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Abstract: The monitoring of wind turbine (WT) systems allows operators to maximize their per-
formance, consequently minimizing untimely shutdowns and related hazard situations while max-
imizing their efficiency. Indeed, the rational monitoring of WT ensures the identification of the
main sources of risks at a proper time, such as internal or external failures, hence leading to an
increase in their prevention by limiting the faults’ occurrence regarding the different components
of wind turbines, achieving production objectives. In this context, the present paper develops a
practical monitoring approach using a numerical fault-detection process for the pitch system based
on a benchmark wind turbine (WT) model with the main aim of improving safety and security
performance. Therefore, the proposed fault-diagnosis procedure deals with eventual faults occurring
in the actuators and sensors of the pitch system. In this proposed approach, a simple, logical process
is used to generate the correct residuals as fault information based on the redundancy in the actuators
and sensors of the pitch sub-systems. The obtained results demonstrate the effectiveness of this
proposed process for ensuring the tasks of the fault diagnosis and condition monitoring of the WT
systems, and it can be a promising approach for avoiding major damage in such systems, leading to
their operational stability and improved reliability and availability.

Keywords: fault detection; external and internal residuals; condition-based monitoring; wind turbine;
benchmark model; pitch system

1. Introduction

Condition monitoring and the optimization of wind turbine (WT) system parameters
require the design of a powerful fault-detection system that ensures the enhancement
of their performance, availability, and reliability. Indeed, the overall objective of the
monitoring of WT systems is to ensure their continuous and stable power generation.
Therefore, the main goal of the supervisor is to develop and implement an efficient fault-
diagnostic scheme for the real-time monitoring of WT functionality. It is obvious that when
failures occur, the operators of the controlled system must quickly plan a short downtime in
order to effectively manage the required maintenance related to the detected and predicted
WT damage problems.

In order to avoid degradations and to improve WT performances, several research
results have been provided recently for improvements in terms of condition monitoring,
defect diagnosis, intelligent control, prognosis, and practical control techniques. Zhiwei
Gao and Xiaoxu Liu in [1] investigated techniques for monitoring the condition of wind
power systems using the recent methods of diagnosis, prognosis, and resilient fault control.
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This enabled the development of an efficient diagnostic system for wind turbine failures,
with the detection of anomalies as early as possible and the prediction of potential faults
so that the operator can react in time and correctly. Peter Odgaard et al. in [2] proposed
a benchmark reference model for a specific type of wind turbine which they developed
and discussed. They also presented the main realistic failures that can occur in the wind
turbine, taking three types of failure scenarios into account, including the main parts of the
WT such as the transmission system and the generator systems with the converter. On the
other hand, Odgaard et al. in [3,4] implemented a fault-tolerant control (FTC) approach
of a WT system with different configuration and control concepts and used a benchmark
model to test at the same time the fault-tolerant techniques and the detection capability for
the different scenarios of failures.

Moreover, Kusiak and Verma in [5] proposed a data-based diagnostic method to
monitor the pitch system faults of a WT, and Fernandez-Canti et al. in [6] presented
a diagnosis system based on a fault detection and isolation (FDI) process applied it to
a WT benchmark using the combined technique of group membership and a Bayesian
approach for the different failure cases of the studied wind turbine. Yichuan Fu et al. in [7]
investigated an analysis technique using fast Fourier transform (FFT) and uncorrelated
multi-linear principal components to accomplish the fault detection and classification of
the sensors and actuators of WTs. Colombo et al. in [8] controlled the pitch angle of a
WT that operates under critical wind speeds with a sliding-mode control approach for the
rotor monitoring of the WT to limit the energy output of the studied turbine at a nominal
power value. Hector Sanchez et al. in [9] proposed a fault-diagnosis process using the
interval–redundancy relationships of observers with the structural analysis of the signature
fault matrix in the isolation step within the studied WT benchmark. Blesa et al. in [10]
proposed an FDI and fault-tolerant control (FTC) model-based diagnostic approach for
a virtual WT using interval observers for the fault detection of the actuators and sensors
under limited configuration, taking into account measurement noise and modeling errors.
Davide Astolfi et al. in [11] developed a mechanism for detecting damage to the slip rings
of a wind turbine using a method of analyzing the output temperature data of the studied
wind turbine system.

Similarly, the fuzzy concept was applied to the FTC of WTs by Silvio Simani et al.
in [12]. They developed an approach to the fault detection of a WT using the benchmark
model with the fuzzy identification of the operating models of this wind turbine. These
fuzzy models were identified to define the dynamic behavior of the WT with an eval-
uation of diagnostic residues to improve its behavior. Furthermore, Silvio Siman et al.
in [13] identified a fuzzy model of a WT with the generation of fault residues based on a
benchmark model, which offered simple solutions in the real-time implementation of this
diagnostic approach, along with a practical methodology of the detection and isolation of
the studied wind turbine faults. Xiaoxu Liu et al. in [14] estimated the faults of a WT with
compensation using the fuzzy-type modeling of Takagi–Sugeno; this fuzzy model allowed
for improvement in the structure of the fault detection of the studied wind machine. Zafer
Civelek in [15] proposed a fuzzy control system for adjusting the pitch angle of a WT
using Takagi–Sugeno-type modeling with the use of genetic algorithms to optimize the
proposed controller parameters. This enables the regulation system and its configuration
to be improved with the implementation of an algorithm of optimization, which makes
the generated power of the wind turbine under consideration even better. In [16], Adrian
Stetco et al. introduced an efficient review of the different machine learning methods
applied to wind turbine condition monitoring, particularly the methods for detecting blade
faults. Furthermore, in [17], Adrian Stetco et al. introduced a collection of end-to-end
convolutional neural networks for the advanced condition monitoring of wind turbine
generators with the aim of having the benefit of utilizing raw, unstructured signals to
make predictions about the parameters of interest, where the authors further described
an end-to-end, real-time set of models for system diagnostics, which is an integral part of
operation and maintenance.
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Moreover, other works were carried out in recent years focusing on the development
of techniques for diagnosing faults in wind turbines. For instance, in [18], Ben Djoudi et al.
applied an FTC approach to a WT through developing prototypes of the identified fuzzy
models. Kai Zhang et al. in [19] proposed fault diagnosis approaches with fault source
localization for WTs based on a network of heterogeneous nodes and with an adaptive
meta-ResNet-based approach. In [20], Jianqun Zhang et al. introduced an approach called
FSK-MBCNN for diagnosing compound faults in WT gearboxes which is based on the
combination of the fast spectral kurtosis (FSK) approach with a multi-branch convolutional
neural network (MBCNN), whereas in [21], Na Jiang et al. carried out detection and
localization tests on frequent wind turbine faults using unbalanced and unstable data
obtained for the studied wind turbine. Takwa Sellami et al. in [22] conducted a performance
analysis of a wind system connected to the electrical network under the presence of
inter-turn short-circuit conditions. This analysis makes it possible to make a structure
of wind system faults and ensures an improvement in the quality of delivered energy.
Satyabrata Sahoo et al. in [23] performed a comparative study on the generated power and
control performances of a WT using several intelligent and classical strategies, including
PI controllers, fuzzy concepts, and model predictive controls. Hanchao Zeng and Daolian
Chen in [24] proposed a voltage-fed single-stage system with a multi-input inverter applied
to hybrid WT/PV for power production. Additionally, Weipeng Gao et al. in [25] analyzed
the different areas of operation and designed WPT systems employing MEPT control; these
studies allow the improvement of the monitoring systems of the wind and photovoltaic
energy production systems with increased efficiency.

Recently, Abdelmoumen Saci et al. presented an effective fault diagnosis method
which ensures the detection of faults in sensors and actuators applied to wind turbines [26].
Zakaria Zemali et al. proposed an innovative and efficient solution based on the devel-
opment of an intelligent system of high-performance diagnostic tools, which consists of
detecting and locating accurately the various failures affecting the wind turbine to ensure its
safe and stable operation [27]. In [28], the authors carried out a detailed study based on the
experimental and numerical investigation of the pitch imbalance effect on wind turbines.
This study focused mainly on the characterization of power losses and power generated on
a small-scale model presenting a prototype, where an analytical framework for validation
was proposed by the authors in order to assess the performance of unbalanced rotors in the
case of a wind turbine system that can be applied for the full-scale models of such systems.
Yanting Li et al. proposed a fault diagnosis method based on parameter-based transfer
learning and convolutional autoencoder (CAE) for wind turbines with small-scale data,
whereas the main aim of the authors was to apply their proposal for a full-scale WT and
to exploit the full available collected information [29]. In [30], Yichao Liu et al. developed
a mixed model- and signal-based fault diagnosis (FD) architecture to detect and isolate
critical faults in floating offshore wind turbines (FOWTs). Indeed, the authors developed
a model-based scheme for detecting and isolating the faults associated with the turbine
system. Their study was based mainly on fault detection, approximation estimator, and
fault isolation estimators under time-varying taking into account adaptive thresholds that
can help in ensuring against false alarms. Yu Pang et al. proposed a new automatic fault
diagnosis method for wind turbines where the fault diagnosis system framework is con-
structed based on the collected vibration data of wind turbines, which is then processed for
fault diagnosis [31]. Yun Kong et al. introduced an enhanced sparse representation-based
intelligent recognition (ESRIR) method for fault detection in the planet bearing of wind
turbines, which involves two stages of structured dictionary designs and intelligent fault
recognition [32]. Zhenya Wang et al. developed a novel data-driven fault diagnosis scheme
for wind turbines using refined time-shift multiscale fluctuation-based dispersion entropy
(RTSMFDE) and cosine pairwise-constrained supervised manifold mapping (CPCSMM).
The proposed approach can be used mainly for the classification of faults in WT systems [33].
Francisco et al. proposed a Bayesian framework based on particle filters to ensure spe-
cific online fatigue damage diagnosis and prognosis for wind turbine blades (WTBs) [34].
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W. Guang and Z. Huang investigated their proposed fault-tolerant control (FTC) system
by applying it to a wind turbine benchmark based on the multiple failures that are pro-
voked in the studied system [35]. In [36], the authors developed a fault diagnosis (FD) and
fault-tolerant control (FTC) of pitch actuators in wind turbines, where both methods were
validated based on several tests, whereas Alexandre Ferreira Diniz et al. in [37] performed
a dynamic modeling approach for the development of a water supply system based on WT
taking into account the power efficiency improvement. Ahmer Arif et al. in [38] conducted
an economic study on the integration of renewable energies in a micro-grid based on
WT taking into account the user energy demand management using genetic algorithms.
Zemali et al. in [39] applied two estimators such as the Kalman and Luenberger estimators
for fault diagnosis in the pitch system actuators. In this study, a comparison study between
the two employed observers was investigated. Laouti et al. in [40] used the support vector
machine method for fault detection in a WT based on the benchmark model which was
initially proposed by Odgaard et al. The main aim was to ensure the production of optimal
electrical power under an efficient fault-tolerant control strategy.

Several problems and shortcomings in most of the studied cases in the literature of
wind turbine systems were highlighted and investigated [41–55], such as the identification
of the time required to identify the origin of faults with an analysis of the possible causes
and the sensitivity to multiple faults and measurement noise, in addition to the problems
of putting new monitoring technologies into practice. However, these new approaches
entail high and sometimes costly interventions to provide robust decisions in the presence
of possible faults, their location, and their severity [56–58]. In addition, the economic losses
associated with the complexity of the wind system and their degradation factors, besides the
constraints related to reliability, performance, security, and availability, sparked a growing
interest in designing robust diagnostic structures suitable for the studied WT [59–61].

This paper proposes the application of an efficient fault diagnosis approach for
the pitch sub-system of a WT based on a benchmark model which was proposed by
Odgaard et al. [2–4]. Indeed, the main goal is to ensure the effective monitoring of the WT
by using a practical, easy-to-implement, and low-cost method. The proposed approach is
based on a logical process strategy for fault detection using the values of the residuals as
specific indicators related to the occurred wind turbine faults. Two sets of residuals were
defined such as internal residuals and external residuals. The first is obtained from the
measurements in the same pitch system, whereas the second is obtained from the difference
between two sensor outputs in two different pitch systems of the WT. The advantages of
this developed diagnosis process are summarized as follows:

• The reliability and availability of the studied wind turbine will be improved, thereby
an increased useful lifetime can be ensured. This advantage was confirmed through
the various simulation validation tests and the assessment of the obtained detection
indices on actuators and fault sensors.

• The risks from the internal and external operation tasks are minimized. This is due
to the capabilities of the proposed fault diagnosis approach to characterize, evaluate,
and analyze faults to prevent and reduce the risk of faults in time. Indeed, the
obtained results confirm clearly the effectiveness of the proposed process based on the
evaluation of the detection time, sensitivity, and detection thresholds.

• The implementation simplicity of the proposed approach in real-time due to its
simple structure.

The present paper is organized as follows: In Section 2, the pitch system model of the
studied WT machine is presented. In Section 3, the development of the digital algorithm
for fault detection based on the pitch angle system is presented in detail. Indeed, in this
section, each step of the proposed fault detection approach is introduced and explained
sufficiently. The obtained simulation results and investigations on the obtained results are
presented and discussed in Section 4, whereas, Section 5 is dedicated to the conclusion.
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2. Pitch System Model

The operation principal of a wind generator is based on the transformation of wind
kinetic energy to electrical energy. However, the WT is mainly composed of three main
sub-systems: the pitch sub-system, drive train, and generator with converter [2,40].

Indeed, this work is devoted to the study of the pitch system part of the WT generator
as shown in Figure 1 due to the fact that the monitoring of the pitch system allows for
improving the impact of power efficiency and can ensure the protection of the overall wind
system face from mechanical constraints. It is worthy to clarify that the two other parts
of the WT such as the drive chain and the generator–converter systems are not taken into
account in this study.
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Figure 1. Functional diagram of the wind power system.

For this purpose, the study presented in this paper is based on a benchmark model of a
wind turbine system, encompassing sensors, actuators, and system faults. This benchmark
model represents a real three-blade horizontal variable-speed wind turbine with a rated
power of 4.8 MW which was proposed by the works published by Odgaard et al. in [2–4]
where the drive train and the generator–converter parts are omitted in this study. This
benchmark is considered as a reference model to develop fault-tolerant control techniques
for WTs. Indeed, the objective of this paper is to propose and develop an approach to
diagnose failures in the pitch system part of a wind power system based on this benchmark
model. The main aim is to ensure the effective monitoring of such systems using an efficient
approach which can be easily implemented with low costs, hence leading to maintaining
the continuous operation mode of this kind of systems.

For more details of the used benchmark model, a synoptic representation of the
hydraulic pitch angle system for the three-blade horizontal variable speed wind turbine is
shown in Figure 2a where the main parts of the pitch systems are indicated and illustrated.
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Figure 2. (a). Representation of the hydraulic pitch angle system of the three-blade horizontal variable
speed wind turbine. (b). Block diagram of the pitch angle system.

Using the model established by Odgaard in [2–4], which is composed of three iden-
tical hydraulic piston servos (actuators), each of these pistons can be modeled with a
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second-order function as a closed control loop using the measured angle (βm) and the
reference angle (βr) [3]. Hence, in this closed-loop control system, a wind turbine uses the
measurement βm at the system output to adjust and adapt the pitch actuator parameters of
the internal controller. The model of the studied sub-system according to the benchmark
model proposed by Odgaard [2–4] is defined as follows [3,4,18,41,42]:

βm(s)
βr(s)

=
ωn

2

s2 + 2ξωn + ωn2 (1)

where βm is the measured pitch angle, βr is the reference pitch angle, s is the Laplace
operator, ωn is the natural frequency, and ξ is the damping factor.

The studied pitch angle measurement system is composed of two identical sensors for
each actuator. These sensors were modeled taking into account the pitch angle dynamics
in the actuators in order to ensure redundancy as shown in Figure 2b, which presents the
functional diagram of the three pitch angle sub-systems presented in Equation (1), with
ξ = 0.6 and ωn = 11.11 rad/s.

Figure 2b contains a structure which is proposed to ensure the measurement redun-
dancy of the variables of all the pitch angles.

To evaluate the influence of the variations in the natural frequency of the WT ωn and
the damping factor ξ, as well as under the eventual appearance of faults on the sensors
installed on the studied three pitch angle sub-systems, three situations are considered in
this work based on the used benchmark model.

These two main parameters depend on the pitch hydraulic control system or the
actuator. Indeed, an increase in the hydraulic head in hydraulic piston systems or an
increase in the air content in the hydraulic fluids (oil) can have a significant impact on the
damping factor and the frequency that are the main characteristics in the second-order
hydraulic piston systems as presented in Equation (1) [3,4]. The mentioned dynamics in
the hydraulic piston system which control the pitch angle can be complex and depend
on various factors such as the specific system design, fluid properties, and operating
conditions [2,3]. It is worthy to clarify the following:

- When the hydraulic head increases, the bulk modulus (resistance to compression) of
the fluid also increases. This can lead to higher internal damping within the system.

- At a higher hydraulic head, the pump might work harder, potentially leading to an
increased heat generation in the fluid, whereas it is obvious that thinner fluids with
lower viscosity tend to damp less than thicker, higher-viscosity fluids.

- The hydraulic head provokes pressure fluctuations that can affect the pressure pul-
sations within the system, where pulsations can arise from pump imperfections or
rapid load changes. The pressure difference caused by the hydraulic head itself can be
added to these pulsations, potentially making them worse.

- At a decreased damping factor, the piston will vibrate more and take longer to settle
after hydraulic pressure change.

- At an increased frequency, the piston moves more rapidly, causing pressure fluctua-
tions and increased pulsation frequency due to air compression and expansion. This
can lead to erratic movement and reduced control accuracy.

Thus, with the increase in the air content, these two parameters of the third pitch
angle sub-system will be changed from ξ = 0.6 and ωn = 11.11 rad/s to ξ3 = 0.9 and
ωn3 = 3.42 rad/s, whereas the hydraulic head loss modifies the control system param-
eters of the transfer function of the second pitch angle sub-system from ξ = 0.6 and
ωn = 11.11 rad/s to ξ3 = 0.45 and ωn3 = 5.73 rad/s.

In reality, the wind speed is variable, random, and uncontrollable, which implies that
the incidence of the blades changes over time. Thus, with the increase in the air content, the
parameters in the third pitch angle sub-system change from ξ = 0.6 and ωn = 11.11 rad/s
to ξ3 = 0.9 and ωn3 = 3.42 rad/s, whereas the hydraulic head loss changes the parameters
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of the control system transfer function of the second pitch angle sub-system ξ = 0.6 and
ωn = 11.11 rad/s to ξ3 = 0.45 and ωn3 = 5.73 rad/s.

The sensor faults are divided into two types according to their effect on the measure-
ment values. The first type is the additive faults that cause increases or decreases in the
measurements within fairly fixed values. These faults often occur due to mechanical defects
in the sensor mechanisms. The second type of fault is the multiplicative faults that are
caused by electrical faults in the electronic components (amplifier signals) of the sensor
under fault. This type of fault multiplies the measured values by fairly constant coefficients
(gain factors). Therefore, the occurrence of sensor faults is modeled according to two types:
gain factor faults or fixed value faults according to mechanical or electrical defects, which
can only occur in just one sensor of each pitch angle sub-system.

The given WT benchmark proposed by Odgaard in [2,4] is based on two sensors for
each pitch angle sub-system, which presents a total of six sensors for the overall pitch angle
sub-systems, where in the ideal case (the absence of faults), the measurements observed on
the system are almost the same. But if a fault appears in the sensor or in the actuator, the
observed measurements on the pitch angle system will be different from one sub-system
to another.

In the following section, the models of the three pitch angle sub-systems will be used
for the development of the proposed digital strategy in order to diagnose the occurred faults
in this part. The objective is to monitor the controlled system to decrease the undesirable
effects on the operation mode of the studied WT.

3. Development of a Digital Algorithm for the Detection of the Pitch Angle System Faults

The implementation of a robust wind turbine fault detection and monitoring system
ensures the wind turbine a smooth and stable operation and preserves the integrity of its
various components. Hence, the development of a fault detection methodology that is easy
to implement in practice enables the prediction of operating faults in this system. This
facilitates sustainable maintenance solutions, improves the adaptation of control and regu-
lation laws for wind turbine sub-systems in real-time, and helps avoid system shutdowns
and restarts. It is obvious that the WT rotor control is mainly based on the adjustment and
supervision of the pitch angle, which is equipped with measuring instruments and safety
devices to detect malfunctions and limit the risks that may occur at the rotor of the wind
turbine [7,43,44]. However, wind turbines represent complex dynamics which are difficult
to monitor due to several factors, such as weather changes, variations in wind speed, and
the malfunctions of the various components due to fatigue and wear. Indeed, wind turbines
may have other kinds of degradation factors based on several previous research works,
such as Wen Xin Yu et al. in [45], Jianglin Lan et al. [46], Pierre Tchakoua et al. [47], Shiqi
Gao et al. [48], Wei Qiao et al. in [49], Yang S. et al. in [50], and Yichuan Fu et al. in [51].

To guarantee the correct operation and availability of WTs, various intelligent and
modern structures were developed and investigated. These include real-time condition
monitoring [52], machine learning and computational intelligence [53], and advanced
diagnosis [27]. These research discussed different approaches that examined the major
faults in the three sub-systems of wind turbines such as the pitch system, the drive train,
and the generator–converter. These studies highlighted the increased complexity and
challenges associated with the real-time implementations of the monitoring, diagnosis, and
control of wind turbines.

The objective of the work presented in this paper is the development of an effective
fault diagnosis approach for the pitch angle sub-system using a digital detection algorithm.
Indeed, by introducing this method in different fault scenarios affecting the pitch angle
sub-systems, we can then proceed to establish a digital plan for the developed diagnostic
system. Finally, the developed fault diagnosis approach will be validated based on certain
validation criteria on the set of faults that can affect the pitch angle sub-system of the
studied WT.
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3.1. Faults Affecting the Pitch Angle Sub-System

In this study, several fault occurrence scenarios in the pitch angle sub-system were
considered, which need to be accurately detected to prevent the operational interruptions
of the wind turbine. These faults include three types of faults in sensors and two types of
faults in actuators. These different types of faults are given in Table 1 with their parameters
and their classes. To achieve the main goal of the accurate detection of these faults based
on the implementation of the developed digital fault detection algorithm, an index of the
time of detection (TD) is used in this diagnostic approach. In order to realize an improved
fault detection system, based on the time of the detection of fault occurrence in the pitch
angle sub-systems investigated in this paper, the limit of the time of detection has to fulfill
the requirements presented in Table 1.

Table 1. Defects in the pitch system.

Faults Fault Class Fault Type Fault’s Location TD(s)

Sensor faults:
F(β1,m1), F(β1,m2)
F(β2,m1), F(β2,m2)
F(β3,m1), F(β3,m2)

A1 Fixed
Value Pitch

Position
Sensors

TD < 10 s
A2 Gain

Factor

Actuator faults’:
F(β1), F(β2), F(β3)

B3 Changed
Dynamics Pitch

Actuators

TD < 8 s

B4 Changed
Dynamics TD < 100 s

3.2. Pitch System Diagnostics Using the Proposed Digital Detection Algorithm

This section presents the developed pitch angle sub-system diagnostic approach which
is based on the use of a digital algorithm where the main aim is to ensure fault detection,
localization, and identification. In this case study, the proposed approach is limited to the
monitoring of the used redundant components implemented physically in the concerned
system such as sensors and actuators with the main aim to enhance the system’s reliability,
accuracy, and safety. Hence, the diagnostic function consists of monitoring the behavior of
the system based on the data measured during current operation, which will be compared
continuously with the data related to the normal reference operation or healthy operation.
Any eventual deviations from the reference data that exceed a detection threshold imply
the declaration of fault occurrence.

However, the fault diagnosis approach proposed in this paper for the wind turbine
pitch angle sub-system is based on the development of three main different steps. The first
step involves determining the fault appearance and occurrence time. This can be achieved
through the generation of residuals, which are generated from the comparison of the output
data of the observed system with that of the reference model (ideal model). The second
step consists of pre-processing and analyzing the residual data obtained in the previous
step, whereas the third step is dedicated to the detection, localization, and identification of
the occurred faults. In this step, it is important to be able to locate exactly the component
affected by the fault, because subsequently, the resulting decision to be taken has to be
accurate based on the used diagnostic approach.

In this context, the present work aims to develop a practical approach by integrating
the three steps of the proposed fault diagnosis approach. Indeed, this approach considers
all the possible combinations of fault occurrences in the WT pitch angle sub-system by
comparing the observed (measured) outputs with the reference (estimated) outputs of the
three pitch angle sub-systems. This requires the use of validation criteria to confirm the
effectiveness of the diagnostic approach in terms of the sensitivities of residues, detection
thresholds, false alarms, and apparent values.

This work is based on a simulation benchmark model of a WT and the redundancy of
sensors in the pitch angle sub-system by installing two identical sensors in each sub-system.
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The fault detection method is based on logical schemes to measure all the variables and
to detect possible sensor and actuator faults in the three pitch angle sub-systems. It is
worthy to clarify that there are two types of residuals such as external and internal residuals.
The internal residuals are calculated based on the difference between the measurements
of the two sensors in each pitch angle sub-system, whereas the external residuals are
calculated based on the difference between two sensor responses in two different pitch
angle sub-systems.

After the generation of these residuals, the next step is to determine the residuals
that are influenced by each fault in the pitch angle sub-system. A threshold is required
to be predefined to ensure an accurate detection of the faults based on the values of the
different residuals. Indeed, the threshold value denoted (Thr) should be chosen precisely
to ensure accurate fault detection. Furthermore, the time of detection (TD) should fulfill
certain requirements to ensure the high and accurate performances of fault detection. To
achieve this, some considerations are taken into account such as the following:

• To avoid incorrect and failure detection, the threshold is greater than the marginal
variation in uninfluenced residual values.

• To detect faults correctly, the threshold should be smaller than the values of all the
influenced residues of the occurred defect.

• To avoid delayed and imprecise detections, the detection time (TD) must be decreased
continuously.

A. Generation of residues and pre-processing of detection

The first step in generating residuals in the studied pitch angle sub-system based
on the proposed fault detection approach is to determine whether the concerned system
is functioning normally or not taking into account the physical and analytical system
redundancies, i.e., using the various measurements observed on the outputs of the pitch
angle sub-systems and the estimated outputs of the reference models. This allows for
obtaining the instantaneous residuals at each time step of the six installed sensors in the
three pitch angle sub-systems of the studied wind turbine. Indeed, the residual value
for each case must be less than the detection threshold in the case of the healthy state
of the studied system. However, an obtained residual which may have a value greater
than this threshold implies the presence of one or more faults. It is important to clarify
that based on the proposed components redundancy in the three WT pitch angle sub-
systems, 15 residuals are defined in the residual vector such as x = {a, b, c, d, e, f, g, h, i,
j, k, l, m, n, and o}, and are represented in Table 2. These residuals are defined using the
following equation:

xi =
∣∣βu,mv − βu′ ,mv′

∣∣ (2)

where
{
{u, u′} ∈ {1.2.3} number o f the pitch angle subsystem
{v, v′} ∈ {1, 2} number o f the sensor in pitch angle subsystem

Table 2. The definition of the different generated residuals.

a = |β1,m1 − β2,m1| b = |β1,m1 − β2,m1| c = |β1,m1 − β2,m2|
d = |β1,m1 − β3,m1| e = |β1,m1 − β3,m2| f = |β1,m2 − β2,m1|
g = |β1,m2 − β2,m2| h = |β1,m2 − β3,m1| i = |β1,m2 − β3,m2|
j = |β2,m1 − β2,m2| k = |β2,m1 − β3,m1| l = |β2,m1 − β3,m2|

m = |β2,m2 − β3,m1| n = |β2,m2 − β3,m2| o = |β3,m1 − β3,m2|

These residuals give the values of the difference between the sensor measurements
and their associated reference models.

As aforementioned, the generated residuals may be distinguished under two types: in-
ternal or external residuals, where the internal residuals are a = |β1,m1 − β2,m1|,
j = |β2,m1 − β2,m2|, and o = |β3,m1 − β3,m2| for the 1st, 2nd, and 3rd actuators, respec-



Energies 2024, 17, 4016 11 of 35

tively, that present the difference between the sensor’s measurements in the same pitch
actuator. The external residuals are {b, c, d, e, f, g, h, I, k, l, m, and n} that present the
differences between two sensors in two different pitch actuators in the WT.

The second step of the fault detection of the studied pitch angle sub-system consists
of the pre-processing of the obtained data from the residuals. In this step, a state vector
denoted X is defined, where X = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, and O} which is
corresponding to the previously defined residual vector x = {a, b, c, d, e, f, g, h, i, j, k, l, m,
n, and o}. The result is defined by comparing them using Equation (3) with a predefined
threshold. The obtained result is a scalar logical value (0 or 1) for the elaboration of an
electronic diagram thereafter as follows:{

i f xi ≥ Thr =⇒ Xi = 1
i f xi < Thr =⇒ Xi = 0

(3)

where xi, and Xi are elements from the vectors x, and X, respectively.
The threshold is defined graphically for the pitch angle sub-system to guarantee a

precise fault detection within a short time of detection (TD), where it is considered as a
backstop, which is between the influenced and the uninfluenced residuals.

B. Fault detection, localization, and identification steps

The operation availability of the studied WT pitch angle sub-system is based on the
accurate implementation of the functions of the detection, localization, and identification of
faults within a short time to allow the planning of the necessary preventive actions in time.
This task can be achieved by the third step of the proposed diagnostic approach, where it
is obvious that any fault occurrence may modify the corresponding residuals within the
residual vector x = {a, b, c, d, e, f, g, h, i, j, k, l, m, n, and o}. Therefore, the obtained state
vector through Equation (3) X = {A, B, C, D, E, F, G, H, I, J, K, L, M, N, O} may also be
modified according to the changing of the residuals. Furthermore, in the case of this study,
the diagnostic system will be implemented and tested under various faults that may affect
the sensors and the actuators of the three pitch angle sub-systems.

a. Sensors’ faults

For fault detection and localization in the sensors, the internal residuals {a = |β1,m1 − β2,m1|,
j = |β2,m1 − β2,m2|, and o = |β3,m1 − β3,m2|} are employed to observe the occurred differ-
ence in the measured values between the two sensors of each actuator, because they are
influenced by this type of fault. It is clear when there is a deviation in difference greater
than the defined threshold based on Equation (2), the corresponding g states {A, J, O} are
affected based on Equation (3), and which are used as indicators of the sensor faults in the
three pitch actuators using the following indications:

I f A = 1 =⇒ a f ault sensor in the f irst pitch actuator
I f J = 1 =⇒ a f ault sensor in the second pitch actuator
I f O = 1 =⇒ a f ault sensor in the third pitch actuator

(4)

For the identification of the amplitude of faults and in order to determine exactly the
affected sensors, the difference between the measured values of the two installed sensors
with the observed values is determined; this is represented by a vector such as X = {A, B, C,
D, E, F, G, I, J, K, L, M, N, and O}.

a.1 Scenario: Fault sensor in the 1st actuator A = 1

To identify the fault in the concerned sensor between the sensors of the first actu-
ator, comparisons with the sensors of the other two actuators (second and third actua-
tors) are carried out at the same time. Firstly, if the state J = 0 of the internal residual
j = |β2,m1 − β2,m2| between the sensors of the second actuator, the faulty sensor in the first
actuator can be identified using Equation (5) based on the following external residuals:
{b = |β1,m1 − β2,m1|, c = |β1,m1 − β2,m2|, f = |β1,m2 − β2,m1|, and g = |β1,m2 − β2,m2|}.
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Secondly, if the state O = 0 of the internal residual o = |β3.m1 − β3.m2| between
the sensors of the third actuator, the faulty sensor in the first actuator can be identi-
fied using Equation (5) based on the following external residuals { d = |β1,m1 − β3,m1|,
e = |β1,m1 − β3,m2|, h = |β1,m2 − β3,m1|, and i = |β1,m2 − β3,m2|}.

The identification rule of the faulty sensors in the first actuator can be summarized
as follows:

A = 1 :




i f J = 0 and (B = 1 or C = 1)

or
i f O = 0 and (D = 1 or E = 1)

 =⇒ The sensor β1,m1 is f aulty
i f J = 0 and (F = 1 or G = 1)

or
i f O = 0 and (H = 1 or I = 1)

 =⇒ The sensor β1,m2 is f aulty

(5)

a.2 Scenario: Fault sensor in the 2nd actuator J = 1

If the state A = 0 of the internal residual a = |β1,m1 − β2,m1| between the sensors of
the first actuator, or if the state O = 0 of the internal residual o = |β3,m1 − β3,m2| between
the sensors of the third actuator, the identification of the faulty sensor in the second
actuators can be achieved based using one of the following external residuals: Firstly,
based on the external residuals that can be obtained from the comparison with the first
actuator sensors such as {b = |β1,m1 − β2,m1|, c = |β1,m1 − β2,m2|, f = |β1,m2 − β2,m1|, and
g = |β1,m2 − β2,m2|}. Hence, the faulty sensors can be identified based on Equation (6).
Secondly, based on the external residuals that can be obtained from the comparison with the
third actuator sensors such as {k = |β2,m1 − β3,m1|, l = |β2,m1 − β3,m2|, m = |β2,m2 − β3,m1|,
and n = |β2,m2 − β3,m2|}. Hence, the faulty sensors can be identified based on Equation (6).
The identification rule of the faulty sensors in the second actuator can be summarized
as follows:

J = 1 :




i f A = 0 and (B = 1 or F = 1)

or
i f O = 0 and (K = 1 or L = 1)

 =⇒ The sensor β2,m1 is f aulty
i f A = 0 and (C = 1 or G = 1)

or
i f O = 0 and (M = 1 or N = 1)

 =⇒ The sensor β2,m2 is f aulty

(6)

a.3 Scenario: Fault sensor in the 3rd actuator O = 1

If the state A = 0 of the internal residual a = |β1,m1 − β2,m1| between the sensors of
the first actuator, or if the state J = 0 of the internal residual j = |β2,m1 − β2,m2| between the
sensors of the second actuator, the identification of the faulty sensor in the third actuator
can be carried out based on the external residuals {d = |β1,m1 − β3,m1|, e = |β1,m1 − β3,m2|,
h = |β1,m2 − β3,m1|, and i = |β1,m2 − β3,m2|} obtained from the comparison with the sen-
sors of the first actuator as indicated in Equation (7), or it can be carried out based on
the external residuals { k = |β2,m1 − β3,m1|, l = |β2,m1 − β3,m2|, m = |β2,m2 − β3,m1|, and
n = |β2,m2 − β3,m2|} obtained from the comparison with the sensors of the second actuator
as indicated in Equation (7). The identification rule of the faulty sensors in the third actuator
can be summarized as follows:

O = 1 :




i f A = 0 and (D = 1 or H = 1)

or
i f J = 0 and (K = 1 or M = 1)

 =⇒ The sensor β3,m1 is f aulty
i f A = 0 and (E = 1 or I = 1)

or
i f J = 0 and (L = 1 or N = 1)

 =⇒ The sensor β3,m2 is f aulty

(7)

b. Actuators’ Faults
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The occurrence of actuator fault leads to the change in the global behavior dynamics of
the normal operation mode of the actuator in the pitch angle sub-system, where they cannot
track the reference operation mode. Indeed, as the fault occurs in the actuator and not in
the sensors, the two sensors installed in the same actuator generate the same measurement,
which means that the internal residuals {a = |β1,m1 − β2,m1|, j = |β2,m1 − β2,m2|, and
o = |β3,m1 − β3,m2|}are equal to zero. Hence, the sensors are not influenced by this kind of
fault and the corresponding states {A, J, and O} remain equal to zero. However, the actuator
faults influence directly the external residuals {b, c, d, e, f, g, h, I, k, l, m, and n} leading to
the change in their corresponding states {B, C, D, E, F, G, H, I, K, L, M, and N} that can be
used for identifying the actuator fault occurrence.

However, the detection and localization step of the actuator faults that probably oc-
curred in the pitch angle sub-system is based on the states corresponding to the internal
residuals that are obtained between the two sensors of each actuator {a = |β1,m1 − β2,m1|,
j = |β2,m1 − β2,m2|, and o = |β3,m1 − β3,m2|}. At the same time, the states corresponding to the
external residuals such as {b = |β1,m1 − β2,m1|, d = |β1,m1 − β3,m1|, and k = |β2,m1 − β3,m1|}
that are obtained between the two first sensors of each two pitch angle sub-systems are
used for the detection and the localization of the faulted actuator occurrence. As a result,
the states {A, J, O, B, D, and K} are considered the indicators of the fault occurrence in the
three pitch angle sub-system actuators based on the following rule:

i f A = 0 and
{

B = 1
D = 1

}
=⇒ The f irst actuator may be f aulty

i f J = 0 and
{

B = 1
K = 1

}
=⇒ The second actuator may be f aulty

i f A = 0 and
{

D = 1
K = 1

}
=⇒ The third actuator may be f aulty

(8)

For the identification of the amplitude of the faults and to investigate these actuator
faults clearly, the other observed states X = {C, E, F, G, H, I, L, M, and N,} are used
for the comparisons between the two sensors in the expected faulty actuator with the
sensors installed in the other healthy actuators and that are considered as references in the
following scenarios.

b.1 Scenario: Fault in the 1st actuator A = 0, B = 1, and D = 1

The detection of fault occurrence in the first actuator can be achieved based on the
internal residuals of the two other actuators b and d (the second and the third actuators)
that must have their states B = 1 and D = 1, whereas the detection decision is obtained
further based on the states (J and G) or (O and I). Firstly, if the state J = 0 of the internal
residual j = |β2,m1 − β2,m2| which is obtained from the sensors of the second actuator, the
identification of the fault on the first actuator can be carried out based on the states B and G
of the external residuals {b = |β1,m1 − β2,m1|, and g = |β1,m2 − β2,m2|} that have been used
in the detection step, and obtained from the corresponding sensors in the first actuator and
the corresponding sensors in the second actuator as indicated in Equation (9).

Secondly, if the state O = 0 of the internal residual o = |β3,m1 − β3,m2| between
the installed sensors in the third actuator, the identification of the fault occurrence in
the first actuator can be achieved based on the states I and D of the external residuals
{ i = |β1,m2 − β3,m2| and d = |β1,m1 − β3,m1|} that are used in the detection step, as indi-
cated in Equation (9). The identification rule of the faulty actuator in the first pitch angle
sub-system can be summarized as follows:

A = 0
B = 1
D = 1

 =⇒


i f J = 0 and G = 1

or
i f O = 0 and I = 1

 =⇒ The f irst actuator is f aulty (9)

b.2 Scenario: Fault in the 2nd actuator J = 0, K = 1, and B = 1:
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In this case, the detection of fault occurrence in the second actuator can be ensured by
the values of specific states such as the internal residual (A or O), and the external residuals
(G or N). Indeed, if the state A = 0 of the internal residual a = |β1,m1 − β2,m1| between the
sensors in the 1st actuator, or if the state O = 0 of the internal residual o = |β3,m1 − β3,m2|
between the sensors in the 3rd actuator, the identification of the faulty actuator can be ob-
tained based on the external residuals {b = |β1,m1 − β2,m1|, and g = |β1,m2 − β2,m2|} that are
used in the detection step, or, it can be based on the external residuals {k = |β2,m1 − β3,m1|
and n = |β2,m2 − β3,m2|} that are used in the detection phase with the external residual.

The identification rule of the faulty actuator in the second pitch angle sub-system can
be summarized as follows:

J = 0
K = 1
B = 1

 =⇒


i f A = 0 and G = 1

or
i f O = 0 and N = 1

 =⇒ The second actuator is f aulty (10)

b.3 Scenario: Fault in the 3rd actuator O = 0, D = 1, and K = 1:

In this case, the detection of fault occurrence in the third actuator can be carried out by
the values of specific states such as the internal residual (A or I), and the external residuals
(J or N). If the state A = 0 of the internal residual a = |β1,m1 − β2,m1| between the sensors
in the 1st actuator, or if the state J = 0 of the internal residual j = |β2,m1 − β2,m2| between
the sensors in the 3rd actuator, the identification of the faulty actuator can be based on
the states I and D of the external residuals {i = |β1,m2 − β3,m2| and d = |β1,m1 − β3,m1|},
respectively, and that are used in the detection phase, or, it can be based on the external
residual {k = |β2,m1 − β3,m1| and n = |β2,m2 − β3,m2|} that are used in the detection phase
with the external residual.

The identification rule of the faulty actuator in the second pitch angle sub-system can
be summarized as follows:

O = 0
D = 1
K = 1

 =⇒


i f A = 0 and I = 1

or
i f J = 0 and N = 1

 =⇒ The f irst actuator is f aulty (11)

To clearly explain the operation process of these logical statements, Figure 3 presents
an organizational structure for the proposed diagnosis method. This flowchart demon-
strates how the binary data are analyzed for the fault detection, localization, and identi-
fication stages for both the sensors and actuators in the 1st pitch angle sub-system as an
illustration example.

3.3. Construction of the Diagnostic System Using the Equivalent Electronic Logic Diagrams

In this section, the modeling of the proposed diagnostic approach using the equivalent
electronic logic diagrams including different steps is presented in detail. Indeed, the main
logical criteria for the detection of the faults related to each considered component are
presented under logical expressions. It is worth to clarify that the aspect of the ease of the
implementation of the proposed diagnosis approach is taken in to account to ensure the
detection of the faults in the sensors and actuators of the three pitch angle sub-systems of
the studied WT. The logic criterion of the first sensor is given by Equation (12):{

F(β1.m1) = A ∩
[(

J ∩ (B ∪ C)
)
∪
(
O ∩ (D ∪ E)

)]
F(β1.m2) = A ∩

[(
J ∩ (F ∪ G)

)
∪
(
O ∩ (H ∪ I)

)] (12)

Whereas the logic criterion of the second and third sensors are expressed in Equations (13)
and (14): {

F(β2.m1) = J ∩
[(

A ∩ (B ∪ F)
)
∪
(
O ∩ (K ∪ L)

)]
F(β2.m2) = J ∩

[(
A ∩ (C ∪ G)

)
∪
(
O ∩ (M ∪ N)

)] (13)
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{
F(β3.m1) = O ∩

[(
A ∩ (D ∪ H)

)
∪
(

J ∩ (K ∪ M)
)]

F(β3.m2) = O ∩
[(

A ∩ (E ∪ I)
)
∪
(

J ∩ (L ∪ N)
)] (14)

It is noted here that all the sensor fault criteria have an identical form to that of the
following equation:

F(βu,mv) = S1 ∩
[
(S 2 ∩ (S3 ∪ S4)) ∪ (S5 ∩ (S6 ∪ S7))

]
(15)

where: S1, S2, S3, S4, S5, S6, and S7 correspond to the elements of the vector of state X but
not in the same numerical order.
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Figure 3. Fault detection, localization, and identification diagram for the 1st sub-system.

The same logic is used for the elaboration of the three actuators’ criteria of faults
as follows: 

F(β1) = A ∪
[(

J ∪ G
)
∩
(
O ∪ I

)]
∩ B ∩ D

F(β2) = J ∪
[(

A ∪ G
)
∩
(
O ∪ N

)]
∩ K ∩ B

F(β3) = O ∪
[(

A ∪ I
)
∩
(

J ∪ N
)]

∩ D ∩ K

(16)

Similarly, the criteria of actuator faults can have the same form for all the actuators
as follows:

F(βu,mv) = S1 ∪
[(

S2 ∪ S3
)
∩
(
S4 ∪ S5

)]
∩ S6 ∩ S7 (17)

where: S1, S2, S3, S4, S5, S6, and S7 correspond to the elements of the vector of state X but
not in the same numerical order.

So, according to the similarity of the above forms, logical electronic schemes have been
built based on the binary system that can be equivalent to the sensor and actuator fault
criteria as shown in Figure 4a,b, where Figure 4a shows the digital scheme of the sensor
fault criteria and Figure 4b shows the digital schema of the actuator faults.
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Finally, the implementation of the global digital scheme of the proposed diagnosis
approach is presented in Figure 5a, which is based on the two built sub-systems shown in
Figure 4a,b.

After the generation of these residuals, the next step is to determine the residuals that
have been influenced by each fault in the pitch system. A threshold value is calculated by
observing the system responses, which presents the difference between the outputs of the
real system of the wind turbine and the outputs obtained from the mathematical model.
The threshold value (Thr) is calculated taking into account the accuracy of fault detection
and the less time of detection (TD). Furthermore, the considerations aforementioned at the
end of Section 3.2 are taken into account.

To test the effectiveness of the proposed fault diagnosis approach for the studied wind
turbine system, the selected benchmark model is used to represent the behavior of the
considered WT. Indeed, this model reflects the dynamics of the essential components of the
wind system studied under normal operating conditions (without faults). Therefore, the
experimental results obtained are based on this reference model to detect and isolate the
faults in the different parts of the studied wind turbine. Indeed, the overall structure of the
proposed diagnostic system is based on three steps: the first step consists of generating the
fault residuals, the second step focuses on their processing, and the third step represents the
model-based fault detection phase for the various sensors and actuators of the studied WT.
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The diagnosis approach proposed in this paper can improve the performances of WTs,
as well as their profitability, based on the diagnostic methodology included in this proposal.
Indeed, with the use of the diagnostic indicators of the proposed approach, the availability
and operational safety of the studied wind turbine are assured in normal mode and under
the presence of faults. Therefore, the main aim of the proposed approach is to ensure the
accurate detection of faults, early fault symptoms, and early fault occurrences while limiting
the shutdowns caused by faults. This allows for efficient and fast problem resolution,
overcoming monitoring gaps with a robust and easy-to-use strategy, and provides a high
capability of detecting sudden dynamic changes in the wind turbine behavior under study.
Figure 5b,c show the block diagrams introducing the steps of the proposed fault detection
approach and the formulation used in the proposed approach, respectively. It is obvious,
as shown in these two figures, that after the acquisition of the pitch angle sub-system
measurements, the residuals are generated. Then, a pre-processing of these residuals is
carried out. Finally, the fault detection and isolation (FDI) is activated for the accurate
identification of the occurred sensor/actuator faults. The resulting fault signature table and
all the implemented steps are illustrated in Figure 5c.

4. Obtained Results and Investigations

This section is dedicated to the validation of the proposed fault diagnosis approach
based on the investigation of the obtained results under the studied relevant selected faults
using a benchmark model of the studied WT. For this purpose, Table 3 presents the studied
selected faults and their time of application which are used in the present study on the
pitch angle sub-system of the studied WT taking into account a fixed detection threshold
( Thr = 0.85◦). This threshold is chosen based on the practical range within which the pitch
angle system is not affected by its normal operating mode.

Table 3. Studied selected faults in the pitch system.

Fault Fault Type Class Site Fault Time

F (β1.m1) Fixed value A1 β1.m1 [100 s: 200 s]

F (β2.m2) Gain factor A2 β2.m2 [500 s: 600 s]

F (β3.m1) Fixed value A1 β3.m1 [900 s: 1000 s]

F(β2) Changed dynamics B3 β2 [3200 s: 3300 s]

F(β3) Changed dynamics B4 β3 [3400 s: 3500 s]

Concerning fault type A1, it is related to the false measurement of the pitch position
which is due to electrical or mechanical faults, where in this paper two cases are taken into
consideration: the first one is related to the first sensor in the first pitch angle sub-system F
(β1.m1), and the second one is related to the first sensor of the third pitch angle sub-system F
(β3.m1) as represented in Table 3. Fault type A2 corresponds to the gain factor measurement
change in the second sensor of the second pitch angle sub-system which is due either
to electrical or mechanical faults. The fault types B3 and B4 correspond to the faults in
the hydraulic system resulting in changed dynamics, and that are due to either a drop in
pressure in the hydraulic supply system (B3) or high air content in the oil (B4). These faults
are caused mainly by the leakage in the hose, poor circulation of oil or air, blocked pump,
pump malfunction, etc. It is important to clarify that in case the concerned residuals exceed
the predefined detection threshold, the fault detection signals F(β1.m1), F (β2.m2), F (β3.m1),
F(β2), and F(β3) have the value of one; otherwise, they remain equal to zero.

The proposed approach is applied to the benchmark model and is tested for the
detection of faults in the sensors and actuators of the pitch angle wind turbine sub-systems.
The fault scenarios used in this paper are based on the faults presented in Table 3, which
are tested within the interval [0 to 4400 s], where the resulting output variables of the
WT β1.m1, β2.m2, and β3.m1 are shown in Figures 6–8, respectively. Figure 6 shows the
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measurements from the two sensors {β1.m1 and β1.m2} in the first actuator, Figure 7 shows
the measurements from the two sensors {β2.m1 and β2.m2} in the second actuator, and
Figure 8 shows the measurements from the sensors {β3.m1 and β3.m2} in the third actuator,
and Figure 9 shows the measurements of {β1.m2, β2.m1, and β3.m2} in the three actuators. In
addition, Figure 10 shows three zooms such as Zoom 1 which is related to Figure 7, and
Zoom 2 and Zoom 3 which are related to Figure 9.
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Figure 11 shows the residuals {a, b, and c} within the test range of time [0 to 4400 s],
with the occurrence of the three fault types; fixed value (A1), gain factor (A2), and a
hydraulic pressure drop (B3) within the intervals [100 s to 200 s], [500 s to 600 s], and
[3200 s to 3300 s], respectively. It is clear that the magnitudes of the three residuals are
affected by these three faults but with different levels. Indeed, to have a deep investigation,
Figure 12 illustrates the different zooms related to the three residuals {a, b, and c}, Zoom 4
shows the variation in the residuals {a, b, and c} under the occurrence of the fixed value
fault type (A1) in the first sensors of the first pitch angle sub-system β1.m1 which has a
magnitude of (−3◦), and Zoom 5 shows the variation in the residuals {a, b, and c} under the
occurrence of the gain factor fault type (A2) in the second sensor of the second pitch angle
sub-system β2.m2, where it can be seen clearly that the residual {c} is the highest reaching
the value of 2.3, and which exceeds the predefined fixed detection threshold. Zoom 6
shows the variation in the residuals {a, b and c} under the occurrence of the hydraulic
pressure drop fault type (B3) related to the actuator of the second pitch angle sub-system
β2 over the time interval of [3200 s, 3300 s]. It can be seen clearly in this zoom area that
the two residuals {a, and b} reach the value of 3.9 that exceeds predefined the detection
threshold. Furthermore, Figure 13 illustrates the fault detection signals of the sensors of
the first pitch angle sub-system F(β1.m1) and F(β1.m2), where it can be noted that F(β1.m1)
has a value of one during the fault occurrence, indicating that the first sensors of the first
pitch angle sub-system is faulty, whereas the second sensor is healthy as its corresponding
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fault detection signal F(β1.m2) remains equal to zero. Besides this, a closer observation of
the appearance of the fault detection signal relative to the instant of fault occurrence allows
for extracting the time detection which is TD = 0.02 s, indicating the effectiveness of the
proposed approach in this paper in detecting the faults within a very short detection time.
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Figure 14 shows the variation in the residues {d, e, and f} used for the detection and
location of the four types of faults such as fixed value (A1), gain factor (A2), the appearance
of a hydraulic pressure drop (B3), and the increase in the air content in the oil (B4) in
the second pitch angle sub-system sensor. Zoom 7 of Figure 15 shows the variation in
these residuals {d, e, and f} under the occurrence of the fixed value fault type (A1) in the
first sensor of the first pitch angle sub-system (β1.m1) with a value equal to (−3◦). Zoom
8 elucidates the variation in the residues {d, e, and f} under the occurrence of the fixed
value fault type (A1) in the first sensor of the third pitch angle sub-system (β3.m1) with
a value equal to (7◦). Zoom 9 presents the variation in the residuals {d, e, and f} under
the occurrence of the hydraulic pressure drop which presents a changed dynamics fault
type (B3) in the actuator of the second pitch angle sub-system (β2). Zoom 10 illustrates the
variation in the residuals {d, e, and f} under the occurrence of an increase in the air content
in the oil which presents a changed dynamics fault type (B4) in the actuator of the third
pitch angle sub-system (β3). Moreover, Figure 16 shows the fault detection signals of the
sensors of the second pitch angle actuator, with the fault detection signal F (β2.m2) and a
detection time of TD = 0.08 s.
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Moreover, Figure 16 shows the fault detection signals of the sensors of the second pitch
angle sub-system F(β2.m1) and F(β2.m2), where it can be noted that F(β2.m2) has a value of
one during the fault occurrence indicating that the second sensor of the second pitch angle
sub-system is faulty, whereas the first sensor is healthy as its corresponding fault detection
signal F(β2.m1) remains equal to zero. Indeed, a deep observation of the appearance of the
fault detection signal relative to the instant of the fault occurrence allows for extracting
the time of detection which is TD = 0.08 s, indicating once more the effectiveness of the
proposed approach in this paper in detecting the faults within a very short detection time.

The results presented in Figure 17 show the variation in the residuals {g, h, and i}
obtained under the effects of the four fault types such as gain factor (A2), fixed value (A1),
the appearance of a hydraulic pressure drop (B3), and the increase in the air content in
the oil (B4) in the actuator of the third pitch angle sub-system (β3). To ensure accurate
investigations of these results, a zoom is taken at each fault occurrence time interval.
Zoom 11 of Figure 18 shows clearly the residuals {g, h, and i} under the presence of a gain
factor fault type (A2) in the second sensor of the second pitch angle sub-system (β2.m2)
within the time interval [500 s to 600 s], where it can be observed that the residual {g} exceeds
the predefined threshold due to the presence of this fault type in the sensor. Zoom 12 of
Figure 18 presents {g, h, and i} under the presence of a fixed value fault type (A1) in the first
sensor of the third pitch angle sub-system (β3.m1) within the time interval [900 s to 1000 s],
where it can be noted that the residual {h} exceeds the predefined threshold due to the
presence of this fault type in the sensor with an average value of 7◦. Zoom 13 of Figure 18
illustrates the residuals {g, h, and i} under the presence of a hydraulic pressure drop fault
type (B3) in the actuator of the second pitch angle sub-system (β2) within the time interval
[900 s to 1000 s], where it can be observed that the residual {g} exceeds the predefined
threshold due to the presence of this fault type in the actuator; this exceedance is notable
at the beginning of the fault’s appearance; however, it is less remarkable throughout the
remainder of the fault’s duration. Zoom 14 of Figure 18 presents the residuals {g, h, and i}
under a fault type of an increase in the air content in the oil (B4) in the 3rd actuator (β3)
within the time interval [3400 s to 3500 s], where it can be observed that the residuals {h,
and i} exceeds the predefined threshold due to the presence of this fault type in the actuator;
this overtaking of these residuals increase with the lasting of the fault time which means
that this type should be removed immediately to prevent its amplification along the fault
time increase. Finally, Figure 19 shows the fault detection signals of the sensors of the third
pitch angle actuator, with the verification of criterion F (β3.m1) and the detection time of
TD = 0.01 s.
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Figure 19 shows the fault detection signals resulting from the sensors in the third
pitch angle sub-system F(β3.m1) and F(β3.m2) where it can be confirmed that F(β3.m1) has
a value of 1 during the fault occurrence, indicating that the first sensor of the third pitch
angle sub-system is faulty, whereas the second sensor is healthy as its corresponding
fault detection signal F(β3.m2) remains equal to zero. Indeed, a deep observation of the
appearance of the fault detection signal relative to the instant of fault occurrence allows
the determination of the time of detection which is TD = 0.01 s, indicating once more the
effectiveness of the proposed approach in this paper in detecting different faults within a
very short detection time.
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Figure 19. Sensor fault detector signals for the 3rd actuator.

Figure 20 shows the residuals {j, k, and l} obtained within the time interval of
[0 to 4400 s] under the four faults, whereas Figure 21 represents more details at each fault
occurrence such as the gain factor fault type (A2) within the time interval of [500 s to 600 s]
as represented in Zoom 15 of Figure 21, fixed value fault type (A1) within the time interval
of [900 s to 1000 s] as shown in Zoom 16 of Figure 21, hydraulic pressure drop fault type (B3)
within the time interval of [3200 s to 3300 s] as shown in Zoom 17 of Figure 21, where an
increase in air content in the oil fault type (B4) within the time interval of [3400 s to 3500 s]
is remarkable with the increase of time as shown in Zoom 18 in the third actuator (β3).
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Figure 22 shows the residuals {m, n, and o} obtained under the four fault types within
the same time interval as in the previous tests such as the gain factor fault type (A2), fixed
value fault type (A1) with a value of 7◦, hydraulic pressure drop fault type (B3) in the
actuator of the third pitch angle sub-system, and an increase in the air content in the oil
fault type (B4) in the third actuator (β3), whereas within the zooms represented in Figure 23
that are related to each fault occurrence, the three residuals are presented in more detail
such as Zoom 19 which shows that the two residuals {m and n} exceed the predefined
threshold under the presence of a gain factor fault type (A2), Zoom 20 shows that the two
residuals {m and o} exceed the predefined threshold with nearly the same average value
of seven under the fixed value fault type (A1), and Zoom 21 shows that the two residuals
{m and o} exceed the predefined threshold under hydraulic pressure drop fault type (B3);
this exceedance for both residuals is notable at the beginning of the fault’s appearance;
however, it is less remarkable throughout the remainder of the fault’s duration. Zoom 22
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shows that the two residuals {m and o} exceed the predefined threshold under an increase
in the air content in the oil fault type (B4) in the third actuator (β3). This overtaking of
these residuals increases with the increase in the time of fault occurrence which means
that this type should be removed immediately to prevent its amplification along the fault
time increase.
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Figure 24 shows the fault detection signals resulting from the sensors in the three
actuators of the three pitch angle sub-systems F(β1), F(β2), and F(β3), where it can be
confirmed that F(β2) has a value of one during the fault occurrence with the time interval
[3200 s to 3300 s] indicating there is a fault in the actuator of the second pitch angle sub-
system. On the other side, it can also be confirmed that F(β3) has a value of one during the
fault occurrence with the time interval [3400 s to 3500 s] indicating there is a fault in the
actuator of the third pitch angle sub-system, whereas the actuator in the first pitch angle
sub-system is healthy as its corresponding fault detection signal F(β1) remains equal to zero.
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Indeed, a careful observation of the appearance of the fault detection signal F(β3) relative
to the instant of the fault occurrence allows the determination of the time of detection
which is TD = 22.01 s which is practically a short time for the changed dynamics fault type,
indicating once more the effectiveness of the proposed approach in this paper in detecting
different faults within a very short detection time.
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Based on the obtained results from the benchmark model of the studied wind turbine
(WT) pitch angle sub-systems, the proposed fault diagnosis approach offers an effective
solution for the overall WT system monitoring. This ensures safety, reliability, and contin-
uous operation under various fault types that may occur in the pitch angle sub-systems
of the WT. Indeed, wind turbine power plant installations are affected by challenging
operating conditions and constraints, as demonstrated in this paper within the presented
investigated simulations tests under various fault types. These faults are characterized by
high severity and can increase the damage rate of the WT plant, particularly in the pitch
angle sub-systems. Therefore, an effective diagnosis approach system which can help avoid
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such failures and reduce maintenance costs is a major requirement for the sustainability of
wind turbine power plants.

Furthermore, these obtained simulation results demonstrate the effectiveness of the
proposed diagnosis approach, where the most relevant possible faults that can affect the
sensors and actuators of the pitch angle sub-system are detected, isolated, and classified
correctly based on a fixed threshold detection value. Indeed, sensor faults such as F (β1.m1),
F(β2.m2), and F(β3.m1), and actuator faults such as F(β2) and F(β3) are tested with their
types of fixed value, gain factor, and dynamics changes. The obtained results confirm
the capability of the developed diagnostic approach and its effectiveness as a powerful
fault detection tool for wind turbine systems, whereas the generated internal and external
residuals are used to infer decisions about the occurrence of faults in each part of the
system based on the predefined thresholds and the acquired measurements. The proposed
detection approach is sensitive to measurement noises due to the proposed residual types.
Furthermore, multiple fault occurrences can be automatically detected as depicted in
Figure 24. This method allows the development of a practical monitoring system of
wind turbine pitch angle sub-systems that can ensure clear indications of the degradation
behavior of their components. This approach can also enable the operator of these wind
turbines to make maintenance decisions at the right time.

The investigated faults in this study are summarized as follows:

• A fixed value (A1) in β1.m1 (−3◦) within an interval time: [100–200 s]: This fault
influences the residuals {a, b, and c} as shown in Figure 11 and Zoom 4 of Figure 12,
and the residuals {d and e} as shown in Figure 14 and Zoom 7 of Figure 15. These
residuals exceed the predefined threshold, while the residual {f} presented in Figure 14
and Zoom7 of Figure 15 is less than the predefined threshold due to no influence of this
fault type on these residuals. In this case, the fault detection signals are determined
based on F (β1.m1) as shown in Figure 13, where the detection time in this case is
TD = 0.02 s.

• A gain factor (A2) in β2.m2 is equal to (5.β2.m2) within an interval time of [500 s–600 s].
As it can be observed from Figures 11, 17, 20 and 22, it is obvious that the residuals {c, g,
j, m, and n} have been influenced by this fault type, where they exceed the predefined
threshold. To show their high exceedance of the predefined threshold during each
time interval of the fault occurrence, specific zooms are elaborated as shown in Zooms
5, 11, 15, and 19 of Figures 12, 18, 21 and 23, respectively, whereas the residuals {a,
and o} have been detected to be less than the predefined threshold as shown in Zoom.
5 of Figure 11 and Zoom 19 of Figure 23. In this case, the fault detection signal is
determined by F (β2.m2) as shown in Figure 16 with a detection time TD = 0.08 s.

• A fixed value (A1) in β3.m1 with a value of (7◦) within an interval time of
[900 s–1000 s]. Based on the results shown in Figures 14, 17, 20 and 22, it is clear
that this fault type has influences on the residuals {d, h, k, m, and o}, where their
values exceed the predefined threshold. Specifically captured zooms within the men-
tioned time interval are shown in Zooms 8, 12, 18, and 20 in Figures 15, 18, 21 and 23,
respectively. However, the residuals {a and j} remain less than the predefined threshold
value as presented in Figure 11 and Zoom 16 of Figure 21. In this case, the fault detec-
tion signal is determined by F (β3.m1) as shown in Figure 19 with a time of detection
(TD = 0.01 s).

• Hydraulic pressure drops (B3) is an actuator fault that occurs in the second actuator
β2 within the time interval of [3200 s–3300 s]. As shown in Figures 11, 14, 17, 20 and 22,
this fault type influences the residuals {b, c, f, g, k l, m, and n}. The zooms carried out
at each fault occurrence within the specified duration show that the measured values
of these signals infer the decision related to the occurring fault as the aforementioned
residuals exceed the predefined threshold as shown in Zooms 6, 9, 13, 17, and 21 of
Figures 12, 15, 18, 21 and 23, respectively, while the residuals {a, e, d, j, and o} have
their values less than the predefined threshold during the mentioned duration [3200
s to 3300 s] as depicted in Zoom 6 of Figure 12, Zoom 9 of Figure 15, Zoom 13 of
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Figure 18, Zoom 17 of Figure 21, and Zoom 21 of Figure 23. In this case, the fault
detection signal is determined by F (β2) as shown in Figure 24 with a time of detection
(TD = 0.01 s).

• Increasing air content (B4) in the third actuator (β3) within the time interval
[3400 s–3500 s]. This fault type influences the residuals {d, e, h, i, k, l, m, and n}
as shown in Figures 14, 17, 20 and 22, leading to exceeding the predefined threshold
value as it can be seen clearly in the captured zooms within the defined time interval
[3400 s to 3500 s] such as Zooms 10, 14, 18, and 22 of Figures 15, 18, 21 and 23, respec-
tively, whereas the signals {f, g, j, and o} remain less than the predefined threshold
within the specified duration as shown in Zoom 10 of Figure 15, Zoom 14 of Figure 18,
Zoom 18 of Figure 21, and Zoom 22 of Figure 23. In this case, the fault detection signal
is determined by F (β3) as shown in Figure 24 with a time of detection (TD = 22.01 s).

Table 4 summarizes the simulated sensor and actuator faults in the pitch angle sub-
systems of the WT. In this table, the fault types, classes, values, and their periods of
occurrence have been illustrated, whereas for each fault, the extracted influenced residuals,
max values, the fault detection signal, and the time of detection are presented.

Table 4. Summary of the obtained results for the fault detection.

Pitch Sensor and Actuator Faults

Fault Detection Values

Site Type Class Value Period Influenced
Residuals

Residual
Max Value

Criterion
Detector TD (s)

β1.m1 Fixed value A1 −3 [100–200 s] a, b, c, d, e 3.4469 F(β1.m1) 0.02

β2.m2 Gain factor A2 5 × β2.m2 [500–600 s] c, g, j, m, n 2.4911 F(β2.m2) 0.08

β3.m1 Fixed value A1 7 [900–1000 s] d, h, k, m, o 7.4727 F(β3.m1) 0.01

β2
Increase in air

content changes B3 ζ3 = 0.9
ωn3 = 3.42 [3200–3300 s] b, c, f, g,

k, l, m, n 4.2610 F(β2) 0.01

β3
Hydraulic head

loss changes B4 ζ3 = 0.45
ωn3 = 5.73 [3400–3500 s] d, e, h, i,

k, l, m, n 3.1461 F(β3) 22.01

5. Conclusions

The detection of faults in wind turbine systems is a challenge that needs to be overcome
in order to guarantee the enhanced operation performances of these renewable energy
sources. For this purpose, a fault diagnosis approach is proposed in the present paper
for the WT pitch angle sub-systems based on a selected benchmark model. The proposed
approach presents essentially a reliable practical methodology based on the integration of
a digital detection algorithm to ensure the WT’s normal operation mode. This proposal
can provide an innovative and digitalized solution for WT fault detection that can allow
for minimizing the operation risks under various eventual faults in the pitch angle sub-
systems by ensuring the detection of the occurrence of faults at the right time. The obtained
results confirm that the proposed digital algorithm is a powerful and reliable tool for fault
detection and its effectiveness is demonstrated through the presented simulations based
on the defined performances and indices. In this developed approach, multiple faults can
be automatically detected based on the accurate and better estimations of the influenced
residuals. Furthermore, the proposed approach allows for overcoming the limitations of
the conventional monitoring methods for this type of system. It identifies the stages of
degradation, normal operation mode, faulty operation mode, and complete failure mode
(stop mode). This feature allows for ensuring the enhancement of the availability and
reliability of the various sensors and actuators of the studied WT by detecting and locating
the appearance of faults in the pitch system based on the determination of the difference
between the observed system behavior and the reference model behaviors. This structure
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provides a useful evaluation of performance indices for the correct operation mode of the
WT and allows the WT to continue to operate with high efficiency.

As an extension to the present study, a nonlinear estimator such as the extended
Kalman filter can be used in order to measure the different system variables that allow
generating the correct and appropriate residuals to accomplish precisely the task of fault
detection. Furthermore, the employment of an intelligent and equivalent model of the WT
machine like fuzzy systems and neuro-fuzzy techniques can improve effectively the quality
of the decisions of the fault detection, localization, and isolation of any faulty part of the
WT such as the pitch angle system, drive chain, and generator–converter [62].
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Abbreviations

WT Wind turbine
PV Photovoltaic
FTC Fault-tolerant control approach
FDI Fault detection and identification
FFT Fast Fourier transform
FSK-MBCNN Fast spectral kurtosis multi-branch convolutional neural network method
PI Proportional-Integrator controllers
WPT Wireless Power Transfer
MEPT Maximum Efficiency Point Tracking control
Vwind Wind speed

β1, β2, β3
The real values of the pitch angle of the first, second, and third wind
turbine blades

βm Pitch angle signal measurements
βr Pitch angle signal reference
τr Rotor torque
ωr Rotor speed (turbine speed)
τg Generator torque
τg.r Reference of generator torque
ωg Generator speed
ωn The pulsation frequency factor of second-order transfer function
ξ The damping factor of the second-order transfer function
TD The time of Detection
Thr Threshold value
x = {a, b, c, d, e, f, g, h, i, j,
k, l, m, n, o}

Internal and external residual signals obtained in Residual Generation.

X = {A, B, C, D, E, F, G, H,
I, J, K, L, M, N, and O}

Binary states of internal and external residuals obtained in the pre-
treatment stage

{nbr: blade} Blade number (uth = {1st, 2nd, or 3rd})
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{nbr: sensor} Sensor number (vth = {1st, or 2nd}) in the uth blade
βu.mv Measurements of the vth sensor on the uth pitch angle sub-system.
F(βu.mv) Sensor fault in vth sensor of uth actuator
F(βu) Actuator fault in the uth actuator.

“A”
An indication for sensor faults in different parts of the proposed model
of the WT system.

“A1”
The first sensor fault class: “fixed value” in a sensor in the pitch angle
system into the aerodynamic part.

“A2”
The second sensor fault class: “gain factor” in a sensor in the pitch
angle system into the aerodynamic part.

“B”
An indication for actuator faults in different parts of the proposed
model of the WT system.

“B3”
The third actuator fault class: “changed dynamics” as a hydraulic head
in a hydraulic pitch angle sub-system into the aerodynamic part.

“B4”
The fourth actuator fault class: “changed dynamics” as an increasing
air in a hydraulic pitch angle sub-system into the aerodynamic part.
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