
Network Coding Capacity Region of Line Networks with Node and
Edge Constraints

S. M. Sadegh Tabatabaei Yazdi∗, Serap A. Savari†and Gerhard Kramer‡

Abstract

The network coding capacity region of line networks
is established when there are both node and edge con-
straints. Cut set bounds and progressive d-separating edge
set bounds provide outer bounds while a linear network
coding scheme achieves capacity.

1. INTRODUCTION

Network coding lets network processors decode re-
ceived messages and re-encode them together with their
own messages before sending packets to adjacent proces-
sors. We represent a network as a graph where nodes
represent the processors and edges represent communica-
tion channels between processors. The outgoing symbol
from every node, at any particular time instant n, can be
any function of the incoming symbols to that node at ear-
lier time instants 1,2, · · · ,n− 1 and/or its own messages
at the present and earlier time instants. It is well known
[1] that for some networks the use of network coding in-
creases throughput compared to routing where processors
only store and forward their generated and received mes-
sages to other processors. Ahlswede et al. [1] have shown
that network coding achieves the min-cut rate for a multi-
cast session from a source node to several sink nodes. By
min-cut we mean the minimum total capacity of the edges
that disconnect the source node from at least one sink node.
Li et al. [14] showed that linear network coding suffices to
achieve the optimal rate. In this paper we study the ben-
efits of network coding in line networks, that appear in
many different communication systems such as peer to peer
communication networks, and wireless ad-hoc and sensor
networks (see, e.g., [12]). Line networks are also the ba-
sic elements in more complicated network topologies such
as tree networks. The graph of a line network with only
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Figure 1. A simple model for a line network with N
communication units.

edge constraints can be depicted as a cascaded series of
nodes where every pair of consecutive nodes share two op-
positely directed edges (see Fig. 1). In this model, the
only constraints on the data transmission rate between dif-
ferent nodes are the edge capacities indicated by Ci,i+1 for
the edge from node i to i + 1, 1 ≤ i ≤ N − 1, and C j, j−1
for the edge from node j to j− 1, 2 ≤ j ≤ N. By apply-
ing the cut set bounds introduced in [4], [7] on the edges of
this graph, one finds that routing is throughput-optimal for
the transmission of multiple multicast sessions with inde-
pendent message sources, where all nodes can simultane-
ously have multicast sessions to all subsets of the remain-
ing nodes. In practical networks, however, it often hap-
pens that, in addition to the edge constraints, the nodes are
also restricted in terms of the maximum amount of data that
they are able to process in a certain amount of time. We re-
fer to these latter restrictions as node constraints, and they
might be due to the limited bus bandwidth between differ-
ent processing or memory units and/or the limited speed of
processors.

One way to model a node constraint is to convert it into
edge constraints on a new network topology (see [5], [6])
in order to be able to use well-known analysis techniques
for edge constrained networks. The process is illustrated in
Fig. 2: Split node η j in the original network into two nodes
I j and O j in the new network. Connect all incoming edges
to η j in the original network to I j and replace all outgoing
edges from η j in the original network with outgoing edges
from O j in the revised network graph. Next, in the new
network create an edge directed from I j to O j with capacity
C j to model the node capacity for processing information
at node η j. Assume that all messages generated at η j in the
original network are generated at I j for the revised network
and that all messages that are originally decoded at η j are
now decoded at O j. Note that all messages which are pro-
cessed at node η j pass through the edge between I j and O j



Figure 2. Converting a node constraint to an edge
constraint.

Figure 3. Network coding example in a line net-
work with three processors.

in the revised network without affecting other parts of the
network model (alternative models have the messages orig-
inating at O j or decoded at I j; the choice of model depends
on the application). In the following example, we demon-
strate that the capacity region of a line network subject to
both node and edge constraints is in general larger than its
routing capacity region. Later in the paper we establish that
a linear network coding scheme achieves any point in the
capacity region.

Example 1.1 Consider the graph corresponding to a line
network with three processors which is depicted in Fig.
3. Suppose that node I1 wants to send the bit sequence
a = [a1,a2,a3, · · · ] with a rate of one bit per second to des-
tination O3 and node I3 wants to send the independent bit
sequence b = [b1,b2,b3, · · · ] with a rate of one bit per sec-
ond to destination O1. Both nodes begin transmission at
time instant zero. In a routing solution for this communica-
tion problem, the bit sequence of a passes through the path
I1,O1, I2,O2, I3,O3. Similarly, the bit sequence b passes
through the path I3,O3, I2,O2, I1,O1. Thus, in a routing so-
lution all node capacities should be at least two bits per
second since the nodes are used by both flows, and the re-
maining edge capacities on the graph should be at least one
bit per second since they are used by either one of the flows.
We next show that routing is not optimal for this setting.

Consider a network coding scheme in which edge (I2,O2)
passes the bitwise XOR of its incoming bit sequences, i.e.,
[a1⊕b1,a2⊕b2, · · · ]. Further, node O2 passes its incoming
bit sequence along edges (O2, I1) and (O2, I3). The scheme
is shown on the graph of Fig. 3. We assume that the de-
lay between Ii and Oi for transferring information is neg-
ligible and thus I1 and I3 start to receive the bit sequence
[a1 ⊕ b1,a2 ⊕ b2, · · · ] from node O2 with one second delay
with respect to the start time of zero. Next I1 and I3 re-
spectively decode the bit sequences b and a by using the
received bit sequence and their own messages. Finally I1
and I3 respectively send the bit sequences b and a to O3
and O1 via the edges (I1,O1) and (I3,O3). This network
coding scheme shows that we can save one bit per second
of capacity on edge (I2,O2) over the routing solution while
keeping the other capacities fixed. In Sections III and IV
we will prove that this network coding scheme is optimal in
the sense that the capacities can not be reduced further for
these demands.

We review earlier work on line network topologies. In
[13] the capacity of bidirected ring networks with mul-
tiple unicast sessions is derived. Since finite-length line
networks are special cases of ring networks, the multiple
unicast session problem for bidirected (or undirected) line
networks is also solved. In [2] the authors investigate the
network coding capacity of unidirected line networks with
edge constraints only for several cases of independent and
dependent message sources. In their analysis, they decom-
pose the network into several components with a single de-
mand node in each component and assume that all previous
node demands are satisfied in each component. Then they
show that the sum of feasible rates of the components is
achievable in the parent network for a broad class of de-
mands. The multimessage multicast capacity of the line
networks that they consider is derived as a special case of
more general results. For independent message sources one
can show that the bidirected cut set bounds introduced in
[4], [7] establish that routing achieves capacity for multi-
message multicast sessions on undirected or bidirected line
networks. In [10], [11] the authors consider a cascade of
Discrete Memoryless Channels (DMCs) with identical ca-
pacities and discuss the network coding benefits when in-
termediate nodes can only process fixed length information
blocks; these papers provide the relationship between the
code block length and the size of the network for a con-
stant end-to-end rate. In [12] the authors show that network
coding schemes with a finite field size can achieve the max-
imum possible network coding capacity for cascaded era-
sure channels with a single source and a single destination.

The rest of this paper is organized as follows. In Sec-
tion II we formally define the problem and the mathemati-
cal model. We consider line networks with both node and



Figure 4. A general line network with N nodes.

edge constraints and allow every node to send multicast
messages to every other nonempty collection of nodes in
the network. In Section III we use information theoretic
tools to find outer bounds on the network coding capacity
region. Finally, in Section IV we propose a network coding
scheme that achieves the outer bounds of Section III.

2. PROBLEM DEFINITION

Consider a cascaded series of N nodes η1,η2, · · · ,ηN
forming a line network as in Fig. 1. We convert a line net-
work with node constraints into one with only edge con-
straints as illustrated by Fig. 4. The node constraint for
node η j is converted into an edge of capacity C j between
nodes I j and O j, and we call this pair of nodes and the edge
connecting them communication unit j, j ∈ {1,2, · · · ,n}.
Communication unit j shares Discrete Memoryless Chan-
nels (DMCs) with units j − 1 and j + 1; i.e., in the re-
vised network node O j has outgoing edges to nodes I j−1
and I j+1 with capacities C j, j−1 and C j, j+1, respectively.
All units can potentially communicate multicast messages
to multiple subsets of the N − 1 remaining units on the
line. Let Ak = ik → { jk1 , jk2 , · · · , jkLk

} denote a traffic
session and WAk its corresponding message; here WAk , is
generated at node Iik and is destined for nodes in the set
{O jk1

,O jk2
, · · · ,O jkLk

}. Let Ŵ j
Ak

represent the estimate of
message WAk at one of its destinations O j. Assume that
jk1 < jk2 < · · ·< jkLk

. Let RAk be the rate of session Ak.
We wish to characterize all feasible rate vectors in a

line network with N units with subject to the node and
edge constraints. In the next section we employ the graph-
ical method of the progressive d-separating edge set (PdE)
bounds introduced in [8], [9] and the cut set bounds [4], [7]

to the network of Fig. 4 to find outer bounds on the set of
feasible rate vectors. In the last section, we develop a sim-
ple linear coding scheme on the binary field which achieves
these bounds.

3. NETWORK CODING BOUNDS

In this section, we find upper bounds on the achievable
rates in line networks. We first use the PdE edge set bounds
to find upper bounds on the feasible rates subject to the
node constraints. We next use cut set bounds to find upper
bounds on the feasible rates subject to the edge constraints.

3.1. Bounds from the Node Constraints

Consider the revised graph of a general line network in
Fig. 4, and let e j, j+1 and e j, j−1 denote the edges from node
O j to nodes I j+1 and I j−1, respectively. Let e j denote the
edge on the graph from node I j to O j. Like the cut set
bounds, PdE bounds begin with a set of edges εd ; how-
ever, they also need to satisfy a verification procedure. We
choose to study εd = ei and the following set of traffic ses-
sions Sd

• Sd1 = {Ak : i ∈ { jk1 , · · · , jkL}}

• Sd2 = {Ak : i /∈ {ik, jk1 , · · · , jkL}, ik < i < jkL}

• Sd3 = {Ak : i = ik}

• Sd = Sd1 ∪Sd2 ∪Sd3

• SC
d = {Ak : Ak /∈ Sd}.

The PdE algorithm also takes as input an ordering of the
sessions in Sd . We first assign three arbitrarily chosen or-
dering functions to the subsets of sessions Sd1 ,Sd2 ,Sd3 , so
that we have:

Sd1 = {Sd1,1 ,Sd1,2 , · · · ,Sd1,|Sd1
|}

Sd2 = {Sd2,1 ,Sd2,2 , · · · ,Sd2,|Sd2
|}

Sd3 = {Sd3,1 ,Sd3,2 , · · · ,Sd3,|Sd3
|}.

We consider the multicast sessions in Sd in the order

Sd1,1 ,Sd1,2 , · · · ,Sd1,|Sd1
| ,Sd2,1 ,Sd2,2 , · · · ,Sd2,|Sd2

| ,

Sd3,1 ,Sd3,2 , · · · ,Sd3,|Sd3
| .

Example 3.1 We use a small line network with 3 commu-
nication units to help illustrate the PdE procedure below.
We choose to study εd = e2 and the following set of traffic
sessions Sd



• Sd1 = {Ak : 2 ∈ { jk1 , · · · , jkL}}

• Sd2 = {Ak : 2 /∈ {ik, jk1 , · · · , jkL}, ik < 2 < jkL}

• Sd3 = {Ak : 2 = ik}

• Sd = Sd1 ∪Sd2 ∪Sd3

• SC
d = {Ak : Ak /∈ Sd}.

For our network and node constraint, the steps of the PdE
procedure are as follows (see [9]):

1. (Initialization) Consider the Functional Dependence
Graph (FDG) of the network illustrated in Fig. 5,
which is the line graph (see, e.g., [3] for a definition)
of the network with the addition of nodes representing
the messages, their estimates, and noise. In this graph,
we represent the inputs to the edges e j, j−1,e j, j+1 and
e j of the original network by the random variables
X j, j−1,X j, j+1 and X j respectively, and their outputs by
the random variables Yj, j−1,Yj, j+1 and Yj. We assume
that each edge output is a function of the edge input
and the corresponding noise random variable; we rep-
resent the noise random variables Z j, j−1,Z j, j+1, and
Z j on the FDG with solid circles. We simplify the
FDG of Fig. 5 by collecting at every communica-
tion unit j, all messages that belong to sessions in
Sd1 ,Sd2 ,Sd3 and SC

d and respectively representing them
by Wj,1,Wj,2,Wj,3 and WC

j . We likewise use the no-
tation Ŵj,1,Ŵj,2,Ŵj,3 and ŴC

j for the respective esti-
mates of the messages. More specifically, we define

Wj,l = {WAk : j = ik,Ak ∈ Sdl}, l = 1,2,3

WC
j = {WAk : j = ik,Ak ∈ SC

d }

Ŵj,l = {Ŵ j
Ak

: j ∈ { jk1 , · · · , jkLk
},Ak ∈ Sdl}, l = 1,2,3

ŴC
j = {Ŵ j

Ak
: j ∈ { jk1 , · · · , jkLk

},Ak ∈ SC
d }.

(The FDG for Example 3.1 is illustrated in Fig. 10.)

• We remove all nodes and edges in the FDG ex-
cept those encountered when moving backward
one or more edges starting from any of the nodes
representing: (1) Yi and Zi, (2) all messages
WAk for all sessions, and (3) any choice of non-
empty subset of {Ŵ p

Ak
: p = jk1 , jk2 , · · · , jkLk

}
for all Ak ∈ Sd ; we choose this subset to be
Ŵi,1, Ŵj,2 for j = i + 1, i + 2, · · · ,N and Ŵj,3
for j = 1,2, · · · , i− 1, i + 1, · · · ,N. This choice
guarantees that for every session Ak ∈ Sd we
have chosen at least one of its destinations, be-
cause (1) if Ak ∈ Sd1 , then i ∈ { jk1 , · · · , jkLk

},
and hence Ŵ i

Ak
∈ Ŵi,1 is nonempty, (2) if Ak ∈

Sd2 , then there is an r with r ∈ { jk1 , · · · , jkLk
}

and i < r, thus Ŵ r
Ak
∈ {Ŵi+1,2,Ŵi+2,2, · · · ,ŴN,2}

is nonempty, and (3) for every Ak ∈ Sd3 , then
there is a t with t ∈ { jk1 , · · · , jkLk

} and t 6= i;
thus Ŵ t

Ak
= {Ŵ1,3, · · · ,Ŵi−1,3,Ŵi+1,3, · · · ,ŴN,3}

is nonempty. The resulting FDG is shown in Fig.
6. (The resulting FDG for Example 3.1 is illus-
trated in Fig. 11.)

• Further we remove the edges coming out of the
nodes on the FDG representing Yi,Zi and WC

j
for j = 1,2, · · · ,N, and successively remove all
edges coming out of the nodes which are dis-
connected from any source nodes in a directed
sense. The resulting graph is shown in Fig. 7.
(The resulting graph for Example 3.1 is illus-
trated in Fig. 12.)

2. (Iterations) Since for all Ak ∈ {Sd1,1 ,Sd1,2 , · · · ,Sd1,|Sd1
|}

WAk is disconnected from all of its estimates,

• we remove the edges coming out of Wj,1 for j =
1,2, · · · ,N, and

• successively remove all edges coming out of the
nodes which are disconnected from any source
nodes in a directed sense. The resulting graph
is depicted in Fig. 8. (The resulting graph for
Example 3.1 is illustrated in Fig. 13.)

3. Since for all Ak ∈ {Sd2,1 ,Sd2,2 , · · · ,Sd2,|Sd2
|}WAk is dis-

connected from all of its estimates,

• we remove the edges coming out of Wj,2 for j =
1,2, · · · ,N, and

• we successively remove all edges coming out
of the nodes which are disconnected from any
source nodes in a directed sense. The resulting
graph is depicted in Fig. 9. (The resulting graph
for Example 3.1 is illustrated in Fig. 14.)

4. Finally, since for all Ak ∈{Sd3,1 ,Sd3,2 , · · · ,Sd3,|Sd3
|}WAk

is disconnected from all of its estimates, we obtain the
following PdE bound:

∑
Ak∈Sd

RAk ≤Ci, (1)

or equivalently,

∑
A j∈Sd1

RA j + ∑
Ak∈Sd2

RAk + ∑
Al∈Sd3

RAl ≤Ci. (2)

Observe that we can use symmetry to establish another PdE
bound corresponding to the sets of sessions S′d1

= Sd1 ,S
′
d2

=



Figure 5. The Functional Dependence Graph (FDG) for the network in Fig. 4.

Figure 6. The resulting graph after the first step of the initialization for the graph of Fig. 5.

Figure 7. The resulting graph after the second step of the initialization for the graph of Fig. 6.



Figure 8. The resulting graph after the first iteration of the PdE procedure for the graph of Fig. 7.

Figure 9. The resulting graph after the second iteration of the PdE procedure for the graph of Fig. 8.

Figure 10. The Functional Dependence Graph
(FDG) for the network in Fig. 4, with N = 3 and
i = 2.

Figure 11. The resulting graph after the first step
of the initialization for the graph of Fig. 10.



Figure 12. The resulting graph after the second
step of the initialization for the graph of Fig. 11.

Figure 13. The resulting graph after the first iter-
ation of the PdE procedure for the graph of Fig.
12.

{Ak : i /∈ { jk1 , jk2 , · · · , jkLk
}, jk1 < i < ik},S′d3

= Sd3 ,S
′
d =

S′d1
∪S′d2

∪S′d3
:

∑
A j∈S′d1

RA j + ∑
Ak∈Sd′2

RAk + ∑
Al∈Sd′3

RAl ≤Ci. (3)

The bounds (2) and (3) imply

∑
A j∈Sd1

RA j +max{ ∑
Ak∈Sd2

RAk , ∑
Ak∈Sd′2

RAk}+ ∑
Al∈Sd3

RAl ≤Ci.

(4)

3.2. Bounds from the Edge Constraints

The cut set bound starts with a subset ε of directed edges
of the network graph that partition the set of nodes such that
any path between two nodes in different subsets includes

Figure 14. The resulting graph after the second
iteration of the PdE procedure for the graph of Fig.
13.

at least one edge in ε . Let CU→Uc denote the sum of the
capacities of the edges in the cut that are directed from node
subset U to its complement. For any subset S of nodes, the
corresponding cut set bounds are:

∑
ik∈S,{ jk1 ,··· , jkLk

}∩Sc 6=φ

RAk ≤CS→Sc (5)

∑
ik∈Sc,{ jk1 ,··· , jkLk

}∩S 6=φ

RAk ≤CSc→S. (6)

We select ε = {ei,i−1,ei−1,i} for some i with 2 ≤ i ≤ N and
obtain the following two cut set bounds:

∑
ik≥i, jk1 <i

RAk ≤Ci,i−1, 2 ≤ i ≤ N (7)

∑
ik<i, jkLk

≥i
RAk ≤Ci−1,i, 2 ≤ i ≤ N. (8)

It is convenient to rewrite (8) as

∑
ik≤i, jkLk

>i+1
RAk ≤Ci,i+1, 1 ≤ i ≤ N−1. (9)

Many of the results here generalize to undirected net-
works by using bidirected cut set bounds introduced in [7].
It should also be interesting to study networks with undi-
rected edge constraints and other models for source and
sink placements.

4. NETWORK CODING SCHEME

In this section we provide a network coding scheme to
achieve the bounds of the last section. We begin by intro-
ducing the following notation for different collections of



multicast or unicast messages with respect to some fixed
communication unit i.

• Let W n
i be the binary representation of the set of mul-

ticast messages originating at node Ii at time instant
n with at least one destination O j1 with j1 < i and at
least one destination O j2 with j2 > i.

• Let W L,n
i be the binary representation of the set of mul-

ticast or unicast messages originating at node Ii at time
instant n with all destination nodes O j satisfying j < i.

• Let W R,n
i be the binary representation of the set of

multicast or unicast messages originating at node Ii
at time instant n with all destination nodes O j having
the property j > i.

• Let Ln
i be the binary representation of the set of all

multicast messages generated at nodes I j with j < i
which should be decoded at Oi and at least one node
Ok with k > i, such that the message from I j has been
generated at time instant n− (i− j).

• Let Rn
i be the binary representation of the set of all

multicast messages generated at nodes I j with j > i
which should be decoded at Oi and at least one node
Ok with k < i, such that the message from I j has been
generated at time instant n− ( j− i).

• Let L̃n
i be the binary representation of the set of all

multicast or unicast messages generated at nodes I j
with j < i which should be decoded in at least one
node Ok with k > i but not at Oi, such that the message
from I j has been generated at time instant n− (i− j).

• Let R̃n
i be the binary representation of the set of all

multicast or unicast messages generated at nodes I j
with j > i which should be decoded in at least one
node Ok with k < i but not at Oi, such that the message
from I j has been generated at time instant n− ( j− i).

• Let L̂n
i be the binary representation of the set of all

multicast or unicast messages generated at nodes I j
with j < i which should be decoded at Ii but not any
other node Ok with k > i, such that the message from
I j has been generated at time instant n− (i− j).

• Let R̂n
i be the binary representation of the set of all

multicast or unicast messages generated at nodes I j
with j > i which should be decoded at Ii but not any
other node Ok with k < i, such that the message from
I j has been generated at time instant n− ( j− i).

Example 4.1 Consider Fig. 15, which depicts a line net-
work with four communication units. According to the

Figure 15. A line network with 4 communication
units.

above definitions we have the following set of messages
with respect to communication unit 2 for the general multi-
message multicast problem. Let W t

Ak
represent the message

corresponding to session Ak generated at time instant t.

• W n
2 = [W n

2→{1,3},W
n
2→{1,4},W

n
2→{1,3,4}]

• W L,n
2 = [W n

2→{1}]

• W R,n
2 = [W n

2→{3},W
n
2→{4},W

n
2→{3,4}]

• Ln
2 = [W n−1

1→{2,3},W
n−1
1→{2,4},W

n−1
1→{2,3,4}]

• Rn
2 = [W n−1

3→{2,1},W
n−1
3→{2,1,4},W

n−2
4→{2,1},W

n−2
4→{2,1,3}]

• L̃n
2 = [W n−1

1→{3},W
n−1
1→{4},W

n−1
1→{3,4}]

• R̃n
2 = [W n−1

3→{1},W
n−1
3→{1,4},W

n−2
4→{1},W

n−2
4→{1,3}]

• L̂n
2 = [W n−1

1→{2}]

• R̂n
2 = [W n−1

3→{2},W
n−1
3→{2,4},W

n−2
4→{2},W

n−2
4→{2,3}]

To represent our network coding scheme we introduce two
binary vector operators. Let a = [a1,a2, · · · ,ana ] and b =
[b1,b2, · · · ,bnb ] be two arbitrary binary vectors of lengths
na and nb respectively. Then we define:

a⊕b = [a1⊕b1,a2⊕b2, · · · ,ana ⊕bna ] (10)

if na ≤ nb, and

a⊕b = [a1⊕b1, · · · ,anb ⊕bnb ,anb+1, · · · ,ana ] (11)

if na > nb. Here ai ⊕ bi is the XOR of bits ai and bi. Fur-
thermore we define a⊗b as follows:

a⊗b = a⊕b, if na ≥ nb (12)
a⊗b = b⊕a, if na < nb. (13)

Observe that the dimension of a⊕b is na while the dimen-
sion of a⊗b is max{na,nb}.



Suppose that all source nodes start transmitting at time
n = 0 and messages at negative time instants are assumed
to take the value zero. Our network coding scheme con-
sists of three parts, which respectively describe the vectors
Xn

i ,Xn
i,i−1 and Xn

i,i+1 for any communication unit i:

Xn
i = [R̃n

i ⊗ L̃n
i ,R

n
i ,L

n
i , R̂

n
i , L̂

n
i ,W

n
i ,W R,n

i ,W L,n
i ] (14)

Xn
i,i−1 = [R̃n

i ⊕ L̃n
i ,R

n
i ,W

L,n
i ,W n

i ] (15)

Xn
i,i+1 = [L̃n

i ⊕ R̃n
i ,L

n
i ,W

R,n
i ,W n

i ]. (16)

Next we demonstrate that for any node on the network,
the outgoing messages from that node are some functions
of the incoming messages to that node at earlier time in-
stants and the messages generated at that node at ear-
lier or present time instants. First consider Xn

i , which
is the outgoing message from node Ii at time instant n.
The messages available to node Ii at time instant n are
[X t

i−1,i]
n−1
t=1 , [X t

i+1,i]
n−1
t=1 , [W t

i ,W
L,t
i ,W R,t

i ]nt=1. As an interme-
diate step in our proof we will use induction to show that at
time instant n node Ii is able to decode the following vec-
tors of messages:

[R̃n
i , R̂

n
i ,R

n
i ] (17)

[L̃n
i , L̂

n
i ,L

n
i ]. (18)

Observe that at n = 0, both (17), (18) are zero vectors and
Ii has nothing to decode. For the inductive step assume
that up to time instant n− 1 node Ii has access to vectors
[R̃t

i, R̂
t
i,R

t
i]

n−1
t=1 and [L̃t

i , L̂
t
i ,L

t
i ]

n−1
t=1 . Our definitions imply the

following relationships at time instant t:

[R̃t
i, R̂

t
i,R

t
i] is a permutation of

[R̃t−1
i+1,R

t−1
i+1,W

t−1
i+1 ,W L,t−1

i+1 ] (19)

[L̃t
i , L̂

t
i ,L

t
i ] is a permutation of

[L̃t−1
i−1 ,L

t−1
i−1 ,W

t−1
i−1 ,W R,t−1

i−1 ]. (20)

To see this, observe that the left hand side of (19) is the
binary representation of the set of all messages gener-
ated at all nodes I j with j > i at time instant t − ( j − i)
which have a destination at some node Ok with k ≤ i.
This set of messages are either generated at I j with j >
i + 1 at time instant of t − ( j − i) or at Ii+1 at time in-
stant t − 1. By definition the former group of messages
is identical to [R̃t−1

i+1,R
t−1
i+1], and the latter group of mes-

sages is identical to [W t−1
i+1 ,W L,t−1

i+1 ]; these together form
the right hand side of (19). An analogous argument holds
for (20). By setting t = n in (19) and (20) we see that
in order for Ii to be able to decode (17) and (18), it is
sufficient for it to decode [R̃n−1

i+1 ,Rn−1
i+1 ,W n−1

i+1 ,W L,n−1
i+1 ] and

[L̃n−1
i−1 ,Ln−1

i−1 ,W n−1
i−1 ,W R,n−1

i−1 ]. At time instant n node Ii has
access to the vectors Xn−1

i−1,i and Xn−1
i+1,i. (15) and (16) imply

Xn−1
i+1,i = [R̃n−1

i+1 ⊕ L̃n−1
i+1 ,Rn−1

i+1 ,W L,n−1
i+1 ,W n−1

i+1 ] (21)

Xn−1
i−1,i = [L̃n−1

i−1 ⊕ R̃n−1
i−1 ,Ln−1

i−1 ,W R,n−1
i−1 ,W n−1

i−1 ]. (22)

Hence Ii can extract messages [Rn−1
i+1 ,W n−1

i+1 ,W L,n−1
i+1 ] and

[Ln−1
i−1 ,W n−1

i−1 ,W R,n−1
i−1 ] directly from the received messages

Xn−1
i−1,i and Xn−1

i+1,i. The two remaining messages that Ii needs
to decode are R̃n−1

i+1 and L̃n−1
i−1 , and we next describe the pro-

cess to do this.
By our inductive hypothesis at t = n − 2 node

Ii knows the message vectors [R̃n−2
i , R̂n−2

i ,Rn−2
i ] and

[L̃n−2
i , L̂n−2

i ,Ln−2
i ]. Observe that node Ii knows message

vector [W n−2
i ,W L,n−2

i ,W R,n−2
i ] at time instant n. There-

fore Ii knows the vectors [R̃n−2
i ,Rn−2

i ,W n−2
i ,W L,n−2

i ] and
[L̃n−2

i ,Ln−2
i ,W n−2

i ,W R,n−2
i ] at time instant n. Therefore by

(19) and (20) it follows that at time instant t = n, node
Ii knows vectors [R̃n−1

i−1 , R̂n−1
i−1 ,Rn−1

i−1 ] and [L̃n−1
i+1 , L̂n−1

i+1 ,Ln−1
i+1 ].

From these Ii obtains R̃n−1
i−1 and L̃n−1

i+1 . Since by (21) and (22)
Ii can extract R̃n−1

i+1 ⊕ L̃n−1
i+1 and L̃n−1

i−1 ⊕ R̃n−1
i−1 at time instant n

from Xn−1
i+1,i and Xn−1

i−1,i, respectively, it can decode R̃n−1
i+1 and

L̃n−1
i−1 . Thus Ii can decode [R̃n−1

i+1 ,Rn−1
i+1 ,W n−1

i+1 ,W L,n−1
i+1 ] and

[L̃n−1
i−1 ,Ln−1

i−1 ,W n−1
i−1 ,W R,n−1

i−1 ] or equivalently [R̃n
i , R̂

n
i ,R

n
i ] and

[L̃n
i , L̂

n
i ,L

n
i ] at time instant n, as desired. Therefore, by (14),

Ii may transmit Xn
i at time instant n.

We next wish to show that Xn
i,i+1 and Xn

i,i−1 are functions
of the incoming messages to node Oi until time instant n.
We assume that the delay between Ii and Oi for transferring
information is negligible, and hence the outgoing message
of Oi can be any function of [X t

i ]
n
t=1. This assumption is

reasonable as a communication unit models a single pro-
cessor with small internal delays. By (14), (15) and (16)
we see that Ii only needs to construct R̃n

i ⊕ L̃n
i and L̃n

i ⊕ R̃n
i

to be able to transmit Xn
i,i−1 and Xn

i,i+1. Observe that R̃n
i ⊕ L̃n

i
and L̃n

i ⊕ R̃n
i can be obtained from R̃n

i ⊗ L̃n
i , which is a com-

ponent of Xn
i .

We next must show that the receiver node, Oi, at
communication unit i is able to decode all messages
with destination ηi in the original network success-
fully. Node Oi has access to messages [X t

i ]
n
t=1 =[R̃t

i ⊗
L̃t

i ,R
t
i,L

t
i , R̂

t
i, L̂

t
i ,W

t
i ,W

R,t
i ,W L,t

i ]nt=1, at time instant n. Ob-
serve that [Rn

i ,L
n
i , R̂

n
i , L̂

n
i ] is the part of Xn

i that includes all
messages with destination Oi; if the message originates at
source I j then it is generated at time instant n− | j − i|.
Therefore every message with destination Oi will be de-
coded at Oi with a constant delay depending on the distance
between its source and Oi in the network.

We have claimed that our network coding scheme is op-
timal in terms of bandwidth consumption. We demonstrate



this fact by proving that the entropies of random variables
Xn

i ,Xn
i,i−1 and Xn

i,i+1 satisfy the bounds in Section III with
equality. As each of these vectors have components which
are independent and uniformly distributed binary random
variables, their entropies are equal to their lengths. We
therefore use the notation H(·) for either the entropy or
length of a random vector.
By (14) we have:

H(Xn
i ) =H(R̃n

i ⊗ L̃n
i )+H(Rn

i )+H(Ln
i )+H(R̂n

i )+H(L̂n
i )

+H(W n
i )+H(W R,n

i )+H(W L,n
i ). (23)

It follows from our earlier definitions that H(R̃n
i ) =

∑a∈S′d2
Ra, H(L̃n

i ) = ∑a∈Sd2
Ra, H(Rn

i )+H(Ln
i )+H(R̂n

i )+

H(L̂n
i ) = ∑a∈Sd1

Ra, H(W n
i ) + H(W R,n

i ) + H(W L,n
i ) =

∑a∈Sd3
Ra. Since H(a⊗b) = max{H(a),H(b)}, (23) gives

(4).
By (15) we have

H(Xn
i,i−1) = H(R̃n

i ⊕ L̃n
i )+H(Rn

i )+H(W L,n
i )+H(W n

i ).
(24)

Since H(R̃n
i ⊕ L̃n

i ) = H(R̃n
i ) we obtain the same bound as

(7). With a similar argument we can achieve (9) for Xn
i,i+1.
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