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Abstract

Cooperation between physically separated wireless nadeachieve the high signal-
to-noise ratio (SNR) diversity gains characteristic of tmahtenna arrays. Simulations
indicate that such gains are still achieved for SNRs in timgeaeof practical interest for
several applications. Cooperation further yie®iR gainsin addition to diversity gains. In
contrast to diversity, the SNR gains are affected by theoghof inter-node distances. Such
SNR gains are quantified in this paper via a geometry-ingdusiror analysis. The notion
of geometry-inclusive SNR gainsis developed to facilitate geometry-based comparisons of
cooperative strategies.

1 Introduction

In networks with nodes constrained in size and power, ratedarersity gains characteristic of
multi-antenna arrays [1, 2] can be achieved via ncatgeration [3—5]. Cooperation in com-
munication networks results when terminals use their pptiree, and bandwidth resources
to mutually enhance their transmissions. The effect of ecaton is twofold: it achieves rate
gains via shorter hops to cooperating neighbors or relagsitaimcreases the spatial diver-
sity available at the destination. Analogous to the analys[6] for multi-antenna networks,
the benefits of cooperation can also be quantified via a diyeraltiplexing tradeoff analy-
sis [4,5]. In general, the tradeoff curve depends on botmtimber of cooperating nodes and
the choice of cooperative strategy.

The diversity-multiplexing tradeoff analysis applies toagi-static fading channels and
gives alimiting relationship between error probability and achievable e a function of
signal-to-noise ratio or SNR [6]. Numerical simulationstifier show that the predicted di-
versity gains can be achieved in the intermediate SNR raofpsactical interest for several
applications [5, 7]. Cooperation also achie@R gains that are functions of the inter-node
distances in this range. This means that certain sets ofcatipg nodes can achieve the same
diversity at a lower SNR than others. In contrast, the ditersultiplexing tradeoff analysis
ignores fixed quantities, such as path-gains, that do né¢ sath SNR. In order to quantify
the distance-dependent SNR gains, we present a geomelngiire error analysis and define
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a geometry-inclusive S\R gain to facilitate comparisons between cooperative strategges
function of the network geometry. In [8], Laneman defigeding gain as the intercept of a
log-outage vs. SNR in dB curve and evaluates it for specifopecative diversity protocols at
the maximum achievable diversity gain using a high SNR atatplysis. We here present a
slightly more general geometry-inclusive approach thaalgl for any diversity gain.

The paper is organized as follows. Section 2 presents a dwaview of the definitions
and notations used. In Section 3, we define the geometrysivel SNR gain and illustrate the
advantage of a geometry-inclusive error analysis for & ftdloperativen-source multi-access
network. Such an analysis can be extended to networks emglogoperation. In Section 4,
we present the coding gains for a cooperative network wineredurce nodes forward data for
each other under the dynamic decode-and-forward (DDRjeglyd5]. Finally, in Section 5,
we illustrate the SNR gains for a cooperative network viaxangle. The example motivates
defining anS\R threshold function that characterizes the SNR range and corresponding inter-
node distances over which the high SNR analysis is valid.

2 Preliminaries

The paper [6] presents a tradeoff between spectral effigiand reliability as a function of
the SNRp for a point-to-point wireless network witte transmit and: receive antennas. The
network is modeled as having additive white Gaussian n&@&3N) with block fading known
only at the receiver (coherent model). The paper formakzesationship between the error
probability and SNR via the notion aponential equality. A function f(p) is said to be
exponentially equal tp?, or f = p’, when

log f(p)

lim —2 My, (1)
p—00 logp

The valueb is called theexponential order of f(p).

Consider a family of code&C,}, one for eaclp, such that, has a rate?(p) bits/channel
use and an average error probability(p). The family{C,} is said to achieve sgpatial multi-
plexing gain r and adiversity gain d if

J— R( ) _ . —10 Pe( )
r= logpp and d(r) = [)ILHQO 71(1[) L 2)

i.e., we haveP,(p) = p~). Thediversity-multiplexing tradeoff curved(r) thus quantifies an
asymptotic dependence betweenand SNR as the limiting slope of theg P, vs. log p curve
for the code family{C,} [6].

3 Geometry-inclusive Error Analysis

Diversity analysis usually ignores the effect of geomeattgwever, the network geometry often
plays a decisive role in the choice of cooperative strateggeneral, an analytic expression for
the error probability is difficult to obtain for large muligrminal networks. We can, however,
sometimes obtain bounds on the error probability in the B4R regime that preserve the
limiting diversity-multiplexing tradeoff while allowingeometry-based comparisons.



Throughout this paper, we use the following standard mmatj9]. Letf andg be functions
of a continuous variablg € R. We write

f=0(g) it |f(p)l < Alg(p)l, ol > po

f=olg) T 1f(p)]<elglp)l, Ve > 0and|p| > pi(e) 3
f=0(9) it Alglp)l < [f(p)| < A2lg(p)], ol > po

f~yg if lim, . J;Ep; 1

whereA, A;, Ay, andp, are positive constants and(c) is a positive function of the positive
valuede.

Let/\/( ) represent a network df/; nodes with internode dlstancégk ym=1,2 ...,
M;, k=1,2,..., M;, m # k, collected in the vectaf”). We assume that all nodes have the
same transmit power and the same noise variance. Ford3ackve define a vector afXpo-
nential orders AW (p) £ —alogd”/log p, wherea > 1 is the path-loss exponent. Observe
that for finite non- zer@imk, we havelim, .., A% (p) = 0. Each network chooses a commu-
nication strategy characterized by a family of coe{lég )} such that thg*" network achieves
the diversity-multiplexing tradeofd; ( ). We denote the high SNR geometry-inclusive error
probability for the;*" network byP

For any communication strategy, we approximate the erriogdility as
P, ~ (c(R,d) - p)~"") (4)

wherec(R, d) is a coding gain (see [8]). LePY) be the error probability of network/;
when using a predefined communication strategy. We defingNRagain of network \/; over
network\; as follows.

Definition 1 The SNRgain py,:, in dB of AV (d") over N5(d®) that achieves the same diver-
sitygaind(r) > 0 at a multiplexing gain r is

1 e
Paain = 705 1520 logyg W (5)

We motivate the need for a geometry based formulation byiderieg a cooperative net-
work of m nodes that transmit to a destination (nede- 1) where the transmitting nodes can
fully cooperate. Since the: nodes are in general at different distances from the dé&tina
we call this network ann x 1 distributed MIMO (multi-input, multi-output) network. The
received signal at the destination ovehannel uses is

hl h2 ’HL
VE VI Vi | XL ©
whereX is anm x [ matrix with complex entriesy;, k =1,2,...,m,j =1,2,...,[, trans-

mitted in the;** symbol by thek' source over a channel with gaihgs. The h;, are assumed
to be realizations of independent and identically distelu(i.i.d) proper, complex Gaussian
random variables and we write the corresponding randonabls as, ~ CN(0,1). The
distance vectod has as itg:" entry the distanceéy, . between theé:'* source and the desti-
nation. We write the corresponding vector of exponentidkos asA with entriesA,, for all



k. The additive noise vectdf has i.i.d proper complex Gaussian entiigs~ CN (0, 1) such
that the SNR from each antenna at the destinatign ig/e use upper case letters to denote
random variable$X ') and the corresponding lower case lettersto denote a realization of
the random variables.

The channel gains are assumed known at the receiver but ntio¢ atansmitter and the
channel is assumed to be constant over a coherence timergteat the block length where

[ >> 1. We define )
log1 /|H,
v - e L/ @

log p
that has the probability density function
p(vr) = In (p) p~rke ™ ™. ®)
We have
w1~ i s ®

whereA, andA, aree~! and1 respectively. The minimum outage probability,, for a family
of codes{C(p)} with rate R is thus

Poi(R) = Pr(I(X;Y|h) < R = rlog p) = Pr {1og (1 £y ,O(HA’“_”’“)) < R} (10)

wherel (X; Y'|h) is the maximum rate achievable wh&n= £ is known only at the destination.
P,.+(R) in (10) can be computed analytically. However, to compuéeSNR gains it suffices
to write (10) as

Poa(B) ~ Pr(p™ 80" < 1) o & (T ) 77070 = 07072k
(11)
wherec > 0 is a positive constant independentodndd. The dominant SNR term, obtained
using (9), is that with the smallest exponent in the outaggoreO,, = {v = 0 : maxy
(1+A — )" <7} where(z)™ = max(z,0) and> denotes that every entry ofis positive.
For the case where thg ,,., are distinct,?,,; can be evaluated to show that=1/m/!.

The average error probability, is
P. = P,.(R)P(errojoutage + P(error, no outage (12)

We assume that for lardge P(error, no outaggis negligible whileP(errofjoutage is almost
one. We thus have, ~ P,,, with the coding gair:( R, d) given as

¢(R.d) = (C - TI{sdpgn) ™ (13)
whereC' is a positive constant independent/®findd.

The following example demonstrates the effect of geometryhe SNR gains. Consider
two m x 1 distributed MIMO networks\V; (dV) and NV, (d). From (5), we have

m (2) ¢ —m(1l—r m
0 (Mds) P70 04 )y
Pgain = da(r) le logyg m a = a—=n Z logyg FORE (14)
T) p—oo (Hk:ldkz,m—i-l) p—m(l—r) m T P bl
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Figure 2. P,,; for a2 x 1 Distributed MIMO Network

For example, for amn = 2 fully cooperative network withi\'} = d\, dy} = 2d3'}, and
a = 4, N7 enjoys an SNR gain of dB relative toN; atr = 0. We illustrate this further
by considering  x 1 MIMO network with a collinear geometry as shown in Fig. 1 wder
node V; is fixed at the origin a unit distance from the destinationendg while node N,
is at a variable distancé from N;. The nodesV; and /N, transmit with the same average
power such that their SNR &3 is p. In Fig. 2, forR = 1 anda = 4, we plot the outage
probability curves for th@ x 1 distributed MIMO network as a function gfin dB, one for
each choice ofl. The curves are plotted using the closed form outage expre$sr the
2 x 1 distributed MIMO network. As expected, the SNR gains betwary two choices of
d, even over the relatively low SNR range chosen, match ex#tutise predicted in (14) with
increasingly larger SNR gains achievedsmoves closer taV;. The above example, albeit
simple, serves to demonstrate the technique used to ezdheshsymptotic geometry-inclusive
error probability. One can similarly compare the error perfance of any two networks that
achieve the samégr). In the following section, we prese@t( R, d) andp,.;, for a cooperative
network under the DF strategy.



4 Cooperative Networks

4.1 Network Model

We consider a cooperative network consisting\6fsource nodes numberéd2, ..., M and

a destination nod@/ + 1. We writeS = {1,2,..., M} andS; = S U{M + 1} to denote,
respectively, the set of source nodes and all nodes in tiriet Associated with this network
is a distance vectad, with (1), n = |Sc|, entries of inter-node distances whe&| is the
cardinality of the sef.. The corresponding vector of exponential ordéxshas entrieg\y,,

for all k,m € S¢, k # m. We write kg, £ 1 + Ay. Unless otherwise stated, all nodes have
the same power constraint, have a single antenna, and halfecuplex (HD) transmit-receive
constraint.

4.2 Cooperative Networks

Azarian et al in [5] obtained the tradeoff curve for &frsource cooperative network under a
time-division multi-access (TDMA) constraint on the sasc They consider a dynamic DF
(DDF) strategy where each time-duplexed source, durirtgatsmission, is aided sequentially
by the remaining M — 1) sources acting as HD relays. Thus each source uses a tatasufts

to complete its transmission. The DDF strategy, like the D&tsgy for the HD relay channel,
allows both non-orthogonal source transmissions and waleégunsmit-receive channel use at
the relay [10, 11]. However, as the name suggests, it all@gb eooperating node or relay
to dynamically adjust the duration of its receive state |luuificient energy is collected to
successfully decode the transmitted message. Finally,diiation assumed known at the
destination.

In [7], we present a partial decode-and-forward (PDF) stpafor the cooperative network
where the sources transmit their messages using orthogobahannels (TDMA) but use the
same subchannel (MAC) to cooperatively forward to the dasitn. We refer to this scheme as
a TDMA-MAC scheme. The PDF strategy generalizes the DFegiyaby considering an ad-
ditional message stream at each source that is decodedthg ldestination. For simplicity,
we consider the DF strategy here where all source messagdse@vded by the other sources.
Since each transmitting source is aided by the remaifiiig- 1) sources simultaneously only
in the MAC slot, the TDMA-MAC scheme is equivalent to a twaetsTDMA scheme where
each transmitting source is aided by — 1) sources simultaneously in the second slot. For
the case where all source nodes transmit at the samérate- log p, the symmetrici(r) for
this strategy is given by the following theorem.

Theorem 1 The diversity-multiplexing tradeoff d(r) for a cooperative network employing the
DF strategy under the TDMA-MAC schemeis

M1 -r) re
d(r)_{%—l re

1
01’ M
a1

(15)

Sketch of Proof The cooperative network under the TDMA-MAC scheme simgifio
one where each time-duplexed source is aided simultanebysIM — 1) relays. Thed(r)
analysis is then similar to that in [5] for the DDF strategy.

We remark that thé(r) above isuniformly dominated by thed(r) for the TDMA scheme
in [5]; i.e., da(r) < dg(r) where A and B are the TDMA-MAC and TDMA schemes re-



spectively. The uniform dominance of the latter is a restithe temporal diversity avail-
able at the destination via the source-destination paths versus only two in the former. The
advantage of the TDMA-MAC over the TDMA scheme, however hiattit allows a simple
and tractable geometry-inclusive error analysis. Theesponding:(R, d) is then given by

the following theorem. Defin@fﬁf) £ minges mzx kmi With equivalent distance,,, ) and

_ 1/(M-1)
dm,av - szeS,m;«ékdk,J\/[—i-l '

Theorem 2 The geometry-inclusive coding gain for the m!” source in the cooperative network
employing the DF strategy under the TDMA-MAC transmission schemeis

—1
M q M(i-7) ()
(C ’ Hk:ldk,M+1> re [07 M
(€)
Ko

(C'dfn,M+1)W£T) : <d 1~da ) re [7’1]

(o3
m,(C) Ym,av

(R, d) = (16)

Thus, in the lowr regime, each source in the cooperative network achievesytimal
¢(R,d) ofanM x 1 MIMO network given by (13), with dependence only on the distaof the
M transmitting nodes to the destination. However, the rafigdar which these optimal gains
are achieved is dependent on the distance between the atiogemodes with increasingly
proximal cooperating nodes (larg&y;,,,, and henceﬁﬁ,‘f)) achieving correspondingly larger
ranges. Finally, in the highregime,c,,(R, d) depends on all the relevant inter-node distances.

5 lllustration of Results

Consider an/ = 2 cooperative network with a collinear geometry as shownan Ei As with
the MIMO case, the transmit nod¥, is fixed at the origin a unit distance from the destination
nodeNs. The cooperating node, denoted Ny, is at a distancé € [0, 1] from V;. Unlike the

2 x 1 distributed MIMO network where both nodes cooperate fulfhe cooperative network
employing the DDF strategy, nodé, aids/V; only after it has decoded the signal fraWy. As
before, N; and IV, transmit with the same average power such that their SNRyateseiver

is p. We plot the outage probability curves for this network aaraction of p for two choices

of the path-loss exponent, = 2 anda = 4 and a fixed rate? = 1. For this fixedR, asp
increases, the corresponding multiplexing gatrecreases approachifign the limit.

In Fig. 3, subplot A, forR = 1 anda = 4, we plot the outage probability curves as a
function of the SNRp, one for each choice of the distanéebetween the two nodes. The
curves plotted are obtained via Monte Carlo simulationssédie the outage curves match
those for the2 x 1 distributed MIMO network in Fig. 2 for placement @f, at —.25, .01,

.25 whereN; is closer toN;. However, contrary to the MIMO-like gains predicted in (16)

r < .5, the SNR gains for the chosen SNR range do not demonstratenatamic behavior
with increasingd as in Fig. 2; instead they increase tr< .5 and then decrease. This is
because, unlike the distributed MIMO network, in the coapiee network a fractiorf of the
total time or bandwidth resources is allocatedvatgiven as (see [5])

R R
=min\ 1, = min-\ 1, 17
f { log(1+ p |h12\2/ ds,) } { log(1 + pltaz—uz) } (a7)

wherev;, andA, are the exponential orders of the channel ga1@|2 and distancé, = d,
respectively, betweery; and N,. Thus, for a given realizatioh,,, N, receives signals from
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Figure 3:P,,; for an M = 2 Cooperative Network fofR = 1,a = 4) and(R = 1, = 2)

N7 over fl symbols until it successfully decodes the source messag@ufage occurs when
the transmit rate? is greater than the destination rate

plhisl’ plhis® | plhasl’
Ry = flog | 1+ — + (1= flog | 1+ ——+— : (18)
dis dis d3s

For a giverp, the path-gains inclusive SNR &k, p/d{,, increases with decreasig This in
turn results inf in (17) taking decreasing values on average. On the othet, ltha second
log(+) term in R, that results from cooperation, s&y, increases with increasinbsinced,; =

1 — d. The non-monotonic behavior of the outage probability esmn Fig. 3, subplot A, then
reflects the combined effect afon (1 — f) and R, for R = 1. The corresponding outage
curves for the sam& anda = 2 are plotted in subplot B. In addition to depending on the
distance, we now observe that the path-gains inclusive SN& depends on the path-loss
exponenty. Since the path-gain inclusive SNR increases witfor d € [0, 1], we expect that
the range of/ for which the high SNR approximation holds far= 2 to be smaller. This is
confimed in Fig. 3 where the MIMO-like behavior now reverses & .25.

From Figure 3, subplot A, we further conclude that for thatigely low SNR range con-
sidered, the outage probability and the SNR gains predintélb) hold only ford < .5. It can
be shown that the observed SNR gains differ from the predligéens asi increases beyond
.35. For a fixedR, asp increases, from (17), we expect that the mean valug &r any d
will decrease. This in turn will increase the rangeidbr which the high SNR approximation
applies. We demonstrate this in Fig. 4 where in subplot A wemare the probability distribu-
tion of the fractionF" atd = .25 andd = .75 for p = 20 dB. The corresponding comparison for
p =80 dB is shown in subplot B. We observe here that for a gjwethe mean and variance of
F increases with increasingy However, ag increases, the “difference” in the distribution of
F for differentd becomes negligible as shown in subplot B. Thus}(etiB, where the effect
of I on (18) is negligible, the MIMO-like SNR gains predicted k6§ will be valid for both
d = .25 andd = .75 unlike at20 dB where it does not hold fat = .75.
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The above examples suugests that the asymptotic geometosive error analysis is ap-
plicable when the SNR is above a certain thresholng(d, R, «) that is also a function of
R, d, anda. For theM = 2 cooperative network considered above, cledriyr(d, R, «)
increases with increasingfor a fixed R anda. Further, the plots also indicate that to achieve
optimal MIMO-like SNR gains it is desirable to choose the @aatbsest to the destination as
the cooperating node or relay, subjecpte Tsnr(d, R, o). Thus, for the asymmetric cooper-
ative network considered in Fig. 1 whek is closer to/N3 thanN;, while both nodes achieve
the maximum diversity gains of 2 via cooperatiow, also enjoys an SNR advantage relative
to NV,. Similar comparisons can also be made for cooperative mkswaith A/ > 2. For each
such network, the requirement of decoding at one or moreswidedetermine an appropriate
Tsnr(d, R, o) beyond which the predicted SNR gains in (16) hold.

6 Concluding Remarks

We have presented an approach to evaluate the geometagivelhsymptotic outage proba-

bility for a variety of networks. For wireless networks wharode cooperation yields large

diversity gains, and a corresponding increase in religbtle analysis highlights the effect of

exploiting network geometry to also achieve SNR gains. S8R based comparisons might

also help choose between network architectures such a@ive networks or relay-based

hierarchical networks [7]. Finally, the analysis can alsoapplied to other strategies such as
amplify-and-forward.
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