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Abstract
Ultra-wideband (UWB) time-difference-of-arrival (TDOA)-based localization has emerged as a promising, low-cost, and
scalable indoor localization solution, which is especially suited for multi-robot applications. However, there is a lack of
public datasets to study and benchmark UWB TDOA positioning technology in cluttered indoor environments. We fill in this
gap by presenting a comprehensive dataset using Decawave’s DWM1000 UWB modules. To characterize the UWB TDOA
measurement performance under various line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, we collected signal-
to-noise ratio (SNR), power difference values, and raw UWB TDOA measurements during the identification experiments.
We also conducted a cumulative total of around 150 min of real-world flight experiments on a customized quadrotor
platform to benchmark the UWB TDOA localization performance for mobile robots. The quadrotor was commanded to fly
with an average speed of 0.45 m/s in both obstacle-free and cluttered environments using four different UWB anchor
constellations. Raw sensor data including UWB TDOA, inertial measurement unit (IMU), optical flow, time-of-flight (ToF)
laser altitude, and millimeter-accurate ground truth robot poses were collected during the flights. The dataset and de-
velopment kit are available at https://utiasdsl.github.io/util-uwb-dataset/.

Keywords
Ultra-wideband, time-difference-of-arrival, indoor localization

Received 8 August 2023; Revised 24 November 2023; Accepted 15 January 2024

Senior Editor: José Luis Blanco Caraco
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1. Introduction

Accurate and reliable indoor localization is a crucial enabling
technology for many robotics applications, ranging from
warehouse management to monitoring tasks. Over the last
decade, ultra-wideband (UWB) radio technology has been
shown to provide high-accuracy and obstacle-penetrating
time-of-arrival (TOA) measurements that are robust to
radio-frequency interference (Zafari et al., 2019). UWB chips
have been integrated in the latest generations of consumer
electronics including smartphones and smartwatches to
support spatially aware interactions (Apple, 2022; Qorvo,
2022; Robert Triggs, 2022). During the FIFA World Cup
2022, UWB localization technology was used, for the first
time, in an official football tournament to enhance the Video
Assistant Referee (VAR) system by providing reliable, low-
latency, and decimeter-level accurate ball tracking informa-
tion (Adidas, 2022; Dowsett, 2022; KINEXON, 2022).

Similar to the Global Positioning System (GPS) (Enge,
1994), an UWB-based positioning system requires UWB
radios (also called anchors) to be pre-installed in the en-
vironment as a constellation with known positions, which in
turn serve as landmarks for positioning. In robotics (Nguyen

et al., 2021a; Pfeiffer et al., 2021), the two common ranging
schemes used for UWB localization are (i) two-way ranging
(TWR) and (ii) time-difference-of-arrival (TDOA). In
TWR, the UWB module mounted on the robot (also called
tag) communicates with an anchor and acquires range
measurements through two-way communication. In TDOA,
UWB tags compute the difference between the arrival times
of the radio packets from two anchors as TDOA mea-
surements. Compared with TWR, TDOA does not require
active two-way communication between an anchor and a
tag, thus enabling localization of a theoretically unlimited
number of devices (Hamer and D’Andrea, 2018). However,
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UWB TDOA-based localization systems still encounter
difficulties in cluttered indoor environments (see Figure 1).
Delayed and degraded radio signals caused by non-line-of-
sight (NLOS) and multi-path radio propagation can greatly
deteriorate positioning accuracy. In order to achieve reliable
UWB TDOA-based positioning in complex indoor envi-
ronments, novel estimation algorithms are required to im-
prove localization accuracy and robustness.

To foster research in this domain, this paper presents a
comprehensive UWB TDOA dataset collected in a variety of
cluttered indoor environments, including different types of
static and dynamic obstacles. Low-cost DWM1000 UWB
modules (Decaware, 2016) were used to construct cost-
efficient indoor positioning systems for data collection. The
dataset includes two parts: (i) an UWB TDOA identification
dataset and (ii) a flight dataset. The goal of the identification
dataset is to characterize the UWB TDOA measurement
performance in line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions. It includes low-level UWB signal infor-
mation such as signal-to-noise ratio (SNR) and power dif-
ference values. To create the NLOS scenarios, obstacles made
of different materials commonly found in indoor settings were
used, including cardboard, metal, wood, plastic, and foam. In
the flight dataset, we conducted a cumulative total of roughly
150 min of real-world flights with a customized quadrotor and
collected a comprehensive multimodal dataset to benchmark
UWB TDOA localization performance for three-dimensional
robot pose estimation. The quadrotor was commanded to fly
with an average speed of 0.45 m/s in both obstacle-free and
cluttered indoor environments with static and dynamic ob-
stacles using four different anchor constellations. Raw sensor
data includingUWBTDOA, inertial measurement unit (IMU),
optical flow, time-of-flight (ToF) laser altitude, and millimeter-
accurate ground truth robot pose data from a motion capture
system were collected during the flights.

The intended users of this dataset are researchers who are
interested in UWB TDOA-based localization technology.
The dataset can be used to model UWB TDOA measure-
ment errors under various LOS and NLOS conditions. Also,
users can study the UWB TDOA-based positioning per-
formance (i) under different UWB anchor constellations, (ii)
with and without obstacles, and (iii) using the centralized
and decentralized TDOA mode (introduced in Section 3).
Further, the users of this dataset are encouraged to design
novel and practical estimation algorithms to enhance the
accuracy and robustness of UWB TDOA-based positioning
in cluttered indoor environments.

The main contributions of this dataset are as follows:

· An identification dataset for UWB TDOAmeasurements
in a variety of LOS and NLOS scenarios involving
obstacles of different materials, including cardboard,
metal, wood, plastic, and foam.

· A comprehensive multimodal dataset from roughly
150 min of real-world flights in both obstacle-free and
cluttered indoor environments, featuring both static and
dynamic obstacles. We collected centralized and de-
centralized UWB TDOA measurements using four
different anchor constellations.

2. Related work

Many public UWB datasets have been produced in literature
for a variety of applications, including UWB radar (Ahmed
et al., 2021; Brishtel et al., 2023; Ge et al., 2023; Zhang
et al., 2023; Zhengliang et al., 2021), human motion
tracking (Bocus and Piechocki, 2022; Delamare et al., 2020;
Vleugels et al., 2021), and localization for mobile robots
(Morón et al., 2023; Nguyen et al., 2021b; Queralta et al.,
2020; Raza et al., 2019). In addition to these specific dataset

Figure 1. An UWB TDOA localization system in an indoor environment cluttered with wooden (blue boxes) and metal (the gray box)
obstacles. UWB anchors are pre-installed with known positions in the space. The quadrotor, equipped with an UWB tag, receives
TDOA measurements from the anchors for localization.
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papers, several UWB datasets have been publicly released
as companions to research papers (Bregar and Mohorčič,
2018; Barral et al., 2019a; Ledergerber and D’Andrea,
2019; Pfeiffer et al., 2021). Considering the large amount
of applications of UWB technology, we focus on UWB-
based localization for mobile robots and summarize the
related UWB datasets, to the best of our knowledge, in
Table 1 for an overview.

From Table 1, we can observe that many of the public
UWB datasets focus on UWB TWR-based localization
(Arjmandi et al., 2020; Barral et al., 2019b; Bregar and
Mohorčič, 2018; Li et al., 2018; Morón et al., 2023; Nguyen
et al., 2021b). For UWB TDOA-based positioning, Raza
et al. (Raza et al., 2019) provided a dataset to compare the
performance of UWB TDOA and narrowband Bluetooth-
based localization technologies. However, the dataset only
contains UWB and Bluetooth radio measurements, lacking

other sensing modalities. Additionally, the data collection
occurred in a simple 2D setup without any obstacles.
Pfeiffer et al. (Pfeiffer et al., 2021) released their
dataset along with their research work including both UWB
TWR and TDOA measurements collected from a Crazyflie
2.1 nano-quadrotor. However, the dataset was also created
in an obstacle-free environment.

Realistic indoor environments often contain different types
of obstacles that might interfere with UWB radio signals. In
order to achieve accurate and reliable UWB TDOA-based
indoor positioning, UWB measurements need to be tested in
such scenarios. Currently, there exists an absence of UWB
TDOA measurement identification and data collection in a

Table 1. Public UWB dataset for mobile robot localization. The LOS/NLOS testing refers to experiments to identify and model UWB
measurements under LOS/NLOS scenarios. Time Domain UWBmodules are high-performance UWB radio sensors originally developed
by Time Domain Corporation (TDSR, 2022). Time Domain UWBmodules can provide more accurate two-way ranging measurements at
a higher price compared to low-cost Decawave’s DWM1000 modules.

Reference UWB mode
LOS/NLOS
testing

Anchor
constellations Static obstacle

Dynamic
obstacle Dimension

UWB
module

Bregar and Mohorčič
(2018)

TWR 3 4 3 7 2D DWM1000

Li et al. (2018) TWR 7 1 7 7 3D Time
Domain

Barral et al. (2019b) TWR 3 1 3 7 2D DWM1000
Arjmandi et al.
(2020)

TWR 7 5 7 7 3D Time
Domain

Queralta et al. (2020) TWR 7 4 7 7 3D DWM1001
Nguyen et al.
(2021b)

TWR 7 3 7 7 3D Time
Domain

Ledergerber and
D’Andrea (2019)

TWR and
CIR
values

3 4 Wood, metal, and
fabric (chair)

7 2D DWM1000

Morón et al. (2023) TWR 3 3 3 7 3D DWM1001
Fontaine et al. (2023) TWR 3 1 3 7 3D DWM1000
Pfeiffer et al. (2021) TWRTDOA 7 1 7 7 3D DWM1000
Raza et al. (2019) TDOA 7 1 7 7 2D DWM1001
UTIL dataset (ours) TDOA 3 4 Plastic, wood, metal,

cardboard, and foam
Metal 3D DWM1000

Figure 2. The Loco Positioning System anchor and tag from
Bitcraze, based on Decawave’s DWM1000 UWB modules, are
used for the data collection. Figure 3. The sequence of UWB radio packets between the tag

and anchor 1 and anchor 2. The clocks of anchor 1, anchor 2, and
the tag are indicated as solid lines with different colors. The radio
packets between the tag and anchors are denoted as solid arrow
lines.
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cluttered environment. Furthermore, most of these datasets
do not provide data collected in the presence of dynamic
obstacles. We present an Ultra-wideband Time-difference-of-
arrival Indoor Localization (UTIL) dataset to fill in this
gap. In this dataset, we conducted extensive UWB TDOA
identification experiments under LOS and NLOS scenarios
and collected multimodal sensor data from a quadrotor
platform in the presence of static and dynamic obstacles.
During the flight experiments, we collected rawUWBTDOA
measurements with additional onboard sensor data (IMU,
optical flow, and ToF laser) in four anchor constellations.
Both centralized and decentralized TDOA measurements
were collected under the same conditions for comparison.
The combination of multimodal onboard sensors, different
anchor constellations, two TDOA modalities, and diverse
cluttered scenarios contained in this dataset facilitates in-
depth comparisons of UWB TDOA-based quadrotor local-
ization capabilities, a level of analysis not achievable with
existing datasets. To the best of our knowledge, a compre-
hensive UWB TDOA dataset with (i) identification experi-
ments and (ii) data taken in a variety of indoor environments
with static and dynamic obstacles does not exist in literature.

3. UWB TDOA-based localization system

Our UWB TDOA-based localization system is sketched in
Figure 1. Eight UWB anchors were pre-installed in the space
with known positions. The robot equipped with an UWB tag
computes the difference of the distances between the robot and
the two transmitting anchors using the UWB signal arrival
times. To better explain the content of our dataset, we introduce
theUWB radio hardware used for data collection and provide a
brief explanation of the TDOA principles.

3.1. UWB sensor

The Decawave’s DWM1000 (Decaware, 2016) UWB radio
sensors were used to create this dataset. The

DWM1000 module is a low-cost UWB radio often used to
develop cost-efficient localization solutions. The UWB
TDOA measurements were collected using the Loco Po-
sitioning System (LPS) from Bitcraze, which is based on
DWM1000 UWB modules (see Figure 2).

Both centralized TDOA and decentralized TDOA (Meng
et al., 2016) are implemented in LPS, which are referred to as
TDOA 2 and TDOA 3 by Bitcraze, respectively. In centralized
TDOA systems, all the anchors are synchronized w.r.t. one
master anchor and the TDOA measurements are expressed in
the same clock.However, centralizedTDOAsystems are limited
by communication constraints and suffer from single point
failure (Ennasr et al., 2016). In decentralized TDOA systems,
anchor pairs synchronize the timescales between each other and
not with a single master anchor, which leads to scalability.

3.2. Time-difference-of-arrival principles

In this subsection, we briefly explain the TDOA principles
implemented in LPS.Without loss of generality, we denote a
pair of UWB anchors as anchor 1 and anchor 2. The TDOA
measurement d12 is the difference of distances of the tag to
anchors 1 and 2. The sequence of the UWB radio packets
among the anchor pair and one tag is visualized in Figure 3.
UWB radios, including both anchors and the tag, operate
independently with their own individual clocks. These
clocks are depicted as solid lines, each distinguished by a
unique color. A clock synchronization process is essential
for an accurate computation of TDOA measurements.

We denote the clock of anchor 1, anchor 2, and the tag as cl1,
cl2, and clT in the superscripts. The transmission and the re-
ception of a radio signal from anchor 1 are denoted as tx1 and
rx1 in the subscripts. As an example, tclTrx2

indicates the receiving
timestamp of the radio packet from anchor 2 expressed in the
tag’s clock.UWB radio signals are transmittedwith a scheduled
transmission sequence.We use~t to indicate the timestamp from

the previous sequence:~tcl2tx2 indicates the transmitting timestamp
of the radio packet from anchor 2 expressed in the clock of
anchor 2 from the previous sequence.With anchor 1 and anchor
2 at positions a1, a2 2R

3 and one tag at position p2R
3, the

TDOA measurement between anchors 1 and 2 is computed as

d12 ¼ c
h�

tclTrx2
� tclTrx1

�
� α

�
tcl2tx2

� tcl2rx1
þ tof cl212

�i

¼ kp� a2k � kp� a1k
(1)

where c indicates the speed of light, α is the clock correction
parameter converting from anchor 2’s clock to the tag’s clock,

tof cl212 is the time-of-flight measurements between anchor 1 and
anchor 2 expressed in anchor 2’s clock, and k�k indicates thel2

norm. The clock correction parameter α is used to synchronize
the clock of anchor 2 to the clock of the tag. We compute α
with the timestamps from the previous sequence

α ¼ tclTrx2
�~t

clT
rx2

tcl2tx2 �~t
cl2
tx2

(2)

Figure 4. UWB anchors and tag setup for UWB identification
experiments.
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4. Data collection

4.1. Ground truth

The UTIL dataset was created at the University of Toronto
Institute for Aerospace Studies (UTIAS).We collected the data

in the indoor flight arena equipped with a motion capture
system of 10 Vicon Vantage + cameras (Vicon, 2022). The
millimeter-level accurate Vicon pose measurements were
collected during UWB identification experiments and flight
experiments as the ground truth measurements.

Figure 5. A diagram of the UWB identification experiments. The experiment process of LOS distance tests and LOS angle tests are
illustrated in (a) and (b). The NLOS identification tests between an anchor and a tag and between two anchors are shown in (c) and (d).

Figure 6. Measurement errors in (a) LOS distance tests (top) and (b) LOS angle tests (bottom). We indicated the distance test and angle
tests as dT# and aT#, where # is the test number.

Zhao et al. 1447



4.2. UWB identification dataset

In order to identify the UWB TDOA measurement per-
formance in LOS and NLOS scenarios, we conducted a
variety of LOS and NLOS experiments using two anchors
and one tag. Figure 4 demonstrates the experimental setup
for the identification dataset. Two UWB anchors referred to
as anchor 1 and anchor 2, and one Crazyflie nano-quadrotor
equipped with an UWB tag were placed on wooden
structures. The ground truth pose data was provided by the
motion capture system. Since only two anchors were used
for the data collection, we ignored the difference between
the centralized and decentralized TDOA modes and set the
anchors into decentralized mode (TDOA 3). We collected
the data through the Robot Operating System (ROS). Each
sub-dataset was collected during a one-minute static
experiment.

To assess the quality of received UWB signals, we
collected the signal-to-noise ratio (SNR) and power dif-
ference (Pd) values provided in the Decawave user manual
(Decawave, 2017) as the performance metrics. The com-
putation of SNR and power difference Pd are as follows

SNR ¼ Amf

σn
,Pd ¼ Pr � Pf (3)

where Amf indicates the First Path Amplitude value, σn
indicates the Standard Deviation of Channel Impulse Re-
sponse Estimate Noise value, and Pr and Pf are the total
received power and the first path power, respectively. In
general, a higher SNR value or a lower Pd indicates the
received radio signal is of good quality (Decawave, 2017).
The four raw measurements {Amf, σn, Pr, Pf} can be ac-
cessed from the DW1000 UWB chip when receiving an
UWB radio signal. We refer to Section 4.7 of the user
manual (Decawave, 2017) for more information. Detailed
data format and descriptions of the UWB identification
dataset are provided in Section 5.1.

4.2.1. Line-of-sight tests. We collected UWB TDOA
measurements from two LOS identification tests: (i) the
LOS distance test and (ii) the LOS angle test. The data
collection procedures are sketched in Figure 5(a)–(b). The
positions of the tag and anchor 2 were fixed throughout the
LOS data collection process. In LOS distance test, we

increased the distance between anchor 1 and the tag from
0.5 m to 6.5 m in intervals of 0.5 m. In LOS angle test, we
changed the angle between two anchors from 180° to 15° in
intervals of 15°. The LOS TDOA measurement errors are
summarized in Figure 6. We indicate the distance test and
angle tests as dT# and aT#, where # is the test number.

4.2.2. Non-line-of-sight tests. In the NLOS identification
tests, we fixed the positions of the tag and two anchors and
placed different types of obstacles to create NLOS sce-
narios. Four reflective markers were placed on the top
surface of the obstacle to capture both its position and
dimensions during the experiments. To reflect the com-
prehensive performance of UWB NLOS measurements, we
selected six obstacles of different types of materials com-
monly used in indoor settings, including cardboard, metal,
wood, plastic, and foam. Figure 7 shows the obstacles we
used during the experiments.

As explained in Section 3.2, the UWB tag listens to the
radio packets transmitting between anchors to compute
TDOA measurements. Both NLOS conditions between one
anchor and the tag and between two anchors will affect
TDOA measurements. Therefore, we conducted NLOS
experiments under (i) NLOS conditions between anchor
1 and the tag and (ii) NLOS conditions between anchor
1 and anchor 2 (see Figure 5(c)–(d)). Considering the
different radio reflection and diffraction effects with one
obstacle under different orientations, we collected six sub-
datasets for each NLOS condition with different orienta-
tions of the obstacle. One LOS dataset was collected for
comparison. We present one NLOS identification experi-
ment and summarize the measurement errors induced by
metal occlusions in Figure 8 as an example.

4.3. Flight dataset

The flight dataset is a comprehensive multimodal collection
from a customized quadrotor platform in a range of cluttered
indoor environments, featuring both static and dynamic
obstacles.

4.3.1. Indoor flight arena. We collected the UWB TDOA
flight dataset in the indoor flight arena measuring ap-
proximately 7.0 m × 8.0 m × 3.5 m. Printed AprilTags
(Olson, 2011) were attached to the soft mattresses to provide
visual features for optical flow. Figure 9 is a photograph of
our flight arena during data collection.

To ensure the accuracy of our dataset, we performed
anchor surveying for each of our data collection sessions,
leading to four different anchor constellations. In each
anchor constellation, eight UWB anchors were pre-installed
in the flight arena. We refer to the Vicon frame as the inertial
frame FI and the anchor frame as FA (see Figure 9). To
maximize the utilization of the indoor environment, we
placed the UWB anchors along the boundary of the space to
construct the anchor constellations, resulting in their po-
sitions outside the field of view of the Vicon system.

Figure 7. Obstacles used in the NLOS tests. The materials of the
obstacle from left to right are cardboard, metal, wood, plastic,
wood, and foam.
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Consequently, we used a millimeter-accurate Leica total
station (Leica, 2021) for the anchor survey process and
transformed the survey results back into the Vicon inertial
frame subsequently for use. To align the total station frame
and the inertial frame, we used the total station to survey six
reflective markers with known positions in the inertial frame
and compute the transformation matrix by aligning the
point-clouds (Besl and McKay, 1992). To assess the quality
of the frame alignment between the total station frame and
the inertial frame, we computed the reprojection error of the
six reflective markers. The survey points in the total station
frame were converted into the inertial frame with a root-
mean-squared error (RMSE) of around 1.12 mm. Since the
low-cost DWM1000 UWB chip is reported to have pose-
related measurement biases (Zhao et al., 2021; Ledergerber
and D’Andrea, 2017), we intended to survey both the po-
sition and the orientation of each anchor for reproducibility.

During the anchor surveying process, we surveyed the
UWB antenna center together with three reflective markers
on the extended arms of each anchor stand (see Figure 9).
The positions of these markers in the anchor frame were pre-
measured. Then we leveraged the surveyed marker posi-
tions, converted into the inertial frame, along with their
known positions in the anchor frame to compute the pose
(position and orientation) of each anchor through point-
cloud alignment (Besl and McKay, 1992). We provide both
Python (anchor_survey.py) and MATLAB (an-
chor_survey.m) scripts in our development kit for the
users to replicate this process.

4.3.2. Quadrotor platform. We built a customized quad-
rotor based on the Crazyflie Bolt flight controller
(Bitcraze, 2022) with an inertial measurement unit (IMU)
and attached commercially available extension boards
(so-called decks) from Bitcraze for data collection (see
Figure 10). The LPS UWB tag was mounted vertically on
the top since the DWM1000 antenna radiation pattern is
uniform in its azimuth plane (Decaware, 2016). A flow
deck attached at the bottom provides optical flow mea-
surements, and a laser-based time-of-flight (ToF) sensor
provides the local altitude information. The accelerom-
eter and gyroscope data were obtained from the onboard
IMU. A micro SD card deck was used to log the raw
sensor data received by the flight control board with high-
precision microsecond timestamps. The customized
quadrotor communicates with a ground station computer
over a 2.4 GHz USB radio dongle (Crazyradio PA) for
high-level interaction. In terms of software, we used the
Crazyswarm package (Preiss et al., 2017) to send high-
level commands, such as takeoff/landing and start/stop of
data logging, and pre-defined waypoints. The pose of the
quadrotor measured by the motion capture system was
also sent to the quadrotor as an external measurement for
the onboard state estimation.

Figure 8. One example of NLOS identification experiments is shown in (a). A histogram of measurement errors induced by placing the
metal obstacle between one anchor and the tag is summarized in (b).

Figure 9. A photo of the flight arena. The UWB anchors are
enclosed with green circles. The inertial frame and UWB anchor
frame are indicated as FI and FA, respectively. The ground is
covered with soft mattresses with a thickness of two inches
(5.08 cm). Printed AprilTags are attached to the mattresses to
provide visual features for the optical flow.
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4.3.3. Calibration and latency. We refer to the offset be-
tween the center of a sensor and the center of vehicle frame

FV as sensor extrinsic parameters. We calibrated the sensor
extrinsic parameters by manually measuring the translation
vectors from the vehicle center to onboard sensors (UWB
tag and flow deck). The IMU was assumed to be aligned
with the vehicle center. The translation vector from the
vehicle to the UWB tag was measured as ruv =
[�0.012,0.001,0.091]T m and the measurement model is

dij ¼
��ðCIVruv þ pÞ � aj

��� kðCIVruv þ pÞ � aik (4)

where CIV is the rotation matrix from the vehicle frame FV
to the inertial frame FI and p indicates the position of the
vehicle expressed in the inertial frame.

Similarly, the translation vector from the vehicle to the
flow-deck extension board was measured to be rfv = [0.000,
0.000, �0.012]T m. Since we covered the ground of the
flight arena with 2-inch thick (0.0508 m) mattresses for
protection during data collection, the thickness of the
mattress needs to be taken into account while using the ToF
measurements. We refer to Section 6.5 of Greiff (2017) for
detailed information on the flow-deck extension board.

Given our adoption of the same software and hardware
configuration as the Crazyswarm project (Preiss et al., 2017)

Figure 10. The customized quadrotor platform based on the
Crazyflie Bolt flight controller.

Figure 11. Flight trajectories and static NLOS conditions in the flight dataset. The six flight trajectories in constellation #1, #2, and #3 are
shown in (a)–(f). Note that the trajectories in constellation #1 have a smaller separation in the x and y axes due to the smaller
constellation coverage. The three static NLOS conditions and the anchor positions in constellation #4 together with the three flight
trajectories are shown in (g)–(i).
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for our flight experiments, we direct readers to Section XI-A
of Preiss et al. (2017) for a comprehensive explanation of
the latency measurement process, in which the reported
latency for a single vehicle is approximately 11 ms.

4.3.4. Data collection process. We operated the motion
capture system at a fixed sample frequency of 200 Hz and
sent the measured quadrotor pose to the onboard error-state
Kalman filter with a small standard deviation, 0.001 m for
position and 0.05 rad for orientation, for state estimation.
Onboard the quadrotor, the raw UWB TDOA measure-
ments, gyroscope, accelerometer, optical flow, ToF laser-
ranging, barometer, and the Vicon pose measurements (sent
from the ground station) were recorded as event streams. We
treat the Vicon pose measurements logged onboard as the
ground truth data. Each datapoint was timestamped with the
onboard microsecond timer, and the resulting time series
were written to the micro SD card as a binary file. Python
scripts are provided to parse and analyze the binary data.

During the data collection process, we commanded the
quadrotor to fly six different trajectories in constellation #1, #2,
and #3 under LOS conditions. The six flight trajectories are
summarized in Figure 11(a)–(f). In constellation #4, we created
three cluttered environments with static obstacles (see
Figure 11(g)–(i)) and two cluttered environments with one
dynamic metal obstacle. During the dynamic obstacle ex-
periment, we moved the metal cabinet manually and inten-
tionally blocked two anchors temporarily during the flights.

Note that the human body also acted as a dynamic obstacle in
these cases. The onboard sensor data was collected over three
different trajectories. In each experiment, we commanded the
quadrotor to fly the same trajectories with both centralized and
decentralized TDOA modes for comparison. For the flight
experiments with dynamic obstacles, we created animations in
scripts/flight-dataset/animations folder to
demonstrate the data collection process. We also conducted a
couple of manual data collection experiments with a human
body involved in constellations #3 and #4.

5. Data format

5.1. UWB identification data format

The UWB identification dataset consists of data collected from
(i) LOS distance and angle tests and (ii) NLOS identification
experiments with different types of obstacles. In each sub-
dataset, we provide a .csv file containing the collected data
and a .txt file containing the poses of the tag and two
anchors in one folder. For NLOS identification experiments,
the positions of the four markers on the obstacles are also
included in the .txt file. The format of the .csv file and
brief descriptions of each value are summarized in Table 2. The
format of the position data provided in the .txt file is (x, y, z)
in meters. The orientation is provided as a unit quaternion (qx,
qy, qz, qw), where qw and (qx, qy, qz) are the scalar and the vector
components, respectively.

Table 2. Format of the .csv files in each static sub-dataset.

CSV Column Value Description

1 d12 [m] TDOA measurements d12 = d2 � d1
2 d21 [m] TDOA measurements d21 = d1 � d2
3 SNR1 SNR value of the UWB radio packet sent from anchor 1 received by the tag
4 Pd1 [dB] Power difference value of the UWB radio packet sent from anchor 1 received by the tag
5 SNR2 SNR value of the UWB radio packet sent from anchor 2 received by the tag
6 Pd2 [dB] Power difference value of the UWB radio packet sent from anchor 2 received by the tag
7 SNRan1 SNR value of the UWB radio packet sent from anchor 2 received by anchor 1
8 Pan1

d [dB] Power difference value of the UWB radio packet sent from anchor 2 received by anchor 1

9 rcl112 [m] Distance between anchors 1 and 2 computed by tof cl112
10 SNRan2 SNR value of the UWB radio packet sent from anchor 1 received by anchor 2
11 Pan2

d [dB] Power difference value of the UWB radio packet sent from anchor 1 received by anchor 2

12 rcl212 [m] Distance between anchors 1 and 2 computed by tof cl212

Table 3. Summary of the CSV flight dataset format.

CSV column Name Format

1 ∼ 4 UWB TDOA (timestamp [ms], Anchor-ID i, Anchor-ID j, dij [m])
5 ∼ 8 Acceleration (timestamp [ms], acc. x [G], acc. y [G], acc. z [G])
9 ∼ 12 Gyroscope (timestamp [ms], gyro. x [deg/s], gyro. y[deg/s], gyro. z[deg/s])
13 ∼ 14 ToF laser-ranging (timestamp [ms], ToF [m])
15 ∼ 17 Optical flow (timestamp [ms], dpixel x, dpixel y)
18 ∼ 19 Barometer (timestamp [ms], barometer [asl])
20 ∼ 27 Ground truth pose (timestamp [ms], x [m], y[m], z[m], qx, qy, qz, qw)
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5.2. Flight experiment data format

The flight experiment data were collected onboard the
quadrotor during the flights as binary files. We provide the
converted CSV and rosbag data and the corresponding
Python scripts used for data parsing. For each UWB con-
stellation, we provide the raw Leica total station survey
results and computed anchor poses in .txt files. In each
sub-dataset, we provide the timestamped accelerometer,
gyroscope, UWB TDOA, optical flow, ToF laser-ranger,
barometer measurements, and the ground truth measure-
ments of the quadrotor’s pose during the flight. The CSV
data format for each sensor data is summarized in Table 3.
The detailed file structure and naming convention are shown
in Figure 12.

6. Development kit and benchmark

As part of this dataset, we provide a development kit with
both Python and MATLAB scripts for the users to parse the
data. For the UWB identification dataset, we provide scripts
to visualize the distribution of the collected data. For the

flight dataset, we provide a range of different ways to vi-
sualize the sensor data and the data collection process. We
also provide the STL files for the 3D printed quadrotor
frame and the UWB tag support in the setup_files/
stl-files folder. Finally, an error-state Kalman filter
(ESKF) implementation is provided for users to evaluate the

Figure 12. The file structure and naming convention of the UTIL
dataset. In the flight dataset, we summarized the binary, CSV,
and rosbag data according to different anchor constellations. In
the identification dataset, we separate the LOS and NLOS testing
data with each NLOS dataset containing the material of the
obstacle in the filename.

Table 4. Root-mean-square errors in meters obtained from
benchmark on all sequences of the UTIL dataset using IMU and
UWB TDOAmeasurements. This evaluation is conducted using
an error-state Kalman filter and a batch estimation algorithm,
with lower error values highlighted in bold format. We indicate
the constellation as Const. for short. The data sequences
indicate the number of trial# in Const.#1 ∼ #3 and
trial#.traj# in Const.#4, where m# indicates a trial of
data collected manually.

TDOA2 TDOA3

Data Seq. ESKF Batch ESKF Batch

Const. 1 1 0.108 0.097 0.144 0.099
2 0.122 0.107 0.144 0.104
3 0.109 0.097 0.123 0.095
4 0.111 0.099 0.127 0.093
5 0.115 0.106 0.149 0.120
6 0.123 0.107 0.135 0.103

Const. 2 1 0.103 0.098 0.114 0.082
2 0.114 0.096 0.116 0.078
3 0.108 0.109 0.117 0.079
4 0.094 0.081 0.121 0.074
5 0.122 0.099 0.125 0.076
6 0.106 0.094 0.117 0.097

Const. 3 1 0.245 0.127 0.232 0.144
2 0.194 0.100 0.225 0.116
3 0.189 0.093 0.214 0.124
4 0.215 0.116 0.204 0.114
5 0.220 0.117 0.241 0.126
6 0.193 0.085 0.211 0.099
m1 0.265 0.159 N/A N/A
m2 0.335 0.196 N/A N/A
m3 N/A N/A 0.340 0.204
m4 N/A N/A 0.355 0.182

Const. 4 1.1 0.201 0.176 0.207 0.146
1.2 0.168 0.135 0.163 0.117
1.3 0.194 0.146 0.190 0.139
2.1 0.231 0.202 0.221 0.164
2.2 0.200 0.158 0.219 0.170
2.3 0.222 0.185 0.238 0.177
3.1 0.919 0.788 0.742 0.563
3.2 0.718 0.624 0.558 0.482
3.3 0.651 0.571 0.674 0.529
4.1 0.818 0.704 0.759 0.612
4.2 0.766 0.648 0.845 0.669
4.3 0.735 0.636 0.838 0.669
5.1 0.473 0.397 0.432 0.334
5.2 0.470 0.397 0.435 0.312
5.3 0.395 0.340 0.443 0.325
6.1 0.509 0.434 0.623 0.486
6.2 0.459 0.370 0.618 0.458
6.3 0.517 0.451 0.578 0.487
m1 0.529 0.519 N/A N/A
m2 0.587 0.613 N/A N/A
m3 0.333 0.266 N/A N/A
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UWB TDOA-based positioning performance in different
scenarios. The development kit and instructions can be
found at https://utiasdsl.github.io/util-uwb-dataset/.

We provide a localization performance benchmark of
the proposed dataset using IMU and UWB TDOA
measurements. This evaluation is conducted with an
error-state Kalman filter (ESKF) (Goudar and Schoellig,
2021) and a batch estimation algorithm (Barfoot, 2017).
A chi-square test outlier rejection mechanism is applied
in the ESKF to discard large outliers. The root-mean-
square error (RMSE) in meters is summarized in Table 4.
The benchmark results reveal that ESKF and batch es-
timation demonstrates commendable performance with
an approximate positioning error of 10 cm in obstacle-
free environments (constellations #1, #2, and #3).
However, in constellation #4, the positioning perfor-
mance of conventional estimation algorithms deteriorates
greatly, primarily due to obstacle-induced measurement
errors. These findings highlight substantial opportunities
for researchers to develop novel estimation algorithms
and enhance localization performance in cluttered indoor
environments.

7. Dataset usage

In this section, we provide two potential usages of this
dataset for users followed by a discussion of potential
research directions.

7.1. UWB TDOA measurement modeling

For UWB TDOA localization, modeling the measurement
errors under LOS and NLOS scenarios is important for the
design of localization algorithms (Prorok et al., 2012; Ruiz
and Granja, 2017). The stationary UWB TDOA signal
testing data can be used to model the distribution of the

UWB TDOA measurement errors under various LOS and
NLOS conditions. One example of using the identification
dataset to model UWB TDOA measurement error modeling
can be found in Zhao et al. (2022).

7.2. Accurate UWB TDOA-based localization

The flight dataset can be used to develop UWB TDOA-
based localization algorithms. We provide the UWB
measurements under centralized TDOA mode (TDOA2)
and decentralized TDOAmode (TDOA3). The flight dataset
collected in constellations 1 and 2 can be used to compare
the localization performance between different UWBmodes
using low-cost DWM1000 UWB modules.

It is reported in the literature that the low-cost
DW1000 UWB chips suffer from systematic measurement
biases (Zhao et al., 2021; Ledergerber and D’Andrea,
2017). Also, the UWB radio measurements are often
corrupted with multi-path and NLOS signal propagation
in real-world scenarios. In cluttered indoor environments,
multi-path and NLOS radio propagation cannot be
avoided in general. We summarized the UWB TDOA
measurement d23 in constellation #4 in different LOS/
NLOS scenarios in Figure 13. The quadrotor was com-
manded to execute the same and repeated circle trajec-
tory. We can observe in Figure 13(b)–(d) that static
obstacles consistently influence the UWB measurements.
Also, UWB measurements can be completely blocked
due to severe NLOS conditions. However, in dynamic
NLOS scenarios (see Figure 13(e) and (f)), the induced
measurement errors do not remain consistent. Hence, the
flight dataset collected in constellation #4 can be used to
design new algorithms to cope with UWB measurement
errors and noise so as to achieve robust and accurate
UWB-based positioning performance in such challenging
and highly dynamic environments.

Figure 13. The UWB TDOA measurement d23 collected from the same circle trajectory in constellation #4 under different LOS/NLOS
conditions. The measurements under clear LOS conditions are shown in (a). In static NLOS conditions induced by (b) one wooden
obstacle, (c) one metal obstacle, and (d) one metal and three wooden obstacles, we can observe consistent measurement biases over
repeated trajectories. In dynamic NLOS conditions caused by (e) one metal obstacle and (f) one metal obstacle and three wooden
obstacles, the induced measurement errors are less predictable.
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In the past decade, researchers have dedicated efforts to
enhance UWB TDOA localization performance while
keeping costs low through the use of economical hardware.
Despite these efforts, non-line-of-sight (NLOS) and multi-
path radio propagation remain the major factors hindering
the localization performance of UWB-based systems.
Identifying the measurement outliers and systematically
handling the biased and non-Gaussian noise distributions
(Huang et al., 2022; Zhao et al., 2023) in cluttered envi-
ronments remains to be promising research directions.
Additionally, the exploration of continuous-time estimation
techniques (Goudar et al., 2023; Li et al., 2023) emerges as
another promising research direction for asynchronous
UWB-inertial localization systems. Furthermore, it is nec-
essary to conduct observability analysis (Goudar and
Schoellig, 2021) on system states and properly address
the unobserved states to achieve consistent estimation
(Lisus et al., 2023).

8. Conclusion

In this paper, we present the UTIL dataset, a comprehensive
UWB TDOA dataset based on the low-cost
DWM1000 UWB modules. Our dataset consists of (i) an
UWB identification dataset under various LOS and NLOS
conditions and (ii) a multimodal flight dataset collected with
a cumulative total of around 150 min of real-world flights in
cluttered indoor environments with four anchor constella-
tions. Obstacles of different types of materials commonly
used in indoor settings, including cardboard, metal, wood,
plastic, and foam, were used to create NLOS scenarios.
During the flights, we collected raw UWB TDOA mea-
surements with additional onboard sensor data (IMU, op-
tical flow, and ToF laser) and millimeter-accurate ground
truth data from a motion capture system onboard a quad-
rotor platform. The combination of multimodal onboard
sensors, different anchor constellations, two TDOA mo-
dalities, and diverse cluttered scenarios contained in this
dataset facilitates in-depth comparisons of UWB TDOA-
based quadrotor localization capabilities. We hope this
dataset can foster research in improving the UWB TDOA-
based positioning performance in cluttered indoor
environments.
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