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Abstract

Multipath QUIC (MPQUIC) aggregates the bandwidth of multiple network paths. The
protocol extension, however, does not specify a general-purpose scheduler tailored to
QUIC’s stream multiplexing capabilities. As a result, current MPQUIC implementa-
tions rely on generic scheduling strategies explicitly designed for Multipath TCP with-
out accounting for the differences between the protocols. Given that recent schedul-
ing theory advancements have enabled algorithms for hierarchical max-min fairness at
deployable rates, we integrate such an approach into a fork of Cloudflare’s QUIC li-
brary quiche featuring multipath support. Applications can classfully divide traffic per
connection by specifying a weighted hierarchy with minimal coupling to the transport
layer. Traffic classes are isolated from each other and receive strategy-proof minimum
rate guarantees; unused bandwidth is fairly re-distributed to classes with unsatisfied re-
quests. We show that these properties are application protocol-agnostic, being suitable
for HTTP/3. Our scheduler schedules streams with byte granularity and is compatible
with modern multipath scheduling strategies that optimize stream completion times
and out-of-order packets. For web-like traffic, it handles path heterogeneity better than
quiche’s default scheduler and has lower stream completion times.
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Chapter 1

Introduction

People’s smartphones can automatically switch between Wi-Fi and cellular data when
entering or leaving a place. Although the user changes from one network to another,
they continue to be reachable or capable of reaching others, showing that many paths
over the Internet lead to the same destination. Each path has different capabilities.
The Internet encountered on the go, such as on a train or airplane, is notably slow and
unreliable. Choosing which to use is crucial for the user’s experience if multiple paths
exist. Furthermore, how they are used matters, too: a video call should not drop just
because large photos are being downloaded in the background by the same application,
for instance.

A proposed feature for the general-purpose transport protocol QUIC [1] is enabling
the use of multiple paths of a network simultaneously [2]. To the application layer, a
Multipath QUIC (MPQUIC) extension appears as a single logical connection [3] whose
bandwidth is the aggregate of the available paths. From the QUIC library’s perspec-
tive, paths are 4-tuples containing the source and destination Internet Protocol (IP)
addresses and ports [1]. In practice, an IP address is assigned to an interface connected
to a network. These are increasingly dual-stack, supporting both IPv4 and IPv6 [4].
MPQUIC is enabled by multihomed devices whose interfaces are attached to distinct
networks simultaneously, such as cellular and WLAN.

MPQUIC aids service quality and experience in various contexts. The throughput is
higher, and in real-time applications, multipath redundancy can reduce unacceptable
tail latencies with proactive loss recovery mechanisms [3]. While singlepath QUIC han-
dles connection migration out of the box when, e.g., a mobile endpoint switches to a
new network, MPQUIC can make this handover even smoother [5].
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The MPQUIC specification proposed by the Internet Engineering Task Force (IETF)
QUIC Working Group [2] provides little engineering guidance regarding a packet sched-
uler, solely basing the choice of which path to use on its smoothed round-trip-time
(RTT) value and variance. None is given for a stream scheduler. With the protocol
stack of the third major version of the HyperText Transfer Protocol (HTTP) build-
ing atop QUIC [6], theorized or deployed schedulers are often tightly coupled to the
web use case. But QUIC, built on top of the User Datagram Protocol (UDP), also
finds applications in cloud gaming, media streaming, teleoperated driving, and remote
surgery [5], for example. Thus, the implementation of a scheduler should remain ap-
plication protocol-agnostic. The standardized analog extension for the Transmission
Control Protocol (TCP), Multipath TCP (MPTCP), stirred experimental research into
the design of high-end-system throughput schedulers [7] that provided valuable lessons
and concrete implementations. Nonetheless, as seen in some libraries, their reuse for
MPQUIC fails to leverage its unique properties [8].

Therefore, this thesis addresses the imperative to design, implement, and evaluate a
fair and flexible MPQUIC scheduler. To that end, we port the Hierarchical Link Shar-
ing (HLS) Queueing Discipline (QDisc) to QUIC. Modifications are needed as it was
designed initially for packets, not streams. Its advantages lie in the fine-grained con-
trol it provides to an application, which specifies a weighted hierarchy of traffic classes
stored at the connection level. Our transport-layer scheduler then uses the hierarchy
to schedule data with byte granularity following a hierarchical max-min fair allocation.
Traffic classes are guaranteed minimum rates and fully isolated from one another. Then,
we integrate it with the Stream-Aware Earliest Completion First (SA-ECF) stream- and
path scheduler. Unlike non-stream-aware schedulers, it can estimate on a per-stream
basis whether a given path will delay the stream’s completion. When that is the case,
the stream must wait for a faster path to re-open, handling path heterogeneity sensibly.

Chapter 2 explains the scheduling and fairness mechanisms behind existing approaches
essential to this thesis. Chapter 3 focuses on the literature that tackles similar sched-
uling challenges and how our developed scheduler positions itself in that context, with
Chapter 4 presenting our solution approach. Chapter 5 describes its implementation
in an MPQUIC fork [9] of the open-source IETF QUIC library quiche. Experiments
done and evaluated on a testbed are presented in Chapter 6. We conclude this thesis in
Chapter 7 by providing an outlook for future work in the context of a final discussion
of our results.
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Chapter 2

Background

In this chapter, we provide the necessary background to understand the scheduler cur-
rently implemented in the QUIC library quiche, which we subsequently replace in the
development phase. We start with an introduction to general scheduling strategies,
which, despite simple, are the foundation of complex packet schedulers such as the HLS
QDisc. As it is Hierarchical Max-Min (HMM)-fair, we provide illustrative examples for
this central concept in Section 2.3 to motivate the topic as a short crash course.

2.1 Generic Schedulers

Abstract strategies are a good starting point to provide intuition behind a scheduler’s
operation, as general-purpose schedulers are portable and straightforward to implement
and can later be tailored to application-specific needs.

2.1.1 Round-Robin
A Round-Robin (RR) scheduling discipline ensures all paths, packets, or streams are
evenly visited over time by cyclically iterating over a list of available schedulee identifiers
(IDs). These may be assigned different priorities so that some scheduling subjects
are favored at the expense of others. Priority-based network resource allocation over
streams can be achieved with a Weighted Round-Robin (WRR). Each stream receives
the opportunity to emit a number of packets equal to its weight when it is visited in a
scheduling round [5]. Since these visits occur regularly, no stream can monopolize the
transmission and starve others.

A RR path scheduler performs well in ideal network conditions because it combines the
bandwidth of both paths [5], maximizing their utilization. In a WRR, packets are non-
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Figure 2.1: LowRTT-scheduled multipath packet arrival

uniformly distributed. The available path list being iterated on has several duplicated
entries for higher-importance paths, with its ordering defining whether sending occurs
in a bursty or interleaved fashion [4]. Due to potentially high latency differences among
paths, however, Jonglez et al. [8] find that “serving streams using a Round-Robin strat-
egy yields poor performance when looking at stream completion time” in web use-case
contexts.

2.1.2 Lowest-RTT-First
The Lowest-RTT-First (LowRTT) scheduler sends on the path whose smoothed RTT
is smallest, filling its congestion window before moving on to the next fastest one. The
smoothed value is a running average of RTT measurements over time, which may give
recent samples more weight. The scheduler clashes with the unfortunate reality of
dynamically changing conditions found in heterogeneous mobile wireless networks, as
it is intended for homogeneous paths. Depending on how heterogeneous the paths are,
a markedly inferior second path can severely degrade LowRTT’s performance due to
out-of-order (OFO) packets.

Consider a scenario [10] where a terrestrial link has an RTT of 10 ms, while a satellite
route exhibits an RTT of 100 ms. In both cases, their congestion windows support the
transmission of five packets, and the one-way delays are symmetrical. Figure 2.1 illus-
trates when, on which path, and how many packets arrive at the peer in this example. A
flow of 11 packets would see the first five packets scheduled on the fastest path, followed
by a further five on the slowest. 10 ms later, the sender receives an acknowledgment on
the terrestrial link, which opens its congestion window anew for the last packet. It is
delivered after 15 ms while the second packet burst is still in flight, causing intra-stream
Head-of-Line Blocking (HoLB) due to OFO arrivals in red on top of the long wait time.
The fast path quickly became idle even though the second path still transfers data.

Although it is known that LowRTT can lead to these circumstances where the fast
path is underutilized, it is MPTCP’s default scheduler and found in the Linux kernel
implementation. It was naively ported to MPQUIC in quiche without addressing the

4
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fact that MPTCP’s use case is fundamentally different to MPQUIC’s, as it splits a single
stream over several sub-flows instead of multiplexing streams over many paths [11] [8].

2.1.3 Strict Priority
A strict priority path scheduler chooses the first available path from a priority-sorted
list. Paths are checked in order of descending priority; lower-priority paths are only
considered if all higher-priority paths are unavailable due to the used congestion control
scheme [4]. As with RR, the same logic applies to jobs, tasks, or packets that desire
scheduling; quiche uses it for streams.

2.2 Prioritization Schemes for HTTP

Quiche schedules streams based on a strict priority scheme. Internally, the urgency u
ranges from 0 to 255. The default priority is 127, with lower values transmitted on the
wire first [12]. Alongside the urgency, a boolean flag i indicates whether the stream is
incremental, meaning that it can be processed online.

Streams are first sorted based on their urgency. At each urgency level, non-incremental
requests are sent out in full, ordered by their stream IDs. Then, the incremental streams
are subordinate to a round-robin that emits a packet for each partial request. The intu-
ition behind the scheduler’s strategy is that it allocates more bandwidth to important
streams while letting secondary streams that can be progressively handled divide the
rest amongst them [13].

This algorithm is compatible with the scheduling recommendations outlined by the
Extensible Prioritization Scheme for HTTP [14] and is “an important piece of deploying
HTTP/3.” [15]. The Request for Comments (RFC) retains the incremental flag but
narrows the urgency’s range down to 0–7 for simplicity. The proposed standard also
defines how priority signals are communicated, which the original HTTP/3 specification
did not provide a method for [6]. It aims to minimize the user-centric Largest Contentful
Paint (LCP) loading experience metric, which measures the time it takes for the largest
visible image or text block to render [16].

The Extensible Prioritization Scheme replaces stream priorities from HTTP/2. Using
a parameter in a SETTINGS frame, endpoints can state to their peers that HTTP/2
priorities are disabled [6]. These were deprecated in later protocol revisions as they
were not widely adopted, but backward compatibility was kept [14]. HTTP/2 priorities
are weighted edges in an unbalanced dependency tree where each stream is a vertex.
The explicit dependencies signify that the parent stream needs to be done sending before

5
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the child can start doing so. The relative — not absolute — weights range from 1 to
256, representing the proportion in which resources are allocated. Each level of the
dependency tree independently handles prioritization.

Figure 2.2 shows the dependency tree of a bare-bones web page. In that example, every
stream depends on the HyperText Markup Language (HTML) document to be displayed
or function. The JavaScript (JS) code needs the Cascading Style Sheets (CSS) file, so
it does not profit from arriving before the style sheet. The CSS file receives 64% of the
bandwidth distributed by the root, as it splits the available capacity with its siblings in
a ratio of 256:72:72. As a result, images outside of the viewport obtain a smaller share
of the remaining bandwidth.

index.html

style.css

index.js

256

256

hidden.jpg

72

hidden.png

72

Figure 2.2: HTTP/2 dependency tree

It stands to reason that due to modern web pages consisting of hundreds of separate
requests, such a structure can rapidly become difficult to reason about as a web devel-
oper. The resulting lack of deployment and interoperability issues led to little adoption
of HTTP/2’s dependency trees. Nonetheless, they remain a robust model that several
MPQUIC schedulers from Section 3.1 incorporated into their design.

With HTTP/3 priorities, similar results can be obtained with less cognitive overhead.
Suppose a client requests index.html from an upstream server, signaling a preference
of u=0, i=true, since it can be parsed as it arrives. Since the CSS file should arrive
before the JS script, we respectively assign them u=1, i=false and u=2, i=false.
Any further off-screen element is given u=3, i=true.

Figure 2.3 illustrates the order in which the requests are fulfilled. The stream with
the HTML payload is emitted first after ordering streams based on urgency, followed
by the CSS file and then the JS script. The tie at the third urgency level is handled
with a packet-by-packet RR, as both streams are marked as incremental. Had they been
flagged as non-incremental, their IDs would have been used to determine the precedence
instead.

In Subsection 6.1.4, we run this example with quiche to have a baseline against which
to compare our Fair Stream Scheduler.

6
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JavaScript CSS HTML

Stream flow

Figure 2.3: Theoretical HTTP/3 scheduling result

2.3 Fairness Fundamentals

In this section, we introduce max-min fairness directly with its weighted counterpart,
since a max-min fair allocation simply has its weights set to one. Similarly, we later see
that a weighted max-min allocation is a subset of the more general HMM-fair allocation.

Weighted Max-Min Fairness
Let us instantiate a practical example in the context of a stream scheduler. Bytes are
the limited resource competed for in a scheduling round. The scheduler, i.e., the root
node, can at most distribute its capacity C per round. In Figure 2.4, 1000 B are divided
amongst the traffic classes X, Y , and Z, that together form the set of classes N .

root
C = 1000

X
w1 = 5

r1 = 400
a1 = ?

Y
w2 = 3

r2 = 600
a2 = ?

Z
w3 = 2

r3 = 800
a3 = ?

Figure 2.4: Initial state of a weighted max-min fair allocation

A traffic class i is associated with a request ri, weight wi, and an allocation ai ≤ ri yet
to be determined [17]. The weights indicate that they should split the available capacity
in a ratio of 5:3:2. The difficulty in allocating the requests lies in the sum of the requests
in Figure 2.4 being 1800 B, i.e., higher than the capacity of 1000 B. The implication is
that some requests cannot be fulfilled, so we look for an allocation that maximizes the
minimum amount of data that unsatisfied streams receive. If the overall demand were
smaller than the capacity, there would be no need to apply max-min fairness.

The algorithm begins by obtaining an initial fair share f that is the quotient of the
capacity and the total requesting sources [18]. Formula 2.1 presents the mathematical
expression for this first iteration.

f = C∑
iwi

(2.1)

7
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The fair share value states how many bytes a stream with a weight of one can receive. In
our example, that equals 1000/10 = 100 bytes. Taking each stream’s weight into account
yields Formula 2.2 for the allocation.

ai = min{ri, wif} (2.2)

Class X can, therefore, get up to 500 bytes. Since it only requests 400, 100 remain that
can be redistributed fairly to Y and Z in a second iteration as their requests have not
been fulfilled by allocations of 300 and 200, respectively. Figure 2.5 shows the state
of the process before an additional round starts distributing the remaining capacity.
Satisfied classes are represented in green; the unsatisfied in red.

root
C = 1000

X
w1 = 5

r1 = 400
a1 = 400

Y
w2 = 3

r2 = 600
a2 = 300

Z
w3 = 2

r3 = 800
a3 = 200

Figure 2.5: State of a weighted max-min fair allocation after the first iteration

When starting one or more surplus rounds, the process is repeated considering unsatis-
fied classes until the capacity is fully depleted or all classes are satisfied [17]. The sum
of the remaining weights is 5 for a new capacity of 100. Due to the new fair share of 20,
Y obtains 60 more and Z 40. With the resource exhausted, Figure 2.6 shows the final
result.

root
C = 1000
f = 120

X
w1 = 5

r1 = 400
a1 = 400

Y
w2 = 3

r2 = 600
a2 = 360

Z
w3 = 2

r3 = 800
a3 = 240

Figure 2.6: Final state of a weighted max-min fair allocation

Intuitively, the algorithm computes the allocation for each class, satisfies classes request-
ing less than their allocation, and then repeats the process to equally split the surplus
among the remaining unsatisfied classes. Inspecting the final result reveals that the

8
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root essentially distributed a final fair share of 120 to everyone; class X just happened
to need less. Therefore, it does not feel taken advantage of. Although classes Y and Z
remain unsatisfied, they received the resource in the same proportion, i.e., a multiple
of the fair share according to their weights. Furthermore, the result is strategy-proof
because Y and Z cannot increase their balance by gaming the system: increasing their
requests further does not alter the allocation. Mathematically, properties 2.3 and 2.4
hold [19].

ai < ri ⇒
ai

wi
≥ aj

wj
, ∀j ∈ N (2.3)

∑
j∈N

aj = min(
∑
j∈N

rj , C) (2.4)

Hierarchical Max-Min Fairness
Even though the previous example was put forward as a non-hierarchical, weighted
max-min fair allocation, the root can be interpreted as a full-fledged class in a flat
hierarchy. We add a new level to the hierarchy by giving children to the classes X and
Z in Figure 2.7.

root
w0 = 1

C = a0 = g0 = 1000
r0 = 1800
f0 = 120

X
w1 = 5

g1 = 500
r1 = a1 = 400

f1 = ∞
X1

w4 = 3
g4 = 2142/7

r4 = a4 = 150

X2
w5 = 4

g4 = 2855/7
r5 = a5 = 250

Y
w2 = 3

g2 = 300
r2 = 600
a2 = 360

Z
w3 = 2

g3 = 200
r3 = 800

a3 = f3 = 240

Z1
w6 = 1

r6 = 800
a6 = 240

Figure 2.7: Output of a hierarchical, weighted max-min fair allocation

N then is the union of the root, the leaves L, and the remaining internal classes I [19].
Operations supported by a hierarchy are presented in Table 2.1 [17] alongside the ex-
planation of key terms.

With this formal notation, non-hierarchical max-min fairness can be generalized as a
special case of HMM. As visualized in Figure 2.7, each parent distributes its available

9
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Term Description Example
root Class at the hierarchy’s top The node with C = 1000 B
L Classes at the hierarchy’s bottom {X1, X2, Y, Z1}
I Internal classes, neither leaves nor root {X,Z}
N All classes: L ∪ I ∪ {root} {root, X,Y, Z,X1, X2, Z1}
p(i) Parent of node i p(X1) = X
child(i) Children of node i child(X) = {X1, X2}
sib(i) Siblings of node i, including itself sib(X) = {X,Y, Z}
anc(i) Ancestors of i anc(Z1) = {Z, root}
desc(i) Classes with i as ancestor desc(root) = L ∪ I
ldesc(i) Leaf descendants with i as ancestor ldesc(root) = L

Table 2.1: Terminology for HMM fairness

allocation to their children using the previously established process. Hence, each parent,
i.e., the root nodes of the sub-hierarchies, computes a fair share. It is infinite when all
requests can be satisfied. Formulas 2.5 state the adapted computation for the request
and allocation values [19].

ri =
∑

j∈child(i)
rj , ai =

∑
j∈child(i)

aj , ∀i ∈ I ∪ {root} (2.5)

As before, the first rule in 2.6 ensures that unsatisfied classes receive the same allocation
relative to their weights. Equation 2.7 ascertains that the capacity is entirely used [19].
Both rules apply to i ∈ L ∪ I. In Chapter 5, we describe and implement the algorithm
that computes the HMM-fair allocations of the scheduler to the extent that the discrete
granularity of a byte allows. We jumpstart this development in Section 5.1 by writing a
general HMM module separate from the scheduler. That enables us to calculate fairness
metrics and obtain allocation guarantees using a weighted hierarchy and a resource’s
capacity alone.

ai < ri ⇒
ai

wi
≥ aj

wj
,∀j ∈ sib(i) (2.6)

∑
j∈L

aj = min(
∑
j∈L

rj , C) (2.7)

Figure 2.7 introduces guarantees g alongside weights. Class Y , for instance, got 60 more
than its guarantee of 300. Class X and its children used less than they could, so the
excess got redistributed. These global guarantees can be derived from the weights and

10
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the capacity with Formula 2.8, explaining how, e.g., classes X1 and X2 obtained their
guarantees.

gi = C ·
∏

j∈anc(i)∪{i}
j 6=root

wj∑
k∈sib(j)wk

(2.8)

Guarantees can be viewed as weights as long as the property gi ≥
∑

j∈child(i) gj holds,
where groot = C. Throughout this thesis, we assume that to be the case and interchange-
ably work with wi = gi, since we are interested in distributing a minimum guaranteed
number of bytes per scheduling round. Above that, however, is that the HLS scheduler
does the same: closely following their design eases the porting process as described in
Section 5.2. In a real-world deployed Fair Stream Scheduler instance, however, ratios
at the sibling level would be more intuitive for application developers, abstracting the
scheduler’s intricacies away and more closely resembling HTTP/2 weights.

11





Chapter 3

Related Work

This chapter offers a concise literature review of the most promising scheduling ap-
proaches identified for integration into our scheduler.

3.1 Multipath QUIC Schedulers

This section provides the necessary context to understand the operation of the SA-ECF
scheduler that our implementation utilizes. It is the stream-aware variant of ECF,
which, in turn, improves on LowRTT and is the default quiche scheduler. Nonetheless,
for the sake of completion, we also present viable alternative approaches, with Chapter 4
explaining why we opted not to use them in our implementation.

A multipath scheduler is a component in the implementation of a multipath transport
protocol such as MPQUIC and MPTCP. Scheduling decisions are made per connec-
tion and heavily influence their performance [4]. The packet scheduler decides which
path to use for transmission; in QUIC, packets reliably carry in-order data with STREAM
frames [1]. The stream scheduling component, on the other hand, decides how to pro-
duce this output. A scheduler is stream-aware if its algorithm gleans information from
connection-level stream metadata to make optimal decisions regarding ordering, path
choice, and allocation [10].

3.1.1 Earliest Completion First
The path heterogeneity in the example outlined in Figure 2.1 is so detrimental to
LowRTT’s performance that electing to exclusively send on the terrestrial link would
have had all packets delivered in order and acknowledged in about 30 ms, less than the
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satellite path’s flight time. Given that the problem worsens with increasingly asym-
metric paths, the Earliest Completion First (ECF) scheduler can choose to not send on
a path if waiting for a better one to become available results in an earlier completion
time. Hence, slow paths are only used if they do not delay a flow’s completion. The
completion time is estimated from the path’s RTT, the RTT’s standard deviation σ, and
the path’s congestion window. The number of bytes left to complete the transmission
and a hysteresis constant β are taken into account, too [10]. In MPTCP, the hysteresis
constant influences how willing the scheduler is to switch back to using the slower path
after deciding it will wait for the fast one to be available [11]. Changing between these
two states too often may not be optimal, but so may insisting on the wrong choice for
too long be. Striking the right balance between not regretting a right decision too early
while ensuring no sunk costs are incurred can be experimentally determined.

Stream-Aware Earliest Completion First
The SA-ECF scheduler is intended for situations where a connection supports the con-
current transmission of multiple streams. It aims to minimize the estimated completion
time of individual streams rather than the connection as a whole [10].

The procedure gauges how many bytes k every stream sends before the currently evalu-
ated stream can complete transmission. It is a separate value from the amount of bytes
left to send on a given stream and determines whether to wait or send on a path. This
“byte count until completion” k is calculated with the help of the gap length g, stand-
ing for how many sending opportunities on average other streams get compared to the
stream under evaluation. Per send opportunity, L bytes are sent. The required number
l of sending opportunities left for a stream is determined by dividing the remaining
request by L. A gap arises between them, during which other streams can send. The
gap length, therefore, relies on the normalized weights w obtained from an HTTP/2
dependency tree. Relative to the root node, the normalized edge weights determine the
bandwidth allocation of each stream. If a stream s is supposed to receive ws = 2/3 of
the bandwidth, 1/3 remains for all others. The stream gets twice the turns others do,
i.e., for each of its sending opportunities, the rest is allocated 1/3

2/3 = 1/2 of that [10].
Formula 3.1 states how g is computed.

g = 1− ws

ws
(3.1)

As the scheduler interleaves the sending of s and further streams, g · L bytes are, on
average, sent in the gap between s. Figure 3.1 illustrates this example where the stream
s in blue has a sending opportunity L of 1000 B and a remaining request of 5000 B. As a
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1000 500 1000 500 1000 500 1000 500 1000

Figure 3.1: Transmission gaps in a Stream-Aware ECF flow

result, it carries this transmission out over l = 5 visits. The l− 1 = 4 cyan gaps add up
to 2000 B in the meantime since it is only granted half of the opportunity. The stream
s completes after k = 7000 B have been sent over the entire connection. Formula 3.2
provides the general solution for the parameter [10]. In Listing 2, we calculate k using
HLS weights instead of HTTP/2 priorities.

k = L · (g · (l − 1) + l) (3.2)

The transmission time can be approximated with k. Waiting until a congested fast
path becomes available to then transfer k packets on entails first waiting for an RTT
to let acknowledgments arrive that reopen the path’s congestion window cwnd. The
total estimated completion time is RTT + k

cwnd · RTT, i.e., the initial waiting time plus
however many data bursts are needed times the required timespan. If that takes less
than the RTT of another path with enough cwnd for k bytes, staying with the blocked
path terminates earlier than what can be achieved through switching per the LowRTT
strategy. Only if it is greater or equal can the increased aggregate bandwidth provided
by a multipath protocol extension decrease the overall completion time [11].

Compared to its default scheduler, experimental results with real networks by Lim et
al. [11] found that video streaming bitrate improved by 16% when using MPTCP-ECF
in heterogeneous path environments. Full-page web download completion times fell by
26%, and OFO delay by a staggering 71%. In homogeneous scenarios where available
path bandwidths and RTTs were roughly equal, ECF’s performance matched that of
LowRTT. Rabitsch et al. [10] see even further improvements in the order the data is
sent due to the stream-aware nature of their scheduler. Their findings suggest that,
when compared to plain ECF and LowRTT, SA-ECF is capable of speeding up the
stream completion time even in symmetric scenarios.

Shortest Remaining Processing Time
The Shortest Remaining Processing Time (SRPT) scheduler is yet another ECF-based
scheduler. It addresses the shortcomings caused by the underlying presence of RR-
like approaches in schedulers such as SA-ECF that ultimately depend on a WRR over a
HTTP/2 dependency tree. SRPT does not rely on one. Moreover, it achieves a provably
optimal completion sequence that is stable: The order in which streams are scheduled
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does not change. If desired, it can be modified to accommodate strict priority schemes
as in Subsection 2.1.3.

The researchers optimize the Application Data Unit (ADU) completion time such that
data on all paths complete simultaneously on the receiver side. The sizes of these
atomic messages are known by the scheduler in advance, which may not be desirable
for continuous data feeds. Additionally, their network model uses fixed values for the
path’s RTT and the bottleneck capacity rate in bytes per second, which they recognize
is not realistic. They find that for any two paths, there is a threshold ADU size at
which using the second path becomes useful. As stream sizes increase, also employing
larger-latency paths becomes more attractive. The property recursively holds for n
paths, yielding n− 1 of such thresholds.

The algorithm computes the Shortest Isolated Remaining Completion Time of each
message, which is its remaining completion time under ECF if it were not competing
with others. Obtained as a function of the path’s delay, maximum rate, and ADU size,
streams are accordingly sorted in ascending order. Each is assigned an available path
with ECF. In a similar fashion to SA-ECF’s k from Formula 3.2, the message size
is increased to include data scheduled beforehand. Effectively, the completion time of
shorter ADUs is minimized by scheduling them first. Longer streams are distributed
across slower paths while ensuring simultaneous completion across them.

SRPT-ECF has not yet been implemented within MPQUIC, with trace-based simu-
lations having been done instead. Its online variant is no longer optimal; a concrete
implementation must predict when in-flight packets finish on all paths. Benchmarked
against SA-ECF, SRPT significantly improved tail stream completion times [8].

3.1.2 Head-of-Line-Blocking Eliminating Scheduler
The Head-of-line Blocking Eliminating Scheduler (HBES) avoids both inter- and intra-
stream HoLB variants. A multipath scheduler is prone to inter-stream blocking if it
fails to suitably prioritize streams. Since the images in Figure 2.2 depend on the HTML
document to be displayed, a non-optimal transmission order bars the web page render-
ing process until the markup document arrives. The inter- prefix highlights that the
blocking arises due to the dependencies between streams. If the frames of a stream take
separate heterogeneous paths, they are likely to arrive out of order. Stream data must
then be rearranged in the receive buffer sorted by their stream offsets, which wastes
time and excessively occupies it. An overwhelmed buffer consumes more resources,
increases the latency, and may drop packets if full, leading to congestion issues that
negatively affect transmission. Since this HoLB delay type is caused within a stream,
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it is referred to with the intra- prefix. HBES consists of two distinct components that
independently address these issues for HTTP/2 over QUIC: the Priority-Based Stream
Manager (PSM) and the Stream-Aware Arrival-Time-Based Path Selector (SAPS).

Xing et al. conclude that “HBES and SA-ECF bring significant benefits for small
streams whose flow completion time is relatively small”, with HBES performing “slightly
better in asymmetric scenarios.” [5]

Priority-Based Stream Manager
The authors improve the WRR scheduler to mitigate inter-stream HoLB. Their central
insight is that in window-size-constrained scenarios, low HTTP/2 priorities can still
exhaust the sending window despite the presence of higher-priority streams that may
only need to send a few packets. Let us assume a WRR scheduling cycle is limited to
sending 32 packets. If two streams with priorities of 32 and 128 request 32 and 2 packets,
respectively, the higher-priority stream may be blocked. Reiterating Subsection 2.1.1,
this is due to the amount of packet-sending opportunities matching the stream’s priority
without further regarding its position in the scheduling round. Going first, the low-
priority stream wholly fulfills its request, blocking its higher-priority sibling.

Their proposed scattered WRR emits packets in the ratio of their priorities. The band-
width sharing proportion of 32:128 is rescaled down to absolute permits of 1:4 in terms
of transmission tokens. They allow for the sending of a packet and are consumed as
packets are emitted. PSM starts a new scheduling cycle when no HTTP/2 node has any
token balance left. At a minimum, streams are assigned at least one token per round.
The short rounds help prevent an early exhaustion of the send window and mitigate
inter-stream HoLB as a result [5].

As proposed, the PSM is coupled to HTTP/2: usage of the scattered WRR in combina-
tion with, e.g., HTTP/3’s extensible priorities would ignore the i flag. Tied incremental
streams, however, could consider PSM’s scattered approach.

Stream-Aware Arrival-Time-Based Path Selector
SAPS is intended to mitigate OFO packets even in highly heterogeneous network con-
ditions. A packet is sent on the path for which its estimated arrival time is lowest. The
arrival time is the sum of the packet’s queueing delay and how long it spends in flight
(approximated by halving the RTT, an idea we use in Listing 3). The packet’s queue-
ing time is different per path because SAPS requires one send buffer per path, which
differs from the shared buffer kept by quiche. The queueing time is the buffer’s current
occupation plus the packet size to be scheduled, divided by the path’s throughput.
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SAPS only switches paths when the queueing times become too long, buffering data on
low-RTT paths until the queueing time becomes too long, at which point it switches to
another path. The path utilization is not maximized, but frames from the same stream
will tend to arrive at the receiver in order, and the algorithm can adapt to sudden
network condition changes by tracking current queue lengths and path RTT’s.

3.2 The Hierarchical Link Sharing Scheduler

The HLS singlepath packet scheduler provably guarantees traffic classes a fair share of a
link’s bandwidth. Classes can be arranged hierarchically for fine-grained traffic control,
with the root stating the available capacity to be distributed to its children. Children
can be recursively thought of as the root of a new sub-hierarchy. Packets of differing
sizes needing transmission map to childless leaf classes in the base case.

Figure 3.2 illustrates how a link with a capacity of 1000 Mbit/s is subdivided into classes
A, B, and C. Each node has a rate guarantee that must be met. A, for example, is
guaranteed 300 Mbit/s, but it itself allocates bandwidth to two deeper traffic classes,
namely A1 and A2. If all leaf classes at the bottom of the hierarchy demand bandwidth
above their minimum rates, the sum of the requests is greater than the capacity, limiting
them to their guarantees. Likewise, if every leaf requests less than what they are entitled
to, their allocated rates match their request.

The difficulty lies in determining a fair bandwidth allocation when the aggregate ca-
pacity is exceeded despite some leaves staying under their guarantees. A class’ unused
capacity can then be fairly redistributed to those that remained unfulfilled. To that
end, Luangsomboon et al. developed a computationally low-complexity algorithm [19]
that calculates HMM fair allocations. Previous algorithms were prohibitively expensive,
partly explaining why the Hierarchical Token Bucket (HTB) and Class-Based Queue-
ing (CBQ) QDiscs saw deployment in Linux. However, these fail to fully isolate rate
guarantees from other branches in the hierarchy, which is unfair because classes can
craftily change their subtrees to obtain more bandwidth.

The authors deploy a HLS QDisc using a WRR [20]. The scheduler iterates over a set
of backlogged leaf classes in no specific order, i.e., classes that have packets waiting to be
sent. The hierarchy does not set out to address dependencies between traffic classes as
HTTP/2 trees do. The focus lies on the amount of data a class can send: HLS classes
have a balance in bytes instead of sending opportunities. When visited in the RR, the
leaves recursively ask for and receive HMM-fair quotas of balance from their parents;
the root accrues the balance consumed by leaves when sending packets. A leaf keeps
emitting packets while the packet sizes are smaller than or equal to the leaf’s balance,
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Figure 3.2: A class hierarchy used by the HLS scheduler with rate guarantees [19]

which respectively decreases by that amount. Unused balance is returned to the parent
so that siblings of satisfied classes can spend the excess balance first. If they are all
idle, the surplus continues traveling upward to the grandparent, ultimately reaching the
root.

In Chapter 4, we implement the algorithm for HMM fairness and HLS’s methods for
QUIC streams instead of packets. They provide transmission quotas given a send quan-
tum and the hierarchy’s weights. A further theorem is used to compute an upper byte
bound α of how unfair the scheduler’s transmission can be in a given time interval.

3.3 Summary

As established in the previous sections, the interplay of the packet- and stream sched-
uling components can be complex. Table 3.1 outlines elicited requirements toward our
scheduler; Chapter 4 provides an in-depth discussion of the necessary software architec-
ture required to fulfill them.

Requirement Rationale
Multipath scheduling Aggregate the bandwidth of multiple paths
Transparent to the application Protocol-agnostic, no traffic pattern coupling
Stream-aware scheduling Reduce Head-of-Line Blocking
Minimum guarantees Prevent traffic flow starvation
Strategy-proof fairness Provably prevent manipulation
Hierarchical bandwidth sharing Control at multiple aggregation levels
React to network condition changes Paths can be highly heterogeneous

Table 3.1: Elicited requirements for the Multipath Fair Stream Scheduler

Table 3.2 gives an overview of the discussed schedulers. Together with the solution
approach, they provide the building blocks of the multipath scheduler built in Chapter 5.
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Chapter 4

Design

Designing and implementing a general-purpose, stream-aware fair multipath scheduler
for QUIC is a creative systems engineering endeavor that requires novel approaches to
be solved. For that purpose, deciding on which of the several QUIC implementations
needs to be settled first and foremost. A fork of Cloudflare’s quiche [9] is one of the
“most promising publicly available MPQUIC implementations” [21] alongside XQUIC
and Picoquic. Maintained by Quentin De Coninck, one of the researchers who first de-
signed the extension [22], his work reflects the latest state of MPQUIC’s active Internet
draft [2]. Written in Rust, it is the open-source library we chose to implement our Mul-
tipath Fair Stream Scheduler in, given its IETF compliance and up-to-dateness. This
decision affects which works we can draw inspiration from to develop our state-of-the-art
scheduler.

Ideally, our scheduler would provide SRPT’s optimal scheduling, HLS’s provable fairness
properties, and minimum rate guarantees. Strict priorities are desirable to address the
inherent dependencies found in HTTP traffic and reducing HoLB as SA-ECF and HBES
do. These goals, however, conflict, necessitating a decision on which trade-offs to accept.

The fact that HTTP/2 priority trees have been deprecated [14] and only saw main-
stream adoption in Firefox [10] is an argument in favor of ensuring that our scheduler
can accommodate a wide application range. How protocols develop and are adopted
cannot be predicted; tying our scheduler to HTTP/3 could prove erroneous despite it
playing a prominent role in the modern IP+UDP+QUIC stack. Even using the same
protocol can lead to wildly different traffic patterns, all of which the scheduler should
be capable of handling. One way to formalize different traffic patterns is in terms of
the transmission’s utility over time. For example, a 1 GB bulk file transfer provides
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no value until the last byte is reliably received since a corrupted or partially received
document is useless. In contrast, an application sending out small Application Program-
ming Interface (API) requests at regular intervals or a video stream sent at 30 frames
per second yields a staircase-like utility plot. Testing and evaluating the scheduler in
different conditions and scenarios in Chapter 6 therefore requires the development of
a flexible traffic generator for the QUIC endpoints to use. The multipath quiche fork
ships with simple client and server applications capable of making many simultaneous
GET requests for files over HTTP/3. They can serve as the basis for a protean traffic
generator that uses our scheduler.

ECF is versatile and improves on LowRTT, but a stream-aware variant is needed to
avoid HoLB and fully leverage QUIC’s multiplexing capabilities. SRPT is a good can-
didate as it is rather protocol-agnostic. Moreover, it could be integrated with a strict
priority scheme if necessary. However, its network model does not yet account for the
rapidly changing network conditions we ought to support and explore. Hence, HBES
and SA-ECF remain as more promising candidates for real-world deployment.

Rapid deployment is a cornerstone of QUIC’s protocol design, explaining why it runs
in user- rather than kernel space [23] after learning from how TCP ossified. In a similar
vein, the time constraints of this thesis require fast-paced software development practices
while ensuring that the code runs properly outside of a research context. The final result
should not deviate too much from quiche’s existing architecture so that code can readily
be understood and contributed back as pull requests. Thankfully, quiche’s code quality
is high, providing extensive documentation, comments, and over 520 tests that enable
a test-driven development approach. Initial experiments with a HBES implementation
showed that their requirement of a per-path send buffer alters quiche’s inner working
more than SA-ECF, despite both fully complying with the QUIC specification.

What we can reuse from HBES, however, is the software engineering principle of sepa-
rating concerns. Their approach of splitting the scheduler into two separate components,
a stream and a path scheduler, is accomplished with the PSM and SAPS algorithms.
This good practice already starts to show its value by carving out a simple interface our
components need. Instead of receiving the next stream from an HTTP/2 application,
another prioritization scheme can feed the available streams into SA-ECF, responsible
for deciding which stream goes onto which path next. The process relies on knowing
how stream data is interleaved to calculate k, i.e., how many bytes are sent in total for a
given stream to complete [10]. Hence, Formula 3.2 will need to be adapted accordingly
and by extension Formula 3.1 to determine the gap length g.
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Concerning the stream scheduler component, HLS provides a groundbreaking bandwidth-
sharing approach that can be adapted to MPQUIC. To the best of our knowledge, this
has not been done before. HLS operates with byte-level granularity despite being in-
tended as a packet scheduler, which suits QUIC streams due to their less discrete nature.
Its properties go beyond fairness: the authors also prove an upper bound for how long
a leaf class has to wait until it is visited by the WRR again [17]. Since HLS does not
establish a fixed sending order, SA-ECF can determine the stream ordering. Quiche
determines which path a packet takes next to reach its destination address before its
construction, so HLS can be used to determine how much data to allocate a stream.
That amount is HMM fair and sent out in multiple STREAM frames. These allocations are
strategy-proof and cannot be manipulated, unlike those made by HTB and CBQ [19].

Effectively implemented as an advanced WRR, HLS prevents starvation since a rate
guarantee greater than zero will be addressed in a scheduling cycle, no matter how
small. Although this excludes a strict-priority approach, it still is an effective means of
prioritization: the hierarchy can be set up in such a way that more important classes
have the right to more bandwidth. Fairness complements prioritization rather than
excluding it by ascertaining traffic flows of equal priority get equitable service, while low-
priority flows are not completely service-deprived due to higher-priority flows consuming
the available resources entirely [18].

Figure 4.1 gives a high-level overview of the plan outlined in this section. In our design,
a QUIC endpoint specifies a hierarchy of traffic classes that reflect the application’s
requirements. When creating the hierarchy, the application uniquely assigns each stream
to a leaf in the hierarchy. Quiche implements an unreliable datagram extension to
QUIC [24] that has been formally standardized as a RFC by the IETF QUIC Working
Group, but we constrain ourselves to streams. These are depicted as the green, yellow,
and green bars entering the QUIC connection from the application. Quiche’s connection
API is modified to allow the hierarchy to be set from the application layer by passing it
as an argument in the call. The hierarchy is stored at the connection level, so a server
managing many connections can work with a different hierarchy for each of them. A
sensible default can be configured if no hierarchy is specified. We automatically use a
flat hierarchy whose streams range from 0–50 with equal guarantees to avoid modifying
hundreds of quiche tests with the setter.

The hierarchy is not shared across QUIC deployments, easing interoperability. Opened
bidirectional streams can be scheduled differently depending on the connections’ vantage
point. A quiche-based server may be using a different hierarchy than its quiche peer,
and beyond that, the deployment could be talking to XQUIC or Picoquic instances that
do not implement this scheduler.
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Multipath Fair Stream Scheduler
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QUIC Application
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Figure 4.1: High-level architecture of the Multipath Fair Stream Scheduler [5]

With the information stored in the hierarchy, the SA-ECF component decides which
stream to schedule and on which path next. In singlepath scenarios, the entire compo-
nent is irrelevant since there is only one path by definition and a random permutation of
the stream ordering is valid for HLS as long as they have pending data to send. When
the SA-ECF component is skipped, we retain the ordering given by quiche’s stream
scheduler for backward compatibility.

The HLS component calculates the stream’s fair quota in bytes for that scheduling
cycle, whose duration is unspecified as it depends on the guarantees. Designating that
component as a link sharer rather than a bandwidth sharing algorithm is a misnomer,
but we keep it to ease understanding and reinforce the source of the principle behind
it. The same applies to our modified SA-ECF, albeit to a lesser extent. With the
mechanisms for the path choice, stream selection, and byte allocation determined, the
implementation of the Multipath Stream Scheduler can begin.

24



Chapter 5

Implementation

To guarantee streams are allocated a fair portion of the bandwidth, we solve the more
straightforward singlepath case before moving on to the multipath context. As outlined
in our solution approach, implementing the HLS and SA-ECF components separately
is possible because the path is trivially given in a singlepath transmission, and HLS’s
stream ordering is arbitrary. As a result, the code in Sections 5.1 and 5.2 does not rely
on SA-ECF’s output.

5.1 The Hierarchical Max-Min Fairness Module

The HMM module was implemented as an experimental sandbox to implement the
algorithms of the HLS paper. It helped to understand the material and was used to
generate the values of the hierarchical figures in this thesis. This initial coding phase
established the concrete data structures to be used in the scheduler’s implementation.

A hierarchy, for example, is instantiated as a Rust struct storing the ID of the root node,
the capacity, which ID to use next, and the set N . IDs are assigned incrementally from
zero. N is a hash table using the class ID as a key mapping to another struct of HMM
classes. Other than the ID, these contain fields for the allocation, resource request, fair
share, weight, guarantee, a vector containing the IDs of its children, and optionally the
parent: for the root, the parent is None. The hierarchy from Figure 2.7 can be specified
as per the instructions in Listing 1.
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1 // Create a new hierarchy, passing the capacity as an argument.
2 let mut tree = HMMHierarchy::new(1000.0);
3

4 // Insert the nodes, passing the request, weight, and parent ID.
5 let root_id = tree.insert(0.0, 1, None);
6

7 let x = tree.insert(0.0, 5, Some(root_id));
8 tree.insert(150.0, 3, Some(x)); // x1
9 tree.insert(250.0, 4, Some(x)); // x2

10

11 tree.insert(600.0, 3, Some(root_id)); // y
12

13 let z = tree.insert(0.0, 2, Some(root_id));
14 tree.insert(800.0, 1, Some(z)); // z1

Listing 1: Specification of a hierarchy

We implement the HMM algorithm using the pseudocode presented in the original HLS
papers [19] [17]. It heavily relies on the operations from Table 2.1. We validate the
implementation with 15 tests that assert whether properties such as Rule 2.6 and 2.7
hold. Another is that even though only nodes in L make requests, the resulting allo-
cation follows Formula 2.5. By calling hierarchical_max_min_fair(&mut tree), the
HMM-fair result is returned and displayed in Listing 2 with a debug impl. Figure 2.7
provides a graphical representation.

1 0: C: 1000.0, r: 1800.0, a: 1000.0, w: 1, g: 1000.0, f: 120.0
2 |- 1: r: 400.0, a: 400.0, w: 5, g: 500.0, f: inf
3 | |- 2: r: 150.0, a: 150.0, w: 3, g: 214.29
4 | |- 3: r: 250.0, a: 250.0, w: 4, g: 285.71
5 |
6 |- 4: r: 600.0, a: 360.0, w: 3, g: 300
7 |- 5: r: 800.0, a: 240.0, w: 2, g: 200.0, f: 240.0
8 |- 6: r: 800.0, a: 240.0, w: 1, g: 200

Listing 2: Sample output of the HMM algorithm

Taken literally in a scheduling context, Listing 2 could be problematic due to the pres-
ence of floating point numbers in the guarantees for the classes 2 and 3, i.e., X1 and
X2. Packets, not fractions of a byte, can be scheduled with the HLS scheduler. This
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5.2 Porting the Hierarchical Link Sharing Scheduler

inherent numerical limitation affects how fair a practical scheduler can be in contrast
to the principle of HMM fairness implemented by this module.

In an arbitrary period, the weighted difference between how many bytes two classes
transmit should be as close to zero as possible. Let Di(t1, t2) be the number of bytes a
class i transmits in the interval [t1, t2]. The left side of the Inequality 5.1 then provides
the deviation from an ideal HMM scheduler [19].

∣∣∣∣∣Di(t1, t2)
wi

− Dj(t1, t2)
wj

∣∣∣∣∣ ≤ α (5.1)

The parameter α on the right side is an upper bound for how badly the HLS scheduler
can perform given a hierarchy and maximum packet size Lmax. The HLS paper [19]
provides an equation to compute it, with the proof being provided in [17]. Our HMM
module outputs Listing 3 in the console for the hierarchy in 3.2 with a maximum packet
size of 1500 B, matching the expected result according to the papers. It also indicates
one pair of siblings with this largest deviation, corresponding to A1 and A2 in this case.

1 alpha(HLS) is 103.5 for nodes i=4, j=5 and leaf max data of 1500

Listing 3: Console output displaying the fairness bound α of a hierarchy

With the solution approach and the theoretical framework for fairness in place, we can
being implementing our scheduler.

5.2 Porting the Hierarchical Link Sharing Scheduler

To apply HLS in MPQUIC, we alter the algorithm used in its QDisc implementation [20]
to encompass QUIC’s stream multiplexing capabilities. The QDisc differs from the
optimal HMM allocation, sacrificing, for example, floating points operations in the Linux
kernel for performance and not implementing the surplus rounds. We implement them
as described in the HLS paper, practically validating the theorized approach regarding
the distribution of excess capacity.

5.2.1 Start of a Scheduling Round
Our scheduler takes hold once quiche has included the necessary control frames in a
packet and is ready to decide how to use the remaining packet space for a single STREAM
frame. A scheduling round consists of a main and one or more surplus rounds. The
HLS scheduler instance visits streams in the order specified by a queue of pending leaf
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classes. The head of the queue indicates the stream whose payload will be included next
since we give leaf classes an attribute for the stream ID. This round-robin progresses
to the next stream by dequeuing the element at the front once the stream has either
fulfilled its request, or there is no balance left to send.

When there are no pending leaves to visit, the scheduler is configured to start a new
round either again or when it is initialized. To that end, we get the set Lac of active
backlogged classes, i.e., the streams that quiche deems flushable due to having available
data to send. The scheduler iterates over this set of pending leaves in main or surplus
rounds. The ancestors of an active leaf class are also deemed active, forming the set of
active internal nodes Iac (which excludes the root node). The fair shares f of nodes in
Iac ∪ {root} are reset, as they are recomputed every round.

The HMM allocation of a node i is given as a balance Bi. Additionally, active internal
nodes and the root keep track of a residual Ri that collects unused balance during a
round. At the start of a round, these residual transmission permits become proper
balance with the update given by Formula 5.2 [17].

Broot += Rroot, Rroot = 0 (5.2)

5.2.2 Selection of the Round-Robin’s Quantum
When the scheduler is initialized, balances and residuals are set to 0. Only the root is
assigned a balance Broot of Q∗ bytes. This quantum is the maximum number of bytes
the scheduler can transmit in one of the round types [17]. A large quantum causes
rounds to take too long, making the scheduler react slowly to inactive streams becoming
backlogged. On the other hand, too short of a quantum sends plenty of overhead for a
few payload bytes.

This problem is different to the one faced by the HLS QDisc, where the risk is “looping
indefinitely [. . . ] without any transmission” [19], since the balance passed down from
the root could be smaller than the size of the packet wanting to be transmitted. To
avoid this issue, the authors select Q∗ such that at least one packet is transmitted per
main round. That entails dynamically adjusting Q∗ at the round’s start depending on
which leaves became or stopped being active. The quantum is accordingly reduced or
increased by a maximum packet size Lmax set to 1500 B.

We have a finer granularity thanks to using streams, but an analog to Lmax is still
required to derive Q∗ and the fairness bound. Instead of dynamically adjusting Q∗ with
a maximum packet size, streams add or subtract their minimum guarantees.
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Q∗ =
∑

i∈L∪I
gi +

∑
i∈Lac

gi (5.3)

The first sum is constant in Formula 5.3 as the hierarchy is static once set by the
application. It ensures the root gets as much balance as needed to satisfy any leaf or
internal class. The second sum is dynamic as it checks which streams have outstanding
data to send. When a stream i becomes active at the start of a round, we add gi to the
root’s residual. If it became idle in the previous round, we subtract gi.

The second term is at most equal to groot. Per Section 5.1, the root’s guarantee equals
the capacity C in the HMM context, but our scheduler’s quantum is dynamic and may
be larger than that. Instead of completely disregarding the capacity parameter, we use
it to limit the maximum amount of data a stream can emit in a round, regardless of how
much balance it has left. The root’s guarantee is hence used as the maximum stream
length Lmax. When calculating fairness bounds, our HMM module produces a warning
if not.

In the HLS paper, the Invariant 5.4 is provided. The property formally validates our
implementation, as our scheduler intentionally panics if the quantum is not the sum of
the available and unused balances.

∑
i∈N

Bi +
∑

i∈I∪{root}
Ri ≡ Q∗ (5.4)

5.2.3 Balance Allocation
With the round initialized, a class at the head of the pending leaves queue is being
visited by our scheduler. A visit continues over multiple iterations until the HMM
balance allocation is emitted or the stream’s request is fulfilled. In that process, it
emits an unspecified number of packets that carry an unspecified amount of STREAM
data. The first of such visits within a round is called a tick. When a leaf ticks, the
scheduler computes the fair quota of the parent, with which the total quota for the leaf
in terms of balance is obtained. The update is given by Formula 5.5.

Bi += gifp(i), Bp(i) −= gifp(i) (5.5)

The parent p(i) is in Iac ∪ {root}. Their fair quota, given by Formula 5.6, is only
calculated once per round.
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Round
Round-robin over active streams

Main Round
Distributes balance to streams

Surplus Round
Redistributes excess balance

Visit
Consumes balance to emit a packet

Tick
Computes a stream’s fair quota and allocates it as balance

Figure 5.1: Scheduling round terminology

fi =
⌊
Bi

gac
i

⌋
, gac

i =
∑

k∈child(i)∩(Lac∪Iac)
gk (5.6)

Their balance is updated with Formula 5.7. Note that the recursive process starts from
the leaf classes, which request balance based on their parent’s fair quota. The request
escalates up the hierarchy until the root is reached or some internal node has already
computed the fair quota. Balance is then distributed from the top down, completing
the tick.

Bi += (Ri + gifp(i)), Bp(i) −= gifp(i), Ri = 0 (5.7)

5.2.4 Sending a Packet
Figure 5.1 gives an overview of the terminology used to describe the states our scheduler
can be in. During a visit, the scheduler checks a stream’s available balance and how
much data it requests. L is the space quiche determined to be left in the packet for
STREAM data. With ei, we keep track of how many bytes the stream has emitted to
determine its remaining maximum request size. It is reset at the start of a round.

avisit
i = min{Bi, ri, L, groot − ei} (5.8)
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Quiche then writes avisit
i bytes into the stream payload, and we increase ei by that

amount. The leaf class consumes this balance and returns it to the root.

Bi −= avisit
i , Broot += avisit

i (5.9)

5.2.5 Returning Unused Balance
Should a leaf satisfy its request during a visit, it becomes idle and returns the remaining
balance to its parent. Only the root cannot return the balance upstream. The idle class
is removed from the set of active classes; its unused balance is added to the residual of
its parent.

Rp(i) += Bi, Bi = 0 (5.10)

An internal class becomes idle when all its children are. Formula 5.10 is recursively
applied until a class needing the balance or the root is encountered. After the update,
the class has no balance left, and the round-robin is advanced by popping the queue’s
front off.

5.2.6 Start of a Surplus Round
A new main round starts if the previously distributed quotas have entirely been used for
transmissions. The only circumstance under which this does not happen is if a stream
became idle in the last iteration. In that case, the condition Bi +Ri ≥ gac

i is met for at
least one internal class, and a surplus round begins.

The only difference between a surplus and a main round is that the root’s fair quota
froot is set to zero [19] instead of None, which prevents it from distributing new quotas.
The same approach is used should the root’s balance ever be negative after the changes
from Subsection 5.2.2 regarding the root’s residual and subsequently Formula 5.2. As
a result, only excess capacity is distributed to newly backlogged or remaining streams.
Once the surplus round terminates, more follow until the condition stops holding.

5.3 Porting the Stream-Aware ECF Scheduler

Although we do not know how much each stream emits per visit, we know that it is
allocated at least its guarantee per round. We port the SA-ECF path selection procedure
described in Subsubsection 3.1.1 by estimating the completion time of the streams in
terms of scheduling rounds rather than individual sending opportunities.
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Algorithm 1 provides the ported SA-ECF algorithm that relies on the ancillary method
stated in Function 2. The implementation differs from the original [10] in that HLS
guarantees are used instead of HTTP/2 weights. We schedule a specific stream by
swapping the leaf at index i with the first element of the pending leaves array, changing
the round-robin order used by the Fair Stream Scheduler. In the paper introducing the
ECF algorithm for MPTCP, the researchers presented their results with β = 0.25, but
find that other values “yield similar results” [11]. We use β = 1 to avoid floating-point
operations. A higher hysteresis constant makes it more likely that a waiting stream will
not switch back to the slower path.

The fastest and the fastest available paths are chosen with the LowRTT strategy. Al-
ready present in quiche, it aligns with our requirement of straightforward integration
in existing QUIC implementations. If the congestion window of the fastest path is
open, meaning that the path is available, it is selected for transmission without further
considering the stream’s ordering.

We recall that if the fastest path is blocked, the LowRTT strategy moves onto the
second fastest available path. In contrast, SA-ECF may wait for it to reopen. The
pressing question is which stream to send on the fallback path, if any. Each stream
decides whether they accept being sent on the slower path or want to wait for the faster
path to become available again [10]. With the value k, they estimate the total number
of bytes the connection transmits until their request is fulfilled, which may occur over
multiple scheduling rounds. Together with the path’s congestion window, the total wait
and transmission time n for k bytes in terms of the RTT is determined [11].

If waiting for the fastest path and performing the entire transmission over multiple
bursts takes longer than sending everything at once on the fallback path, the stream does
not wait and is immediately scheduled. Otherwise, a stream is set to wait if the algorithm
validates that transferring on the second path does not complete earlier than on the first,
which will need at least 2 RTTs: once for it to reopen due to acknowledgments arriving
and once for the actual transmission [11].

Since the congestion windows and RTT values vary, the scheduler compensates for this
variability using the standard deviations σ of the RTT as a margin [11]. Quiche’s
connection API provides access to a path map tracking these per-path statistics, which
we use to instantiate the pseudocode. We changed quiche’s logging mechanism to state
which path ID was used when sending a packet.
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Algorithm 1 Ported Stream-Aware Earliest Completion First Algorithm [10]
1: Input: paths, array of leaves Lac to visit
2: Output: the path and stream to use for the next packet
3: Find the path pf with the lowest RTT
4: Find the path ps with the lowest RTT that is available
5: if pf available then
6: return pf ,Lac . Pending leaves untouched
7: else
8: β = 1 . 0.25 in ECF
9: δ = max{σf , σs}

10: for leaf, i in Lac do
11: k = bytesUntilCompletion(ri, gi)
12: n = 1 + k

cwndf
. Wait and transmission time

13: if n · RTTf < (1 + leaf.waiting · β) · (RTTs + δ) then
14: if k

cwnds
· RTTs ≥ 2 · RTTf + δ then

15: leaf.waiting = 1
16: continue
17: else
18: return ps,Lac.swap(0, i)
19: end if
20: else
21: leaf.waiting = 0
22: return ps,Lac.swap(0, i)
23: end if
24: end for
25: return no transmission
26: end if

Method 2 approximates k. If a stream’s request is smaller than its per-round guarantee,
it will become idle in the current scheduling round. In that case, it sends its complete
request in bytes, assuming it remains at the head of the pending leaves queue. If fulfilling
the request requires multiple rounds, we calculate how many bytes other streams are
guaranteed in the meantime. We purposely sum over L to consider all guarantees, even
those that are not active, as the guarantees of inactive streams are redistributed.
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Algorithm 2 Ported bytesUntilCompletion method [10]
1: function bytesUntilCompletion(ri, gi)
2: if gi ≥ ri then
3: return ri . Stream i completes in the current round
4: end if
5: left = ri

gi
. Remaining rounds

6: gap = ∑
j∈L,i 6=j gj . Guarantees of all other streams

7: return (left - 1) · gap + ri

8: end function

Listing 3 removes the complexity introduced by β, and fewer opportunities are given
to select the slower path. Although MPTCP returns data acknowledgements on the
receival path, any can be used in MPQUIC [4] [21]. SA-ECF does not account for this
difference. We assume the peer will return acknowledgements on the fastest path in an
attempt to better approximate a path’s re-opening time.

Algorithm 3 Adapted Stream-Aware Earliest Completion First Algorithm [10]
1: Input: paths, array of leaves Lac to visit
2: Output: the path and stream to use for the next packet
3: Find the path pf with the lowest RTT
4: Find the path ps with the lowest RTT that is available
5: if pf available then
6: return pf ,Lac

7: end if
8: ∆f = (RTTf + σf )/2 . One-way delay with symmetric paths
9: ∆s = (RTTs + σs)/2

10: ∆ack = min{∆f ,∆s} . One-way MP-ACK delay
11: for leaf, i in Lac do
12: k = bytesUntilCompletion(ri, gi)
13: n = 1 + k

cwndf
. Number of bursts

14: m = k
cwnds

15: if n · (∆f + ∆ack) < m · (∆s + ∆ack) then
16: continue . Wait for faster path
17: end if
18: return ps,Lac.swap(0, i)
19: end for
20: return no transmission
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Evaluation

In this chapter, we outline our experimental setup to assess the performance of the Mul-
tipath Fair Stream Scheduler. We conduct the experiments on the Baltikum testbed of
the Chair of Network Architectures at Technical University of Munich (TUM) because
it enables network experiments to be specified and reproducibly run [25]. Reproducibil-
ity is crucial because HLS’s scheduling decisions rely on classes having backlogged data
at the start of a round. However, generating traffic at a rate that “ensures each active
leaf class is permanently backlogged” [17] is highly dependent on the hardware and
environment used. For example, the scheduler’s initial development was locally done
on a personal computer and laptop, where the client and servers communicated over
the loopback interface. It rapidly became apparent, however, that this approach was
misguided, as it led to differing testbed results. We, therefore, need to establish a con-
trolled environment regarding the hardware, traffic patterns, network topologies, and
hierarchies used in our experiments.

The testbed consists of several machines connected in a particular pre-existing topology.
We were initially interested in reserving a pair where one node can act as a client and
the other as a server. We wanted topologies linked with at least two cables to simulate
network routes over paths that are physically, not logically, distinct.

Given these constraints, the Riga-Vilnius nodes were used in early tests due to their
low demand arising from hardware limitations. These tests, however, ran into a few
problems. It became apparent that having a QUIC client and server run on separate
machines led to incorrect timestamp measurements as their clocks were not synchro-
nized. For example, with microsecond precision, some delays were reported as negative,
which led us to use a design in which a client on Riga connects to a server on the same
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machine. The host, aware of this and intending to use the quickest route, stopped in-
volving the intermediary node in the transmission. We separated the server and client
with network namespaces to ensure they cannot communicate directly internally. With
IP namespaces, the kernel is artificially forced to send packets over the wire. Once pack-
ets reach Vilnius, it acts as a network bridge on Open Systems Interconnection (OSI)
layer 2 by simply forwarding the packet back to Riga.

While this fixed the timestamp issue, having both applications run on the somewhat
outdated hardware led to low throughput. Recognizing this performance bottleneck,
we upgraded to the Klaipeda-Narva pair. The technical details in Table 6.1 provide an
overview of the hardware used throughout this chapter. Sections 6.1 and 6.2 delve into
the single- and multipath topologies in more detail from the IP layer perspective.

Klaipeda Narva
CPU Intel Xeon E3-1230 @ 3.20 GHz Intel Xeon E3-1230 v2 @ 3.30 GHz
Cores 4

Memory 16 GB
Link 10GBase-CX4

Interface Intel 82599ES 10-Gigabit SFI/SFP+

Table 6.1: Hardware specifications for the Klaipeda and Narva testbed nodes

The experiments performed in this chapter rely on the hierarchy specified in Figure 6.1.
This instantiation was chosen for its parsimony in illustrating the critical properties of
the scheduler, as outlined in the experiments of the original HLS paper. By having
class C be a leaf while A and B are internal classes, the hierarchy enables us to validate
whether HMM fairness is maintained once C stops. Furthermore, although A and B

are equally weighted, their children’s guarantees differ significantly. As we will see,
that enables us to observe that our scheduler provides class isolation, unlike HTB and
CBQ [19].

6.1 Singlepath Experiments

As illustrated in Figure 6.1, IP nodes participate within the 192.168.99.0/24 subnet in
our singlepath network. The host is assigned the address 192.168.99.1 on port 4433,
while the client binds to 192.168.99.2 on any available UDP port, such as 25565
(indicated with a zero). We leave the path as-is, i.e., we do not artificially limit the
bandwidth or specify a specific loss rate, and the unchanged RTT is approximately
0.18 ms. Given that a 10 Gbit/s link is available and that capacity will not be exceeded,
we can perform experiments in two scenarios. The former has the Central Processing
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Figure 6.1: Hierarchy used across our experiments

Klaipeda

Server: 192.168.99.1:4433

Narva

Client: 192.168.99.2:0

Figure 6.2: Singlepath testbed topology

Unit (CPU) as the limiting factor for the achievable bandwidth; the latter emits at a
lower rate than the CPU cores allow. To that end, one of the installed dependencies
in Section 6.3 is a performance monitoring tool that logs the resource usage as our
experiments run.

6.1.1 Bulk HTTP/3 Transmission
In this experiment, we run quiche’s HTTP/3 client and server from the MPQUIC fork.
The traffic pattern consists of concurrent bulk transmissions of five 12.5 MB files hosted
by the server. Their names match the class hierarchy they’re transmitted on, e.g., class
A1 delivers A1.txt, whose contents are randomly generated. The client opens bidirec-
tional streams to request the files simultaneously, which the server uses for its response.
To ensure prioritization is only handled by the Fair Stream Scheduler, we explicitly set
the extensible HTTP priorities to the same value across all streams. Specifically, they
are given the highest urgency of 0, and the incremental flag is false. In the outlined
scenario, the relevant Key Performance Indicators (KPIs) are the per-stream through-
put over time, fairness, and the end-to-end completion time from the instant the client
made a request to the moment it was fully received.

The transmission of 500 Mbit worth of data occurs at a rate of approximately 66.75 Mbit/s.
If treated as a whole, each stream obtained a bandwidth of 13.35 Mbit/s in that 7.5-
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second timespan. Figure 6.3 shows that achieved throughput per class varies signif-
icantly throughout the transmission. The plots use bins of 200 ms, following those
presented in the HLS paper [19]. A finer granularity of 5 ms is used to analyze the
scheduler’s behavior in specific areas of interest. Figure 6.4 zooms into the first 0.2 sec-
onds of the transmission to highlight the initialization phase, where the server processes
requests as they arrive. Unlike the previous graph, it stacks each class’ throughput, with
their sum corresponding to the CPU-bound capacity. Figure 6.5 the same visualization
technique over the entire transmission.

Class A1 is the first to arrive and, while alone, uses all available bandwidth despite being
the lowest-weighted class. Once its sibling A2 is backlogged, the scheduler correctly
throttles A1 to a fourth of A2’s bandwidth. We see similar behavior in class B, but
when B2 becomes active, it only consumes the resources its sibling used excessively.
This illustrates that the children of A and B are isolated from each other. C affects
its siblings once it starts transmission, seen in its nephews adjusting to their minimum
guarantees.

Zooming back to Figure 6.3, with all classes backlogged, the minimum guarantees are
sustained until C completes its transmission. In the meantime, global weights are
satisfied: Class B2, for instance, receives twice as much bandwidth as B1 but half as
much as class C. When it becomes idle around the 4-second mark, C’s unused capacity
is re-distributed to the remaining active classes in the hierarchy. Their throughput
increases fairly: the previous ratios are kept, e.g., A2 is still allocated four times as
many resources as A1. It is only when A2’s request is fulfilled that A1 uses the excess
capacity, which would have previously been unfair. Although the node is weighted with
600, it is the sole active node of a 3000-weighted parent, and the child can exceed its
guarantee by consuming the entire balance of the parent. Likewise, class B1 matches
this weight of 3000 once B2 is idle. In the last second of the transmission, class A1

finishes, briefly letting B1 receive all available balance until it completes, too.

We use our HMM module to assess the scheduler’s fairness formally. It reveals that
the hierarchy of Figure 6.1 has an α of 102 B. As long as the weighted transmission
difference of two active sibling pairs stays under that upper bound, we can claim the
transmission to have been HMM-fair. Using Formula 5.1, we plot the unfairness over
time of this experiment’s transmission in Figure 6.6 using intervals of 50 ms. We chose
A1 and A2 because this sibling pair has the alpha with the largest allowed deviation;
other pairs have alphas, too, but the hierarchy’s alpha is their maximum. For example,
classes A and C can only deviate up to 27.5 B and claim to be fair. As the alpha metric is
intended for packet schedulers, it provides plenty of leeway in our byte-granular stream
scheduler. Except for the intervals during which A2 either did not arrive or is idle, the
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Figure 6.3: Singlepath fair stream scheduling with quiche’s HTTP/3 applications
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Figure 6.4: Effect of HTTP/3 GET requests on the server’s stacked throughput

transmission is almost perfectly fair, even when class C completes and re-distributes its
capacity. Thanks to class isolation, A2 consuming A1’s excess balance does not impact
the fairness of class A regarding B or C.

6.1.2 Changing Network Conditions
The virtual setup used in the SA-ECF paper uses Netem to limit traffic over a WLAN
node to 50 Mbit/s with an RTT of 10 ms [10]. In this experiment, we constrain the
run from Subsection 6.1.1 on a real testbed to these path characteristics approximately
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Figure 6.5: Stacked throughput of an HMM-fair transmission
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Figure 6.7: Effect of Netem on a HTTP/3 transmission

5 seconds into the HTTP/3 transmission. The constraints are achieved by limiting
Klaipeda’s outgoing interfaces to 5 ms and 50 Mbit/s, such that bidirectional traffic is
equally affected on the way to and from its peer.

Figure 6.7 shows the transmissions’ throughput as a stackplot with bins of 100 ms.
Overall, the additional bandwidth that classes A1-B2 obtain once C terminates is lost
with the imposed constraint: their throughput is squished to a rate resembling what they
obtained while all streams are backlogged. Furthermore, classes A1 and B1 consume
their siblings’ bandwidth when terminating.

Admittedly, however, the transmission should be smoother. After imposing the Netem
bandwidth bottleneck, class B1 spikes twice. In the first time, it comes close to sur-
passing the fairness bound α, which it does the second time. Class A1 has two similar
instances: when B2 finishes, it briefly seems to receive more balance, which should not
occur as their parent classes are different. At that point, A1 and B1 should split the
available bandwidth equally, but A1 eats into B1’s bandwidth instead.

The problem may lie with the scheduler’s quantum staying the same despite the new
bandwidth constraint. Although the HLS scheduler is intended to be used alongside
traffic shapers, its quantum size arising from absolute weights that match an equal
amount of bytes may be responsible for these problems. Using a quantum based on the
congestion window size and RTT warrants further investigation. In comparison, tests
with Netem specifying large RTT values only, such as 100 ms, caused the startup phase
of the scheduler to be slow but with significantly fewer issues regarding HMM fairness.
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6.1.3 Protocol-Agnostic Transmission
In this experiment, we use a self-written traffic generator, stepping away from the pre-
vious reliance on the HTTP/3 client and server provided by the MPQUIC implementa-
tion. We aim to demonstrate that the desirable HMM properties of our scheduler are
consistently present, regardless of the application-layer protocol used.

The five leaf classes in this experiment’s traffic pattern continuously request 1200 B of
stream data. The payload comprises 75 equal 16 B timestamps of when the application
gave quiche the data to handle. When received by the client, the total end-to-end
latency is logged, i.e., the sum of all delays, such as in-flight or buffering times.

Our setup includes send- and receive buffers that can each accommodate a single request
per stream. New data is only generated if a stream backlogs less than this buffer size,
ensuring they are permanently backlogged without overburdening the CPU. We employ
the sar and pidstat tools to meticulously monitor system-wide CPU usage, as well as
the usage by client and server applications. During a 30-second run, we observe that
they are assigned separate CPU cores, with the server utilizing a maximum of 40% of
its core and the client 61%.

As expected and shown in Table 6.2, the average throughput is significantly smaller
than in the previous experiment. Nonetheless, the hierarchy’s absolute weights ensure
that the allocated bandwidth closely resembles the desired theoretical result. Figure 6.8
displays an empirical Cumulative Distribution Function (CDF) plot of the end-to-end
latency, which confirms that the weights also provide a means of delay prioritization.
Higher weights correspond to lower latencies, with a strict separation between classes.
Unfortunately, this difference is not proportional, as, e.g., class C has double the weight
of B2 but not half the delay.

Delay (ms)
Class Throughput (Mbit/s) Share (%) Weight Median σ

root 4.54 100.00 10000 - -
A 1.36 29.99 3000 - -
A1 0.27 6.00 600 208.52 12.77
A2 1.09 23.99 2400 40.77 14.28
B 1.36 29.99 3000 - -
B1 0.45 10.00 1000 108.25 17.08
B2 0.91 19.99 2000 75.15 14.09
C 1.82 40.02 4000 31.58 8.70

Table 6.2: Summary of the singlepath protocol-agnostic transmission
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Figure 6.8: CDF plot of the end-to-end latency streaming with a single path

6.1.4 Comparison with HTTP’s Extensible Prioritization Scheme
When outlining the Extensible Prioritization Scheme for HTTP [14] used by quiche’s
default scheduler in Section 2.2, an illustrative accompanying example was provided,
which we now execute on the testbed. Table 6.3 re-states the used priorities for the five
100 Mbit bulk transmissions.

The plot in Figure 6.9 reveals a few interesting insights regarding how quiche’s imple-
mentation in practice deviates from the expected result illustrated in Figure 2.3. By
setting, e.g., class C’s urgency to 0, the intended outcome was to have a single schedul-
ing cycle that fully transmits C before the server begins transmitting the other streams.
Instead, the requests were split into two partial ones, which individually underwent a
scheduling cycle. By looking at the source code, we see that the application layer han-
dles this process that is likely intended to avoid starvation, loading massive files into
memory, and overwhelming quiche.

Interesting, too, is seeing how B’s incremental classes evenly split the bandwidth as they
were at the same level of urgency. Our scheduler, in contrast, provides significantly
better control regarding how the bandwidth allocation occurs. We cannot have B1

receiving half of B2’s bandwidth, for instance, as in the hierarchy shown in Figure 6.1.

Lastly, although the HLS paper claims their performance overhead to be “compara-
ble to that of other classful packet schedulers,” [17] that is not the case for this first
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implementation of the HLS-in-QUIC scheduler. Quiche’s server fulfills the requests at
approximately 120 Mbit/s, while ours is closer to 66 when unconstrained. The focus of
the implementation, however, was not on performance but on fairness — there certainly
is room for optimizations in the scheduler’s code.

Class Urgency Incremental
A1 1 false
A2 2 false
B1 3 true
B2 3 true
C 0 true

Table 6.3: Experiment using the Extensible Prioritization Scheme for HTTP
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Figure 6.9: Bulk transfer using HTTP/3 extensible priorities

6.2 Multipath Experiments

The command-line interface of quiche’s MPQUIC client and server applications only
supports assigning a single listening address to the server; the multiple paths come from
the same client using two or more source addresses. We followed this same model in
Table 6.4 where n clients map to a server, but nothing prevents quiche from supporting
n:m paths. As shown in Figure 6.10, we maintain our bridge setup, but in contrast
to the singlepath setup, the client splits its dedicated physical link into two separate
Virtual Local Area Networks (VLANs). Using Netem, we assign them distinct path
characteristics per Table 6.5. The heterogeneous and homogeneous settings come from
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Klaipeda

Server: 192.168.99.1:4433

Narva

Client: 192.168.{99, 100}.2:0

Figure 6.10: Multipath testbed topology

the work by Rabitsch, Hurtig, and Brunstrom [10]. The static IP routes are configured
on Klaipeda.

Path Source Destination
192.168.99.1:4433 192.168.99.2:0
192.168.99.1:4433 192.168.100.2:0

Table 6.4: Paths from the server to the client in the multipath topology

Scenario Path Bandwidth RTT

Heterogeneous 50 Mbit/s 10 ms
10 Mbit/s 50 ms

Homogeneous 50 Mbit/s 10 ms
50 Mbit/s 10 ms

Table 6.5: Path characteristics in the multipath topology

6.2.1 Bulk HTTP/3 Transmission
In this experiment, we re-assess Section 6.1.1 with the multipath topology. The achieved
rate refers to the stream’s egress throughput from the server while active. The time
indicates the duration between when the client sent the GET request and when it was
fulfilled. The connection is established over the first path.

Under heterogeneity, the LowRTT and SA-ECF schedulers performed similarly. A sig-
nificant amount of overhead was observed for the 12.5 MB files: each stream carried
about 20 MB of data, compared to 13 MB in the singlepath case or with the SA-ECF-
based scheduler.

Despite often opting for the slower path, the three highest-weighted classes, A2, B2,
and C, completed faster under SA-ECF than LowRTT. However, the total transmission
was slower. In contrast, the adapted SA-ECF aggressively waited for the faster path to
reopen, almost degenerating into a single-path transmission. Nonetheless, this strategy
achieved significantly higher throughput and completion times.
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In the homogeneous scenario, the SA-ECF distributed the transmission more equally
over both paths, at the expense of their completion time compared to LowRTT in all
classes except C. The aggressiveness of the adapted SA-ECF scheduler worked against
itself. Despite both paths being similar, it insisted on waiting for a marginally better
one, unintentionally sacrificing its throughput. This highlights the delicate balance the
SA-ECF strategy attempts to strike and justifies using a hysteresis constant.

In heterogeneous and homogeneous scenarios, the schedulers could observe little stream-
awareness. No stream, for instance, fully committed to a specific path while others opted
for another. Although that is understandable since the scheduler was written to schedule
stream data at each sending opportunity and not full payloads (e.g., "stream 4 on path
1), emerging complex behavior was anticipated but not seen.

Scheduler Class Weight Rate (Mbit/s) (%) (%) Time (ms)

LowRTT

A1 600 3.02 43.95 56.06 52992
A2 2400 4.05 45.15 54.85 36935
B1 1000 2.93 43.66 56.34 53415
B2 2000 3.55 41.70 58.30 43235
C 4000 5.77 43.30 56.70 26995

SA-ECF

A1 600 3.07 40.50 59.50 53382
A2 2400 4.33 44.60 55.40 35658
B1 1000 3.09 40.18 59.82 53969
B2 2000 3.71 44.81 55.19 41764
C 4000 6.08 44.28 55.72 25680

Adapted
SA-ECF

A1 600 9.05 99.55 0.45 11215
A2 2400 12.87 98.15 1.85 8027
B1 1000 9.11 99.27 0.73 11276
B2 2000 11.37 98.55 1.45 9189
C 4000 17.65 98.77 1.23 5977

Table 6.6: Scheduler comparison in HTTP/3 bulk transfers with heterogeneous paths

It is pertinent to note the limitations of the current implementation revealed during
the experiments of this section. Unlike in the singlepath scenario, the Multipath Fair
Stream Scheduler may erratically encounter violations of the HLS invariant. Moreover,
quiche’s multipath test expects the number of recovery bytes sent per path to be more
than half of the useful data, which is not the case with the adapted SA-ECF. It still uses
both paths, but the number of recovery bytes sent on the second path is significantly
smaller. In Chapter 7, we outline approaches to address these remaining problems.
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Scheduler Class Weight Rate (Mbit/s) (%) (%) Time (ms)

LowRTT

A1 600 13.71 62.50 37.50 7757
A2 2400 18.84 62.29 37.71 5528
B1 1000 13.77 62.85 37.15 7841
B2 2000 16.65 61.64 38.36 6451
C 4000 25.87 61.48 38.52 4273

SA-ECF

A1 600 13.67 52.81 47.19 8188
A2 2400 18.42 51.50 48.50 5662
B1 1000 13.85 53.61 46.39 8227
B2 2000 16.08 54.14 45.86 6479
C 4000 25.40 51.18 48.82 4202

Adapted
SA-ECF

A1 600 11.30 89.55 10.45 11809
A2 2400 13.78 93.78 6.22 7679
B1 1000 10.82 89.52 10.48 11876
B2 2000 12.23 94.26 5.74 9207
C 4000 18.80 93.84 6.16 5641

Table 6.7: Scheduler comparison in HTTP/3 bulk transfers with homogeneous paths

6.2.2 HTTP/3 Web Traffic
In this experiment, five files totaling 5 MB are served over five HTTP/3 streams. As
displayed in Table 6.8, the file sizes differ and conceptually match everyday web page
traffic.

Type Class File Filesize Weight
Webpage root - 5 MB 10000

Auxiliary A1 style.css 40 kB 600
A2 script.js 100 kB 2400

Blobs B1 image.png 1 MB 1000
B2 video.mp4 3.8 MB 2000

Content C index.html 60 kB 4000

Table 6.8: HTTP/3 web traffic pattern experiment

On the heterogeneous topology, we ran the experiment 100 times each for the three
schedulers, logging when each stream was completed from the client’s vantage point.
Figure 6.11 shows the CDF of the runs; those that encountered violations of the HLS
invariants were removed. In contrast to the bulk transmission, smaller file sizes enabled
the SA-ECF algorithm to estimate stream completion times better, as it modestly im-
proved on LowRTT. However, compared to the SA-ECF variant that more aggressively
chooses to wait, it still performed significantly worse. Tinkering with the adapted
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Figure 6.11: Comparison of the SA-ECF and LowRTT schedulers

SA-ECF code revealed that the willingness to wait, and not the consideration of one-
way flight delays of the multipath acknowledgments, was responsible for the completion
time improvement.

6.3 Reproducibility of the Results

Listing 4 illustrates how to reproduce the raw results of this chapter. The scripts and
the scheduler’s code are pushed to the GitLab instance of the Leibniz-Rechenzentrum,
with the experiment data archived on their storage service. The heart of the HLS
implementation is located in its own file1; the SA-ECF methods2 are contained within
quiche’s get_send_path_id() method. Should referenced footnotes not be publicly
acessible, access to them can be granted upon request.

1 /quiche/-/blob/hls-scheduler/quiche/src/hls_scheduler.rs

2 /quiche/-/blob/hls-scheduler/quiche/src/lib.rs#L8071
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The setup-node.sh1 script resets and installs a fresh Debian Bookworm image on the
argument-provided node. Rust version 1.80.0 is not pre-installed, so the script curls the
required toolchain. The script then clones several repositories and installs the required
dependencies. Our MPQUIC fork2 implements the Multipath Fair Stream Scheduler.
It inits a submodule3 that contains configuration scripts and client/server applications
that use quiche. The HMM module is also present there. A further repository4 con-
tains Python procedures to generate plots from the transmission’s logs. Besides the
node name on which to run the installation, the script takes in a specific branch as an
argument, too. For example, to run the fair stream scheduler with LowRTT as a path
scheduler, lowrtt can be passed instead of hls-scheduler.

The run-hls-bridge.sh5 script configures a host and bridge node according to the
desired topology, given that they differ in the single- and multipath experiments. Once
configured, the experiment is started with the client and server on the same host ma-
chine. To execute quiche’s tests and those of the HMM module, cargo test can be run
in /root/quiche.

The raw results are set to land in /tmp/HLS. Besides logs, several plots and textual
summaries are automatically generated, providing an initial impression of the transmis-
sion’s results. Depending on the experiment and the specified hierarchy, the fairness
plot script must be manually modified to account for the changed weights, stream IDs,
and the fairness bound α. If the Netem configuration defaults from our examples are
not desired, they must be configured per Listing 5. Necessary assistance is available
for clarifications, as some more complex plots, such as combined CDFs, are produced
separately with the raw data of multiple experiments.

1 /quiche/-/blob/hls-scheduler/setup-node.sh

2 /quiche/-/tree/hls-scheduler

3 /hls/-/tree/hls-scheduler

4 /quiche_vis

5 /hls/-/blob/hls-scheduler/run-hls-bridge.sh
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1 # Allocate nodes involved in the experiment
2 pos allocations allocate klaipeda narva
3

4 # Reset nodes, install dependencies, and clone the repositories
5 bash setup-node.sh klaipeda <hls-scheduler|lowrtt|multipath|proposal>
6 bash setup-node.sh narva <hls-scheduler|lowrtt|multipath|proposal>
7

8 # Choose one of the available experiments.
9 # Singlepath:

10 # - HTTP/3 bulk transmission (5 streams @ 100 Mbit)
11 bash run-hls-bridge.sh /root/quiche/singlepath-http3.sh
12

13 # - HTTP/3 bulk transmission with 50 Mbps and 10ms RTT limit:
14 bash run-hls-bridge.sh /root/quiche/http3-netem.sh
15

16 # - Protocol-agnostic streaming
17 bash run-hls-bridge.sh /root/quiche/hls/traffic-gen.sh
18

19 # - HTTP/3 Extensible Prioritization Scheme (on branch ’multipath’)
20 bash run-hls-bridge.sh /root/quiche/http3-quiche.sh
21

22 # Multipath:
23 # - HTTP/3 bulk transmission
24 bash run-hls-bridge.sh /root/quiche/http3-bulk.sh multipath
25

26 # - HTTP/3 GET of a web page (5 streams, 5 MB total)
27 bash run-hls-bridge.sh /root/quiche/http3-web.sh multipath

Listing 4: Configuration of the topology and execution of the experiments
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1 # Configuring Netem on Klaipeda
2 ip netns exec quic_client tc qdisc del dev enp2s0f0.1 root
3 ip netns exec quic_client tc qdisc del dev enp2s0f0.2 root
4

5 # Path 1: 50 Mbps, 10ms RTT
6 ip netns exec quic_client tc qdisc add dev enp2s0f0.1 root \
7 netem rate 50mbit delay 5ms
8

9 # Path 2: 10 Mbps, 50ms RTT
10 ip netns exec quic_client tc qdisc add dev enp2s0f0.2 root \
11 netem rate 10mbit delay 25ms
12

13 # Configuring Netem on Narva
14 tc qdisc del dev enp3s0.1 root
15 tc qdisc del dev enp3s0.2 root
16

17 tc qdisc add dev enp3s0.1 root netem rate 50mbit delay 5ms # Path 1
18 tc qdisc add dev enp3s0.2 root netem rate 10mbit delay 25ms # Path 2

Listing 5: Sample Netem configuration for the multipath topology
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Conclusion

This thesis demonstrates the feasibility of porting the state-of-the-art scheduling strat-
egy the Hierarchical Link Sharing QDisc uses to the transport layer and combining it
with stream-aware multipath schedulers. Our implementation in a multipath extension
of the QUIC library quiche enables applications to specify a weighted hierarchy at the
connection level used to classfully divide traffic. No further coupling to an applica-
tion protocol or a traffic pattern is present. Classes obtain a byte-granular max-min
fair quota of the available throughput, enabling minimum rate guarantees and isolation
between classes. By being strategy-proof, the algorithm ensures that classes cannot
misrepresent their requests to unfairly obtain higher allocations. The approach offers
fine-grained bandwidth control compared to priority-based stream scheduler that quiche
ships with.

The component is compatible with the Stream-Aware Earliest Completion First sched-
uler that decides which stream to include in the next packet and determines the most
efficient path for its delivery. The selection is based on how long the stream completion
takes if scheduled on a particular path, considering the stream’s weight compared to
backlogged others. Due to the decoupled architecture of the components, other stream-
aware schedulers can easily be integrated if desired. We showed this by comparing the
scheduler’s performance against quiche’s default and one that attempts to consider the
differences in MPTCP and MPQUIC data acknowledgments.

The SA-ECF scheduler performed better than the Lowest-RTT-First scheduler in our
experiments for web-like HTTP/3 traffic patterns using heterogeneous paths. In bulk
file transfers, higher-weighted streams arrived earlier, but the last stream was delayed.
However, in both conditions, the slow path was still often chosen. An SA-ECF variant



that insists on the faster path choice more strongly significantly reduced stream comple-
tion times in heterogeneous environments, but its performance degraded in homogeneous
scenarios. These results show that more research into novel MPQUIC scheduling strate-
gies is required that do not necessarily build atop MPTCP approaches. Table 7.1 gives
an overview of the requirements fulfilled by the scheduler, as elicited in Table 3.1.

Requirement Status
Multipath scheduling X
Transparent to the application X
Stream-aware scheduling X
Minimum guarantees X
Strategy-proof fairness X
Hierarchical bandwidth sharing X
React to network condition changes ◦

Table 7.1: Fulfilled requirements of the Multipath Fair Stream Scheduler

Regarding future work, a few remaining issues need to be addressed. When it came to
artificially constraining the bandwidth with Netem, the singlepath bulk transmission
showed a few odd spikes despite never violating the HLS invariant from Formula 5.4. In
multipath scenarios, such violations occurred sporadically. The issue is likely related to
how the round-size quantum Q∗ is selected. We followed HLS’s implementation, which
dynamically adjusts the quantum to ensure at least one packet is sent out per round.
However, that may not be necessary since we deal with single bytes in stream frames
instead of packets. A better approach may be to base the scheduler’s quantum on the
send quantum provided by quiche, which is the maximum packet burst size given by
the congestion control. The scheduler could reset after the main and surplus rounds,
initializing anew with the updated Q∗. That would enable the use of relative weights
— as shown in the HMM module — unlike the current absolute byte guarantees.

Another approach could be to have one HLS scheduler per path, especially if a stream-
aware scheduler is used to place entire streams on a certain path. For that to be realistic,
however, performance optimizations need to happen. This work could occur as part of
student theses that could also investigate the accuracy of the bytesUntilCompletion
method, measuring the number of out-of-order packets and adding support for QUIC
datagrams. Finally, another question is how to utilize paths deemed too slow in hetero-
geneous environments. While they may be too slow for stream transmission, they may
be helpful for proactive loss recovery mechanisms such as forward error correction. Run-
ning such experiments would need more advanced traffic generators and topologies than
we had, using several testbed nodes synchronized with the Precision Time Protocol, for
instance, rather than our bridge setup.
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Appendix

A.1 Acronyms

ADU Application Data Unit
API Application Programming Interface
CBQ Class-Based Queueing
CDF Cumulative Distribution Function
CPU Central Processing Unit
CSS Cascading Style Sheets
ECF Earliest Completion First
HBES Head-of-line Blocking Eliminating Scheduler
HLS Hierarchical Link Sharing
HMM Hierarchical Max-Min
HTB Hierarchical Token Bucket
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HoLB Head-of-Line Blocking
ID identifier
IETF Internet Engineering Task Force
IP Internet Protocol
JS JavaScript
KPI Key Performance Indicator
LCP Largest Contentful Paint
LowRTT Lowest-RTT-First
MPQUIC Multipath QUIC
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MPTCP Multipath TCP
OFO out-of-order
OSI Open Systems Interconnection
PSM Priority-Based Stream Manager
QDisc Queueing Discipline
RFC Request for Comments
RR Round-Robin
RTT round-trip-time
SA-ECF Stream-Aware Earliest Completion First
SAPS Stream-Aware Arrival-Time-Based Path Selector
SRPT Shortest Remaining Processing Time
TCP Transmission Control Protocol
TUM Technical University of Munich
UDP User Datagram Protocol
VLAN Virtual Local Area Network
WLAN Wireless Local Area Network
WRR Weighted Round-Robin

IETF’s QUIC is not short for “Quick UDP Internet Connections.” [1]
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