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Abstract— We consider the Gaussian multi-antenna compound « K is the number of users and hence, the number of

broadcast channel where one transmitter transmits several ne different messages to be simultaneously transmitted.
sages, each intended for a different user whose channel realiza . hg is the complex fading vector of thg'th realiza-

is arbitrarily chosen from a finite set. Our investigation focuses tion/inst f the'th
on the behavior of this channel at high SNRs and we obtain the lon/instance o ) eth user.
multiplexing gain of the sum capacity for a number of cases, and  Each of the receivers has exact knowledge of the actual

point out some implications of the total achievable multiplexing realization of the channel. We wish to transmit in such a
- iont : o
gain region. manner that no matter what is the actual realization of the
|. INTRODUCTION users’ channelsh( or h? or ... orhy/?), our transmitter will

With the advent of 8 generation cellular systems, multi—be able to successfully send its messages. .
. The case where the channel is scalar, A&.= 1, is well
antenna systems are becoming common place. Even thou

: : . (Aderstood. As in the case 8f — 1 the channel is degraded,
many theoretical questions on the downlink channel (adter S X o )
. . . he capacity is determined by the worst realization (witd th
tively, broadcast channel, BC) in general are still oper, th

- izationh’
capacity region of multi-antenna downlink channel as wsl| smallest fading realizatior;[) of each user group. Thus,

some other questions have been resolved [1]. However, mahe capacity region is that of a scalar Gaussian BC with one

ny . -
practical questions still remain open. For example, theciap redlization per message as follows:
region of a fading BC (scalar as well as multi-antenna) wih n Vs Pr, ,
or partial channel state information (CSl) at the transmit2]. Rr <log |1+ 1t —Tp |’ i=1,..,K (2
Another open problem is that of the capacity region of a multi mi L=t S
antenna BC with private and common messages. Recentiiere P;’'s are the power allocations per user such that
these questions have attracted attention [3], [4], [SL[B} In  2.i—1 Pi = P. The n; = min;—; _, |h}|*> are the fading
this paper we address and give theoretical bounds for adelapower of the worst realization of useand; is a permutation
and yet unsolved problem of a compound multi-antenna B@atrix which orders the users accordinghtofrom the largest

We consider a memoryless compound multi-antenna Bg the smallest one.
and focus on the case where the transmitter hasransmit ~ However, we consider the case wheté > 1 which is
antennas and each of the receivers has only one recdi degraded and the capacity region of this problem is yet
antenna. More precisely, we assume that the fading vectortstknown. Therefore, we concentrate on the high SNR regime
useri takes one of/; (finite) values. In addition, the transmitterand obtain new results regarding the multiplexing gain of
has precise knowledge of all, fading vectors but not of the the sum-capacity of the above compound BC for a number
index of the actual realization of the fading vector. Theref Of cases. We use the sum-capacity as a measure of the

a time sample of the channel can be defined as follows: capabilities of the channel and define the multiplexing gain
as the maximum value of

yf:hng—l—ng i=1,....K j=1,....J; () i Ri+Ry+...Rg
where P log(P)
« x is a complex input vector. We assume that the input ighere the maximum is taken over all transmission strategies
power limited such thaBx'x < P. An alternative view of this channel is that of a broadcast
« y! is the signal received by thgth realization/instance channel with common messages. The different realizatiéns o
of useri. the channel can be considered as different users to which a

. n{ ~ CN(0,1) is an additive white circularly symmetric common message is being transmitted. This is actually quite
Gaussian noise which is present at thith realiza- a realistic model as third generation cellular systemsstran
tion/instance of usef. TV broadcasts over the downlink channel [8]. This applmati

T . . also motivates the consideration of the high SNR regime,
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The problem where each user has only one possible fadiBgnnatan and Burshtein suggest a coding scheme, which they
realization (i.e.J; = 1 Vi) is well understood. The capacitycalled linear assignment fading paper (LAFP) coding, fa th
region for this case was recently established in [9] andvitdd  fading MIMO BC. This coding scheme is applicable also when
known that the multiplexing gain of this channel, under & futhe channel fading has a limited number of realizations and
rank assumption, is equal to the minimum of the number wfhen the fading remains constant throughout the transomssi
users and the number of transmit antennag\ (K, M)) [10], Asin DPC, they rely on the result by Gelfand and Pinsker [14]
which also equals the multiplexing gain of a single link ofnd assign a linear combination of the channel input and the
M transmit andK receive antennas. However, the case whemgterference to the auxiliary random variable. Unlike thesta
some of the messages are common to a number of usersemult [15], they use a linear assignment to simultaneously
still unsolved. Some initial research into the capacityiorg optimize the rates of all users. Another related paper is [6]
of the more general case with common messages can be fougre the authors considered a carbon copying scenaricewher
in [11], [12], [13]. we wish to transmit the same message simultaneously to two

This problem is also related, though certainly not equivgle users, each user suffering from an independent interferenc
to the problem of the fading multi-antenna BC with limited Throughout the rest of this paper we shall concentrate on
feedback to the transmitter (e.g. [3], [4]). In [3], Jindathe case where there are only two messages=(2). We shall
considers the case where the receivers feedback an estimatise // to denote the number of transmit antennas. Therefore,
of the channel fading vectors to the transmitter, using vee shall only state/; and J, to characterize the channel.
digital channel. The feedback relies on a quantized versidhis paper is organized as follows: in the following sectiosm
of the estimated fading vectors at the transmitter. In amecériefly state our main results and present some conclusions.
contribution [4], Caire et-al considered an analog feellzaxd Sections Il and IV we obtain lower and upper bounds on the
compare the performance of the digital and analog feedbagkm capacity and multiplexing gain. In Section V we give an
schemes at high SNRs. illustrative example for the suggested upper bound on the su

To relate the fading case to our compound case, considerate and the transmission scheme. The last section sumasariz
piecewise constant fading BC where the feedback is limitedir results.
such that the transmitter only knows that the fading takes on
of a finite number of possibilities. We can use the multiphexi .- MAIN RESULTS AND CONCLUSIONS
gain of the channel in (1) to obtain an upper bound on theln the foIIowing sections we obtain lower and upper bounds
ultimate capabilities of this case. Lapidoth et al [7] colesed ©0n the multiplexing gains. However, we can set apart tvosase
the fading BC withK = 2 and M = 2 where the fading has for which these bounds are tight and we present them in the
an infinite number of realizations and changes between oigowing theorems.
time sample to the next, under the ergodic assumption. Theylheorem 1:Consider a complex compound BC with = 2
showed that the multiplexing gain over a single user channégers,/1 = 1 andJ> = M. Furthermore, assume that any set
with a single receive antenna is upper bounded:tgnd they Of M vectors taken from the set bff, hj, h3, ... hj! has rank

conjectured that the actual multiplexing gainlig. M. The overall multiplexing gain is given by:
We investigated a related case in our compound setting M-1
where K = M = J, = J; = 2. That is, the fading vector 1+ M

takes only one of two possible values at each receiver. Note Proof: This is a direct result of the upper and lower
that the case investigated in [7] and our case not only diffgp, \qq proved in Theorems 5 and 7 in the following sections.
in the number of fading vector realizations but also in thet faD

that in [7] the fading vectors change from one time sample to _ _
the next while in our setting it remains constant throughout Theorem 2:Consider a complex compound BC with

the transmission. As in the fading case in [7], we show th& = 2 users andJ; = J, = M. Furthermore, as-
for the case ofk = M = J, = J, = 2 we obtain an upper sume that any set of\/ vectors taken from the set of
bound on the multiplexing gain of. Unlike the fading case, hi,hi, ..., h{’ hj h3,... h}’ has rank}/. The overall mul-
here we also suggest a transmission scheme that obtains tipi€xing gain is given by:

multiplexing gain. We conjecture that @ and J, increase, IM

the multiplexing gain decreases and approadhes M1

The transmission schemes we suggest here are linear and . L .
. . . . . . Proof: This is a direct result of the upper and lower
are certainly not optimal but obtain a multiplexing gaingiar b . . : :

: : unds proved in Theorems 6 and 8 in the following sections.
than 1. Using some of the key ideas that we present IaterFﬁ
is possible to use dirty paper coding (DPC) like methods to
obtain higher rates but not higher multiplexing gains. Ify [5 Note that the requirement of linear independence of &ahy

vectorsh), andh’ in the above theorems is not too restricting.
Iz'” 71, theda“thors considered a fading BC with Ladi”% vestaith reba' If the fading vectors are chosen uniformly (in direction),
glemerits anc not complex elements. Hence, they snawed an o almost surely, any\/ fading vectors of sizél/ will turn out

the multiplexing gain of% which gives a factor o% over the single link with i ]
a single receive antenna. to be linearly independent.



Though we could not establish a tighter upper bound for ti
cases where/,, Jo, > M, we believe that the lower bounds
given in Theorems 7 and 8, to follow, are actually tight. W
summarize this in the following conjecture that generalittes
above two theorems.

Conjecture 1:Consider a complex compound BC with
K = 2 users,J, = J > M and assume that any set of M
vectors taken from the set ¢f}, h?,..., h* hi h3, ... hy?
has rank). The multiplexing gain is + -1 if J; =1 and
Nfil‘{m if Ji1=Jy=1J.

Beyond the sum-rate multiplexing gain we can also defir
an entire region of multiplexing gains. The notion of ¢
multiplexing gain region was introduced in [16] and is define
as the set of all achievable limit points

) Ri1(P) Rs(P)
A <1og(p)’ log(P)) '

This region must be convex as we may always use timgg- 1.

sharing to obtain all convex combinations of multiplexirajrg

Multiplexing gain region
15 ‘ :
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The multiplexing gain regions faj; = Ja
Jo=MandJ; =Jo =M

=landJ; =1,

pairs. The following theorem summarizes our results for the

multiplexing gain region of the MIMO compound BC.
Theorem 3:Consider a complex compound BC wifki =
2 users, M transmit antennas and; and J; realizations

for the first and second user, respectively. Furthermore, &

sume that any set of\/ vectors taken from the set of
hi,h? ..., h{" hi hZ, ...hJ* has rankM. Then,
1) ForJ; =1 and Jy, = M the multiplexing gain region

is given by
lim Ry — — lim By
P—oo log(P) — M P—oo log(P)
Ry

<

I 1
P15 log(P)

2) ForJ; = M andJ; = M the multiplexing gain region

is given by
. Ry ) Ry
1 <l-——1
P log(P) — M P log(P)
R2 Rl

li <1l1—— 1
Pl log(P) — M rE log(P)

We can draw several conclusions from these results. The
first conclusion concerns the choice of the transmission
gheme in the case where there are common messages. In [13]
we considered a MIMO BC where we transmit two messages.
Each message is sent to a different set of users where in each
set all users are expected to decipher their respectiveagpess
In [13] we found the capacity region for the case where all
users in one set are degraded with respect to all users in the
other set. We have shown that for this case, a superposition o
Gaussian codes and successive decoding achieves thetgapaci
region.

In the case where there is no set of users which is degraded
w.r.t the other, we might consider using a generalized fofm o
dirty paper coding as described in [5]. Bennatan and Buirshte
referred to this generalized DPC as linear assignment dadin
paper (LAFP) coding. Though they use it in an ergodic fading
environment, it may also be used in the compound (or common
messages) case. However, it is not difficult to verify that in
a direct application of LAFP coding, one set of users always
suffers from the signals intended to the other set of users.

Proof. U_sing Theorem 4, in Section lll, we can ShOWLrherefore, the multiplexing gain obtained by this method is
that these regions must be outer bounds. In order to show tg%nded by 1. We suggest that in order to obtain higher

these regions are achievable, we need to show that all co
points of the regions are achievable. In Figure 1 we plott

rgijltiplexing gains one should use LAFP coding on more than

e time slot simultaneously. This was shown to be effective

the these regions and their corner points. We can obtair‘(spoigven for simple linear methods in Theorem 8

A and D by transmitting only to one of the users each time

Another conclusion concerns the fading channel with

We need to show that point B is achievable in the case of . o
. . . . quiprobable realizations. In the compound case, the @hann
J1 = J» = M and that point C is achievable in the case of ' .0 . ) .
realizations remain constant throughout the entire tragsm
J1 = 1 and J; = M. In the proof of Theorems 8 and 7, . . 2
sion. In a fading channel the realizations change from one

in Section IV, we describe transmission schemes that Obt%

exactly these points[]

It is clear from Figure 1 that point8 andC correspond to

the maximum sum-rate multiplexing gain points. Throughout In the case ofJ;

the rest of this text we shall limit our attention to thesent®i

me instant to the next. For both cases we assume that the
realizations of the channel are taken from a finite set such
that users 1 and 2 havg and.J, possible realizations.

1 and J, > M we can obtain a
multiplexing gain ofl + MJ—gl also in the fading case. This

is done by choosing\/ — 1 out of J, realizations of the



second user and simultaneously transmitting to user 1 amilgtain

all M — 1 realizations of the second user using zero forcing. _ (Ry + R»)
As the number of transmit antennas A¢, we can obtain a
multiplexing gain of 1 between the input and the outputs of
each of the realizations. User 1 sees a constant channel bfodveverlimp_ ., mgﬁ < 1 as this is the multiplexing gain
therefore, the multiplexing gain associated with mesgagés of the rate achieved in point to point Gaussian channel with a
1. User 2 sees a fading channel. This user may opt to disregsirtjle receive antennall

the channel output whenever the realization of the channel
is not one of theM — 1 chosen realizations. Therefore, thiSH Indeed,.tthe a?gvitt;ou?hd holds far A>\b1 t‘?ndeQ >d M :
user sees an equivalent of a single user fading channel whic \WEVET, TLIS not tight for Inese cases. A better bound I1sigiv
suffers from channel noise and which is in outalge2*! of in'the following theorem fot/, > M and J, > M.

the time. Therefore, the multiplexing gain associated wiib 9 Iggge;]] d&;Cins]lS[e;s dcﬁmgeﬁfcog]ﬁ?hu;%sg Wallfshs:me
ieM—1 H H H M-1 1 = 2 = . ’
user is=;=. Overall, we get a multiplexing gain df+ =7~ that hi,h?,...,hJ* are linearly independent fok = 1,2.

For the case off, = J, = J > M it is not difficult to see multiplexing gain of the sum capacity of this channel is
that if we assume that the channel is piecewise constant oper ded by

2J— M +1 time samples, one can use the transmission scheme

lim 7<1+E lim !
P—o00 log(P) - M P—so0 10g(P) '

described in the proof of Theorem 8 in Section IV to obtain . (R1+ R2) 2M
a multiplexing gain of;2/—. This might suggest that the P log(P) — M+1

upper bound on the multiplexing gain that was obtained in [7]
is actually tight if there are only two realizations for eadder,
also in the ergodic fading environment.

Proof: It is sufficient to show that the theorem holds for
J1 = Jo = M. Clearly, the capacity region of this compound
BC is contained with in that of the BC where the first user’'s
fading is perfectly known and is taken to be (i.e J; = 1).

Ill. UPPER BOUNDS ON THE SUMCAPACITY This is the two user compound BC with = 1 and.J, = M
MULTIPLEXING GAIN which was considered in Theorem 4. Therefore, we may write
We first state a Theorem which will be useful in deriving R 1 Ry
: ; ; lim <1l-—— lim .
some upper bounds on the multiplexing gain later on. P—00 log(P) M P— o log(P)

Theorem 4:Consider a two user complex compound multi-l_| | ider the flioped ch | wh
antenna BC with/; = 1, J, = M and whereh], j — HOWever, we canalso consi er the flipped channel whigre

1,....J, are linearly independent. Then M and J; = 1. Applying Theorem 4 for this case we get
R1 < 1 R2

I 1—— 1 .
. P log(P) = M P log(P)

Ry 1 . Ry

li 1-——1
P log(P) = M P log(P)
. . . _ Thus, b ing the tw It h
Proof: The proof relies on giving the received signals us, by summing the two resuls we have
R+ Ry

at each of the instances of user 2 to user 1. Thus, we create . R+ Ry 9 1 Jim
a degraded broadcast channel that can be analyzed using the  P—o log(P) — M P—o log(P)

results stated in [17]. We also use_the fa_ct that_due to Ime&qd the proof of the above proposition follows immediately.
dependence between all + 1 received signals in the new

receiver of user 1, we can remove one of the received signals

(of user 1) without impacting the multiplexing gains. The Again, the upper bound in the above theorem also holds for
details of the proof are omitted here and the reader is ederthe case of/; = J, > M. However, we believe that it is not
to the journal version of this paper [18]] tight for that case.

We can now use the above theorem to easily obtain some IV. LOWER BOUNDS ON THE SUMCAPACITY
upper bounds on the sum-capacity multiplexing gain. MULTIPLEXING GAIN
Theorem 5:Consider a complex compound BC wikh = 2

users,J; > 1 and J; > M. Furthermore, assume thate:stablishing transmission schemes that actually obtaseth

We now obtain lower bounds on the multiplexing gain by

h2?h.2""’h22b aredllr:jegrly independent. The multlplexmggain& These transmission schemes obtain the upper bounds
gain IS upper bounded Dy- of the previous section for some of the cases.
- (R1 + Ry) - M-1 We begin v_vith the simpler case where one of the users
P log(P) M has only one instant/{ = 1) and the second has several. The

_ o following theorem gives us a lower bound on the multiplexing
Proof: It is sufficient to show that the theorem holdgyain for such a case:

for J; = Rl and J, = M. By Theorem 4 we have Thegrem 7:Consider a complex compound BC wikh = 2
2

: L R
limp oo guipy < 1= g7 - limp oo (py- Therefore, by ysers 7, = 1 and.J, > M. Furthermore, assume that any set
adding limp lmfﬁ to both sides of the equation weof M vectors taken from the set df, h}, h?,...hJ? has rank



M. The following is a lower bound on the multiplexing gainis orthogonal to all/; fading vector realizations of user 2 and

of the sum capacity: the second signal (corresponding to message #2) is traegimit
in a direction which is orthogonal to all; fading vector
(1 + Rp) >1+ M — 1. realizations of user 1.
P—oo log(P) ~ Ja The following theorem shows that a multiplexing gain

Proof: We shall describe a linear transmission schentédgher thanl is achievable also whed; = J; > M and
which relies on zero-forcing and which achieves the abo#ows that the upper bound on the multiplexing gain is tight
multiplexing gain. whenJ, = J, = M. _

Choose arbitrarily a set of indexes, jo, ..., jam_1 such  1heorem 8:Consider a complex compound BC wifti =
that1 < j, < J» Vk = 1,...,M — 1 and such that 2 users andJ; = Jy = J > M. Furthermore, as-
Jm # jn Vm % n. We defineH = (h%h]élth.-.hgwlfl). As Sume that any set of M vectors taken from the set of

required by the theorent is full ranked and therefore we hi> hi,... hi,h3,h3,...hj has rank). Then, the multi-
can use zero-forcing to transmit’ different messages, eachP!€Xing gain is lower bounded by
with a multiplexing gain ofl. We choose to transmit the same ) (R1 + R2) 2J
. . lim >
message to the lagt/ — 1 users and hence the multiplexing P—oc log(P) ~2J-—M+1

?ham forl'thlts. sche;ne IS 22' gowevter, no'te ﬂg@tt_ A_f_ +1of Proof: Again, we describe a linear transmission scheme
€ realizations ot user 0 not receive data. 10 OVErCome; -, optains the above multiplexing gain. For the sake of

_this prok_JIem we use time_ domain multiple access, SwitChirﬂ)qevity, we give a heuristic explanation of this scheme Far t
in a cyclic way and selectingl/ — 1) users out of/, possible case ofJ, — J, — M — 2. For a detailed proof of the general
ones. Thus, each of the realizations of user 2 does not gece

data 2=M*1 of the fi q btai ltiplexi “Wse, the reader is referred to [18].
ata JJ3M+? € ime and we obtain a mulliplexing 9ain 1 order to describe the transmission scheme we consider

our channel over more than one time sample and look at it as

Note that the zero-forcing technique used in the above prgdt extended MIMO system with a higher number of transmit
can be replaced by the ranked known interference technicfedl receive antennas. In the casefof = J, = M = 2
described in [10] and which relies on dirty paper coding. F&¥e con5|der three time slots' simultaneously. The extgnded
example, we may transmit to user 1 at a direction which {Eansmitter ha2 x 3 = 6 transmit antennas (two for each time
orthogonal to the fading vectors of tiié — 1 chosen instances SI0t). On the side of the receivers we assume that for each
of user 2, using DPC to cancel out the interference from tf@alization we calculate two different linear combinatioof
signals intended to user 2. The signals to fle— 1 chosen the three received symbols. _ _
instances of user 2 are encoded using simple Gaussian codind-t X denote the transmitted signal over three time slots (i.e.
As the signal to user 1 is orthogonal to the fading vectors &S & matrix of size2 x 3) and letf; (1) andf; (2) be column
the chosen instances of user 2, at their receivers there WRCtors of size3 x 1. Furthermore, lets; denote the three
be no interference from user's 1 signal. Thus, we obtain &QnSecutive noise samples at the receiver oftterealization
overall multiplexing gain ofl + (M —1)/.J, without requiring ©f the 7'th user (i.e.n] is a vector of S'Zeﬂ x 3). We use
that the signals transmitted to user 2 will be orthogonal tg(1) = (h,{. >’c+ﬁ§) /(1) and s} (2) = (h{ >’c+ﬁ§> £/(2)
the fading vector of user 1. Alternatively, for the case wehetto denote two linear combinations of the received signal at
Jo = M = 2, we can use the "carbon copy” transmissioinstance;j of useri. Thus, we have created a virtual extended
method described in [6]. Here the message of user 2 NHMO system with 6 transmit antennas and 2 users with 2
transmitted in an orthogonal direction to user 1, while ragss instances each, where at each instance we receive 2 symbols.
1 impacts the second user in two different ways dictated Mherefore, each user in the extended MIMO system is defined
the realization of hi, h3), thus giving rise to the carbon copyby 4 fading vectors of sizes x 1 standing for all linear
approach. As shown in [6] in terms of multiplexing gaincombinations between the input and each of the outputecelat
the carbon copy approach yields in this case a multiplexing that user (two vectors for each of the two instances).
gain of % when incorporated in our setting gives the same In order to transmit such that useis not affected, we need
multiplexing gain of2. Both methods allow higher rates tharto transmit in a direction which is orthogonal to all vectors
those obtained with zero forcing. However, all methods iobtawhich are related to that user. As the dimension of the input
the same multiplexing gain. Furthermore, all methods rely avector is6 and there are only four vectors related to user
a time sharing argument. we can find two such vectors;; and v,. Similarly, we can

Next, we consider the more complex case where for bafind two vectors,u; andus, which are orthogonal to all four
users the number of instances is larger than or equal vtectors associated with user 2. Thus, we can transmit to user
the number of transmit antennas. More specifically, we shallby sending signals oven; andu, and to user2 over v,
assume that/; = J, > M. Note that in the case wherg < and v,. Note that userl does not receive any interference
M and J; < M, the multiplexing gain i, which remains from the signal directed to user 2 and similarly, ugeis
undegraded. This multiplexing gain is obtained by transngjt oblivious of the transmission to user 1. Therefore, we obtai
one signal (corresponding to message #1) in a directiontwhia multiplexing gain of 4 (as for each user we have constructed




e | Lower énd upper bounds on sum'ff‘te is also a noticeable gap of 10dB between the bounds at high
SNRs. In [18] we describe some methods of reducing this gap.

20l i VI. CONCLUSIONS

e In this text we investigated the multi-antenna compound
Upper bound - . .
5l _ | broadcast channel and in particular, the case where there ar
- only two messages. We present upper and lower bounds on
. the multiplexing gains of this channel as well as an entire
10f N 1 multiplexing gain region. We showed that a multiplexingrgai

. higher than 1 is achievable even if the number of channel

- realizations {; andJ,) is greater than the number of transmit

° 7 Lower bound 1 antennas §/) and showed that not all degrees of freedom

- are lost. We have also shown that the bounds we presented

0 i i i i i are tight when the number of channel realizations is equal to

0 10 2 SNSO(dB) %0 ®0 the number of transmit antennas, and conjecture the general
behavior in terms of\/, J; and Js.

We conclude by our results that the classic application of
dirty paper coding or its generalized form, linear assignime
fading paper (LAFP) coding ([5]), is not optimal. In order
to obtain full multiplexing gain, it is necessary to use LAFP

fcoding over several time slots simultaneously. The LAFP as
Jvell as the "carbon copy” techniques can be employed to
further tighten the lower bounds presented in Section V. When
onfining attention to linear precoding and preprocessing a

randomly generated linear combinatiofjs In [18] we detall .hethrecelvers, ozeratlpn over .se(\j/eral tm:e fl?ﬁ |s;r:undmhe ted
a specific choice off] which is guaranteed to obtain alsnche(:nzompggcr:]tioae?\llm%rggfI?)f ??e%ﬁir;ase I'nn a d?jifi'gggs\?ee
multiplexing gain of 22— in the general casel . : ’ . ’

P 99 2J =M+l g point out a linkage between the results obtained here for the
compound channel and the multiplexing gain results obthine

in [7] for the fading channel.
In the following we present a specific example that il-

Maximum sum rate
\

Fig. 2. Upper and lower bounds on the multiplexing gain of tharmel in
(3). Both bounds have a slope ¢f3 at high SNRs

a2 x 2 complex MIMO channel, with a multiplexing gain o
2). As we obtained this multiplexing gain over 3 time slot
we get an overall multiplexing gain of 4/3.

The above heuristic explanation is likely to hold for an
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