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Abstract

Computer imaging techniques are crucial in fields like medicine and engineering,
where CT scans help diagnose patients, and non-destructive testing (NDT) ensures
the safety of structures such as airplane wings. In this thesis, we study the full
waveform inversion (FWI) problem from a deep learning point of view. FWI,
initially developed in seismology and applied recently in NDT, is explored using
various neural network architectures, namely convolutional and feed-forward neu-
ral networks. Our initial goal was to apply a feed-forward neural network (FNN),
along with the ”Sample Where It Matters” (SWIM) weight sampling algorithm,
to solve the FWI problem outlined in [ 20 ]. We wanted to propose a new method
for the research described in the cited article. The approach sought to reduce the
number of trainable parameters and hence inference time by fixing hidden layer
weights and only optimizing the output layer. However, our FNN failed to pre-
dict the objective material distribution, even after adjusting and testing out differ-
ent initializations designed to make the algorithm converge easier, using different
SWIM domain approximations. A supervised learning experiment confirmed the
network could not approximate the discontinuous ground truth gamma using gra-
dient descent, which explained the failure in solving the FWI problem. Seeking to
determine the capabilities of neural networks to solve the FWI problem, we tested
smoother ground truth functions: (i) a Gaussian and (ii) a sinusoidal function. In
addition, we have also studied the effect of simulating a larger domain. Convo-
lutional neural networks (CNNs) could solve both supervised learning and FWI
tasks, independent of the discretization and domain size, whereas FNNs failed.
With an extended domain and the same number of grid points as in the original
experiments, an FNN with four hidden layers and 500 neurons per layer success-
fully handled smooth functions in the supervised learning framework, successfully
solved the FWI problem for the sinusoidal-shaped function, however struggled
with the Gaussian function in FWI. Lastly, we compared two CNN initializations
for FWI on smooth functions: (i) Xavier-Glorot and (ii) weights trained on a void-
less domain. We found that the first worked better for the Gaussian function,
while the second was more effective for the sinusoidal function. In this thesis, we
also discuss improvements and future work that could help answer our study’s
unresolved questions.
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1. Introduction

Scientific computing is a branch of science with a fast evolution over the last decades.
It is a multidisciplinary field at the intersection of applied mathematics, computer
science, and engineering aiming at developing informative, problem-solving method-
ologies and robust algorithms for numerical simulations of physical systems. A
simulation of a physical system can be, for example, the propagation of a sound
or electromagnetic wave in some medium or modelling the pressure distribution
of an aircraft while flying. Numerical simulations bring many advantages for sci-
entists; for example, scientists can explore physical systems under a wide range
of conditions by varying environment variables and studying the impact of these
changes on the system. Moreover, some experiments might be too expensive, too
dangerous, or simply impossible to undergo in a lab and a numerical model of the
system allows us to overcome these barriers.

There are two broad categories of problems in which simulations of physical sys-
tems may fall into. As a first example, we may want to know how a fluid prop-
agates in a given channel. For this purpose, the density of the fluid is known
and we want to approximate Navier-Stokes equations to simulate how the fluid’s
pressure and velocity evolves in time and space. These types of problems, where
we are certain about some causal factors and we want to model the effects of these
causal factors, are referred to as forward problems. On the other hand, we may
also want to find out information about the actual fluid, for example, its density.
For this purpose, we need some observations, taken in an experimental setting,
to infer its causes. These types of problems, where we need to infer the causes
from the effects, are called inverse problems. Inverse problems are challenging to
solve because generally an analytical solution does not exist. We need to recur to
iterative methods to solve this type of problem. The gigantic progress in computing
systems’ capabilities as well as the advances in applied mathematics, in particular,
numerical methods, have been essential for all the milestones achieved in recent
years regarding the solution of inverse problems. Good examples of fields where
an inverse problem constitutes the core of the field are medical imaging, and non
destructive testing (NDT). The work in this master’s thesis focuses on the same in-
verse problem tackled in NDT, and resolved using Full Waveform inversion (FWI).

FWI originated in seismology to retrieve accurate Earth subsurface models. In
this master’s thesis, we explore the FWI algorithm in the context of NDT with an
additional twist: deep learning. Innovations and advances machine learning are
beginning to impact scientific fields, such as the Earth sciences [ 23 ], becoming a hot
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1. Introduction

topic in research in the last decade. AI is a trendy research field, but other clas-
sical scientific fields are seeing themselves re-invented with machine learning ap-
proaches. We are witnessing increasing research in using deep neural networks for
solving partial differential equations (PDEs) as some classical methods encounter
problems when dealing with significant non-linearities. The work presented in this
master’s thesis explores this direction, combining a classical approach to solve the
scalar wave equation and novel neural network techniques to solve the inverse
problem in FWI.

In this master’s thesis we want to explore the FWI algorithm in combination with
neural networks to model the density distribution of a material in the context of
non-destructive testing. Initially, our aim was to design and implement a new
method to solve the FWI problem researched in the article [ 20 ]. Results obtained
after conducting the original experiments and implementing the new algorithm
motivated us to look at a more general picture. With this master’s thesis we want
to answer the following research question: What are the capabilities of neural
networks to solve a full waveform inversion problem? For this purpose, we design
and conduct different experiments.

• Showcase the potential of a new proposed method to solve the FWI problem
studied in article [ 20 ], and study the effect of different initializations in the
final prediction.

• Explore FNNs and CNN capabilities for solving the FWI problem with smooth
functions in two different domain sizes.

• Explore the effect of two initializations when solving the FWI challenge for
smooth functions in an extended domain with CNN.

Previous research that explores similar scenarios can be found in chapter  2 , which
summarises and explains the state-of-the-art of this work’s topic. The main work of
this thesis is presented in chapter  3 . Here, we provide a detailed explanation of our
methodology, present the results of our experiments, and discuss our observations.
Finally, in chapter  4 , we summarise our findings, draw our conclusions, and outline
potential future work.
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2. State of the Art

2.1. Classical Full Waveform Inversion

Full Waveform Inversion (FWI) is an imaging method originating in seismology,
aiming to improve the resolution of tomographic images from when it was devel-
oped to construct accurate subsurface models for a better understanding of subsur-
face properties. Patrick Lailly and Albert Tarantola introduced FWI in the early
1980s [ 38 ,  69 ]. This once novel method reveals information about the internal
structure of a medium in a noninvasive manner and rapidly got recognition from
the scientific community, extending to other scientific fields outside seismology;
for example, in medical applications [ 18 ], and Non-Destructive Testing (NDT) [ 56 ],
due to its capabilities for solving the inverse problem.

Irrespective of whether we consider a seismology problem, an NDT problem, or
a medical imaging problem, FWI is a computational technique used to simulate
the material distribution of a specimen. The FWI algorithm encompasses different
steps as shown in figure  2.1 . The essence of Full Waveform inversion is a model-
based optimisation algorithm aiming at recovering the material distribution of a
specimen. This method compares a simulated wavefield propagated in a numerical
model of the material specimen to measurements taken in an experimental setting.
The recorded measurements at the sensors carry information about the intrinsic
properties of the material. The density, as well as reflections inside the material
have a noticeable impact on the recorded measurements. The specimen’s numer-
ical model is iteratively updated so that the simulated wavefield approaches the
experimental measurements in each iteration. Simulating a wavefield, comparing
the misfit, and updating the specimen’s model is repeated until the material dis-
tribution of the specimen is retrieved. Before running the optimization algorithm,
it is imperative to record an initial set of measurements taken at specific points
on the surface of the specimen as a reference for comparison. In addition, we
start with an initial estimate of the specimen’s material distribution and refine it
iteratively. We strive to come closer to the actual material distribution with each
update. Minimising the misfit between the set of wavefield measurements taken at
collocation points on the specimen’s surface and a simulation of the wavefield at
the same collocation points with the current state of the specimen’s model drives
the convergence to the ground truth material distribution. This simulated wave-
field results from numerically solving the wave equation with the current model
parameters at every iteration. At each iteration, the algorithm refines the model’s
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2. State of the Art

parameters such that the simulated wavefield approaches the recorded measure-
ments. Generally, gradient-based optimisation methods are the preferred tool to
update the model’s parameters due to the high dimensionality and expensive misfit
function [ 6 ]. Formally, FWI is a non-linear optimisation problem where the material
parameters are the variables we seek to optimize. Formulating the problem as a
least squares problem allows us to solve the non-linear optimisation task efficiently.

Figure 2.1.: Schematic overview showing the Full Waveform Inversion workflow.

Looking at the figure above, we see that we compute the misfit between the mea-
sured values and the predicted wavefield values at every iteration. This misfit is
given by

J(m) =
1

2

Z

⌦

Z

T

NMX

i=1

(u(m;x, t)� uM(x, t))2 · � (x� xri ) dtdx. (2.1)

Equation  2.1 shows the equation we want to minimize in FWI, where uM(xri , t) is
the observed signal for the sensor at xi and time t, and u (m;x, t) is the solution of
the wave equation used in the experiment, for example, the acoustic wave equation
used in Ultra Sonic Non-Destructive Testing (US NDT) [ 62 ], or the elastic wave
equation used in seismology [ 61 ], simulated in the numerical model of the speci-
men. Moreover, ⌦ and T are the spatial and time domains respectively. At every
iteration, we seek to minimize equation  2.1 . With this brief introduction to the
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Full Waveform Inversion problem, we can identify the two critical ingredients for
solving the inversion task: An efficient forward solver to model the wavefield and
an efficient gradient computation algorithm to help minimize the high dimensional
objective function using a gradient-based optimisation method.

2.1.1. Forward problem

The forward problem in FWI comes down to numerically solving the wave equa-
tion. Numerical solutions arise from discretisation techniques, where the most
popular approach for simulating propagating waves is to use the finite-difference
method due to its ease of implementation and understanding [ 72 ,  14 ]. In cases
where we need to consider accurate and complex boundary condition cases, for
example, when we need to make use of unstructured meshes to implement bound-
ary conditions, we can apply finite element and finite volume methods [ 12 ,  34 ].
Finite element methods offer greater flexibility and accuracy in handling complex
boundaries and varying material properties, but they can be computationally more
expensive.

With the irruption of AI methods in scientific computing, novel computational
methods have arrived. Deep learning and neural networks can approximate so-
lutions to partial differential equations and serve as forward models [ 16 ,  45 ]. How-
ever, it is essential to treat using neural networks as forward solvers with caution
because neural networks may have problems generalise for data outside their train-
ing distribution [ 81 ]. There is also the possibility to combine finite difference classi-
cal solvers with convolutional neural networks (CNNs) to accelerate simulations by
using larger time steps [  64 ]. In section  2.2 , we introduce Physics-Informed Neural
Networks (PINNs) and explain how these networks yield a solution to the forward
problem.

Exploring the literature in FWI reveals that finite difference schemes are the pre-
ferred tool for solving the forward problem in FWI when the geometry of the
problem is simple enough [ 62 ,  61 ,  20 ]. Regarding the state-of-the-art papers in FWI,
the finite element method is used in [  6 ]. The work presented in this master’s thesis
employs a second-order explicit finite difference scheme for solving the scalar wave
equation implemented in [ 20 ].

2.1.2. Inverse problem and gradient computation in FWI

As introduced in section  2.1 , FWI can be formulated as a non-linear, least squares
optimization problem, iteratively solvable through gradient-based optimisation tech-
niques. The goal is to update the model parameters in each iteration to yield a sim-
ulated velocity field as close as possible to the measurement data. In other words,
we aim to minimize equation  2.1 by updating the parameters m (x). The crucial
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step in this optimisation procedure is calculating the gradient of the misfit func-
tion. Inverse problems in computational science, physics, engineering, and other
disciplines can have 1010 inversion parameters [ 22 ]. What is the best approach to
compute the gradient of a functional with respect to the model parameters?

An efficient way to calculate the gradient of a function with respect to a large
number of parameters is the adjoint state method [ 17 ]. Chavent developed this
computational method in 1974 to solve inverse problems based on the adjoint state
of an equation [  7 ]. It showed massive potential in gradient-based optimisation as
it provided a new method that yields the gradient independently on the number
of parameters to invert and without calculating the Fréchet derivatives, which can
be expensive to compute. Due to its computational advantages, the adjoint state
method is considered as the state-of-the-art reference method for classic full wave-
form inversion [ 20 ]. A quick search in the literature of FWI reveals its popularity
[ 6 ,  62 ,  73 ].

The derivation for the gradient calculation using the adjoint state method follows
from [  6 ] and [ 61 ]. The first step of the adjoint state method requires the formulation
of the adjoint state of the optimisation problem. We follow the derivation provided
in [ 6 ]. Let L be the partial differential equation operator for the scalar wave equa-
tion in heterogeneous medium, and let u be the solution to this partial differential
equation. Considering the misfit function given by equation  2.1 , the derivative of
the misfit function with respect to a change of the specimen’s model in direction
�mmm is

rmJ (m) �m =

Z

T

Z

⌦
u†(x, t) ·rmL(u;m,x, t)�md⌦dt. (2.2)

The field u† is the solution to the adjoint equation. This work focuses on the scalar
wave equation and hence operator L is given by

L(u; �) = �⇢0ü�r ·
�
�⇢0c

2
0ru

�
. (2.3)

In addition, the scalar wave equation is self adjoint for non dissipative material
and thereby, the adjoint equation takes the same form [ 6 ]. Setting homogenous
boundary conditions u(x, t) = 0 and u̇(x, t) = 0, the adjoint equation is given by

�⇢0ü
† �r ·

⇣
�⇢0c

2
0ru†

⌘
= f †, x 2 ⌦, (2.4)

with the adjoint volume force given by the integrand of the misfit function.

f †
s (x, t) := �

NX

i=1

[u(m;x, t)� uM(x, t)] � (x� xri ) . (2.5)

The adjoint problem is given by:
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�(x)⇢0u
†
tt(x, t)�r ·

⇣
�(x)⇢0c

2
0ru†

⌘
= f †, x 2 ⌦, t 2 [0, T ],

u†(x, T ) = u†t(x, T ) = 0, x 2 ⌦,

u† = 0, x 2 @⌦.

(2.6)

Using the definition of the derivative with respect to �, substituting the given
expression into equation  2.2 and integrating by parts, the derivative of the misfit
function with respect to the parameters is given by:

r�J�� =

Z

T

Z

⌦

h
�⇢0u̇†u̇+ ⇢0c

2
0ru† ·ru

i
dt d⌦, d�. (2.7)

In the work presented in this master’s thesis, we make use of the adjoint method
for computing the gradient of the misfit function when attempting to solve the
FWI problem. The implementation is performed using PyTorch and we use the
same forward solver to yield the solution to the scalar wave equation, as well as
the solution to its adjoint equation.

As mentioned, the adjoint state method is the state-of-the-art method for com-
puting gradients in FWI. However, researchers have attempted to solve the FWI
problem by computing the gradients differently. For example, it is possible to use
automatic differentiation implemented in deep learning frameworks like PyTorch
and TensorFlow to calculate the gradient of the loss function with respect to the
material parameters when using a neural network ansatz to compute the material
distribution of the specimen. This exactly is done and showcased in [ 20 ]. The
results obtained for the FWI problem are accurate but computationally inefficient.
The article states that the computational time per epoch dropped from 2.46s to 1.05s
when exploiting the adjoint state method compared to automatic differentiation.
Nevertheless, the article proves automatic differentiation also works well.

2.1.3. Full Waveform Inversion in seismology

To understand the need for the development of FWI, it is helpful to briefly explain
the main milestones in the history of seismology. We can consider the history of
seismology to start in the mid-18th century when J. Michell associated earthquakes
with wave propagation at the surface of the Earth [  44 ]. The theory of elasticity
developed throughout the 18th and 19th could demonstrate the observations stated
by J. Michell. Two potential solutions, namely P and S waves propagating with
unequal velocities, were suggested analytically for homogeneous and unbounded
media. Regarding arbitrarily heterogeneous media, solutions have only become
available in recent years as a result of advancements in computational science.
Furthermore, what could be the first experiment using active sources for investi-
gating wave propagation was performed by father and son Mallet using gunpow-
der explosions to produce perturbations. Not only did they possibly perform the
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first active source experiment, but they eventually also resolved a seismic inverse
problem as they related wave speed variations and material property variations.

After a devastating earthquake in 1897, Richard Oldham identified the two an-
alytical solutions, P and S waves, traveling at different speeds proposed for the
elastic wave equation [ 47 ]. After identifying P and S waves, Oldham discovered
the fast decay of the amplitude in P waves and inferred the existence of the Earth’s
outer core [ 48 ]. From Oldham’s work, B. Gutenberg determined the radius of such
outer core [ 19 ]. Other significant milestones in the history of seismology include
the discovery of two different types of P-waves and S-waves by A. Mohorovičić,
Lehmann’s inference of the Earth’s inner core in 1936, and advances to infer com-
plete radially symmetric Earth models by compiling traveltime tables [ 27 ]. During
the 20th century, seismologists and physicist refined the existing Earth models,
and discoveries of 3D heterogeneities were possible using tomography methods.
Some examples of the research conducted to model the Earth and its subsurface
heterogeneities include [ 1 ,  29 ]
.
All these scientific milestones were possible thanks to the simple representation of
seismic waves by rays. The spread of ray theory-based approaches in seismology
was motivated by its simplicity, its simple analysis of results, and the fact that
obtaining solutions to the PDE describing wave propagation (scalar wave equation)
in heterogeneous media proves difficult. However, the simplifying assumptions
used compromise the accuracy of the resulting Earth models. Ray theory’s capa-
bilities in seismology have been a source of distress at the end of the 20th century
[ 76 ,  66 ]. Ray theory is applicable when the length scales of 3D heterogeneities are
significantly smaller than the dominant wavelength, imposing an upper bound for
the quality in terms of the resolution of the tomographic images arising from the
simplifications derived from ray theory [ 13 ]. Since the 2000s, the scientific commu-
nity has been striving to develop new methods surpassing imposed limitations.
Such developments encompass finite-frequency tomography and full-waveform
inversion [ 79 ,  15 ,  2 ,  58 ,  68 ].

Main discoveries in modern seismology were achieved by studying travel time
information. Travel time in seismology refers to the time seismic waves travel
from the focus point to a certain point in the Earth’s crust. The development of
Global Seismic Networks, allowing the collection of large amounts of quasi-real-
time digital open-source data, catapulted advancements in seismology to develop
more accurate Earth models through data-driven techniques and the study of nor-
mal modes. Scientists see normal modes in seismology as seismic wave patterns
revealing insights into the Earth’s structure.

There were different methods at the time to develop the best subsurface models
possible. Seismologists used differential seismograms to conduct high-resolution
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2. State of the Art

upper mantle tomography [ 77 ]. Differential seismograms are a seismological tool
used to understand the response of wave propagation to small changes in an Earth
model. The standard procedure used the Born approximation to obtain differen-
tial seismograms, simplifying wave propagation modeling and representing the
differences between the recorded data and the data obtained after perturbing the
initial model. The procedure involves comparing several differential seismograms
and analysing how changes in the model parameters affect the resulting synthetic
data, thereby helping refine the initial Earth model. The differential seismograms
are used to yield a perturbed model, which is used to generate synthetic seismic
data. This synthetic data is compared with recorded data to estimate the sensitivity
matrix. The sensitivity matrix describes the degree of sensitivity of the synthetic
data with respect to the model parameters [ 28 ]. Partial derivatives of the gen-
erated data with respect to the model parameters are calculated to estimate the
sensitivity matrix. This is required before the inversion takes place, which relies
on the normal mode description to allow the optimization algorithm realisable,
by explicitly approximating the Frechet kernel even though considering a large
number of seismograms.

At the same time, efforts were made to provide high-resolution imaging using
data recorded at different depths below the Earth’s surface and from various an-
gles. Using the abovementioned technique and explicitly estimating the sensitivity
matrix becomes too expensive. To overcome this difficulty, scientists turned to
the exploding-reflector concept, yielding high-quality resolution imaging of the
subsurface after some physical considerations were implemented to better account
for how waves propagate through the ground [  8 ]. The idea behind this method
lies in carefully adjusting the recorded seismic data and aggregating the corrected
seismograms to obtain a detailed subsurface image. This approach, known as
migration, overcomes the difficulties from building the sensitivity matrix but in-
troduces other challenges.

In particular, data collected by seismic reflection surveys do not collect data from
various angles, and the sources used have a limited frequency bandwidth. As a
result, Earth structures corresponding to medium-sized wavelengths need to be
better represented in the data [ 26 ]. The workaround is a twofold procedure: Firstly
construct a physical model of the Earth structure considering wave propagation in
the ground. Moreover, polish and refine the resulting model to increase accuracy
by different migration means or iteratively updating the physical model [ 4 ,  65 ].
These solutions, however, offer a poor sensitivity to the large and medium-sized
subsurface wavelengths. In addition, Tarantolla and Lailly proposed an iterative
procedure improving Claerbourt’s migration imaging technique. This procedure
reformulated the migration imaging approach into a local optimization problem,
minimizing the squared error between the recorded and synthetic measurements
in a gradient-based fashion. Each iteration adds the perturbation found through
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gradient descent to the initial model, improving the accuracy in each iteration.

We can use various forward modeling approaches to achieve waveform-fitting.
Some examples include: reflectivity techniques in layered media, finite differences,
finite element methods, and adaptation of ray theory. These methods modeled
the forward problem correctly but encompassed high computational resources.
A less computationally demanding approach connects ray theory general Radon
reconstruction techniques and least squares optimization [ 39 ]. Because Green’s
functions are computed in smoothed media with the ray theory, we can use the
Born approximation to linearise the forward problem, and the optimization is it-
erated linearly, which means the background model remains the same over the
iterations [  73 ]. These imaging techniques are commonly known as migration or
inversion methods.

Contrary to this, FWI considers the total information content of the seismogram for
the optimization procedure. At every iteration, we model the full wave equation in
the final model state of the previous iteration [ 73 ]. FWI considers all types of waves,
making it a general, comprehensive and robust approach to seismic imaging.

2.1.4. Full Waveform Inversion in Non-Destructive Testing

During the 20th century, the increase in engineering projects and new infrastructure
has brought along a growing necessity to test, monitor and analyse the state of in-
frastructure and its constituting components, partly for safety reasons, and thereby
an incentive to focus on developing non-destructive testing techniques [ 80 ,  43 ,  67 ].

Non-Destructive Testing is used to build a model of the internal structure of a
component in terms of its material composition and geometric features without
inducing any physical or chemical change to it. High demand for accurate, de-
tailed, and efficient NDT imaging has emerged to ensure high-quality standards
remain high and consistent in industrial production processes. In the last decades,
several NDT methods have emerged that strive to provide high-resolution images
of the physical systems encountered. These techniques include, and are not limited
to, infrared NDT, radiography testing, and ultrasonic NDT [ 51 ,  75 ,  62 ].

Classical US NDT uses elastic waves to infer the material distribution of a specimen
without causing any impurity to it. The idea is to propagate a low-amplitude and
high-frequency sound disturbance through the specimen, taking measurements of
travel time and wave intensity at specific collocation points in the specimen. The
frequency range of waves in a US NDT setting is 500 KHz to 20 MHz. Flaws in
the material will affect the measurements taken at the sensors due to reflective
effects. The collected measurements are then compared with benchmark results
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2. State of the Art

of flawless specimens. This approach allows the detection of flaws in a material
resulting from a discrepancy between the recorded measurements in the tested
specimen and the benchmark measurements of the flawless material. However,
no additional information regarding location, orientation, and dimension can be
retrieved. Figure  2.2 depicts the classical procedure in NDT.

Figure 2.2.: Standard system used in NDT. The diagram can be found in [ 62 ].

Improvements of classical NDT lead to model-based NDT, which allows not only to
determine whether flaws exist in the specimen but also to characterise the geometry
and dimensions of the flaws by numerically comparing signal characteristics of
the measured data and simulated data. Widely used model-based NDT methods
include SIRT and ART [ 40 ,  46 ]. Figure  2.3 depicts a model-based NDT procedure.
FWI can be employed to accurately determine the parameters of complex earth
models in seismology. Consequently, with some adaptation to the more minor
scales used in non-destructive testing, FWI holds significant potential for such
experiments. The idea of FWI in NDT is to use an adaptable model of the flawless
specimen that will be iteratively updated to match the reference measurements in-
stead of having a fixed reference specimen. Starting from an approximative model
obtained from a CT scan, we adapt the initial model in an iterative fashion, updat-
ing the parameters to hopefully converge to a model that yields the same signals at
the sensors as the measurements initially taken. This technique is an improvement
compared to previous methods used in NDT, allows the production of accurate
models of the material, and better characterises the detected flaws. Applications of
FWI in US NDT include simultaneous detection of multiple cracks, flaw characteri-
sation, and other applications. Some efforts have been made already to explore the
potential of FWI in the field of NDT [ 56 ,  59 ].

In FWI, we consider two main steps. First, the mathematical modeling of the speci-
men, and secondly, and the numerical simulation of the wavefield in the specimen.
This task is denoted as the forward problem. Once we numerically solve the wave
equation to yield an accurate velocity model, we now want to find the material
parameters that yield numerical results similar to the measurements made. This
poses the inverse problem we will consider in this work.
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Figure 2.3.: Algorithm used in model based NDT. The diagram can be found in [ 61 ].

2.2. Physics informed neural networks

Physics-Informed Neural Networks (PINNs) are machine learning algorithms ca-
pable of solving problems described by partial differential equations. What dif-
ferentiates PINNs from other NNs is the peculiarity that PINNs embed the gov-
erning physics equations of the system into the training process through the loss
function of the neural network [ 52 ]. The loss function comprises different terms,
which account for initial and boundary conditions and the PDE residual. These
modifications made to the loss function make PINNs more powerful when solving
physics problems than classical machine learning methods, mainly when operating
in low data regimes [ 20 ]. In this small data regime, PINNs stand out compared to
classical machine learning algorithms, which offer low guarantees for convergence
when trained with limited data. Classical machine learning methods are purely
data-driven and do not include domain expertise in the learning process. This is
why achieving a good generalisation is difficult, especially when exposed to small
amounts of data. PINNs provide an alternative, improved method to classical
machine learning techniques when analyzing complex physical systems, as we
can embed prior knowledge in the training process. The PINN algorithm offers
a meshless alternative allowing to approximate the solution of the partial differ-
ential equation describing the problem by transforming the initial value problem
into an optimisation problem. Embedding the governing equations and physical
constraints into the loss function acts as a penalizing term, restricting the space of
plausible solutions.

PINNs appeared in 2017 for the first time to revolutionise research in scientific
computing through their smart embedding of prior domain knowledge in the train-
ing process. However, the idea of including prior domain knowledge into a ma-
chine learning algorithm goes back some years before the birth of PINNs. In his
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research, Owhadi laveraged prior domain knowledge about the solution spaces
of PDEs using a bayesian inference formulation of the problem, to identify bases
for the numerical homogenization of arbitrary integro-differential equations [ 49 ].
Furthermore, another example where such domain expertise was exploited was to
use a Gaussian process regression to approximate linear and non linear operator
functionals, as well as infer solutions and yield uncertainty estimations for the 1d
time-dependent advection–diffusion–reaction, the Poisson equation in ten dimen-
sions, and fractional sub-diffusion[ 55 ,  54 ,  53 ]. Furthermore, during the 90s, several
research papers appeared aiming at leaveraging prior knowledge to solve partial
differential equations [ 36 ,  50 ,  11 ]. At first, these advancements only considered
problems with regular borders, but this was later extend to account for arbitrary
geometries [ 37 ].

Advancements in technology leading to an increase in computing power, new spe-
cialised hardware development, new methodologies for training networks, and the
introduction of deep learning frameworks such as TensorFlow and Pytorch provid-
ing automatic differentiation capabilities, boosted research in using NN for solving
PDEs. Further research into the state of the art deep learning architectures were
part of the last steps towards the development of the PINN algorithm [ 41 ,  35 ]. The
release of the paper by Raissi et al introducing Physics Informed Neural Networks
marks a milestone in physics informed machine learning and opened the door for
research in physics informed surrogate models [ 52 ,  32 ]. As a small remark, the
paper showcases the potential of PINNs for dealing with two types of problems.
Firstly, data driven solution of PDEs, and secondly, data driven discovery of partial
differential equations. This thesis will deal with data driven discovery of partial
differential equations [ 60 ]. In other words, we will compute an unknown function
involved in the considered PDE from measurements.

2.2.1. Problem Set Up and Model Estimation

Many physics laws are described by parametrised non-linear partial differential
equations in the form of

@u

@t
+N [u;�] = 0, x 2 ⌦, t 2 T . (2.8)

In equation  2.8 , u(x, t) denotes the solution in the interval t 2 [0, T ] and at a point
x 2 ⌦ in space. In addition, N [u;�] denotes a non-linear differential operator
with coefficients given by �. PINNs can be exploited to solve two types of tasks.
Firstly, PINNs can be used for data-driven inference. Data-driven inference refers
to solving the forward problem, i.e finding a solution to the partial differential
equation. Secondly, PINNs can be further used for data-driven identification of
partial differential equations. In other words, this accounts to solving an inverse
problem.

13



2. State of the Art

Considering the most general form, PINNs have the potential to solve both the
forward and inverse problems defined as

F(u(z); �) = f(z) for z in ⌦,

B(u(z)) = g(z) for z in @⌦,
(2.9)

where on the one hand, the forward problem accounts for finding the function u
for every z in ⌦ where � are physical parameters and z are space-time coordinates,
and on the other hand, the inverse problem accounts for approximating � from
the data. The right hand side of equation  2.9 gives the function representing the
data, both in the interior of the domain as in its boundary. Moreover, F is the non
linear differential operator. As for every inital value problem, we need initial and
boundary conditions to solve it. B represents these initial and boundary conditions.
Regarding the forward problem, a neural network is used to approximate the so-
lution of the partial differential equation, where the model is defined by trainable
parameters ✓, where

û✓ (z) ⇡ u (z) . (2.10)

The vector ✓ represents the vector of the model parameters for both the forward
and inverse problems, given that PINNs can resolve both tasks [ 33 ]. As mentioned
earlier in this work, the PINN algorithm can be formulated as an optimization
problem in which the governing mathematical equations of the system are embed-
ded in the loss function of the network that we seek to minimize during training.
Mathematically speaking,

✓⇤ = argmin
✓

(!FLF (✓) + !BLB(✓) + !dLdata (✓)) (2.11)

where LF (✓), LB(✓), and Ldata (✓) are the partial equation, initial and boundary
conditions, and measurements losses. Each of the losses is weighted with its cor-
responding weight to counteract for the differences in magnitude of the different
loss terms. In this section of the thesis I just describe the general problem set up,
and will later define the exact losses, intrinsic to the problem we will study. As a
last remark, I want to note that when considering the forward problem, PINNs can
be regarded as an unsupervised learning algorithm, however, when looking at the
inverse problem, PINNs can be considered a supervised learning algorithm [ 9 ].

2.2.2. NN architectures used in PINNs

The universal approximation theorem states that any continuous function can be
arbitrarily approximated up to a sure accuracy by a multilayer perceptron with
one hidden layer and a finite number of neurons [ 24 ]. However, different network
architectures perform differently, and choosing the suitable model can be challeng-
ing. We can classify NN into two broad groups: shallow and deep networks. The
first group consists of networks with one or a few hidden layers, whereas the latter
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have many. Regarding the PINN framework, the majority of implementations rely
on feed-forward neural networks, although there are also cases employing other
architectures such as CNN, RNN, and GAN [ 20 ,  71 ,  78 ].

Assuming we opt for the general implementation of PINNs using feed-forward
neural networks, how many hidden layers and neurons per layer yield the best
solution? Experiments and research suggest that each problem requires its own,
particular architecture, and there is no magic, general architecture working for all
problems [ 70 ,  30 ,  74 ].

2.3. PINNs for Full Waveform Inversion

Ever since the advent of PINNs, there has been great recognition from the scientific
computing world. As we have seen in the sections above, PINNs can be used to
approximate solutions to PDEs and jointly solve forward and inverse problems.
When used to find forward solutions to PDEs, they are computationally more ex-
pensive than classical partial differential equation solvers [ 42 ]. However, PINNs
show great potential for solving Inverse problems, which is the main focus of this
work. As the thesis title indicates, we focus on the problem of full waveform
inversion, where the aim is to find the material distribution of a specimen from
wavefield measurements taken at defined collocation points.

Different research papers tackle the problem of full waveform Inversion in different
domains, in particular seismology and non-destructive testing. Following the work
in [ 20 ], the problem under study dictates the choice and implementation of the
PINN and the loss function chosen accordingly. We can encounter two types of in-
verse problems when performing FWI, in terms of the domain’s knowledge, which
influences the choice of PINN. We make a distinction between inverse problems
with full domain knowledge of the solution field and inverse problems with partial
domain knowledge of the solution field, following the approach found in [ 20 ].

In the first case, the velocity field u (~x, t) is known everywhere in the domain, hence
approximating the velocity field with a neural network is not needed. This paper
provides the state-of-the-art for solving this inverse problem using PINNs [ 63 ].
The paper presents an optimized PINN, trained to identify and characterise flaws
inside a metal plate, seeking to solve problems in wavefield imaging at ultrasonic
frequencies. The study focuses on the acoustic wave equation:

utt = v2(x, y)�u, x 2 ⌦, and t 2 [0, T ], (2.12)

a second order linear PDE, governing the propagation of acoustic waves in a medium,
where u (t, x, y) is the solution, v (x, y) is the sound speed and ⌦ 2 R2. In their
research, scientists train a neural network to approximate the solution to the wave
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equation, and the residual of equation  2.12 is embedded in the loss function. The
physics-informed neural network implemented for this study is trained with a loss
function containing two terms: the misfit between the measurement data and the
approximation and the residual of the PDE. Moreover, they use a fully connected
network with 96 neurons per layer and a depth of 4 layers. Furthermore, the
gradient of the loss function with respect to the model parameters is computed
using automatic differentiation [ 3 ]. In addition, the optimization problem can be
solved using any form of gradient descent algorithm. In particular, the ADAM
optimizer was used in this work [ 31 ].

In this work, researchers encountered slow convergence or no convergence of the
loss function during training when using tanh as an activation function [ 63 ]. The
choice of loss function is intrinsically related to the problem being studied, and
there is no criterion to help us with this choice. To circumvent the convergence
problems, an adaptive activation function scheme was implemented [  25 ]. The
authors included an extra hyper-parameter to multiply the loss function and input
this product into the activation function in this method. The parameter is also
optimized in the training loop through a gradient-based procedure. Finally, a last
modification needs to be done to account for the effect of the learning rate. The
parameter introduced is multiplied by a constant much larger than 1. The intro-
duced parameter was seen to steepen the activation function, helping with faster
convergence. This article by Japtap et al. showcases the effect of a in convergence
in a selection of machine learning problems [ 25 ].

Regarding the second type of inverse problems, the state-of-the-art is showcased in
[ 57 ]. In this research project, the authors propose a new approach to model wave
propagation and full waveform inversion using PINNs. This new approach utilizes
two PINNs, one for the forward modeling and one for the inverse problem. Both
networks are fully connected, with the second network being much smaller than
the network used to compute the solution to the forward problem due to the vari-
ations in the specimen’s material distribution being less complex than the varying
wavefield. Different computational experiments were performed, evaluating the
PINN algorithm for forward modeling of the acoustic wave equation and inverse
modeling to find the speed wave speed distribution in the material. Regarding in-
verse modeling, a study is conducted to evaluate the PINN’s capabilities to recover
sharp 2-D anomalies from a synthetic Crosswell experiment. The implemented
PINN successfully identifies and characterises the anomaly in terms of location,
orientation, and magnitude. It is important to note that the solution retrieved by
the PINN is smoothed out compared to the sharp discontinuity of the anomaly in
the grand truth distribution. The authors suggest that reducing the smoothening
effect of the inversion is plausible if a larger training data set was used for the pde
residual in the loss function and using the L1 norm for the minimization.
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2.4. Weight initialization and SWIM network

An essential step in the recipe for training neural networks is initializing weights
and bias terms. Weight initialization has a noticeable impact in the convergence
rate, accuracy, and generalization of the model [ 10 ]. The choice of initialization
affects the loss landscape of our model. It is known that increased diversity in
the initial weights favours a good starting point in the loss landscape, making it
easier for the moment to escape local minima and hopefully converge to the global
minimum. Contrary to this, homogeneity leads to the model getting stuck in local
minima and failing to converge to the optimal solution. Several weight initiali-
sation techniques exist to tackle this problem, such as Xavier-Glorot initialization,
random initialization, and He initialization. Xavier-Glorot initialization considers
the number of inputs and outputs of each layer and seeks to keep the variance
constant throughout each layer of the neural network. Moreover, He initialization
was introduced to consider non-linear activation functions while keeping the vari-
ance through a layer constant. For general cases, Xavier-Glorot initialization is the
dominating approach. However, the optimal weight initialization choice depends
on the problem we want to tackle and the model’s architecture [ 10 ].

Training neural networks is often a synonym of minimising the loss function with
respect to the network’s parameters, and optimising the weights and biases through
gradient descent techniques. With the aim of reducing the inference time to solve
the inverse problem faster, we explore new methods of sampling the weights of
a feed forward neural network. We closely follow the work in [ 5 ] to sample the
weights of our hidden layer, in efforts to reduce the number of parameters being
trained and converge faster to the solution. We make use of sampled networks,
where weights and biases in hidden layer neurons are entirely determined by two
points in the input space. After constructing all hidden layers in this way, the
coefficients and bias term of the linear output layer are determined by through
optimisation techniques.

Formally, let � be a feed forward neural network constructed with L hidden layers,
composed of parameters

�
Wl, bl

 L
l=1

+ 1 and activation function �l. Rigorously, we
can write the output of each layer as �(l) = �l

�
Wl�l�1 (x) + bl

�
. In addition, let N l

be the number of neurons in the lth layer. The formal mathematical definition of
sampled networks can be found in paper [ 5 ].

The idea of using the weights and biases from a network that does not need an
iterative training based on gradient descent looks very promising at first sight
to speed up the inference time when solving the inverse problem. However, is
the SWIM network capable of fitting the heterogeneous material distribution of a
specimen in the context of NDT? Before performing any experiments and working
on the inverse problem we perform a sanity check to see if the weights and biases
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obtained from the SWIM algorithm can be used to obtain the grand truth material
distribution. The SWIM network can be configured for two sampling algorithms:
uniform and non uniform sampling. The respective approximations can be found
in figures  2.4 and  2.5 .

(a) Hidden layer with 1000 neurons. (b) Hidden layer with 10000 neurons

Figure 2.4.: Results obtained after fitting the ground truth material distribution
with the SWIM network for 1000 and 10000 neurons hidden layer using
uniform sampling.

The SWIM network used to fit the ground truth material distribution in paper [ 20 ]
contains one hidden layer with 10000 neurons. The weights of this network can be
sampled using two different sampling algorithms. The simplest algorithm is uni-
form sampling, in which pairs of values inside the domain are sampled uniformly.
Furthemore, weights can also be sampled using the SWIM algorithm described in
[ 5 ]. The algorithm samples data points in areas where there are high gradients,
capturing in this way the more important variations in the function.

(a) Hidden layer with 1000 neurons (b) Hidden layer with 10000 neurons

Figure 2.5.: Results obtained after fitting the ground truth material distribution
with the SWIM network for 1000 and 10000 neurons hidden layer with
non-uniform sampling.
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In addition, the network can be configured with additional parameters that influ-
ence how the network behaves. For example, there exists a parameter that increases
our chances of sampling different data pairs, and hence capture more areas with
high gradients, yielding a better approximation of the function. This parameter is
called repetition_scaler. The code provided in source code  2.1 shows how
a network can be set up with the SWIM network implementation, and showcases
important features. To fit a function we need the input data and output data, given
by data_in and data_out respectively. In the case of uniform sampling, the
output data can be arbitrary, but of the same shape as the input data, because the
actual values of the output data are not taken into account. We just sample pairs
uniformly. Contrary to this, when sampling with the SWIM algorithm, the output
data is important because the algorithm will select pairs of the form (input data,
output data) that yield high gradients. Moreover, we can select the activation func-
tion used after each hidden layer, as well as whether we are tackling a classification
or regression problem. Furthermore, hidden layers are Dense objects, whereas the
output layer is a Linear object. The regularization_scaler parameter plays
a role for optimising the linear output coefficients in the case where there is not
a unique answer and we need to get the optimal solution by minimising the least
squares error. Moreover, the network is assembled with a list, named steps in the
code, containing all the hidden layers and output layer of the network. In source
code  2.1 we cannot see the output layer when building the output layer because
we build this ourselves in experiments that follow. The objective of including the
source code is to give a short introduction and overview of the parameters that can
be configured in the network.
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1 # SWIM NETWORK

2 data_in = xy
3 data_out = gammam.numpy().ravel().reshape(data_in.shape[0],)
4 print("data out shape = ", data_out.shape)
5 k = 10_000
6 basis_hidden_1 = Dense(
7 layer_width=k,
8 activation=np.tanh,
9 parameter_sampler="tanh",

10 sample_uniformly=True,
11 random_seed=38,
12 is_classifier=True,
13 repetition_scaler=100
14 )
15 basis_output = Linear(
16 regularization_scale=1e-8
17 )
18 steps = [
19 ("hidden-1", basis_hidden_1),
20 ]
21 basis = Pipeline(steps=steps, verbose=False)
22 basis.fit(data_in, data_out)

Source Code 2.1.: Python code for setting up and training the SWIM network.

With this gentle and brief introduction into the SWIM algorithm we have now
addressed all the necessary points for understanding the work in the experiments
that will follow. I hope you enjoy the read.
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3. Full Waveform Inversion with Neural

Network based Ansatzfunctions

3.1. Problem description

Full waveform inversion (FWI) seeks to model a specimen’s material distribution in
a non-destructive and non-invasive manner. In this work, we initially consider a
2D rectangular domain with a circular aperture inside the domain. At first, the void
will have a circular shape, as shown in the diagram below, but we will also study
the problem with voids of different shapes. This study aims at solving the inversion
problem and identify and characterise the void in the domain with a shallow feed-
forward neural network. Later, following experimental results of approximating
the discontinuous material distribution function, we evaluate the capabilities of
different architectures and easier material distributions when solving the FWI task.

Figure 3.1.: Representation of the problem in US NDT showing a rectangular
domain ⌦ with a circular void ⌦V . The boundary of the domain @⌦
is given by �y0 [ �y1 [ �x0 [ �x1 . The diagram is taken from [ 20 ].

In FWI, the material distribution is approximated by using sources that emit a wave
signal in the specimen, and sensors that record the displacement at specific points
in the domain (these points are called collocation points). The governing equation
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for this problem is the scalar wave equation in an isotropic heterogeneous medium,
given as

⇢(x)utt(x, t)�r ·
�
⇢(x)c(x)2ru(x, t)

�
� f(x, t) = 0 on ⌦⇥ T . (3.1)

where u (x, t) is the solution to equation  3.1 , ⇢ (x) is the density of the material,
c (x) is the wavespeed, and f (x, t) is the volume force. Moreover, the initial and
boundary conditions used are homogeneous Neumann, represented as

ux(x, t) = 0 on �y ⇥ T ,
uy(x, t) = 0 on �x ⇥ T ,
u(x, 0) = ut(x, 0) = 0 on ⌦.

(3.2)

In addition, we parameterise the inverse problem as done in [  20 ]. We use an
indicator function � which scales the density, such that the intact material has a
density of ⇢0 and �(x) is bounded between the lower bound ✏, and the upper bound
1, with ✏⌧ 1 and greater than 0:

⇢ (x) = � (x) ⇢0. (3.3)

Finally, the wave speed is assumed to be constant c (x) = c0, to yield the parame-
terised scalar wave equation we will use in our study:

�(x)⇢0utt(x, t)�r ·
�
�(x)⇢0c

2
0ru(x, t)

�
� f(x, t) = 0 on ⌦⇥ T . (3.4)

Furthermore, we need to model the volume force emitting the signal. We consider
four sources placed in four locations on the top boundary of the specimen. Each
source is considered to be a point source, modeled using a time varying excitation
 (t) and a spatial Dirac delta function,

f (~x, t) =  (t) � (x� xs) , (3.5)

with the time varying excitation given by

 (t) =

(
 0 sin(!t) sin

⇣
!t
2nc

⌘
, for 0  t  2⇡nc

!

0, for 2⇡nc
! < t.

(3.6)

The goal of solving the inverse problem is to retrieve the specimen’s material dis-
tribution, given by the predicted function �̂ (xxx,mmm) and parameterized by mmm, that
yields the solution to the wave equation  3.4 , which is closest to uM (xxxi, t), after
solving it with the current state of the parameters. The inversion is posed as an
optimization problem, where the misfit given by

L (ûuu,uuuM) =
1

2

Z

⌦

Z

T

NMX

i=1

(û(xxx, t;mmm)� uM(xxxi, t))
2 · � (xxx� xxxri ) dT d⌦, (3.7)
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is the function we seek to minimize by updatingmmm. We will follow a gradient based
optimization procedure, using ADAM optimizer. To compute the gradient of the
misfit function with respect to the model parameters, rmLM (û(m),uM), we will
employ the adjoint state method for the main work of the thesis. Moreover, results
from [ 20 ] will also be included and used as a benchmark for comparisson with our
results.

The main objective of this thesis is to provide a detailed study of how well can a
shallow feed-forward neural network solve the inversion problem in the context of
ultrasonic non destructive testing, and develop a new hybrid method that exploits
the computational advantages of the adjoint state method for gradient computation
w.r.t to the inversion parameters, and a novel weight sampling technique to speed
up the inference time needed to solve the inverse problem without the need to
train the hidden layer weights and bias terms. Ideally, we would like to solve
the FWI problem with the architecture described in section  3.2 , and the ”Sample
Where It Matters” (SWIM) weight sampling algorithm described in section  2.4 .
Moreover, we will also study the capabilities of other architectures to solve simpler
FWI problem, following experimental results of the main objective of this master’s
thesis.
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3.2. Neural network architecture

Figure 3.2.: Neural network architecture used for our proposed FWI method.
Inputs are 2D coordinates. The network is made of one hidden
layer with tanh activation functions, one output linear layer, and a
sigmoid activation function after the output to squeeze the output of
the network between 0 and 1.

In this master’s thesis, the ultimate goal is to solve a FWI problem, that is, ap-
proximate the material distribution of a specimen. FWI requires to solve the wave
equation at every iteration of the optimization loop. Thereby, we need to discretize
the domain to find a solution to equation  3.4 at every point in our grid. We use the
same discretization to solve the inverse problem, and want to find the specimen’s
density at every gridpoint in our mesh. Consequently, the input of the neural net-
work will be individual 2-d equidistant gridpoints, resulting from the discretization
of our domain. Moreover, the SWIM algorithm allows us to sample weights and
biases for fully connected neural networks, and thereby, we explore fully connected
networks for solving the inverse problem. We use a feed-forward neural network
with one hidden layer. We use tanh as an activation function after the hidden layer,
and we include a sigmoid after the output layer to ensure the output is between
0 and 1, agreeing with the parametrization of voids in the problem description.
Moreover, after the sigmoid activation function, it is essential to scale the output
to the range [✏, 1] to ensure the numerical stability of the scalar wave equation’s
solution. Moreover, we observe the approximations made by the SWIM network
when fitting the ground truth function in figures  2.4 ,  2.5 are correct in the sense that
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we can observe the discontinuity’s location and shape. However, the sharpness
still needs to be improved to be of the same standards as the benchmark results.
Our ground truth material distribution only contains two unique values. A steep
sigmoid function will help map the density values to the two extremes. In efforts to
improve the sharpness of our final prediction, we implement an adaptive sigmoid
function of the form � (n · (x� a)), in which we optimize the model parameters n
and a using a gradient descent approach, hoping to achieve a better sharpness. The
architecture used is shown in figure  3.2 .

3.3. Experiment configuration and benchmark Results

For the implementation of our method, we have adapted the code provided in
[ 21 ] following the paper [  20 ]. As stated in the previous section, we consider a
US NDT setting in which we want to identify a circular void inside a rectangular
domain. We follow the same configuration as the 2D case in [ 20 ]. Displacement
measurements are only available at sensors placed along the top boundary. The
configuration for the experiments consists of the following: We use 54 sensor lo-
cations placed uniformly along the top boundary of the domain, and four sources
also placed in the top boundary as shown in figure  3.3 . In addition, the sine burst
shown in equation  3.6 , with nc = 2 cycles and an amplitude of 1012kg(ms)�2

models the source term. As a last remark, the density of the void-less material
is ⇢0 = 2700kg/m3

Figure 3.3.: Configuration of sensors (black circles) and sources (red circles) in the
specimen used in our FWI experiments.

Moreover, we recall that in FWI we model the propagation of a wavefield in the
specimen being studied at every iteration of the optimization algorithm. In this
case the non-trainable forward solver is a second order finite difference solver,
implemented in PyTorch and found in [ 20 ]. The rectangular domain used in the
experiments under this section has a length of 0.1m and a width of 0.05m. We
discretise the domain with a 2d grid of 254x126 cells, where the rows and columns
at the boundaries are ghostcells. Furthermore, the cell sizes are obtained dividing
the domain lengths by the number of cells in each dimension, the time step used in
the forward simulation is derived from the CFL condition of the numerical scheme
and is given by �t = 3 ⇥ 10�8. Wavefield simulations are ran for 1200 time steps.
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Figure  3.4 shows the wavefields obtained when solving the equation  3.1 for the
ground truth material distribution.

Figure 3.4.: Simulated wavefield in ground truth material distribution propagate at
time steps 180, 270, 360. The emitting source is the third source starting
from the left in figure  3.3 .

Figure  3.5 shows the results obtained in [ 20 ]. These results are the benchmark to
which we will compare the results obtained with our proposed method. In the
paper, they solve the FWI problem starting with a PINN framework, changing spe-
cific components until they arrive to the state-of-the-art method in FWI - the adjoint
state method. To get the results shown in  3.5 the material distribution is predicted
using a convolutional neural network for figures  3.5a ,  3.5b , and  3.5e . Case  3.5c 

employs a piece-wise polynomial ansatz �̂(x) =
PNc

i=1 ciNi(x) for approximating
the material distribution. The respective ansatz is defined by

Ni(x) =

(
1 if xi  x < xi+1,

0 otherwise.
(3.8)

The coefficients are optimized using ADAM optimizer and the gradients are ob-
tained through automatic differentiation implemented in PyTorch. The continuous
adjoint method could also be employed for calculating the gradients of the loss
function with respect to the coefficients of our constant ansatz. Furthermore, figure

 3.5d shows the results obtained with the classic adjoint method. Here, the mate-
rial distribution is predicted without any deep learning approach and gradients
are computed with the continuous adjoint method. This result is the benchmark
against what results obtained in figures  3.5a ,  3.5b ,  3.5c and  3.5e are compared with.
Finally, the article proposes a new hybrid method to tackle the FWI task which
combines the strengths of using a neural network ansatz to predict the material
distribution and the strenghts of using the adjoint state method for computing the
gradients instead of automatic differentiation. In this master thesis, we ideally want
to implement a new version of the hybrid algorithm combining the strengths of the
already implemented algorihtm in [ 20 ] and the SWIM weight sampling algorithm
to speed up the inference when tackling the FWI task.
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(a) PINN algorithm (b) AD Neural network ansatz

(c) AD constant ansatz (d) adjoint method

(e) hybrid method

Figure 3.5.: Results obtained for the FWI problem in [ 20 ].

How will our new proposed hybrid method help speed up solving the FWI prob-
lem? Our proposed hybrid method is based on a shallow feed-forward neural
network, that exploits the computational advantages of the gradient computation
using the adjoint state method to compute the derivatives of the loss function with
respect to the material distribution’s parameters, and a clever weight sampling
technique for neural network weights that will allow us to only optimize for the
weights of the output layer plus a bias term, with the aim of speeding up the
inversion process. The aim of our method is to solve the FWI problem using a

27



3. Full Waveform Inversion with Neural Network based Ansatzfunctions

neural network with one hidden layer, in which the weights of the hidden layer are
fixed before and during the optimization of equation  2.1 . During the optimization
loop, only the coefficients and bias term of the linear output layer will be optimized.

We conduct different numerical experiments to study how well we can solve the
FWI problem with our proposed method. We conduct the following experiments:

• Train the output layer coefficients as well as the sigmoid parameters to solve
the FWI problem for different initializations of our shallow network weights.

• Train for the steepness and shift coefficients of the sigmoid function after our
output layer.

3.4. Numerical experiments for our proposed FWI method

3.4.1. Our approach for solving FWI task

Having explained the problem setup, configuration for our experiments, and the
SWIM algorithm for sampling neural network weights, we now tackle the real
inverse problem and evaluate how well our hybrid proposed method performs.
Recall the SWIM algorithm used to sample weights for our feed-forward neural
network. The forward pass of the hidden layer of the swim network can be repre-
sented as a matrix A 2 Rn⇥k where n represents the number of input data points
and k represents the number of neurons in the hidden layer. In order to obtain the
coefficients of the linear output layer, we can solve a linear system by solving a least
squares problem, as the number of data points n is much larger than the number of
neurons. We can augment matrix A with an extra column of ones to account for the
bias term in the solution that minimizes the least squares problem. Moreover, as we
previously know that our specimen for the FWI problem is a rectangular domain
with a circular void, we use the fact that we are considering a nearly intact object
and this accounts to a domain where cells in our grid will have a value of � = 1
nearly everywhere. With the intention of helping our method converge to the true
solution, vector b will be initialized to an array where all entries are one. Finally,
recall the steep and shifted sigmoid function used to make the output of the linear
layer sharper. We need to apply the inverse of this function to our target to solve
for the linear coefficients and bias term in the output layer of our neural network.

Given the linear system:
Axcoefficients = ��1(b) (3.9)

where A 2 Rn⇥k+1 with n � k and b 2 Rn, we solve for xcoefficients using the least
squares method.
The least squares solution x minimizes the residual sum of squares:

xLS = argmin
x

kAxcoefficients � ��1(b)k22 (3.10)
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Once solving the linear system, the solution x 2 Rn+1 contains the coefficients and
bias term of the output linear layer of our neural network. Having solved the least
squares problem, we initialize the output linear layer of our shallow feed-forward
neural network with the solution obtained with equation  3.10 and we try to solve
the FWI problem.

Figure 3.6.: Plots show the evolution of the predicted material distribution over 100
training epochs. We show the results after epochs 0 (top left image), 20
(top right), 40, 60 and 100 (bottom left) and the cost during training.

Figure  3.6 shows how the predicted material distribution evolves during the train-
ing epochs, as well as the cost evolution. We can observe that the cost reaches a
plateau and does not improve further, and that the result obtained after training is
disappointing. The magnitude of the cost is very small, of the order of 10�12. This
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has an explanation: The cost is calculated with equation  2.1 . We integrate in time
using the trapezoidal rule, which uses the timestep as a multiplicative constant.
The timestep used in the simulations is of the order of 10�8. We integrate in space
by multiplying by the grid cells’ area, which is of the order of 10�4. Multiplying
these small quantities makes the evaluation of equation  2.1 yield very small results.

Figure 3.7.: Plots show simulated wavefields using the ground truth gamma distri-
bution, the initialized gamma distribution and the converged gamma
at timestep 220.

Figure 3.8.: Diagrams show the time-series measurements at sensors in the top
boundary at x position 220.

Figures  3.7 shows the wavefields simulated in the ground truth material distribu-
tion and in the initialized and converged material distributions, before and after the
optimization procedure respectively. Moreover, figure  3.8 shows the time-series
values measured in the sensor located at grid point in the top boundary with x-
position 220 for both the initialized gamma distribution and the converged gamma
distribution. This initialization does not show much improvement. Table  3.1 quan-
tifies the misfits between ground truth gamma, the initialized gamma, and the
converged gamma, for all sensor values at all time-steps.
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3.4.2. FWI results with different weights and biases initializations

Initializing weights ans bias terms to approximate a large void in the domain

Our previous initialization was not adequate. We did not see much improvement
in the cost function. In our next experiment we aim to overcome the convergence
problems of our method by fitting a big void in the domain. In previous experi-
ments, the coefficients in the output linear layer were obtained by solving a linear
system. The right hand side of this linear system was a vector full of ones, obtained
from a void-less domain, reshaped to satisfy the shape requirements to solve for the
vector of coefficients. Now, instead of solving the linear coefficients for a domain
full of ones, we solve for the linear coefficients for a domain with a big circular
void, much larger than the true circular void we aim to predict. After 100 epochs
of training, we obtain the results shown in figure  3.9 .
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Figure 3.9.: Plots show the evolution of the predicted material distribution over 100
training epochs. Plots are shown for epochs 0 (top left image), 25 (top
right), 50, 75 and 100 (bottom left). We also show the cost evolution
during training.
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Figure 3.10.: Diagrams show a wavefield at timestep 220 for a wave simulated
using (i) the ground truth gamma (left image), (ii) the initialized
gamma (middle image), and (iii) the converged gamma (right image)

Figure 3.11.: Plots show the time-series of the displacements measured by the
sensor at the top boundary of the specimen, at x position 152. The
Left image shows the time-series if we simulate the wave propagation
with the material distribution shown in the top left image of figure

 3.9 . The right plot shows the time-series if the wave was propagated
in the converged material distribution, shown in the bottom left image
of figure  3.9 

Figures  3.9 ,  3.10 , and  3.11 all suggest that our optimization was correctly per-
formed, we see the cost decrease and the initial big void in the domain fills up.
Moreover, the trajectories shown in  3.11 back up and validate the decreasing cost.
The trajectory obtained from simulating a propagating wavefield in the converged
material distribution is noticeably closer to the ideal trajectory than the one ob-
tained from simulating the wave propagation in the material distribution with the
big void. However, we reach a plateau in the training cost and we are unable to
converge to the ground truth material distribution.
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Initializing weights and bias terms to approximate a shifted version of the

ground truth function

Moreover, the question we asked ourselves to design the next experiment is: How
can we further help our algorithm converge to the ground truth gamma? Having
the same idea in mind as in the last experiment, we want to solve the linear coeffi-
cients of the output layer to fit a very similar gamma function as the ground truth,
even more similar than the big circular void of the experiment above. This time,
we will fit a slightly shifted circular void, trying to initialize the weights and biases
of our network to something very close to the ground truth, hopefully helping the
training converge to the true solution and see if gradient descent works.

Figure 3.12.: Plots show the evolution of the predicted material distribution over
100 training epochs. Plots are shown for epochs 0 (top left image), 10
(top right), 40 (bottom left), and 100 (bottom right).

Unfortunately, we did not get the results we expected when performing our exper-
iments. Although the misfits shown in table  3.1 and the trajectories plotted in  3.14 

suggest that we improved the prediction, we did not converge to the ground truth
gamma distribution.
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Figure 3.13.: Plots show a wavefield at timestep 220 for a wave simulated using
(i) the ground truth gamma (left image), (ii) the initialized gamma
(middle image), and (iii) the converged gamma (right image).

Figure 3.14.: Plots show the time-series of the displacements measured by the
sensor at the top boundary of the specimen, at x position 152. The
Left image shows the time-series if we simulate the wave propagation
with the material distribution shown in the top left image of figure

 3.12 . The right plot shows the time-series if the wave was propagated
in the converged material distribution, shown in the bottom left image
of figure  3.12 

Table 3.1.: Misfit values for different experiments
Experiment Initial Misfit Converged Misfit

Domain of ones (subsection  3.4.1 ) 1333.11 1226.04
Double Right Shift (appendix  A ) 1574.28 1185.64
Right Shift (appendix  A ) 601.23 600.88
Upwards Shift (subsection  3.4.2 ) 1033.92 744.12
Large Void (subsection  3.4.2 ) 10057.38 1226.08

3.4.3. Training sigmoid parameters in FWI setting

For this experiment, the objective is to check whether we can fit the ground truth
gamma exactly with our SWIM network and gradient descent. In previous exper-
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iments, we have gradually made the problem simpler and simpler by changing
the initialization of our weights. This is the last experiment with this particular
setting. Here, we will fit the ground truth material distribution function with our
SWIM network. We then take all weights and bias terms of the SWIM network,
and initialize our network with these weights and fix them. As observed in figure

 2.4 , the SWIM network does not produce a binary output, therefore we need a
very steep sigmoid function to map the values to its extremes. We use a sharp
and shifted sigmoid function, so that the output of our network is mapped as
close as possible to 0 or 1. The form of this sigmoid is � (n · (x+ a)) where n
is the sharpness coefficient indicating the steepness of the function and a is the
shift of the sigmoid function. The steepness and shift coefficients will be the only
trainable parameters in this experiment, the weights and bias terms used during
the initialization already produce a good fit of the ground truth gamma.

(a) Gamma prediction (b) Error in the prediction

Figure 3.15.: Plots show the predicted material distribution (gamma) and the error
in the prediction obtained using an adaptive sigmoid function with
trainable shift and sharpness coefficient. n was initialized to 10 and a
to 0.5 before training started.
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(a) Gamma prediction (b) Error in the prediction

Figure 3.16.: Plots show the predicted material distribution (gamma) and the error
in the prediction obtained using an adaptive sigmoid function with
trainable shift and sharpness coefficient. n was initialized to 336.774
and a to 0.547 before training started.

Figure 3.17.: Plot shows the evolution of cost during training of parameters in
adaptive sigmoid function

Figures  3.15 , and  3.16 show the result of the approximation for different initial-
izations of the coefficients in our sigmoid function. Looking at figures  3.15 ,  3.16 ,
and  3.17 , shows that our gradient descent optimizer faces challenges trying to
find the shift and sharpness coefficient needed to make the fitting of the ground
truth gamma perfect. Figure  3.17 shows the evolution of the costs over the epochs,
and indicates that the sigmoid function initialized to n = 10 yields a better cost
after 50 epochs of training. However, the gamma prediction and error show the

37



3. Full Waveform Inversion with Neural Network based Ansatzfunctions

opposite. This showcases the challenge faced when training the sharpness and shift
parameter of our activation function to make the fitted ground truth look sharper.
We now start to think that our proposed method for solving the FWI challenge will
not work. In experiments below we try to confirm this hypothesis and we tackle a
simpler problem than the FWI task.

For the experiments above, the cost decreased during training between two and
three orders of magnitude and then reached a plateau which did not improve
with increasing number of epochs. In order to validate our approach, we plotted
the time-series values of one sensor in the top boundary of our domain for three
material distributions for each of our experiments. These three material distribu-
tions are: the ground truth, the material distribution after the first forward pass
of the model, and the material distribution obtained after training. For example,
regarding the big void experiment, figure  3.11 shows the respective trajectories
for the three distributions. These trajectories represent the displacement values
captured at one sensor for all timesteps when a wave is propagated in the respective
material distribution. We can observe that the misfit between the trajectories in
the two plots decreases from the trajectory in the initialized material distribution,
to the trajectory in the converged material distribution. The decrease in misfit
agrees, and drives the decreasing training cost. However, the decrease was not
enough and our model, alongside with the respective initialization, could not solve
the FWI problem in regard. Table  3.1 contains all the misfits with respect to the
ground truth gamma trajectory, for the initialized distribution and the converged
distribution. We can see that all converged misfits are smaller than the initialized
misfits, showing the training was done correctly, but the converged solution was
not the optimal.

3.4.4. Supervised learning experiments and gradient descent

Results of experiments above suggest that our inverse problem is difficult to solve
with gradient descent and our shallow network. The plotted trajectories shown
for each initialization tested serve as validation for our experiments. For all our
experiments above the cost decreased during training until a plateau was reached,
however the converged solution is not the correct one. We now conduct exper-
iments to see if our ground truth gamma function can be approximated using
our neural network in a supervised learning framework. The supervised learning
problem should be easier to solve than the FWI problem. If the supervised learning
problem cannot be solved with our network architecture, we will not be able to
solve the inverse problem using the same architecture as this constitutes a harder
problem.
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(a) Supervised learning task using the proposed network architecture for the FWI
problem.

(b) Supervised learning task for an MLP with three hidden layers.

Figure 3.18.: Plots show results obtained for the supervised learning task for (a)
our proposed network architecture and (b) an MLP with three hidden
layers. The images on the left hand side show the prediction after
training.
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On the one hand, Figure  3.18 suggests that our shallow network is not able to
solve the supervised learning task for the given discontinuous material distribu-
tion. We observe how the MSE loss reaches a plateau, and the loss will not decrease
further. We have attempted to solve the supervised problem with two network
architectures. Figure  3.18a shows the result when exploiting the capabilities of a
FFN with one hidden layer, whereas  3.18b shows the result of the fitting when
using a FFN with three hidden layers. We can say there is a slight increase in the
quality of the fitting, but the results suggest a shallow feed-forward network cannot
capture the discontinuity of the ground truth gamma studied in our FWI problem,
and as a result, our method fails to solve the FWI problem under consideration.
On the other hand, figure  3.19 shows that the CNN employed to solve the FWI
problem for figure  3.5 is able to solve the supervised learning problem up to a very
high accuracy, contrary to the feed-forward networks we tested. The good results
yielded by the CNN in the supervised learning task makes attempting to solve the
FWI problem with this same architecture a promising experiment, as it turns out
by the results presented in [ 20 ] which employ the same CNN to solve the FWI
problem.

Figure 3.19.: Plots show the result and training for the supervised learning task
using CNN architecture.

3.5. Smooth function experiments

Experiments from the supervised learning framework suggest that our discontin-
uous function is hard to approximate with our shallow network using gradient
descent. We now change the ground truth gamma function to a smooth function
to see if this overcomes the problem, as smooth functions are easier to approxi-
mate with neural networks. We will run experiments for different settings. One
setting will consider a ground truth material distribution which is the sigmoid of a
Gaussian function. The second setting will explore having a ground truth material
distribution which is a sigmoid of a two-dimensional sine function. We include the
sigmoid function in order to squeeze the output between 0 and 1, agreeing with the
parametrization of voids in the problem description, described by equation  3.3 .
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Smooth function 1:

We define a Gaussian function over the spatial domain [0, Lx]⇥[0, Ly]. The function
is centered at (µx, µy) and is expressed as follows:

G(x, y) = exp

✓
�(x� µx)2

2�2x
� (y � µy)2

2�2y

◆
, (3.11)

with
µx =

Lx

2
, µy =

Ly

2
,

and �x and �y are the standard deviations in the x and y directions, respectively.
Both standard deviations are set to 0.01. To obtain the smooth function for our
experiments, G̃(x, y), we first normalize and invert the Gaussian function:

G̃(x, y) = s · (1�G(x, y)) + ✏, (3.12)

where s is a scaling factor and ✏ is a small minimum value to ensure the function
remains bounded away from zero, identical to the lower bound of equation  3.3 .
Finally, we apply a sigmoid transformation to G̃(x, y):

Sigmoid(G̃(x, y)) =
1

1 + exp(�G̃(x, y))
. (3.13)

Smooth function 2:

We define a sinusoidal function S(x, y) over the spatial domain [0, Lx]⇥ [0, Ly] as:

S(x, y) = sin

✓
2⇡x

Lx

◆
· sin

✓
2⇡y

Ly

◆
, (3.14)

where Lx and Ly are the lengths of the domain in the x and y directions, respec-
tively.

Next, we apply the sigmoid function to the sinusoidal function S(x, y) to obtain a
smooth output:

Sigmoid(S(x, y)) =
1

1 + exp(�S(x, y))
. (3.15)
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(a) Sigmoid of Gaussian function (b) Sigmoid of Sine function

Figure 3.20.: Plots show the two ground truth smooth functions. Figure (a) shows
the sigmoid of the inverted Gaussian function  3.13 , (b) shows the
sigmoid of a sine function  3.15 . We will be conducting experiments
with these functions as ground truths.

We will revisit our approach to solve the FWI problem for the two material dis-
tributions displayed in figure  3.20 . We will first study the supervised learning
task with three different neural network architectures: (i) CNN, (ii) feed-forward
neural network with one hidden layer, (iii) feed-forward neural network with three
hidden layers. The result of the supervised learning task will again give us an idea
about the potential of each respective network when attempting to solve the FWI
problem. In addition, we will test two different initializations when attempting
to solve the inverse problem, namely, Xavier-Glorot initialization, and initializing
the weights of the network with the weights of the same network trained in a
supervised learning setting to approximate a voidless domain. We conduct this
experiment to see if initializing the weights after fitting a domain of ones is prob-
lematic, as this yielded strange results when attempting to solve the FWI problem
with the proposed method of this master�s thesis.

3.5.1. Supervised learning experiments

For the supervised learning problems, we initialize the network using Xavier-Glorot
initialization. The dimensions of the rectangular domain modeling the specimen
are the same as in the FWI problem. Moreover, we employ a constant learning
rate of lr = 0.001 and choose to use ADAM as our optimizer. The loss function
to optimize is the Mean Squared Error loss due to the continuous nature of the
function we want to fit with our models. For the supervised learning experiments
with CNNs we train for 5000 epochs as the result got noticeably better when train-
ing for longer. Figure  3.21 shows the result of the supervised learning task when
employing a CNN.
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(a) Sigmoid of Gaussian function

(b) Sigmoid of sine function

Figure 3.21.: Plots show the results for the supervised learning task for (a) sigmoid
of Gaussian function and (b) sigmoid of sine function. We trained the
CNN for 5000 epochs with Xavier-Glorot initialization. Images on the
left are the results of the first forward pass. Images on the right are the
converged results.

As a previous, cautious step before attempting to solve the FWI problem with our
shallow network and the clever weight sampling algorithm, we test the ability
of our network to solve the supervised learning problem. Our network has the
same architecture as described in figure  3.2 . Regarding the training, we also use a
constant learning rate of lr = 0.001. We have tested bigger and smaller learning
rates but these do not yield better results. As for the supervised learning exper-
iment using the CNN for our smooth functions, we also use ADAM optimizer
and our loss function is also the MSE loss. Finally, we include a regular sigmoid
function with no shift or steepness parameters, as our target function is continuous.
Figure  3.22 shows the results obtained for the described training configuration and
architecture.
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(a) Fitting sigmoid of Gaussian function with feed-forward one hidden
layer network.

(b) Fitting sigmoid of sine function with feed-forward one hidden layer
network.

Figure 3.22.: Plots show the results for the supervised learning task for (a) sigmoid
of Gaussian function and (b) sigmoid of Sine function using our
network architecure (one hidden layer), Trained for 1000 epochs with
Xavier-Glorot initialization. Images on the left hand side are the result
after the first forward pass whereas images to the right are the result
of the converged predictions.

Again, our shallow network cannot capture the properties of the target function.
What happens when we increase the number of layers? We now perform the
experiments yielding the results shown in figure  3.22 but this time using a feed-
forward neural network with three hidden layers. We also use tanh activation after
the hidden layers, and a sigmoid function after the linear output layer. Results for
these experiments are shown in figure  3.23 . We observe this network approximates
the functions better yet still not to the desired accuracy. It is not worth testing
the FWI problem using these architectures and these target functions. For the
supervised learning experiments using multiple layers, we trained for 1000 epochs
as the cost did not decrease any further for our given setting.
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(a) Fitting sigmoid of Gaussian function.

(b) Fitting sigmoid of sine function.

Figure 3.23.: Plots show the results for the supervised learning task for (a) sigmoid
of Gaussian function and (b) sigmoid of sine function using MLP
with three hidden layers, Trained for 1000 epochs with Xavier-Glorot
initialization. Images on the left show the result after the first forward
pass. Images on the right show the final result.

3.5.2. FWI with CNNs and smooth functions

Results obtained for the supervised learning experiments using the CNN archi-
tecture highlight the potential of this architecture for solving the FWI problem for
the smooth functions setup. Figure  3.24 shows the results obtained. We initialize
CNN with Xavie-Glorot initialization. The plots on the left of figure  3.24 show the
result after the first forward pass of the network, whereas the images on the right
hand side show the converged results. We notice the results are not as sharp and
accurate as the ones displayed in figure  3.5 . The reason for this could be that there
is not an actual void inside the domain. Figure  3.25 shows how the wavefields
propagate in the whole domain, with no reflections in the interior of the domain.
The smooth nature of the target function implies reflective effects only occur at the
boundaries of the domain. In the presence of a void, we would obtain reflective
phenomena at the boundaries of this void and thus have a bigger effect in the
recorded measurements at the collocation points located at the top boundary. This
is because a reflected wave from the middle of the domain would arrive at an earlier
timestep than a reflected wave from the bottom boundary.
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(a) FWI for sigmoid of gaussian function.

(b) FWI for sigmoid of sine.

Figure 3.24.: Plots show the results for the FWI task for (a) Gaussian function and
(b) sigmoid of sine function for 2000 training epochs using a CNN.
Images on the left show the first forward pass. Images on the right
show converged result.

Moreover, we see that the wavefields obtained when solving the scalar wave equa-
tion in our smooth functions in figure  3.25 are identical to the human eye. The
rather small domain and the rather small range of values in the images of our func-
tions (around [0.3-0.7]) make the wave propagate at similar speeds. In addition, the
short time for which the wavefield propagates does not allow the wavefield speed
propagation values to diverge significantly. All of these arguments, in combination
to a lack of void, make both wavefields appear very similar when propagating in
our rectangular domain.
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(a) Wavefields propagating in Gaussian function

(b) Wavefields propagating in sine function

Figure 3.25.: Plots show wavefields propagating in studied smooth functions for
timesteps 200, 300, and 650.

3.6. Extended domain experiments

Since the beginning of the experiments in this master’s thesis, we have tried to
make experiments simpler and simpler to help the studied neural network architec-
tures converge to a good solution. We first tried to solve the FWI task which proved
to be impossible with our shallow network. Moreover, the supervised learning
experiments also failed with the same shallow network, leading us to study smooth
functions, striving to make the problem simpler again. We have tried to fit smooth
functions with the CNN architecture used in [ 20 ], our network architecture (feed-
forward network with one hidden layer), and a feed-forward neural network with
four hidden layers. We designed the set of smooth function experiments to make
it easier for our network to solve the FWI task. To our surprise, only the CNN
was able to fit both smooth functions perfectly, and hence attempting to solve the
FWI problem for these functions with our shallow network was not worth the
effort. The smooth functions were represented and defined in the domain used
in the original FWI problem as it can be seen in figure  3.20 . We have seen however,
that making the domain bigger allows the MLP with four hidden layers to fit the
smooth function. The domain used in this case is ten times bigger than the domain
studied in the sections above. In particular, we look at a domain [0, 1.0] ⇥ [0, 0.5].
In this setting, we first explore the potential of our architectures when solving the
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supervised learning task. We expect the CNN to solve the supervised learning task
with no difficulty as this experiment should be easier to solve than the previous
ones, which were already successful. These experiments should be easier becase
given the larger domain, the variations in the target functions are less abrupt. In
this setting, we hope the MLP architecture is able to solve the supervised learning
task to give as a chance of attempting to solve the FWI problem. The settings used
in experiments with regular domain and extended domain are summarised in table

 3.2 .

Table 3.2.: We use the following parameters in the experiments. The first row of
parameters accounts for sections  3.3 ,  3.4.1 and  3.5 . The second row
accounts for experiments in subsection  3.6 .

Lx Ly Nx Ny dt [s] N gamma0 rho [kgm�1] c [ms�1] N. Sensors sensorStart [m] sensorEnd [m] N. Sources

0.1 0.05 251 123 3e-08 1200 1e-5 2700.0 6000.0 54 0.018 0.082 4
1.0 0.5 251 123 3e-08 1200 1e-5 2700.0 45000.0 100 0.1 0.9 4

As we expected, the CNN is able to perfectly fit the smooth functions in the ex-
tended domain, corresponding to the settings of the second row in table  3.2 . The
results of the supervised learning task are displayed in figure  3.28 . To our relief,
figure  3.29 shows very promising results because the MLP successfully fits the
desired functions. Given the accurate approximation, we will study the FWI prob-
lem using this architecture and both smooth functions represented in the extended
domain. To attempt to solve the FWI problem, we first need to generate a dataset
to be used as reference values in the misfit function  2.2 . Given the slightly bigger
domain, we have tried to keep things as constant as possible. We have kept the
same values for generating wavefields using the forward solver, except for the cell
sizes in the discretization (larger domain but same number of grid points), velocity
c, and the frequency of the sine burst used as the forcing terms. We have set
the velocity to c = 45000 ms�1 in order to obtain a wavefield that propagates in
all of the domain, in the same number of timesteps as before (1200). Finally, we
have also changed the frequency of the sine burst used as forcing term. Previous
experiments used a frequency of 50000 Hz. For the experiments below, we will use
a frequency of 33333 Hz. This value was chosen graphically from the wavefield
snapshots. Figure  3.26 shows three snapshots at three different timesteps of a wave
propagated in a specimen with a material distribution modeled by the Gaussian of
the two-dimensional sine wave in the extended domain. Additionally, figure  3.27 

shows the wavefield propagating in the Gaussian material distribution. The main
difference to observe in figure  3.26 and  3.27 compared to figure  3.4 is the lack of a
void in the domain, leading to reflections in areas closer to the sensors in the top
boundary. In the case of the smooth functions, the density is never zero, and hence
the wavefield propagates everywhere in the interior of the domain. Reflection only
occurs at the boundaries, whereas in figure  3.4 we can observe the void reflecting
waves in the middle of the domain.
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3. Full Waveform Inversion with Neural Network based Ansatzfunctions

Figure 3.26.: Plots show simulated wavefields in sigmoid of sine material distribu-
tion in extended domain at timesteps 200, 350 and 650 (from left to
right)

Figure 3.27.: Plots show simulated wavefields in sigmoid of Gaussian material
distribution in extended domain at timesteps 200, 350 and 650 (from
left to right)

Figure 3.28.: Plots show results for the supervised learning task for sigmoid of
Gaussian function (left) and sigmoid of sine function (right) using
CNN. We trained the CNN for 3000 epochs using Xavier-Glorot
initialization.
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(a) Fitting sigmoid of Gaussian function.

(b) Fitting sigmoid of sine function.

Figure 3.29.: Plots show results for the supervised learning task for (a) sigmoid of
Gaussian function and (b) sigmoid of sine function using feed-forward
neural network with four hidden layers and 350 neurons per layer. We
trained the network for 2500 epochs with Xavier-Glorot initialization.
The images on the left show the result after the first forward pass of
the network. The images on the right show the converged result.

As a last remark before we attempt to solve the FWI problem, it might stand out to
the reader that we have not included information about the error in the fitting of
the functions above. We have an explanation for this: generally, when performing
supervised learning tasks, the data is split into training, validation, and test sets. In
our case, the input data is the whole domain and we do not perform such split. In
our supervised learning framework, we want to know if our network architecture
can be used to approximate a function, rather than making a future prediction. We
thereby do not make any splits in our data, and use the whole 2-d domain as input
to our network. To provide error of the supervised learning task, evaluation should
be done on a separate dataset.
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3.6.1. FWI with MLP in extended domain

(a) FWI for Gaussian function.

(b) FWI sine function.

Figure 3.30.: Plots show results for the FWI task for (a) Sigmoid of Gaussian
function and (b) Sigmoid of sine function using MLP with 4 hidden
layers and 350 neurons per layer. Trained for 1500 epochs with Xavier-
Glorot initialization. The images on the left show the result after the
first forward pass of the network. The images on the right show the
converged result.

Observing the promising results obtained in the supervised learning setting dis-
played in figure  3.29 we attempt to solve the FWI task for the larger domain and
both smooth functions. Our architecture performs well when approximating these
functions in the defined domain, hence we can adventure ourselves to study the
FWI problem. Figure  3.30 shows the results obtained after 1500 training epochs.
The sigmoid of sine function is approximated with high accuracy, however the sig-
moid of the inverted Gaussian function did not yield good results. When looking
at the ground truth functions in the larger domain, we can see that the range of
values in the images of the functions is around two times larger when looking at the
sinusoidal shaped function. These larger range of values will make the propagated
wave travel at different speeds inside the domain, leading to larger variations in
the recorded measurements. This could be the reason behind our network being
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able to solve the FWI problem for sinusoidal material distribution and failing for
the Gaussian shaped density distribution.

3.6.2. FWI with CNNs in extended domain

Although it was predictable, the CNN architecture can solve the FWI problem for
the smooth functions represented in the larger domain. We included the results
for completion in figures  3.31 and  3.32 . Moreover, we also wanted to explore the
difference in the results when initializing our architecture differently, in particular
with Xavier-Glorot initialization, and with weights obtained from fitting a domain
of ones in a supervised learning framework.

(a) FWI for Gaussian function.

(b) FWI for sine function.

Figure 3.31.: Plots show results for the FWI task for (a) sigmoid of Gaussian
function and (b) sigmoid of sine function using CNN with. Trained
for 1500 epochs with coefficients initialized with Xavier-Glorot. The
images on the left show the result after the first forward pass of the
network. The images on the right show the converged result.
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(a) FWI for Gaussian function.

(b) FWI for sine function.

Figure 3.32.: Plots show results for the FWI task for (a) sigmoid of Gaussian
function and (b) sigmoid of sine function using CNN with. Trained for
1500 epochs with coefficients from supervised learning task of fitting
a void-less domain. The images on the left show the result after the
first forward pass of the network. The images on the right show the
converged result.

We designed this experiment to see if initializing the weights and biases of a net-
work to predict a domain of ones could be problematic or not, following the results
obtained in  3.6 . In this case, we did not use the SWIM network to fit a domain
of ones, but we approximated a domain of ones in a supervised learning setting.
The left images in figure  3.32 show this approximation was not perfect, but it was
very close. The supervised learning task was trained for 5000 epochs. Comparing
figures  3.32 and  3.31 seems that one initialization was better for one function, and
the other initialization was better for the other. When approximating the Gaussian
shaped function, it seems the Xavier-Glorot initialization was better and yielded
better results when solving the FWI task. Contrary to this, it looks like initializing
the network with the coefficients after fitting a domain of ones was better when
solving the FWI problem with for the sinusoidal-shaped material distribution.

In addition, we do not include figures to quantify the error. The error when solv-
ing FWI problems does not seem as relevant as the actual shape of the obtained
material distribution following the optimization procedure. The goal of FWI in the
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context of NDT is to capture the heterogeneities in the specimen we study. Even
if the density is not approximated exactly, we can see the shape of the material
distribution.
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4. Conclusion

In this study, we have explored the potential of different neural network architec-
tures to solve a full waveform inversion problem. Originally, the main objective
of this work was to propose a new hybrid method, inspired by the work in [ 20 ],
that would exploit the SWIM weight sampling algorithm to sample the weights of
the hidden layer in a feed-forward neural network. We have carried out different
experiments, described and explained in section  3.3 . The first experiment was to
solve the FWI problem in the most general case. This means we exploited a one-
hidden layer feed-forward neural network and sampled the hidden layer weights
using the SWIM algorithm. In addition, we fixed the hidden layer weights so
that these stay the same during the optimization procedure and only train the
linear output layer coefficients as well as the steepness and shift coefficient of the
sigmoid function embedded after the output layer and described at the beginning
of  3.4.1 . Not knowing the ground truth material distribution, what is the best way
to sample the weights using the SWIM algorithm? The specimen used in our FWI
study is a rectangular domain with a small circular void, and therefore, most of the
specimen is intact. This translates into having a specimen where the density value
is one nearly everywhere, agreeing with the parameterization of voids described by
equation  3.3 . Hence, we use the SWIM network to fit a void-less domain, and once
fitted, we use the internal weights of the SWIM network to initialize and freeze
the hidden layer weights of our shallow feed-forward network. During training,
we only optimized the output layer weights. The objective of this approach was
to propose a new hybrid method to tackle the FWI task studied in [ 20 ]. Freezing
the internal weights and biases would decrease the number of trainable parameters
and would hopefully lead to faster inference times. Unfortunately, our experiments
failed, and we could not solve the FWI problem with this approach - Using a shal-
low network, sampling the hidden layer’s parameters with the SWIM algorithm,
and optimizing the model’s parameters using gradient descent for solving an FWI
problem for a discontinuous material distribution.

Continuing with our investigation, we asked ourselves, how can we make it easier
for our model to solve the FWI problem? Are there other weight initializations we
can test to help our model converge to the true solution? The aim of experiments
in section  3.4.2 was to initialize the hidden layer weights of our shallow network
with the hidden layer weights of the SWIM network after fitting different domains.
Each domain approximated by the SWIM network resembled closer and closer to
the ground truth material distribution. Our aim was to make it progressively easier
with each experiment for our network to retrieve the ground truth function in an
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FWI setting. We have fitted a large circular void, an upwards shifted version of the
true gamma function, and two right shifted versions of the true gamma function.
Results for the big void initialization and upwards shifted ground truth initial-
ization can be found in subsections  3.4.2 . Appendix  A contains the results of the
other experiments, which have not been included in the main body of this work for
being repetitive and not revealing extra details. Unfortunately, these experiments
did not work either, and the converged result after training was not the ground
truth material distribution. We can conclude that trying to solve the FWI problem
for the discontinuous material distribution was not possible with our proposed
architecture for the different initializations used and optimizing the model’s pa-
rameters through gradient descent. Finally, as a last experiment for this section, we
initialized both the hidden layer weights and bias terms as well as the output layer
weights and bias term from our shallow network with all weights and bias terms
from the SWIM network, and we only optimized the sigmoid parameters during
the training loop. Each experiment performed was designed to make it easier for
the model to yield the correct solution after training. After these experiments, we
conclude that we were too optimistic to believe we could solve the FWI problem
with our network architecture through gradient descent. The SWIM network is
able to fit the ground truth gamma. Hence, there exists a set of weights and bias
terms to yield the true material distribution. However, these are not achievable
through gradient descent optimization methods and our simple architecture. As a
last verification, we tried to solve the supervised learning problem for the ground
truth function. We used the coordinates as inputs, representing equidistant grid
points in our discretized domain, and the density value as the target function. We
observed that our model cannot fit the target function precisely. The supervised
learning problem is much simpler than the FWI problem. If this task fails, it is
expected that the FWI task fails as well.

Striving to keep making the task simpler and simpler for our model, we turn to
smooth functions, which are easier to approximate than functions containing jumps.
After the experiments in section  3.4.1 we changed the material distribution to a
smooth function. In particular, we conducted experiments for two smooth func-
tions, described in subsection  3.5 . We first keep the same domain dimensions
and, hence, the same datasets for the FWI problem. Before attempting to solve
the FWI problem with our network architecture, we conduct a supervised learning
experiment to see if it is worth attempting to solve the, more challenging, FWI
problem. On the one hand, MLPs yield disappointing results. Neither a feed-
forward neural network with one hidden layer, nor a feed-forward neural network
with three hidden layers, were able to solve the supervised learning task. Given
the failure to complete the supervised learning task successfully, there is no point
in attempting to solve the FWI problem. Training the MLP to solve the supervised
task and FWI with gradient descent is challenging. On the other hand, the CNN
architecture had no problem in solving both supervised learning tasks and FWI
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problems.

Finally, we realized that if we made the domain larger, MLPs could solve the su-
pervised learning task. We made the domain ten times larger and adjusted some
wave parameters in order to obtain a clean wave propagating in the new domain.
The second row of table  3.2 shows the new parameters used in these experiments.
Looking at the promising results obtained when solving the supervised learning
task, we generated a new dataset to attempt solving the FWI problem with an
MLP. The MLP used has four hidden layers and 500 neurons per layer. The re-
sults for the FWI task using this network are given in figure  3.30 . The sinusoidal-
shaped function is successfully retrieved with the MLP, and the FWI problem is
solved quite accurately. However, the model does not perform well when solving
the FWI task for the Gaussian-shaped material distribution. The first interesting
observation to discuss is that the supervised task was solvable when considering
a larger domain. This could be due to the variations of the function being less
abrupt. When considering a larger domain, the rate of change of the function is
lower than if we squeeze the function in a smaller region. We can see this as a less
smooth function, causing problems for our simple model architecture. Extending
the domain is another step forward in making the problem simpler for our model,
simple enough to solve the supervised learning task with our simple architecture.
Moreover, the second interesting observation to discuss is the fact that the FWI
problem in the extended domain was only successful for the sinusoidal-shaped
material distribution. My hypothesis for this observation is that the sinusoidal-
shaped material distribution yields stronger variations in the wave received at the
sensors compared to the Gaussian-shaped material distribution. We recall that
when considering these smooth functions, the wavefields propagate in the entire
domain and are only reflected at the boundaries. We can say that the Gaussian-
shaped material distribution used is more similar to a void-less domain, and there
is not a big difference with the values captured at the sensors when comparing
them with the values at the sensors after propagating the wavefield in an intact
material distribution.

After conducting our experiments we can draw several conclusions. Firstly, our
proposed method to solve the FWI task by sampling the hidden layer parameters
with the SWIM algorithm and only optimizing the output layer through gradient
descent does not work to solve the FWI problem. More generally, we can say that
training shallow networks with gradient descent is challenging, given the super-
vised learning experiment and FWI results. The only time we succeeded in training
the shallow network was when we made the domain larger. In all experiments, we
always input the whole domain into our network, and as such, we always used
gradient descent to optimize our network rather than stochastic gradient descent,
which can get stuck in local minima and cause problems in finding the optimal
solution. By making the domain larger, it is possible to change the loss landscape
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and maybe start our optimization in a better position, less prone to getting stuck at
a local minimum, or more likely to land at a better local minimum. In future work,
it would be interesting to attempt the failed experiments using smaller batch sizes,
to actually use stochastic gradient descent instead of gradient descent. It would
be interesting to re-attempt making our method work, that is - using a one-hidden
layer FNN, sampling the hidden layer parameters with the SWIM network, and
optimizing the output layer, but this time making sure we use stochastic gradient
descent by using minibatch training. In addition, we can also conclude that the
most suitable initialization for solving the FWI problem depends on the function
we want to recover, as shown by the experiments when solving the FWI problem
with the CNN where we used two different initializations. In this work we only
test two functions and two initializations for the CNN. In future work, we could
test multiple ground truth functions in an FWI context, to see if either the Xavier-
Glorot initialization, or the voidless domain initialization yields better results than
the other when more material distribution functions are tested.
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A. Additional Experiments

A. Additional Experiments

Further Initializations

Initializing weights and bias terms to approximate a right-shifted version of the

ground truth function

Figure A.1.: Plots show training results when initializing weights and bias terms
with SWIM approximation of the true gamma shifted to the right. We
show epochs 0, 25, 50 and 100.
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Figure A.2.: Plots show wavefield propagated in ground truth gamma, initialised
gamma, and converged gamma

Figure A.3.: Wavefield propagated in ground truth gamma, initialised gamma, and
converged gamma
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Initializing weights and bias terms to approximate a right-shifted version of the

ground truth function and full domain information

Figure A.4.: Plots show training results when initializing weights and bias terms
with SWIM approximation of true gamma shifted to the right and full
domain information. We show epochs 0, 25, 50 and 100.
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Initializing weights and bias terms to approximate a double right-shifted

version of the ground truth function

Figure A.5.: Plots show training results when initializing weights and bias terms
with SWIM approximation of the ground truth gamma with a double
right shift. We show epochs 0, 25, 50 and 100. Initial gamma is the true
gamma shifted to the right by its diameter

Figure A.6.: Plots show wavefields for timestep 220 for ground truth gamma,
initialised gamma, and converged gamma.
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Figure A.7.: Plot shows time-series displacement measured at sensor at x position
152.

Figure A.8.: Plot shows cost evolution over 100 training epochs when initializing
linear output layer coefficients to fit a double shifted version of the
ground truth gamma.
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[19] B. Gutenberg. Über die konstitution des erdinnern, erschlossen aus erdbeben-
beobachtungen. Physikalische Zeitschrift, 14:1217–1218, 1913.

[20] Leon Herrmann, Tim Bürchner, Felix Dietrich, and Stefan Kollmannsberger.
On the ultrasonice of neural networks for full waveform inversion. Computer
Methods in Applied Mechanics and Engineering, 415:116278, October 2023.

[21] Leon Herrmann, Tim Bürchner, Felix Dietrich, and Stefan Kollmannsberger.
On the use of neural networks for full waveform inversion [software], 2023.

[22] M. Hinze, editor. Optimization with PDE Constraints. Number 23 in Mathemat-
ical Modelling. Springer, Dordrecht, 2009.

[23] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

[24] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural Networks, 2(5):359–366,
1989.

67



Bibliography

[25] Ameya Jagtap, Kenji Kawaguchi, and George Karniadakis. Adaptive activa-
tion functions accelerate convergence in deep and physics-informed neural
networks. Journal of Computational Physics, 404:109136, 11 2019.

[26] M Jannane, W Beydoun, E Crase, D Cao, Z Koren, E Landa, M Mendes, A Pica,
M Noble, G Roeth, S Singh, R Snieder, A Tarantola, D Trezeguet, and M Xie.
Wavelengths of earth structures that can be resolved from seismic reflection
data. GEOPHYSICS, 54:906–910, 1989.

[27] J.B.W. Seismological tables. Nature, 151:472–472, 1916.

[28] Ting Jia. Advanced analysis of complex seismic waveforms to characterize the
subsurface earth structure, 2011. Ph.D. dissertation, Columbia University.

[29] Wei jia Su and Adam M. Dziewonski. On the scale of mantle heterogeneity.
Physics of the Earth and Planetary Interiors, 74(1):29–54, 1992. Special Issue
Physical Properties of the Earth’s Interior: Mantle to Core.

[30] Ehsan Kharazmi, Zongren Zhang, and George Em Karniadakis. hp-vpinns:
Variational physics-informed neural networks with domain decomposition.
Comput. Methods Appl. Mech. Engrg., 374:113547, 2021.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion, 2017.

[32] S. Kollmannsberger, D. D’Angella, M. Jokeit, and L. Herrmann. Physics-
Informed Neural Networks, volume 977. Springer International Publishing,
Cham, 2021.

[33] S. Kollmannsberger, D. D’Angella, M. Jokeit, and L. Herrmann. Physics-
Informed Neural Networks, volume 977. Springer International Publishing,
Cham, 2021.

[34] Dimitri Komatitsch and Jean-Pierre Vilotte. The spectral element method:
an efficient tool to simulate the seismic response of 2d and 3d geological
structures. Bulletin of the Seismological Society of America, 88:368–392, 04 1998.

[35] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance
and convolution in neural networks to the action of compact groups. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 2747–2755. PMLR, 10–15 Jul 2018.

[36] I.E. Lagaris, A. Likas, and D.I. Fotiadis. Artificial neural networks for
solving ordinary and partial differential equations. IEEE Transactions on Neural
Networks, 9(5):987–1000, 1998.

68



Bibliography

[37] I.E. Lagaris, A.C. Likas, and D.G. Papageorgiou. Neural-network methods
for boundary value problems with irregular boundaries. IEEE Transactions on
Neural Networks, 11(5):1041–1049, 2000.

[38] P. Lailly. The seismic inverse problem as a sequence of before stack migrations.
In J.B. Bednar, E. Robinson, and A. Weglein, editors, Conference on Inverse
Scattering—Theory and Application, pages 206–220, Philadelphia, 1983. SIAM.
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[73] Jean Virieux and Stéphane Operto. An overview of full-waveform inversion
in exploration geophysics. Geophysics, 74:WCC1–WCC26, 11 2009.

[74] Usman bin Waheed, Ehsan Haghighat, Tariq Alkhalifah, et al. Pinneik:
Eikonal solution using physics-informed neural networks. Comput. Geosci.,
155:104833, 2021.

[75] Rachmasari Wardhani. Radiographic examination procedure as non destruc-
tive testing method in process piping. 2:1–8, 10 2019.

71



Bibliography

[76] Paul R. Williamson and M. H. Worthington. Resolution limits in ray tomog-
raphy due to wave behavior: Numerical experiments. GEOPHYSICS, 58:727–
735, 1993.

[77] John H. Woodhouse and Adam M. Dziewonski. Mapping the upper mantle:
Three-dimensional modeling of earth structure by inversion of seismic wave-
forms. Journal of Geophysical Research: Solid Earth, 89(B7):5953–5986, July 1984.

[78] L. Yang, D. Zhang, and G. E. Karniadakis. Physics-informed generative ad-
versarial networks for stochastic differential equations. SIAM J. Sci. Comput.,
42(1):A292–A317, 2020.

[79] K. Yomogida. Fresnel zone inversion for lateral heterogeneities in the earth.
PAGEOPH, 138:391–406, 1992.

[80] Andreea Manuela Zelenyak, Reinhold Oster, Michael Mosch, Peter Jahnke,
and Markus Sause. Numerical modeling of ultrasonic inspection in fiber reinforced
materials with explicit microstructure. 01 2016.

[81] Zhongping Zhang and Youzuo Lin. Data-driven seismic waveform inversion:
A study on the robustness and generalization, 2019.

72


