
Chair of Computational Modeling and Simulation
TUM School of Engineering and Design
Technical University of Munich

Enhancing Project Knowledge Management
in Construction: Integrating Generative AI
and Large Language Models

Scientific work to obtain the degree

Master of Science (M.Sc.)

at the TUM School of Engineering and Design
of the Technical University of Munich.

Supervised by

Submitted by

Submitted on

Prof. Dr.-Ing. André Borrmann
Dr.-Ing. Sebastian Esser
Chair of Computational Modeling and Simulation

Vinzenz Trimborn (1122233)

e-Mail: vinzenz.trimborn@tum.de

September 20, 2024

mailto:vinzenz.trimborn@tum.de

Abstract

This thesis explores the application of Knowledge Graphs (KGs) and Large Language
Models (LLMs) to enhance project knowledge management in the construction industry.
The research addresses long-standing challenges in knowledge retrieval, organization,
and analysis within the sector by proposing a novel framework that leverages the semantic
understanding capabilities of LLMs to construct KGs from project communication data.
The methodology was tested using an open-source BCF file dataset, representing stan-
dardized communication data in BIM projects.
The methodology involves a multi-step process: first, setting themes of interest for analy-
sis; second, using LLMs to construct a knowledge graph representing both explicit and
implied content from BCF comments; and finally, exploring various querying methods
to gain insights from the dataset. The framework demonstrates the ability to transform
unstructured project communication data into a structured, queryable format, enabling
detailed post-project analysis at a scale previously unfeasible with manual work.
Results show that the framework successfully indexed BCF comments according to pre-
defined themes, such as components, materials, and request types while discovering
additional relevant categories. The natural modularity of the graph structure proved effec-
tive in identifying trends within the dataset. Agentic retrieval methods, including custom
tool-based approaches and Cypher query generation, showed promise for intuitive graph
querying and analysis through natural language interactions.

I

Zusammenfassung

Diese Arbeit untersucht die Anwendung von Wissensgraphen (KGs) und Large Language
Models (LLMs) zur Verbesserung des Projektwissensmanagements in der Bauindus-
trie. Die Forschung adressiert langjährige Herausforderungen bei der Wissensabfrage,
-organisation und -analyse innerhalb des Sektors, indem sie ein neuartiges Framework
vorschlägt, das die semantischen Verständnisfähigkeiten von LLMs nutzt, um KGs aus
Projektkommunikationsdaten zu konstruieren. Die Methodik wurde anhand eines Open-
Source-Datensatzes von BCF-Dateien getestet, die standardisierte Kommunikations-
daten in BIM-Projekten darstellen. Die Methodik umfasst einen mehrstufigen Prozess:
zunächst die Festlegung von Analysethemen, dann die Verwendung von LLMs zur Kon-
struktion eines Wissensgraphen, der sowohl explizite als auch implizite Inhalte aus BCF-
Kommentaren darstellt, und schließlich die Erforschung verschiedener Abfragemethoden,
um Erkenntnisse aus dem Datensatz zu gewinnen. Das Framework zeigt die Fähigkeit,
unstrukturierte Projektkommunikationsdaten in ein strukturiertes, abfragbares Format zu
transformieren und ermöglicht damit detaillierte Nachprojektanalysen in einem Umfang,
der zuvor mit manueller Arbeit nicht realisierbar war. Die Ergebnisse zeigen, dass das
Framework BCF-Kommentare erfolgreich nach vordefinierten Themen wie Komponenten,
Materialien und Anfragetypen indizierte und dabei zusätzliche relevante Kategorien ent-
deckte. Die natürliche Modularität der Graphenstruktur erwies sich als effektiv bei der
Identifizierung von Trends innerhalb des Datensatzes. Agenten-basierte Abrufmethoden,
einschließlich angepasster werkzeugbasierter Ansätze und CYPHER-Abfragegenerierung,
zeigten vielversprechende Ansätze für intuitive Graphenabfragen und -analysen durch
natürlichsprachliche Interaktionen.

II

Contents

Abbreviations V

1 Introduction 1
1.1 Knowledge Management . 1
1.2 Challenges of Knowledge Management in the Construction Industry 1
1.3 Research Question . 3

2 Background and Related Work 4
2.1 Leveraging ICT for Knowledge Management in Construction: Current Ap-

proaches and Emerging Trends . 4
2.1.1 Web Applications as KM Systems 4
2.1.2 IFC and BIM as KM Systems . 5
2.1.3 Semantic Technologies for KM . 6

2.2 Large Language Models . 6
2.2.1 Prompt Engineering and Chaining 7
2.2.2 LLM-Based Agents . 8

2.3 LLMs in Ontology and Knowledge Graph Creation: A Comprehensive Review 9
2.3.1 NER and RE Approaches with Provided Ontology 9
2.3.2 Ontology Learning Approaches . 10
2.3.3 LLM Supported Frameworks for the Ontology Engineering Process . 11

2.4 LLM-Based Query-Focused Summarization 11
2.4.1 Retrieval Augmented Generation . 12
2.4.2 Graph-RAG for Query-Focused Summarization 13
2.4.3 Summary and Identified Research Gap 14

3 Methods 15
3.1 Data Source and Data Preprocessing . 16
3.2 Graph Indexing . 19

3.2.1 Leveraging LLM for Knowledge Graph Construction 19
3.2.2 Graph Structure Definition . 20
3.2.3 Graph Chain . 22

3.3 Graph Retrieval . 26
3.3.1 Cypher Query . 27
3.3.2 A Semantic Layer through Agent with Tools 27
3.3.3 Agent-Writing Cypher . 29

4 Proof of Concept and Implementation 31
4.1 Public buildingSMART Dataset . 31
4.2 BCF File Acquisition and Processing . 32
4.3 LangChain: A Framework for LLM-Powered Applications 34

III

4.3.1 LangChain Expression Language (LCEL) 35
4.3.2 Agent Component in LangChain . 36
4.3.3 LangChain Alternatives . 36

4.4 Choice of LLM . 37
4.5 Choice of Database System . 38

5 Results 40
5.1 Graph Indexing Process . 40
5.2 Agentic Retrieval and Evaluation . 51

5.2.1 Case Study Questions . 51
5.2.2 Case Study Evaluation . 52

6 Discussion 57
6.1 Discussion of Graph Indexing Process . 57
6.2 Discussion of the Agentic Graph Retrieval Process 60
6.3 Scalability and Consistency . 61

7 Conclusion 63

8 Outlook 64

A Developed Source Code 65

Bibliography 66

IV

Abbreviations

AEC Architecture, Engineering and Construction

BCF BIM Collaboration Format
BIM Building Information Modeling
BOT Building Topology Ontology

CDE Common Data Environment

DOT Damage Topology Ontology

ICT Information and Communication Technology
IFC Industry Foundation Classes

KG Knowledge Graph
KM Knowledge Management

LCEL LangChain Expression Language
LLM Large Language Model

NER Named Entity Recognition
NLP Natural Language Processing

RAG Retrieval Augmented Generation
RE Relation Extraction

V

Chapter 1

Introduction

1.1 Knowledge Management

Knowledge management (KM) is a critical factor in the success and competitiveness of
organizations across various industries. It serves as a primary driving force for social
and economic development, as well as a key determinant of an enterprise’s competitive
strength (Deng et al., 2022). As a competitive strategy, KM focuses on learning from
previous experiences, avoiding mistakes, and replicating successes (Yepes & López,
2021). Consequently, knowledge has become the most valuable resource for organizations
seeking to maintain their competitive edge (H. Wang et al., 2022).

While KM is widely recognized as crucial, its precise definition remains subject to debate
and evolution (Deng et al., 2022). Broadly, KM can be understood as a systematic
approach to creating, capturing, organizing, and utilizing an organization’s knowledge
assets. It encompasses a range of activities, including knowledge capture, sharing,
storage, retrieval, and reuse (H. Wang et al., 2022). This multifaceted nature of KM
reflects its complexity and the challenges organizations face in implementing effective KM
strategies.

Implementing effective KM practices presents numerous challenges for organizations.
These challenges stem from the diverse nature of knowledge itself, which exists in both
explicit and tacit forms. Explicit knowledge, which is easily codified and shared, still poses
difficulties in terms of information overload and efficient retrieval (Anshari & Hamdan, 2022).
However, the management of tacit knowledge often presents the greatest challenge. Tacit
knowledge, comprising the unwritten experiences and insights that circulate through an
organization’s daily activities, is particularly difficult to capture and share. Individuals
or teams may be unaware of the valuable tacit knowledge they possess, making its
identification and utilization a complex task (Vaz-Serra & Edwards, 2021).

1.2 Challenges of Knowledge Management in the Construction
Industry

While Knowledge Management (KM) challenges are universal across industries, the
construction sector faces additional, industry-specific hurdles that significantly complicate
KM implementation and effectiveness. These challenges come from the unique nature of
construction projects, which are characterized by their temporariness, uniqueness, and

1

the involvement of multiple stakeholders. Understanding these challenges is crucial for
developing effective KM strategies in the construction industry.

Fragmented and Temporary Nature of Projects One major obstacle is the fragmented
structure and project-centric orientation of the industry. Construction project parties come
from different organizations and most of the time only work together on single projects,
moving on to other projects immediately after they finish the current tasks (H. Wang
et al., 2022) (Vaz-Serra & Edwards, 2021). This inherent fragmentation and short-term
collaboration hinder effective knowledge continuity across different projects (Tan et al.,
2007). In addition, projects usually have a rather short-term orientation with a focus
on immediate deliverables. In contrast, knowledge management requires a long-term
perspective as there is often a time lag between the initial investment in knowledge
management systems and the return on investment (Lindner & Wald, 2011).

Uniqueness and Complexity of Projects Another important factor that distinguishes
the requirements of the construction industry is that each construction project is unique
concerning its constituent elements, requiring particular forms of professional inputs and
management (Vaz-Serra & Edwards, 2021). The various procedures involved in context
with the large project volume and the long construction period, make it complex to manage
knowledge (Deng et al., 2022). This uniqueness often means that knowledge gained in
one project may not be directly applicable to another, complicating efforts to standardize
KM practices across the industry.

High Staff Turnover and Team Dissolution Knowledge derived from construction
projects is often lost, due to the short time between capturing the knowledge, the turnover
of technical staff, and the dismantling of teams engaged for a specific project at the
project’s end (Vaz-Serra & Edwards, 2021). This issue is exacerbated by the numerous
highly specialized roles in the construction industry, with many actors joining projects
only for individual tasks or short durations. Consequently, strategies and techniques for
knowledge capture, like for example post-project review to capture lessons learned can’t
be conducted effectively because the relevant staff already would have moved to the next
project (H. Wang et al., 2022). This constant change of personnel makes it difficult to
maintain organizational memory and ensure that valuable insights and experiences are
retained and shared across projects and teams.

Data and Information Challenges Moreover, the construction industry generates vast
amounts of data and information throughout project lifecycles. However, managing this
data effectively for knowledge creation and sharing presents unique challenges. The
unstructured data collected in the construction industry is more difficult to recognise and
process by computers, which increases the difficulty of sharing knowledge among different
projects and enterprises (Deng et al., 2022). Consequently, storing and retrieving the
massive and complex knowledge generated during construction projects is challenging.

2

The difficulty in managing the knowledge generated, imposed through the project con-
ditions mentioned above leads to a high likelihood of repetitive errors and a constant
duplication of existing solutions (Vaz-Serra & Edwards, 2021) (Tan et al., 2007). This issue
is amplified when considering that most of the knowledge of the industry is generated
during the progress of delivering a custom-built facility in accordance with the client’s
requirements (Tan et al., 2007). Therefore, the problem is not the generation of knowledge
in the construction sector, but the waste of valuable information gained within projects
(Yepes & López, 2021).

Given these challenges and the wealth of untapped knowledge, it becomes crucial for the
construction industry to find effective ways to reuse and analyze existing information. The
key lies not just in capturing knowledge, but in developing systems and processes that
can efficiently extract insights from the vast amount of data generated across projects. By
doing so, construction firms can potentially avoid repeating mistakes, capitalize on past
successes, and drive continuous improvement in their operations.
One promising avenue for addressing these knowledge management challenges is the
emerging field of Artificial Intelligence, particularly Large Language Model (LLM)s. These
novel AI systems have shown remarkable capabilities in processing and understanding
large volumes of unstructured data, including the type of complex and diverse information
generated in construction projects.

1.3 Research Question

The emergence of LLMs as powerful tools for processing and understanding vast amounts
of unstructured data has paved the way for innovative approaches in various fields. In
parallel, Knowledge Graph (KG)s offer a structured methodology for representing and
connecting information. This research focuses on harnessing the synergy between
LLMs’ semantic understanding and KGs’ structured representation within a framework
to analyze existing data produced during construction projects. This study will be based
on construction data, with a particular emphasis on the unstructured text within BIM
Collaboration Format (BCF)s. The goal is to explore how LLMs can leverage their semantic
understanding capabilities to build KGs from a data format that combines structured
information and unstructured text comments. By creating a comprehensive and enriched
KG, I aim to provide a robust basis for project analysis, which can improve decision-making
processes and enhance the efficiency of future construction projects. Furthermore, the
research will investigate how this enriched KG can be utilized for information retrieval.
Different retrieval methods, including Cypher queries facilitated by LLMs, will be utilized to
ensure comprehensive and intuitive access to the information. Furthermore, I will propose
and test different approaches using agentic systems for reasoning over the graph structure.

The primary research question guiding this thesis is: How can LLMs be used to build KGs
from semi-structured construction data, and which KG retrieval methods can be leveraged,
to enhance project analysis in construction projects?

3

Chapter 2

Background and Related Work

The construction industry, despite its wealth of knowledge generation, faces significant
challenges in effectively managing and utilizing this knowledge due to its project-centric
nature, high staff turnover, and complex data structures. LLMs have emerged as powerful
tools for processing and understanding vast amounts of unstructured data, while KGs offer
a structured approach to representing and connecting information. There is considerable
potential in applying a framework that combines the strengths of both LLMs and KGs
tailored to construction industry data, to address these unique challenges.

To explore this potential, this work will first examine promising approaches leveraging
Information and Communication Technology (ICT) for knowledge management in con-
struction. Following this, an overview of LLMs and associated techniques are given,
including prompt engineering and LLM based agents. Next, a comprehensive review of
LLMs in Ontology and KG creation is presented, considering their potential adaptations
for the construction sector. The last section is dedicated to LLM based query-focused
summarization. This literature review will lead to the proposal of a methodology, aiming
to bridge the gap between current practices and the potential of integrated LLM and KG
solutions in construction knowledge management.

2.1 Leveraging ICT for Knowledge Management in Construc-
tion: Current Approaches and Emerging Trends

ICT systems play a crucial role in supporting and facilitating the activities of Knowledge
Management (KM). They enable the agile collection, storage, and exchange of knowledge,
which is essential for effective KM practices in the construction industry. One of the primary
advantages of ICT in KM is its ability to facilitate the codification of knowledge, allowing it
to be stored in databases. This capability makes the scaled and agile collection, storage,
and exchange of information possible (Yepes & López, 2021).

2.1.1 Web Applications as KM Systems

Web applications exemplify this advantage by providing platforms where users can input,
store, and share knowledge efficiently. Therefore, various researchers have proposed
specific ICT solutions to address KM challenges in construction. Tan et al. (2007) intro-
duced a web-based knowledge base with an integrated workflow system, designed to
capture knowledge in time during projects while minimizing overhead costs. The system

4

was applied in learning situations, including weekly site meetings and project reviews. It
provided participants with a structured form to capture their knowledge, which could then
be searched. A similar web-based approach is introduced by Vaz-Serra and Edwards
(2021). Therefore, ICT e.g. a web application, can be viewed as both a tool and a means
to realize knowledge management. This is particularly beneficial as it lowers the threshold
for implementing KM strategies since practitioners don’t necessarily need to understand
the intricacies of KM theory but can instead focus on learning to use relevant ICT software
(Deng et al., 2022).

2.1.2 IFC and BIM as KM Systems

Building upon these specialized ICT applications, the construction industry has further
developed and adopted tools tailored to its specific processes and data structures. In this
landscape of construction-specific ICT, certain developments stand out in facilitating KM
activities. Product data modelling initiatives such as Building Information Modeling (BIM)
and Industry Foundation Classes (IFC) have significantly promoted KM activities (Yu &
Yang, 2018).

BIM not only serves as a data model but also as a dynamic methodology that integrates
data-driven use cases throughout the project’s lifecycle (Borrmann et al., 2021). In this
sense BIM encompasses a range of activities from project initiation through planning,
feasibility, design, and construction to completion, handover, and ongoing management,
including maintenance and eventual demolition (Razali et al., 2019) (Borrmann et al.,
2021). Therefore, BIM in general, in combination with the open IFC format, which was
recognized as an ISO standard in 2013, caused a paradigm shift in the industry about
collaboration, data exchange and the software landscape, enabling the development of
new KM methods.

BCF, a data format augmenting BIM which enables workflow communication in BIM
processes (buildingSMART Technical, 2023), enhances KM in terms of traceability and
collaboration. In BIM-based collaboration projects, BCFs act as a specialized communi-
cation tool, facilitating issue tracking and resolution, including clash detection, similar to
ticketing systems used in project management (Borrmann et al., 2018).

BIM, in particular as a data model, with its object-oriented nature and parameter-driven
approach, contributes to the improvement of knowledge capture (H. Wang et al., 2022).
Beyond its traditional uses, BIM is also further expanded for KM. Exemplary for such
methods, H. Wang et al. (2022) proposed a framework that uses BIM as the main tool for
capturing knowledge, storing information as parameters within the BIM model and later
transferring it to a central database for retrieval using Natural Language Processing (NLP)
and case-based reasoning methods.

5

2.1.3 Semantic Technologies for KM

The advent of the semantic web, underpinned by ontologies, has widely boosted the
development of IT solutions for KM in construction (Yu & Yang, 2018). This progress was
further expanded in 2012 when Google proposed the concept of knowledge graphs, which
combine ontology and semantic network concepts (Singhal, 2012). These advanced tech-
nologies have enabled more sophisticated approaches to KM in construction, since they
enabled the combination of deep learning with the fusion of multi-source heterogeneous
data, helping to address the miscellaneous information from various project activities
(Deng et al., 2022).

Ontologies have significantly advanced KM in the construction industry by providing struc-
tured frameworks for representing and connecting diverse information. As demonstrated
by Schulz et al. (2023), ontologies like bcfOWL, the Damage Topology Ontology (DOT)
(Hamdan et al., 2019), and the Building Topology Ontology (BOT) (Rasmussen et al., 2021)
serve as crucial bridges between different aspects of construction data. For instance,
bcfOWL enables effective communication between BCF Issues and Linked Building Data
concepts, where DOT facilitates the representation of damage to constructions, and BOT
describes the core components of a building. These ontologies enhance the ability to
capture, retrieve, and share knowledge efficiently by improving querying capabilities and
connectivity within the Linked Building Data domain.

Building on these concepts, researchers have developed frameworks that leverage ontolo-
gies and semantic technologies for specific construction KM challenges. For instance, Kim
and Chi (2019) proposed an approach for managing knowledge contained in construction
accident case documents using NLP enhanced by an ontology. This ontology represented
unique expressions used in accident cases and common terms in the general construction
industry, improving the system’s ability to retrieve and analyze relevant cases. Similarly,
Zou et al. (2017) developed a framework to retrieve similar risk cases from construction
accident databases using NLP and ontology-based techniques. Al Qady and Kandil (2010)
proposed an NLP system to manage knowledge in contract documents, facilitating quick
access and efficient use of such knowledge for project management and contract adminis-
tration tasks. These approaches demonstrate how advanced semantic technologies can
be applied to extract and manage domain-specific knowledge in construction.

The knowledge graph is considered one of the most advanced knowledge management
technologies in the Architecture, Engineering and Construction (AEC) sector (Deng et al.,
2022) since it offers promising solutions for managing the complex and diverse knowledge
generated in construction projects.

2.2 Large Language Models

The field of NLP has been dramatically transformed in recent years by the rapid advance-
ments in LLMs. At their core, language models are designed to estimate the probability

6

distribution over text. However, recent scaling improvements have pushed these models
to new heights of capability and versatility (Kojima et al., 2022).

LLMs typically employ a pre-training approach, where expansive foundational models with
hundreds of billions of parameters are initially trained using massive datasets. These
models can be subsequently fine-tuned or adapted during inference, offering considerable
advantages over conventional NLP models that often require extensive supervised learning
on smaller, task-specific datasets (Manning, 2022).

The emergence of these large pre-trained models, particularly those scaled to over
100 billion parameters, has initiated a paradigm shift in the field. These models exhibit
properties conducive to few-shot learning, enabling a technique known as in-context
learning (Brown et al., 2020). This approach utilizes text or templates, referred to as
prompts, to guide the model in generating outputs for desired tasks (Kojima et al., 2022).

This transition marks the beginning of the "pre-train and prompt" era, where pre-trained
models are adapted to new tasks through strategic prompting rather than extensive retrain-
ing (Kojima et al., 2022). As a result, LLMs have demonstrated remarkable capabilities
across a wide spectrum of NLP tasks and real-world applications, ranging from language
understanding to text generation. Their potential to address various NLP challenges and
practical use cases continues to expand (Yang et al., 2024).

In the following subsection 2.2.1, I will shortly introduce Prompt Engineering and Prompt
Chaining. This will be the basis for more advanced concepts like LLM based Agents
(section 2.2.2) and Retrieval Augmented Generation (RAG) (section 2.4.1).

2.2.1 Prompt Engineering and Chaining

Prompt engineering is a rapidly evolving discipline that focuses on crafting effective
instructions to guide LLMs in performing various tasks without extensive retraining (P. Liu
et al., 2023). It involves designing prompts that leverage the models’ pre-trained knowledge
to generate desired outputs (Amatriain, 2024). Techniques range from standard prompting,
where users create customized instructions, to more advanced methods like few-shot
prompting, which enable LLMs to tackle new tasks with minimal examples (Brown et al.,
2020) (Radford et al., 2019). In the literature, prompts that explicitly condition on a few
task examples are called few-shot prompts. This method is similar to teaching by example,
while template-only prompts without any examples or exposure to similar tasks are termed
zero-shot prompts (Kojima et al., 2022).

Prompt chaining, also known as LLM chaining, is an advanced technique that breaks
complex tasks into a series of interconnected prompts or LLM calls (Wu et al., 2022). This
approach, exemplified by methods like Chain-of-Thought and Tree-of-Thoughts, allows
LLMs to tackle intricate problems by decomposing them into manageable steps (Wei et al.,
2022) (Yao et al., 2024). By guiding the model through a sequence of reasoning stages,
prompt chaining enhances the LLM’s ability to handle complex reasoning tasks, improve
transparency, and provide more reliable and controllable outputs (Kojima et al., 2022).

7

2.2.2 LLM-Based Agents

LLM based autonomous agents combine the powerful language understanding and gener-
ation capabilities of LLMs with the ability to interact with and manipulate their environment.
LLM agents are characterized by their ability to plan, reason, and take actions over multiple
iterations to execute goals (Masterman et al., 2024).

According to L. Wang et al. (2024) in their comprehensive survey on LLM based au-
tonomous agents, LLM agents typically consist of four main components: Profiling, Mem-
ory, Planning, and Action. These modules work together to create an autonomous system
capable of understanding its role, remembering past experiences, planning future actions,
and executing tasks effectively.

Profiling Module The profiling module is responsible for defining the agent’s identity
and characteristics. It aims to establish the agent’s role, personality, and background,
which are then used to influence the LLM’s behaviour. This module helps tailor the agent’s
responses and actions to align with its designated persona, making interactions more
consistent and contextually appropriate (Qian et al., 2023) (Chen et al., 2023).

Memory Module The memory module allows the agent to store and retrieve information
from its interactions with the environment. This component is crucial for enabling the
agent to maintain consistency in its behaviour and make informed decisions based on
accumulated knowledge. The memory module typically includes mechanisms for both
short-term and long-term information storage and retrieval (Park et al., 2023) (Z. Huang
et al., 2023).

Planning Module The planning module empowers the agent to approach complex
tasks by breaking them down into manageable steps. It enables the agent to formulate
strategies, consider potential outcomes, and adapt its approach based on feedback or
changing circumstances. This module is key to the agent’s ability to handle multi-step
problems and exhibit goal-directed behaviour (Yao et al., 2022) (W. Huang et al., 2022).

Action Module The action module is responsible for translating the agent’s decisions
into specific outcomes or behaviours. It serves as the interface between the agent’s
internal processes and the external environment. This module determines how the
agent interacts with its surroundings, whether through generating text responses, utilizing
internal knowledge, or leveraging external tools. Tools are external resources that expand
the agent’s capabilities, including APIs for specific functions, databases, or knowledge
bases for information retrieval. For example, the agent might use a calculator API for
mathematical operations or query a database for specific information. By integrating
both internal capabilities and these external tools, the action module enables the agent
to perform a wide range of tasks and adapt to various environments (Qian et al., 2023)

8

(Nakano et al., 2021). As outlined, according to the authors L. Wang et al. (2024),
these four modules work in combination to create a comprehensive LLM based agent
architecture.

2.3 LLMs in Ontology and Knowledge Graph Creation: A Com-
prehensive Review

The following chapter reviews recent applications of LLMs within the Ontology and Knowl-
edge Graph creation process, detailing different protocols and methods of how this process
can be (semi-) automated.

2.3.1 NER and RE Approaches with Provided Ontology

An essential component in scientific NLP is Named Entity Recognition (NER), where entity
labels such as “material" or “property", which are usually predefined, are applied to words
from the text. NER identifies text spans that mention relevant items or concepts like for
example ingredients in a recipe text (Caufield et al., 2024) (Dagdelen et al., 2024). These
tagged sequences can be mapped to persistent identifiers in ontologies within a process
called grounding (Caufield et al., 2024).

Another key component is the development of Relation Extraction (RE) techniques to
accurately extract the relationships between named entities. RE models have been
developed and trained to determine which entities are linked by a predefined set of
relations (Deng et al., 2022). For example, in the sentence "Reinforced concrete is used in
building foundations", the material entity "reinforced concrete" is linked to the application
entity "building foundations". Through RE named entities are connected with predicates,
such as ’used in’, forming simple triple statements (Caufield et al., 2024).

Deep Learning methods such as LLMs (Vaswani et al., 2017) have made gains in all these
applications. Whereas the former generation of methods relied heavily on task-specific
training data, LLMs such as GPT-3 and GPT-4 can generalize on these tasks by reframing
them as prompt-completion tasks (Brown et al., 2020) (Achiam et al., 2023).

In various recent approaches, an ontology is provided and LLMs are used to transform
inputted unstructured text to conform to this schema. These LLM based approaches allow
to fill out schemas bypassing a need for training examples. Early experiments levering
LLMs started by custom designing prompts for entity-relationship diagrams creation. Ap-
proaches conducted by Fill et al. (2023) start these prompts with an explanation of Entity
Relationship diagrams, including an example in JSON, following a natural language de-
scription of the task. The LLM is therefore prompted to extract the JSON from unstructured
text. Although the results are satisfying for the authors, they did not find any benchmarks
to evaluate their results. Furthermore, only small diagrams are extracted from a relatively
small quantity of text.

9

Caufield et al. (2024) propose SPIRES, a method for populating a knowledge base
using the zero-shot learning capabilities of LLMs. Prompts are recursively derived from
an ontology for a schema-driven prompting approach. LLMs are used to recursively
interrogate the heterogeneous information according to the hierarchy levels of the ontology
to obtain a set of responses matching the provided schema. Their results for NER while
leveraging GPT-4 show a precision of 0.85 with a recall of 0.65 concluding with an F-score
of 73.69, showing promising results without the need for any specific training data.

Dagdelen et al. (2024) investigate an approach where a LLM is fine-tuned to simultaneously
extract named entities and their relationships. Instead of providing an ontology, one has to
define the desired output structure, for example, a list of JSON objects with a predefined
set of keys—and annotate 100–500 text passages using this format. The LLM is then
fine-tuned on these examples, and the resulting model can accurately output extracted
information in the same structured representation. In comparison to BERT-based models
which require fine-tuning on a large corpus of domain-specific data (e.g., millions of
article abstracts or paragraphs), the comprehensive pretraining of the LLMs along with the
user-provided annotations are sufficient to accomplish a broad array of complex tasks.

In all the approaches mentioned above some sort of ontology or schema is used as
an input. To automate the process of ontology creation, a lot of NLP methods can be
leveraged in the area of ontology learning.

2.3.2 Ontology Learning Approaches

Ontology Learning is a major field of research in AI, NLP, and knowledge engineering
(Babaei Giglou et al., 2023). Its goal is to provide a cost-effective and scalable solution for
knowledge acquisition and representation, enabling more efficient and effective decision-
making in a range of domains (Babaei Giglou et al., 2023).

Ontology Learning is based on automatically discovering and extracting knowledge struc-
tures from textual information to construct or extend an ontology. This process typically
employs techniques such as automated type discovery, type taxonomy recognition and
non-taxonomic relations discovery between types. Moreover, it includes methods to infer
potential axioms and other ontological structures (Konys, 2019). Earlier approaches for
Ontology Learning include linguistics-based approaches and statistic-based, as well as
logic-based machine learning approaches (Al-Aswadi et al., 2020).

Since LLMs are pre-trained on vast amounts of text data, which gives them a broad
understanding of language and entities, they can also be used to define categories for
the NER and RE tasks. Therefore, they can automate the task of researchers or domain
experts defining a set of categories based on the needs of the application or the domain of
interest. Different approaches have been explored in literature. Mateiu and Groza (2023)
enriches ontologies by translating natural language sentences into OWL Function Syntax
(axioms), by fine-tuning a GPT-3 model accordingly.

10

Bikeyev (2023) proposes an approach where ontologies are synthetically generated, intro-
ducing a method which uses two prompts to generate a hierarchy of elements and another
to determine possible relationships between them. Thereafter, an iterative approach is
conducted to add more detail to the ontology. Therefore, the knowledge model becomes
purely machine-generated.

Babaei Giglou et al. (2023) test and propose LLMs for Ontology Learning (LLMs4OL).
Three main questions are evaluated: How effective are LLMs for automated type discovery,
to recognize a type taxonomy and to discover non-taxonomic relations between types?
A zero-shot prompting method is applied with a variety of different LLMs including GPT-
4. Babaei Giglou et al. (2023), however, concluded that the models alone are not yet
sufficiently suitable for ontology construction since the process entails a high degree of
reasoning skills and domain expertise.

2.3.3 LLM Supported Frameworks for the Ontology Engineering Process

Instead of leveraging LLMs to fully automate the ontology engineering process, there have
also been approaches to facilitate the ontology engineering process, which is often a
laborious collaborative task.

B. Zhang et al. (2024) proposes a framework that focuses on requirement elicitation,
analysis and ontology testing. Through a chat interface, domain experts are supported
in creating the user story, which is used to extract the Competency Questions in a
collaborative approach between an Ontology Engineer and a LLM Agent. After Ontology
creation, the LLM Agent also provides testing support in a SPARQL-free approach, through
ontology verbalisation and prompt driven Competency Questions unit testing, against the
verbalissed ontology.

2.4 LLM-Based Query-Focused Summarization

Given the challenges in knowledge management within the construction industry outlined
in section 1.2, there is a need for methods to effectively process and derive meaning from
large document collections. This section provides a short review of recent LLM-based
systems designed to read and reason about extensive document collections. In particular,
systems that can reach conclusions that extend beyond the explicit content of the source
texts.

Such approaches are valuable for supporting human-led sensemaking across entire
text corpora. They empower individuals to both apply and refine their mental models
of data by facilitating the asking and answering of questions with a global scope (Klein
et al., 2006) (Edge et al., 2024). This capability is crucial in the context of construction
knowledge management, where professionals must synthesize information from diverse
project documents to make informed decisions and avoid repeating past mistakes, as
outlined before.

11

In this context, Query-focused Summarization emerges as a more appropriate task framing
(Dang, 2006). While techniques like NER and RE, discussed earlier in section 2.3.1, focus
on identifying specific elements within text, Query-focused Summarization aims to syn-
thesize information across larger text collections. Specifically, query-focused abstractive
summarization generates coherent natural language summaries that capture the essence
of the content, rather than simply selecting and combining existing sentences or passages
from the original text (Dang, 2006) (Edge et al., 2024).

Recent advancements in LLMs have significantly simplified these tasks. These models
utilize in-context learning to summarize any content provided within their context window,
directly processing source text to create summaries tailored to specific information needs
(Edge et al., 2024), without requiring pre-identified entities or relationships. However,
challenges persist in query-focused abstractive summarization over entire data sets, as
such volumes of text exceed LLM context window limits (Edge et al., 2024).

The following subsections will introduce RAG, before focusing on Graph-RAG, an approach
for Query-Focused Summarization recently published by Microsoft Research Edge et al.
(2024), which forms the basis for the methodology presented in this thesis.

2.4.1 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) has emerged as an established approach to
answering user questions over entire datasets (Lewis et al., 2020). It enables LLMs
to answer questions about private unseen document collections by retrieving relevant
information from an external knowledge source.

It addresses key limitations of traditional LLMs, including hallucination (Y. Zhang et al.,
2023), outdated information (He et al., 2022), and lack of transparency in reasoning (Gao
et al., 2023). RAG framework consists of three primary components: retrieval, which
involves fetching relevant information from external databases; generation, where the LLM
utilizes both its inherent knowledge and the retrieved information to produce responses;
and augmentation, which refers to the process of integrating the retrieved information into
the LLM’s workflow (Gao et al., 2023). This approach allows for more accurate, up-to-date,
and verifiable responses, particularly in knowledge-intensive tasks, while also enabling
continuous knowledge updates and integration of domain-specific information (Gao et al.,
2023).

As described in detail by Gao et al. (2023), the retrieval process in RAG, heavily relies on
vector stores and semantic similarity calculations. During the indexing phase, documents
are split into smaller chunks, which are then encoded into vector representations using an
embedding model. These vector representations are stored in a vector database, creating
an efficient searchable index. When a user submits a query, it is similarly transformed into
a vector representation using the same embedding model. The system then computes
similarity scores between the query vector and the vectors of the indexed chunks, typically
using metrics like cosine similarity. This allows the retrieval system to identify and retrieve

12

the most semantically relevant chunks of information from the vector store (Gao et al.,
2023).

However, RAG is designed for situations where answers are contained locally within
retrievable text regions that provide sufficient grounding for the generation task. Despite
its usefulness, RAG falls short when dealing with global questions directed at an entire
text corpus, such as "What are the main themes in the dataset?" This is because such
queries inherently constitute a Query-focused Summarization task rather than an explicit
retrieval task (Edge et al., 2024).

2.4.2 Graph-RAG for Query-Focused Summarization

Edge et al. (2024) propose a framework called "Graph RAG", tailored to the Query-
focused Summarization task for large data sets of text described above. The core concept
leverages the power of LLMs to create a self-generated entity knowledge graph index of
the source documents.

After splitting the source documents into text chunks, a LLM is used to extract entities and
relationships from these chunks and summarise these instances into concise element
descriptions. Within the resulting constructed graph, community structures are leveraged to
generate summaries for each community at various hierarchical levels. These summaries
are then used in return to answer global queries via a map-reduce approach.

The overall approach leverages the modularity of the graph, which refers to the tendency
of graphs to form communities or clusters of nodes that are more densely connected than
nodes in other parts of the graph. Therefore, in contrast with other approaches, the focus is
not on using the graph for structured retrieval and traversal, leveraging the graph structure
to efficiently search for and navigate between pieces of information but to leverage the
graph for information structuring in terms of its modularity (Edge et al., 2024).

Figure 2.1: Graph communities detected on different levels, showcasing the modularity of
a graph. Figure taken from (Edge et al., 2024).

13

2.4.3 Summary and Identified Research Gap

The literature review presented in this chapter highlights the developments in knowledge
management within the construction industry, particularly through the application of ICT,
semantic technologies and NLP. Traditional approaches have evolved from web-based
knowledge management systems to more sophisticated BIM and IFC-based solutions. The
emergence of semantic technologies, including ontologies and KGs, has further enhanced
the industry’s ability to capture, organize, and retrieve complex project knowledge.

While the construction industry has made advancements in implementing various NLP
techniques, the application of novel technologies like LLMs remains largely unexplored in
this domain. The review highlights a clear gap between the potential capabilities of LLMs,
as demonstrated in other fields, and their current application in construction knowledge
management.

Recent advancements in LLMs, such as their ability to perform complex reasoning tasks,
suggest significant potential for addressing long-standing challenges in construction knowl-
edge management. These challenges include processing unstructured data, inferring
implicit knowledge, and providing context-aware information retrieval. However, the litera-
ture review reveals a lack of research specifically applying LLMs to construction project
analysis and knowledge management.

The research question posed in Section 1.3 seeks to address this gap by investigating how
LLMs can be used to build KGs from semi-structured construction data, and which KG
retrieval methods can be leveraged to enhance project analysis. Therefore, this research
aims to explore the potential of combining the advanced natural language processing
capabilities of LLMs with the structured representation offered by KGs. By applying this
novel combination to semi-structured construction data this work seeks to develop a novel
approach to capture, organize, and retrieve complex project knowledge.

14

Chapter 3

Methods

The proposed methodology was designed to semi-automate analysis over a dataset
of communication data from a construction project. First, a method is introduced to
specify themes of interest relevant to the data analysis. After that, I used the reasoning
capabilities of LLMs to construct a KG representing the explicit and implied content of
the communication data under the angle of different themes. Subsequently, by leveraging
the graph’s modularity, I explored common trends and themes in the data. Finally, I
investigated different querying methods to gain insights from the dataset.

Figure 3.1: Methology Overview.

As displayed in Figure 3.1, the workflow involves several key steps:

1. Setting Themes: To guide the analysis, a set of global themes was developed,
corresponding to key questions to be answered about the dataset. These themes
emerged through the analysis of a subset of the data to identify recurring topics
and through consideration of broader research objectives. The themes effectively
framed the inquiries to be pursued across the entire dataset. Additionally, during
the automated analysis process, the LLM explored and uncovered further themes of
interest, expanding the range of questions that could be addressed.

2. Graph Indexing Chain To construct a KG, I applied a chain of prompts to every text
in the dataset. This involved the following steps:

a) Translation and preparation of each text, in a more descriptive format.

b) Extraction of explicit and implied information based on the content of each text
under the angle of different themes.

c) Construction of a KG containing all derived information and reasoning of the
previous steps.

3. Retrieval and Evaluation: The KG was used as a tool for evaluation and analysis.
Unlike probabilistic methods, the graph allows for precise counting and quantitative

15

analysis of relationships, occurrences, and patterns within the data. This enabled
me to make definitive statements about the frequency and distribution of various
elements within the dataset. I leverage and explore two approaches which build up
on each other:

a) Deterministic retrieval or querying of information from the graph using Cypher.

b) Natural language communication with the graph leveraging agentic frameworks.

This methodology provided a framework for storing, representing, and quantitatively
analyzing derived knowledge about the unstructured text in the dataset. It allowed thematic
aspects to be captured while also facilitating a broader, deterministic analysis of the entire
dataset.

In the first section 3.1 of this chapter I outline the data source for my methodology and
describe its required pre-processing steps. The next section 3.2 focuses on the graph
indexing, detailing the usage of LLMs for KG construction, the definition of my graph
schema and a detailed description of my prompt chain used to construct the KG. In section
3.3 I propose different methods I used for the retrieval and analysis of information from the
KG, including agentic approaches.

3.1 Data Source and Data Preprocessing

Building upon the challenges and opportunities identified in the previous chapters, this
study leveraged data sources that are inherently created during the planning phase of
construction projects. This approach addressed one of the key issues in construction
knowledge management: the need for efficient data collection without additional overhead
(as discussed in Chapter 2). By utilizing existing data, I ensured that the method could
be implemented without disrupting current workflows or requiring extra effort from project
teams.

Construction projects generate a diverse array of information artefacts throughout their
lifecycle. These include 2D plans, 3D models, timetables, cost estimates, and various
forms of communication data such as meeting protocols, email correspondence, and
chat logs. While technical documents like plans and models represent the final results of
design and planning processes, they often fail to capture the rationale behind decisions,
the evolution of ideas, and the challenges encountered during the project. In contrast,
communication data offers unique insights into the decision-making processes and the
chronology of changes that occur throughout a project’s lifecycle.

The core idea of this work was to extract and structure the implicit knowledge created in
construction projects. As a starting point, this thesis focused specifically on communication
data, particularly BCF files. The BCF file format is used as it is an open-source format and
can be easily parsed.

Communication data and particularly BCF files are beneficial for several reasons:

16

1. Rich Contextual Information: Communication data often contains discussions
about problems, solutions, and decision rationales that are not evident in final
technical documents. Therefore, they lay the basis for the analysis of decisions
through the project.

2. Change History: Unlike static plans or models, communication records can reveal
how and why certain decisions were made, providing valuable insights for improving
future planning processes.

3. Industry Adoption: The global construction industry is increasingly adopting BIM,
driven by government mandates (Borrmann et al., 2018). As BIM adoption grows,
the utilization of standardized data exchange and collaboration formats spearheaded
by IFC and BCF is likely to rise.

4. Standardization: BCFs, in particular, offer a standardized format for communica-
tion within BIM projects, providing a structured yet rich source of project-related
discussions and issue tracking, which can be easily parsed.

Focusing on this data source enabled analyses that can lead to improvements in the
planning process, decision-making, and overall project management in the construction
industry.

IFC and BCF Project Dataset The data for this thesis was obtained from an open-source
project published on GitHub (buildingSMART International, 2023) by buildingSMART
(buildingSMART Technical, 2022), which is the organization behind both the IFC and BCF
standards. By leveraging this project, this thesis aimed to develop methodologies that can
be directly applicable to real-world construction projects, as a post-analysis method.

BCF is an already structured data format that combines XML files with additional resources
like images, all compressed into a single package. Every BCF includes multiple files like
the markup.bcf, the viewpoint.bcfv and snapshot images. The markup file contains the core
information of the issue represented as XML. Furthermore, the viewpoint.bcfv contains
the IFCGuid of related model components and the viewpoint of the camera in the model.
Through this file, the BCF directly links discussion topics to specific elements within the
BIM model, while also providing a viewpoint of the model (Borrmann et al., 2018).

As shown in Figure 3.2 each BCF XML contains a header with project and file information,
a topic section describing the main issue, and one comment section detailing discussions
related to the topic.

In this thesis, I did not only convert the structured data of the BCF into the KG, but also
the text-based unstructured data. The focus was specifically on extracting and analyzing
the semantic content within BCF files. By analyzing this semantic content, I aimed to
uncover deeper insights that may not be immediately apparent in the structured data fields,
like the data, author or referenced BIM objects. Through this approach, this information
became available for further analysis. While traditional BCF analysis often relies on

17

Figure 3.2: The structure of the BCF XML Markup (Version 1) of the dataset.

dashboards in tools like PowerBI or industry-specific software, these methods typically
focus on quantitative metrics and predefined categories, from the classified or numeric
fields of the BCF. My approach, in contrast, sought to delve into the thematic and semantic
details of the discussions, potentially revealing nuanced patterns and knowledge that
might be overlooked in standard evaluations.

Therefore, my aim was to extract further information from the comment text, which had
been created by industry professionals during the project and is the only larger source of
unstructured text in the BCF XML. Other already structured information, like the date or
author, was directly converted into the KG. I used a LLM to interpret, classify and reason
about the comment, enriching the KG for later analysis.

While the implemented approach focuses solely on comment extraction and indexation,
this research also proposes a more comprehensive concept for BCF data analysis. This
broader concept recognizes and suggests methods to leverage additional data points
contained within or referenced by BCF files. As part of this expanded concept, I propose
the use of Multimodal LLMs with vision capabilities to analyze images included in BCFs.
This approach could provide the LLM with additional visual context, potentially enabling a
deeper understanding of the described issues. Furthermore, the concept includes methods
to derive and utilize component information from the IFC model through the component IDs

18

provided in the viewpoint.bcfv file. This information could either be integrated directly into
the graph or provided to the LLM as additional context during the comment interpretation
process.

Figure 3.3 illustrates both the implemented approach (represented by solid arrows) and
these conceptually developed, but not yet implemented, elements (represented by dotted
arrows). While the implementation of these additional elements is beyond the scope of the
current work, they represent potential avenues building upon this thesis.

Figure 3.3: The overall concept of restructuring and indexing the BCF dataset into a KG.

3.2 Graph Indexing

I constructed a KG to systematically organize the information extracted from BCF com-
ments. I applied an LLM to create descriptions of entities and relationships about a BCF
comment text, which is a form of abstractive summarization, relying on the LLM to create
independently meaningful derivations that may be implied but not stated by the text itself,
similar to the approach by Edge et al. (2024). Therefore, the main task performed by the
LLM was query-focused summarization (Dang, 2006). In the following subsections, I first
explain how LLMs are leveraged to construct the KG (subsection 3.2.1). I then describe
the graph structure in detail (subsection 3.2.2), before explaining the prompt chain used
within my methodology to construct the KG (subsection 3.2.3).

3.2.1 Leveraging LLM for Knowledge Graph Construction

For KG construction from BCF comments, I leveraged the generalization capabilities of
LLMs. Recent advancements in LLM technology, including models from the GPT (Brown
et al., 2020), Llama (Touvron et al., 2023), and Gemini (Team et al., 2023) series, have
demonstrated the ability to perform complex tasks such as query-focused summarization

19

without task-specific training (Edge et al., 2024). This is particularly advantageous for
the work with BCFs, as it eliminates the need for large amounts of BCF-specific training
data. Unlike earlier approaches that required extensive domain-specific datasets for tasks
like query-focused text summarization (Laskar et al., 2022), modern LLMs can effectively
process and summarize content provided within their context window through in-context
learning. This capability allowed me to apply sophisticated natural language processing
techniques to BCF comments, without the constraints of limited domain-specific training
data.

3.2.2 Graph Structure Definition

In defining the graph structure for the BCF knowledge representation, I employed a two-
level architecture with individual BCF trees and one merged BCF graph, as illustrated in
Figure 3.4 and 3.5, similar to Xu et al. (2024) proposal in another context.

Figure 3.4: Graph Structure of the BCF Tree.

The BCF Tree T (N,E,R) models each BCF comment as a shallow tree. In this structure,
N represents the set of nodes, where each node n ∈ N is uniquely identified by (a, t).
Here, a denotes a specific aspect of the BCF comment, and t represents the node type.
The root node of each tree, denoting the whole comment of the BCF as a, has the type t =
BCF. Each BCF comment node keeps the date of the BCF and the author of the comment
as properties p. More metadata of the BCF can be included through the framework but is
avoided here for the simplicity of the overall schema. All other nodes have types t and
aspects a derived during the semantic analysis process by the LLM. For readability and
schema clarification during KG retrieval, a is also appended as a node property, with the
key-name name. E represents the set of edges connecting these nodes, and R is the
set of relation types that label these edges, which are also derived during the semantic
analysis process by the LLM. The tree has a path length of one, meaning that each

20

descriptive node is directly connected to the root BCF comment node, without intermediate
levels.

The Merged BCF Graph G(N ′, E′, R′) is created by combining nodes with the same aspect
and type (a, t) across different BCF Trees. In this structure, N ′ represents the set of unique
nodes after merging, E′ is the set of edges that now connect these merged nodes to their
respective BCF comment nodes, and R′ is the set of relation types preserved from the
original trees. Nodes are combined only if they share the same aspect and type (a, t).

This merging process creates connections between previously isolated BCF trees. The
resulting graph structure never directly connects BCF comments, but rather through their
shared descriptive nodes.

The significance of a descriptive node in this merged graph is determined by the number
of connections it has to different BCF comment nodes. Nodes with numerous connections
represent aspects or issues that are prevalent across multiple BCFs, indicating their
importance in the overall dataset. This structure allows for the identification of common
themes and recurring concepts across the entire set of BCF comments. Figure 3.5
provides a visual representation of this merged graph structure, highlighting how individual
BCF comment nodes are interconnected through shared nodes of the same aspect and
type (a, t).

Figure 3.5: Graph Structure of the Merged BCF Graph.

21

3.2.3 Graph Chain

This subsection describes every step of the KG construction, starting with the translation
and preparation, continuing with the theme tailored extraction and ending with the post
processing of the extracted information for graph creation.

Translation and Preparation

As LLMs perform better when complex tasks are decomposed into manageable steps,
I adopted a similar approach in my methodology. To analyze the given BCF dataset in
English, the comment text first needed to be translated, taking into account the specific
jargon of the construction industry. This task constituted the initial prompt in the chain.
The text was translated in an exploratory manner, with the LLM being guided towards the
domain-specific language of the construction industry.

When using a LLM, its performance can be improved by using a system parameter to give
it a role. This technique, known as role prompting or role-play prompting consistently sur-
passes the standard zero-shot prompting approach across most datasets. The reasoning
capabilities of an LLM can be directed to a specific domain and used to emulate a system
conducting a specific task (Kong et al., 2023). In this context, I assigned the LLM the role
of an engineer in the construction industry translating the comments.

system_prompt_template = (

"You are an engineer in the construction industry. Please explain "

"the issue of the following comment in a clear and concise manner "

"in English. Do not mention any words in the original language of "

"the comment. Moreover, do not infer or assume any additional "

"information that is not explicitly mentioned in the comment, "

"even if it’s likely, be brief if the comment is short."

"After explaining the comment just append a 1 to 1 translation of "

"the comment in English at the end of the explanation. Just say: "

"’Original Comment: -- Put 1-to-1 translation here --’\n\n"

"Here is the comment:\n"

"{comment}"

)

Normally, the chunk size of the input text for processing is an important design decision,
when working with LLMs. As the used dataset is naturally split into separate BCFs with
individual comments and each comment did not contain more than a few sentences. This
resulted in a natural chunk size of around 60 tokens, with a maximum of not more than
150 tokens. Therefore, the LLM calls had no risk of suffering from recall degradation of
longer LLM context windows (N. F. Liu et al., 2024).

22

Theme Tailored Extraction

This step aimed to extract instances of graph nodes and edges from each BCF comment.
When invoking the LLMs’ interface, a specific output format is required to facilitate the
code processing for the creation of the graph. In this case, the LLM was required to return
a relation type, a tail node, and a tail node type in response to the prompt which specifies
the head node and the head node type as the corresponding BCF comment.

Figure 3.6: Components extracted through the LLM.

Structured Extraction To achieve a structured output from a LLM, I utilized the function
calling capabilities of LLMs. Function calling, also known as tool calling, allows a model
to respond to a given prompt by generating output that matches a user-defined schema
(LangChain, 2024b). It is important to note that while the term "tool calling" might imply
that the model is performing an action by itself, this is not the case. Instead, the model
generates the arguments for a tool, and the execution of the tool, the creation of the graph,
is left to the code framework implementing the LLM call.

Figure 3.6 displays the arguments that needed to be provided by the LLM to construct
the graph. The head entity and type of the relationship were already provided within the
prompt as the comment of the BCF. The LLM needed to generate the argument for the
relation type, as a short descriptive string. The tail entity and the tail type also needed to
be provided by the LLM as a short descriptive string. The parameters of all nodes could
be determined after the graph construction, since the heads date and author parameter
were contained within the corresponding BCF comment and the tail parameter name was
a and could be derived from the tail node tuple (a, t).

Prompting Techniques The overall architecture of the prompt is inspired by an approach
provided by Neo4j (Neo4j and LangChain, 2024). My approach leveraged similar prompting
techniques, while adapting and expanding the prompt to specific needs. The whole prompt
is written in markdown and has a clear enumerated structure with clear tasks. The system
prompt began with role-based prompting (Kong et al., 2023), directing the LLM to assume
the role of an expert engineer constructing knowledge trees within the construction industry
domain.

23

"## 1. Overview\n"

"You are a state-of-the-art AI designed to extract structured

information from comments "

"in the construction and engineering domain. Your task is to build a

knowledge graph "

"that accurately represents both the explicit and implied content of

each comment.\n\n"

The next part of the prompt was to provide the LLM with clear extraction guidelines: It
described the graph schema to provide the LLM with a clear guide to organizing and
extract information about the BCF comment. It is important to highlight that the LLM was
prompted to return clear and concise labels. This is a key part of the indexing approach,
as those precise labels and relationships helped to interconnect the graph and to find
similarities during query time.

"## 2. Extraction Guidelines\n"

"- Extract information that is stated in the comment.\n"

"- Include information that is implied by the comment in context with

the theme-specific focus.\n"

"- Maintain accuracy: if in doubt, err on the side of caution.\n\n"

"## 3. Knowledge Graph Structure\n"

"- For every extraction reason only about the comment text and

therefore always fill the head with:\n"

" - head: ’Comment’\n"

" - head_type: ’BCF’\n"

"- Nodes: Represent entities, concepts and themes mentioned or implied

by the comment in context with the theme-specific focus.\n"

"- Relationships: Capture connections to entities, concepts and themes

identified.\n"

"- Use clear, concise, and consistent labels for node types and

relationships.\n\n"

Themes A key step was the inclusion of special themes within the prompt. These themes
were based on analysis questions and were formulated through different approaches,
either by analyzing a subset of the dataset to identify recurring themes or by deriving them
from the overarching analysis objectives I aimed to address across the entire dataset.
Themes allowed me to focus the LLM’s attention on particularly relevant or recurring topics.
For each BCF comment, the LLM was directed to reason about these specific themes, with
the results of this reasoning process being incorporated into the KG. Thereby, I indexed
the dataset under different thematic angles that can be customized.

The themes were important when answering global questions to ensure that the higher-
level understanding and reasoning perspective required to address these questions is
embedded within the KG structure. This approach provided consistency while reasoning
about each BCF comment, while also not limiting the LLM and encouraging it to explore
other themes not specifically mentioned. Figure 3.7, shows exemplary themes of interest

24

for the BCF dataset. As an example, I decided to analyze which components were a
recurring topic within the BCF comments. By specifying this theme Components during
the indexing process, my goal was to answer questions like "Which components are
mentioned the most?", during query time. I also partly specified, examples for categories
of themes, like different request types. This allowed the LLM to index according to the
specified categorization.

Figure 3.7: Thematic definition and corresponding questions with examples.

The prompt as a whole has the ability to be applied several times with different themes.
This allows for a scalable level of detail in the KG – the more often this prompt is applied
to reason about and explore different themes, the more detailed and comprehensive the
graph can become. This means one can iteratively enrich the knowledge representation
by repeatedly querying the LLM about various aspects of each BCF comment.

"## 4. Theme-Specific Focus\n"

"Identify and categorize the following:\n"

"- Request types (Feasibility, Replacement, Clash...)\n"

"- Components \n"

"- Materials \n\n"

The listing, displays the part of the system prompt that declared the theme-specific focus,
showcasing three exemplary themes including one theme categorization. In the chain, I
applied this whole prompt, displayed in Figure 3.8, once for each BCF comment, as this
was sufficient to extract several nodes and relationships around one BCF comment.

To tailor this prompt to the domain and to enhance the overall quality of its output, I
incorporated few-shot examples in the prompt for in-context learning (Brown et al., 2020).
It is important to mention that these few-shot examples also needed to contain thematic
examples to enhance the LLMs output in perspective to the themes specified.

25

Figure 3.8: The combined system prompt, excluding few-shot examples.

Post Processing for Graph Creation

The next step was to use the structured output provided by the LLM to construct the KG.
Since there is a chance that the LLM returned invalid results that do not adhere to the
schema, I checked for their validity and dropped invalid results before constructing the
graph. I combined each BCF Tree created, described in section 3.2.2, into the Merged
BCF Graph by merging the descriptive nodes with the same aspect and type (a, t).

3.3 Graph Retrieval

After constructing the knowledge graph from BCF comments, the next crucial step was
to effectively retrieve and analyze the stored information. This section describes various
methods used for querying and extracting insights from the graph structure. I will propose

26

different approaches, each offering unique advantages in accessing and interpreting the
knowledge embedded within the graph.

The proposed methods range from direct querying using the Cypher (Neo4j, 2024b)
language to more advanced techniques involving prompt chains, and AI agents. Each ap-
proach provides different capabilities in terms of deterministic evaluation, semantic search,
and complex reasoning. By leveraging these diverse methods, I aimed to demonstrate the
flexibility and power of the graph-based knowledge representation.

3.3.1 Cypher Query

The foundation of my graph retrieval methods is Cypher (Neo4j, 2024b), a declarative query
language specifically designed for interacting with graph databases. Originally developed
as Neo4j’s native query language, Cypher has become a standard in graph querying due to
its intuitive syntax and powerful capabilities in graph traversal (Holzschuher & Peinl, 2013).
Cypher’s syntax has some similarities to SQL, making it accessible to those familiar with
relational database querying. The language’s design philosophy emphasizes readability,
which significantly reduces the complexity of working with graph-centric applications
(Holzschuher & Peinl, 2013).

Cypher offered several key advantages for querying the BCF-derived KG:

1. Schema Exploration: Cypher provides commands to return the graph schema,
facilitating dynamic exploration and understanding of the knowledge structure.

2. Deterministic Evaluation: Cypher allows for precise, deterministic querying of the
graph structure. This enabled exact counts, aggregations, and pattern matching
across the KG.

3. Metadata Filtering: Cypher supports filtering based on node and relationship
properties and labels, respectively. This approach allowed me to query based on
BCF metadata such as dates, authors, or any other attributes incorporated into my
graph structure.

4. Full-Text Indexing: In combination with Cypher graph databases can support full-
text indexes on string properties. This feature is particularly valuable for my KG, as it
enables semantic similarity searches on node aspects and tolerance for misspellings
in queries (Neo4j, 2024a).

3.3.2 A Semantic Layer through Agent with Tools

The created graph can be challenging to interpret and analyze for non-technical users.
Therefore, I developed an agent-based approach that enables users to interact in a
conversational manner. This allows users unfamiliar with graph databases or technical
query languages to explore the graph in detail.

27

As outlined, LLM based agents can understand natural language queries, make decisions,
and execute actions using a set of predefined tools. Within this framework, these tools
form a semantic layer between the user’s natural language input and the graph database.
The semantic layer acts as a bridge, translating user intent into specific, actionable queries
that the agent can execute with accuracy and reliability. Each tool in the semantic layer
can be thought of as a function with a specific purpose. For my approach, I equipped the
agent with the following three tools and tested its capabilities to communicate with the
user based on information retrieved from the graph.

Tool 1: Find Major Aspects This tool identifies and returns the first three nodes of a
certain type t, which have the most connections to BCF comment nodes. The node type t

could be for example Component or Request Type.

def find_major_aspects(node_type: str) -> str:

query = f"""

MATCH (t:BCF)-[r]->(c:{node_type})

RETURN c.id AS node_id, COUNT(r) AS connections

ORDER BY connections DESC

LIMIT 3

"""

result = graph.query(query)

output = f"Top 3 {node_type}s with the most relations to BCF

comments:\n\n"

for i, item in enumerate(result, 1):

output += f"{i}. {item[’node_id’]}: {item[’connections’]}

connections\n"

return output

Tool 2: Aspect Analyzer Tool This tool counts the number of BCF comments which are
connected to a node with a certain aspect a. In the beginning, the entity chain extracts all
entities mentioned in the question through a LLM. Next, the extracted entities are matched
against the node aspects a of the graph. This matching is conducted through a full-text
index, which allows for small spelling mistakes and therefore minor deviations in entities.
The same entities with minor deviations in spelling within the graph can therefore all be
found and evaluated together.

Moreover, the tool provides the content of the BCF comments alongside the total count,
offering a brief overview. Examples of aspects include: Feasibility Inquiry, Relocations,
Openings, Lime Sandstone

def aspect_analyzer_tool(question: str) -> str:

result = f"Queried graph for entities related to: ’{question}’\n\n"

entities = entity_chain.invoke({"question": question})

def generate_entity_resolution_full_text_query(input: str) -> str:

words = [el for el in remove_lucene_chars(input).split() if el]

28

query = " AND ".join(f"{word}~2" for word in words[:-1])

query += f" {words[-1]}~2" if words else ""

return query.strip()

for i, entity in enumerate(entities.names, 1):

result += f"Entity {i}: {entity}\n{’=’ * (len(entity) + 10)}\n"

response = graph.query(

"""CALL db.index.fulltext.queryNodes(’indexForThemes’,

query, {limit:2})

YIELD node, score

WHERE score >= 1.2

MATCH (node)<-[r]-(neighbor:BCF)

RETURN node, neighbor.id AS output, score

""",

{"query":

generate_entity_resolution_full_text_query(entity)})

{... Formatting and counting of the result before returning ...}

return result

Tool 3 and 4: Query Node Types and Aspects Tool 3 returns all the different node
types t present in the graph. Tool 4 returns all the different node aspects a of a certain
type t in the graph.

Agent Tool Choice The LLM agent selects the appropriate tools based on its under-
standing of the user’s query. Each tool is passed with a description to the LLM agent,
enabling the LLM agent to determine when to use which tool. By leveraging these tools,
the agent gains the ability to interact with the KG and perform queries according to the
user’s request. Furthermore, through the use of the tools’ capabilities like counting or
pattern matching via Cypher, the LLM agent acquires new capabilities. Since the tools
that do not leverage an LLM internally always return the same results, the trustworthiness
and reliability of the system are enhanced, mitigating the risk of incorrect and irrelevant
outputs.

Furthermore, the agent can interpret the results returned by these tools, providing expla-
nations and insights in natural language. This capability allowed for a more interactive and
informative exploration of the KG.

3.3.3 Agent-Writing Cypher

While this tool-based agent approach provides an interactive way of engaging with the
KG, there are scenarios where more flexibility is needed. An agent leveraging tools is
only as capable as the tools provided. Because these tools rely on static query templates,

29

Figure 3.9: The LLM agent leveraging different tools to interact with the knowledge graph
to answer the query.

the agent is limited in the interaction with the graph through those templates. Manual
engineering effort would be needed to create new tools. Moreover, tools can never
sufficiently cover the wide complexity and variety of questions, a user can pose towards
the KG.

To avoid this effort, one option is to use a LLM-based agent to generate Cypher queries.
The agent can dynamically construct Cypher queries tailored to specific user requests,
potentially creating more complex or customized queries than what is possible with
predefined tools. However, this flexibility comes with challenges as the agent must
generate syntactically correct Cypher queries that accurately reflect the user’s intent.
Moreover, the agent needs to be aware of the KG’s schema to generate valid queries.
For my approach, I tested an implementation provided in collaboration by LangChain and
Neo4j (2024), which can generate and execute Cypher queries based on the created
graph schema and prompt.

30

Chapter 4

Proof of Concept and Implementation

This chapter describes the proof of concept and implementation of the framework proposed
in my methodology. To test my approach I used an open-source project buildingSMART
published on GitHub (buildingSMART International, 2023). In the first section, I will
describe the obtained dataset of BCF files in detail, with a focus on the abnormalities of
this dataset. In the next section, I will shortly describe how I parsed and flattened the
obtained BCF files for further processing. Following, I will argue why I used LangChain
as a framework to apply LLMs to my data and present other framework alternatives. In
the section after, I will argue about the choice of LLM used. The next section focuses
on Neo4j, comparing it to other database systems and lining out why I chose a graph
database.

4.1 Public buildingSMART Dataset

The published dataset from buildingSMART consists of 93 BCF files (version 1) in the
Dutch language. It exhibits some unique characteristics, which need to be considered in
the analysis process.

All BCF comments are in Dutch, with the topic title always being "Opmerking" (Remark).
In a wider sense, this topic title always describes the BCF correctly, since every BCF is a
remark. However, no further conclusions can be made on the actual content of the remark
which prohibits further analysis of this property. The same holds true for the status field of
each comment in each BCF file, which is always set to "Unknown". Either the software
used to create the BCF provided no option to set this field or the authors just decided to
not make use of it, which leaves less room for the analysis.

Notably, 91 of the 93 BCFs files were created and edited by a single author, while the other
two files are from one different author. Moreover, four BCF files contain more than one
comment. All these four BCFs contain two comments from the same author. Therefore,
no discussions of different authors exist in the comments of the BCF dataset. The BCF
file format seems to have been used as a one-way communication format, possibly
only notifying different stakeholders of inquiries or requests. This restricts the scope of
analysis in the dataset since two-way communication or discussions would provide more
opportunities for further semantic analysis and knowledge derived from the engineering
and planning process.

Since the BCFs are file-based, the entire file is duplicated, when editing or replying to a
comment. This further limits the number of BCF comments available for analysis. Only

31

84 BCFs have a unique ID and topic. From the 93 BCF files five contain an edited
comment with the same ID and minor changes, mainly in numbering or small details. Four
files contain one additional comment. Therefore, in total the dataset contains 88 unique
comments to analyze.

A deviation from typical BCF usage can be observed in the VerbalStatus field, which, in
the dataset contains company or group names rather than the descriptive text of the BCF
statuses. It appears the field has been used to label the addressees of the BCF.

Using the BCF format provides both opportunities and challenges for knowledge extraction
and analysis in my research. Given the topic titles in the dataset are generic, the comment
status is set to unknown, and the communication flow is unidirectional, the BCF XML file
(Figure 3.2) does not provide additional context valuable for the LLM when analyzing the
comment text for graph creation. Therefore, only the comment text is processed directly
by the LLM within the graph creation pipeline, while selected other parameters can be
assigned directly to their corresponding BCF comment node within the graph for later
analysis and reasoning.

4.2 BCF File Acquisition and Processing

My approach to BCF file acquisition recognized two primary technical methods: accessing
BCF files directly and utilizing the BCF API (buildingSMART, 2023) for server retrieval. For
this research, I used BCF data published on GitHub by buildingSMART. As this data is not
hosted in a Common Data Environment (CDE) with a BCF API, I had to clone the GitHub
repository to my local storage to process the data. It is worth noting that in scenarios
where data is provided from a CDE, the open BCF API could be leveraged to fetch entire
BCF contents, streamlining the data acquisition process in applications. This does have
several advantages, one of them being that there would be no need to store large amounts
of files locally. While my current implementation involved storing and processing BCF files
locally, my methodology was designed to be adaptable to API-based retrieval in future
applications.

The initial step of the preprocessing pipeline was to decompress BCFZIP files. BCFZIP is a
compressed format commonly used to combine and distribute multiple BCF files efficiently.
This decompression step is necessary to access the individual BCF files contained within
the BCFZIP package (Figure4.1.

Once extracted, I processed each BCF, parsing each BCF XML file to read its content.
The XML structure was then flattened to create easily accessible properties, a process
that involves de-nesting all information from the XML structure and organizing it into a
flat format where each piece of information is directly accessible (Figure 4.2. In cases
where a BCF contains multiple comments, the step involved separating each comment
while maintaining the overall BCF context properties. This separation ensured that each
comment was treated as a distinct entity in the graph creation process while retaining

32

Figure 4.1: A BCFZIP decompressed in its parts. A BCFZIP contains several BCFs, which
each, in turn, contain a markup.bcf, a viewpoint.bcfv, and potentially several snapshot
images.

the properties of its parent BCF for context. This approach allowed for a more granular
analysis of each comment text while preserving the relationship between comments and
their originating BCFs.

I also considered concatenating all comments of a BCF and providing them as a single
prompt to the LLM. However, this approach offers less granular analysis and is only eligible
when all comments are from the same author. If comments come from different authors,
the LLM would need to be prompted differently, requiring a structured prompt to denote
all authors in the conversation thread. Consequently, a BCF with multiple comments
would need to be treated differently in the indexing pipeline and within the created graph.
However, when processing each comment separately while preserving the relationship
between the comments within the graph, I applied the same indexing process to each BCF
no matter the number of comments while still being able to analyze discussions within
the graph, through their shared properties. Therefore, treating each comment separately
provides more benefits.

Through these preprocessing steps, I transformed the raw dataset into a structure op-
timized for the subsequent graph construction and analysis phases. This preparation
ensured that I could efficiently extract and represent the knowledge contained within each
BCF in the graph structure.

33

Figure 4.2: Restructured BCF XML file parsed into JSON. All properties are de-nested
making them accessible from the top level.

4.3 LangChain: A Framework for LLM-Powered Applications

In my implementation of the methodology, I utilized LangChain, 2024a, an open-source
framework designed for developing applications powered by LLMs. Central to LangChain is
the Runnable interface, which forms the foundation for the entire framework. This interface
defines a standard set of invocation methods for various components within a LLM powered
application, enabling the creation of modular and interchangeable components. In my
implementation, I employed two key methods of this interface: invoke(), which executes
the components synchronously with a single input, and stream(), which allows for
streaming output generation, useful for real-time or incremental processing.

This standardization allows to easily combine and reconfigure different components of LLM
applications. Building upon this core interface, LangChain offers a wide variety of different
key components, within its ecosystem, most of them developed by the open-source
community. The most basic components include:

1. Prompt Components: These define the input for the LLM, allowing for dynamic
template generation.

2. LLM Components: These wrap around various language models from different
providers (OpenAI, Anthropic, Hugging Face, etc.), providing a consistent interface
for interaction.

3. Output Parsers: Tools for processing and formatting the output from LLMs. Can be
used to convert raw text to more structured formats.

34

4. Chains: Sequences of operations that combine multiple components implementing
the Runnable interface, allowing for complex workflows to be constructed from
simpler building blocks.

This modular architecture allowed me to easily construct sophisticated LLM pipelines by
combining these components in various ways. Chains, in particular, serve as a powerful
abstraction, enabling the creation of complex, multi-step processes.

In this simple example, I demonstrate how LangChain’s components work together to
create a functional LLM application with minimal code:

from langchain import PromptTemplate, LLMChain

from langchain.llms import OpenAI

Define a prompt template

template = "What is a good name for a company that makes {product}?"

prompt = PromptTemplate(template=template, input_variables=["product"])

Create an LLM chain

llm = OpenAI()

chain = LLMChain(llm=llm, prompt=prompt)

Run the chain

result = chain.run("eco-friendly bricks")

print(result)

4.3.1 LangChain Expression Language (LCEL)

Building upon the Runnable interface, LangChain introduces the LangChain Expression
Language (LCEL), which further simplifies the process of constructing complex chains.
LCEL utilizes the pipe operator (|) to create more readable chain compositions. This
approach makes the creation and modification of LLM chains even more straightforward.
Here is an example of how LCEL can be used to create a chain:

from langchain import PromptTemplate, LLMChain

from langchain.llms import OpenAI

from langchain.schema import StrOutputParser

Define components

prompt = PromptTemplate.from_template("What is a good name for a

company that makes {product}?")

model = OpenAI()

output_parser = StrOutputParser()

Compose the chain using LCEL

chain = prompt | model | output_parser

35

Run the chain

result = chain.invoke({"product": "eco-friendly bricks"})

print(result)

In this example, the pipe operator (|) is used to connect the prompt, model, and output
parser into a cohesive chain. This syntax not only makes the code more readable but also
allows for easy modification and extension of the chain.

LCEL’s expressive power extends beyond simple linear chains. It provides built-in support
for more complex operations such as parallel processing, conditional branching, and
error handling. These features, combined with LangChain’s modular architecture, enable
developers to create sophisticated LLM-powered applications while maintaining clean and
maintainable code structures.

4.3.2 Agent Component in LangChain

A key feature of LangChain that I utilized in my methodology during graph retrieval is its
Agent component. It provides an abstraction layer for creating autonomous, tool-using
LLM applications. At the core of this functionality is LangChain’s Agent Executor, which
manages the agent’s tool-calling capabilities and serves as the runtime of the agent.

The Agent Executor orchestrates a complex process:

1. It calls the agent to determine the next action.

2. It executes the chosen action using the appropriate tool.

3. It returns the action outputs to the agent.

4. It iteratively repeats this process until the task is complete.

One of the most significant advantages of using LangChain’s Agent component is its ability
to abstract numerous runtime complexities. The Agent Executor handles various edge
cases and potential issues, including, managing scenarios where the agent selects a non-
existent tool, handling errors that occur during tool execution or dealing with unparseable
outputs from the LLM.

4.3.3 LangChain Alternatives

While LangChain was my framework of choice for this research due to its flexibility and
comprehensive feature set, it is important to acknowledge that there are other frameworks
available for LLM application development. Alternatives such as LlamaIndex (LlamaIndex,
2024), and Haystack (Deepset, 2024) offer their own unique features and approaches to
working with LLMs. LlamaIndex, for instance, specializes in data ingestion and indexing,
making it particularly useful for applications that require efficient querying of large datasets.

36

Haystack, on the other hand, focuses on question-answering systems and offers strong
support for document retrieval tasks. The choice of framework ultimately depends on
the specific requirements of the project, the developer’s familiarity with the tools, and the
particular strengths of each framework. While I found LangChain to be the most suitable
for my needs, other researchers or developers might find that alternative frameworks better
align with their project goals or workflows.

4.4 Choice of LLM

The landscape of LLMs is dominated by several key providers, each offering unique models
with varying capabilities and access methods. In this section, I will provide a brief overview
of different models, as well as providers and shortly argue about the rationale behind my
choice of LLM for my case study.

Overview of LLM Providers LLM providers are organizations that develop, maintain,
and often provide access to LLMs, offering various services ranging from API access to
open-source distributions. The field of LLMs is rapidly evolving, with several major players:

- OpenAI: Pioneers in the field, offering the GPT (Generative Pre-trained Transformer)
series, including the widely-used GPT-3.5, GPT-4 and GPT-4o. These models are
easily accessible through API calls and are known for their versatility and strong
general performance (Radford et al., 2019) (Brown et al., 2020) (OpenAI, 2024).

- Anthropic: Creators of Claude, focusing on developing AI systems with enhanced
safety features and ethical considerations. Anthropic regularly publishes research
on AI safety, scalable oversight, and improving AI systems. They’re exploring ways
to make AI systems more reliable and interpretable (Templeton, 2024) (Anil et al.,
2024).

- Google: Provides access to models like PaLM (Pathways Language Model) through
its VertexAI platform. These models leverage Google’s vast computational resources
and are integrated with other Google Cloud services (Chowdhery et al., 2023).

- Microsoft: In partnership with OpenAI, Microsoft offers Azure OpenAI Service,
providing access to models like GPT-3.5, GPT-4 and GPT-4o through the Azure
cloud platform.

- Meta: Released open-source models like LLaMA (Large Language Model Meta
AI) (Dubey et al., 2024), which researchers and developers can download and run
locally or fine-tune for specific applications.

- Mistral AI: Offers both open-source models and API access, positioning them as
an alternative to both fully closed commercial providers and purely open-source
initiatives. (Jiang et al., 2023)

37

Selected Model: GPT-4o For the case study, I selected GPT-4o, as it performs at the
cutting edge in LLM technology. GPT-4o’s advanced understanding is an important ground
for the domain-specific analysis of construction project communication data. The model’s
robust performance across various tasks, among others in complex reasoning and analysis,
made it the most suitable. Nevertheless, through leveraging the LangChains framework
it is easily possible to change the LLM used through a few lines of code. Therefore, in
further case studies one can use different LLMs at different parts of the pipeline. LLMs can
also be fine-tuned through services provided by their providers. Going deeper it is also
possible to leverage open-source models hosting them locally or through a provider like
Google’s VertexAI platform. At this stage of research, where I tested the general feasibility
of my approach, fine-tuning and locally hosting an open-source LLM would introduce
misleading complexity. Additionally, GPT-4o’s accessibility through API calls facilitated
seamless integration into my research pipeline, streamlining the implementation process.

Configuration Details

- Model: GPT-4o

- Temperature: Set to 0 for maximum consistency

- Access Method: OpenAI API

4.5 Choice of Database System

When selecting a database for my implementation, I considered mainly two types of
database systems: MySQL and NoSQL databases.

Traditional relational databases, such as MySQL, offer structured data storage with pre-
defined schemas, while NoSQL databases provide more flexibility in data representation.
NoSQL databases can be schema-less or have flexible schemas (Li & Manoharan, 2013).
This characteristic is particularly beneficial for my approach, as it enables the LLM to
explore and generate new node types in my graph structure. A database that can easily
accommodate schema changes or expansions is crucial for dynamic knowledge represen-
tation.

Graph databases, a subset of NoSQL databases, are specifically designed to store
and query graph-like structures (Vicknair et al., 2010). They excel at representing and
traversing relationships between data points, which aligns with my methodology’s graph-
based knowledge representation. The schema described in my methodology naturally
maps to a graph structure, making graph databases an ideal choice for my implementation.

One of the primary advantages of graph databases over traditional relational databases
is their ability to perform complex joins - akin to joins in SQL databases over multiple
tables - more efficiently. Graph databases can traverse relationships (edges) between
nodes with minimal computational overhead, allowing for quick and efficient querying of

38

interconnected data (Hogan et al., 2021). Moreover, the overall graph structure provides
benefits in terms of data representation and query flexibility. Cypher, a declarative query
language specifically designed for property graphs, facilitates these benefits (Francis
et al., 2018). It provides powerful capabilities for querying and modifying data and its
pattern-matching capabilities are intuitive and efficient for querying the interconnected
structure of my graph representation of BCF comments. Several graph database options
are available, including Neo4j (Neo4j, Inc., 2024), ArangoDB (ArangoDB GmbH, 2024),
and NebulaGraph (vesoft inc., 2024).

I chose Neo4j for my approach in this thesis due to its alignment with my data indexing
structure, as a graph. Moreover, Neo4j supports property assignment to both nodes and
relationships, which was also a key requirement for my implementation. This feature
allows to keep the graph schema clear while still enabling the addition of supplementary
information to nodes as needed (Guia et al., 2017). Additionally, Neo4j natively uses
Cypher for querying and navigation, which was crucial for the analysis phase of my
methodology.

39

Chapter 5

Results

In this chapter, I present the results of the framework implemented. I will first introduce
the results of the graph indexing chain based on the described BCF dataset, including the
selection of three different themes contained in the prompt. In the subsequent section, I
will evaluate the different retrieval methods. Both sections include different case studies
that analyze the results of my methodology.

Figure 5.1: Graph created by the Graph Indexing Chain.

5.1 Graph Indexing Process

For the graph indexing process, I selected the themes Request Types, Components and
Materials, which were also given as an example in the methodology. Within this chapter, I

40

conduct case studies to qualitatively analyze how well the graph was indexed according to
those different themes. Before doing so I will analyze the overall graph creation process.

Analysis of the Graph Creation Process The graph was successfully created by the
LLM prompting chain, adhering to the structure specified. Only one relation did not adhere
to the schema specified and had to be removed automatically.

Algorithm 5.1: Created relationship not adhering to the rules specified in the prompt

Relationship(source=Node(

id=’Timber Frame Extension’,

type=’Component’),

target=Node(

id=’Sand-Lime Bricks’,

type=’Material’),

type=’INTERSECTS’)

Listing 5.1 shows the relation that connects a node of type Component to a node of type
Material. The connection in itself is reasonable and adheres to the information contained
in the BCF comment. However, as specified in the graph schema, each relation must
specify the origin, the BCF comment node, as its head so that all indexed information is
about the BCF comment directly. Therefore, the relation was removed from the graph.

As shown in Figure 5.2, between one and seven nodes with relationships were extracted
in relation to one BCF comment. Most of the time, the LLM prompting chain extracted four
nodes with relationships for one BCF comment node.

Figure 5.2: Count of nodes with relationships extracted to one BCF comment.

41

As displayed in Table 5.1a the graph contains 297 notes of 16 different types. Most common
are the Component nodes, followed by nodes of type BCFComment, RequestType and
Material. The LLM was also able to index several node types without specifying the
corresponding theme explicitly in the prompt. The various node types display aspects
about the BCF comment which the LLM indexed without direct prompting. Table 5.1b
shows all the relationship types indexed by the LLM. In total, there are 303 relationships
with 12 distinct relation types.

Node Type Count
Component 135
BCFComment 87
RequestType 39
Material 10
Specification 5
Document 4
Issue 4
Person 3
Discipline 2
Process 2
Software 1
Company 1
Model 1
Organization 1
Service 1
Measurement 1
Total 297

(a) Distribution of node types.

Relationship Type Count
MENTIONS 178
REQUESTS 78
DISCUSSES 22
SPECIFIES 11
REFERS_TO 4
INVOLVES 3
INDICATES 2
SUGGESTS 2
IMPLIES 2
INQUIRES 1
ASSUMES 1
REFERENCES 1
Total 303

(b) Distribution of relationship types.
Table 5.1: Distribution of node types and relationship types in the graph.

Case Study on the Indexing Theme Components Within my knowledge graph, 135
different components were identified. The most prominent components discussed in the
BCF comments were ’Opening’ and ’Openings’, followed by the ’Floor’ and the ’Roof’, as
shown in Table 5.5. Since there are more nodes of type component than BCF comment
nodes, it becomes apparent that frequently the combination of several components is
discussed in one comment. Up to a maximum of six components were identified within one
BCF comment, as shown in Table 5.2c. However, most BCF comments discuss between
one to three components. Figure 5.3 displays two examples of different components being
correctly identified and indexed from two different BCF comments.

From this case study of indexing the BCF comments by Components, several key points
emerged:

1. The proposed LLM framework demonstrated a robust capability to identify and index
a diverse range of construction-specific components with high precision. Despite
the absence of labelled data and ground truth for this NLP task, preliminary results
indicated promising performance in component extraction and classification.

42

Figure 5.3: Intermediate and end results of the promting chain indexing a BCF comment
with three different themes.

2. It becomes apparent that the framework lacks entity resolution. Components in plural
and singular are separated into different nodes. An obvious example is ’opening’
and ’openings’ in my dataset, but there are several more occurrences of this problem
like ’Side Wall’ and ’Side Walls’ and ’Shaft’ and ’Shafts’.

3. The framework identified various hierarchical components, such as groupings of
’Floor’, ’First Floor’, and ’Second Floor’. These groupings only emerged after the
different components were identified and cannot be predicted in advance. Without
proper grouping, the graph’s modularity revealed only major trends for specific com-
ponents, potentially obscuring higher-level patterns across categories like ’Window’
or ’Beam’ variants.

4. The lack of a predefined ontology led to ambiguity in the component classification.
For instance, elements identified by the LLM framework, such as ’Gap’, may not
be universally considered as components in traditional construction terminology.
Here the implementation of a post-processing filtering mechanism that matches
the LLM outputs against a predefined ontology could help to eliminate ambiguous
classifications.

5. The proposed LLM framework occasionally indexed elements that are artefacts of
the planning process rather than physical components of the construction or building.
Examples include ’Drawing’, ’IFC File’, or ’Axis 3’.

43

6. In some cases, particularly with BCF comments of limited token size, the framework
misinterpreted comment enumerations as component identifiers. This resulted in
non-component elements such as ’#10 Sparing’ being included in the aspect list.

7. While the majority of identified components are plausible, outliers such as ’Issue’ and
’Method of Attachment’ demonstrate that some aspects classified as Component do
not represent physical building elements.

8. There are cases of over-specification, where aspects like ’Gutter Location’ and
’Selected Columns’ should be simplified to ’Gutter’ and ’Columns’ respectively.

Material
Number of Nodes Relation Count

7 1
2 2

(a) Number of BCFComment nodes connected
to node/s of type Material.

RequestType
Number of Nodes Relation Count

61 1
11 2

(b) Number of BCFComment nodes connected
to node/s of type RequestType.

Component
Number of Nodes Relation Count

28 1
28 2
19 3
8 4
1 5
1 6

(c) Number of BCFComment nodes connected
to node/s of type Component.

Table 5.2: Distribution of BCFComment Connections by Node Type.

Case Study on the Indexing Theme Material The analysis of materials mentioned
within the BCF comment dataset revealed a relatively low frequency of material references.
My indexing chain identified only ten distinct aspects of type Material, with ’Sand-Lime
Brick’ being the sole material associated with multiple BCF comments. This low number of
material mentions suggests that material-specific information is less common in the BCF
comments analyzed. This indicates that BCF communications in this dataset focus more
on component-level issues rather than material-specific concerns.

From this case study of indexing the BCF comments by Material, several key observations
emerged:

1. Consistent with earlier findings, my framework exhibited a limitation in entity resolu-
tion. Materials in singular and plural forms were categorized as separate entities,
as evidenced by the distinct entries for ’Sand-Lime Brick’ and ’Sand-Lime Bricks’ in
Table 5.3.

2. The LLM framework demonstrated the capability to identify and index a range of
construction materials. Notably, it successfully recognized brand names such as

44

’Ytong’, which are often used interchangeably with generic material names in the
BCF comments. This suggests the framework’s potential to capture industry-specific
terminology and proprietary product names.

3. Cases of over-specification can be observed here, as well as aspects, like ’Manage-
able Blocks’, should be simplified to ’Blocks’.

4. The classification of certain material-related aspects revealed inconsistencies in type
assignment. For instance, ’Backing Wood’ was classified as a Component rather
than a Material. Conversely, ’Rock Panel’ was identified as a Material, while its plural
form ’Rock Panels’ was categorized as a Component. This observation indicates
that the LLM framework tends to index certain aspects under a single type category,
even when they could potentially be classified under multiple node types.

Material Nodes
Group Aspects Relation Count

1 Sand-Lime Brick 2

2

Sand-Lime Bricks,
Gas Concrete,
Concrete Cover,
Ytong,
Manageable Blocks,
Chipboard,
Limestone,
Rock Panel,
Sheet

1

Table 5.3: Grouped Material aspects by count.

Case Study on the Indexing Theme Request Type In total, the LLM framework indexed
39 distinct aspects of the type RequestType. This indexing process demonstrated my
approach in which the LLM not only identifies explicitly mentioned request types within the
BCF comments but also infers and assigns request types through contextual reasoning.
For instance, as illustrated in Figure 5.3, a comment was indexed with the RequestType
’Feasibility’, despite the absence of this specific term in the text. This showcases the LLM’s
capability to perform semantic analysis beyond keyword extraction.

Table 5.4 shows that a high number of BCF comments are associated with the aspects
addition, extension, and move, indicating prevalent themes in the dataset. The framework
allowed for multiple RequestType aspects to be assigned to a single BCF comment, as
demonstrated in Figure 5.4 and proven in Table 5.2b.

From my case study of indexing the BCF comment by RequestType, several key points
emerged:

1. Despite the relatively small dataset of BCFs, the LLM effectively identified com-
mon request type aspects that recur across various BCF comments. The natural

45

Figure 5.4: Request Type Graph.

modularity of the graph structure facilitated the identification of these common as-
pects, allowing efficient indexing and exploration of different themes within the BCF
comments.

2. Many RequestType aspects occurred only once in the graph, failing to create con-
nections between multiple BCF comments. This suggests a long tail of unique or
highly specific request types in the dataset. The lack of pre-specified request type
aspects led to a wide range of classifications. Some RequestType aspects are highly
specific and unlikely to create multiple connections. The current graph structure did
not capture hierarchical relationships between aspects (e.g. when one aspect is a
subgroup of another).

3. Not all BCF comment nodes were linked to a RequestType aspect, indicating potential
gaps in classification coverage.

4. While the relationship labels contributed significantly to the graph’s readability, they
sometimes lacked semantic depth, adding limited detail or meaning.

Case study on Indexing without a Theme Within my LLM framework, I also allowed
the LLM to index notes and declare node types which are not specified by any theme. As
shown in Table 5.1a a total of 26 node instances and relationships were indexed in this
way, with 12 distinct node types.

46

From this case study of indexing the BCF comment without specifying a theme, several
key points emerged:

1. Similar node types like Organization and Company were indexed separately, resulting
in duplicate or similar types in the graph.

2. Some node types only declare one instance within the graph. Node types like
Software and Company might be reasonable indices but based on the small size of
my dataset, it is unclear if these types are usable for analysis or retrieval on a larger
scale.

3. The LLM framework detected and indexed several novel node types with two to five
instances within the graph. Thereby, it explored node types which could reasonably
be included in further analysis. An example is the node type Document, under
which several refereed documents mentioned in the BCF comments were indexed.
However, some identified node types, such as Specification, seem unreasonable
since they only specify different concrete measurement nodes mentioned in the BCF
comments, like ’60mm’ and ’300mm’.

Request Type Nodes
Group Aspects Relation Count

1 Addition 10
2 Extension 7
3 Move 6

4
Replacement
Shortening

5

5
Adjustment
Request

4

6
Modeling
Feasibility
Relocation

3

7

Removal
Reduction
Shorten
Modification

2

8

Slope Planning, Placement, Alignment, Correction,
Beveling, Change, Setback, Centering, Adherence,
Movement, Question, Narrowing, Installation,
Support, Moving, Enlargement, Rebate,
Incorporation, Cutout, Forgotten Or Overlooked,
Revised Layout, Coordination, Clash, Omission,
Continuation

1

Total 83
Table 5.4: Grouped RequestType aspects by count.

47

Figure 5.5: Component Type Graph.

Figure 5.6: Material Type Graph.

48

Component Nodes
Group Aspects Relation Count

1 Opening 9
2 Openings 9
3 Floor 7
4 Roof 6
5 Beam 4
6 Fencing, Railings, Window Frames 3

7

Cover Strips, Embedded Provisions, Cavity Batten,
Brickwork, Balconies, Bay Window, Support,
Overhang, Base Model, Wire Sleeves, Window Frame,
Steel Beam, Cavity Side

2

8

M16 Nuts, Timber Frame Extension, Drawing,
Slope, Wedges, Shafts, Dormer Windows, Side Wall,
Roof Tiles, Issue, Green Panels, Rock Panels, Side Walls,
Steel Angle Lines, #10 Sparing, Rainwater Drainage Pipes,
Shaft, Sewer Ventilation, Meter Cabinet Openings, Conduit,
Method Of Attachment, Ridge, Cover Strip, Roof Structure,
Gap, Outlet, Rainwater Drainage System, Sides,
Gutter Location, He200B, He280B, White Panels, Parapet,
Finishing, Wall, Finishing Plate, Insulation, Stair Landings,
First Floor, Second Floor, 190Mm Bearing, Component #13,
Beams, Red Lines, Plates, Screws, Utilities, Inner Cladding,
Skylights, Basic Model, Pipe-In-Pipe Connection,
Angle Profile, Floor Support, Wide Slab, #08 Sparing,
Ytong Walls, U-Profile, Backing Wood, Selected Columns,
Through-Holes, Stair Railings, Handrails, Top Bottle,
Flange, Concrete Beam, Window Opening, Gutter Construction,
Allowances, Bracket, L150/18 Angle Profile, Cantilevered Slab,
Front Facade, Pluvetta, Bend, Balcony, Facade Support,
#04 Nuts, Lift Roof, Slab, Temporary Support, Rafters,
Holes, Provisions, Fek, Emergency Drainage Outlet, Gutter,
Window Frame Sill, Meter Cabinets, Facade Carriers,
Flat Roof, Ifc File, Onderleggers, Spare Part, Plot 1,
Transom Windows, Threaded Ends, Bay Windows, Dimension,
Sloped Roof, Gutter Racks, Corner, Steel Strip, Red Walls,
Bolts, Steel Beams, Strips, Axis 3, Crawl Space Hatches,
Hollow Core Slabs, Bands, Masonry, Hollow Core Slab,
Inner Wall, Red Markings

1

Total 83
Table 5.5: Grouped Component aspects by count.

49

Summary Overall, the framework was able to create a knowledge graph which not only
represented the content contained in the BCF comments, but it also contained abstractions
or classifications of the BCF comments that provide additional metadata about the BCF
comment in a structured format. This structured format within the graph database provides
a good starting point for further evaluation on a larger scale. The framework demonstrated
promising capabilities in semantic analysis and flexible categorization. Moreover, indexing
without themes also provides an opportunity to identify novel themes that can be explicitly
included in further analysis. However, there are clear opportunities for improvement, which
will be discussed in the following chapter.

50

5.2 Agentic Retrieval and Evaluation

For agentic graph retrieval, I conducted several case studies. First, I will introduce the
general setup of the questions posed to the knowledge graph within the case study. Then,
I will describe the results of the different retrieval tools used to answer these questions
based on the knowledge contained within the graph.

5.2.1 Case Study Questions

Each question asked from the knowledge graph, focuses on the issues and contents of
several BCF comments, aiming to identify common occurrences of themes and topics.
Due to the graph schema, trends can be identified through the number of connections a
certain node instance has towards BCF comment nodes. By querying which node of a
certain type has the most connections towards BCF comment nodes, recurring discussion
topics can be identified. The graph contains the relevant knowledge to answer these
questions, as corresponding themes were defined before the indexing of the dataset. The
following questions were addressed in the case studies:

1. Which different node types are present in the graph?

This question aims to retrieve all different node types from the graph.

2. Which component was most discussed in the BCF comments?

This question asks for the instance of a certain node type, in this case ’Component’,
which has the most relations towards a BCF comment nodes, therefore being
frequently mentioned within the BCF comments. The same question can be asked
for other themes and node types, like ’Material’ or ’Request Type’.

3. How many BCF comments with Relocations did we have?

This question asks about a specific node instance with the aspect ’Relocation’. It
requests a relation count of connections to BCF comment nodes. In this case for
the query, the node type does not matter and the question can be directed to every
aspect existing within the graph. ’Relocation’ is a ’Request Type’.

4. How many issues did include a Move and what were they about?

This question is a variation of the previous one. ’Issue’ is interchangeably used and
’Move’ is a ’Request Type’.

5. How many requests about openings did we have?

This question is a variation of the previous question as well. ’Request’ is interchange-
ably used and ’openings’ is of type ’Component’.

6. Which issues did we have with Lime Sandstone?

This question asks for the content of BCF comments in relation to a node with the
aspect ’Lime Sandstone’ which is of type material.

51

5.2.2 Case Study Evaluation

Each case study question was posed at the LLM agent with custom-implemented tools
and at the agent with the ability to write Cypher.

1. Which different node types are present in the graph?

After the question was invoked to the LLM agent with custom tools, the agent called a tool
to retrieve all the node types from the graph. It then used the result of the tool to generate
its answer.

1 > Entering new AgentExecutor chain...

2 Invoking: ‘Get_All_Node_Types‘ with ‘{}‘

3 Node types present in the graph:

4 1. BCF 2. Company 3. Component 4. Discipline

5 5. Document 6. Issue 7. Material 8. Measurement

6 9. Model 10. Organization 11. Person 12. Process

7 13. Requesttype 14. Service 15. Software 16. Specification

8 The graph contains the following node types:

9 1. BCF 2. Company 3. Component 4. Discipline

10 5. Document 6. Issue 7. Material 8. Measurement

11 9. Model 10. Organization 11. Person 12. Process

12 13. Requesttype 14. Service 15. Software 16. Specification

13 > Finished chain.

In comparison, the Cypher agent generated a correct Cypher query and retrieved the right
results from the graph. The context is then used to generate an answer as a text.

1 > Entering new GraphCypherQAChain chain...

2 Generated Cypher:

3 MATCH (n) RETURN DISTINCT labels(n)

4 Full Context:

5 [{’labels(n)’: [’BCF’]}, {’labels(n)’: [’Component’]}, {’labels(n)’: [’

Requesttype’]}, {’labels(n)’: [’Material’]},

6 {’labels(n)’: [’Discipline’]}, {’labels(n)’: [’Software’]}, {’labels(n

)’: [’Document’]}, {’labels(n)’: [’Specification’]},

7 {’labels(n)’: [’Person’]}, {’labels(n)’: [’Company’]}, {’labels(n)’:

[’Process’]}, {’labels(n)’: [’Issue’]},

8 {’labels(n)’: [’Model’]}, {’labels(n)’: [’Organization’]}, {’labels(n)

’: [’Service’]}, {’labels(n)’: [’Measurement’]}]

9 Result:

10 The graph contains the following node types:

11 - BCF - Component - Requesttype - Material

12 - Discipline - Software - Document - Specification

13 - Person - Company - Process - Issue

14 - Model - Organization - Service - Measurement

15 > Finished chain.

52

The next question was used to test if the agents can also count relationships within the
graph:

2. Which component was most discussed in the BCF comments?

The custom agent was able to call the according tool for this question and generate its
answer based on the context of the tool. It kept the distinction between, entities in singular
and plural.

1 > Entering new AgentExecutor chain...

2 Invoking: ‘Major_Themes_Finder‘ with !*{’node_type’: ’Component’

3 Top 3 Components with the most relations to BCF comments:

4 1. Opening: 9 connections 2. Openings: 9 connections

5 3. Floor: 7 connections

6 The most discussed components in the BCF comments are:

7 1. Opening (9 connections) 2. Openings (9 connections)

8 3. Floor (7 connections)

9 It appears that "Opening" and "Openings" are the most frequently

mentioned components.

10 > Finished chain.

When adding the prompt ’Please combine the count of similar nodes’, to the question the
LLM was able to resolute and combine the entities and their count, although no calculator
tool was leveraged.

1 {... Same chain as before ...}

2 The most discussed component in the BCF comments, when combining

similar nodes, is "Opening/Openings" with a total of 18 connections

(9 for "Opening" and 9 for "Openings"). The next most discussed

component is "Floor" with 7 connections.

3 > Finished chain.

The Cypher agent could understand the question, given the context of the graph schema,
and query the graph for the right relationship. However, it did interpret the posed question
differently. Since all relationships within the graph were labelled, the Cypher agent only
queried for the relationships with the type ’discusses’, which in turn yielded a different
result. When prompted to consider all relationship types, the Cypher agent retrieved a
similar result as the custom agent. However, since the Cypher agent did not leverage
pre-coded tools, but generated the Cypher query on demand, the result of the tool call just
included one node ’Opening’, and not the three nodes with the highest relation count, as
returned by the custom tool. The Cypher agent limited the retrieval to one, not considering
the possibility of several nodes with the same relation count.

1 > Entering new GraphCypherQAChain chain...

2 Generated Cypher:

3 cypher

4 MATCH (b:BCF)-[:DISCUSSES]->(c:Component)

5 RETURN c.name, COUNT(*) AS discussionCount

53

6 ORDER BY discussionCount DESC

7 LIMIT 1

8

9 Full Context:

10 [{’c.name’: ’Openings’, ’discussionCount’: 2}]

11 Result:

12 The most discussed component in the BCF comments was "Openings," with 2

discussions.

13 > Finished chain.

The next question was used to test, if the agent can query the graph for certain nodes of
interest and evaluate their importance and therefore relation count within the knowledge
graph.

3. How many BCF comments with Relocations did we have?

The custom agent called the BCF Aspect Analyzer Tool, which recognized two entities
within the question: ’BCF comments’ and ’Relocations’. It then searched the graph for both
aspects using the full-text index. Through the index, it was able to retrieve the node with
the name ’Relocation’ from the graph in combination with the connected BCF comments
and calculate the corresponding count, deriving the correct answer.

1 > Entering new AgentExecutor chain...

2 Invoking: ‘BCF_Aspect_Analyzer‘ with ‘{’question’: ’How many BCF

comments with Relocations did we have?’}‘

3 Queried graph for entities related to: ’How many BCF comments with

Relocations did we have?’

4 Entity 1: BCF comments

5 ======================

6 Total ’BCF comments’ relations: 0

7 Comments:

8 --

9 Entity 2: Relocations

10 =====================

11 Total ’Relocations’ relations: 3

12 Comments:

13 {...}

14 Prompt for information reuse: Based on the above comments, answer

concisely: How many BCF comments with Relocations did we have? Use

only comment information. Note any information gaps.

15 We had 3 BCF comments with Relocations.

16 > Finished chain.

In comparison, the Cypher agent was not able to retrieve any results, since, it restricted
its query through a relationship type. Moreover, since it did not use the full-text index, it
did only search for ’Relocations’ not finding any matching with ’Relocation’. Only after
reformulating the question for ’Relocation’ and prompting to consider all relation types the
same results as with the custom agent were achieved.

54

1 > Entering new GraphCypherQAChain chain...

2 Generated Cypher:

3 cypher

4 MATCH (b:BCF)-[:MENTIONS]->(r:Requesttype {name: "Relocation"})

5 RETURN COUNT(b) AS RelocationBCFCount

6

7 Full Context:

8 [{’RelocationBCFCount’: 0}]

9 Result:

10 There were no BCF comments with a Relocation.

11 > Finished chain.

The last three questions were similar to question 3 as they also retrieved a node by name
from the graph and counted its relations to BCF comments. However, they had slight
variations in wording and retrieved different node types.

4. How many issues did include a Move and what were they about?

5. How many request about openings did we have?

6. Which issues did we have with Lime Sandstone?

The custom agent was able to answer all questions according to the knowledge contained
in the graph. Moreover, the BCF Aspect Analyzer Tool was also able to allow minor errors
in spelling and matched entities in singular and plural. Therefore, question number five
about openings was answered with 18 openings, combining the count of ’opening’ and
’openings’.

The Cypher writing agent, in comparison, showed several shortcomings. Within the graph,
it searched for complex graph patterns, related to the structure of the question. Therefore,
the Cypher agent searched for patterns that were too complicated, as it had no explanation
of the overall graph schema.

1 Generated Cypher:

2 cypher

3 MATCH (b:BCF)-[:DISCUSSES]->(i:Issue), (b)-[:DISCUSSES]->(r:Requesttype

{name: "Move"})

4 RETURN COUNT(i) AS numberOfIssues, COLLECT(i.id) AS issueIds

5

6 Full Context:

7 [{’numberOfIssues’: 0, ’issueIds’: []}]

8 Result:

9 There were no issues that included a Move.

10 > Finished chain.

Especially, the node type Issue, which is contained within the graph and contained as a
word within the question, caused the Cypher agent to search for complex patterns not

55

applying to the definition behind the graph schema. Moreover, as already apparent in
earlier questions, the Cypher agent matches node aspects directly, ignoring capitalization
and plural forms.

In summary, the custom agent was superior to the Cypher agent in the limited set of
questions. However, it is important to note that the custom agent was provided with tools
specifically designed to answer a similar question set. Therefore, the main task of the
custom agent was to select the right tool and generate a matching answer based on the
result of the tool. The tasks required by the Cyper agent are much more complex as it had
to generate Cypher queries matching the question and the knowledge graph schema. All
generated Cypher statements were syntactically correct, as well as the generated answers
based on the information retrieved from the graph were satisfying.

56

Chapter 6

Discussion

The application of LLMs and KGs to enhance project knowledge management in construc-
tion presents a novel approach to addressing the long-standing challenges of knowledge
retrieval, organization, and analysis in the industry. This thesis tested the semantic un-
derstanding capabilities of LLM and leveraged them to build a KG from unstructured
conversational text data, created during a construction project. The proposed framework
enabled detailed post-project analysis on a scale prior unfeasible with manual work. Fur-
thermore, by creating a comprehensive and enriched KG, the framework provided a robust
basis for project analysis.

The results of this work showed that, based on the KG, it is possible to identify components
frequently discussed throughout the project files. Moreover, it was shown that trends like
the most frequent discussion of components in comparison to materials, which was a
far less discussed topic, can be identified and evaluated. Based on insights like these,
stakeholders can train their employees on topics identified through post-project analysis
provided by my framework.

The natural modularity of the graph provided an excellent data structure to identify trends
within the dataset. LLMs, when prompted accordingly, leveraging their few-shot learning
abilities, were able to construct this KG. The results of this work also included case studies
of different LLM based agentic retrieval methods. These methods showed great potential
for graph retrieval and analysis, being able to answer a variety of questions posed to the
used dataset through natural language.

In the following sections 6.1, I will critically discuss the outcomes of my graph indexing
process, examining its strengths and limitations. I will go into the effectiveness of my
theme-based indexing approach. Additionally, I will discuss the insights gained from
allowing the LLM to index information without predefined themes. Next, the strengths and
limitations of the agentic retrieval process will be highlighted (Section 6.2). Afterwards,
this discussion will focus on the scalability of my framework, and contextualize the findings
(Section 6.3).

6.1 Discussion of Graph Indexing Process

In summary, the LLM based framework demonstrated promising capabilities in trans-
forming unstructured BCF comments into a structured, queryable knowledge graph. The
approach showed advanced inference abilities beyond simple keyword extraction, includ-
ing classification and adherence to a predefined schema. The rich diversity of extracted

57

information and high adherence to the specified structure further underscore the method’s
value.

Moreover, it is also important to acknowledge several limitations, including the lack of
entity resolution during indexing, the absence of hierarchical grouping, and ambiguities
due to the lack of a predefined ontology. These limitations and potential improvements
will be explored in the following paragraphs to fully discuss the potential of this method for
construction knowledge management.

Adherence to Graph Structure One notable success of the approach was the LLM’s
ability to adhere to the specified graph structure with high consistency. Out of all the
relationships extracted, only one did not conform to the rules specified in the prompt,
which could be automatically excluded. This high level of adherence showed that LLMs
can be effectively guided to produce structured outputs, which is crucial for creating
consistent and analyzable knowledge graphs.

Diversity and Inference Capabilities The identification of 16 different node types and
12 distinct relationship types indicated a rich and diverse extraction of information from
the BCF comments. This diversity showed that the approach can capture a wide range of
concepts and relationships within construction project communications, offering a more
comprehensive view of project knowledge. Moreover, the LLM demonstrated the ability to
infer request types even when not explicitly stated in the text. This capability showed that
the LLM can perform semantic analysis beyond simple keyword extraction, uncovering
implicit information in BCF comments by classifying them. To further enhance the inference
capabilities, the prompting change could be split into different subtasks, spending more
computing on indexing different aspects separately.

Relationship Labeling The variety of relationship types extracted (e.g., ’mentions’,
’requests’, ’discusses’) provides semantic context to the connections between nodes,
which enhances the readability of the graph. However, upon closer examination, these
relationship labels sometimes leave room for semantic depth, adding limited detail or
meaning to the connections they represent.

This observation suggests an opportunity for enhancing the quality and informativeness
of these labels in future iterations of the framework. One potential improvement is to
differentiate between extraction and classification in the relationships. For example, a
relationship can be labelled differently when a request type is directly mentioned in the
text, as when the LLM infers that something is a specific request type based on context.
Another approach can involve adding parameters to the relationships to provide more
detailed information. Implementing such enhancements improves the graph’s ability for
downstream analysis processes.

However, as shown during agent retrieval, it is important to balance the desire for more
detailed relationships with the need to maintain simplicity and clarity in the graph structure.

58

Since the relationship types are not resoluted during indexing time, they can be misleading
to agents and users during the analysis of the graph, as shown by the results.

Emergence of Node Types and Ontology Learning The frequency of certain node
types, such as ’Component’, ’RequestType’, and ’Material’, aligned well with the intended
focus themes, which were chosen in advance as an area of interest for dataset investigation.
Moreover, the emergence of additional node types like ’Document’, and ’Person’ suggests
that the LLM framework is capable of identifying and categorizing information beyond the
explicitly defined themes. This capability demonstrates a form of ontology learning, where
the LLM infers and generates new categories and relationships from the data without
explicit pre-definition.

This emergent ontology learning has several important implications for knowledge repre-
sentation. It enables the discovery of unforeseen patterns or topics within project communi-
cations that might have been overlooked in a more rigid, predefined categorization system.
The approach allows for a more adaptive and comprehensive representation of project
knowledge, potentially capturing nuances specific to individual projects or organizations.

Therefore, the methodology and structure of the knowledge graph facilitate both focused
analyses on specific themes and broader exploration of interconnections between different
aspects of project communications. As more data is processed, the ontology of the graph
can potentially evolve, reflecting changing project dynamics or industry trends over time.

However, this flexibility also presents challenges in maintaining consistency and managing
the growth of the ontology, especially as the dataset expands. As already demonstrated
through the results, some node types can be duplications or contain misleading node
instances. The absence of pre-specified node types and aspects leads to a widespread of
both. Some node types and aspects can become highly specific and are unlikely to create
multiple connections.

Furthermore, this flexibility in ontology discovery potentially limits comprehensive retrieval
and evaluation, as not all relevant BCF comments for a certain aspect might be identified.
This highlights a trade-off between classification flexibility and completeness.

Entity Resolution and Hierarchical Relationship Challenges A significant limitation
observed was the lack of entity resolution, particularly evident in the separate indexing
of singular and plural forms (e.g., ’Opening’ and ’Openings’, ’Side Wall’ and ’Side Walls’)
and in over specifications (e.g. ’Gutter Location’ instead of simply ’Gutter’). This issue
could lead to fragmentation of information and hinder the identification of trends related
to specific node aspects. During graph retrieval, I addressed this limitation through an
indexed matching process. However, the refinement of the LLM framework, by adding a
module for entity resolution, can enhance the graph’s utility for analysis, without the need
for entity resolution during retrieval. The same holds true for hierarchical relationships
hindering the identification of trends.

59

6.2 Discussion of the Agentic Graph Retrieval Process

Overall, this thesis demonstrated that a LLM-based agent can provide intuitive ways
to communicate with the information contained within a knowledge graph. Through the
implementation of a custom tool set, an agentic system can extend the original functionality
of a LLM to deterministically retrieve information from the graph using pre-programmed
tools. This approach bridged the gap between natural language queries and structured
data retrieval, making knowledge graphs more accessible to users without expertise in
query languages like Cypher.

The agentic graph retrieval process demonstrated in this thesis offers several advantages
over traditional query methods. Firstly, it allows for more natural and conversational
interactions with complex data structures. Secondly, it reduces the technical barriers
to entry for users seeking to extract information from knowledge graphs. Lastly, the
deterministic nature of the tool-based approach ensures consistency and reliability in the
retrieval process.

The performance of the proposed agents strongly relied on the capabilities of their tools
and can therefore be enabling in certain areas while being limiting in others. As evident
from the results of this work, the agent can answer questions with high accuracy when
provided with the appropriate tools. To address the limitations of tools, a Cypher-generating
agent was tested. This agent showed promising capabilities in overcoming the limitations
of custom tools. However, due to the requirement of capabilities in a wide area of questions
towards the knowledge graph, accuracy, and performance decreased.

In the following two paragraphs, I will discuss the limitations of the tested retrieval methods,
including both the tool-based approach and the Cypher writing agent.

Entity Resolution through Agent Tools The agent equipped with custom tools demon-
strated the ability to answer specific questions based on information contained within the
knowledge graph. However, its entity resolution capabilities remain limited, primarily due
to constraints in the BCF Aspect Analyzing Tool. While the tool’s full-text index can match
queried words with entities in the graph, this approach could be significantly enhanced by
incorporating an embeddings-based matching system, which would allow for improved
semantic matching.

Furthermore, the current implementation of the tool’s entity extraction chain, while effective
for a range of predefined questions, restricts the flexibility and diversity of queries that
can be effectively processed. Although the results indicate that extracting entities from
questions and matching them with the knowledge graph can successfully answer various
queries, this method lacks the generalizability required for comprehensive knowledge graph
retrieval. Nevertheless, this approach has demonstrated the potential for natural language
interaction with knowledge graphs, paving the way for more sophisticated implementations
in the future.

60

Cypher Generating Agent By providing the LLM (GPT-4o) utilized within the Cypher
agent with the schema of the knowledge graph, consistent generation of syntactically
correct Cypher queries was achieved. The LLM successfully generated Cypher queries
based on the entities and relations stated in the input questions, adhering to the provided
graph schema. Although this approach was only tested experimentally within the scope of
this thesis, it demonstrates significant potential for simplifying knowledge graph retrieval
for non-technical users.

There are promising avenues for further improvement through advanced prompt engineer-
ing techniques. Specifically, incorporating an explanation of the reasoning behind the
knowledge graph’s schema into the system prompt can enhance the LLM’s understanding
and query generation capabilities.

Moreover, the studies showed that it is important to keep a simple schema of the graph.
Therefore, removing relationship types or note types and instances with minor occurrences
can improve the accuracy of the Cypher generation.

6.3 Scalability and Consistency

The LLM framework successfully processed and indexed a dataset of BCF comments,
generating a graph with 297 nodes and 305 relationships. While this dataset is relatively
small in the context of large-scale graph databases, it represents a feasible volume of
project communication data for the testing of my approach. The framework’s ability to
handle this dataset suggests a potential for scalability, though further testing with larger
datasets is necessary to confirm this. The graph structure, with its ratio of nodes and
relationships per comment, indicates a rich representation of the underlying data, capturing
multiple aspects within each comment.

The potential for scalability in this framework is further enhanced by the graph’s inherent
extensibility. As new data becomes available or project analysis requirements evolve,
the graph can be dynamically enriched and expanded. For example, new nodes can be
added to represent emerging themes in the project. This open-ended structure provides a
flexible framework for representing the project knowledge contained in conversational data.
Moreover, with increasing complexity and the need to search for more complex graph
patterns to identify trends, the advantages of a graph database come more and more into
play.

However, as the dataset expands, managing the growing complexity becomes a critical
consideration. It becomes necessary to focus on specific themes to prevent information
overload, especially for agentic retrieval. To enhance the framework’s utility, a more
focused approach to graph construction and analysis is necessary. The current exploratory
indexing method, while flexible, can limit certain analysis approaches. A key limitation
of the current framework is that it does not mandate the assignment of node types to
every BCF comment. While this provides flexibility during the exploratory phase, it can

61

hinder comprehensive retrieval and evaluation in larger datasets. Specifically, relevant
BCF comments for a particular aspect may be overlooked if they lack proper classification.

Therefore I propose a two-phase approach for future implementations:

1. Exploratory Phase: Initially focus on a subset of the dataset to identify and explore
different themes and topics. This allows for a broad understanding of the data’s
structure and content.

2. Structured Phase: Based on insights from the exploratory phase, construct a more
focused graph with a predefined set of themes and include the option for mandatory
classification. This approach enables more accurate analysis.

62

Chapter 7

Conclusion

This thesis proposed a framework, leveraging the abilities of LLMs and KGs, to automate
construction data analysis and thereby contribute to the area of knowledge management.
The research demonstrated a novel approach to addressing long-standing challenges of
knowledge retrieval, organization, and analysis within the construction sector. The pro-
posed framework successfully transformed unstructured project communication data into
a structured, queryable KG, enabling detailed post-project analysis on a scale previously
unfeasible with manual work. The natural modularity of the graph structure proved highly
effective in identifying trends within the dataset. Moreover, the graph’s inherent extensibility
lays a strong foundation for the scalability of the framework. The LLM within the framework
demonstrated advanced inference abilities beyond simple keyword extraction, including
classification and adherence to a predefined schema. This capability allowed for the
capture of both explicit and implicit information from communication.
Agentic retrieval methods showed great potential for intuitive graph querying and analysis,
enabling users to interact with the KG through natural language queries. The framework’s
flexibility in ontology discovery allowed for the identification of unforeseen patterns or
topics within project communications, potentially capturing nuances specific to individual
projects or organizations.

This research primarily leveraged a BCF communication dataset due to its open-source
availability and structured, parsable format. While this choice provided a solid starting
point, it also highlighted the need for more diverse and comprehensive datasets in future
research. The limited availability of additional communication data constrained further
testing of the framework. Consequently, due to the absence of a comprehensive labelled
dataset, this thesis focused on qualitative analysis based on a small dataset of BCF
communication data, rather than providing quantitative benchmarking.
Despite these limitations, this study lays a promising foundation for future research in
applying LLMs and KGs to construction project communication analysis. The developed
framework demonstrates the potential to transform unstructured project data into valuable,
queryable knowledge, opening new avenues for project analysis and knowledge transfer
in the construction industry.

63

Chapter 8

Outlook

The framework developed in this thesis presents numerous opportunities for extension
and application in future research. As the construction industry continues to digitize and
generate more diverse data, several promising directions emerge for further development
and refinement of this approach.
Expanding Data Sources: Future iterations of the framework could incorporate a wider
range of data sources beyond BCF files. Meeting protocols and minutes often contain
richer information about project decisions and issues. Integrating these sources could
provide a more comprehensive view of project knowledge and decision-making processes.
Additionally, exploring the integration of data from BIM models could further enrich the
knowledge graph with technical and spatial information.
Real-time Analysis: Adapting the framework for real-time analysis of ongoing projects
represents a significant opportunity. By processing communication data as it is generated,
the system could provide valuable insights during the construction process, not just in
post-project review. This real-time capability could enable proactive decision-making and
issue resolution, potentially improving project outcomes and efficiency.
Risk Analysis Enhancement: With enhanced classifications and real-time processing
capabilities, this framework could be adapted for dynamic risk analysis during projects. By
monitoring communication data and identifying patterns associated with potential issues,
the system could alert project managers to emerging risks before they escalate. This
proactive approach to risk management could significantly reduce project delays and cost
overruns.
Cross-Project Learning: Future research could explore methods for aggregating knowl-
edge across multiple projects. This could lead to the development of company-wide
knowledge bases, facilitating learning and best practice sharing across different construc-
tion projects.
Human-AI Collaboration: Investigating how human experts can most effectively interact
with and augment AI-driven analysis will be an important area of study. This could involve
developing more sophisticated user interfaces and explaining AI decisions to continuously
improve the system’s performance.

64

Appendix A

Developed Source Code

This appendix provides an overview of the code files developed as part of this thesis. The
code files consists of a series of Jupyter notebooks designed to analyze BCF files. A
detailed README for setup and execution also exists within the files.

The project is structured into four main notebooks, each focusing on a specific stage of
the data processing and analysis pipeline:

1. BCF Analysis (01_BcfAnalysis.ipynb): This notebook is dedicated to the initial
analysis of the BCF files stored in the designated BCF folder.

2. Preprocessing and AI Prompt (02_PreProcessing.ipynb): This notebook handles
the parsing and flattening of BCF files, transforming them into a list of dictionaries
for each comment. It also generates AI prompts to explain the issues within each
comment clearly and concisely in English. The processed comments are then run
through a LLM, with the results saved as JSON files.

3. Graph Creation and Analysis (03_GraphCreationAnalysis.ipynb): This notebook
focuses on creating a graph from the previously explained BCF comments. It then
conducts an analysis of this graph to extract insights about the BCF and relationships
identified within the data.

4. Agented Retrieval (04_AgenticRetrieval.ipynb): The final notebook in the series
is designed for retrieving information from the graph database using agent-based
approaches.

Together, these notebooks create a framework for processing, analyzing, and extracting
valuable insights from BCF data, forming the core of the research conducted in this thesis.

65

Bibliography

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D.,
Altenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Al Qady, M., & Kandil, A. (2010). Concept relation extraction from construction docu-
ments using natural language processing. Journal of construction engineering and
management, 136(3), 294–302.

Al-Aswadi, F. N., Chan, H. Y., & Gan, K. H. (2020). Automatic ontology construction from
text: A review from shallow to deep learning trend. Artificial Intelligence Review,
53(6), 3901–3928.

Amatriain, X. (2024). Prompt design and engineering: Introduction and advanced methods.
arXiv preprint arXiv:2401.14423.

Anil, C., Durmus, E., Sharma, M., Benton, J., Kundu, S., Batson, J., Rimsky, N., Tong, M.,
Mu, J., Ford, D., et al. (2024). Many-shot jailbreaking. Anthropic, April.

Anshari, M., & Hamdan, M. (2022). Understanding knowledge management and upskilling
in fourth industrial revolution: Transformational shift and seci model. VINE Journal
of Information and Knowledge Management Systems, 52(3), 373–393.

ArangoDB GmbH. (2024). Arangodb documentation [Accessed: 30.08.2024].
Babaei Giglou, H., D’Souza, J., & Auer, S. (2023). Llms4ol: Large language models for

ontology learning. International Semantic Web Conference, 408–427.
Bikeyev, A. (2023). Synthetic ontologies: A hypothesis. Available at SSRN 4373537.
Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building information modeling

technology foundations and industry practice: Technology foundations and industry
practice.

Borrmann, A., König, M., Koch, C., & Beetz, J. (2021). Building information modeling-
technologische grundlagen und industrielle praxis (A. Borrmann, M. König, C. Koch,
& J. Beetz, Eds.). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-
658-33361-4

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A.,
Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot
learners. Advances in neural information processing systems, 33, 1877–1901.

buildingSMART. (2023). Bcf-api [Accessed: 2024-08-28].
buildingSMART International. (2023). Sample test files [Last commit: 2023; Accessed:

2024-08-06]. https://github.com/buildingSMART/Sample-Test-Files
buildingSMART Technical. (2022). Software implementations (Technical Specification).

buildingSMART International. https://technical.buildingsmart.org/
buildingSMART Technical. (2023). Bim collaboration format (bcf) (Technical Specification).

buildingSMART International. https://technical.buildingsmart.org/standards/bcf/
Caufield, J. H., Hegde, H., Emonet, V., Harris, N. L., Joachimiak, M. P., Matentzoglu,

N., Kim, H., Moxon, S., Reese, J. T., Haendel, M. A., et al. (2024). Structured

66

https://doi.org/10.1007/978-3-658-33361-4
https://doi.org/10.1007/978-3-658-33361-4
https://github.com/buildingSMART/Sample-Test-Files
https://technical.buildingsmart.org/
https://technical.buildingsmart.org/standards/bcf/

prompt interrogation and recursive extraction of semantics (spires): A method
for populating knowledge bases using zero-shot learning. Bioinformatics, 40(3),
btae104.

Chen, W., Su, Y., Zuo, J., Yang, C., Yuan, C., Qian, C., Chan, C.-M., Qin, Y., Lu, Y., Xie,
R., et al. (2023). Agentverse: Facilitating multi-agent collaboration and exploring
emergent behaviors in agents. arXiv preprint arXiv:2308.10848, 2(4), 6.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P.,
Chung, H. W., Sutton, C., Gehrmann, S., et al. (2023). Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240), 1–113.

Dagdelen, J., Dunn, A., Lee, S., Walker, N., Rosen, A. S., Ceder, G., Persson, K. A., &
Jain, A. (2024). Structured information extraction from scientific text with large
language models. Nature Communications, 15(1), 1418.

Dang, H. T. (2006). Duc 2005: Evaluation of question-focused summarization systems.
Proceedings of the Workshop on Task-Focused Summarization and Question
Answering, 48–55.

Deepset. (2024). Haystack [[Online; accessed 8-August-2024]]. https://github.com/deepset-
ai/haystack

Deng, H., Xu, Y., Deng, Y., & Lin, J. (2022). Transforming knowledge management in
the construction industry through information and communications technology: A
15-year review. Automation in Construction, 142, 104530.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A.,
Schelten, A., Yang, A., Fan, A., et al. (2024). The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Edge, D., Trinh, H., Cheng, N., Bradley, J., Chao, A., Mody, A., Truitt, S., & Larson, J.
(2024). From local to global: A graph rag approach to query-focused summarization.
arXiv preprint arXiv:2404.16130.

Fill, H.-G., Fettke, P., & Köpke, J. (2023). Conceptual modeling and large language
models: Impressions from first experiments with chatgpt. Enterprise Modelling and
Information Systems Architectures (EMISAJ), 18, 1–15.

Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., Plantikow,
S., Rydberg, M., Selmer, P., & Taylor, A. (2018). Cypher: An evolving query lan-
guage for property graphs. Proceedings of the 2018 international conference on
management of data, 1433–1445.

Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y., Sun, J., & Wang, H. (2023).
Retrieval-augmented generation for large language models: A survey. arXiv preprint
arXiv:2312.10997.

Guia, J., Soares, V. G., & Bernardino, J. (2017). Graph databases: Neo4j analysis. ICEIS
(1), 351–356.

Hamdan, A.-H., Bonduel, M., & Scherer, R. J. (2019). An ontological model for the
representation of damage to constructions. LDAC, 64–77.

He, H., Zhang, H., & Roth, D. (2022). Rethinking with retrieval: Faithful large language
model inference. arXiv preprint arXiv:2301.00303.

67

https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack

Hogan, A., Blomqvist, E., Cochez, M., d’Amato, C., Melo, G. D., Gutierrez, C., Kirrane, S.,
Gayo, J. E. L., Navigli, R., Neumaier, S., et al. (2021). Knowledge graphs. ACM
Computing Surveys (Csur), 54(4), 1–37.

Holzschuher, F., & Peinl, R. (2013). Performance of graph query languages: Comparison
of cypher, gremlin and native access in neo4j. Proceedings of the Joint EDBT/ICDT
2013 Workshops, 195–204.

Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson, J.,
Mordatch, I., Chebotar, Y., et al. (2022). Inner monologue: Embodied reasoning
through planning with language models. arXiv preprint arXiv:2207.05608.

Huang, Z., Gutierrez, S., Kamana, H., & MacNeil, S. (2023). Memory sandbox: Trans-
parent and interactive memory management for conversational agents. Adjunct
Proceedings of the 36th Annual ACM Symposium on User Interface Software and
Technology, 1–3.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., Casas, D. d. l.,
Bressand, F., Lengyel, G., Lample, G., Saulnier, L., et al. (2023). Mistral 7b. arXiv
preprint arXiv:2310.06825.

Kim, T., & Chi, S. (2019). Accident case retrieval and analyses: Using natural language
processing in the construction industry. Journal of Construction Engineering and
Management, 145(3), 04019004.

Klein, G., Moon, B., & Hoffman, R. R. (2006). Making sense of sensemaking 1: Alternative
perspectives. IEEE intelligent systems, 21(4), 70–73.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models
are zero-shot reasoners. Advances in neural information processing systems, 35,
22199–22213.

Kong, A., Zhao, S., Chen, H., Li, Q., Qin, Y., Sun, R., & Zhou, X. (2023). Better zero-shot
reasoning with role-play prompting. arXiv preprint arXiv:2308.07702.

Konys, A. (2019). Knowledge repository of ontology learning tools from text. Procedia
Computer Science, 159, 1614–1628.

LangChain. (2024a). Langchain [[Online; accessed 8-August-2024]]. https://github.com/
langchain-ai/langchain

LangChain. (2024b). Langchain documentation [[Online; accessed 8-August-2024]]. https:
//python.langchain.com/v0.2/docs/introduction/

LangChain and Neo4j. (2024). Graphcypherqachain [Accessed: [Insert access date here]].
Laskar, M. T. R., Hoque, E., & Huang, J. X. (2022). Domain adaptation with pre-trained

transformers for query-focused abstractive text summarization. Computational
Linguistics, 48(2), 279–320.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis,
M., Yih, W.-t., Rocktäschel, T., et al. (2020). Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neural Information Processing
Systems, 33, 9459–9474.

Li, Y., & Manoharan, S. (2013). A performance comparison of sql and nosql databases.
2013 IEEE Pacific Rim conference on communications, computers and signal
processing (PACRIM), 15–19.

68

https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://python.langchain.com/v0.2/docs/introduction/
https://python.langchain.com/v0.2/docs/introduction/

Lindner, F., & Wald, A. (2011). Success factors of knowledge management in temporary
organizations. International Journal of project management, 29(7), 877–888.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua, M., Petroni, F., & Liang, P. (2024).
Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12, 157–173.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., & Neubig, G. (2023). Pre-train, prompt, and
predict: A systematic survey of prompting methods in natural language processing.
ACM Computing Surveys, 55(9), 1–35.

LlamaIndex. (2024). Llamaindex [[Online; accessed 8-August-2024]]. https://github.com/
run-llama/llama_index

Manning, C. D. (2022). Human language understanding & reasoning. Daedalus, 151(2),
127–138.

Masterman, T., Besen, S., Sawtell, M., & Chao, A. (2024). The landscape of emerging
ai agent architectures for reasoning, planning, and tool calling: A survey. arXiv
preprint arXiv:2404.11584.

Mateiu, P., & Groza, A. (2023). Ontology engineering with large language models. arXiv
preprint arXiv:2307.16699.

Nakano, R., Hilton, J., Balaji, S., Wu, J., Ouyang, L., Kim, C., Hesse, C., Jain, S., Kosaraju,
V., Saunders, W., et al. (2021). Webgpt: Browser-assisted question-answering with
human feedback. arXiv preprint arXiv:2112.09332.

Neo4j. (2024a). Cypher full text indexes [Accessed: 2024-08-15]. Neo4j, Inc. https://neo4j.
com/docs/cypher-manual/current/indexes/semantic-indexes/full-text-indexes/

Neo4j. (2024b). Cypher manual [Accessed: 2024-08-15]. Neo4j, Inc. https://neo4j.com/
docs/cypher-manual/current/introduction/

Neo4j and LangChain. (2024). Constructing knowledge graphs [Accessed on August 12,
2024]. LangChain. https://python.langchain.com/v0.1/docs/use_cases/graph/
constructing/

Neo4j, Inc. (2024). Neo4j graph database [Accessed: 30.08.2024].
OpenAI. (2024). Hello, gpt-4o [Accessed: 30.09.24].
Park, J. S., O’Brien, J., Cai, C. J., Morris, M. R., Liang, P., & Bernstein, M. S. (2023).

Generative agents: Interactive simulacra of human behavior. Proceedings of the
36th annual acm symposium on user interface software and technology, 1–22.

Qian, C., Cong, X., Yang, C., Chen, W., Su, Y., Xu, J., Liu, Z., & Sun, M. (2023). Com-
municative agents for software development. arXiv preprint arXiv:2307.07924,
6.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019). Language
models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Rasmussen, M. H., Lefrançois, M., Schneider, G. F., & Pauwels, P. (2021). Bot: The
building topology ontology of the w3c linked building data group. Semantic Web,
12(1), 143–161.

Razali, M. F., Haron, N. A., Hassim, S., Alias, A. H., Harun, A. N., & Abubakar, A. S.
(2019). A review: Application of building information modelling (bim) over building

69

https://github.com/run-llama/llama_index
https://github.com/run-llama/llama_index
https://neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/full-text-indexes/
https://neo4j.com/docs/cypher-manual/current/indexes/semantic-indexes/full-text-indexes/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://python.langchain.com/v0.1/docs/use_cases/graph/constructing/
https://python.langchain.com/v0.1/docs/use_cases/graph/constructing/

life cycles. IOP Conference Series: Earth and Environmental Science, 357 (1),
012028.

Schulz, O., Oraskari, J., & Beetz, J. (2023). Lessons learned from designing and using
bcfowl. LDAC, 23–34.

Singhal, A. (2012). Introducing the knowledge graph: Things, not strings [Accessed: August
23, 2024]. Retrieved August 23, 2024, from https://googleblog.blogspot.com/2012/
05/introducing-knowledge-graph-things-not.html

Tan, H. C., Carrillo, P. M., Anumba, C. J., Bouchlaghem, N., Kamara, J. M., & Udeaja,
C. E. (2007). Development of a methodology for live capture and reuse of project
knowledge in construction. Journal of management in engineering, 23(1), 18–26.

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J.,
Dai, A. M., Hauth, A., et al. (2023). Gemini: A family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805.

Templeton, A. (2024). Scaling monosemanticity: Extracting interpretable features from
claude 3 sonnet. Anthropic.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is all you need. Advances in neural information
processing systems, 30.

Vaz-Serra, P., & Edwards, P. (2021). Addressing the knowledge management “nightmare”
for construction companies. Construction Innovation, 21(2), 300–320.

vesoft inc. (2024). Nebulagraph: Distributed graph database [Accessed: 30.08.2024].
Vicknair, C., Macias, M., Zhao, Z., Nan, X., Chen, Y., & Wilkins, D. (2010). A comparison

of a graph database and a relational database: A data provenance perspective.
Proceedings of the 48th annual Southeast regional conference, 1–6.

Wang, H., Meng, X., & Zhu, X. (2022). Improving knowledge capture and retrieval in
the bim environment: Combining case-based reasoning and natural language
processing. Automation in Construction, 139, 104317.

Wang, L., Ma, C., Feng, X., Zhang, Z., Yang, H., Zhang, J., Chen, Z., Tang, J., Chen, X.,
Lin, Y., et al. (2024). A survey on large language model based autonomous agents.
Frontiers of Computer Science, 18(6), 186345.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q. V., Zhou, D., et al.
(2022). Chain-of-thought prompting elicits reasoning in large language models.
Advances in neural information processing systems, 35, 24824–24837.

Wu, T., Terry, M., & Cai, C. J. (2022). Ai chains: Transparent and controllable human-ai
interaction by chaining large language model prompts. Proceedings of the 2022
CHI conference on human factors in computing systems, 1–22.

Xu, Z., Cruz, M. J., Guevara, M., Wang, T., Deshpande, M., Wang, X., & Li, Z. (2024).
Retrieval-augmented generation with knowledge graphs for customer service
question answering. Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval, 2905–2909.

70

https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html
https://googleblog.blogspot.com/2012/05/introducing-knowledge-graph-things-not.html

Yang, J., Jin, H., Tang, R., Han, X., Feng, Q., Jiang, H., Zhong, S., Yin, B., & Hu, X. (2024).
Harnessing the power of llms in practice: A survey on chatgpt and beyond. ACM
Transactions on Knowledge Discovery from Data, 18(6), 1–32.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y., & Narasimhan, K. (2024). Tree
of thoughts: Deliberate problem solving with large language models. Advances in
Neural Information Processing Systems, 36.

Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). React: Syn-
ergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629.

Yepes, V., & López, S. (2021). Knowledge management in the construction industry:
Current state of knowledge and future research. Journal of Civil Engineering and
Management, 27 (8), 671–680.

Yu, D., & Yang, J. (2018). Knowledge management research in the construction industry:
A review. Journal of the Knowledge Economy, 9, 782–803.

Zhang, B., Carriero, V. A., Schreiberhuber, K., Tsaneva, S., González, L. S., Kim, J.,
& de Berardinis, J. (2024). Ontochat: A framework for conversational ontology
engineering using language models. arXiv preprint arXiv:2403.05921.

Zhang, Y., Li, Y., Cui, L., Cai, D., Liu, L., Fu, T., Huang, X., Zhao, E., Zhang, Y., Chen,
Y., et al. (2023). Siren’s song in the ai ocean: A survey on hallucination in large
language models. arXiv preprint arXiv:2309.01219.

Zou, Y., Kiviniemi, A., & Jones, S. W. (2017). Retrieving similar cases for construction
project risk management using natural language processing techniques. Automa-
tion in construction, 80, 66–76.

71

72

	Abbreviations
	Introduction
	Knowledge Management
	Challenges of Knowledge Management in the Construction Industry
	Research Question

	Background and Related Work
	Leveraging ICT for Knowledge Management in Construction: Current Approaches and Emerging Trends
	Web Applications as KM Systems
	IFC and BIM as KM Systems
	Semantic Technologies for KM

	Large Language Models
	Prompt Engineering and Chaining
	LLM-Based Agents

	LLMs in Ontology and Knowledge Graph Creation: A Comprehensive Review
	NER and RE Approaches with Provided Ontology
	Ontology Learning Approaches
	LLM Supported Frameworks for the Ontology Engineering Process

	LLM-Based Query-Focused Summarization
	Retrieval Augmented Generation
	Graph-RAG for Query-Focused Summarization
	Summary and Identified Research Gap

	Methods
	Data Source and Data Preprocessing
	Graph Indexing
	Leveraging LLM for Knowledge Graph Construction
	Graph Structure Definition
	Graph Chain

	Graph Retrieval
	Cypher Query
	A Semantic Layer through Agent with Tools
	Agent-Writing Cypher

	Proof of Concept and Implementation
	Public buildingSMART Dataset
	BCF File Acquisition and Processing
	LangChain: A Framework for LLM-Powered Applications
	LangChain Expression Language (LCEL)
	Agent Component in LangChain
	LangChain Alternatives

	Choice of LLM
	Choice of Database System

	Results
	Graph Indexing Process
	Agentic Retrieval and Evaluation
	Case Study Questions
	Case Study Evaluation

	Discussion
	Discussion of Graph Indexing Process
	Discussion of the Agentic Graph Retrieval Process
	Scalability and Consistency

	Conclusion
	Outlook
	Developed Source Code
	Bibliography

