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Abstract—This work aims at facilitating the integration of
industrial robots and other devices such as their gripper tools at
small and medium-sized enterprises (SMEs). For this purpose,
an intuitive user interface for the skill-based instruction of
robot systems is combined with standardized OPC UA-based
skill interfaces that support various hardware and software
resources from different manufacturers. Special emphasis is
laid on supporting different user groups with varying levels
of expertise. Production system engineers are provided with a
detailed graphical user interface (GUI) for hierarchically defining
new skills by combining preexisting ones. System operators
receive a simplified view with limited complexity for process
instruction and changing high-level task parameterizations. The
skills and relevant semantic context knowledge about products,
processes, and resources (PPR) are formally represented in OWL
ontologies to enable hardware-agnostic process descriptions that
can be deployed to different production environments, while
automatically deriving parameterizations for skill invocations.
The proposed concept has been qualitatively evaluated in two
real-world robot workcells based on a smartphone accessory
packaging use case.

Index Terms—Intuitive Robot Programming, Semantic Process
Models, Standardized Skill Interfaces

I. INTRODUCTION

Small and medium-sized enterprises (SMEs) face frequent
product changes due to their customers’ needs and have to
reprogram their robot manufacturing systems more frequently.
However, the intuitive adaption of robot programs to new
product configurations is still challenging due to the large
variety of hardware types from different manufacturers with no
unified programming interfaces [1], [2]. With this background,
our work aims to simplify the integration of industrial robots
into SMEs by reducing the time and expertise required to
reconfigure and adapt systems to new processes by following
a Plug-and-Play approach [3].

For the setup and operation of production workcells con-
sisting of different robots, tools, and sensors, it is currently
necessary to implement proprietary interfaces for each com-
ponent from the corresponding manufacturer. This effort can
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Fig. 1: Workflow for the intuitive instruction of robot systems:
Defining additional skills in a GUI (optional), instructing a
robot system via skill sequences in a second GUI, mapping of
generic task representations to skill implementations and their
parameters, and invoking identified skills via OPC UA.

be significantly reduced by firstly using a common commu-
nication protocol such as the open, standardized OPC UA
middleware, and by secondly defining and standardizing the
programming and information model of involved devices ac-
cessed over this protocol. For OPC UA, the standardization
of information models is achieved through the definition of so
called OPC UA Companion Specifications which have been
introduced to facilitate the flexible exchange of devices such
as image processing or robotics from different manufacturers
within the framework of production system engineering [4].
Since the current focus of Companion Specifications related
to industrial robots and grippers primarily revolves around
data reading for monitoring purposes, we base our integration
approach on the extended device information model proposed
in [5] that includes and defines active control of device motions
via a standardized skill interface. Hence, we employ OPC UA
and newly developed implementations of this extended device
information model to facilitate the hardware-agnostic, skill-
based programming approach presented in this work.

To strengthen human-robot collaboration in SMEs, it is
important to enable the intuitive programming of robots [6].
Robot systems that attempt to meet this requirement for simple
programming by end users are already being sold. However,
these are usually only adapted to specific robot types and
manufacturers and cannot simply be extended with new skills.

In our approach (see Fig. 1), a standardized skill library for
devices in robot systems is created that represents the capabili-
ties of commonly used components via standardized interfaces
(e.g., robot, parallel gripper, vacuum gripper). The skills are
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semantically modeled in a knowledge base to augment their
formal descriptions with additional context knowledge about
products, processes, and resources (PPR). Building on this, a
graphical user interface (GUI) for system integrators is adapted
and integrated for programming new high-level composite
skills (for specific applications) via the aggregation of low-
level basic skills of robots and their tools. A second GUI is
implemented for end users to leverage their domain expertise
in production via the intuitive instruction and parameterization
of manufacturing processes with the existing skills.

II. RELATED WORK

A. Skill-Based Programming

A skill is defined as the basic functionality that a system
component makes available to other components [7], [8], [9],
[10], which has various properties and parameters that need to
be set for execution. Programming skills and skill sequences
can be facilitated by GUIs, e.g., ROS Commander [11] or
FlexBE [12]. These approaches use visual representations of
hierarchical state machines or state transition diagrams [13] to
visualize the execution flow of skill executions as intuitively
as possible. In our previous works on RAZER [14], RAF-
CON [15], or intuitive robot instructions [16], the users are
supported by intuitive robot programming interfaces.

Currently, graphical skill-programming interfaces are also
provided by cobot manufacturers, such as Franka Robotics
or Universal Robots, but they only support rigid procedures
with limited interfaces to their own robot models. In addition,
some software companies offer programming environments for
multiple robot models, e.g., drag&bot1, ArtiMinds2, and Mu-
jin3. However, the possibilities of generic robot programming
here are limited to the functionalities provided by the robot
manufacturer in its controller. Furthermore, although programs
are typically created through a unified interface, they still only
work for specific robot types and are not easily transferable
to other robot systems.

B. Control of Robot Systems

The control of industrial robot arms currently mainly occurs
via proprietary programming languages of their respective
manufacturers. Program code written for robots of one man-
ufacturer is not transferable to robots of others, resulting in a
high effort to integrate different robots, tools, and sensors.
One approach to achieve vendor-agnostic control of robot
systems is to control robots over a real-time joint posi-
tion, velocity, or torque streaming interface. This is typically
done in research and academia, e.g., ros control [17] and
the Robotics Library4 [18], but more recently Intrinsic5 is
also known to follow this path. This approach enables (and
necessitates) to implement part of the trajectory planning
and control in a vendor-agnostic way outside a vendor’s

1https://www.dragandbot.com
2https://www.artiminds.com
3https://mujin-corp.com
4https://www.roboticslibrary.org
5https://www.intrinsic.ai/capabilities

(a) Type 1 box with CN charger. (b) Type 2 box with DE charger.

Fig. 2: Product variants of smartphone packages with different
shapes and accessory types in our real-world use case.

control box. While the benefits are vendor-agnostic, unified
motion parameterization (e.g., treatment of singularities and
multiple IK solutions), advanced robot trajectory control (e.g.,
jerk optimization), and potentially more advanced collision
detection and motion planning, the main drawback is that
only a few robot vendors provide an industrial-grade and
public real-time interface which allows this kind of control
(including, e.g., access to kinematic calibration data of the
robot). Furthermore, the higher computational load and the
increased deployment complexity for achieving a deterministic
real-time control environment on an industrial computer (next
to the robot control box) needs to be considered.

Another approach would be to generate vendor-specific
program code from a vendor-agnostic task specification. This
approach is followed, e.g., by ArtiMinds. It avoids deployment
complexity with the mentioned drawback of relying on the
robot’s inherent control modes and capabilities.

With [5] and in the spirit of OPC UA Companion Specifica-
tions, we follow a similar approach, but replace vendor-specific
program generation with vendor-specific OPC UA adapters
and a simple but sufficient vendor-agnostic programming
model on the level of OPC UA. Aside from the benefits
of OPC UA’s information model, which can be queried by
any other part of the system, it is also a more semantically
meaningful representation of a robot as a resource (together
with other resources following the PPR paradigm) in an overall
robot system. In addition to previous work like [19], where
the OPC UA middleware serves as the basis for connecting
hardware components, we also consider the programming of
complex skills from basic ones in a GUI for expert users.

C. Semantic Description Models

The semantic skill paradigm extends the definition of func-
tional interfaces of skills to enable the reusability of already
implemented functionalities. Semantic information is modeled
to reduce the integration effort of hardware and software
components from different manufacturers into a complex
overall system. This includes fundamental information such as
kinematic and geometric models of components [19] as well
as their capabilities [20]. In the context of industry, standards
of the Semantic Web have been employed for such information
models [21].
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Fig. 3: Overall system architecture of the proposed approach. Hardware from various manufacturers is abstracted via
standardized OPC UA skill interfaces. The skills are semantically described and can be hierarchically composed into higher-
level skills. Intuitive GUIs enable the programming of skills and instruction of processes for different user groups.

III. USE CASE

For the demonstration of the proposed approach for an
intuitive-to-instruct and hardware-agnostic robot system, the
packaging of smartphone accessories has been chosen as a
use case. Currently, this is typically carried out manually
due to a high variation in the product configurations and
a comparative easiness in instructing a human compared to
programming an automation system, especially when taking
into account variability with respect to packaging for different
target markets as well product variants. Our scenario consists
of the following process steps: 1) taking the bottom of a
box from an infeed tray and placing it in a working fixture,
2) taking a smartphone charger from an infeed tray and placing
it into the box, 3) taking the lid of a box from an infeed tray
and placing it on the box to close it, and 4) placing the final
assembled box in an outfeed tray. Fig. 2 shows two example
smartphone accessory package variants whose assembly can
be semantically described in process models that link to the
different involved product models of the subparts. We focus
on the packaging task for a charger, while packaging tasks for
other subparts would be handled analogously.

In the following Sections IV, V, VI, and VII, we will intro-
duce the main components of our concept, while continuing
with this guiding use case as an example. We defined four
desirable criteria that an intuitive-to-instruct and hardware-
agnostic robot system should fulfill and that will receive a
qualitative evaluation in Section VIII:

C1: Reuse of the same standardized OPC UA skill interface
by multiple organizations to develop interoperable imple-
mentations that can communicate with each other in the
same robot system.

C2: Reuse of the same standardized OPC UA skill interface
in different OPC UA adapters for different hardware
component types, such as robots from different manu-

facturers in two workcells being controlled via the same
CartesianLinearMoveSkill interface.

C3: Reuse of a semantic process model in different workcells
through hardware abstraction, such as the same semantic
assembly process being performed in two workcells with
different hardware configurations.

C4: Reuse of generic software components, such as the
knowledge base and the semantic manufacturing execu-
tion system in two different workcells.

IV. SYSTEM OVERVIEW

The system architecture is designed for the proposed ap-
proach for an intuitive-to-instruct and hardware-agnostic robot
system. Its main components and standardized interfaces are
shown in Fig. 3. Within our system, standardized OPC UA
interfaces are used to control the hardware via basic device
skills (see Section V). To integrate them into the intuitive
programming and instruction framework, the standardized
skills and their interfaces are formally represented in semantic
resource models (see Section VI).

The knowledge base (KB) [19] is responsible for the persis-
tent storage and interpretation of all relevant semantic informa-
tion about the production system. This includes the manufac-
turing resources, the manufacturing process and its subtasks,
as well as the product to be manufactured (see Section VI).
The KB is implemented with a GraphDB6 triplestore, which
provides an HTTP REST API for data interchange.Within our
system, the KB implements a wrapper around the triplestore
and provides an OPC UA-based interface. It enables other
components in the overall system to interact with the semantic
information via SPARQL queries and updates or more special-
ized services. The knowledge representation is modeled using
semantic description languages that were defined as ontologies

6https://www.ontotext.com/products/graphdb
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Fig. 4: The device class AR Robot for different robot models from multiple manufacturers as well as the device classes
AR Robotiq2F and AR SchmalzEcbpi for parallel and vacuum grippers. Each device class implements executable skills that
are derived from standard skill types and exhibit respective parameterization interfaces.

based on OWL 2 (Web Ontology Language). The KB also
provides reasoning functionality for the semantic information
via OWL 2 and GraphDB to detect logical inconsistencies
and automatically derive implicit facts from the explicitly
represented ones.

The semantic MES (sMES) [19] is the central system com-
ponent responsible for managing and monitoring the execution
of manufacturing processes in production environments and
utilizes the semantic information in the KB to increase system
autonomy. The hardware and software components announce
themselves via OPC UA Local Discovery to the sMES, which
detects the skills that they provide. During process execution,
the sMES calls the KB, which returns the next skill to be
invoked along with appropriate parameter values based on
the semantic description models (see Section VI). With these
results, the sMES finds, parameterizes, and invokes the next
skill, and sends its results to the KB afterwards. With this
approach, the system enables the operator to define on an
abstract level a manufacturing process that can be executed
autonomously on different hardware configurations with the
standardized skill interfaces.

Two types of GUIs have been integrated into the system
for different user groups. RAFCON [22] serves as a skill
editor interface for system integrators (see Section VII-A)
and RAZER [14] serves as as process instruction interface
for system operators (see Section VII-B). Both GUIs do not
directly interact with skill components, but primarily with
the KB to enable operators to create, monitor, modify, or
control semantic manufacturing processes. The execution of
a manufacturing process can be started by selecting it from
a list of created processes and sending its identifier to the
sMES.

V. STANDARD SKILL INTERFACES

In order to enable hardware-agnostic programming of work-
cells, hardware capabilities have to be represented and in-
terfaced with in a standardized way. To achieve the same
outcome of a hardware-agnostic task on different hardware
configurations, the effects of controlling hardware need to be
sufficiently modeled as well. Our standardized skill concept
(skill state machine, parameterization, capabilities) is based on
work by fortiss [5] and leverages OPC UA’s information mod-
eling capabilities to provide the necessary semantic integration
into the system architecture. Industrial robots and grippers
are modeled through several standardized skill types such as
LinearMoveSkill or MoveGripperSkill that are implemented
and referenced in OPC UA adapters around hardware-specific
control interfaces to the hardware. This extra software layer
is necessary as neither the current OPC UA Companion Spec-
ifications nor other industrial standards are available which
specify a standardized control and programming model of
hardware devices like industrial robots from different manufac-
turers (contrary to, e.g., the GenICam7 standard for industrial
cameras).

At the moment, our hardware adapters implement three de-
vice classes: AR Robot, AR Robotiq2F, and AR SchmalzEcbpi.
Each device class further implements various skills according
to their respective OPC UA device class definition. We reused
the skill and parameterization information models as described
in [5]. The input parameterization of a skill is derived through
specialization (isA) and interface usage (hasInterface), and
the output parameterization is derived through the provision
of a FinalResultData attribute. Some of the modeled device
skills and their input/output parameterization are sketched out

7https://www.emva.org/standards-technology/genicam

https://www.emva.org/standards-technology/genicam
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in Fig. 4 with device classes and implemented skills being
highlighted in blue.

The modeling of robot motion skills is based on
describing and modeling the type of motion (Linear-
MoveSkillType or PtpMoveSkillType) and the type of tar-
get parameterization (ICartesianMoveSkillParameterType or
IJointMoveSkillParameterType). The corresponding parame-
ters (e.g., MoveSkillType::ToolFrame) of the different types
accumulate in the final skill type definitions (e.g., Cartesian-
LinearMoveSkillType) and then form the final input parameter
set of the corresponding skill. Currently, only skills with
the interface ICartesianMoveSkillParameterType have readable
output parameters. These are modeled in OPC UA via a
FinalResultData attribute, which in this case informs about the
forces generated during the movement. The actual modeling
in OPC UA is more detailed (including optional parameters,
default values, skill state machine, derivation of types from
OPC UA standard types, etc.) and the reader is referred to [5].
The information models defined there were expressive enough
for the chosen use case and therefore no additional information
modeling on the skill level was necessary.

The gripper interfaces are structurally simpler than the robot
interfaces in terms of parameterization and mainly differ in
that the MoveGripperSkill (for approaching a finger position
with a specified gripper span) is only offered by parallel
grippers, such as the Robotiq 2F gripper. OPC UA adapters
implementing the aforementioned information models have
been developed for Agile Robots’ as well as Universal Robots’
robots, Robotiq’s as well as Weiss’s parallel grippers, and
Schmalz’s integrated ECPBi vacuum gripper.

VI. SEMANTIC DESCRIPTION MODELS

In the semantic description models, a product model (or
other entity) can be referenced not only by a model number
or a file name. Instead, Semantic Web technologies such as
globally unique identifiers (URIs) and OWL ontologies are
used to formally represent both them and their internal entities
as well. Their consistent references and a semantic modeling
of their properties enable deep links to them and external
applications to extract and use them in subsequent procedures.

For example, the exact geometry of the 3D models of the
components in the simulation of the workcells (see Fig. 9a
and Fig. 9c) including their internal entities can be formally
represented. These entities can be directly referenced due to
their modeling that uses the OntoBREP ontology (Ontology-
based Boundary Representation) [23]. These OntoBREP mod-
els include entities for each surface, curve, and point with
their own URIs for linking to/from other (potentially exter-
nal) entities. With a self-developed transformation tool, these
semantic descriptions can be automatically generated from
industry-standard STEP or IGES files. Additional information
can also be automatically determined during the transforma-
tion and annotated in their semantic models, such as the
sizes of surfaces and volumes. In addition to geometry, other
product properties can also be semantically described, such
as dimensions, material, gripping points, or subparts. This
enables process descriptions to reference individual parts of
a product, e.g., for task parameterization, such as the relative
geometric positions of multiple slots in infeed/outfeed trays
based on their classes in the product taxonomy.

An abstract process model semantically describes in a
declarative fashion the manufacturing of a product via a
sequence of tasks and their reusable object-level parameters.
This description is intended to be relatively hardware-agnostic,
so that the same process can be automatically adapted when
deploying it to a changed hardware configuration of a workcell
or to a different workcell altogether.

This deployment is done by the automatic mapping proce-
dure in the KB during the execution of a specific process that
is generated by mapping an abstract process to a specific work-
cell [19]. Essentially, an abstract process can be thought of as
a template where abstract task parameters are free variables
that will be bound to specific instances in a workcell based on
their types and other properties. This generates a new specific
instantiation of this abstract process for the current hardware
configuration and the real object positions. Fig. 5 illustrates
such a specific process in the OWL ontologies including its
tasks that correspond to the steps in Section III and its links
to entities from the product and resource models. A specific
process description also serves as a semantic execution log of



a production run that is linked to the manufactured product
instances and can be used to calculate certain KPIs. More
complex workflows beyond simple linear sequences are also
possible, such as conditional branching. For this use case, e.g.,
the abstract process assembles smartphone packages in a loop
until all infeed trays are empty or all outfeed trays are full.

How certain types of tasks and parameters are mapped is
modeled in the OWL ontologies as well and is generically
applied by the KB [19]. This also includes matching each task
in a process to a skill provided by the resources in a workcell
based on a comparison of the required and offered capabilities,
respectively. This also enables the parameterizations of the
skills being automatically derived based on the task parameters
and other semantic context knowledge. Each task is either
directly matched to a skill, such as a high-level composite
PickAndPlaceSkill or, if none is available in this workcell,
a previously modeled semantic task template can generate
for some simple scenarios a sequence of subtasks that are
matched to basic skills to achieve the same effect. In either
case, the process is executed by sequentially invoking the
matched skills.

A resource model semantically describes the manufactur-
ing resources in a workcell such as hardware and software
components. This ranges from the skills they provide and the
properties of the components themselves, to the topology of
the workcell and the specific object instances it currently con-
tains. For example, a smartphone box has a relative position
in a slot of an infeed tray on a table, on which a robot’s
base is mounted. This robot can use a parallel gripper and a
vacuum gripper that have their own tool center points (TCPs)
based on their types and that are both mounted on a dual
gripper adapter that is connected to the robot’s end effector. By
following this chain of relative positions, the target positions
of the CartesianLinearMoveSkills are automatically adapted
and derived based on the current workcell configuration dur-
ing each PickAndPlaceTask in the process. Individual grasp
parameters for certain object and gripper types are modeled
in the ontologies or could be calculated by grasp planners,
defined via teaching by demonstration, or handled within high-
level composite skills.

VII. INTUITIVE PROGRAMMING INTERFACES

A. System Integrator Interface

The System Integrator Interface (skill editor GUI for ex-
perts) is used to integrate expert knowledge into the system
in a reusable way. This is implemented via the creation of
composites skills. The System Integrator Interface enables the
easy combination of existing skills and available semantic
information from the knowledge base into new higher-level
skills. These composite skills enable the aggregation of more
complex, combined, or application-specific operations; auto-
matically incorporate derivable information; and elevate the
skill parameters from technical parameters (e.g., 3D positions)
to domain-specific parameters (e.g., storage locations, maga-
zine slots, etc.).

Fig. 6: RAFCON GUI for graphical programming with a Pick
Object skill and the 3 phases Reasoning, Action, and Effects.

Fig. 7: RAZER GUI home screen showing an existing process.

Fig. 8: RAZER GUI task screen for a composed task sequence.

The implementation of the System Integrator Interface is
based on the freely available software RAFCON [22]. The
skills are represented in RAFCON via so-called libraries.
These can be organized hierarchically and connected by logic
as well as data flow. This makes it possible to develop highly
complex behaviors with a large number of individual skills.
Since each composition can be saved as a library, it is easy to
reuse sub-problem solutions. To connect the System Integrator
Interface with the knowledge base, code generators are used to
create a RAFCON library from the semantic description of a
skill. The composite skills created in the System Integrator
Interface can also be exported fully automatically to the
knowledge base.

The implementation as well as the complexity of a



(a) AR workcell in simulation (b) Physical AR workcell (c) fortiss workcell in simulation (d) Physical fortiss workcell

Fig. 9: Two workcell layouts at Agile Robots and fortiss used in the experiments, equipped with different hardware components
providing similar functionalities. Both setups perform the same process of smartphone accessory packaging. Infeed trays
(currently occupied) provide the parts, the assembly fixture (single slot) enables the execution of the assembly steps, and the
outfeed tray (dual slot) is used to store completed products.

knowledge-augmented skill is illustrated in Fig. 6 using the
example of a Pick Object skill. The implementation is based
on a semantic model of products, processes, and resources as
described in Section VI. Based on this, a higher-level skill can
be graphically constructed in the System Integrator Interface,
enabling the user to easily parameterize it using Pick-Object-
Type and Pick-Location. Internally, this involves three phases:
deriving the necessary geometric knowledge from the inputs
and the knowledge base (Reasoning), parameterizing and
invoking the corresponding robot and device skills (Action),
and then storing the achieved effects back into the knowledge
base (Effects). After being provided by the system integrator,
the composite skills can be loaded and parameterized in the
End User Interface.

B. End User Interface

The End User Interface (process instruction GUI for system
operators) is used to parameterize a robot for new tasks or
to optimize a current process. It is based on the software
RAZER [14] and its aim is to enable users to instruct a robot
intuitively, i.e., without expert knowledge. In order to achieve
this, some simplifications have been made compared to the
System Integrator Interface. The End User Interface is limited
to a sequence of individual steps that can be parameterized
independently of each other.

On the End User Interface home screen (see Fig. 7), users
can create new tasks directly by selecting ‘CREATE NEW
TASK’. Existing tasks can be opened, edited, duplicated,
deleted, or executed. The interface also provides information
about available robot resources for task execution, which are
displayed in the lower section. Fig. 8 shows the overview of
a particular task, which is displayed when a task is opened.
The End User Interface offers functionalities to manipulate
this sequence, including the addition, modification, or removal
of subtasks, as well as the ability to rearrange their order as
necessary.

VIII. EXPERIMENTS

In order to demonstrate our hardware-agnostic, skill-based
programming approach, two workcells with different hardware
configurations were set up (see Fig. 9), where the same
semantic assembly process (see Section VI) for smartphone
accessory packaging (see Section III) was performed. In the
first workcell at Agile Robots, an Agile Robots Diana 7 robot
with a dual gripper adapter was equipped with a Robotiq
2F-140 parallel gripper and a custom vacuum gripper setup
(similar to a Schmalz ECBPi). In the second workcell at
fortiss, a Universal Robots UR5 robot with a dual gripper
adapter was equipped with a Weiss WSG 50-110 parallel
gripper and a Schmalz ECBPi vacuum gripper. The devices
in both workcells were integrated via OPC UA adapters that
follow the standardized skill interfaces. Aluminum tabletops
with hole patterns were designed for the flexible fixation of
infeed trays (for smartphone boxes, USB chargers, and box
lids), working fixtures, and outfeed trays, whose positions are
also described in the semantic model of the workcell. Parallel
to their physical construction, both workcells were also tested
in simulations of production runs as shown in Fig. 9a and 9c.

During the experiments, our proposed system was able to
automatically adjust the assembly process execution to the
different hardware configurations and successfully perform the
assembly process in both workcells. A qualitative evaluation
was performed based on the criteria defined in Section III with
the results being as follows:

C1: Use of different but compatible implementations of the
standardized OPC UA skill interface in the sMES (by
fortiss) and in the OPC UA adapters (by Agile Robots)
in their workcell during successful process executions.

C2: Use of an UR5 robot and a Weiss WSG 50-110 gripper
in the fortiss workcell, and a Diana 7 robot and a
Robotiq 2F-140 gripper in the Agile Robots workcell
during successful process executions, with their different
OPC UA adapters sharing the same standardized robot
and gripper skill interface, respectively.



C3: Use of the same hardware-agnostic semantic process
model in both workcells during successful process exe-
cutions, with parameterizations of skill invocations being
automatically adapted based on the different hardware
configurations.

C4: Use of the same generic KB and sMES software compo-
nents in both workcells during successful process execu-
tions, without changing their source code and with them
being fully parameterizable via the semantic description
models and the skill components’ OPC UA adapters.

The results of our experiments indicate the potential effi-
ciency improvements in system configuration, adaptation, and
operation with our proposed approach.

IX. CONCLUSION

This work introduces a knowledge-augmented and skill-
based approach for the intuitive instruction and operation
of robot systems. Based on formal representations of skills,
which are provided by the manufacturing resources in a given
production environment, the intuitive instruction of processes
is enabled via an end user GUI, in which a sequence of high-
level tasks can be defined. For the flexible extension of the
system, a second GUI for system integrators can be used to
hierarchically recombine basic skills into higher-level com-
posite skills, which are made available again in the end user
GUI. Due to the standardization of skill interfaces including
their parameter sets for certain skill types, process descriptions
can be hardware-agnostic making manual hardware-specific
adjustments to them unnecessary. Required expertise in au-
tomation and robotics is reduced due to the intuitive GUIs and
the system being capable of automatically parameterizing skill
invocations based on the rich context knowledge and high-
level instructions. Real-world experiments in two different
workcells have shown that involved knowledge models and
software components can be reused across different hardware
configurations. As a result, a domain expert (who is not nec-
essarily an automation expert) is enabled to operate complex
robot systems.
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