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Abstract

Cooperation between physically separated wireless nodes can achieve the high signal-
to-noise ratio (SNR) diversity gains characteristic of multi-antenna arrays. Simulations
indicate that such gains are still achieved for SNRs in the range of practical interest for
several applications. Cooperation further yieldsSNR gains in addition to diversity gains. In
contrast to diversity, the SNR gains are affected by the choice of inter-node distances. Such
SNR gains are quantified in this paper via a geometry-inclusive error analysis. The notion
of geometry-inclusive SNR gains is developed to facilitate geometry-based comparisons of
cooperative strategies.

1 Introduction

In networks with nodes constrained in size and power, rate and diversity gains characteristic of
multi-antenna arrays [1, 2] can be achieved via nodecooperation [3–5]. Cooperation in com-
munication networks results when terminals use their power, time, and bandwidth resources
to mutually enhance their transmissions. The effect of cooperation is twofold: it achieves rate
gains via shorter hops to cooperating neighbors or relays and it increases the spatial diver-
sity available at the destination. Analogous to the analysis in [6] for multi-antenna networks,
the benefits of cooperation can also be quantified via a diversity-multiplexing tradeoff analy-
sis [4, 5]. In general, the tradeoff curve depends on both thenumber of cooperating nodes and
the choice of cooperative strategy.

The diversity-multiplexing tradeoff analysis applies to quasi-static fading channels and
gives alimiting relationship between error probability and achievable rate as a function of
signal-to-noise ratio or SNR [6]. Numerical simulations further show that the predicted di-
versity gains can be achieved in the intermediate SNR rangesof practical interest for several
applications [5, 7]. Cooperation also achievesSNR gains that are functions of the inter-node
distances in this range. This means that certain sets of cooperating nodes can achieve the same
diversity at a lower SNR than others. In contrast, the diversity-multiplexing tradeoff analysis
ignores fixed quantities, such as path-gains, that do not scale with SNR. In order to quantify
the distance-dependent SNR gains, we present a geometry-inclusive error analysis and define
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a geometry-inclusive SNR gain to facilitate comparisons between cooperative strategiesas a
function of the network geometry. In [8], Laneman definescoding gain as the intercept of a
log-outage vs. SNR in dB curve and evaluates it for specific cooperative diversity protocols at
the maximum achievable diversity gain using a high SNR outage analysis. We here present a
slightly more general geometry-inclusive approach that isvalid for any diversity gain.

The paper is organized as follows. Section 2 presents a briefoverview of the definitions
and notations used. In Section 3, we define the geometry-inclusive SNR gain and illustrate the
advantage of a geometry-inclusive error analysis for a fully cooperativem-source multi-access
network. Such an analysis can be extended to networks employing cooperation. In Section 4,
we present the coding gains for a cooperative network where the source nodes forward data for
each other under the dynamic decode-and-forward (DDF) strategy [5]. Finally, in Section 5,
we illustrate the SNR gains for a cooperative network via an example. The example motivates
defining anSNR threshold function that characterizes the SNR range and corresponding inter-
node distances over which the high SNR analysis is valid.

2 Preliminaries

The paper [6] presents a tradeoff between spectral efficiency and reliability as a function of
the SNRρ for a point-to-point wireless network withm transmit andn receive antennas. The
network is modeled as having additive white Gaussian noise (AWGN) with block fading known
only at the receiver (coherent model). The paper formalizesa relationship between the error
probability and SNR via the notion ofexponential equality. A function f(ρ) is said to be
exponentially equal toρb, or f

.
= ρb, when

lim
ρ→∞

log f(ρ)

log ρ
= b. (1)

The valueb is called theexponential order of f(ρ).

Consider a family of codes{Cρ}, one for eachρ, such thatCρ has a rateR(ρ) bits/channel
use and an average error probabilityPe(ρ). The family{Cρ} is said to achieve aspatial multi-
plexing gain r and adiversity gain d if

r = R(ρ)
log ρ

and d(r) = lim
ρ→∞

− log Pe(ρ)
log ρ (2)

i.e., we havePe(ρ)
.
= ρ−d(r). Thediversity-multiplexing tradeoff curved(r) thus quantifies an

asymptotic dependence betweenPe and SNR as the limiting slope of thelog Pe vs. log ρ curve
for the code family{Cρ} [6].

3 Geometry-inclusive Error Analysis

Diversity analysis usually ignores the effect of geometry.However, the network geometry often
plays a decisive role in the choice of cooperative strategy.In general, an analytic expression for
the error probability is difficult to obtain for large multi-terminal networks. We can, however,
sometimes obtain bounds on the error probability in the highSNR regime that preserve the
limiting diversity-multiplexing tradeoff while allowinggeometry-based comparisons.



Throughout this paper, we use the following standard notations [9]. Letf andg be functions
of a continuous variableρ ∈ R. We write

f = O(g) if |f(ρ)| ≤ A |g(ρ)| , |ρ| > ρo

f = o(g) if |f(ρ)| ≤ ε |g(ρ)| , ∀ε > 0 and |ρ| > ρ1(ε)
f = Θ(g) if A1 |g(ρ)| ≤ |f(ρ)| ≤ A2 |g(ρ)| , |ρ| > ρo

f ∼ g if limρ→∞
f(ρ)
g(ρ)

= 1

(3)

whereA, A1, A2, andρo are positive constants andρ1(ε) is a positive function of the positive
valuedε.

LetNj(d
(j)) represent a network ofMj nodes with internode distancesd

(j)
mk , m = 1, 2, . . . ,

Mj , k = 1, 2, . . . , Mj , m 6= k, collected in the vectord(j). We assume that all nodes have the
same transmit power and the same noise variance. For eachd(j), we define a vector ofexpo-
nential orders ∆(j)(ρ)

M

= −α log d(j)/ log ρ , whereα > 1 is the path-loss exponent. Observe
that for finite non-zerod(j)

mk, we have,limρ→∞ ∆(j)(ρ) = 0. Each network chooses a commu-
nication strategy characterized by a family of codes{C(j)

ρ } such that thejth network achieves
the diversity-multiplexing tradeoffdj(r). We denote the high SNR geometry-inclusive error
probability for thejth network byP (j)

e .

For any communication strategy, we approximate the error probability as

Pe ∼ (c(R, d) · ρ)−d(r) (4)

wherec(R, d) is a coding gain (see [8]). LetP (j)
e be the error probability of networkNj

when using a predefined communication strategy. We define theSNR gain of networkN1 over
networkN2 as follows.

Definition 1 The SNR gain ρgain in dB of N1(d
(1)) over N2(d

(2)) that achieves the same diver-
sity gain d(r) > 0 at a multiplexing gain r is

ρgain =
10

d(r)
lim
ρ→∞

log10

P
(2)
e (ρ, d(1))

P
(1)
e (ρ, d(2))

(5)

We motivate the need for a geometry based formulation by considering a cooperative net-
work of m nodes that transmit to a destination (nodem + 1) where the transmitting nodes can
fully cooperate. Since them nodes are in general at different distances from the destination,
we call this network anm × 1 distributed MIMO (multi-input, multi-output) network. The
received signal at the destination overl channel uses is

Y =
[

h1√
dα
1

h2√
dα
2

. . . hm√
dα

m

]

X + Z (6)

whereX is anm × l matrix with complex entriesxkj, k = 1, 2, . . . , m, j = 1, 2, . . . , l, trans-
mitted in thejth symbol by thekth source over a channel with gainshk. Thehk are assumed
to be realizations of independent and identically distributed (i.i.d) proper, complex Gaussian
random variables and we write the corresponding random variables asHk ∼ CN (0, 1). The
distance vectord has as itskth entry the distancedk,m+1 between thekth source and the desti-
nation. We write the corresponding vector of exponential orders as∆ with entries∆k, for all



k. The additive noise vectorZ has i.i.d proper complex Gaussian entriesZj ∼ CN (0, 1) such
that the SNR from each antenna at the destination isρ. We use upper case letters to denote
random variables(X) and the corresponding lower case letters(x) to denote a realization of
the random variables.

The channel gains are assumed known at the receiver but not atthe transmitter and the
channel is assumed to be constant over a coherence time greater than the block lengthl, where
l >> 1. We define

Vk =
log 1

/

|Hk|2
log ρ

(7)

that has the probability density function

p(vk) = ln (ρ) ρ−vke−ρ−vk . (8)

We have

p(·) =

{

o(ρ−vk ln ρ) vk < 0
Θ (ρ−vk ln ρ) vk ≥ 0

(9)

whereA1 andA2 aree−1 and1 respectively. The minimum outage probabilityPout for a family
of codes{C(ρ)} with rateR is thus

Pout(R) = Pr(I(X; Y |h) < R = r log ρ) = Pr
{

log
(

1 +
∑m

k=1
ρ(1+∆k−vk)

)

< R
}

(10)

whereI(X; Y |h) is the maximum rate achievable whenH = h is known only at the destination.
Pout(R) in (10) can be computed analytically. However, to compute the SNR gains it suffices
to write (10) as

Pout(R) ∼ Pr(ρmaxk(1+∆k−vk)+ < ρr) ∼ c′
(
∏m

k=1d
α
k,m+1

)

ρ−m(1−r) = c′ρ−m(1−r)−
∑m

k=1∆k

(11)
wherec′ > 0 is a positive constant independent ofρ andd. The dominant SNR term, obtained
using (9), is that with the smallest exponent in the outage region O+

out = {v � 0 : maxk

(1 + ∆ − vk)
+ < r} where(x)+ = max(x, 0) and� denotes that every entry ofv is positive.

For the case where thedk,m+1 are distinct,Pout can be evaluated to show thatc′ = 1/m!.

The average error probabilityPe is

Pe = Pout(R)P (error|outage) + P (error, no outage). (12)

We assume that for largel, P (error, no outage) is negligible whileP (error|outage) is almost
one. We thus havePe ∼ Pout with the coding gainc(R, d) given as

c(R, d) =
(

C ·∏m
k=1d

α
k,m+1

)
−1

m(1−r) (13)

whereC is a positive constant independent ofR andd.

The following example demonstrates the effect of geometry on the SNR gains. Consider
two m × 1 distributed MIMO networksN1(d

(1)) andN2(d
(2)). From (5), we have

ρgain =
10

d(r)
lim
ρ→∞

log10

(

∏m
k=1d

(2)
k,m+1

)α

ρ−m(1−r)

(

∏m
k=1d

(1)
k,m+1

)α

ρ−m(1−r)
=

10α

m(1 − r)

m
∑

k=1

log10

d
(2)
k,m+1

d
(1)
k,m+1

(14)
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Figure 1: A2 × 1 Distributed MIMO Network
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Figure 2:Pout for a2 × 1 Distributed MIMO Network

For example, for anm = 2 fully cooperative network withd(1)
1,3 = d

(2)
1,3, d

(2)
2,3 = 2d

(1)
2,3, and

α = 4, N1 enjoys an SNR gain of6 dB relative toN2 at r = 0. We illustrate this further
by considering a2 × 1 MIMO network with a collinear geometry as shown in Fig. 1 where
nodeN1 is fixed at the origin a unit distance from the destination node N3 while nodeN2

is at a variable distanced from N1. The nodesN1 andN2 transmit with the same average
power such that their SNR atN3 is ρ. In Fig. 2, forR = 1 andα = 4, we plot the outage
probability curves for the2 × 1 distributed MIMO network as a function ofρ in dB, one for
each choice ofd. The curves are plotted using the closed form outage expression for the
2 × 1 distributed MIMO network. As expected, the SNR gains between any two choices of
d, even over the relatively low SNR range chosen, match exactly those predicted in (14) with
increasingly larger SNR gains achieved asN2 moves closer toN3. The above example, albeit
simple, serves to demonstrate the technique used to evaluate the asymptotic geometry-inclusive
error probability. One can similarly compare the error performance of any two networks that
achieve the samed(r). In the following section, we presentC(R, d) andρgain for a cooperative
network under the DF strategy.



4 Cooperative Networks

4.1 Network Model

We consider a cooperative network consisting ofM source nodes numbered1, 2, . . . , M and
a destination nodeM + 1. We writeS = {1, 2, . . . , M} andSC = S ∪ {M + 1} to denote,
respectively, the set of source nodes and all nodes in the network. Associated with this network
is a distance vectord, with

(

n
2

)

, n = |SC|, entries of inter-node distances where|SC | is the
cardinality of the setSC. The corresponding vector of exponential orders,∆, has entries∆km

for all k, m ∈ SC , k 6= m. We writeκkm
M

= 1 + ∆km. Unless otherwise stated, all nodes have
the same power constraint, have a single antenna, and have a half-duplex (HD) transmit-receive
constraint.

4.2 Cooperative Networks

Azarian et al in [5] obtained the tradeoff curve for anM-source cooperative network under a
time-division multi-access (TDMA) constraint on the sources. They consider a dynamic DF
(DDF) strategy where each time-duplexed source, during itstransmission, is aided sequentially
by the remaining(M−1) sources acting as HD relays. Thus each source uses a total ofM slots
to complete its transmission. The DDF strategy, like the DF strategy for the HD relay channel,
allows both non-orthogonal source transmissions and unequal transmit-receive channel use at
the relay [10, 11]. However, as the name suggests, it allows each cooperating node or relay
to dynamically adjust the duration of its receive state until sufficient energy is collected to
successfully decode the transmitted message. Finally, this duration assumed known at the
destination.

In [7], we present a partial decode-and-forward (PDF) strategy for the cooperative network
where the sources transmit their messages using orthogonalsubchannels (TDMA) but use the
same subchannel (MAC) to cooperatively forward to the destination. We refer to this scheme as
a TDMA-MAC scheme. The PDF strategy generalizes the DF strategy by considering an ad-
ditional message stream at each source that is decoded only by the destination. For simplicity,
we consider the DF strategy here where all source messages are decoded by the other sources.
Since each transmitting source is aided by the remaining(M − 1) sources simultaneously only
in the MAC slot, the TDMA-MAC scheme is equivalent to a two-slot TDMA scheme where
each transmitting source is aided by(M − 1) sources simultaneously in the second slot. For
the case where all source nodes transmit at the same rateR = r log ρ, the symmetricd(r) for
this strategy is given by the following theorem.

Theorem 1 The diversity-multiplexing tradeoff d(r) for a cooperative network employing the
DF strategy under the TDMA-MAC scheme is

d(r) =

{

M(1 − r) r ∈
[

0, 1
M

]

1
r
− 1 r ∈

[

1
M

, 1
] (15)

Sketch of Proof: The cooperative network under the TDMA-MAC scheme simplifies to
one where each time-duplexed source is aided simultaneously by (M − 1) relays. Thed(r)
analysis is then similar to that in [5] for the DDF strategy.

We remark that thed(r) above isuniformly dominated by thed(r) for the TDMA scheme
in [5]; i.e., dA(r) ≤ dB(r) whereA andB are the TDMA-MAC and TDMA schemes re-



spectively. The uniform dominance of the latter is a result of the temporal diversity avail-
able at the destination via theM source-destination paths versus only two in the former. The
advantage of the TDMA-MAC over the TDMA scheme, however, is that it allows a simple
and tractable geometry-inclusive error analysis. The correspondingc(R, d) is then given by
the following theorem. Defineκ(C)

m
M

= mink∈S,m6=k κmk with equivalent distancedm,(C) and

dm,av =
∏

k∈S,m6=kd
1/(M−1)
k,M+1 .

Theorem 2 The geometry-inclusive coding gain for the mth source in the cooperative network
employing the DF strategy under the TDMA-MAC transmission scheme is

cm(R, d) =











(

C ·∏M
k=1d

α
k,M+1

)
−1

M(1−r)
r ∈

[

0, κ
(C)
m

M

]

(

C · dα
m,M+1

)
−1

M(1−r) ·
(

1
dα

m,(C)
·dα

m,av

)

r ∈
[

κ
(C)
m

M
, 1
] (16)

Thus, in the lowr regime, each source in the cooperative network achieves theoptimal
c(R, d) of anM×1 MIMO network given by (13), with dependence only on the distance of the
M transmitting nodes to the destination. However, the range of r for which these optimal gains
are achieved is dependent on the distance between the cooperating nodes with increasingly
proximal cooperating nodes (larger∆km, and hence,κ(C)

m ) achieving correspondingly larger
ranges. Finally, in the highr regime,cm(R, d) depends on all the relevant inter-node distances.

5 Illustration of Results

Consider anM = 2 cooperative network with a collinear geometry as shown in Fig. 1. As with
the MIMO case, the transmit nodeN1 is fixed at the origin a unit distance from the destination
nodeN3. The cooperating node, denoted byN2, is at a distanced ∈ [0, 1] from N1. Unlike the
2× 1 distributed MIMO network where both nodes cooperate fully,in the cooperative network
employing the DDF strategy, nodeN2 aidsN1 only after it has decoded the signal fromN1. As
before,N1 andN2 transmit with the same average power such that their SNR at any receiver
is ρ. We plot the outage probability curves for this network as a function ofρ for two choices
of the path-loss exponent,α = 2 andα = 4 and a fixed rateR = 1. For this fixedR, asρ
increases, the corresponding multiplexing gainr decreases approaching0 in the limit.

In Fig. 3, subplot A, forR = 1 andα = 4, we plot the outage probability curves as a
function of the SNRρ, one for each choice of the distanced between the two nodes. The
curves plotted are obtained via Monte Carlo simulations. Observe the outage curves match
those for the2 × 1 distributed MIMO network in Fig. 2 for placement ofN2 at −.25, .01,
.25 whereN2 is closer toN1. However, contrary to the MIMO-like gains predicted in (16)for
r < .5, the SNR gains for the chosen SNR range do not demonstrate a monotonic behavior
with increasingd as in Fig. 2; instead they increase ford ≤ .5 and then decrease. This is
because, unlike the distributed MIMO network, in the cooperative network a fractionf of the
total time or bandwidth resources is allocated atN2 given as (see [5])

f = min

{

1,
R

log(1 + ρ |h12|2
/

da
12)

}

= min

{

1,
R

log(1 + ρ1+∆12−v12)

}

(17)

wherev12 and∆12 are the exponential orders of the channel gain|h12|2 and distanced12 = d,
respectively, betweenN1 andN2. Thus, for a given realizationh12, N2 receives signals from
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Figure 3:Pout for anM = 2 Cooperative Network for(R = 1, α = 4) and(R = 1, α = 2)

N1 overfl symbols until it successfully decodes the source message. An outage occurs when
the transmit rateR is greater than the destination rate

Rd = f log

(

1 +
ρ |h13|2

da
13

)

+ (1 − f) log

(

1 +
ρ |h13|2

da
13

+
ρ |h23|2

da
23

)

. (18)

For a givenρ, the path-gains inclusive SNR atN2, ρ/dα
12, increases with decreasingd. This in

turn results inf in (17) taking decreasing values on average. On the other hand, the second
log(·) term inRd that results from cooperation, sayRc, increases with increasingd sinced23 =
1 − d. The non-monotonic behavior of the outage probability curves in Fig. 3, subplot A, then
reflects the combined effect ofd on (1 − f) andRc for R = 1. The corresponding outage
curves for the sameR andα = 2 are plotted in subplot B. In addition to depending on the
distance, we now observe that the path-gains inclusive SNR also depends on the path-loss
exponentα. Since the path-gain inclusive SNR increases withα for d ∈ [0, 1], we expect that
the range ofd for which the high SNR approximation holds forα = 2 to be smaller. This is
confimed in Fig. 3 where the MIMO-like behavior now reverses at d = .25.

From Figure 3, subplot A, we further conclude that for the relatively low SNR range con-
sidered, the outage probability and the SNR gains predictedin (16) hold only ford < .5. It can
be shown that the observed SNR gains differ from the predicted gains asd increases beyond
.35. For a fixedR, asρ increases, from (17), we expect that the mean value ofF for anyd
will decrease. This in turn will increase the range ofd for which the high SNR approximation
applies. We demonstrate this in Fig. 4 where in subplot A we compare the probability distribu-
tion of the fractionF atd = .25 andd = .75 for ρ = 20 dB. The corresponding comparison for
ρ = 80 dB is shown in subplot B. We observe here that for a givenρ, the mean and variance of
F increases with increasingd. However, asρ increases, the “difference” in the distribution of
F for differentd becomes negligible as shown in subplot B. Thus, at80 dB, where the effect
of F on (18) is negligible, the MIMO-like SNR gains predicted in (16) will be valid for both
d = .25 andd = .75 unlike at20 dB where it does not hold ford = .75.
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The above examples suugests that the asymptotic geometry-inclusive error analysis is ap-
plicable when the SNRρ is above a certain thresholdTSNR(d, R, α) that is also a function of
R, d, andα. For theM = 2 cooperative network considered above, clearlyTSNR(d, R, α)
increases with increasingd for a fixedR andα. Further, the plots also indicate that to achieve
optimal MIMO-like SNR gains it is desirable to choose the node closest to the destination as
the cooperating node or relay, subject toρ ≥ TSNR(d, R, α). Thus, for the asymmetric cooper-
ative network considered in Fig. 1 whereN2 is closer toN3 thanN1, while both nodes achieve
the maximum diversity gains of 2 via cooperation,N1 also enjoys an SNR advantage relative
to N2. Similar comparisons can also be made for cooperative networks withM > 2. For each
such network, the requirement of decoding at one or more nodes will determine an appropriate
TSNR(d, R, α) beyond which the predicted SNR gains in (16) hold.

6 Concluding Remarks

We have presented an approach to evaluate the geometry-inclusive asymptotic outage proba-
bility for a variety of networks. For wireless networks where node cooperation yields large
diversity gains, and a corresponding increase in reliability, the analysis highlights the effect of
exploiting network geometry to also achieve SNR gains. SuchSNR based comparisons might
also help choose between network architectures such as cooperative networks or relay-based
hierarchical networks [7]. Finally, the analysis can also be applied to other strategies such as
amplify-and-forward.

References

[1] E. Telatar, “Capacity of multi-antenna Gaussian channels,” Europ. Trans. Telecommuni-
cations, vol. 10, pp. 585–595, Nov. 1999.



[2] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading en-
vironment when using multiple antennas,”Wireless Personal Comunications: Kluwer
Academic, vol. 6, no. 3, pp. 311–355, Mar. 1998.

[3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity - part I: System
description,”IEEE Trans. Commun., vol. 51, no. 11, pp. 1927–1938, Nov. 2003.

[4] J. N. Laneman, D. N. C. Tse, and G. Wornell, “Cooperative diversity in wireless networks:
efficient protocols and outage behavior,”IEEE Trans. Inform. Theory, vol. 50, no. 12, pp.
3062–3080, Dec. 2004.

[5] K. Azarian, H. El Gamal, and P. Schniter, “On the achievable diversity-multiplexing
tradeoff in half-duplex cooperative channels,” July 2004,preprint.

[6] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in
multiple-antenna channels,”IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073–1096,
May 2003.

[7] L. Sankaranarayanan, G. Kramer, and N. B. Mandayam, “Cooperation vs. hierarchy: An
information-theoretic comparison,” inInt. Symp. Inf. Theory, Adelaide, Australia, Sept.
2005.

[8] J. N. Laneman, “Network coding gain of cooperative diversity,” in Proc. IEEE Military
Comm. Conf. (MILCOM), Monterey, CA, Nov 2004.

[9] T. H. Cormen, C. E. Leiserson, and R. L. Rivest,Introduction to Algorithms. Cambridge,
MA: The MIT Press, 1990.

[10] A. Host-Madsen, “On the capacity of wireless relaying,” in IEEE Vehicular Tech. Conf.,
Vancouver, CA, Sept. 2002.

[11] G. Kramer, “Models and theory for relay channels with receive constraints,” in42nd
Annual Allerton Conf. on Commun., Control, and Computing, Monticello, IL, Sept. 2004.


