an Computational Materials

ARTICLE

www.nature.com/npjcompumats

W) Check for updates

Self-supervised optimization of random material
microstructures in the small-data regime

Maximilian Rixner' and Phaedon-Stelios Koutsourelakis ('

While the forward and backward modeling of the process-structure-property chain has received a lot of attention from the
materials’ community, fewer efforts have taken into consideration uncertainties. Those arise from a multitude of sources and their
quantification and integration in the inversion process are essential in meeting the materials design objectives. The first
contribution of this paper is a flexible, fully probabilistic formulation of materials’ optimization problems that accounts for the
uncertainty in the process-structure and structure-property linkages and enables the identification of optimal, high-dimensional,
process parameters. We employ a probabilistic, data-driven surrogate for the structure-property link which expedites computations
and enables handling of non-differential objectives. We couple this with a problem-tailored active learning strategy, i.e, a self-
supervised selection of training data, which significantly improves accuracy while reducing the number of expensive model
simulations. We demonstrate its efficacy in optimizing the mechanical and thermal properties of two-phase, random media but
envision that its applicability encompasses a wide variety of microstructure-sensitive design problems.
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INTRODUCTION

Inverting the process-structure-property (PSP) relationships repre-
sents a grand challenge in materials science as it holds the
potential of expediting the development of new materials with
superior performance’-2. While significant progress has been made
in the forward and backward modeling of the process-structure
and structure-property linkages and in capturing the nonlinear
and multiscale processes involved®, much fewer efforts have
attempted to integrate uncertainties which are an indispensable
component of materials’ analysis and design®>. Uncertainties can
arise since: (a) process variables do not fully determine the
resulting microstructure but rather a probability distribution on
microstructures®, (b) noise and incompleteness are characteristic
of experimental data that are used to capture process-structure
(most often) and structure-property relations’, (c) models
employed for the process-structure or structure-property links
are often stochastic and there is uncertainty in their parameters or
form, especially in multiscale formulations®, and (d) model
compression and dimension reduction employed in order to gain
efficiency unavoidably lead to some loss of information which in
turn gives rise to predictive uncertainty®. This randomness should
be incorporated, not only in the forward modeling of the PSP
chain, but in the optimization objectives and the inverse-design
tasks as well.

(Back-)propagating uncertainty through complex and poten-
tially multiscale models poses significant computational difficul-
ties'®. Data-based surrogates can alleviate these as long as the
number of training data, i.e, the number of solutions of the
complex models they would substitute, is kept small. In this small-
data setting additional uncertainty arises due to the predictive
inaccuracy of the surrogate. Quantifying it can not only lead to
more accurate estimates but also guide the acquisition of
additional experimental/simulation data.

We note that problem formulations based on Bayesian
Optimization''"'3 account for uncertainty in the objective solely

due to the imprecision of the surrogate and not due to the
aleatoric, stochastic variability of the underlying microstructure. In
the context of optimization/design problems in particular, a
globally-accurate surrogate would be redundant. It would suffice
to have a surrogate that can reliably drive the optimization
process to the vicinity of the optimum (or optima) and can
sufficiently resolve this (those) in order to identify the optimal
control parameters. Since the location of the optima is, a priori,
unknown, adaptive strategies, in which the training of the
surrogate and the optimization are coupled, would be necessary.

We emphasize that unlike successful efforts e.g. in topology
optimization' or general heterogeneous media'> which find a
single, optimal microstructure maximizing some property-based
objective, our goal is more ambitious but also more consistent
with the physical reality. We attempt to find the value of the
processing variables that gives rise to the optimal distribution of
microstructures (Fig. 1). To address the computational problem
arising from the presence of uncertainties, we recast the stochastic
optimization as a probabilistic inference task and employ
approximate inference techniques based on Stochastic Variational
Inference (SVI'°).

In terms of the stochastic formulation of the problem, our work
most closely resembles that of'” where they seek to identify a
probability density on microstructural features which would yield
a target probability density on the corresponding properties.
While this poses a challenging optimization problem, producing a
probability density on microstructural features does not provide
unambiguous design guidelines. In contrast, we operate on (and
average over) the whole distribution of microstructures and
consider a much wider range of design objectives. In'® random
microstructures were employed but their macroscopic properties
were insensitive to their random variability (due to scale-
separation) and low-dimensional parametrizations of the two-
point correlation function were optimized using gradient-free
tools. In a similar fashion, in'®?° analytic, linear models were
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Fig. 1 Conceptual overview. Given stochastic process-structure and
structure-property links, we identify the process parameters ¢*
which maximize the expected utility £,y [u(k)] (lllustration based
on the specific case u(k) = I (k) and p(k|x) = 6(k — k(x))). (Micro)
Structures x arise from a stochastic process through the density
p(x|@) which depends on the process parameters ¢. A data-driven
surrogate is employed to predict properties k which introduces
additional uncertainty.

employed which, given small and Gaussian uncertainties on the
macroscopic properties, find the underlying orientation distribu-
tion function (ODF) of the crystalline microstructure. In?'?2,
averaged macroscopic properties (ignoring the effects of crystal
size and shape) were computed with respect to the ODF of the
polycrystalline microstructure and on the basis of their targeted
values, the corresponding ODF is found. While data-based
surrogates were also employed, the problem formulation did
not attempt to quantify the effect of microstructural uncertainties.

In terms of surrogate development, in this work we focus on the
microstructure-property link and consider random, binary micro-
structures, the distribution of which depends on some processing-
related parameters. We develop active learning strategies that are
tailored to the optimization objectives. The latter can account for
the potential stochasticity of the material properties (as well as the
predictive uncertainty of the surrogate), i.e, we enable the
solution of optimization-under-uncertainty problems.

RESULTS & DISCUSSION

It is advisable that the readers familiarize themselves with the
mathematical entities defined in the "Methods" section in order to
better appreciate the results presented in this section which
contains two applications of the methodological framework, for
(O1)- and (02)-type formulations of the inversion of the PSP chain
(see "Methods"). We first elaborate on the specific choices for the
process parameters ¢, the random microstructures x and their
properties k as well as the associated PSP links.

Process ¢ - Microstructure x

In all numerical illustrations we consider statistically homoge-
neous, binary (two-phase) microstructures which upon spatial
discretization (on a uniform, two-dimensional N, x N,, grid with N,
=64) are represented by a vector x<{0,1}%%. The binary
microstructures are modeled by means of a thresholded zero-
mean, unit-variance Gaussian field®*?* If the vector x, denotes the
discretized version of the latter (on the same grid), then the value
at each pixel i is given by x; = H(xg,; — Xo) where H(-) denotes the
Heaviside function and x, the cutoff threshold, which determines
the volume fractions of the resulting binary field. We parameterize
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the spectral density function (SDF) of the underlying Gaussian
field (i.e., the Fourier transform of its autocovariance) with ¢, using
a combination of radial basis functions (RBFs—see Supplementary
Notes) which automatically ensures the non-negativity of the
resulting SDF. The constraint of unit variance is enforced using a
softmax transformation. The density p(x|o) implicitly defined
above affords great flexibility in the resulting binary microstruc-
tures (as can be seen in the ensuing illustrations) which increases
as the dimension of ¢ does. Figure 1 illustrates how different
values of the process parameters ¢ can lead to profound changes
in the microstructures (and correspondingly, their effective
physical properties k). While the parameters ¢ selected do not
have explicit physical meaning, they can be linked to actual
processing variables given appropriate data. Naturally, not all
binary media can be represented by this model and a more
flexible p(x|p), potentially learned from actual process-structure
data, could be employed with small modifications in the overall
algorithm?>-%7,

Microstructure x - Properties k

In this study we consider a two-dimensional, representative
volume element (RVE) Qgve = [0, 1]2 and assume each of the two
phases are isotropic, linear elastic in terms of their mechanical
response and are characterized by isotropic, linear conductivity
tensors in terms of their thermal response. We denote with C the
fourth-order elasticity tensor and with a the second order
conductivity tensor which are also binary (tensor) fields. The
vector Kk consists of various combinations of macroscopic,
effective (apparent), mechanical or thermal properties of the RVE

which we denote by ’Ceff and a*ff, respectively. The effective

properties for each microstructure occupying Qgye Were com-
puted using finite element simulations and Hill's averaging
theorem?82° (further details are provided in the Supplementary
Notes). We assumed a contrast ratio of 50 in the properties of the
two phases, i.e., E;/Eo =50 (where Ey, E; are the elastic moduli of
phases 0 and 1, as well as Poisson’s ratio v = 0.3 for both phases)
and a,/a, = 50 (where ay, a, are the conductivities of phases 0 and
1). In the following plots, phase 1 is always shown with white and
phase 0 with black. We note that the dependence of effective
properties on (low-dimensional) microstructural features (analo-
gous to @) has been considered, in e.g3%?!, but the random
variability in these properties has been ignored either by
considering very large RVEs or by averaging over several of them.
We emphasize finally that the framework proposed can accom-
modate any high-fidelity model for the structure-property link as
this is merely used as a generator for the training data D.

Case 1: Target domain of multi-physics properties (O1). In the
following we will demonstrate the performance of the proposed
formulation in an (O1)-type stochastic optimization problem (see
“Methods”), with regards to both thermal as well as mechanical
properties. In addition, we will provide a systematic and
guantitative assessment of the benefits of the active learning
strategy proposed (as compared to randomized data generation).

We consider a combination of mechanical and thermal proper-
ties of interest, namely [Eq. 11:

1 ff ff
k=10, =5 (16 gy + 165,000 0
ie, K€ Ri, and define the target domain [Eq. 2]:
K =1[8.5, 11.0]x [6.75, 9.0] @)

The utility function u(k) = Ix¢(k) is the (non-differentiable)
indicator function of K C Ri which implies that the objective
of the optimization (type (O1)—see Fig. 2a) is to find the ¢ that
maximizes the probability that the resulting microstructures have
properties k that lie in . The two-phase microstructures have
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volume fraction 0.5 and the parameters ¢ € R'® as well as p(x|p)
were defined as discussed in the beginning of this section.

With regards to the adaptive learning strategy (appearing as the
outer loop in Algorithm (1) in “Methods”), we note that the initial
training dataset D© consists of N, = 2048 data pairs which are
generated via ancestral sampling, i.e., we randomly draw samples
o from N(0,1) and conditionally on each ¢™ we sample p(x|o‘™)
to generate a microstructure (the choice ¢ ~ N(0,1) is not
arbitrary, as—given the adopted parametrization—it envelopes all
possible SDFs). In each data acquisition step /, Npoo =4096
candidates were generated and a subset of N,yy = 1024 of those
was selected based on the acquisition function. We note that Nygy
(as well as Np) defines a trade-off between information acquisition
and computational cost. Hence the size of the dataset increased
by 1024 data pairs at each iteration I with L=4 data
augmentation steps performed in total.

The optimal process parameters at each data acquisition step
are denoted as (p;/t P with the subscript indicating the

dependence on the surrogate model M and the dataset D) on
which it has been trained. Once the algorithm has converged to its
final estimate of the process parameters after L data acquisition
steps, i.e., (pjvwm' we can assess (pjvw@ by obtaining a reference

estimate of the expected utility U(¢} ) =Pr(k € K|} )

using Monte Carlo, ie, by sampling microstructures
x ~ p(x|¢}, v), and running the high-fidelity model instead of
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the inexpensive surrogate. In this manner we can also compare
the optimization results obtained with active learning with those
obtained by using randomized training data D (i.e, without
adaptive learning). We argue that the former has a competitive
advantage, if for the same total number N of datapoints we can
achieve a higher score in terms of our materials’ design objective
Pr(k € K|¢*). As the optimization objective F is non-convex and
the optimization algorithm itself non-deterministic, generally the
optimal process parameters ¢* identified can vary across different
runs (non-determinancy arises from the randomized generation of
the data, the stochastic initialization of the neural network, as well
as the randomized initial guess of ¢(© ~ A/(0,1)) . For this reason
the optimization problem is solved several times (with different
randomized initializations) and we report on the aggregate
performance of active learning vs. randomized data generation
(baseline).

In the following we discuss the results obtained and displayed
in Figs. 3,4, 5 and 6.

® In Fig. 3 we depict sample microstructures drawn from p(x|)
for two values of @, i.e,, for the initial guess ¢ (Fig. 3a) and for
optimal process parameters @\ pw (Fig. 3b). While the
optimized microstructures as shown in Fig. 3b remain random,
one observes that the connectivity of phase 1 (stiffer) is
increased as compared to the microstructures shown in
Fig. 3a. The diagonal, connected paths of the lesser

p(kle*)

p(kle*)

p(kle*)

K2

K1

K2

K1

K2

Ktarget Ptarget (K)

K1

(a) Target domain XC (b) Target value Kiqrget (c) Target distribution prarget (<)

Fig. 2 lllustration of various materials design objectives. Different optimization objectives with respect to the density p(k|p) that expresses
the likelihood of property values k for given processing conditions ¢. We illustrate the following cases: (a) we seek to maximize the probability
that the material properties k fall within a target domain K. (b) We seek to minimize the mean deviation of the properties k from a target
value Kearger- (€) we seek to minimize the deviation between p(k|p) and a target probability density p;g. (k) on the material properties.
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Fig. 3 Case 1: Optimal random microstructures. (a) Samples of microstructures drawn from p(x|p) for the initial guess ¢© of processing

variables. (b) Samples of microstructures drawn from p(x|p) for the optimal value (pjw O of processing variables which maximize the

s

probability that the corresponding material properties will fall in the target domain K = [8.5, 11.0]x [6.75, 9.0] (Eq. (2)). Underneath each
microstructure, the thermal k; and mechanical k, properties of interest (Eq. (1)) are reported.
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Fig. 4 Case 1: Evolution of the process-property density during optimization. The actual process-property density p(k|p) was estimated
using 1024 Monte Carlo samples making use of the high-fidelity structure-property model (see Supplementary Notes), and for the following

three values of the process parameters ¢: (a) for the initial guess '@, (b) for the optimal ¢ as obtained using the initial training dataset D©

and without adaptive learning, (c) for the optimal ¢ obtained with the augmented training dataset D identified by the active learning
scheme proposed. The target domain K (Eq. (2)) is drawn with a green rectangle and the colorbar indicates the value of the density p(k|¢).
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Fig. 5 Case 1: Assessment of active learning approach. (a) The probability we seek to maximize with respect to ¢, i.e., Pr(k € K|p) is plotted
as a function of the size N of the training dataset (i.e., the number of simulations of the high-fidelity model). Based on 80 independent runs of
the optimization algorithm, we plot the median value (with dots) and the 50% probability quantiles (with error bars). The red lines correspond
to the results obtained without adaptive learning and the blue with adaptive learning. (b) For the the optimal (p/*M‘D(‘,) identified using active
learning, we compare the actual process-property density p(k; |¢) (black line—estimated with 1024 Monte Carlo samples and the high-fidelity
model) with the one predicted by the surrogate trained only on the initial dataset D) (red line) and with the one predicted by the surrogate
trained on the augmented dataset D (blue line).
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Fig.6 Case 1: Convergence characteristics of the optimization algorithm. We illustrate for a single optimization run (a) the evolution of the
ELBO F as a function of the iteration number in the inner loop and for / = 0 (outer loop—see Algorithm (1)). (b) Evolution of the probability
we seek to maximize Pr(k € K|¢p) (estimated with 1024 Monte Carlo samples and the high-fidelity model) for the optimal values <pj\4 i

identified by the algorithm at various data acquisition steps / (outer loop in Algorithm (1)).

conducting phase (black) effectively block heat conduction in
the horizontal direction. This is also reflected in the effective
properties reported underneath each image. The value of the
objective, i.e., the probability that properties k reside in /C, is =
0.65 for the optimal microstructures (Fig. 3b), as opposed to =
0.14 for the microstructures shown in Fig. 3b (see also Fig. 4a
and o).
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® Figure 4 provides insight into the optimization algorithm
proposed by looking at the process-property density p(k|¢p) for
various ¢ values. We note that this density is implicitly defined
by propagating the randomness in the microstructures
(quantified by p(x|p)) through the high-fidelity model that
predicts the properties of interest. Based on the Monte Carlo
estimates depicted in Fig. 4, one observes that the density
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p(K|p) only minimally touches the target domain £ for initial
process parameters ¢ (Fig. 4a) and gradually moves closer to
KC as the iterations proceed, with the optimization informed by
the surrogate trained on the initial batch of data D (Fig. 4b).
The incorporation of additional training data by means of the
adaptive learning scheme enables the surrogate to resolve the
details in the structure-property map with sufficient detail to
eventually identify process parameters such that the density p
(k|p) maximally overlaps (in comparison) with the target
domain K (Fig. 4c).

® In Fig. 5a we illustrate the performance advantage gained by
the active learning approach proposed over the baseline. To
this end, we compare the values of the objective function, i.e.,
Pr(k € K|@}, p) achieved for datasets D of equal size, with the
dataset being either generated randomly (baseline), or
constructed based on our active learning approach. Evidently,
the latter was able to achieve a better material design at
comparably significantly lower numerical cost (as measured
by the number of evaluations of the high-fidelity model of the
S-P link). We observe that while the addition of more training
data generally leads to more accurate surrogates, when this is
done without regard to the optimization objectives (red line),
then it does not necessarily lead to higher values of the
objective function. In Fig. 5b we provide further insight as to
why the adaptive data acquisition was able to outperform a
randomized approach. To this end we consider the impact of
adaptive learning on the model belief for one of the effective
properties k, i.e, we compare the model-based belief
P(K1 |97 piors D) of the surrogate conditional on D'© against
a reference density obtained using Monte Carlo (black line).
We can see that a model only informed by D (red line)
identifies an incorrect density and as such fails to converge to
the optimal process parameters. The active learning approach
(blue line) was able to correct the initially erroneous model
belief and as a result performs better in the optimization task.

® In Fig. 6a we illustrate the evolution of the ELBO during the
inner-loop iterations of the proposed VB-EM algorithm (see
Algorithm (1) in “Methods”). Finally, in Fig. 6b we depict the
evolution of the maximum of the objective identified at
various data acquisition steps / of the proposed active learning
scheme in a single, indicative run (in contrast to Fig. 5 where
results over multiple runs are summarized). As it can be seen,

-

p(w|‘ﬁj\4,p<6>)

k1 =203 k3 =3.5 k1 =20.7k2 =3.3 k1 = 19.8 ko = 3.7

Fig. 7 Case 2: Optimal random microstructures. (a), (b) Samples of microstructures drawn from p(x|¢p) for the initial guess ¢
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the targeted data enrichment enables the surrogate to resolve
details in the structure-property map and identify higher-
performing processing parameters @.

Case 2: Target density of properties (02). In this second numerical
illustration, we investigate the performance of the proposed
methodological framework for an (02)-type optimization problem
(Eq. (7)) where we seek to identify the processing parameters ¢ that
lead to a property density p(k|@) that is closest to a prescribed target
Ptarget (K). In particular, we considered the following two properties

[Eq. 3]

_ [qeff _ [eff
= [a], = o], ®
ie, k € R? and a target density [Eq. 41:
ptarget(K) = /\/‘(fl,i) (4)

with f1=1[20.5,3.5]" and 3;; =0.60, 5, =0.01,%;, = —0.03
(depicted with green iso-probability lines in Fig. 8). These values
were selected to promote anisotropic behavior, i.e., the targeted
microstructures should have a large effective conductivity in the
first spatial dimension and simultaneously be (relatively) insulating
in the second spatial dimension. The characteristics of the active
learning procedure (outer loop in Algorithm (1) in “Methods”)
remain identical, with the only difference that D) now comprises
No = 4096 datapoints, with N,y = 1024 datapoints (out of 4096
candidates) added in each of the L = 6 data-enrichment steps. We
used S =20 samples from py,(K) to approximate the objective
(see Eqg. (9)).
We discuss the results obtained based on Figs. 7 and 8:

® In Fig. 7 we showcase sample microstructures drawn from
p(x|@) both for the initial guess ¢© (Fig. 7a, b) as well as for
the optimal process parameters (pjw O identified by the

optimization algorithm using the active learning approach
(Fig. 7c, d). The examples shown in Fig. 7a, b correspond to
volume fraction 0.5 whereas the examples shown in Fig. 7b, d
correspond to volume fraction 0.3 (of the more conducting,
white phase, a;) . As one would expect, we observe that the
optimal family of microstructures identified (determined by
(p’/‘VLD(U) exhibit connected paths of the more conductive

phase (white) along the horizontal direction. The connected
paths of the lesser conducting phase (black) are also aligned

volume fraction : 0.3

-0,1750
(7]
(V]
(7]
(]
<
o
ao—l

k1 = 9.7k =2.0

© of processing

variables. (c), (d) Samples of microstructures drawn from p(k|¢p) for the optimal value o of the processing variables which minimize the

KL-divergence between p(k|p) and the target density pioge(K) (Eq. (4)). Underneath each microstructure, the thermal properties ki, k; of
interest (Eq. (3)) are reported. The illustrations correspond to two volume fractions 0.5 (in (a, ¢)) and 0.3 (in (b, d)) of the high-conductivity
phase (a; = 50).
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Fig. 8 Case 2: Evolution the of process-property density p(k|p) with and without active learning in relation to the target p,,. (k). We
plot the evolution of the process-property density p(k|@) at three different stages of each optimization run, i.e.: the initial ¢ (a, e, i), the ¢ at an
intermediate stage of the optimization (b, f, j), and the optimal ¢ identified upon convergence (¢, g, k). The fourth column, i.e,, (d, h, I) is a
zoomed-in version of the third that enables closer comparisons of the densities involved. (a-d) lllustrate p(k|p) as predicted by the surrogate
trained on a randomized dataset without active learning. (e-h) Illustrate p(k|¢p) as predicted by the surrogate trained using the adaptive
learning proposed. (i-1) lllustrate the actual p(k|p) (estimated with 1024 Monte Carlo samples and the high-fidelity model) and for the optimal
¢ identified by the active learning approach. The target distribution p,,. (k) is indicated with green iso-probability lines.

in the horizontal direction so as to reduce the effective
conductivity along the vertical direction. The optimal micro-
structures therefore exhibit a marked anistropy and funnel
heat through pipe-like structures of high-conductivity material
in the horizontal direction. This is also reflected in the
indicative property values reported under each frame.

Finally, Fig. 8 assesses the advantage of the active learning
strategy advocated for this problem. In particular, we plot the
evolution of the process-structure density p(k|¢) in relation to
the target pigqe (k) (depicted with green iso-probability lines)
at different stages of the optimization (initial-intermediate-
converged). Using the optimal process parameters ¢ identified
at each of these stages, we see that the optimization scheme
without active learning (Fig. 8a—d) results in a density that is
quite far from the target. In contrast, the optimization
algorithm with active learning (Fig. 8e-h) is able to identify
a ¢ which brings the p(k|p) very close to the target
distribution pegge (k). The validity of this result is assessed in
(Fig. 8i-I) where the actual p(k|¢) (estimated with Monte Carlo
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and the high-fidelity model) is depicted for the ¢ values
identified by the active learning approach (Fig. 8e-h). We
observe a very close agreement which reinforces previous
evidence on the advantages of the active learning strategy
advocated.

In conclusion, we presented a flexible, fully probabilistic, data-
driven formulation for materials design that can account for the
multitude of uncertainties along the the PSP chain and enables
the identification of optimal, high-dimensional, process para-
meters @.

The methodology relies on probabilistic models or surrogates
for the process-structure p(k|p)) and structure-property p(k|p))
links which could be learned from experimental or simulation
data. Although only the latter was extensively discussed in this
work, similar concepts and tools can be employed for the
construction of the former. The predictive uncertainty of
the surrogate is incorporated in the optimization objectives and
the self-supervised, active learning mechanism can reduce the
requirements on training data, which is particularly important
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when those arise from expensive experiments/simulators, so that
only the regions necessary for the solution of the optimization
problem are resolved. Adaptations to different material descrip-
tions or underlying physics would only require alterations of these
densities.

We have demonstrated that a variety of different objectives can
be accommodated by appropriate selection of the utility function.
Despite the use of surrogates, the computation of the objective
functions and their derivatives remains intractable as it requires
expectations with respect to the, generally, very high-dimensional
microstructural representations. To this end, we employed an
Expectation-Maximization scheme which iteratively identifies a
(near)-optimal sampling density for estimating the expectations
involved while simultaneously updating the estimates for the
optimal processing variables.

While not discussed, it is also possible to assess the optimization
error, albeit with additional runs of the high-fidelity model, by
using an Importance Sampling step32. Lastly we mention further
potential for improvement by a fully Bayesian treatment of the
surrogate’s parameters 0, which would be particularly beneficial in
the small-data regime we are operating in.

METHODS

A conceptual overview of the proposed stochastic-inversion framework is
provided in Fig. 1 where it is contrasted with deterministic formulations.
We present the main building blocks and modeling assumptions and
subsequently define the optimization problems of interest. We then
discuss associated challenges, algorithmic steps and conclude this section
with details regarding the probabilistic surrogate model and the active
learning strategy.
We define the following variables/parameters:

® process parameters ¢ € R%: These are the optimization variables and
can parametrize actual processing conditions (e.g., chemical composi-
tion, annealing temperature) or statistical descriptors (e.g., ODF) that
might be linked to the processing. The higher the dimension of ¢, the
more control one has over material design and the more difficult the
problem becomes.

® random microstructures x: This is in general a very high-dimensional
vector that represents the microstructure with the requisite detail to
predict its properties. In the numerical illustrations which involve two-
phase media in d =2 dimensions represented on a uniform grid with
N, subdivisions per dimension, x € {0, 1}"%  consists of binary
variables which indicate the material phase of each pixel (see, eg.,
Fig. 3) (for notational simplicity we nonetheless treat x as continuous
in general expressions, i.e., define integrals instead of sums). We
empbhasize that x is a random vector due to the stochastic variability of
microstructures even in cases where ¢ is the same (see process-
structure link below).

® properties k: This vector represents the material properties of interest
which depend on the microstructure x. We denote this dependence
with some abuse of notation as k(x) and discuss it in the structure-
property link below. Due to this dependence, k € R% will also be a
random vector. In the numerical illustrations k consists of mechanical
and thermal, effective (apparent) properties.

Furthermore, our formulation includes the:

® process-structure link: We denote the dependence between ¢ and x
with the conditional density p(x|e) (Fig. 1), reflecting the fact that
processing parameters ¢ do not in general uniquely determine the
microstructural details. Formally experimental data®>>3 and/or mod-
els>* would need to be used to determine p(x|g),which could induce
additional uncertainty (see discussion in the Introduction). We also
note that no a-priori dimensionality reduction is implied, i.e., the full
microstructural details are retained and used in the property-
predicting, high-fidelity models. In this work, we assume the
process-structure link p(x|¢p) is given a-priori, and its particular form
for the binary media examined is detailed in the Results & Discussion
section (the binary microstructures considered for our numerical
illustrations could arise from the solution of the Cahn-Hilliard equation
describing phase separation occurring in a binary alloy under thermal
annealing).
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® structure-property link: The calculation of the properties k for a given
microstructure x involves in general the solution of a stochastic or
deterministic, complex, high-fidelity model (in our numerical illustra-
tions, this consists of partial differential equations). We denote the
corresponding conditional density as p(k|¢@), which in the case of a
deterministic model degenerates to a Dirac-delta. In order to perform
the optimization, repeated solutions of the high-fidelity model would
be necessary. In a high-dimensional setting, additionally derivatives of
k w.rt. x would in general be required to drive the search. Such
derivatives might be either unavailable (e.g., when x is binary as
above), or, at the very least, would add to the overall computational
burden. To overcome this major efficiency hurdle we advocate the use
of a data-driven surrogate model. We denote with D the training data
(i.e., pairs of inputs-microstructures and outputs-properties k(x)) and
explain in the sequel how these are selected (see section on Active
Learning). We employ a probabilistic (for reasons we explain in the
subsequent sections) surrogate model (see Fig. 9) denoted by M and
use p,(k|x, D) to denote its predictive density.

We note that the introduction of p(k|x) and p(x|p) as a probabilistic
representation of the PSP chain is a very general description which in
principle can accommodate any epistemic or aleatoric source of
uncertainty. With these definitions in hand, we proceed to define two
closely related optimization problems (O1) and (02) that we would like to
address. For the first optimization problem (O1) we make use of a utility
function u(k) = 0 (negative-valued utility functions can also be employed,
as long as they are bounded from below). Due to the aforementioned
uncertainties we consider the expected utility U,(¢) which is defined as
[Eq. 5]

U (0) = Fpie [ [ wtrpiuix) dx} B

(where E 4[] implies an expectation with respect to p(x|¢)) and seek
the processing parameters ¢ that maximize it, i.e. [Eq. 6]:

(01): ¢" = arg max Uy (@) (6)

Consider for example the case that u(k) = Ik (k), i.e, the indicator
function of some target domain K, defining the desired range of property
values (Fig. 2a). In this case, solving (O1) above will lead to the value of ¢
that maximizes the probability that the resulting material will have
properties in the target domain K, ie, Ui(¢) = Pr(k € K|p). Similar
probabilistic objectives have been proposed for several other materials’
classes and models (e.g.3%). Another possibility of potential practical
interest involves introducing u(k) = e~Ix—*usal’  with T a scaling
parameter. In this case solving (O1) leads to the material with properties
which, on average, are closest to the prescribed target Krger (Fig. 2b).

The second problem we consider involves prescribing a target density
Prarger(K) ON the material properties and seeking the ¢ that leads to a
marginal density of properties p(k|p) = E,«x|q) [P(K|x)] that is as close as
possible to this target (Fig. 2c). While there are several distance measures
in the space of densities, we employ here the Kullback-Leibler divergence
KL(Ptarget®)||p(k|@)), the minimization of which is equivalent to (see
Supplementary Notes) [Eq. 7]:

(02): @* = argmax, U (@)
where Uz (9) = [ Prager (K) log p(K|) dk

The aforementioned objective resembles the one employed in'’, but
rather than finding a density on the microstructure (or features thereof)
that leads to a close match of pigee (k), we identify the processing
variables ¢ that do so (i.e, we are a-priori constrained to distributions
realizable for specific processing conditions ¢).

We note that both problems are considerably more challenging than
deterministic counterparts, as in both cases the objectives involve
expectations with respect to the high-dimensional vector(s) x (and
potentially k), representing the microstructure (and their effective proper-
ties). Additionally, in the case of (02), the analytically intractable density
p(k|p) appears explicitly in the objective. While one might argue that a
brute-force Monte Carlo approach with a sufficiently large number of
samples would suffice to carry out the aforementioned integrations, we
note that propagating the uncertainty from x to the properties k would
also require commensurate solutions of the expensive structure-property
model which would need to be repeated for various ¢-values. To
overcome challenges associated with the structure-property link, we make
use of a probabilistic surrogate model M trained on data D with a

@)
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Fig. 9 Architecture of the convolutional-neural-network surrogate for property k prediction. Features are extracted from the
microstructure x using a sequence of 4 blocks (each comprised of a sequence of convolutional layer, nonlinear activation function and
pooling), where in each block the size of the feature map is reduced, while the depth of the feature map increases. Fully connected
feedforward layers map the extracted convolutional features to the mean mg(x) and the covariance Sg(x) of the predictive Gaussian
distribution p ,,(k|x, 8) = N (k| mg(x), Sg(x)), where 8 denotes the neural network parameters.

predictive density p ., (k|x, D), which we use in place of the true p(k|¢) in
the expressions above.

We note that an alternative strategy based on circumventing the high-
dimensional x and trying to approximate directly p(k|¢)3S, while tempting,
will quickly become infeasible in terms of data requirements (i.e,, triplets of
(o, x,k)) even for modest dimensions of ¢. The reformulated objectives
based on p,,(k|x,D) are denoted with UP,, and U?,,. We discuss the
solution strategy of the optimization problem as well as the specifics of the
probabilistic surrogate in the next sections.

Expectation-maximization and stochastic variational inference

We present the proposed algorithm for the solution of (O1) and discuss the
requisite changes for (02) afterward. The goal to identify the optimal
process parameters ¢* remains challenging despite the introduction of an
inexpensive, probabilistic surrogate, since the the objective functions as
well as their derivatives remain intractable due to the averaging over the
high-dimensional microstructures x, as well as the—in the general case—
intractable integration over k in Eg. (5). For this reason we propose to
employ the Expectation-Maximization scheme®’, which is based on the so-
called Evidence Lower BOund (ELBO) F [Eq. 8]:

log U\ (¢) = log [ u(k) p(k|x, D) p(x|p) dk dx
> Equa) [Iog u(K) P é?Lx,?)p(XIw)

= F(q(k.x),9)

where Eg . [.] denotes an expectation with respect to the auxiliary
density q(x, k). The algorithm alternates between maximizing F with
respect to the density g(x, k) while ¢ is fixed (E-step) and maximizing with
respect to @ (M-step) while g(x, k) is fixed. We employ a Variational-
Bayesian relaxation®®, in short VB-EM, according to which instead of the
optimal g we consider a family Qg of densities parameterized by § and in
the E-step maximize F with respect to & This, as well as the the
maximization with respect to ¢ in the M-step, are done by using stochastic
gradient ascent where the associated derivatives are substituted by noisy
Monte Carlo estimates (i.e., SVI'6). The particulars of € as well as of the E-
and M-steps are discussed in the Supplementary Notes. We illustrate the
basic, numerical steps in the inner-loop of Algorithm (1) (the algorithm
starts from an initial, typically random, guess of § and ¢). Colloquially, the
VB-EM iterations can be explained as follows: In the E-step and given the
current estimate for ¢, one averages over microstructures that are not only
a priori more probable according to p(x|¢) but also achieve a higher score
according to u(k) p ,(k|x, D). Subsequently, in the M-step step, we update
the optimization variables ¢ on the basis of the average above (see
Supplementary Notes for further details).

The second objective, U, »s (Eg. (7)) can be dealt with in a similar
fashion. The integration over k with respect to the target density pyge: (K)
is first approximated using S Monte Carlo samples {K(S)}s:1 from pigget (K),
and subsequently each of the terms in the sum can be lower-bounded as
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follows [Eq. 9I:
UZD.,M ((P) = fptarger (K) log Pm (K|(P7 D) dx
~ 1Y logp,y(k©e, D)
= 1525, log [ pp (k) |x, D) p(x|g) dx
k) |x, x|
>1 5, E o [,og P (k¥ |x,D) p( \«o)]

q) (x)
=130 Fs(a¥ (%), 9)

©)

In this case, the aforementioned SVI tools will need to be applied for
updating each g (x),s = 1,...,S in the E-step, but the overall algorithm
remains conceptually identical. We note that incremental and partial
versions of the EM-algorithm are possible, where e.g., one or more steps of
stochastic gradient ascent are performed for a subset of the g©3°, leading
to overall improved computational performance.

Probabilistic surrogate model

Despite the introduction of densities in the VB-EM algorithm which are
tailored to the optimization problem and which enable accurate Monte
Carlo estimates of the high-dimensional integrations involved, multiple
evaluations of the S-P link are still required. To that end, the high-fidelity
model (i.e., k(x) or p(k|p)), is substituted by a data-driven surrogate (i.e.,
P (k|x, D)) which is trained on N pairs [Eq. 10]

D {x<n>7,(<n> _ K<x<n>) }N
n=1

generated by the deterministic/stochastic high-fidelity model. While such
supervised machine-learning problems have been studied extensively and
a lot of the associated tools have found their way in materials
applications*®, we note that their use in the context of the optimization
problems presented requires significant adaptations.

In particular, and unlike canonical, data-centric applications relying on
the abundance of data (Big Data), we operate under a smallest-possible-
data regime. This is because in our setting training data arises from
expensive simulations, the number of which we want to minimize. The
shortage of information generally leads to predictive uncertainty (even for
deterministic S-P links) which, rather than dismissing, we quantify by
employing a probabilistic surrogate that yields a predictive density
pr(K|x, D) instead of mere point estimates. More importantly though,
we note that the distribution of the inputs in D, i.e., the microstructures x,
changes drastically with ¢ (Fig. 1). As we do not know a priori the optimal
@*, we cannot generate training data from p(k|¢*). At the same time it is
well known that data-driven surrogates produce poor extrapolative, out-of-
distribution predictions*'. It is clear therefore, that the selection of the
training data, i.e., the microstructures-inputs x™ for which we pay the price
of computing the output-property of interest k"), should be informed by
the optimization algorithm in order to produce a sufficiently accurate
surrogate while keeping N as small as possible. We defer a detailed
discussion of this aspect for the next section, and first present the
particulars of the surrogate model employed.

(10)
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The probabilistic surrogate M adopted has a Gaussian likelihood, i.e.,
P (K|X) = N (k|mg(x),Se(x)), where the mean mg(x) and covariance
Se(x) are modeled with a convolutional neural network (CNN) (see Fig. 9
and Supplementary Notes for more details), with 8 denoting the associated
neural network parameters. CNNs have been used previously for property
prediction in binary media in e.g.,***. Point estimates @p of the
parameters are obtained with the help of training data D by maximizing
the corresponding likelihood p,,(D|8) = [Th_, N (k™ |mg(x(), Sg(x(")).
On the basis of these estimates, the predictive density (i.e for a new input-
microstructure  x) of the surrogate follows as p,(k|x,D)=
N (k|mg, (x), Se, (X)). We emphasize the dependence of the probabilistic
surrogate on the dataset D, for which we will discuss an adaptive
acquisition strategy in the following section. While the results obtained are
based on this particular architecture of the surrogate, the methodological
framework proposed can accommodate any probabilistic surrogate and
integrate its predictive uncertainty in the optimization procedure. Similarly,
the same data-based approach could also be adopted for p(x|p).

Active learning

Active learning refers to a family of methods whose goal is to improve
learning accuracy and efficiency by selecting particularly salient training

Algorithm 1 Obtain ¢* = argmax, U1,2 (Eq. (1) or Eq. (3) using a
probabilistic surrogate and active learning

Data:! = 0, t = 0, D(O), L, structure-property-model, surrogate
p (K|, D)), initial (%), variational family Q¢

Result: Converged process parameter go;(L)

fori=1,...,Ldo

while ELBO not converged do

/* Execute E-step */

é(t+1) = arg max F (L,p<t),q£ (K, a:))
£
/* Execute M-step */

(p<t+1> = arg mgx]: (cp,qg(t“) (K, a:))

t—>t+1
end

/* Optimal ¢ conditional on current data */
t
wj\/l,D(” < (p( )
/* Create microstructure candidates */
sample (™) ~ g (z), n=1,... s Npoot
compute o (™)) (Eq. (7))
/* Select most informative subset */

Select Nyqq < Npoor Microstructures from D;f{zol which yield the

highest acquisition function values and compute the corresponding
property values () in order to form Dflgd.

I+1 l ()
pU+1) %D()UDadd

/* Update probabilistic surrogate */

P <K‘E,D<l+1)> —p (n‘m, D(l)>

end

Fig. 10 Pseudo-code for proposed algorithm. The inner VB-EM
iterations are wrapped within the adaptive data acquisition as an
outer loop.
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data**. This is especially relevant in our application, in which the
acquisition of data is de facto the most computationally expensive
component. The basis of all such methods is to progressively enrich the
training dataset by scoring candidate inputs (i.e., microstructures x in our
case) based on their expected informativeness**. The latter can be
quantified with a so-called acquisition function a(x), for which many
different forms have been proposed (depending on the specific setting).
We note though that in most cases in the literature, acquisition functions
associated with the predictive accuracy of the supervised learning model
have been employed, which in our formulation translates to the accuracy
of our surrogate in predicting the properties k for an input-microstructure.
Alternate acquisition functions have been proposed in the context of
Bayesian Optimization problems which as explained in the introduction
exhibit significant differences with ours''. While it is true that a perfect
surrogate (i.e, if p(k|x) = pa(K|x, D) Vx) would yield the exact optimum,
this is not a necessary condition. An approximate surrogate is sufficient, as
long as its aggregate predictions can correctly guide the search in the ¢-
space in order to discover the optimal value of ¢ for (O1) or (02). This also
implies that an accurate surrogate for ¢ — values (and corresponding
microstructures x) far away from the optimum is not necessary. The
difficulty of course is that we do not know a priori what is the optimum ¢*
and a surrogate trained on microstructures drawn from p(x|p®) (with ¢©
being the initial guess in the optimization—see Algorithm (1)) will
generally perform poorly at other ¢'s.

The acquisition function that we propose incorporates the optimization
objectives. In particular, for the (O1) problem (Eq. (5)) it is given by:

a(x) = Var, (ixn) [u(x)] an

We note that a scores each microstructure x in terms of the predictive
uncertainty in the utility u (the expected value of which we seek to
maximize) due to the predictive density of the surrogate. In the case
discussed earlier where u(k) = [x(k) (and U;(@) = Pr(k € K|p)), the
acquisition function reduces to the variance of the event k € K. This
suggests that the acquisition function vyields the largest scores for
microstructures for which the surrogate is most uncertain whether their
corresponding properties fall within the target domain £.

We propose a general procedure according to which the VB-EM-based
optimization is embedded in an outer loop indexed by the data
augmentation steps /=1,...L. Hence D) denotes the training dataset
at step I, p,(k|x,D") the corresponding predictive density of the
surrogate, g”(x) the marginal variational density found in the last E-step
and ¢ the optimum found in the last M-step. With this notation in hand
we can then summarize the adaptive data augmentation as follows (see
also Algorithm (1) in Fig. 10):

® in each outer loop iteration INwe randomly generate a pool of
candidate microstructures {x(""} 7 from q®(x) and select a subset of
Nada < Npoor Microstructures which yield the highest values of the
acquisition function a(x™).

® We solve the high-fidelity model for the aforementioned Ngyy
microstructures and construct a new training dataset D, which we
add to P in order to form D! = D! UDS}M‘ We retrain the
surrogate based on D*V, ie, we compute p,,(k|x, D"*V), and
restart the VB-EM-based optimization algorithm with the updated
surrogate (we note that retraining could be avoided by making use of
online learning*®, which can accomodate incremental adaptions of the
dataset).

For the (02) problem we propose to select microstructures that yield the
highest predictive log-score on the sample representation {K<5)}S:1 of the
target distribution, i.e. [Eq. 12],

logp (K9]x) K ~ Prarger (K) (12)

Mm

a(x) =3

s

DATA AVAILABILITY
The accompanying data is available at https://github.com/bdevl/SMO.

CODE AVAILABILITY
The source code is available at https://github.com/bdevl/SMO.
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