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Abstract— With the increasing complexity of real-world sys-
tems and varying environmental uncertainties, it is difficult
to build an accurate dynamic model, which poses challenges
especially for safety-critical control. In this paper, a learning-
based control policy is proposed to ensure the safety of systems
with unknown disturbances through control barrier functions
(CBFs). First, the disturbance is predicted by Gaussian process
(GP) regression, whose prediction performance is guaranteed
by a deterministic error bound. Then, a novel control strat-
egy using GP-based parameterized high-order control barrier
functions (GP-P-HOCBFs) is proposed via a shrunk original
safe set based on the prediction error bound. In comparison to
existing methods that involve adding strict robust safety terms
to the HOCBF condition, the proposed method offers more
flexibility to deal with the conservatism and the feasibility of
solving quadratic problems within the CBF framework. Finally,
the effectiveness of the proposed method is demonstrated by
simulations on Franka Emika manipulator.

Index Terms— Gaussian process, high order control barrier
function, safety-critical control, disturbance

I. INTRODUCTION

Safety is an essential requirement for real-world sys-
tems operating in complex environments, such as collision
avoidance in multi-robot environments and secure inter-
action between human operators and robots [1]. Various
approaches have been developed to ensure the safety of
dynamic systems, including artificial potential field methods
[2] and model predictive control (MPC) [3]. Moreover, when
the formal definition of safety is proposed via the forward
invariance of state sets for dynamical systems [4], control
barrier functions (CBFs) [5] become a popular tool for syn-
thesizing safe controllers for dynamical systems. Due to its
computational efficiency, CBF theory has gained widespread
adoption in safety control applications [6]. For more general
safe constraints, i.e., with arbitrary relative degrees, high-
order CBFs (HOCBF) are proposed [7] ensuring safety
during the entire operation with available precise models
of the dynamical systems. However, the availability of the
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system models is practically hard, especially with high model
complexity and environmental disturbance.

For uncertain system models, various CBF-based methods
have been proposed to guarantee safety. A common tech-
nique for systems with external disturbance to achieve real-
time safety control is robust CBF (rCBF) [8], [9]. In this
approach, the disturbance is bounded to an ε-ball in some
norm form with a known boundary. A compensation term
is then added to the CBF condition based on the bound of
uncertainty to counteract the effects of uncertainty. However,
obtaining the disturbance bound can be challenging. There-
fore, different identification techniques, such as disturbance
observer and extended state observer, have been employed to
mitigate the conservatism of robust CBF by estimating the
uncertainty [10], [11]. Moreover, data-driven methods are
another technique for predicting unknown dynamics, where
Gaussian processes (GP) are widely employed in safety-
critical scenarios due to the modeling flexibility and the rig-
orous prediction performance quantification [12]. The com-
bination of GP and rCBF is widely studied [13], [14], where
the prediction error is fully compensated during the design
of rCBF-based quadratic programming (QP). While the GP-
rCBF ensures the safety of unknown systems, the induced
large compensation brings more conservatism and challenges
to the feasibility of solving the derived QP problem.

In contrast to rCBF, input-to-state safety CBF (ISSf-CBF)
[15] partially compensates the prediction errors for better
feasibility. To deal with the state-dependent conservatism
brought by ISSf-CBF, a tunable ISSf-CBF is proposed in
[16] to achieve the balance between safety and robustness
based on the distance to the safe boundary. Furthermore,
the idea of ISSf-CBF is extended to ISSf-HOCBF [17] to
deal with more general systems without the knowledge of
disturbances or prediction errors. However, due to the lack
of full compensation, ISSf-HOCBF results in a potential
violation of the safety conditions, whose violation level
depends on the effects of uncertainties. A promising way to
compensate for the violation under ISSf-CBF is to design a
new safe set characterized by parameterized barrier functions
(PBF) [18], such that the violation in the new set still ensures
the safety. While the PBF framework includes the rCBF and
ISSf-CBF, the consideration of the conservatism reduction
and the extension to more general safety constraints with
high relative degrees have not been addressed yet.

Inspired by PBF, HOCBF and tunable ISSf-CBF, this
paper proposes a flexible framework, namely GP-based
parameterized HOCBF (GP-P-HOCBF), to ensure the safe
control of unknown systems under general safety constraints.



The unknown dynamics is estimated by GP regression,
where the prediction is employed in the QP with HOCBF
to generate the safe control input. Due to the existence of
prediction error, a new set of barrier functions is designed
based on the theoretical GP prediction error bound, forming
a smaller safe set than the original. Moreover, for more
flexibility in feasibility improvement and conservatism
reduction, an ISSf-CBF-like structure is applied on the
newly designed barrier functions with a tunable function,
such that the original safety constraint is guaranteed. It is
shown that the choice of the larger tunable function enhances
the feasibility of the QP problem but induces a larger shrink
from the original safe set. Moreover, for the same feasibility
requirement, the proposed method provides flexibility to
adjust the admissible safe set through distributing the shrink
over different orders of CBFs. Finally, the effectiveness
of the proposed control strategy is demonstrated through
simulations on a Franka Emika manipulator.

II. PRELIMINARIES
In this section, some basic concepts of the control barrier

function (CBF), and high-order CBF are recalled.

A. Control barrier function
Consider an affine control system

ẋ = f(x) + g(x)u+ d(x), (1)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rs are the system
states and control input, respectively. The drift function f(·) :
X → Rn and the input gain function g(·) : X → Rn×s
are locally Lipschitz continuous functions. The continuous
function d(·) = [d1(·), . . . , dn(·)]T : X → Rn denotes the
model uncertainties and environmental disturbances. For any
initial state x(t0), x(t) is the unique solution to system (1).

For safety-critical control, a closed set C is defined by a
continuous differentiable function h(x) : Rn → R as

C = {x ∈ Rn : h(x) ≥ 0}. (2)

It is assumed that C is nonempty and has no isolated point.
If for every x(t0) ∈ C, the state x(t) always stays in the set
C for t ≥ t0, the set C is forward invariant [4] and the safety
of system (1) is guaranteed. The set C is called the safe set.

To ensure the forward invariance of set C, the control bar-
rier function (CBF) is proposed with an important definition
introduced below.

Definition 1 (Relative Degree [19]): For a continuous
differentiable function h(x) : Rn → R with respect to
system (1), the relative degree is the number of times it needs
to be differentiated along with its dynamics until the control
input u explicitly shows in the corresponding derivative.

When the relative degree of function h(x) is m ∈ N>0,
and the inequality h(x) ≥ 0 is used as a safety constraint,
the definition of CBF is given for m=1 as follows.

Definition 2 (Control Barrier Function): Given a set C
as in (2), h(x) is a control barrier function (CBF) for system
(1) if there exists a class K function α(·) such that

sup
u∈U

{∂h(x)

∂x
(f(x)+g(x)u+ d(x))+α(h(x))

}
≥0. (3)

The forward invariance of C is guaranteed as follows.
Lemma 1 ([20]): Given the set C defined by (2) for a

continuous differentiable function h(x), if h(x) is a CBF,
then Lipschitz continuous control input u(t) ∈ Kcbf (x) =

{u ∈ U : ∂h(x)
∂x (f(x) + g(x)u + d(x)) + α(h(x)) ≥ 0}

renders the set C forward invariant.
For general cases with arbitrary relative degree m ∈

N>0, similar definitions and conclusions are shown in the
following subsection.

B. High order control barrier function

When the relative degree of h(x) satisfies m > 1, the
term ∂h(x)

∂x g(x) = 0. In this case, the CBF can not be used
to guarantee the safety of system (1). Therefore, the high
order control barrier function (HOCBF) is proposed, where
some functions ψi(x) : Rn→R are defined as

ψ0(x) = h(x),

ψi(x) = ψ̇i−1(x) + αi(ψi−1(x)), i∈{1, . . . ,m}
(4)

in which αi(·) denotes (m − i)th order differentiable class
K function. The corresponding safe sets are defined as

Ci = {x ∈ X : ψi−1(x) ≥ 0} (5)

for i ∈ {1, . . . ,m}. Given the functions ψi(x) : Rn → R,
i ∈ {0, . . . ,m}, the definition of high order control barrier
function (HOCBF) is shown as below.

Definition 3 (HOCBF [7]): A function h(x) : X → R
is a HOCBF of relative degree m for system (1), if there
exist (m− i)th order differentiable class K functions αi, i ∈
{1, . . . ,m− 1}, and a class K function αm such that

supu∈U{ψ̇m−1(x) + αm(ψm−1(x))} ≥ 0, (6)

for all x ∈ C1 ∩ · · · ∩ Cm.
Similar to Lemma 1, the following result also guarantees

the forward invariance of set C1 ∩ · · · ∩ Cm.
Lemma 2 ([7]): The set C1∩· · ·∩Cm is forward invariant

for system (1) if x(0) ∈ C1∩· · ·∩Cm and h(x) is a HOCBF.
With the above definitions and results, we introduce the

problem setting of this paper in Section III.

III. PROBLEM STATEMENT

The CBF and HOCBF are both based on the precise
dynamic model (1), but the external disturbance is usually
difficult to get. In this section, some assumptions on the dis-
turbance are given, and the goal of this paper is formulated.

For the system (1), the drift function f(x) and the input
gain g(x) are assumed to be known, but the disturbance
d(x) is unknown and satisfies the following assumption.

Assumption 1: Given a kernel function ki(·, ·) : X ×
X → R0,+ for ∀i = 1, . . . , n, the unknown function di(·)
belongs to the reproducing kernel Hilbert space (RKHS) Hki
corresponding to ki with the bounded RKHS norm by a well-
defined known constant Bi ∈ R0,+, i.e., ‖di‖ki ≤ Bi.
The RKHS norm ‖di‖ki represents the smoothness of di,
such that the existence of the upper bounds Bi is regarded as
the requirement of Lipschitz continuity. The value of Bi can



be approximated with data-driven method [21], and therefore
Assumption 1 imposes no practical restrictions.

To obtain di from the function spaceHki , the data set D =
{x(ι),y(ι)}ι=1,...,M with M ∈ N>0 is required satisfying the
following assumption.

Assumption 2: The data pair {x,y} is available with y =
[y1, . . . , yn]T = d(x)+v, where v denotes the measurement
noise satisfying ‖v‖∞ ≤ σv and σv ∈ R0,+.

Assumption 2 requires the accessibility of the system
state x, which is commonly found in most advanced control
laws, including feedback linearization [22] and CBF-based
controllers [23]. Moreover, it also allows noisy measurement
of d(·), which can be calculated by y = ẋ−f(x)−g(x)u
with ẋ approximated by numerical methods from x, e.g.,
finite difference. The upper bound σv can be easily obtained
in practice, inducing the noise variance smaller than σ2

v and
making Assumption 2 not restrictive.

The control objective is to maintain the system state x in
a safe set C as (2) defined by a safety constraint function
h(·) : X→R, which is at least m-th order differentiable with
relative degree m. To ensure safety with model uncertainties,
a learning-based control policy with HOCBF is proposed,
where machine learning methods are applied to predict the
uncertainty d(·). Moreover, a smaller safety set C∗⊆C with
new function h∗(·) : X→ R is determined to address the
effect of prediction error from machine learning.

IV. MAIN RESULT

In this section, a GP regression approach to learn the
disturbance di with a deterministic error bound is provided.
Based on the error bound, a new learning-based HOCBF is
formulated to guarantee the safety of system (1).

A. Gaussian Process

Gaussian process, as a kernel method, induces a Gaussian
distribution over functions defined by the kernel function
ki(·, ·) as di ∼ GP(0, ki) and di ∈ Hki . By combining
the data set D, which satisfies |D| = M , with Assump-
tion 2 and applying the Bayesian principle, the prediction
of d(x) at x ∈ X as a Gaussian distribution with poste-
rior mean µ(x)[µ1(x), . . . , µn(x)]T and variance Σ(x) =
diag(σ2

1(x), . . . , σ2
n(x)) as

µi(x) = kTD,i(x)(KD,i + σ2
vIM )−1yD,i, (7)

σ2
i (x) = ki(x,x)− kTD,i(x)(KD,i + σ2

vIM )−1kD,i(x),

where kD,i(x) = [ki(x,x
(1)), . . . , ki(x,x

(M))]T , KD,i =

[ki(x
(i),x(j))]i,j=1,...,M and yD,i = [y

(1)
i , . . . , y

(M)
i ]T .

While the posterior mean µ(·) serves as the compensation
of d(·), the posterior variance Σ(·) is used to quantify the
prediction performance, which is shown as follows.

Lemma 3 ([24]): Consider an unknown function d(·) sat-
isfying Assumption 1, which is predicted by GP regression
using the training data set D with |D| = M and Assump-
tion 2. Then, the prediction error is uniformly bounded as

‖µ(x)− d(x)‖ ≤ η(x) =
√

tr(BΣ(x)), (8)

for x ∈ X, where B = diag(β1, . . . , βn) with

βi = B2
i − yTD,i(KD,i + σ2

vIM )−1yD,i +M (9)

and Bi from Assumption 1.
Compared to the probabilistic error bound provided in

[25], Lemma 3 shows a deterministic bound, which is more
suitable in safety-critical scenarios despite more conser-
vatism, such that the violation of the bound is zero. Note that
the decreasing trend of η(·) for increasing number of training
data samples M is proven in [24], making the decrease of
the conservatism of control performance possible.

According to Lemma 3 and given data set D, it is direct
to derive the state independent prediction error bound as

‖µ(x)− d(x)‖ ≤ η̄D ≤ η̄, (10)

where η̄D = maxx∈X η(x) is related to the given
data set D. The data set independent bound η̄ =√∑n

i=1(B2
i +M) maxx∈X ki(x,x) only requires the size of

the data set M and the kernels ki(·, ·) for i=1,. . ., n, which
is derived due to the positive definite KD,i+σ2

vIM for any D.
Based on the bounded prediction error η̄, a new safety

constraint, i.e., new barrier function, is constructed, resulting
in a new safe set. Next, a method is introduced for newly de-
signed barrier function, such that the original safe set main-
tains forward invariance and the original safety is preserved.

B. GP-based parameterized HOCBF
To avoid unsafe behavior caused by inaccurate uncertainty

prediction, the HOCBF-based safety guarantees is extended
to GP-based parameterized HOCBF by introducing a param-
eterized function h∗(·) related with prediction error bound
η̄ from h(·). Similarly as the HOCBF in Section II-B, a
sequence of functions ψ∗i (x) : X → R, i ∈ {0, . . . ,m − 1}
are defined based on original functions ψi(x) : X → R,
i ∈ {0, . . . ,m− 1} for HOCBF as

ψ∗i (x)=ψi(x)−γi+1(ψi(x), η̄2), (11)

where γi(ψi−1, η̄
2) : R × R0,+ → R0,+ is a continuous

differentiable function w.r.t ψi−1, In addition, there exist
(m−i)th order differentiable extended class K function α∗i (·)
such that the function ψ∗i (x) satisfies

ψ∗i (x)≤ ψ̇∗i−1(x)+α∗i (ψ
∗
i−1(x)) + ∆i(x), (12)

where ∆i(x)=min{0, γi+1(ψi−1(x), η̄2)−γi+1(ψi(x), η̄2)}.
With the introduced functions ψ∗i , the corresponding new
safe sets C∗i are defined as

C∗i = {x ∈ X : ψ∗i−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (13)

The key idea is to establish ISSf for sets C∗i with i ∈
{1, . . . ,m}, such that the forward invariance of original
safety set Ci is ensured. Given the functions ψ∗i (x) for
i ∈ {0,. . .,m−1}, the state-dependent admission set Ks(x)
of input u is defined as

Ks(x) =
{
u ∈ U :

∂ψ∗m−1

∂x

(
f(x) + g(x)u+ µ(x)

)
(14)

≥ 1

ε(ψm−1(x))

∥∥∥∂ψ∗m−1

∂x

∥∥∥2

−α∗m(ψ∗m−1(x))
}
,



where α∗m : R→ R belongs to class K, ε(·) : R→R0,+ is a
designed continuously differentiable function satisfying

dε(ψm−1(x))

dψm−1
≤ 0, ∀ψm−1(x) ∈ R. (15)

Based on the admissible input set Ks(·), the definition of
GP-based parameterized HOCBF is given as follows.

Definition 4 (GP-P-HOCBF): A continuous
differentiable function h : X → R is a GP-based
parameterized HOCBF (GP-P-HOCBF) of relative degree
m for system (1), if there exist functions γi and α∗i for
i ∈ {1, . . . ,m} such that Ks(x) is non-empty for ∀x ∈ X.
Definition 4 requires to find the suitable functions γi and
α∗i for i ∈ {1, . . . ,m}, which is shown later for a given
ε(·). Moreover, the relationship between ψ∗i (x) and original
functions ψ(x)i for i = 0, . . . ,m− 1 is shown in the
following theorem. For notational simplicity, the following
ψ∗i (x) and ψi(x) is denoted as ψ∗i and ψi respectively.

Theorem 1: Given the system (1) satisfying Assumption 1
and 2 and a GP-P-HOCBF h(·). For a given function ε
satisfying (15) and initial states x(t0) ∈ C1∩. . .∩Cm, choose
α∗i for i ∈ {1, . . . ,m} as linear and satisfying (12) with

γi(ψ, η̄
2)=α∗−1

i ◦α∗−1
i+1 ◦. . .◦α

∗−1
m

(ε(ψ)η̄2

4

)
. (16)

Then, the input u∈Ks(x) for all x∈X renders set C1∩. . .∩
Cm forward invariant, indicating the safety of system (1).

Proof: As the control input u ∈ Ks(x) for all x ∈ X
with disturbance d(x) estimated by GP, ψ̇∗m−1 is written as

ψ̇∗m−1 =
∂ψ∗m−1

∂x
(f(x) + g(x)u+ d(x)) (17)

≥
∂ψ∗m−1

∂x
(f(x)+g(x)u+µ(x))−

∥∥∥∂ψ∗m−1

∂x

∥∥∥‖d(x)−µ(x)‖

≥ 1

ε(ψm−1)

∥∥∥∂ψ∗m−1

∂x

∥∥∥2

− α∗m(ψ∗m−1)−
∥∥∥∂ψ∗m−1

∂x

∥∥∥η̄,
where the second inequality applies the prediction error
bound of GP in Lemma 3. Then, by Young’s inequality with
a positive ε(ψm−1(x)), (17) becomes the following form as

ψ̇∗m−1 ≥
1

ε(ψm−1)

∥∥∥∂ψ∗m−1

∂x

∥∥∥2

− α∗m(ψ∗m−1)

−
( 1

ε(ψm−1)

∥∥∥∂ψ∗m−1

∂x

∥∥∥2

+
ε(ψm−1)η̄2

4

)
(18)

=− α∗m(ψ∗m−1)− ε(ψm−1)η̄2/4.

According to the definition ψ∗m−1 = ψm−1 −
γm(ψm−1,η̄

2) and γm(ψm−1,η̄
2)=α∗−1

m ( ε(ψm−1)η̄2

4 ) in (16),
the derivative of ψ∗m−1 = ψm−1−γm(ψm−1, η̄

2) satisfies(
1− ∂γm

∂ψm−1

)
ψ̇m−1 ≥ −α∗m(ψm−1 − γm(ψm−1, η̄

2))

− ε(ψm−1)η̄2/4=−α∗m(ψm−1) (19)

by using Lemma 1, which results in ψm−1(x(t)) ≥ 0
for ∀t ≥ 0. Furthermore, considering ψ∗m−1 = ψm−1 −
γm(ψm−1, η̄

2), it yields

ψ∗m−1 ≥ −α∗−1
m

(ε(ψm−1)η̄2

4

)
= −γm(ψm−1, η̄

2). (20)

Based on the definition of ψ∗m−1 ≤ ψ̇∗m−2 +α∗m−1(ψ∗m−2) +
∆m−1(x) , it has

ψ̇∗m−2 ≥ −α∗m−1(ψ∗m−2)− γm(ψm−2, η̄
2). (21)

Noting that (21) is similar to (18), and then the process from
(18) to (20) can be used as induction step for ψ∗i (x), i =
0, . . . ,m− 2, where the known information is

ψ̇∗i ≥ −α∗i+1(ψ∗i )− γi+2(ψi, η̄
2). (22)

Similarly, applying the linearity of α∗i (·) and ψ∗i (x) =
ψi(x)− γi+1(ψi(x), η̄2), it has

ψ̇i(x) ≥−
(

1− ∂γi+1(ψi(x))

∂ψi(x)

)−1(
α∗i+1(ψi(x))

+ α∗i+1(γi+1(ψi(x), η̄2))− γi+2(ψi(x), η̄2)
)

≥−
(

1− ∂γi+1(ψi(x))

∂ψi(x)

)−1

α∗i+1(ψi(x)), (23)

which results in ψi(x(t)) ≥ 0 and ψ∗i (x(t)) ≥
−γi+1(ψi(x(t)), η̄2) for ∀t ≥ t0, due to the fact that the
negative form of the right hand side in (23) is an extended
class K function. Combining the base case and induction
step, it is straightforward to see x(t) ∈ C1 ∩ · · · ∩ Cm for
∀t ≥ t0, which concludes the proof.

Note that the difference between ψi and ψ∗i , i.e., γi =
ψi − ψ∗i from (11), determines the shrinkage of the safe set
from Ci to C∗i for i = {0, . . . ,m − 1}. While (11) defines
the shrinkage starting from ψ0(·) = h(·), it is possible for
any i ∈ {0, . . . ,m − 1} to keep the original constraints for
j = 0, . . . , i− 1 and only to shrink the safe set after i, i.e.,

ψ∗j (x) =

{
ψj(x), if j < i

ψj(x)− γj+1(ψj , η̄
2), otherwise

.

Such constructions provide more flexibility to choose which
order of safe constraint reflected by ψi to be shrunk to
ensure identical original safety of the system. Take the
second-order Euler-Lagrange system as an example with x =
[qT , q̇T ]T with safety constraint h(q), where q and q̇ denote
the generalized position and velocity respectively. When it
requires a larger motion area indicating less or no shrinkage
of the position-related constraint h(x), it is possible to add
more limitations on the possible domain of the velocity q̇,
such that the velocity-related ψ1 shrunk to compensate the
effects of disturbance and guarantee the safety.

Remark 1: Noting that the condition on ε(ψm−1) in (15)
is stronger than necessary. In particular, the derivation of
ε(ψm−1) only needs to satisfy that

dε(ψm−1)

dψm−1
≤ 4

η̄2

1

D(ε(ψm−1)η̄2/4)
, (24)

where D(ε(ψm−1)η̄2/4) =
dα−1

m (ε(ψm−1)η̄2/4)
d(ε(ψm−1)η̄2/4) . When η̄ → 0

indicating no prediction error, the right side of (24) ap-
proaches∞, which makes ε(·) unconstrained. Therefore, the
condition (15) is set. Moreover, another advantage of the con-
dition (15) is, that the overcompensation inside the set Ci is
prevented as the ε(ψm−1) has a smaller value when ψm−1�
0, which effectually decreases the control performance.



Remark 2: Noting that when dε
dψm−1

= 0, the function
ε(ψm−1) returns a positive constant. As a result, a large con-
stant imposes strong restrictions between ψm−1 and ψ∗m−1,
while a small constant leads to a large 1

ε(ψm−1)‖
∂ψ∗

m−1

∂x ‖2
such that overcompensation and conservatism performance.
Therefore, selecting dε

dψm−1
(ψm−1(x)) 6= 0 allows for more

flexibility in designing controllers.
Based on Theorem 1, the following quadratic program

(QP) subject to condition (14) is usually utilized to generate
an optimization-based controller as

u∗ = arg minu∈U ‖u− unom‖2 (25)

s.t.
∂ψ∗m−1

∂x

(
f(x)+g(x)u+µ(x)

)
− 1

ε(ψm−1)

∥∥∥∂ψ∗m−1

∂x

∥∥∥2

+ α∗m(ψ∗m−1(x)) ≥ 0,

where unom ∈ U is a nominal controller. The control inputs
u = u∗ obtained by (25) ensure the safety of system (1).

Remark 3: In (25), the term 1
ε(ψm−1)‖

∂ψ∗
m−1

∂x ‖2 can be
decreased by increasing the function ε(ψm−1). Compared to
robust HOCBF via fully compensating disturbance, the pro-
posed method in this paper is more flexible to deal with the
feasibility of QP in (25). However, a large ε(ψm−1) shrinks
the safe set so much that the performance conservatism in-
creases. Therefore, the trade-off between the feasibility of QP
and performance conservatism should be selected according
to the practical application, which is left as future works.

V. SIMULATION

To verify the efficacy of the proposed method, a simu-
lation is conducted on a virtual Franka Emika manipulator
with 7 degrees of freedom (DOF) in the open-source robot
simulation software Coppeliasim, which closely simulates
the physical robot and faithfully replicates real-world scenar-
ios encountered in robot manipulations. To provide greater
specificity, the simulation task is tailored to achieve obstacle
avoidance with the manipulator’s end-effector while tracking
a predetermined trajectory. The obstacle is configured as
a sphere, with a radius of r = 0.02m, situated at the
coordinates [x0, y0, z0] = [0.295, 0.038, 0.458]m. Regarding
to the Franka Emika manipulator, the dynamic model is

M(q)q̈ +C(q, q̇)q̇ +G(q) + d(x) = u, (26)

where q, q̇, q̈ ∈ R7 denote the angle, velocity and accelera-
tion of joints respectively, and x = [qT , q̇T ]T . The matrices
M(q) ∈ R7×7, C(q, q̇) ∈ R7×7 and G(q) ∈ R7 are
inertia matrix, Coriolis-centrifugal matrix and gravitational
term obtained from the software, respectively. The unknown
function d(q, q̇) ∈ R7 is the disturbance, which is in
the form d(x) = 0.2(C(q, q̇)q̇ + G(q). The constraints
associated with this task are succinctly expressed through
the continuously differentiable function h(q) : R7 → R as

h(q) = (x(q)−x0)2+(y(q)−y0)2+(z(q)−z0)2−r2, (27)

where x(q), y(q) and z(q) are the coordinates of end-
effector. Obviously, the relative degree of h(q) is m = 2.

In this simulation, the initial states of robot is q(0) =
[0,−π/4, 0, −3π/4, 0, 3π/4, π/4]T rad, and sampling time
is 0.001s. The nominal controller is a PD controller as
unom = 30(q − qd) + 15(q̇ − q̇d), where qd, q̇d are desired
joint angle and velocity respectively. To compensate for the
disturbance, GP is chosen with squared-exponential kernel
function k(x,x′) = exp(−‖x − x′‖2/2l2) with l = 1.
The number of training data points is M = 400, and the
boundary of measurement noise is σv = 0.02. Given the
kernel function and training data, the computed upper bound
of the estimation error is η̄2 = 12.68. The extended class K
functions are set as α1(h) = 5h and α2(ψ1) = 10ψ1. The
function ε(ψi) = ε0

exp(λψi)
, i = 0, 1 with ε0 = 1, λ ∈ R0,+ is

set to construct the function ψ∗i . Based on these parameter
settings, the simulation result is shown as follows.

Fig. 1 shows the trajectories of end-effector and the curves
of h(q) under different control methods. When the original
HOCBF without considering the prediction error is used
to solve the control input, safety cannot be ensured. In
contrast, the proposed GP-P-HOCBF with different functions
ε(ψi), i = 0, 1 ensures safety and exhibits varying degrees
of performance conservatism. When ε(ψi), i = 0, 1 is a
constant, i.e., λ = 0, the performance conservatism obviously
increase compared to the case where ε(ψi), i = 0, 1 depends
on the ψi, i.e., λ = 100, which aligns with the concept
discussed in Remark 2. This trend is further elucidated in
Fig. 2, which shows the original safety constraint function
h(q) and the shrunk safety constraint function h∗(q) with
different λ. Regarding to GP-rHOCBF in [26], although the
performance conservatism involved in this approach is small,
ensuring the feasibility of the quadratic program (QP) may
be compromised in the presence of input constraints. This
issue is highlighted in Fig. 3, where the control input of
the second joint solved by GP-rHOCBF violates the input
constraint. It sufficiently illustrates the proposed method is
more flexible to deal with the feasibility of the QP problem.

VI. CONCLUSIONS

In this paper, the concept of Gaussian Process-based
parameterized high order control barrier function (GP-P-
HOCBF) is proposed to ensure the safety of systems with
unknown disturbance. The disturbance is estimated by Gaus-
sian process regression, whose prediction error characterized
by the deterministic error bound is compensated by designing
parameterized safe sets from the original safety constraints.
The proposed GP-P-HOCBF ensures the safety of the orig-
inal safety requirements, while providing more flexibility to
deal with the conservatism and feasibility of solving the GP-
P-HOCBF-based QP problem. Finally, the effectiveness of
the proposed method is validated through simulation on the
Franka Emika manipulator.
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