Crystal data and structure refinement for compounds 1, 2 and 3.

	4	5	6
CCDC Number	2302965	2302964	2302963
Empirical formula	C33H49N6O4Sn	C ₂₄ H ₄₀ GeN ₆ O ₄	C100H172N24O2Sn4
Formula weight	712.49	1156.18	2217.37
Temperature/K	100	100	100
Crystal system	orthorhombic	orthorhombic	triclinic
Space group	Pbca	Pbcn	P-1
a/Å	16.6756(4)	14.050(6)	12.7150(17)
b/Â	15.4221(5)	19.077(7)	13.4081(17)
c/Â	27.4766(8)	11.887(4)	17.434(2)
α/°	90	90	83.374(4)
β/°	90	90	72.764(3)
Y/°	90	90	72.614(3)
Volume/Å ³	7066.2(4)	3186(2)	2707.9(6)
z	8	4	1
ρ _{calc} g/cm ³	1.339	2.41	1.36
µ/mm⁻¹	0.766	9.346	0.969
F(000)	2968	2160	1156
Crystal size/mm ³	1 × 0.8 × 0.6	0.04 × 0.03 × 0.02	0.07 × 0.03 × 0.01
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
2O range for data collection/°	3.84 to 51.46	5.476 to 54.862	3.958 to 51.716
Index ranges	-20 ≤ h ≤ 20, -18 ≤ k ≤ 18, -33 ≤ l ≤ 33	-18 ≤ h ≤ 18, -24 ≤ k ≤ 24, -15 ≤ l ≤ 15	-15 ≤ h ≤ 15, -16 ≤ k ≤ 16, -21 ≤ l ≤ 21
Reflections collected	367722	156984	100824
Independent reflections	6743 [R _{int} = 0.0285, R _{sigma} = 0.0063]	3632 [R _{int} = 0.0550, R _{sigma} = 0.0122]	10381 [R _{int} = 0.2088, R _{sigma} = 0.1162]
Data/restraints/parameters	6743/0/409	3632/6/153	10381/0/592
Goodness-of-fit on F ²	0.957	1.177	1.113
Final R indexes [I>=2σ (I)]	R ₁ = 0.0261, wR ₂ = 0.0889	R ₁ = 0.1129, wR ₂ = 0.2355	R ₁ = 0.0880, wR ₂ = 0.1670
Final R indexes [all data]	R ₁ = 0.0268, wR ₂ = 0.0896	R ₁ = 0.1137, wR ₂ = 0.2358	R ₁ = 0.1228, wR ₂ = 0.1811
Largest diff. peak/hole / e Å ⁻³	0.34/-0.85	2.26/-1.52	1.07/-2.30

Table S 2. Crystal data and structure refinement for compounds 4, 5 and 6.

5. References

- [S1] M. Tamm, D. Petrovic, S. Randoll, S. Beer, T. Bannenberg, P. G. Jones, J. Grunenberg, Org. Biomol. Chem. 2007, 5, 523-530.
- [S2] S. Beer, C. G. Hrib, P. G. Jones, K. Brandhorst, J. Grunenberg, M. Tamm, Angew. Chem., Int. Ed. 2007, 46, 8890-8894.
- [S3] M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Rivière, M. Rivière-Baudet, J. Chem. Soc., Dalton Trans. 1977, 2004-2009.
- [S4] M. Muhr, P. Heiß, M. Schütz, R. Bühler, C. Gemel, M. H. Linden, H. B. Linden, R. A. Fischer, Dalton Trans. 2021, 50, 9031-9036.
- [S5] APEX suite of crystallographic software, APEX 4 version 2021.10-0; Bruker AXS Inc.: Madison, Wisconsin, USA, 2021.
- [S6] SAINT, Version 7.56a and SADABS Version 2008/1; Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
- [S7] G. M. Sheldrick, SHELXL-2014, University of Göttingen, Göttingen, Germany, 2014.
- [S8] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Cryst. 2011, 44, 1281-1284.
- [S9] G. M. Sheldrick, SHELXL-97, University of Göttingen, Göttingen, Germany, 1998.
- [S10] A. J. C. Wilson, International Tables for Crystallography, Vol. C, Tables 6.1.1.4 (pp. 500-502),
 4.2.6.8 (pp. 219-222), and 4.2.4.2 (pp. 193-199); Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992.
- [S11] C. F. Macrae, I. J. Bruno, J. A. Chisholm, P. R. Edgington, P. McCabe, E. Pidcock, L. Rodriguez-Monge, R. Taylor, J. van de Streek, P. A. Wood, J. Appl. Cryst. 2008, 41, 466-470.

8.3. LICENSE FOR CHAPTER 4

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Oct 04, 2024

This Agreement between Lisa Spirkl ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	5881820309750
License date	Oct 04, 2024
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	ChemCatChem
Licensed Content Title	Ligand Assisted CO2 Activation and Catalytic Valorization by an NHI-Stabilized Stannylene
Licensed Content Author	Shigeyoshi Inoue, Franziska Hanusch, Dominik Munz, et al
Licensed Content Date	Sep 20, 2022
Licensed Content Volume	14
Licensed Content Issue	19
Licensed Content Pages	7
Type of Use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Title of new work	N-Heterocyclic-Imine Stabilized Heavier Tetrylenes Towards Small Molecule Activation and Catalysis
Institution name	Technical University of Munich
Expected presentation date	Nov 2024
The Requesting Person / Organization to Appear on the License	Lisa Spirkl
Requestor Location	Mrs. Lisa Spirkl Bad-Kreuznacher-Str. 6
Publisher Tax ID Total	Munich, 80807 Germany Attn: Mrs. Lisa Spirkl EU826007151 0.00 USD

8.4. LICENSE FOR CHAPTER 5

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Oct 04, 2024

This Agreement between Lisa Spirkl ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number	5880880891531
License date	Oct 02, 2024
Licensed Content Publisher	John Wiley and Sons
Licensed Content Publication	Chemistry - An Asian Journal
Licensed Content Title	Reactivity of NHI-Stabilized Heavier Tetrylenes towards CO2 and N2O
Licensed Content Author	Shigeyoshi Inoue, John A. Kelly, Lisa Groll
Licensed Content Date	Dec 7, 2023
Licensed Content Volume	19
Licensed Content Issue	2
Licensed Content Pages	5
Type of Use	Dissertation/Thesis
Requestor type	Author of this Wiley article
Format	Print and electronic
Portion	Full article
Will you be translating?	No
Title of new work	N-Heterocyclic-Imine Stabilized Heavier Tetrylenes Towards Small Molecule Activation and Catalysis
Institution name	Technical University of Munich
Expected presentation date	Nov 2024
The Requesting Person / Organization to Appear on the License	Lisa Spirkl
Requestor Location	Mrs. Lisa Spirkl Bad-Kreuznacher-Str. 6
Publisher Tax ID Total	Munich, 80807 Germany Attn: Mrs. Lisa Spirkl EU826007151 0.00 EUR