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Abstract — Extrinsic information transfer (EXIT)
charts are a tool for predicting the convergence behav-
ior of iterative decoding of concatenated codes. The
EXIT analysis is made precise by introducing a model
of the decoding process and specifying the desired
information-theoretic quantities. The model applies
to iterative decoding of parallel concatenated, seri-
ally concatenated, and low-density parity-check codes.
Furthermore, the model leads to a duality property
and an area property of EXIT charts. The latter prop-
erty suggests that it is advantageous to use a rate-one
inner code when iteratively decoding serially concate-
nated codes.

I. INTRODUCTION

Extrinsic information transfer (EXIT) charts predict the
convergence behavior of iterative decoding and detection
schemes [1]. Experience suggests the charts are accurate, but
there is a lack of proofs explaining why they work. The main
purpose of this paper is twofold: first, to introduce a model
for analyzing EXIT charts, and second, to prove properties of
EXIT charts that explain some of the observations that have
been made by simulations.

We consider the following example of an EXIT chart to
demonstrate the use of the tool. Suppose we transmit a mes-
sage using a low-density parity-check (LDPC) code [2, 3].
Such a code is often represented by a bipartite graph whose
left vertices are called variable nodes and whose right vertices
are called check nodes [4, 5]. Suppose the variable and check
nodes have degree 2 and 4, respectively, so that we have a
(2,4)-regular LDPC code. The code has a design rate of 1/2
and, as is usually done, we assume the code is long and its
interleaver has large girth.

Suppose we transmit the code words over a binary era-
sure channel (BEC) with erasure probability q. The reason
for studying the BEC is because a belief-propagation decoder
passes only one of three probabilities: 0, 1 and 1/2 (erasure).
As a consequence the EXIT functions can be computed ex-
actly and, in fact, the transfer functions are one minus the
fraction of erasures being passed from one side of the graph
to the other. Hence the BEC EXIT analysis reduces to that
of [4]. Fig. 1 shows the EXIT functions when ¢ = 0.3 and
q = 0.5. The curve for the check nodes is the one starting
at 0 on the IS axis, and its functional form is I§ = (I)3.
The curve for the variable nodes depends on g and is given by
Ip=1-—q-1-1%).

The decoding trajectories are depicted in Fig. 1 by the
dashed lines marked with arrows. For instance, when ¢ = 0.3
we begin on the I§ axis at 1 — ¢ = 0.7 and move right to
the check node curve. We then move up to the variable node
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Fig. 1: EXIT functions for a (2,4)-regular LDPC code on the BEC
with erasure probabilities ¢ = 0.3 and ¢ = 0.5.

curve marked ¢ = 0.3, back to the check node curve, and so
forth. It turns out that the curve marked g = 0.3 does not
intersect the check node curve. This means the decoder’s per-
edge erasure probability can be made to approach zero. In
contrast, the curve marked g = 0.5 intersects the check node
curve — this means the decoder will get “stuck”. In fact, one
can show the variable node curve intersects the check node
curve if ¢ > 1/3 and does not intersect it otherwise. The
erasure probability ¢ = 1/3 is therefore a threshold for the
decoder. Observe that the code design rate is 1/2 while the
capacity of a BEC with erasure probability 1/3 is 2/3. Thus,
(2,4)-regular LDPC codes do not approach capacity with it-
erative decoding. We remark that it is known that irregular
LDPC codes can approach capacity on the BEC [4].

Suppose next that we transmit the code words over a dis-
crete memoryless channel (DMC) that is not the BEC. Now
an exact analysis of the belief-propagation decoder can be dif-
ficult because the probabilities being propagated take on a
growing number of values with the number of iterations. One
technique for analyzing such cases is to use density evolution
[5]- A second technique is to use EXIT charts, and it is this
approach we consider here.

This paper is organized as follows. In Section II we describe
the model and derive certain information-theoretic quantities.
The model can be used for any DMC. Section III gives two
properties of EXIT charts when the a priori information is
modeled as coming from a BEC. The second property relates
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Fig. 3: A general decoding model.

the area under an EXIT curve to certain entropies. Sec-
tions IV and V show how the area property can help guide
the design of serially concatenated and LDPC codes.

II. MODEL AND EXTRINSIC INFORMATION
A. DECODING MODEL

The basic decoding model is shown in Fig. 2. A binary sym-
metric source produces a vector u of k independent informa-
tion bits each taking on the values 0 and 1 with probability
1/2. A rate k/n encoder maps u to a binary length-n code
word z. The decoder receives two vectors: a noisy version y of
z and a noisy version w of v, where v is either u or z. We call
the z to y channel the communication channel, and the v to
w channel the eztrinsic channel. The latter name emphasizes
that w originates from outside the communication channel
[6]. Usually both channels are memoryless, although some of
our results remain valid when the communication channel has
memory.

The model of Fig. 2 might seem unusual to the reader who
is used to seeing a priori information enter the decoder as
independent information from a second source. In fact, this a
priori information is represented by w. We prefer to consider
w as the output of a channel because this makes the relation
between w and u explicit.

A somewhat more general model than that of Fig. 2 is
shown in Fig. 3. To see that Fig. 3 includes Fig. 2 as a special
case, let Encoder 1 be the Encoder in Fig. 2. Then if v = u we
make Encoder 2 the identity mapping, and if v = z Encoder 2
is simply Encoder 1. However, when dealing with LDPC codes
we will make Encoder 1 the identity mapping and Encoder
2 a repeat code or parity-check code. This situation is not
included in Fig. 2.

We continue by considering Fig. 3. Let m be the length
of v. The decoder uses y and w to compute two estimates of
v: the a posteriori values d and the eztrinsic values e. We
interpret the symbol w; as giving a priori information about
the random variable V; with log-likelihood-ratio

P(w; |V; =0)

Plu; [V, = 1)° )

a; =log
The decoder we are mainly interested in is the maximum
a posteriori (MAP) bit decoder [7] that computes the soft
output log-likelihood-ratio
Pr(V; = 0|y, w)
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for all j. For convenience, we write Y for the vector v with

the jth term removed, i.e., vj;; = [v1,-.. ,¥j-1,Vj+1,- .. , Um].
We expand the numerator in (2) as
Pr(V; =0|y,w)= Y  Plu|yw)

i v; (w)=0

= 2

u: v (u)=0

= 2

u: vy (u)=0
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>

uz v; (w)=0
P(wp | v (w) Py | z(w), 3)

where v(u) and z(u) are vectors corresponding to u, and where
the last step follows because the extrinsic channel is memory-
less. Expanding the denominator of (2) in the same way and
inserting the result into (2), we have

P(u)

L Pr(w|V; =0)
45 =108 by [V, = 1)

Do vy (w—0 P lv (W) Py | z(w)
EE: vj(u)=1 P(M[j] |QU](2))P(Q|£(M))
=a; +ej, (5)

+ log (4)

where e; is the ezxtrinsic value about v; defined as the sec-
ond term on the right side of (4). We will consider e; as a
realization of the random variable Ej;.

It turns out that for iterative decoding of parallel concate-
nated codes we must define e; differently than above if wu; is
transmitted as a systematic bit xy. For such positions j we
must use

2 v =0 Pwg v (W) Py, | 210 (w)
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e; =log

where we have removed c¢; = log[P(ye|u; = 0)/P(ye|u; = 1)]
from the e; of (5). Thus, we now have

dj = aj +cj +ej. (7)

B. EXIT CHARTS

An iterative decoding scheme usually has two decoders that
pass their extrinsic values to each other. More precisely, the
e; from one decoder pass through an interleaver and are fed
to the other decoder as a prior: values a. We model a as
being output from a memoryless channel as in Fig. 3. The
EXIT chart will depict how much each decoder “amplifies”
the knowledge about the v; as measured from the decoder
inputs a; to the decoder outputs e;.

We begin with the information transfer from the v; to the
e;. For this we compute the average of the mutual informa-
tions I(Vj; E;) across the decoder, i.e.,

Ig =

> TV Ey). (8)

The value Ig is called the average extrinsic information out
of the decoder. Consider first the e; of (5). Observe from (4)



that e; is a function of y and wyp, and that w;.; and ay;) are

interchangeable since one defines the other. The combination
of these two results means that

1(V;; Ej) SI(VJ;XEU])=I(VJ';XAU])- 9)

The following proposition shows that the inequality in (9) is
in fact an equality.

Proposition 1 For e; defined as in (4) and (5) we have

I(Vj; Bj) = 1(Vi; Y. Apy). (10)
Using this proposition, we can write
1 m
Ig = m ;I (V};XA[J]) . (11)
=

We remark that for non-MAP bit decoders the “extrinsic in-
formation” put out by the decoder will usually not satisfy (9)
with equality.

Next, consider the usual parallel concatenated code for
which all the u; are transmitted as systematic bits and v = u.
For such codes we must use the e; of (5) for all j. For sim-
plicity, let u be the first k bits of z so e; is a function of Yy

and ag;)- Furthermore, as in Proposition 1 one can show that

Ig = %ZI (VJ'QXU] Am) . (12)

j=1
In the sequel we shall consider only the definition (11) to avoid
writing everything twice. The extensions to parallel concate-
nated codes with systematic bits follow from the other deriva-
tions.

Consider now the information transfer from the v; to the
aj. For this we compute the average a priori information
defined as

m

1
I := EZI(‘/JaAJ) _I(%’Al)’

=1

(13)

where the second step follows because all the V; are assumed
to have the same distribution. An EXIT chart plots Ig as a
function of In. Again, the idea is that this transfer function
quantifies how well the decoder improves the knowledge about
the v;. We illustrate this with the following examples.

Example 1 (Repeat Codes with BECs) Consider the
model of Fig. 2 with a length-n repeat code.  Suppose
the communication and extrinsic channels are BECs with
erasure probabilities q and p, respectively. We thus have
I, =1(Vi;A1) =1—p. Furthermore, for the case v = x we
have

1 n
Ie = — ZII(XJ;XA[J'])
iz

= H(X1) - H(X1|Y Apy)

n, n—1

=1-q"p"", (14)

where the second step follows by the symmetry of the code. We
plot Iy versus 14 in Fig. 4 where we have chosen ¢ = 0.9 and
n = 2,3,4. Observe that the repeat codes perform best at low
values of I4 in the sense that the slopes of the curves are large
there.
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Fig. 4: EXIT functions for repeat codes of length n = 2,3,4. The
communication and extrinsic channels are either both BECs (solid
lines) or both BSCs (dashed line).

Example 2 (Repeat Codes with BSCs) Consider again
Fig. 2. Suppose we have a length-2 repeat code, and that
the communication and extrinsic channels are binary symmet-
ric channels (BSCs) with crossover probabilities € and &, re-
spectively. We now have In = I (Vi;A1) = 1 — h(d) where
h(z) = —xlogy(z) — (1 — x)log, (1 — x) is the binary entropy
function. For the case v =z we use (11) to compute

Ig=1-— {[(1 —€)’(1—8) + €] h ((1 _ 5)2(i2i ) + e26>

e(1-96) )

+[1 =5+ —-)]h ((1 — 9%+ e(1-9)

+2e(1—€)h(d)}. (15)

We plot Ir versus Ia in Fig. 4 where we have chosen € =
0.316. This choice makes the capacity of the BSC with output
y approzimately the same as the capacity of the BEC of Ez-
ample 1, 5.e., C=1— h(0.316) =~ 0.1. Observe that the BSC
curve is quite close to the BEC curve but lies below it.

Example 3 (Parity-check Codes with BECs) Consider
once again Fig. 2 and suppose the code is a parity-check code.
For the case v =z we have

Ig = %Xn:I(Xj;Xém)
=H(X1) - H(X1|Y Ap)
=1-[1-(1-9)—q(1—ap)""]
=(1—q)+q(l—qp)" " (16)

The EXIT functions for (16) with ¢ = 1 and n = 2,3,4 are
plotted in Fig. 5, where I =1 — p. Observe that the parity-
check codes perform poorly at low I, but progressively better
as Ia increases.
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Fig. 5: EXIT functions for parity-check codes of length n = 2, 3,4.
The communication and extrinsic channels are both BECs, but the

former channel gives no information as ¢ = 1.

Example 4 (LDPC Variable Nodes with BECs)
Constder the variable nodes of an LDPC code and suppose
they have degree d,. In a factor graph [8] these nodes have one
edge connected to a channel output and d, edges connected
to the interleaver. We can thus use the model of Fig. 3 with
u = x being one bit, and Encoder 2 a length-d, repeat code.
We again make the communication and extrinsic channels
BECs with erasure probabilities q and p, respectively. We
compute (11) as

Ig=1—gp™ ", (17)

or In(Ia) =1—q(1 —14)* 7. Fig. 1 shows two ezamples of
such curves when d, = 2 and ¢ = 0.3,0.5.

Example 5 (LDPC Check Nodes with a BEC)
Consider the check nodes of an LDPC code and suppose
they have degree d.. We use the model of Fig. 3 with y =0
and with Encoder 2 o length-d. parity-check code. Let the
extrinsic channel be a BEC with erasure probability p so (11)
simplifies to

Ip=(1—p)¥ "

Thus, the EXIT curve is Ig(I1a) = (Ia)%™". An exzample of
such a curve with d. = 4 1is plotted in Fig. 1.

(18)

C. MIXTURES OF CODES

Suppose we encode the information vector u by splitting it
into several vectors u;,u,,... ,u, , and then encoding each
of these separately. Let v, and e;, 4 = 1,...,n,, be those
portions of the respective v and e corresponding to u,;. Denote

the length of v; by ¢;. Equation (8) then simplifies to
i
Ig = —
B=)

£;
[% ZI(V%J';EM)]
i=1 tj=1
= i’yi.’m,
i=1

Ny

(19)

where V;; and E;; are the jth entries of V, and E,, respec-
tively, v; = &-/m and Ig; = (1/&-) Ef‘zl I(V;;j;Eij). Observe
that Ig; is simply the average extrinsic information for the ith
component code. Thus, the EXIT function I is the average
of the component EXIT functions Ig;.

Example 6 (Irregular LDPC Codes with BECs) An

irregular LDPC code [4] can be viewed as having a mizture of
repeat-codes on the left and a mizture of parity-check codes
on the right. For ezample, suppose half of the variable nodes
have degree 2 and the other half have degree 8. Because (8)
is an average over the edges, and not the nodes, we first
compute that 40% and 60% of the edges are connected to

degree-2 and degree-3 variables modes, respectively. Thus,
using Ezample 4 we find that (19) simplifies to
Iz =1—q(0.4p+0.6p°), (20)

where y1 = 0.4 and 2 = 0.6. The v; are here the same as the
left degree sequence coefficients A1 of [4]. One can similarly
derive the EXIT function for a mizture of check nodes.

I1I. ERASURE CHANNEL EXIT PROPERTIES

The rest of this document is concerned with the special case
where the a priori values w are modeled as coming out of a
BEC. We derive two kinds of properties of EXIT functions for
such situations. The first concerns a relation between a linear
code and its dual, and the second relates the area under an
EXIT function to the code rate.

A. DUALITY PROPERTY

The following theorem can be proved by using combinatorial
arguments.

Theorem 1 Consider Fig. 2 and suppose y = 0 and the ez-
trinsic channel is a binary erasure channel. Then the EXIT
function Ig(-) of a linear code and its dual are related as fol-
lows

(I = 1—In(1 — L), (21)
where I (+) is the EXIT function of the dual code and Ia =
1—p.

This theorem can be generalized to the case where the com-
munication channel is a BEC. As an example, consider the
repeat code curve 1 —¢"p" ! in (14). Setting ¢ = 1 we obtain
Ig(1—p) =1—p"~'. The dual code is the parity check code
which according to (16) has Iz (1 —p) = (1 —p)" " for ¢ = 1.
But this is the same as 1 — Ig(p), as required by Theorem 1.

B. AREA PROPERTY

The following theorem can be proved by using the information
theoretic identity derived in [9]. Let A = fol Ig(I4) dIa be
the area under the EXIT function.

Theorem 2 Consider Fig. 8 and the extrinsic information
(11). For any codes (linear or not) and any communication
channel (memoryless or not) we have

1 (& 1
A=— (]2_31 H(Vj)> - —H(V[Y) (22)
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Fig. 7: An iterative decoder for a serially concatenated code.

if the extrinsic channel is a BEC. In particular, if Encoder
2 in Fig. 8 is a linear code whose generator matriz has no
all-zeros columns, then (22) becomes

1

A=1-—H(V[Y). (23)

For example, consider the repeat code curve 1 —¢"p"~! in
(14). The area under this curve is 1 — ¢" /n. But we also have
m=nand HV|Y) = H(X|Y) = q", so (23) gives the desired
result. The impact of Theorem 2 is that it restricts the form
of the EXIT function. Moreover, one can often directly relate
A to the rate of the code, as shown next.

IV. EXIT FOR SERIALLY CONCATENATED CODES

A serially concatenated code [10] has an [N, K| outer code,
meaning the outer code has 2% code words of length N, and an
[n, k] inner code with k = N (see Fig. 6). The K information
bits u°*?, are mapped by the outer encoder to N coded bits
z°“*. An interleaver permutes the bits in z°“* to u** and the
inner encoder maps u'" to the length-n vector 3. Thus,
the overall rate of the code is R = RoyiRin = K/n where
Royt = K/N = K/k and R;, = k/n. We consider only the
case where both codes are linear.

The iterative decoder for the serially concatenated code is
shown in Fig. 7. Consider first the outer decoder for which
we use the model of Fig. 2 with v = z = z°* and y = 0.
Theorem 2 tells us that for a BEC the area under the outer
code curve I3 is, using m = N and H(V) = K,

Aot =1 — K/N =1 — Roys. (24)

Next, for the inner decoder we set v = u = u'™. Theorem 2

now tells us that the area under the inner code curve I} is,
using m = k = H(X) and H(V|Y) = H(X|Y),

Ain = I(X;Y)/k = [I(X;Y)/n] /Rin. (25)

Equations (24) and (25) have the following implications.
Recall that for iterative decoding to be successful we re-
quire the outer code curve to lie above the inner code curve.
For serially concatenated codes this means one must have
1 — Aout < Ain, where Aoy and A;, are the respective areas
under the outer and inner EXIT functions. This area inequal-
ity can be rewritten as Rout < I(X;Y)/k or
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Fig. 8: EXIT functions for a repeat-accumulate code on the BEC
with erasure probabilities ¢ = 0.3 and ¢ = 0.5.

where C is the capacity of the communication channel. Thus,
we get the satisfying, if not surprising, result that the overall
rate must be less than capacity for successful decoding [11].
However, the bound (26) says much more because I(X;Y)/n
equals capacity only if the inner code has rate one. Thus, any
inner code with R;, < 1 has an inherent capacity loss which
the outer code cannot recover. This suggests that for serially
concatenated codes it is a good idea to use a rate-one inner
code when iteratively decoding (see, e.g., [12, Sec. III]). We
consider such an example next.

Example 7 (Repeat-accumulate Codes with BECs)
A repeat-accumulate code [13] has an accumulator as the

inner code and a mizture of repeat-codes as the outer code.
The EXIT function of the accumulator is (see [14])

1—gq 2
1—qIQ" ’

where I =1 —p. This code has Rin, =1 and I1(X;Y)/n =
1—q for allm. It is easy to check that the area under the curve
(27) is precisely C = 1—q. For the outer code we connect 40%
of the edges to degree-2 variable nodes and 60% of the edges to
degree-3 variable nodes. We thus have Roy: = 0.4 and, using

(14) and (19),

Ir = [ (27)

It =1—-04p—0.6p> (28)
The area under the curve is precisely 1 — Ryt = 0.6.

The EXIT chart is plotted in Fig. 8 for erasure probabil-
ities ¢ = 0.3 and ¢ = 0.5. Observe that for both of these q
the decoder’s per-edge erasure probability can be made to ap-
proach zero. The threshold for this code is in fact g =5/9 for
which the capacity is C = 4/9 = 0.4444. Thus, these repeat-
accumulate codes do mot approach capacity. We remark that
a more general class of repeat-accumulate codes can approach
capacity on a BEC [14].

As a final note, observe that for a rate-one code the area
difference A;ip — (1 — Aout) is exactly C — R. In other words,



the area between the curves corresponds exactly to the rate
“loss”. This means that to approach capacity one must match
the outer code curve ezactly to the inner code curve. Further-
more, the smaller the area between the curves the larger the
number of iterations that are needed to achieve a desired per-
edge erasure probability. The EXIT chart thus shows graphi-
cally how the decoding complexity (in terms of the number of
iterations) increases as one approaches capacity.

V. EXIT ror LDPC CODES

As we have seen in Examples 4, 5 and 6, equation (11) applies
to both regular and irregular LDPC codes. Our aim in this
section is to relate the area under the LDPC curves to the
code rate in a way analogous to (24) and (25). Observe that
the design rate R of the code is determined by the number of
variable nodes n. and the number of check nodes n, via

R=(n, —ne)/ny, =1—nc/n,. (29)

Let d, and d. be the average degree of the variable and check
nodes, respectively. Thus the number of edges is both n,d,
and n.d., giving

R=1-d,/d.. (30)

Furthermore, for the areas A, and A. under the respective
variable and check node curves we use Theorem 2 to compute

v 1—
Av_l—:;_l— dC, (31)
ne(de — 1 1
ac=1- el 1 (32)

where H(V|Y) = H(X|Y) = n, ¢ for the variable nodes and
H(V|Y)=H(V) = nc(d. — 1) for the check nodes. From (31)
and (32) we obtain the following relation between the EXIT
areas and the rate of the code:

1-A4, 1-C

Ac  1-FR’
Equation (33) has the following implications. For the de-
coding to be successful we require the variable node curve to lie
above the check node curve. This means 1 — A4, < Ac, which
is possible only if R < C. Furthermore, any area gap between
the two curves translates into a rate “loss”, except now this
loss is not given by a difference in areas as for serially concate-
nated codes, but by equation (33). Thus we have the result
that to approach capacity one must match the variable node
curve ezactly to the check node curve (see also [15, 16, 17]).

(33)

REFERENCES

[1] S. ten Brink, “Convergence of iterative decoding,” FElectron.
Lett., vol. 35, no. 10, pp. 806-808, May 1999.

[2] R.G. Gallager, “Low density parity check codes,” Sc.D. thesis,
Sept. 1960.

[3] R.G. Gallager, “Low-density parity-check codes,” IRE Trans.
Inform. Theory, vol. 8, pp. 21-28, Jan. 1962.

[4] M.G. Luby, M. Mitzenmacher, M.A. Shokrollahi, and D.A.

Spielman, “Efficient erasure correcting codes,” IEEE Trans.
Inform. Theory, vol. 47, no. 2, pp. 569-584, Feb. 2001.

[5] T.J. Richardson and R.L. Urbanke, “The capacity of low-
density parity-check codes under message-passing decoding,”
IEEE Trans. Inform. Theory, vol. 47, no. 2, pp. 599-618, Feb.
2001.

[6] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of
binary block and convolutional codes,” IEEE Trans. Inform.
Theory, vol. 42, no. 2, pp. 429-445, March 1996.

[7] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE Trans.
Inform. Theory, vol. 20, pp. 284-287, March 1974.

[8] F.R.Kschischang, B.J. Frey, and H.-A. Loeliger, “Factor graphs
and the sum-product algorithm,” IEEFE Trans. Inform. Theory,
vol. 47, no. 2, pp. 498-519, Feb. 2001.

[9] S. ten Brink, “Exploiting the chain rule of mutual information
for the design of iterative decoding schemes,” in Proc. 39th
Ann. Allerton Conf. on Commun., Control, and Computing,
Monticello, Urbana-Champaign, Ill., USA, Oct. 2001.

[10] S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Se-
rial concatenation of interleaved codes: performance analysis,
design, and iterative decoding,” IEEE Trans. Inform. Theory,
vol. 44, no. 3, pp. 909-926, May 1998.

[11] C.E. Shannon, “A mathematical theory of communication,”
Bell Syst. Tech. J., vol. 27, pp. 379423 and 623-656, July and
October 1948, Reprinted in Claude Elwood Shannon: Collected
Papers, pp. 5-83, (N.J.A. Sloane and A.D. Wyner, eds.) Piscat-
away: IEEE Press, 1993.

[12] S. ten Brink, “Code doping for triggering iterative decoding
convergence,” in Proc. 2001 IEEFE Int. Symp. Inform. Theory,
Washington, D.C., USA, June 2001, p. 235.

[13] D. Divsalar, H. Jin, and R.J. McEliece, “Coding theorems for
‘turbo-like’ codes,” in Proc. 36th Allerton Conf. on Comm.,
Control, Comp., Allerton, Illinois, USA, Sept. 1998, pp. 201—
210.

[14] H. Jin, A. Khandekar, and R. McEliece, “Irregular repeat-
accumulate codes,” in Proc. 2nd Int. Conf. Turbo Codes, Brest,
France, Sept. 2000.

[15] M.A. Shokrollahi, “New sequences of linear time erasure codes
approaching the channel capacity,” in Proc. 13th Conf. Applied
Algebra, Error Correcting Codes, and Cryptography (Lecture
Notes in Computer Science, Berlin, Germany, 1999, pp. 65-76,
Springer Verlag.

[16] T.J. Richardson and R.L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE
Trans. Inform. Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

[17] P. Oswald and A. Shokrollahi, “Capacity-achieving sequences
for the erasure channel,” in Proc. 2001 IEEE Int. Symp. In-
form. Theory, Washington, D.C., USA, June 2001, p. 48.



