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Abstract— We consider the Gaussian multi-antenna compound
broadcast channel where one transmitter transmits several mes-
sages, each intended for a different user whose channel realization
is arbitrarily chosen from a finite set. Our investigation focuses
on the behavior of this channel at high SNRs and we obtain the
multiplexing gain of the sum capacity for a number of cases, and
point out some implications of the total achievable multiplexing
gain region.1

I. I NTRODUCTION

With the advent of 3rd generation cellular systems, multi-
antenna systems are becoming common place. Even though
many theoretical questions on the downlink channel (alterna-
tively, broadcast channel, BC) in general are still open, the
capacity region of multi-antenna downlink channel as well as
some other questions have been resolved [1]. However, many
practical questions still remain open. For example, the capacity
region of a fading BC (scalar as well as multi-antenna) with no
or partial channel state information (CSI) at the transmitter [2].
Another open problem is that of the capacity region of a multi-
antenna BC with private and common messages. Recently,
these questions have attracted attention [3], [4], [5], [6], [7]. In
this paper we address and give theoretical bounds for a related
and yet unsolved problem of a compound multi-antenna BC.

We consider a memoryless compound multi-antenna BC
and focus on the case where the transmitter hasM transmit
antennas and each of the receivers has only one receive
antenna. More precisely, we assume that the fading vector of
useri takes one ofJi (finite) values. In addition, the transmitter
has precise knowledge of allJi fading vectors but not of the
index of the actual realization of the fading vector. Therefore,
a time sample of the channel can be defined as follows:

yj
i = h

j
i

†
x + nj

i i = 1, . . . ,K j = 1, . . . , Ji (1)

where
• x is a complex input vector. We assume that the input is

power limited such thatEx
†
x ≤ P .

• yj
i is the signal received by thej’th realization/instance

of useri.
• nj

i ∼ CN (0, 1) is an additive white circularly symmetric
Gaussian noise which is present at thej’th realiza-
tion/instance of useri.
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• K is the number of users and hence, the number of
different messages to be simultaneously transmitted.

• h
j
i is the complex fading vector of thej’th realiza-

tion/instance of thei’th user.
Each of the receivers has exact knowledge of the actual

realization of the channel. We wish to transmit in such a
manner that no matter what is the actual realization of the
users’ channels (h1

i or h
2
i or ... or hJi

i ), our transmitter will
be able to successfully send its messages.

The case where the channel is scalar, i.e.M = 1, is well
understood. As in the case ofM = 1 the channel is degraded,
the capacity is determined by the worst realization (with the
smallest fading realization|hj

i |) of each user group. Thus,
the capacity region is that of a scalar Gaussian BC with one
realization per message as follows:

Rπi
≤ log

(

1 +
γπi

Pπi

1 + γπi

∑i−1
l=1 Pπl

)

, i = 1, . . . ,K (2)

where Pi’s are the power allocations per user such that
∑K

i=1 Pi = P . The γi = minj=1...,Ji
|hj

i |2 are the fading
power of the worst realization of useri andπi is a permutation
matrix which orders the users according toγi from the largest
to the smallest one.

However, we consider the case whereM > 1 which is
not degraded and the capacity region of this problem is yet
unknown. Therefore, we concentrate on the high SNR regime
and obtain new results regarding the multiplexing gain of
the sum-capacity of the above compound BC for a number
of cases. We use the sum-capacity as a measure of the
capabilities of the channel and define the multiplexing gain
as the maximum value of

lim
P→∞

R1 + R2 + . . . RK

log(P )

where the maximum is taken over all transmission strategies.
An alternative view of this channel is that of a broadcast

channel with common messages. The different realizations of
the channel can be considered as different users to which a
common message is being transmitted. This is actually quite
a realistic model as third generation cellular systems transmit
TV broadcasts over the downlink channel [8]. This application
also motivates the consideration of the high SNR regime,
where the impact of multi-antenna downlink systems is more
pronounced.



The problem where each user has only one possible fading
realization (i.e.Ji = 1 ∀i) is well understood. The capacity
region for this case was recently established in [9] and it iswell
known that the multiplexing gain of this channel, under a full
rank assumption, is equal to the minimum of the number of
users and the number of transmit antennas (min(K,M)) [10],
which also equals the multiplexing gain of a single link of
M transmit andK receive antennas. However, the case where
some of the messages are common to a number of users is
still unsolved. Some initial research into the capacity region
of the more general case with common messages can be found
in [11], [12], [13].

This problem is also related, though certainly not equivalent,
to the problem of the fading multi-antenna BC with limited
feedback to the transmitter (e.g. [3], [4]). In [3], Jindal
considers the case where the receivers feedback an estimation
of the channel fading vectors to the transmitter, using a
digital channel. The feedback relies on a quantized version
of the estimated fading vectors at the transmitter. In a recent
contribution [4], Caire et-al considered an analog feedback and
compare the performance of the digital and analog feedback
schemes at high SNRs.

To relate the fading case to our compound case, consider a
piecewise constant fading BC where the feedback is limited
such that the transmitter only knows that the fading takes one
of a finite number of possibilities. We can use the multiplexing
gain of the channel in (1) to obtain an upper bound on the
ultimate capabilities of this case. Lapidoth et al [7] considered
the fading BC withK = 2 andM = 2 where the fading has
an infinite number of realizations and changes between one
time sample to the next, under the ergodic assumption. They
showed that the multiplexing gain over a single user channel
with a single receive antenna is upper bounded by4

3 and they
conjectured that the actual multiplexing gain is1 2.

We investigated a related case in our compound setting
whereK = M = J1 = J2 = 2. That is, the fading vector
takes only one of two possible values at each receiver. Note
that the case investigated in [7] and our case not only differ
in the number of fading vector realizations but also in the fact
that in [7] the fading vectors change from one time sample to
the next while in our setting it remains constant throughout
the transmission. As in the fading case in [7], we show that
for the case ofK = M = J1 = J2 = 2 we obtain an upper
bound on the multiplexing gain of43 . Unlike the fading case,
here we also suggest a transmission scheme that obtains this
multiplexing gain. We conjecture that asJ1 andJ2 increase,
the multiplexing gain decreases and approaches1.

The transmission schemes we suggest here are linear and
are certainly not optimal but obtain a multiplexing gain larger
than 1. Using some of the key ideas that we present later, it
is possible to use dirty paper coding (DPC) like methods to
obtain higher rates but not higher multiplexing gains. In [5],

2In [7], the authors considered a fading BC with fading vectors with real
elements and not complex elements. Hence, they showed an upper bound on
the multiplexing gain of2

3
which gives a factor of4

3
over the single link with

a single receive antenna.

Bennatan and Burshtein suggest a coding scheme, which they
called linear assignment fading paper (LAFP) coding, for the
fading MIMO BC. This coding scheme is applicable also when
the channel fading has a limited number of realizations and
when the fading remains constant throughout the transmission.
As in DPC, they rely on the result by Gelfand and Pinsker [14]
and assign a linear combination of the channel input and the
interference to the auxiliary random variable. Unlike the Costa
result [15], they use a linear assignment to simultaneously
optimize the rates of all users. Another related paper is [6]
where the authors considered a carbon copying scenario where
we wish to transmit the same message simultaneously to two
users, each user suffering from an independent interference.

Throughout the rest of this paper we shall concentrate on
the case where there are only two messages (K = 2). We shall
useM to denote the number of transmit antennas. Therefore,
we shall only stateJ1 and J2 to characterize the channel.
This paper is organized as follows: in the following sectionwe
briefly state our main results and present some conclusions.In
Sections III and IV we obtain lower and upper bounds on the
sum capacity and multiplexing gain. In Section V we give an
illustrative example for the suggested upper bound on the sum-
rate and the transmission scheme. The last section summarizes
our results.

II. M AIN RESULTS AND CONCLUSIONS

In the following sections we obtain lower and upper bounds
on the multiplexing gains. However, we can set apart two cases
for which these bounds are tight and we present them in the
following theorems.

Theorem 1:Consider a complex compound BC withK = 2
users,J1 = 1 andJ2 = M . Furthermore, assume that any set
of M vectors taken from the set ofh1

1,h
1
2,h

2
2, . . .h

M
2 has rank

M . The overall multiplexing gain is given by:

1 +
M − 1

M

Proof: This is a direct result of the upper and lower
bounds proved in Theorems 5 and 7 in the following sections.
�

Theorem 2:Consider a complex compound BC with
K = 2 users andJ1 = J2 = M . Furthermore, as-
sume that any set ofM vectors taken from the set of
h

1
1,h

2
1, . . . ,h

M
1 ,h1

2,h
2
2, . . .h

M
2 has rankM . The overall mul-

tiplexing gain is given by:

2M

M + 1

Proof: This is a direct result of the upper and lower
bounds proved in Theorems 6 and 8 in the following sections.
�

Note that the requirement of linear independence of anyM
vectorshj

2 andh
j
1 in the above theorems is not too restricting.

If the fading vectors are chosen uniformly (in direction),
almost surely, anyM fading vectors of sizeM will turn out
to be linearly independent.



Though we could not establish a tighter upper bound for the
cases whereJ1, J2 > M , we believe that the lower bounds
given in Theorems 7 and 8, to follow, are actually tight. We
summarize this in the following conjecture that generalizes the
above two theorems.

Conjecture 1:Consider a complex compound BC with
K = 2 users,J2 = J ≥ M and assume that any set of M
vectors taken from the set ofh1

1,h
2
1, . . . ,h

J1

1 ,h1
2,h

2
2, . . .h

J2

2

has rankM . The multiplexing gain is1+ M−1
J

if J1 = 1 and
2J

2J−M+1 if J1 = J2 = J .
Beyond the sum-rate multiplexing gain we can also define

an entire region of multiplexing gains. The notion of a
multiplexing gain region was introduced in [16] and is defined
as the set of all achievable limit points

lim
P→∞

(

R1(P )

log(P )
,
R2(P )

log(P )

)

.

This region must be convex as we may always use time-
sharing to obtain all convex combinations of multiplexing gain
pairs. The following theorem summarizes our results for the
multiplexing gain region of the MIMO compound BC.

Theorem 3:Consider a complex compound BC withK =
2 users,M transmit antennas andJ1 and J2 realizations
for the first and second user, respectively. Furthermore, as-
sume that any set ofM vectors taken from the set of
h

1
1,h

2
1, . . . ,h

J1

1 ,h1
2,h

2
2, . . .h

J2

2 has rankM . Then,

1) For J1 = 1 and J2 = M the multiplexing gain region
is given by

lim
P→∞

R2

log(P )
≤ 1 − 1

M
lim

P→∞

R1

log(P )

lim
P→∞

R1

log(P )
≤ 1

2) For J1 = M andJ2 = M the multiplexing gain region
is given by

lim
P→∞

R1

log(P )
≤ 1 − 1

M
lim

P→∞

R2

log(P )

lim
P→∞

R2

log(P )
≤ 1 − 1

M
lim

P→∞

R1

log(P )

Proof: Using Theorem 4, in Section III, we can show
that these regions must be outer bounds. In order to show that
these regions are achievable, we need to show that all corner
points of the regions are achievable. In Figure 1 we plotted
the these regions and their corner points. We can obtain points
A and D by transmitting only to one of the users each time.
We need to show that point B is achievable in the case of
J1 = J2 = M and that point C is achievable in the case of
J1 = 1 and J2 = M . In the proof of Theorems 8 and 7,
in Section IV, we describe transmission schemes that obtain
exactly these points.�

It is clear from Figure 1 that pointsB andC correspond to
the maximum sum-rate multiplexing gain points. Throughout
the rest of this text we shall limit our attention to these points
(limP→∞

R1+R2

log(P ) ).
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Fig. 1. The multiplexing gain regions forJ1 = J2 = 1 and J1 = 1,
J2 = M andJ1 = J2 = M

We can draw several conclusions from these results. The
first conclusion concerns the choice of the transmission
scheme in the case where there are common messages. In [13]
we considered a MIMO BC where we transmit two messages.
Each message is sent to a different set of users where in each
set all users are expected to decipher their respective message.
In [13] we found the capacity region for the case where all
users in one set are degraded with respect to all users in the
other set. We have shown that for this case, a superposition of
Gaussian codes and successive decoding achieves the capacity
region.

In the case where there is no set of users which is degraded
w.r.t the other, we might consider using a generalized form of
dirty paper coding as described in [5]. Bennatan and Burshtein
referred to this generalized DPC as linear assignment fading
paper (LAFP) coding. Though they use it in an ergodic fading
environment, it may also be used in the compound (or common
messages) case. However, it is not difficult to verify that in
a direct application of LAFP coding, one set of users always
suffers from the signals intended to the other set of users.
Therefore, the multiplexing gain obtained by this method is
bounded by 1. We suggest that in order to obtain higher
multiplexing gains one should use LAFP coding on more than
one time slot simultaneously. This was shown to be effective
even for simple linear methods in Theorem 8.

Another conclusion concerns the fading channel with
equiprobable realizations. In the compound case, the channel
realizations remain constant throughout the entire transmis-
sion. In a fading channel the realizations change from one
time instant to the next. For both cases we assume that the
realizations of the channel are taken from a finite set such
that users 1 and 2 haveJ1 andJ2 possible realizations.

In the case ofJ1 = 1 and J2 ≥ M we can obtain a
multiplexing gain of1 + M−1

J2

also in the fading case. This
is done by choosingM − 1 out of J2 realizations of the



second user and simultaneously transmitting to user 1 and
all M − 1 realizations of the second user using zero forcing.
As the number of transmit antennas isM , we can obtain a
multiplexing gain of 1 between the input and the outputs of
each of the realizations. User 1 sees a constant channel and
therefore, the multiplexing gain associated with message#1 is
1. User 2 sees a fading channel. This user may opt to disregard
the channel output whenever the realization of the channel
is not one of theM − 1 chosen realizations. Therefore, this
user sees an equivalent of a single user fading channel which
suffers from channel noise and which is in outageJ2−M+1

J2

of
the time. Therefore, the multiplexing gain associated withthis
user isM−1

J2

. Overall, we get a multiplexing gain of1+ M−1
J2

.
For the case ofJ1 = J2 = J ≥ M it is not difficult to see

that if we assume that the channel is piecewise constant over
2J−M+1 time samples, one can use the transmission scheme
described in the proof of Theorem 8 in Section IV to obtain
a multiplexing gain of 2J

2J−M+1 . This might suggest that the
upper bound on the multiplexing gain that was obtained in [7]
is actually tight if there are only two realizations for eachuser,
also in the ergodic fading environment.

III. U PPER BOUNDS ON THE SUM-CAPACITY

MULTIPLEXING GAIN

We first state a Theorem which will be useful in deriving
some upper bounds on the multiplexing gain later on.

Theorem 4:Consider a two user complex compound multi-
antenna BC withJ1 = 1, J2 = M and wherehj

2, j =
1, . . . , J2 are linearly independent. Then

lim
P→∞

R2

log(P )
≤ 1 − 1

M
lim

P→∞

R1

log(P )
.

Proof: The proof relies on giving the received signals
at each of the instances of user 2 to user 1. Thus, we create
a degraded broadcast channel that can be analyzed using the
results stated in [17]. We also use the fact that due to linear
dependence between allM + 1 received signals in the new
receiver of user 1, we can remove one of the received signals
(of user 1) without impacting the multiplexing gains. The
details of the proof are omitted here and the reader is referred
to the journal version of this paper [18].�

We can now use the above theorem to easily obtain some
upper bounds on the sum-capacity multiplexing gain.

Theorem 5:Consider a complex compound BC withK = 2
users, J1 ≥ 1 and J2 ≥ M . Furthermore, assume that
h

1
2,h

2
2, . . . ,h

J2

2 are linearly independent. The multiplexing
gain is upper bounded by:

lim
P−→∞

(R1 + R2)

log(P )
≤ 1 +

M − 1

M

Proof: It is sufficient to show that the theorem holds
for J1 = 1 and J2 = M . By Theorem 4 we have
limP−→∞

R2

log(P ) ≤ 1 − 1
M

· limP−→∞
R1

log(P ) . Therefore, by

adding limP−→∞
R1

log(P ) to both sides of the equation we

obtain

lim
P−→∞

(R1 + R2)

log(P )
≤ 1 +

M − 1

M
· lim

P−→∞

R1

log(P )
.

However,limP−→∞
R1

log(P ) ≤ 1 as this is the multiplexing gain
of the rate achieved in point to point Gaussian channel with a
single receive antenna.�

Indeed, the above bound holds forJ1 > 1 and J2 > M .
However, it is not tight for these cases. A better bound is given
in the following theorem forJ1 ≥ M andJ2 ≥ M .

Theorem 6:Consider a complex compound BC withK =
2 users andJ1 ≥ M and J2 ≥ M . Furthermore, assume
that h

1
k,h2

k, . . . ,hJk

k are linearly independent fork = 1, 2.
The multiplexing gain of the sum capacity of this channel is
bounded by

lim
P−→∞

(R1 + R2)

log(P )
≤ 2M

M + 1

Proof: It is sufficient to show that the theorem holds for
J1 = J2 = M . Clearly, the capacity region of this compound
BC is contained with in that of the BC where the first user’s
fading is perfectly known and is taken to beh1

1 (i.e J1 = 1).
This is the two user compound BC withJ1 = 1 andJ2 = M
which was considered in Theorem 4. Therefore, we may write

lim
P−→∞

R2

log(P )
≤ 1 − 1

M
lim

P−→∞

R1

log(P )
.

However, we can also consider the flipped channel whereJ1 =
M andJ2 = 1. Applying Theorem 4 for this case we get

lim
P−→∞

R1

log(P )
≤ 1 − 1

M
lim

P−→∞

R2

log(P )
.

Thus, by summing the two results we have

lim
P−→∞

R1 + R2

log(P )
≤ 2 − 1

M
lim

P−→∞

R1 + R2

log(P )
.

and the proof of the above proposition follows immediately.
�

Again, the upper bound in the above theorem also holds for
the case ofJ1 = J2 > M . However, we believe that it is not
tight for that case.

IV. L OWER BOUNDS ON THE SUM-CAPACITY

MULTIPLEXING GAIN

We now obtain lower bounds on the multiplexing gain by
establishing transmission schemes that actually obtain these
gains. These transmission schemes obtain the upper bounds
of the previous section for some of the cases.

We begin with the simpler case where one of the users
has only one instant (J1 = 1) and the second has several. The
following theorem gives us a lower bound on the multiplexing
gain for such a case:

Theorem 7:Consider a complex compound BC withK = 2
users,J1 = 1 andJ2 ≥ M . Furthermore, assume that any set
of M vectors taken from the set ofh1

1,h
1
2,h

2
2, . . .h

J2

2 has rank



M . The following is a lower bound on the multiplexing gain
of the sum capacity:

lim
P−→∞

(R1 + R2)

log(P )
≥ 1 +

M − 1

J2
.

Proof: We shall describe a linear transmission scheme
which relies on zero-forcing and which achieves the above
multiplexing gain.

Choose arbitrarily a set of indexesj1, j2, . . . , jM−1 such
that 1 ≤ jk ≤ J2 ∀k = 1, . . . ,M − 1 and such that
jm 6= jn ∀m 6= n. We defineH = (h1

1h
j1
2 h

j2
2 . . .h

jM−1

2 ). As
required by the theorem,H is full ranked and therefore we
can use zero-forcing to transmitM different messages, each
with a multiplexing gain of1. We choose to transmit the same
message to the lastM − 1 users and hence the multiplexing
gain for this scheme is 2. However, note thatJ2 − M + 1 of
the realizations of user 2 do not receive data. To overcome
this problem we use time domain multiple access, switching
in a cyclic way and selecting(M −1) users out ofJ2 possible
ones. Thus, each of the realizations of user 2 does not receive
data J2−M+1

J2

of the time and we obtain a multiplexing gain
of 2 − J2−M+1

J2

= 1 + (M − 1)/J2. �

Note that the zero-forcing technique used in the above proof
can be replaced by the ranked known interference technique
described in [10] and which relies on dirty paper coding. For
example, we may transmit to user 1 at a direction which is
orthogonal to the fading vectors of theM−1 chosen instances
of user 2, using DPC to cancel out the interference from the
signals intended to user 2. The signals to theM − 1 chosen
instances of user 2 are encoded using simple Gaussian coding.
As the signal to user 1 is orthogonal to the fading vectors of
the chosen instances of user 2, at their receivers there will
be no interference from user’s 1 signal. Thus, we obtain an
overall multiplexing gain of1+(M −1)/J2 without requiring
that the signals transmitted to user 2 will be orthogonal to
the fading vector of user 1. Alternatively, for the case where
J2 = M = 2, we can use the ”carbon copy” transmission
method described in [6]. Here the message of user 2 is
transmitted in an orthogonal direction to user 1, while message
1 impacts the second user in two different ways dictated by
the realization of(h1

2,h
2
2), thus giving rise to the carbon copy

approach. As shown in [6] in terms of multiplexing gain,
the carbon copy approach yields in this case a multiplexing
gain of 1

2 , when incorporated in our setting gives the same
multiplexing gain of32 . Both methods allow higher rates than
those obtained with zero forcing. However, all methods obtain
the same multiplexing gain. Furthermore, all methods rely on
a time sharing argument.

Next, we consider the more complex case where for both
users the number of instances is larger than or equal to
the number of transmit antennas. More specifically, we shall
assume thatJ1 = J2 ≥ M . Note that in the case whereJ1 <
M and J2 < M , the multiplexing gain is2, which remains
undegraded. This multiplexing gain is obtained by transmitting
one signal (corresponding to message #1) in a direction which

is orthogonal to allJ2 fading vector realizations of user 2 and
the second signal (corresponding to message #2) is transmitted
in a direction which is orthogonal to allJ1 fading vector
realizations of user 1.

The following theorem shows that a multiplexing gain
higher than1 is achievable also whenJ1 = J2 ≥ M and
shows that the upper bound on the multiplexing gain is tight
whenJ1 = J2 = M .

Theorem 8:Consider a complex compound BC withK =
2 users andJ1 = J2 = J ≥ M . Furthermore, as-
sume that any set of M vectors taken from the set of
h

1
1,h

2
1, . . . ,h

J
1 ,h1

2,h
2
2, . . .h

J
2 has rankM . Then, the multi-

plexing gain is lower bounded by

lim
P−→∞

(R1 + R2)

log(P )
≥ 2J

2J − M + 1

Proof: Again, we describe a linear transmission scheme
which obtains the above multiplexing gain. For the sake of
brevity, we give a heuristic explanation of this scheme for the
case ofJ1 = J2 = M = 2. For a detailed proof of the general
case, the reader is referred to [18].

In order to describe the transmission scheme we consider
our channel over more than one time sample and look at it as
an extended MIMO system with a higher number of transmit
and receive antennas. In the case ofJ1 = J2 = M = 2
we consider three time slots simultaneously. The extended
transmitter has2×3 = 6 transmit antennas (two for each time
slot). On the side of the receivers we assume that for each
realization we calculate two different linear combinations of
the three received symbols.

Let x̄ denote the transmitted signal over three time slots (i.e.
x̄ is a matrix of size2×3) and letf j

i (1) andf
j
i (2) be column

vectors of size3 × 1. Furthermore, let̄nj
i denote the three

consecutive noise samples at the receiver of thej’th realization
of the i’th user (i.e. n̄j

i is a vector of size1 × 3). We use

sj
i (1) =

(

h
j
i

†
x̄ + n̄j

i

)

f
j
i (1) and sj

i (2) =
(

h
j
i

†
x̄ + n̄j

i

)

f
j
i (2)

to denote two linear combinations of the received signal at
instancej of useri. Thus, we have created a virtual extended
MIMO system with 6 transmit antennas and 2 users with 2
instances each, where at each instance we receive 2 symbols.
Therefore, each user in the extended MIMO system is defined
by 4 fading vectors of size6 × 1 standing for all linear
combinations between the input and each of the outputs related
to that user (two vectors for each of the two instances).

In order to transmit such that user1 is not affected, we need
to transmit in a direction which is orthogonal to all vectors
which are related to that user. As the dimension of the input
vector is6 and there are only four vectors related to user1
we can find two such vectors,v1 and v2. Similarly, we can
find two vectors,u1 andu2, which are orthogonal to all four
vectors associated with user 2. Thus, we can transmit to user
1 by sending signals overu1 and u2 and to user2 over v1

and v2. Note that user1 does not receive any interference
from the signal directed to user 2 and similarly, user2 is
oblivious of the transmission to user 1. Therefore, we obtain
a multiplexing gain of 4 (as for each user we have constructed
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Fig. 2. Upper and lower bounds on the multiplexing gain of the channel in
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a 2× 2 complex MIMO channel, with a multiplexing gain of
2). As we obtained this multiplexing gain over 3 time slots,
we get an overall multiplexing gain of 4/3.

The above heuristic explanation is likely to hold for any
randomly generated linear combinationsf

j
i . In [18] we detail

a specific choice off j
i which is guaranteed to obtain a

multiplexing gain of 2J
2J−M+1 in the general case.�

V. I LLUSTRATIVE EXAMPLE

In the following we present a specific example that il-
lustrates the upper bound on the multiplexing gain as well
as an achievable scheme. In this specific example we have
J1 = J2 = M = 2 where the fading vectors are given by

h
1
1 =

1√
92 + 12

(

9
1

)

, h
2
1 =

1
√

92 + (−2)2

(

9
−2

)

,

h
1
2 =

1√
12 + 92

(

1
9

)

, h
2
2 =

1
√

(−3)2 + 92

(

−3
9

)

.

(3)

We assumed that the noise power at each of the receivers is
equal to 1. As all fading vectors are normalized, we shall use
the total transmit power,P = E[x†

x], as a measure of the
SNR.

In Figure 2 we plotted upper and lower bounds on the sum-
rate versus the SNR. Note that here we obtain an explicit
upper bound on the sum-rate for all SNRs and not only an
upper bound on the multiplexing gain. This upper bound was
obtained by using a result from [13] on the capacity region of
a degraded compound MIMO BC instead of the informational
formula in [17] (see the journal version of this paper [18]
for more details). The lower bound was obtained using the
scheme detailed in [18] and which was outlined in the proof
of Theorem 8. As can be seen from Figure 2, the upper and
lower bounds have the same slope of4/3 at high SNRs. There

is also a noticeable gap of 10dB between the bounds at high
SNRs. In [18] we describe some methods of reducing this gap.

VI. CONCLUSIONS

In this text we investigated the multi-antenna compound
broadcast channel and in particular, the case where there are
only two messages. We present upper and lower bounds on
the multiplexing gains of this channel as well as an entire
multiplexing gain region. We showed that a multiplexing gain
higher than 1 is achievable even if the number of channel
realizations (J1 andJ2) is greater than the number of transmit
antennas (M ) and showed that not all degrees of freedom
are lost. We have also shown that the bounds we presented
are tight when the number of channel realizations is equal to
the number of transmit antennas, and conjecture the general
behavior in terms ofM , J1 andJ2.

We conclude by our results that the classic application of
dirty paper coding or its generalized form, linear assignment
fading paper (LAFP) coding ([5]), is not optimal. In order
to obtain full multiplexing gain, it is necessary to use LAFP
coding over several time slots simultaneously. The LAFP as
well as the ”carbon copy” techniques can be employed to
further tighten the lower bounds presented in Section V. When
confining attention to linear precoding and preprocessing at
the receivers, operation over several time slots is fundamental
in the compound regime, as is demonstrated in the suggested
scheme in Section IV, proof of Theorem 8. In addition, we
point out a linkage between the results obtained here for the
compound channel and the multiplexing gain results obtained
in [7] for the fading channel.
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