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The Multicast Capacity of Acyclic, Deterministic
Relay Networks with No Interference

Niranjan Ratnakar and Gerhard Kramer

Abstract—The multicast capacity is determined for acyclic net-
works that have deterministic links with broadcasting at the trans-
mitters and no interference at the receivers. Such networks were
studied by M. R. Aref, and are here called Aref networks. The
multicast capacity is shown to have a max-flow, min-cut interpre-
tation. This result complements existing theory for networks of
directed channels, networks of undirected channels, and packet
erasure networks. It is also shown that one cannot always sepa-
rate channel and network coding in Aref networks.

I. INTRODUCTION

Consider a network represented by a directed graph G =
(V, E), where V and E are the respective sets of vertices and
directed edges. For example, the graph might represent a com-
munication network where the vertices are terminals and the
edges are channels. We study a class of networks known as de-
terministic relay networks with no interference. Such networks
have one input Xu associated with every vertex u, and one out-
put Yu,v associated with every edge (u, v). By deterministic,
we mean that Yu,v is some deterministic function of Xu. By
no interference, we mean that Yu,v is a function of Xu only.
These restrictions explicitly permit broadcasting, since the out-
going edges of a vertex share a common input. We remark that
the commonly studied networks that have deterministic point-
to-point channels are special types of these networks. To see
this, collect the inputs of all the outgoing edges from a vertex u

into a vector Xu, and view Xu as being a common input.
The above networks were considered by M. R. Aref in his

Ph. D. thesis [1], and we thus call them Aref networks. Aref
determined the unicast capacity of his networks, i.e., the max-
imum rate for reliable communication of one message from
one source vertex to one destination vertex. A layered coding
scheme turns out to be optimal, i.e., one can separately apply
channel codes to a physical layer, and routing schemes to a net-
work layer. That is, each vertex decodes bit blocks (or packets),
reorganizes them into smaller or larger packets, encodes these
with a channel code, and sends the encoded symbols out on
different edges.

Multicast refers to the scenario when there is one message
transmitted from one source vertex to one or more destina-
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tion vertices. The maximum rate at which one can commu-
nicate reliably is called the multicast capacity, and we deter-
mine this capacity for acyclic Aref networks. We find that, in
general, capacity-achieving coding schemes must use network
coding [2], and not only packet routing, and one cannot separate
the physical and network layers.

This document is organized as follows. In Section II, we
review problems for which the capacity has a max-flow, min-
cut interpretation. In Section III, we define the network model
and problem. In Section IV, we derive the multicast capacity of
Aref networks. In Section V, we show that one cannot always
separate channel and network coding.

II. MAX-FLOW, MIN-CUT RESULTS

The unicast capacity of directed or undirected networks was
shown to have a max-flow, min-cut interpretation by Ford and
Fulkerson, Dantzig and Fulkerson, and Elias, Feinstein and
Shannon [3–5]. The multicast capacity of directed networks
was similarly shown to have a max-flow, min-cut interpreta-
tion by Ahlswede et al. [2] (see also [6]), as long as one can
combine commodities (or bits) at the vertices. This result was
extended to undirected networks in [7,8]. The important differ-
ence between unicasting and multicasting for these problems
is that multicasting requires the use of network coding, i.e., one
must permit the vertices to combine packets before transmitting
them.

The above papers label each edge by its capacity or capac-
ity region. However, to understand how the physical and net-
work layers interact, one needs to specify a channel model for
each edge, and not only the capacity region. For instance,
for directed graphs one might model the edges as discrete
memoryless channels (DMCs) [9], while for undirected graphs
one might model the edges as two-way channels (TWCs) [8]
(DMCs and TWCs were introduced in [10, Sec. 11] and [11]).
The multicast capacity was in both cases1 shown to have a
max-flow, min-cut interpretation, but “min-cut” now refers to
an information-theoretic cut-set bound [12, Sec. 14.10].

The physical-layer model studied here might be considered
an intermediate step toward modeling wireless networks be-
cause it includes broadcasting. Two recent papers take a similar
approach and study packet erasure networks [13,14]. However,
these works require the destinations to know where erasures
have occurred in the network, i.e., the destinations receive ad-
ditional “side information” that is assumed to be present in the

1The results of [8] require that the TWCs have the property that Shannon’s
outer bound on the capacity region is the capacity region. This technical con-
dition is sometimes met in practice, e.g., if one uses time or frequency division
multiplexing.
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Fig. 1. Example of an Aref network.

packet headers. We will not need to add such an assumption to
our problem.

III. MODEL AND PROBLEM

Consider the graph G = (V, E) described above. The random
variable Xu associated with vertex u has discrete and finite al-
phabet Xu. We write pXu

(·) for the distribution of Xu, and
pXu

(xu) or p(xu) for the probability that Xu = xu. Similarly,
the random variable Yu,v associated with edge (u, v) has dis-
crete and finite alphabet Yu,v . We write Yu,v = hu,v(Xu),
where the function hu,v(·) has domain Xu and range Yu,v .
The network is clocked, i.e., all vertices and edges are acti-
vated simultaneously N times, and at every time instant ver-
tex u transmits a symbol xu, xu ∈ Xu, and receives symbols
yw,u = hw,u(xw), where w is any vertex for which there is an
edge (w, u) in E .

For example, consider the network shown in Fig. 1. Ver-
tex 1 transmits x1, and vertices 2 and 3 observe h1,2(x1) and
h1,3(x1), respectively. The models of [2, 6] have this property:
vertex 1 transmits a vector x1 = [x1,1, x1,2], and vertices 2 and
3 observe the respective h1,2(x1,2) and h1,3(x1,3). We can, of
course, view this as y12 = h1,2(x1) and y13 = h1,3(x1).

A. Problem and Coding

The multicasting problem has one source vertex (vertex 1),
and several destination vertices that we collect in a set T . The
source vertex has a message M that is uniformly distributed
over {1, 2, . . . , 2NR}, where R is the rate and where we assume
that NR is an integer for simplicity. A communication strategy
consists of encoding functions f

(i)
u (·), u ∈ V , i = 1, 2, . . . , N ,

and decoding functions m̂t(·), t ∈ T . We write xS = [xu :
u ∈ S] and y

S,S′ = [yu,v : u ∈ S, v ∈ S ′]. We similarly write

y
u,S′ = [yu,v : v ∈ S ′].

• Encoders. Suppose M = m. At time i, vertex 1 transmits
x

(i)
1 = f

(i)
1 (m) and every other vertex u receives y

(i)
V,u.

Vertex u transmits x
(i)
u = f

(i)
u (y

(1)
V,u, y

(2)
V,u, . . . , y

(i−1)
V,u ).

• Decoders. After time N , each destination vertex t puts out
an estimate m̂t(y

(1)
V,t, y

(2)
V,t, . . . , y

(N)
V,t ).

The error probability is

Pe = Pr

[

⋃

t∈T

{

m̂t

(

Y
(1)
V,t, Y

(2)
V,t, . . . , Y

(N)
V,t

)

6= M
}

]

. (1)

The rate R is said to be achievable if, for any ε > 0, there exist
encoders and decoders that make Pe ≤ ε for some N . The
multicast capacity C is the supremum of the achievable rates.

B. Cuts and Values

Consider a set S of vertices and let S be its complement in V .
S is called a cut if 1 ∈ S and S contains one or more destination
vertices, i.e., if S ∩ T 6= ∅. We denote the set of all cuts as Λ.
The boundary of a cut S is defined as

β(S) = {u : (u, v) ∈ E , u ∈ S, v ∈ S}

Let |V| be the cardinality of V . For fixed input distributions
pX1

(·), pX2
(·), . . . , pX|V|

(·), we define the value of a cut S as

Value(S) =
∑

u∈β(S)

H(Y u,S) (2)

where we recall that Y u,S = [Yu,v : v ∈ S]. The value of a
cut depends on the input distributions, but we do not explicitly
include these as arguments in (2).

IV. MAIN RESULT

We restrict attention to acyclic Aref networks. We can thus
number the vertices so that (u, v) ∈ E implies that u < v. We
can further consider only the subgraph having those vertices
and edges on the paths from the source to the destinations. The
following is our main result.

Theorem 1: The multicast capacity of an acyclic Aref net-
work is

C = max
pX1

(·),pX2
(·),...,pX|V|

(·)
min
S∈Λ

Value(S). (3)

This result has a max-flow, min-cut interpretation for fixed
input distributions. The minimum value of all cuts, in an
information-theoretic sense [12, Sec. 14.10], is

min
S∈Λ

I(XS ; Y V,S | XS) = min
S∈Λ

H(Y V,S | XS)

= min
S∈Λ

Value(S) (4)

where the first equality follows because the network is deter-
ministic, and the second because the Xu are independent. We
discuss the derivation of (4) in more detail in Section IV-B be-
low.

A. Achievability

We use δ-typical sequences for our achievability proof. Let
Xn be the n-fold Cartesian product of X . Let νx(a) be the
number of times the letter a occurs in the sequence x of length
n. The empirical frequency of a in x is

πx(a) =
νx(a)

n
. (5)
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Fig. 2. A second example of an Aref network.

Let X be the (discrete and finite) alphabet of the entries in x,
and let δ > 0. Let X be a random variable with alphabet X
and distribution pX(·). The sequence x is said to be (robustly)
δ-typical with respect to X if

∣

∣πx(a) − pX(a)
∣

∣ ≤ δ · pX(a)

for all a ∈ X (see [15]). The set of δ-typical sequences with
respect to X is denoted Tδ(X). One can similarly define δ-
typical sequences and sets with respect to pairs of random vari-
ables. Some of the key properties of these objects are listed in
the Appendix.

We code in L + |V| − 2 blocks of length n, i.e., we set N =
(L + |V| − 2) · n for L ≥ 1. We divide the message m into L

parts that each take on values in {1, 2, . . . , 2nR}. The l-th part
of m is denoted ml. The overall rate is R · L

/

(L + |V| − 2),
but since |V| is finite one can approach R by increasing L.

Let fn
v (·) = [f

(i)
v (·) : i = 1, 2, . . . , n], and set f

(i+l·n)
v (·) =

f
(i)
v (·) for all i, l, and v, i.e., we use the same encoding func-

tion(s) for each block. We associate xn
u(l) and yn

w,u
(l) (for

(w, u) ∈ E) with the transmissions for the l-th message ml.
That is, we write the (l + u − 1)-th transmitted vector at ver-
tex u and (l + w − 1)-th received vector on edge (w, u) as the
respective xn

u(l) and yn
w,u

(l) and we write yn
V,u

(l) = [yn
w,u

(l) :

w ∈ V, (w, u) ∈ E ]. We sometimes drop the index l if
it does not play an important role. We fix the distributions
pX1

(·), pX2
(·), . . . , pX|V|

(·).

Codebooks. At vertex 1, choose fn
1 (·) to map each of the

indices in {1, 2, . . . , 2nR} to a sequence xn
1 drawn uniformly

from Tδ(X1). At vertex u, choose fn
u (·) to map each sequence

in Tδ(Y V,u) to a sequence drawn uniformly from Tδ(Xu). Note
that some yn

V,u
in Tδ(Y V,u) might never be used. Note also that

we have yn
u,v

∈ Tδ(Yu,v) for all (u, v) because xn
u ∈ Tδ(Xu)

for all u (see the Appendix, Lemma 4).

Encoding. During the (l + u − 1)-th block:
• Vertex u = 1 transmits xn

1 (l) = fn
1 (ml) for l =

1, 2, . . . , L and xn
1 (l) = fn

1 (1) otherwise.

• Vertex u, u 6= 1, observes yn
V,u

(l + 1) and transmits

xn
u(l) = fn

u

(

yn
V,u

(l − 1)
)

.

For instance, the coding strategy for the network shown in
Fig. 2 is given in Table IV-A. Observe how the transmissions
are “pipelined”.

Decoding. Consider a destination vertex t. Since yn
V,t

(l) is
a function of ml, we abuse notation and write this sequence of

vectors as yn
V,t

(ml). Vertex t decodes ml after block t + l − 2

by using the function m̂t(·), where we again abuse notation by
using the same expression as in (1). We further define

m̂t

(

yn
V,t

(ml)
)

=

{

error if yn
V,t

(m′
l) = yn

V,t
(ml) for some m′

l 6= ml

ml otherwise.
(6)

Analysis. In the following, we consider only transmissions
that pertain to the message ml. We thus drop the index l for
convenience. For example, we write m, xn

u, and yn
u,v

for ml,

xn
u(l) and yn

u,v
(l), respectively.

Consider a destination vertex t. Let P e(t,m,m′) be the av-
erage probability that vertex t cannot distinguish between m

and m′, where the average is over the ensemble of encoding
functions. Let S(m,m′) be the set of vertices u for which

yn
V,u

(m) 6= yn
V,u

(m′) (7)

i.e., S(m,m′) is the set of the vertices that can distinguish be-
tween m and m′. We view S(m,m′) as a random variable
that is a function of the encoding functions. We clearly have
1 ∈ S(m,m′). Suppose vertex t cannot distinguish between m

and m′, so that t ∈ S(m,m′) and S(m,m′) is a cut between
vertices 1 and t. Let Λt be the set of such cuts, i.e., we define
Λt = {S ⊂ V : 1 ∈ S, t ∈ S}. We can write

P e(t,m,m′) = Pr

[

⋃

S∈Λt

{S(m,m′) = S}

]

≤
∑

S∈Λt

Pr [S(m,m′) = S] . (8)

Furthermore, we claim that a necessary condition for the event
S(m,m′) = S is one must have

yn
u,S

(m) = yn
u,S

(m′) (9)

for all u ∈ S(m,m′). To see this, note that if (9) was not
true for some u ∈ S(m,m′), then there is a vertex v ∈ S that
can distinguish between m and m′, contradicting our original
hypothesis. We can thus write

Pr [S(m,m′) = S] ≤ Pr





⋂

u∈β(S)

{

Y n
u,S

(m) = Y n
u,S

(m′)
}





=
∏

u∈β(S)

Pr
[

Y n
u,S

(m) = Y n
u,S

(m′)
]

(10)

where the equality follows because the Xn
u(m), u ∈ V , m =

1, 2, . . . , 2nR, are statistically independent.
We proceed to upper bound the probabilities in the prod-

uct in (10). We have (xn
u(m′), yn

u,S
(m′)) ∈ Tδ(Xu, Yu,S) by

Lemma 4 in the Appendix. The event (9) thus implies
(

xn
u(m′), yn

u,S
(m)

)

∈ Tδ(Xu, Yu,S). (11)
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TABLE I
CODING STRATEGY FOR THE NETWORK OF FIG. 2

Block Message 1 Transmits 2 Receives 2 Transmits 3 Receives Decoder output
1 m(1) xn

1 (1) yn
1,2

(1) · yn
1,3

(1) ·

2 m(2) xn
1 (2) yn

1,2
(2) xn

2 (1) yn
1,3

(2), yn
2,3

(1) m̂t(y
n
1,3

(1), yn
2,3

(1))

3 m(3) xn
1 (3) yn

1,2
(3) xn

2 (2) yn
1,3

(3), yn
2,3

(2) m̂t(y
n
1,3

(2), yn
2,3

(2))

4 · · · xn
2 (3) yn

2,3
(3) m̂t(y

n
1,3

(3), yn
2,3

(3))

But note that Xn
u(m′) is independent of Y n

u,S
(m). The proba-

bility of (11) occurring is thus
∣

∣

∣
Tδ(Xu| y

n
u,S

(m))
∣

∣

∣

/

|Tδ(Xu)| . (12)

We use Lemmas 2 and 3 in the Appendix to bound

|Tδ(Xu)| ≥ (1 − εδ(n)) · 2n(1−δ)H(Xu) (13)

|Tδ(Xu|y
n
u,S

(m))| ≤ 2n(1+δ2)H(Xu|Yu,S) (14)

where εδ(n) → 0 as n → ∞. Inserting (13) and (14) into (12),
we have

Pr
[

yn
u,S

(m) = yn
u,S

(m′)
]

≤ (1 − εδ(n))−1 · 2n(δ+δ2) · 2−nH(Yu,S) (15)

where we have used H(Yu,S |Xu) = 0. Inserting (15) into (10),
and using |β(S)| ≤ |E|, we have

Pr [S(m,m′) = S]

≤ (1 − εδ(n))−|E| · 2n|E|(δ+δ2) · 2−nValue(S). (16)

Inserting (16) into (8), and using the fact that the number of cuts
is less than 2|V|, we have

P e(t,m,m′)

≤ (1 − εδ(n))−|E| · 2|V|+n|E|(δ+δ2) · 2−n minS∈Λt
Value(S).

(17)

The above applies to the l-th block of transmission. We now
add the index l to ml. Let P e(m) be the average probability of
error when the (overall) message m was transmitted. We use
the union bound over all L blocks, all destinations t, and all
m′

l 6= ml to write

P e(m) ≤
L

∑

l=1

∑

t∈T

∑

m′
l
6=ml

P e(t,ml,m
′
l)

≤ L · |T | · (2nR − 1) · (1 − εδ(n))−|E|

· 2|V|+n|E|(δ+δ2) · 2−n minS∈Λt
Value(S). (18)

We thus find that the average error probability for any message
can be made small if n is large and

R < −|E|(δ + δ2) + min
S∈Λt

Value(S). (19)

Finally, we optimize over all input distributions, choose δ and
δ2 small, and choose n and L large. The result is that we can
make the overall rate approach C in (3) while at the same time
ensuring that Pe ≤ ε for any positive ε.

B. Converse

An Aref network is a special case of the networks described
in [12, Sec. 14.10]. We can thus apply [12, Thm. 14.10.1] that
we restate here.

Proposition 1: The multicasting capacity is bounded by

C ≤ max
pX1X2···X|V|

(·)
min
S∈Λ

I(XS ; Y V,S | XS). (20)

Proof: See [12, Thm. 14.10.1].
We next optimize the distribution in (20).
Lemma 1: For Aref networks, the bound (20) is optimized

by independent inputs.

Proof: For any fixed pX1X2···X|V|
(·), we have

I(XS ; Y V,S | XS) = H(Y V,S | XS)

≤ H(Y V,S)

≤
∑

u∈β(S)

H(Y u,S) (21)

where the first step follows because the network is determin-
istic, and the other steps because conditioning cannot increase
entropy. Furthermore, by replacing the input joint distribution
by the product of its marginals, the mutual information in (20)
is exactly the sum of the entropies in (21). That is, one can
restrict attention to independent inputs.

We remark that both Proposition 1 and Lemma 1 apply to
cyclic Aref networks as well as acyclic ones. Finally, note that
the right-hand side of (21) is Value(S). Hence, we have the
result that (3) is an upper bound on C.

C. Discussion

For the usual deterministic networks without broadcasting,
one can show that the multicasting capacity is

C = min
t∈T

C1,t

where C1,t is the unicast capacity from vertex 1 to vertex t.
However, for Aref networks such a relationship is not neces-
sarily true. Consider the network shown on the left in Fig. 3.
Suppose the channel from x1 to y1,2 and y1,3 is the broadcast
channel shown on the right in Fig. 3. It is easy to see that
C1,2 = C1,3 = log2(3) bits by choosing 3 out of 4 of the
input letters to have probability 1/3. The multicast capacity is,
however, only C = 1.5, and is achieved only if all 4 inputs have
probability 1/4.
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Fig. 4. An Aref network operating at rates (R0, R1, R2) and its PPL network.

V. ON SEPARATING CHANNEL AND NETWORK CODING

A practically interesting question is whether one can sepa-
rate channel and network coding. It is not so obvious how to de-
fine such separation in general networks, but for Aref networks
a natural definition is as follows. First, on the physical layer
one performs channel coding for each broadcast channel (BC)
to obtain a network comprised of point-to-point links. Second,
on the network layer one performs network coding for the re-
sulting noise-free network. We consider more details of these
layers.

Physical Layer. Suppose that vertex u has m outgoing
edges. Each of the 2m − 1 non-empty subsets of vertices can
be transmitted a different message, and all 2m−1 messages are
independent. The BC at vertex u thus has a 2m−1 dimensional
capacity region Cu.

For example, consider the BC with m = 2 shown on the left
in Fig. 4. The capacity region C1 is a 2m − 1 = 3 dimensional
region. Suppose that R1 = (R0, R1, R2) is in C1, where R0

is the common rate, R1 the rate to vertex 2, and R2 the rate
to vertex 3. Given R1, the BC can effectively be replaced by
a network of point-to-point links, PPL(R1) shown on the right
in Fig. 4. More generally, we need to introduce 2m − 1 −
m auxiliary vertices to convert a BC to a point-to-point link
network.

We apply the above conversion to Aref networks, i.e., at ev-
ery vertex u we replace the BC by a network PPL(Ru). We
call the network thus obtained a Point-to-Point Links (PPL) net-
work, and we denote its graph as G ′.

Network Layer. Network coding is performed on G ′ where
it can achieve the cut-set bound. Code constructions are known,
and have been investigated in detail in [16, 17].

A. Properties of Deterministic BCs

We list three properties of deterministic BCs.
Claim 1: The capacity of a discrete, memoryless, determin-

istic BC with Y1,2 = h1,2(X1) and Y1,3 = h1,3(X1) is the set
of non-negative (R0, R1, R2) satisfying

R0 ≤ min {I(T ;Y1,2), I(T ;Y1,3)} (22)

R0 + R1 ≤ H(Y1,2) (23)

R0 + R2 ≤ H(Y1,3) (24)

R0 + R1 + R2 ≤ min {I(T ;Y1,2), I(T ;Y1,3)}

+ H(Y1,2Y1,3|T ) (25)

where T is arbitrary, but one can restrict attention to T with
alphabet T satisfying |T | ≤ |X1| + 2.

Proof: See Problem 4.11 in [18, p. 391], and [19, 20].
Claim 2: In order to achieve

R0 + R1 + R2 = H(Y1,2Y1,3) (26)

in (25), the triple (Y1,2, Y1,3, T ) must form the following two
Markov chains:

Y1,2 − Y1,3 − T (27)

Y1,3 − Y1,2 − T. (28)

Proof: For (25) and (26) to be the same, we must have

I(T ;Y1,2) + H(Y1,2Y1,3|T ) ≥ H(Y1,2Y1,3). (29)

Rearranging terms, we obtain

I(T ;Y1,2) ≥ I(T ;Y1,2Y1,3). (30)

Equivalently, we have

I(T ;Y1,3|Y1,2) ≤ 0. (31)

The bound (31) implies that (28) forms a Markov chain. Simi-
larly, it can be shown that (27) forms a Markov chain.

We continue to write A − B − C to refer to Markov chains.
Claim 3: The triple (Y1,2, Y1,3, T ) satisfies the double

Markov relations (27) and (28) if and only if there exist func-
tions f(·) of Y1,2 and g(·) of Y1,3 such that

(i) f(Y1,2) = g(Y1,3) with probability 1 (32)

(ii) [Y1,2, Y1,3] − [f(Y1,2), g(Y1,3)] − T. (33)

Note that if f(Y1,2) = g(Y1,3) is a constant, then [Y1,2, Y1,3] is
independent of T .

Proof: See Problem 4.25 in [18, p. 402].

B. A Counterexample

We show that layering can be suboptimal. Consider the
Aref network in Fig. 5 that has the BC shown in Fig. 6 be-
tween vertices 1, 2, and 3. The meaning of the graph in Fig. 6
is that bj = h1,2(ai) if there is an edge (ai, bj). Similarly,
cj = h1,3(ai) if there is an edge (ai, cj). The edges (2, 4),
(2, 5), (3, 4), and (3, 5) in Fig. 5 represent point-to-point links
with the labeled capacities.
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Fig. 5. An Aref network for which separating channel and network coding is
suboptimal.
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Fig. 6. The broadcast channel between vertices 1,2, and 3 in Fig. 5.

Claim 4: The multicast capacity of the network shown in
Fig. 5 is C = 2, and one can achieve this rate only if the in-
put X1 is uniform.

Proof: Suppose X1 is uniform. We compute
H(Y1,2Y1,3) = 2, H(Y1,2) = 1.5, and H(Y1,3) = 1. We fur-
ther find that minS∈Λ Value(S) = 2. However, we also have

C ≤ max
PX1

(·)
H(X1) = 2. (34)

Moreover, if X1 is not uniform, then H(X1) < 2.

We continue by restricting attention to uniform X1.

Definition 1: (See Problem 3.12 in [18, p. 350].) The joint
distribution the random variables X and Y is indecomposable
if there are no functions f(·) and g(·) with respective domains
X and Y so that

• Pr{f(X) = g(Y )} = 1 and
• f(X) takes at least two values with non-zero probability.

Claim 5: If the input distribution to the BC in Fig. 6 is uni-
form, then the joint distribution of Y1,2 and Y1,3 is indecompos-
able.

Proof: Suppose there are functions f(·) and g(·) with re-
spective domains Y1,2 and Y1,3 and Pr{f(Y1,2) = g(Y1,3)} =
1 such that g(c1) 6= g(c2). Since f1,2(a1) = b1 and f1,3(a1) =
c1, it follows that f(b1) = g(c1) and f(b2) = g(c2). But this
would imply g(c1) = g(c2), contradicting our hypothesis.

Next, let the point (R0, R1, R2) be a point in the capacity
region of the BC in Fig. 6. We perform channel coding as spec-
ified above, and obtain the PPL networks shown in Fig. 7.

Claim 6: The PPL networks in Fig. 7 all have multicast ca-
pacity less than 2.
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Fig. 7. The PPL network for the network for the Aref network in Fig. 5

Proof: One achieves a multicast rate of 2 only if

R0 + R1 + R2 = H(Y1,2Y1,3) = 2.

It follows by Claims 2 and 3 that there exist functions f(·) and
g(·) satisfying (32) and (33). However, by Claim 5 it follows
that g(·) is constant and, hence, that T in Claim 1 is independent
of [Y1,2, Y1,3]. Using (22), this means that R0 = 0. Applying
the cut-set bound for the cuts S = {1, 3, 5} and S = {1, 2, 4}
with R0 = 0, we obtain

R1 + 0.5 ≥ 2

R2 + 1 ≥ 2

These bounds imply that R1 +R2 ≥ 2.5, which contradicts the
condition R1 + R2 ≤ H(Y1,2Y1,3) = 2.

Claim 6 shows that layering cannot achieve a rate of 2.

VI. CONCLUSIONS

We have shown that the multicast capacity of acyclic Aref
networks has a max-flow, min-cut interpretation. We have also
shown that one cannot always separate (or layer) channel and
network coding. The sub-optimality of a layering is in contrast
to networks of discrete memoryless channels [9], and certain
networks of two-way channels [8]. It remains to investigate
whether the multicast capacity of Aref Networks with cycles
also has a max-flow, min-cut interpretation.

ACKNOWLEDGMENTS

The authors wish to thank Tracey Ho and Ralf Koetter for
helpful discussions and suggestions.

APPENDIX A
ROBUSTLY TYPICAL SEQUENCES

Let X be a random variable with (discrete and finite) alpha-
bet X and distribution pX(·). Recall that the set of δ-typical
sequences with respect to X is

Tδ(X) =
{

x ∈ X n :
∣

∣πx(a) − pX(a)
∣

∣ ≤ δ · pX(a)

for all a ∈ X} .

For the technical lemmas below, we will also need to define the
support set of X to be SX = {a ∈ X : pX(a) > 0}. Also, let
µX be the smallest nonzero probability of pX(·).

Similarly, suppose we have two random variables X and Y

with respective (discrete and finite) alphabets X and Y and joint
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distribution pXY (·). The set of δ-typical sequences with respect
to X and Y is defined as

Tδ(X,Y ) =
{

(x, y) ∈ X n × Yn :
∣

∣

∣
πx,y(a, b) − pXY (a, b)

∣

∣

∣
≤ δ · pXY (a, b)

for all (a, b) ∈ X × Y}

where πx,y(a, b) is an empirical frequency defined in the ob-
vious way. We define the support set of X and Y to be
SX,Y = {(a, b) ∈ X ×Y : pXY (a, b) > 0}. We define µXY to
be the smallest nonzero probability of pXY (·).

We define the set of conditionally δ-typical sequences as

Tδ(Y |x) = {y ∈ Yn : (x, y) ∈ Tδ(X,Y )}.

The following properties of typical sequences and sets are
proved in the appendix of [15].

Lemma 2: Let 0 < δ ≤ 1 and

εδ(n) = 2|SX |e−δ2µXn/3. (35)

We have

(1 − εδ(n)) · 2n(1−δ)H(X) ≤ |Tδ(X)| ≤ 2n(1+δ)H(X)

Lemma 3: Let 0 < δ1 < δ2 ≤ 1 and

εδ1,δ2
(n) = 2|SX,Y |e−

(δ2−δ1)2

1+δ1
·µX,Y n/3

.

We have

(1 − εδ1,δ2
(n)) · 2n(1−δ2)H(Y |X) ≤ |Tδ2

(Y |x)|

|Tδ2
(Y |x)| ≤ 2n(1+δ2)H(Y |X)

where the upper bound holds for every x ∈ X n, and the lower
bound holds for every x ∈ Tδ1

(X).

Note that εδ(n) and εδ1,δ2
(n) approach zero exponentially

with n.
Lemma 4: Suppose we have Y = f(X), x ∈ Tδ(X) and

y = (f(x1), f(x2), . . . , f(xn)). We then have y ∈ Tδ(Y ) and
(x, y) ∈ Tδ(X,Y ).

Proof: We have |πx(a) − pX(a)| ≤ δ · pX(a) for
all a ∈ X . Consider a pair (a, b) ∈ X × Y . We clearly
have πx,y(a, b) = πx(a), pXY (a, b) = pX(a), and therefore
(x, y) ∈ Tδ(X,Y ).

Next, observe that the following is true if (x, y) ∈ Tδ(X,Y ):

|πy(b) − pY (b)| =

∣

∣

∣

∣

∣

∑

a∈X

πx,y(a, b) − pXY (a, b)

∣

∣

∣

∣

∣

≤
∑

a∈X

∣

∣

∣
πx,y(a, b) − pXY (a, b)

∣

∣

∣

≤
∑

a∈X

δ · pXY (a, b)

= δ · pY (b).

Thus, we find that (x, y) ∈ Tδ(X,Y ) implies y ∈ Tδ(Y ).

REFERENCES

[1] M. R. Aref, “Information flow in relay networks,” Ph.D. dissertation,
Stanford Univeristy, 1981.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Transactions on Information Theory, vol. IT-46, pp. 1204–
1216, 2000.

[3] L. R. Ford and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, pp. 399–404, 1956.

[4] G. B. Dantzig and D. R. Fulkerson, “On the max-flow, min-cut theorem of
networks,” Linear Inequalities, Ann. Math. Studies, no. 38, pp. 215–221,
1956.

[5] P. Elias, A. Feinstein, and C. E. Shannon, “A note on the maximum flow
through a network,” IRE Transactions on Information Theory, vol. 2, pp.
117–119, December 1956.

[6] R. Koetter and M. Medard, “An algebraic approach to network coding,”
IEEE/ACM transactions on networking, vol. 11, no. 5, October 2003.

[7] Z. Li and B. Li, “Network coding in undirected networks,” Proc. 38th
Annual Conf. on Information Sciences and Systems (CISS) (Princeton,
NJ), pp. 257–262, March 17-19 2004.

[8] G. Kramer and S. Savari, “Cut sets and information flow in networks of
two-way channels,” Proc. ISIT,Chicago, p. 33, 2004.

[9] S. P. Borade, “Network information flow: limits and achievability,” Proc.
2002 IEEE Int. Symp. Inform. Theory, Lausanne, Switzerland, p. 139,
June 30 - July 5 2002.

[10] C. Shannon, “A mathematical theory of communication,” Bell Syst. Tech.
J., vol. 27, pp. 379–423 and 623–656, July and October 1948.

[11] ——, “Two-way communication channels,” Proc. 4th Berkeley Symp. on
Mathematical Statistics and Probability, vol. 1, pp. 611–644, 1961.

[12] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, New York: John Wiley & Sons, Inc., 1991.

[13] R. Gowaikar, A. F. Dana, R. Palanki, B. Hassibi, and M. Effros, “On
the capacity of wireless erasure networks,” Proc. 2004 IEEE Int. Symp.
Inform. Theory, Chicago, p. 401, June 27 - July 2 2004.

[14] D. S. Lun, M. Mdard, and M. Effros, “On coding for reliable communi-
cation over packet networks,” Proc. 42nd Annual Allerton Conference on
Communication, Control, and Computing, September - October 2004.

[15] A. Orlitsky and J. R. Roche, “Coding for computing,” in IEEE Transac-
tions on Information Theory, vol. 47, no. 3, March 2001, pp. 903–917.

[16] S. Jaggi, P. Sanders, P. Chou, M. Effros, S. Egner, K. Jain, and
L. Tolhuizen, “Polynomial time algorithms for multicast network code
construction,” submitted to IEEE Trans. Inform. Theory, 2003. [Online].
Available: citeseer.ist.psu.edu/jaggi03polynomial.html

[17] T. Ho, M. Medard, J. Shi, M. Effros, and D. Karger, “On randomized
network coding,” proceedings of 41st Annual Allerton Conference on
Communication, Control, and Computing, October 2003. [Online].
Available: citeseer.ist.psu.edu/ho03randomized.html

[18] I. Csiszar and J. Korner, Information Theory: Coding Theory for Discrete
Memoryless Systems. Academic Press, NY, 1981.

[19] S. I. Gel’fand and M. S. Pinsker, “Capacity of a broadcast channel with
one deterministic component,” Problemy Peredachi Informatsii, vol. 16,
no. 1, pp. 24–34, Jan. - March 1980.

[20] T. S. Han, “The capacity region for the deterministic broadcast channel
with a common message,” IEEE Trans. Inform. Theory, vol. 27, no. 1, pp.
122–125, January 1980.


