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Abstract

This dissertation investigates the transformative potential of Machine Learning (ML) techniques in op-
timizing the economic efficiency of chemical reactions, with a particular focus on enhancing reaction
yields. Yield, a fundamental chemistry metric, encapsulates a reaction’s efficiency by measuring the
output of the desired product relative to all resource inputs. Reactions that result in low yields could
hurdle a bigger synthesis, drastically lowering the overall yield of the final product. Hence, improving
yield prediction is crucial for advancing synthetic chemistry.

The primary objective of this research is to develop robust quantitative and qualitative models that
can accurately predict yields for a diverse array of well-defined chemical reaction types. This study
aims to bridge the gap between theoretical potential and practical application in synthetic chemistry by
leveraging comprehensive yield data sourced from industry leaders AstraZeneca and Enamine. The
research identifies prevalent reaction types with accessible yield information to ensure a broad and
representative dataset.

A significant milestone in this project is the compilation of this diverse dataset, which forms the foun-
dation for developing sophisticated classification and regression models. These models are designed
to predict reaction yields within a precise range of 0% to 100%, thereby providing valuable insights
into the efficiency of different synthetic pathways. This predictive capability aims to improve current
practices and facilitate the discovery of new, more efficient synthetic routes.

This study explores various representations of chemical reactions to enhance model performance
and accuracy. Among these, the Simplified Molecular Input Line Entry System (SMILES) notation and
reaction fingerprints are employed to capture the intricate details of chemical transformations. These
representations serve as the input features for the ML models, enabling a more nuanced understanding
of the factors influencing reaction yields.

Beyond the development of predictive models, this research also addresses the broader context of
yield prediction in chemistry. It examines the inherent challenges associated with current yield pre-
diction methodologies, such as data quality, reaction conditions variability, and limitations of existing
modeling techniques. By identifying these issues, the study provides solutions and sets the stage for
future research in the field.

This dissertation aims to optimize chemical synthesis processes and facilitate more informed decision-
making in synthetic chemistry by integrating advanced ML techniques with rich, curated datasets. By
improving our ability to predict reaction yields, this research contributes to the broader goal of making
chemical synthesis more efficient, cost-effective, and sustainable.
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Zusammenfassung

Diese Dissertation befasst sich mit dem transformativen Potenzial von Techniken des maschinellen
Lernens (ML) bei der Optimierung der wirtschaftlichen Effizienz chemischer Reaktionen, wobei der
Schwerpunkt insbesondere auf der Verbesserung der Reaktionsausbeute liegt. Die Ausbeute, eine
grundlegende Kennzahl der Chemie, fasst die Effizienz einer Reaktion zusammen, indem sie die erhal-
tene Menge an angestrebtem Produkt im Verhältnis zu allen Ressourceneinsatzen misst. Reaktionen,
die zu geringen Ausbeuten führen, könnten eine größere Synthese behindern und die Gesamtaus-
beute des Endprodukts drastisch senken. Daher ist die Verbesserung der Ausbeutevorhersage für die
Weiterentwicklung der synthetischen Chemie von entscheidender Bedeutung.

Das Hauptziel dieser Forschung ist die Entwicklung robuster quantitativer und qualitativer Modelle,
die die Ausbeute für eine Vielzahl gut definierter chemischer Reaktionstypen genau vorhersagen kön-
nen. Diese Studie zielt darauf ab, die Lücke zwischen theoretischem Potenzial und praktischer An-
wendung in der synthetischen Chemie zu schließen, indem umfassende Ausbeutedaten der Branchen-
führer AstraZeneca und Enamine genutzt werden. Die Forschung identifiziert vorherrschende Reak-
tionstypen mit zugänglichen Ausbeuteinformationen, um einen breiten und repräsentativen Datensatz
sicherzustellen.

Ein wichtiger Meilenstein in diesem Projekt ist die Zusammenstellung dieses vielfältigen Daten-
satzes, der die Grundlage für die Entwicklung ausgefeilter Klassifizierungs- und Regressionsmodelle
bildet. Diese Modelle sind darauf ausgelegt, Reaktionsausbeuten in einem präzisen Bereich von 0%
bis 100% vorherzusagen und so wertvolle Einblicke in die Effizienz verschiedener Synthesewege zu
liefern. Diese Vorhersagefähigkeit zielt darauf ab, aktuelle Praktiken zu verbessern und die Entdeck-
ung neuer, effizienterer Synthesewege zu erleichtern.

Diese Studie untersucht verschiedene Darstellungen chemischer Reaktionen, um die Leistung und
Genauigkeit des Modells zu verbessern. Dazu werden die SMILES-Notation (Simplified Molecular Input
Line Entry System) und Reaktionsfingerabdrücke verwendet, um die komplizierten Details chemischer
Transformationen zu erfassen. Diese Darstellungen dienen als Startwerte für die ML-Modelle und
ermöglichen ein differenzierteres Verständnis der Faktoren, die die Reaktionsausbeuten beeinflussen.

Über die Entwicklung von Vorhersagemodellen hinaus befasst sich diese Forschung auch mit dem
breiteren Kontext der Ausbeutevorhersage in der Chemie. Sie untersucht die inhärenten Heraus-
forderungen, die mit aktuellen Methoden zur Ausbeutevorhersage verbunden sind, wie Datenqual-
ität, Variabilität der Reaktionsbedingungen und Einschränkungen bestehender Modellierungstechniken.
Durch die Identifizierung dieser Probleme bietet die Studie Lösungen und bereitet den Boden für zukün-
ftige Forschung auf diesem Gebiet.

Ziel dieser Dissertation ist es, chemische Syntheseprozesse zu optimieren und fundiertere Entschei-
dungen in der synthetischen Chemie zu ermöglichen, indem fortschrittliche ML-Techniken mit um-
fangreichen, kuratierten Datensätzen integriert werden. Indem diese Forschung unsere Fähigkeit
verbessert, Reaktionsausbeuten vorherzusagen, trägt sie zum umfassenderen Ziel bei, die chemis-
che Synthese effizienter, kostengünstiger und nachhaltiger zu gestalten.
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1 Introduction

Autobots, transform and roll out!

Optimus Prime, Transformers

We live in an incredibly complex world where every process is interconnected and influences others.
Ecosystems function through vast networks of animals, plants, and bacteria that provide food and
energy to each other. Humans are also part of this intricate web, carrying within them the complexity
of internal processes that ensure the coordinated functioning of their bodies. This orchestration is
managed by the biomachinery within each cell, which signals what the body should do and how best to
survive under various circumstances.

Due to the complexity and multi-component nature of this biomachinery, there are many vulnera-
ble points where the system can fail and require intervention. In most cases, our bodies can handle
these disruptions through effective self-healing mechanisms developed by evolution. However, there
are instances where the failure is so severe that the body cannot cope alone, and medicine and phar-
maceuticals become essential.

Humanity has honed the art of healing for thousands of years, evolving from ancient herbal remedies
to modern synthetic drugs that target specific proteins. Numerous medicines exist for thousands of dis-
eases; as of 2019, the FDA approved 19,000 small-molecule drugs[3]. Each developed and approved
medication has a rich backstory involving hundreds, if not thousands of people, 10-12 years of develop-
ment, and an excess of $1 billion of dollars spent on it. The process begins with identifying the cause
of a disease, pinpointing the malfunctioning protein or disrupted metabolic pathway, and searching for
molecules that can address the problem. This involves, for instance, preliminary assays to identify tar-
gets and hits, molecular design, in silico docking, synthesis of promising candidates, further bioactivity
testing, optimization, and, ultimately, trials in animals and humans. These subprocesses belong to the
Design-Make-Test-Analyze (DMTA) cycle, which is the main concept in drug discovery, encompassing
constructing and testing hypotheses in drug discovery.

Each stage of the DMTA cycle is expensive. To make drugs more accessible, efforts are focused on
reducing costs and increasing environmental sustainability at each stage: minimizing animal testing,
reducing synthesis and testing requirements, enhancing modeling based on existing data, automating
synthesis with minimal waste, and replacing costly assays with in silico docking and in general utilize
artificial intelligence to reduce wet-lab experiments[4].

Synthesis involves solving numerous challenges related to predicting reaction properties. Key ques-
tions include: What is the reaction mechanism? What will the product be, and with what selectivity?
Which conditions are best? Which synthetic route should be chosen? What will the reaction yield be,
and is it worth the resources? These questions demand effective solutions.

To achieve cost and sustainability goals, the synthesis methods used in the pharmaceutical industry
must be as efficient and reliable as possible, leveraging the most promising reactions from fundamental
academic research. The viability of a reaction is assessed based on parameters like selectivity and
yields for a wide range of substrates. However, some substrates react unpredictably or yield low outputs
even with "well-behaved" popular[5] reactions with good selectivity and yield, such as Suzuki-Miyaura
coupling, amide coupling, and SnAr. Such substrates should be avoided in multi-step syntheses to
prevent low overall yields. In high-throughput synthesis, avoiding problematic substrates minimizes
waste and improves environmental sustainability.

While traditional approaches have relied heavily on chemists’ expertise, intuition, and accumulated
knowledge, there is an increasing reliance on advanced modeling techniques to predict reaction prop-
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erties. Like the human body, a chemical reaction is a complex system, albeit with fewer degrees of
freedom. Nevertheless, the ability to model its behavior and outcomes, particularly yields, is a signifi-
cant scientific and computational challenge.

Ab initio modeling of chemical reactions can provide deep insights into reaction mechanisms and
outcomes[6]. However, this approach often requires substantial computational power and time, making
it impractical for routine use. Consequently, there is a growing trend towards leveraging accumulated
data to develop predictive machine learning (ML) models[7]. These models can provide valuable pre-
dictions more quickly and efficiently, making them highly beneficial for practical applications in chemical
synthesis.

ML in chemical synthesis has advanced in many areas[8], such as retrosynthesis, direct synthesis,
and design of experiments, and has now successfully become part of organic chemists’ synthesis rou-
tines. However, predicting reaction yields remains particularly challenging. The yield of a reaction,
which reflects the efficiency with which reactants are converted into the desired product, usually in
terms of a percentage of the theoretical chemical conversion, is a critical metric. High yields are es-
sential for minimizing waste, reducing costs, and ensuring the overall efficiency of synthetic processes.
Accurate yield predictions can significantly enhance the design of synthetic libraries, reduce the pro-
duction of undesirable byproducts, improve environmental sustainability, and lower the costs associated
with synthesis. Yet, the yield is a number resulting from multidimensional interactions of reactants, re-
action conditions, purification methods, and more. This complexity is both the challenge and the beauty
of predicting this crucial metric.

1.1 Introduction to the Design-Make-Test-Analyze cycle

Figure 1.1 Design-Make-Test-Analyze cycle with key steps in each of the
stages.

The Design-Make-Test-Analyze
(DMTA) cycle is a sys-
tematic and iterative frame-
work essential for drug dis-
covery and development in
the pharmaceutical indus-
try. This iterative method-
ology ensures candidate
compounds’ efficient and
robust progression from ini-
tial concept to clinical eval-
uation. For an aver-
age project, hundreds of
DMTA cycles are neces-
sary to improve the po-
tency of weakly active com-
pounds discovered during
High-Throughput Screening.
The DMTA cycle includes
four critical stages—design,
synthesis (make), biological
evaluation (test), and data

analysis—that collectively enable the optimization and validation of potential therapeutic agents. I il-
lustrate it in Figure 1.1.

The cycle starts with the target identification, a specific biological target implicated in a disease
process, such as a protein, gene, or pathway. This possible druggable receptor or enzyme, a gene, and
this target is the subject of the hypothesis of the DMTA cycle. This target could be involved in various
diseases, from cancer to metabolic disorders.
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Design
The Design stage involves tailoring compound structures to achieve desired target activity and prop-

erty constraints. This involves computational modeling, structure-based drug design, and/or high-
throughput screening (HTS) of chemical libraries to identify potential lead compounds. Historically, this
process relied heavily on human intuition, tacit knowledge, and limited historical data, making it one
of the most challenging aspects of drug discovery[9]. However, the advent of computational tools and
increased data availability have enabled more rational drug design. Today, generative AI tools[10–12]
promise to capture complex multi-objective constraints using reinforcement and supervised learning.

Make The Make stage involves the synthesis and purification of compounds. Traditionally, this step
relied on the chemists’ experience, literature, and information retrieval systems, often leading to a bias
toward synthesizing easier-to-obtain compounds rather than the most promising ones[13]. It has several
challenges; for example, synthesizing compounds can be complex and resource-intensive. Synthesis
planning is also a challenge; rule-based algorithms supported early synthesis planning, but these had
limited scope[14]. The emergence of data-driven AI/ML tools for reaction and retrosynthesis prediction
has significantly advanced this area[15–17].

Test
The Test stage involves assaying compounds to gather data on their effectiveness and safety. Tra-

ditionally, this process was labor-intensive and manual, demanding substantial human effort in sample
preparation and assay HTS. Synthesized compounds are tested in laboratory settings using cell cul-
tures or isolated biological components to evaluate their initial efficacy and toxicity, which helps narrow
down the most promising candidates. These promising candidates are then evaluated in animal models
to assess their safety, efficacy, and pharmacokinetic properties, providing crucial insights into how the
compounds behave in living systems. Automation and robotics have alleviated some challenges, en-
hancing efficiency and accuracy. Additionally, active learning and confidence estimation can prioritize
compounds for testing, further improving model accuracy in specific chemical spaces[18].

Analyze
The Analyze stage focuses on studying the data generated from previous stages to prioritize com-

pounds for subsequent DMTA cycles. Early analysis was limited to rudimentary retrieval systems and
localized Structure-Activity Relationship (SAR) analysis. However, advanced tools enable comprehen-
sive data analysis in federated environments[19, 20].

In this stage, the results from the testing phase are thoroughly examined to understand the com-
pound’s behavior at molecular and biological levels. This includes evaluating its interactions with the
intended target, pharmacokinetic profile, and potential off-target effects. Based on this analysis, deci-
sions are made regarding the compound’s suitability for further development. This might involve select-
ing the most promising lead compound for advancement to preclinical and clinical studies or deciding
to modify or discontinue development based on the findings.

Throughout the DMTA cycle, the data and insights gained from each stage inform subsequent itera-
tions, allowing for refinement and optimization of the drug development process.

1.2 Detour to Machine and Deep Learning concepts introduction

In this section, I will describe recent computer science breakthroughs employed in the current main-
stream of chemoinformatics and help to solve problems of the DMTA cycle.

1.2.1 Transformers architecture

The Transformer architecture, introduced by Vaswani et al.[21] in 2017, is a deep learning model orig-
inally used in natural language processing tasks, such as translation and prediction of the sequences.
Unlike predecessors’ recurrent or convolutional architectures, Transformers process entire sequences
of words simultaneously, enabling parallelization and capturing complex dependencies over long dis-
tances. This self-attention mechanism allows each word to attend to all other words in the sequence,
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determining its relevance in the context. By stacking multiple self-attention layers and feed-forward
neural networks, Transformers can effectively model intricate linguistic patterns, making them highly
effective in various tasks such as machine translation[22], text summarization[23, 24], and sentiment
analysis[25, 26]. Newer variations like decoder-only architectures have become foundational in contem-
porary Large Language Models like ChatGPT and GPT-4[27]. Beyond language processing, analogies
between tokens in human language and entities in other domains, such as amino acids in proteins, like
in AlphaFold[28], or atoms in chemical reactions, have broadened the Transformer’s impact, influencing
various scientific disciplines.

The first employment in chemistry in this architecture was in 2018 when Schwaller et al.[29] intro-
duced a Molecular Transformer based on embeddings of a textual representation of molecules called
SMILES strings, which were used as sequences and used to predict the products of the reactions.

1.2.2 Graph Neural Network architecture

Graph Neural Networks (GNNs) represent a significant advancement in deep learning, tailored to ef-
fectively process and analyze graph-structured data. First proposed in their modern form by Kipf and
Welling in 2016[30], GNNs have revolutionized how we approach tasks involving non-Euclidean data
structures, such as social networks, molecules, and transportation systems. Unlike traditional neu-
ral networks, which struggle with data that lack a regular grid-like structure, GNNs excel by directly
operating on graphs, capturing the relational information and dependencies between nodes.

One of the most influential variants of GNNs is the Message Passing Neural Network (MPNN), in-
troduced by Gilmer et al. in 2017[31]. MPNNs work by iteratively passing and aggregating messages
between nodes, allowing each node to update its state based on its neighbors’ features. This message-
passing mechanism enables the network to learn complex patterns and representations of the graph’s
structure, making it particularly effective for tasks like node classification, graph classification, and link
prediction.

The versatility and effectiveness of GNNs have led to the development of various specialized archi-
tectures and techniques. For example, Graph Convolutional Networks (GCNs)[30] and Graph Attention
Networks (GATs)[32] extend the basic GNN framework by incorporating convolutional operations and
attention mechanisms, respectively. These innovations further enhance the ability of GNNs to model
complex dependencies and improve their performance on a wide range of tasks.

The pioneering work by Duvenaud et al.[33] demonstrated the potential of graph-based neural net-
works in predicting molecular properties, setting the stage for numerous subsequent advancements.
GNNs can leverage their inherent ability to capture the intricate relationships within a molecule by rep-
resenting molecules as graphs, where atoms are nodes and bonds are edges.

1.2.3 Reinforcement Learning and Bayesian Optimization

Reinforcement learning[34] (RL) deals with planning and sequential decision-making problems. In RL,
an agent interacts with an environment to gather data, learn about the environment, and perform actions
to maximize a long-term objective. Each time the agent takes an action, the environment transitions
to a new state, which the agent can observe either fully or partially. The agent also receives a short-
term reward based on the action taken. Reinforcement learning is used for molecular design, with the
most notable work on that being the Olivecrona et al.[35] using the REINFORCE[36] algorithm and
subsequent improvement of the work resulting in REINVENT[10].

Bayesian optimization (BO) is a sequential model-based optimization technique that efficiently ex-
plores and exploits the search space to find the optimal solution. For example, if a chemist is performing
experiments to optimize the temperature and pressure conditions for a chemical reaction to achieve the
highest yield. BO balances exploration (trying out uncertain or less-known conditions, such as a new
temperature range) with exploitation (focusing on conditions that have shown promising results, like a
specific pressure that previously led to high yields). It does this by iteratively updating a probabilistic
surrogate model (a mathematical approximation of how the reaction yield changes with temperature
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and pressure) and using this model to guide the search toward the most promising conditions. Be-
cause of this approach, BO often outperforms expert practitioners who might rely on trial-and-error or
intuition, as well as other advanced global optimization algorithms [37, 38].

BO is applied to the design of experiments (DoE). DoE aims to sample conditions that help model
reaction parameters and understand interactions. Combined with a response surface model, DoE
uses knowledge from previous experiments to guide the selection of future ones. It can be applied
to diverse search spaces, including parameterized reaction domains, and allows for the selection of
multiple parallel experiments, making it ideal for optimizing chemical processes. Bayesian optimization
can use the information on existing experiments to propose a new set of conditions to evaluate, reaching
the most optimal set of conditions with the highest yield in fewer iterations[39].

1.3 Intro to the Computer-Aided Synthesis Planning

Yield prediction is only a small part of the possible ML application within synthesis predictions, and to
be more within the context, we will need to step back and point out the exact location of this problem
within the whole field of applying ML for synthesis prediction.

1.3.1 Retrosynthetic prediction

If we were to look at the general process of development of a drug in the industry, we would see that
inside of the DMTA cycle, the "Make" part of the synthesis is reliant on the concept Computer-Aid Syn-
thetic Planning, a term coined by Corey in 1985[40], which describes algorithmic procedures on the
retrosynthesis process, formalized by him earlier in 1967[41], which approaches the problem of synthe-
sis in reverse: starting with the end compound and proceeding to the accessible starting materials via
feasible bond disconnections in the end compound. The first approach to utilize computer algorithms in
retrosynthesis problems resulted in developing the LHASA program[42] that was designed to automate
the retrosynthetic analysis process, which involves working backward from a target molecule to identify
feasible pathways for its synthesis, as illustrated in Figure 1.2. The program employs a combination
of logical rules and heuristic strategies to propose retrosynthetic disconnections, effectively breaking
down the target molecule into simpler precursor compounds. AI-powered synthesis planning tools aid
chemists in enhancing their synthetic chemistry expertise by suggesting feasible synthetic pathways.
Additionally, these tools enable chemists to make informed decisions, thereby enhancing efficiency and
productivity through minimizing synthesis failures[43, 44].

Figure 1.2 The scheme illustrates the retrosynthetic path
of the molecule towards the purchasable materials.

Retrosynthesis as a problem has two distinct
categories: single-step disconnection prediction
and multi-step disconnection prediction, which
produces a tree of disconnections. Single-step
route-planning strategies are generally catego-
rized into two main types: rule or template-
based methods and template-free methods.
Rule-based methods use manually coded rules
and heuristics derived from reaction databases
and literature to propose synthetic routes. In this

approach, reaction rules are extracted and encoded manually. For instance, Synthia/Chematica[45–47]
is a retrosynthetic software utilizing a library of expert-encoded rules for chemical synthesis planning.
However, a drawback of rule-based methods is their limited scalability with the ever-growing chemical
literature, leading to incomplete coverage in their knowledge base.

Automated rule-based methods have emerged to overcome these limitations, leveraging computa-
tional techniques to extract reaction rules from datasets. These automated methods utilize template
extraction algorithms, relying on atom-mapped reaction examples represented as SMIRKS[48] pat-
terns to extract transformations from reaction datasets. Despite their effectiveness, such approaches
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face challenges, including high computational costs associated with subgraph isomorphism calculations
and a lack of chemical intelligence[45, 49].

An alternative rule-based approach employs data-driven DL techniques. For instance, Segler et
al.[50] pioneered a neural-symbolic approach to autonomously extract retrosynthetic rules from the
Reaxys database without expert intervention. These rules were subsequently used for reaction predic-
tion in conjunction with a modern Monte-Carlo tree search algorithm to identify promising retrosynthetic
steps. This data-driven approach promises to overcome the scalability and knowledge limitations of
traditional rule-based methods.

A distinct approach from traditional rule-based methods involves employing template-free methods
for reaction prediction and retrosynthetic transformations. These methods draw parallels from NLP
and frame forward or retrosynthetic prediction as a neural machine translation task[51]. Molecules,
represented as SMILES[52] strings, are likened to sentences, treating chemical reactions as linguistic
translation challenges.

Liu et al.[53] pioneered the template-free model for retrosynthetic analysis, introducing a Seq2Seq
model leveraging encoder–decoder-based model. This model maps SMILES representations of re-
actants to corresponding product representations bidirectionally, employing bidirectional LSTM cells
with additive attention mechanisms for token-wise alignment. Their findings revealed that this model
performs comparably to rule-based expert systems in retrosynthetic reaction prediction tasks. Other
template-free methodologies, such as graph-based, chemical reaction networks, and similarity-based
approaches, have also shown promising outcomes. With the development of Transformers, this model
became the most popular model in retrosynthesis with the pioneering work of Karpov et al [54].

Several notable retrosynthetic planning tools have implemented these techniques, including AiZyn-
thFinder[17] and the Chemistry42TM[55] platform. ASKSOS[56] and IBM RXN for Chemistry[57] are
open web services for retrosynthesis prediction. Notably, in 2018, Klucznik et al. [46] disclosed the first
successful execution of a multistep synthesis route proposed by Synthia synthesis planning software,
where they designed synthetic pathways for eight diverse and challenging target molecules using the
Synthia software.

Compared to single-step retrosynthesis, multi-step retrosynthesis focuses on developing novel route
search algorithms, often utilizing a fixed single-step model to identify retrosynthetic disconnections. Pi-
oneering efforts in this field employ neural-guided Monte-Carlo Tree Search (MCTS)[58] and template-
based approaches to map synthesis routes. More recent strategies adopt a template-free model by
merging neural-guided MCTS with reaction feasibility heuristics[59] or directly applying synthesizability
heuristics in conjunction with a forward synthesis model[60].

Multi-step retrosynthesis repeatedly utilizes the chemical information embedded in single-step ret-
rosynthesis models. However, current research tends to treat single-step and multi-step tasks as sep-
arate entities, even though multi-step algorithms rely on single-step models, which are generally fixed.
Likewise, single-step models are often developed without considering their application in multi-step
processes. This gap between single-step and multi-step retrosynthesis was investigated in the work of
Hassen and Torren-Perraire[61].

This field is rapidly developing with multiple perspectives already available[7, 8, 44].

1.3.2 Forward prediction

Predicting reaction outcome, a counterpart to retrosynthesis is an equally important task since these
are two sides of the same coin.

Historically, starting from the 1980s, this task was performed with methodologies such as physical
simulation of transition states, rule-based expert systems, and inductive learning methods. Expert
systems, like CAMEO[62, 63], use empirical rules derived from literature to predict reaction outcomes
by analyzing mechanistic reasoning and reaction intermediates.

Ugi et al.[64] developed formal techniques, which incorporated in the Interactive Generation of Or-
ganic Reactions (IGOR) tool, and they were notable for their ability to predict new reaction mechanisms,
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verified experimentally by Herges and colleagues[65, 66]. Gasteiger’s team[67, 68] developed a sys-
tem for predicting reaction courses, from isomer generation to absolute rate constants. Zefirov et al.
developed the SYMBEQ[69] program, which employs a formal-logical approach, further contributing
to the predictive capabilities in organic chemistry. Chen and Baldi’s [70] developed an expert system
that enhanced reaction predictions with over 1500 manually composed reaction transformation rules,
enabling detailed mechanistic predictions, retrosynthetic analysis, and combinatorial library design.

Figure 1.3 The scheme illustrates the prediction of
the products of a reaction of aminoacetaldehyde with
choloroacetyl chloride. It shows two possible outcomes
based on the chloroacetyl chloride functional nature:
Friedel-Crafts reaction in 1 and amide formation in 2.

Recent Deep Learning applications could be
broadly categorized into template-based, graph-
edit-based, and sequence-based approaches.
Kayala et al.[71, 72] constructed an in-house
dataset of elementary reactions and developed
a neural network model to predict reactions by
identifying electron sources and sinks using a
dataset of 11,000 elementary reactions. Wei
et al.[73] treated reaction prediction as a classi-
fication problem, training molecular fingerprints
to predict reaction templates. Segler et al.[74]
scaled this approach, ranking reaction rules from

a large database and using summed reactant fingerprints. Coley et al.[15] addressed the issue of mul-
tiple product matches from templates by ranking these products. The specificity of templates versus
the number of templates extracted is a key trade-off in template-based methods.

Graph-based approaches introduced by Jin et al.[75] and others[76, 77] use graph convolutional
neural networks to predict bond changes without specifying the size around the reaction center. Sub-
sequent advancements included gated graph neural networks[78] and graph transformation[79] policy
networks.

Sequence-based approaches, which represent reactions as text using SMILES notation, have shown
promise[80], with models like the Molecular Transformer[29] achieving high performance. This model
eliminates the need to distinguish between reactants and reagents, allowing training on any reaction
dataset. Recent studies have integrated symbolic rules with GNNs[81] and developed graph sequence
decoders[82], though the Molecular Transformer remains the best-performing approach.

Transfer learning approaches have been explored to extend predictive performance to more chal-
lenging reactions and smaller datasets. Pesciullesi et al.[83], and others demonstrated improvements
in specific reaction types by training models on related tasks. These efforts include studying regio- and
stereoselective reactions[84, 85] and applying advanced models like the Hopfield network[86] for zero
and few-shot learning scenarios.

1.3.3 Conditions and reagents prediction

As we see, retrosynthesis provides valuable insights into the feasibility of constructing a molecule from
available building blocks. However, while the retrosynthetic design offers a strategy for the synthesis,
it lacks the details necessary for practical execution in wet lab experiments. Factors such as reaction
conditions (e.g., temperature and duration), specific operational steps tailored to compound classes
or reactions, and the selection of solvents and reagents fall within the expertise of domain specialists.
Traditionally, chemists rely on their experience or consult literature and reaction databases to determine
appropriate procedures. First, Computer-Aided approaches included ab initio calculations, which were
employed to predict suitable solvents for reaction[87] and expert systems[88].

As the field moves towards automated synthesis and seeks to enhance synthesis throughput, various
research groups have recently developed ML models to automatically suggest experimental conditions.
In 2018, Gao et al.[89] developed a neural network trained on millions of organic reactions sourced
from Reaxys[90]. Their model could predict the reaction catalyst, up to two solvents, two reagents,
and the temperature without depending on specific reaction classes. Walker et al.[91] focused on
solvent prediction for five chosen reaction classes, experimenting with three models tailored to this
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limited chemical space. In Maser et al.[92] work, they approached predicting up to eight labels for
four reaction classes, covering factors such as compound identity (metal, ligand, base, additive, and
solvent), temperature, and pressure ranges. On the other hand, Vaucher et al.[93] framed their task as
predicting the experimental steps a chemist would take in the lab. In addition to forecasting reaction
parameters like temperature and duration, their model could anticipate specific operations such as
filtration, phase separation, extraction, or the gradual addition of compounds based on precursor and
target molecule features. Also, the reagent prediction task could be used to de-noise data and improve
predictions on the direct reaction prediction task, as shown in the work of Andronov et al.[94]

Although this aspect of CASP has seen less work than retrosynthesis and product prediction, recent
works show growing interest in this topic.

1.3.4 Reaction optimization using ML

Each reaction out of the box, especially when encountering new substrates, is often non-optimized
regarding time, temperature, and reagents. A common way to optimize reaction is the grid search
approach, which changes one experimental condition at a time while fixing others[95]. The search
space for such a problem is usually so vast that optimal conditions are rarely found using traditional
grid search. Alternatively, exhaustive exploration of all combinations of reaction conditions through
batch chemistry gives a higher likelihood of identifying the globally optimal condition but is laborious
and costly. A streamlined and effective framework for optimizing chemical reactions is paramount for
academic research and industrial production.

Numerous efforts have been made to utilize automated algorithms to optimize chemical reactions[96].
Jensen at al.[95, 97] applied the simplex method to optimize reactions in microreactors, while Poliakoff
et al.[98] developed the stable noisy optimization by branch and fit (SNOBFIT) algorithm for optimiz-
ing reactions in supercritical carbon dioxide. Jensen’s group[99] also optimized the Suzuki–Miyaura
reaction through automated feedback, focusing on discrete variables. Additionally, several studies have
focused on optimizing chemical reactions in flow reactors[100]. For instance, Lapkin et al.[101] intro-
duced a model-based design of experiments and a self-optimization approach in flow, while Ley et
al.[102] established a Web-based reaction monitoring and optimization system. Furthermore, Bourne
et al.[103] developed automated continuous reactors utilizing high-performance liquid chromatography
and online mass spectrometry for reaction monitoring and optimization. deMello and colleagues[104]
designed a microfluidic reactor for the controlled synthesis of fluorescent nanoparticles, and Cronin’s
group[105] provided a flow-NMR platform for monitoring and optimizing chemical reactions. Also, the
part of reagent prediction includes a wide variety of works that use Bayesian Optimization[106] to im-
prove and make more efficient current reaction frameworks[107–109]. Reinforcement Learning was
used to find optimal conditions for four microdroplet reactions in under 30 min[110].

1.3.5 Molecular design

If we step back from the "Make" part of the DMTA cycle, just before the "Design" stage turns into "Make,"
we would end up in the molecular design, which is not part of CASP, but it is an important area that
should be addressed since to build a retrosynthetic path, a target molecule must first be identified. This
molecule should be designed with input from an experienced medicinal chemist who can provide an
informed design. Expanding the capabilities of medicinal chemists to generate more molecules with
desired properties using reinforcement learning is currently an active area of research.

In this section, I will focus on the most novel methods, which include generative models. As this
section provides only a broad overview of the state-of-the-art in this field, I will only summarize it.

The use of Reinforcement Learning (RL) in drug discovery began with Guimaraes et al.[111] and
Sánchez-Lengeling et al.[112]’s work. This approach uses SMILES, a widely-used string representation
of molecules. In this setup, the RL agent’s states are partially completed SMILES strings, and the action
space consists of selecting the next character to add to the string.
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Sánchez-Lengeling et al.[112] introduced the Objective-Reinforced Generative Adversarial Networks
for Inverse-design Chemistry (ORGANIC) based on the SeqGAN approach of Yu et al.[113]

In 2017, Olivecrona et al.[35] proposed a different RL method for drug discovery using the same
state and action spaces. They used RL to enhance the RNN’s likelihood of constructing molecules with
desirable properties. They argued that a policy-based approach is more suitable than a value-based
approach and used the REINFORCE algorithm for optimal policy learning. The reward functions were
based solely on the desirability of the sequences created. Later, the same group developed REINVENT,
which incorporates a memory unit in the scoring function to propose a more diverse range of molecules,
as detailed in a paper by Blaschke et al. [10]

An alternative to string-based molecular representations is two-dimensional graphs, which offer in-
creased robustness and interpretability of partially constructed graphs as molecular substructures.

You et al.[114] pioneered RL work for graphical molecular construction. They defined the state space
of the RL agent as the set of graphs constructible from scaffold subgraphs and the action space as
the possible extensions to the existing graph, either by connecting existing nodes or adding additional
scaffold subgraphs. This method showed significant improvements in molecular property optimization
and targeting compared to earlier approaches.

1.3.6 State of the Art in Modeling Yield

Adapted with permission from "When Yield Prediction Does Not Yield Prediction: An Overview
of the Current Challenges"[115]. Copyright 2023 American Chemical Society.

Historically, predicting reaction yields has posed significant challenges. The emergence of the Brøn-
sted[116] and Hammett[117] equations in the 1920s and 1940s marked a milestone in physical organic
chemistry, linking reactivity to chemical structures. In the 1980s, chemists began employing basic meth-
ods to predict the properties of small organic molecules, with the first application of Neural Networks for
Structure-Activity Relationships introduced in 1992[118]. Successes in Quantitative Structure-Activity
Relationship (QSAR) techniques using Random Forest and Support Vector Machines characterized the
2000s[119–121].

Classical ML models from the late 1980s to the early 2010s initially imitated chemists’ rules for pre-
dicting physical properties and reaction outcomes[122]. However, limited computational capabilities
hindered their advancement. Yet, by the mid-2010s, advancements in microelectronics spurred the de-
velopment of sophisticated ML techniques. Notable progress was made by Emami et al.[123] in 2015,
utilizing thermodynamics calculations to achieve significant correlations on a small set of compounds.
Subsequently, Raccuglia et al.[124] employed a support vector machine-based decision tree to pre-
dict reaction success. The public release of over a million reactions extracted from patents in 2016 by
Lowe[2] propelled further advancements, culminating in the development of intricate models rooted in
cutting-edge Deep Learning methods[8, 125, 126].

The chemical reaction yield prediction can be divided into two categories, closely tied to the scale of
data used for modeling. I illustrate these categories in a scheme 1.4.

The first category comprises traditional fingerprint-based methods reminiscent of those used in
QSAR modeling for smaller chemical systems. These methods focus on smaller reaction spaces,
tailoring models to optimize specific experiments and aiming for precision within a particular context.
Benchmark datasets typically used here are High-Throughput Experiments (HTEs). Feature analysis is
integral to this approach, as scientists aim to enhance model accuracy and interpretability by identifying
crucial features.

In contrast, the second category involves more recent Deep Learning techniques that leverage lan-
guage models and graph encodings, which are suitable for handling large datasets. These techniques
navigate larger datasets and deploy more complex models capable of handling vast volumes of data.
The primary objective is to develop a comprehensive general reactivity model to predict yields across
various reaction types.
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While this classification provides a useful framework for understanding current research trends, it’s
important to note that there are exceptions. For instance, there are examples of using fingerprint-based
approaches on larger datasets and employing DL on HTE data.

Low-data ML & Active Learning

The optimization of chemical reactions via High-Throughput Experimentation often demands significant
resources. This has led researchers to investigate alternative strategies, especially active learning, to
navigate situations with limited data. These strategies aim to glean maximum insights from such nar-
row datasets by pinpointing and harnessing the most important and informative features. The datasets
derived from a single experimental setup, usually HTE, are referred to by us as "low-data" experiments.
Usually, the experiment settings are as such: the number of data points derived from a single experi-
ment does not exceed ten thousand single reactions.

In a pioneering attempt at yield prediction using machine learning, Ahneman et al.[127] tackled the
problem on the Buchwald-Hartwig HTE dataset by leveraging multiple density functional theory (DFT)
calculated descriptors and a range of ML techniques, including Random Forest and simple Neural
Networks, reaching Root Mean Squared Error (RMSE) 7.8% and R2 value of 0.92 for the best Ran-
dom Forest Model (RF) for 70/30 train/test random split set. For leave-one-additive-out the average
RMSE was 11.3% and R2 0.83. However, their methodology was later scrutinized by Chuang and
Keiser[128], who pointed out potential redundancy and the minimal informational value of the DFT
features, especially considering their computational cost since they reached RMSE of 7.9% and R2

of 0.91 with random features for the same splitting. Despite this criticism, subsequent research by
Żurański et al.[129] indicated that DFT features could indeed offer valuable insights into reaction mech-
anisms and exhibit enhanced generalization across diverse reaction spaces, demonstrating RMSE be-
tween 5-25% for leave-one-additive-out approach with RF. Building on this, Sandfort et al.[130] found
that a combination of features often outperforms simplistic one-hot encodings, reaching R2 score of
0.93, while one-hot showed R2 of 0.89 on 70/30 random split of BH HTE dataset. In another work,
Dong et al.[131] studied the importance of specific features in yield prediction using the SHAP (Shap-
ley Additive exPlanations) library in tandem with XGBoost models, and SHAP usage gives an in-
sight into the most important features, such as electronic descriptors of aryls and ligands. Also, the
XGBoost model showed a good performance on the BH HTE dataset with a 90/10 random split of
RMSE 5.01% and R2 of 0.97, on the leave-one-additive-out the XGBoost model outperformed RF.

Figure 1.4 Two current State-of-the-Art approaches in yield prediction. The top
row illustrates a more classical approach, while the bottom row illustrates the
modern approach.

Johansson et al.[132] demon-
strated that learning just a
fraction of the HTE dataset
can be enough to achieve
high prediction accuracy.
They employed various mod-
els, including simple neural
networks, complex neural
networks, random forests,
and Bayesian matrix factor-
ization models. The study
utilized an uncertainty-based
active learning strategy known
as Margin and reached an
AUROC of 0.9 using only
selected 10% of the BH
HTE dataset. Prior work
on active learning for pre-
dicting outcomes of Suzuki

coupling was conducted by Eyke et al.[133], although Active Learning was not outperforming random
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learning until the Active Learning approach had less than 17% of the Suzuki dataset. The authors
employed this approach to optimize the number of experiments required to learn the essential features
of reactions.

Kexin et al.[134] propose MetaRF, an attention-based random forest model optimized by a meta-
learning framework for few-shot yield prediction, and introduce a dimensionality reduction-based sam-
pling method to improve few-shot learning performance. The methodology shows the performance of
R2 of 0.7738 for leave-one-ligand-out and shows R2 of 0.648 using only selected 2.5% of the BH HTE
dataset.

Haywood et al.[135] compared different SVR kernels with different descriptors, including DFT calcu-
lated and structural for the BH HTE dataset, and found that structural fingerprints perform slightly better
than the DFT ones, with RMSE of 17.4% and R2 of 0.51 for the structural and RMSE of 23.1% and R2

of 0.24 for DFT in leave-one-additive-out setting. The authors also attempted to assess the model ap-
plicability domain, investigating leave-one-aryl halide-out, leave-one-base-out, and others. They claim
that the HTE data needs to be more diverse to allow building a better generalizable model. Using dif-
ferent fingerprints, Bayesian modeling, and the BH HTE dataset as a benchmark, Ranković et al.[136]
optimized the selection of additives that lead to higher-yielding reactions. The authors highlighted that
employing Bayesian optimization modeling should facilitate the reaction optimization process using
HTE. The development of a chemoinformatics workflow for achieving high yields in Buchwald-Hartwig
couplings was explored in a study by Fitzner et al.[137]. The investigation focused on developing a
new descriptor to reduce the number of experiments necessary for capturing critical information using
an active learning approach. To assess the success of the descriptor, they used the Spearman co-
efficient ρ that takes values between -1 and 1, and their custom XGBoost model reached a value of
0.5. This research also studied the obstacles preventing the achievement of good results in modeling
Buchwald-Hartwig C-N coupling reactions.

Reker et al.[138] developed LabMate.ML is a computational framework for leveraging random, unbi-
ased experiments to navigate the selected reactivity space employing adaptive machine learning.

The studies above highlight the active learning strategies employed in yield prediction, the importance
of feature selection and engineering, and the efforts to optimize experimental workflows and effectively
capture information from limited data for various chemical reactions.

Big-data Deep Learning models

In DL, reactions are typically featurized using either SMILES representation as strings of tokens or
molecular graph representation with nodes and edges. "Big data" refers to datasets derived from many
experiments of the same reaction type and more general datasets that combine multiple reaction types
from diverse sources. These datasets typically contain tens of thousands of data points or more.

Although Transformers[21] using molecules SMILES were successfully employed for molecular prop-
erty prediction[139, 140], Yield-BERT, developed by Schwaller et al.[125], was a groundbreaking model
that successfully implemented the Transformer architecture for yield prediction, reaching R2 of 0.951
for random 70/30 BH HTE, and RMSE of 12.07% and R2 of 0.81 for Suzuki dataset on 70/30 random
split. Data augmentation played a pivotal role in enhancing the capabilities of Yield-BERT, especially in
situations with sparse datasets. This enhancement increased the model’s robustness and endowed it
with the capacity to assess the uncertainty inherent in yield predictions. In a related study, Baraka et
al.[141] employed a Multimodal Transformer-based Model for predicting yields in Buchwald-Hartwig and
Suzuki-Miyaura reactions, reaching R2 of 0.959 for BH HTE on 70/30 random split and RMSE of 5.5
and R2 of 0.833 for Suzuki and RMSE of 11.5 on 70/30 random split. Their findings emphasized that
amalgamating diverse modalities into the prediction process can significantly improve results for these
specific chemical reactions. Kojima and Sagava[142] employed the ReactionT5 Transformer model and
reached the current state-of-the-art Buchwald-Hartwig HTE dataset with a 70/30 random split with R2

of 0.927 and RMSE 7.330.
The most widely used frameworks for Deep Learning models that view reactions as graph entities

are GNN[143] and MPNN[31]. As an example of this, Sato et al.[144] merged MPNN with self-attention
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mechanisms for yield predictions, the model resulted in R2 of 0.972 when using Mol2Vec[145] atom em-
bedding for BH HTE dataset in 70/30 random split. Their work highlighted the importance of particular
atoms within the model’s calculations. However, their method encountered challenges in predicting out-
comes for certain chemotypes within the benchmark datasets. In another study, Youngchun et al.[146]
employed MPNN to enable uncertainty-aware learning of reaction yields using the benchmark datasets,
introducing the parameter λ, which is responsible for the relative strength of two objectives (minimize
the conventional mean squared error and maximization of the log-likelihood over the training dataset).
With λ=0.1, the model reached R2 score of 0.974 for a 70/30 random split for the BH HTE dataset.
They have shown that higher predicted variances are often concomitant with higher prediction errors,
which provides a criterion to selectively dismiss certain predictions. In another work, Saebi et al.[147]
tested various techniques and reported the YieldGNN. This model performed well on BH HTE data, R2

of 0.957 for YieldGNN with no chemical features. Nonetheless, its efficacy deteriorated when tested on
a chemically diverse dataset from AstraZeneca’s Electronic Lab Notebooks (AZ ELN), R2 of 0.049.

In the context of yield prediction, the Transformer architecture has demonstrated a potential benefit
over GNN models. This success opens avenues to explore the interpretability of these networks, in
particular, to understand their internal mechanisms of "interpreting" reactions. This was exemplified by
the creators of Yield-BERT, where they compared the model’s learned attention patterns with reaction
mapping[1].

Neves et al.[148] introduced a novel technique that augmented the Transformer model standard
SMILES encoding with reaction equivalents. Their investigation demonstrated the potential advan-
tages of using this approach to improve industrial synthesis operations. Their methodology employed
a binary classification, where reactions yielding 5% or less were labeled as unsuccessful. Uncertainty
estimates were analyzed for both the successful and unsuccessful classes. When validating the model
on the internal ReactLake reaction database using a temporal split, it was shown that 52.8% of negative
reactions can be correctly flagged and thus experimentally avoided. The overall model’s performance
was satisfactory, with a recorded ROC AUC value of 0.76 in experimental validation.

Yarish et al. [149] developed the directed message-passing neural network (RD-MPNN) yield pre-
diction models, which they tested on Enamine’s proprietary reaction data. Their binary classification
model showed a commendable ROC AUC of 0.78. When extended to a ternary classification setting,
the model displayed an accuracy of 0.51 across multiple reaction classes. Interestingly, the RD-MPNN’s
performance was on par with the leading results obtained on the BH HTE benchmark dataset and sur-
passed other models when tested on the Suzuki dataset, with a coefficient of determination (R2 0.93
for BH HTE, RMSE 10.35%, R2 0.86 for the latter). Also, the authors performed the analysis of erro-
neous predictions. They identified key challenges, including issues associated with product isolation by
chromatography and reduced yields due to steric hindrance and competing side reactions.

Jian et al. [126] developed a unique SMILES-based model for yield prediction. Based on a special
tokenization procedure, an LSTM-based architecture, and data from USPTO and proprietary sources,
they could obtain an RSME of around 20%.

1.3.7 Outlook

All of these fields aim to create a singular, all-inclusive system where a chemist can input the properties
of the target molecule, and the machine will suggest molecules corresponding to the desired properties,
along with a comprehensive retrosynthetic pathway. This system will outline the necessary reagents
and conditions for each synthesis step and predict the possible yield of each direct reaction.

These synthetic paths will be ranked according to the chemist’s current priorities. For example, the
system might prioritize pathways with the least carbon footprint, emphasizing sustainability and green
chemistry principles. Alternatively, it could focus on achieving the highest possible yield to maximize ef-
ficiency and reduce waste. Cost considerations can also be integrated, with the system recommending
pathways that use the cheapest starting materials available, thereby optimizing the economic feasi-
bility of the synthesis. Additionally, the system can minimize the number of steps in the synthesis to
streamline the process and reduce potential points of failure.
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This holistic approach speeds up drug discovery and development while helping create more effective
and sustainable pharmaceuticals. By automating routine tasks and offering smart insights, chemists
can concentrate on innovation and critical decisions, ultimately advancing medicine and healthcare.

1.4 Data

Adapted with permission from "When Yield Prediction Does Not Yield Prediction: An Overview
of the Current Challenges"[115]. Copyright 2023 American Chemical Society.

To understand the importance of data in yield prediction, it’s essential to examine the data at every
stage, from the initial experiment to the final dataset used by a chemoinformatician. Regardless of
whether a model is simple or complex, it won’t be effective if applied to noisy, poorly prepared data.

In this section, I will discuss the currently available data on this topic, both public and proprietary,
methods for generating computer-readable data, sources of noise, and practices for addressing this
noise.

Yield prediction requires high-quality, consistent datasets. The best-suited datasets for yield predic-
tion are derived from HTE, ensuring that all experiments are run under consistent conditions. If HTE
data is unavailable, a thorough data cleaning procedure is necessary to ensure the data’s high quality.

1.4.1 Experimental methods to generate reaction data

While large quantities of reaction data are already available, it’s important to highlight some promising
experimental methods that help generate high-quality data in today’s AI-driven world.

One of the key concepts developed in recent years is the automation of organic synthesis[150] and
drug discovery in general[151]. This includes advances in automatic solid and liquid handling, precise
dispensing, automatic compound purification using catch-and-release techniques, and autonomous
control of reaction parameters such as temperature, pressure, homogeneity, and color. Implementing
reaction automation has increased the throughput of compound synthesis and reaction reproducibility
by eliminating errors and mishandling from human interaction. HTE is the most important method
of generating large amounts of data for benchmarking. Benchmark datasets frequently employed
in yield prediction include the Buchwald-Hartwig coupling HTE (Buchwald-Hartwig HTE or BH HTE)
dataset[127], the Suzuki coupling HTE dataset[152].

By combining automated synthesis and purification, researchers could generate 14 classes of or-
ganic compounds using the Suzuki-Miyaura cross-coupling reaction while recording high-quality reac-
tion data[153].

Further, increasing reaction data generation throughput can also be achieved by lowering the scale
of individual experiments. This was exemplified in a study where more than 1500 Buchwald-Hartwig
experiments were performed in less than a day using as little as 0.2 mg of starting material per reac-
tion[154]. However, it is crucial to note that the reaction data generated by this method can only be
used for predicting reaction feasibility and rough yield estimation, as no isolated yield information can
be obtained.

Continuous flow chemistry methods are gaining popularity in the synthesis community. They permit
a wider range of reaction types to be performed, such as photo- and electrochemistry, and the use
of more reactive intermediates due to the possibilities of in situ generation and capture. One method
used to quickly generate a diverse range of reactions is segmented flow, where segments of pure
solvent separate individual reaction samples in a single flow reactor[152]. This technique allowed more
than 5700 Suzuki-Miyaura reactions to be performed and automatically purified over an uninterrupted
4-day process.
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The subsequent work demonstrated that a similar approach could be applied to diazonium cross-
coupling chemistry and parallelized across 16 reaction channels[155], thus increasing the output of
reaction data.

Both batch and continuous flow chemistry methods can be directly coupled with a computer control
system to form a closed-loop, autonomous synthesis unit[156]. It was shown that the computer control
could directly utilize the generated Suzuki-Miyaura reaction data. As a result of the active learning
Design of Experiment (DoE) approach, all the products of interest were obtained in high yield without
any human intervention.

ELNs (Electronic Lab Notebooks) are also important when considering a data choice for the re-
search. They provide a structured and secure way to record data, which could be later employed in ML,
although very few are available in the public domain. A few datasets are derived from this source, with
AstraZeneca 750 ELN on Buchwald-Hartwig reaction[147] as one of them.

1.4.2 Extraction of data from textbooks, patents, articles; and available data

However, with data generation comes the side of accumulating and extracting the already available
corpus of data from articles, patents, and other sources.

The biggest reaction data vendors employed daily by chemists are Elsvier with the associated Reaxys
database[90] and CAS with associated SciFinder tool[157]. The advantage of these proprietary data
vendors is the scale and the fact that the publisher annotates the data. This data is not freely available
for ML research and requires a huge subscription fee for usage. Other currently available reaction
databases include other commercial products like Pistachio[158], which contains a vast amount of
patent data.

Figure 1.5 The mean yield deviation between the inner
data and Reaxys datasets is consistent, but the Pista-
chio dataset exhibits a lower standard deviation (std) in
comparison.

Open Reaction Database (ORD), an open-
access initiative [159], was introduced recently,
aiming to curate and host reaction data in a for-
mat tailored for training machine learning mod-
els. A significant feature of this initiative lies in its
potential as a hub for sharing industry-specific
datasets, which might otherwise stay confined
and not be accessible to the broader scien-
tific community. The most presented dataset
in ORD is the US Patent Office (USPTO) ex-
tracted dataset[2]. USPTO dataset is gathered
by text-mining patents from the United States,
covering publications from 1976 to September
2016, and therefore encapsulates sparse and
diverse chemical reaction data. Also, this ini-
tiative database contains other important com-
munity datasets such as Suzuki HTE[152] and
Buchwald-Hartwig HTE[127]. Recently, the data
from the Pfizer HTE dataset [160], which con-

tains 40K data points on different reactions, including hydrogenations, Buchwald-Hartwig, and Ulmann
reactions, was added to ORD. HTE datasets originate from high-throughput screenings that aim at find-
ing the best reaction conditions and represent a comprehensive exploration of many combinations of
reaction variables.

The HTE and patent datasets display distinct differences in content and quality. While HTE datasets
primarily focus on a specific segment of the chemical reaction space, they provide detailed information
on certain reaction templates tested with various selected precursors, such as reactants, solvents,
bases, catalysts, etc. On the other hand, reactions found in patents encompass a much wider scope in
the chemical landscape, the extent and nuances of which will be further discussed in section 4.
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Regarding data quality, HTE datasets can represent reactions and yield measurements carried out
using the same analytical equipment, ensuring consistent and high-quality data collection[161]. On the
other hand, yields documented in patents and journal papers are measured using various equipment
used by different institutions. Moreover, the original patent documentation frequently omits essential
details, like certain reagents or specific reaction conditions. The inherent challenges of text mining only
add to these issues, often leading to noisy and incomplete datasets. Still, it must be acknowledged that
chemists working on individual experiments most likely take more care in the purification and analysis
of reactions than the massive work-up required for HTE.

1.4.3 Complexity of chemical reactions as a physical object

Predicting reaction yield is challenging due to the complex interaction of many factors. Organic reac-
tions, in particular, can take different paths under various conditions, leading to a range of products and
yields. The most significant factors affecting experimental and recorded yield are listed in Table 1.2.

Determining and reporting reaction yields can vary due to terms like crude yield, isolated yield, con-
version yield, and selectivity, each highlighting different aspects of the yield. Isolated yield often appears
lower than crude yield because of losses during purification. Conversion yield measures the proportion
of reactants turned into desired products, while selectivity indicates how exclusively the desired product
is formed. Crude yield, although providing a better estimate of chemical reactivity, can be less accurate
due to contaminants and side products. Therefore, choosing the most relevant yield term is crucial for
accurately evaluating a chemical reaction.

Challenges associated
with newly obtained data

Absence of uniformity and
consensus regarding the
properties to be recorded

Uncertainties in the data
originated from experiments

Differences between
optimized and non-optimized

reaction data records

Absence of documentation
for some experimental con-
ditions and negative results

Challenges associ-
ated with stored data

The SMILES representation
lacks coherence and may

not accurately capture
the characteristics of
chemical compounds

Representations contain-
ing 3D information are
not broadly embraced
and pose challenges

for performing ML tasks

Figure 1.6 Main problems that chemoinformaticians are
facing when working with chemical datasets.

The research carried out by Murray et al.[175] il-
luminated the numerous factors that significantly
impact the results of chemical reactions. Their
results indicated that understanding all the vari-
ables influencing a Suzuki reaction for a sin-
gle pair of reactants would require an astonish-
ing six billion experiments. These findings high-
light the deep complexity and challenges scien-
tists face when unraveling the intricate details of
chemical reactivity.

To illustrate the inherent noise in using yield as
a numeric metric for chemical reactions, I ana-
lyzed data from various sources where reactions
were performed multiple times, and each experi-
ment was recorded. By examining the mean and
standard deviation of yields in these datasets,
I aimed to evaluate the feasibility and accuracy
expectations of regressive yield modeling. I ex-
cluded those with a yield of 0 to focus on suc-
cessful reactions. Additionally, I removed yield
pairs of the form [0.0,*value*], assuming that a
zero yield likely indicates small-scale test reac-
tions without product isolation. Values differing
by ±1% were also filtered out to account for po-
tential rounding errors. As shown in Fig.1.5,
the analysis revealed a standard deviation of ap-

proximately 16% across general datasets containing various reaction types. This suggests that general
reactivity models face significant data-related challenges, and their root mean square error cannot be
expected to be lower than 16% in such cases.

Overcoming these challenges requires a strong partnership between synthetic chemists and chemoin-
formaticians. Combining essential knowledge about molecular reactivity, properties of all components,
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Dataset Number of reactions

Synthesis of islatravir by biocatalytic cascade[162] 3

Copper-Catalyzed Enantioselective Hydroamination of Alkenes[163] 3

Development of an automated kinetic profiling system with online HPLC for
reaction optimization[164]

7

Coupling of a-carboxyl sp3-carbons with aryl halides[165] 24

Building a Sulfonamide Library by Eco-Friendly Flow Synthesis[166] 39

Microwave-assisted Biginelli Condensation Dataset[167] 48

Deoxyfluorination screen[168] 80

Chemistry informer libraries: a chemoinformatics enabled approach to eval-
uate and advance synthetic methods[169]

90

Imidazopyridines dataset[170] 384

Linking Mechanistic Analysis of Catalytic Reactivity Cliffs to Ligand Classi-
fication[171]

450

AstraZeneca Electronic Lab Notebook (AZ ELN 750)[147] 750

Photodehalogenation HTE[172] 1152

HTE Pd-catalyzed cross-coupling screen[154] 1536

Nano CN PhotoChemistry Informers Library[173] 1728

NiCOlit[174] 1752

Predicting reaction performance in C-N cross-coupling using machine
learning (Buchwald-Hartwig HTE)[127]

4312

A platform for automated nanomole-scale reaction screening and
micromole-scale synthesis in flow (Suzuki HTE)[152]

5760

HiTEA, Pfizer HTE dataset combined of Ulmann, Buchwald-Hartwig and
hydrogenation reactions[160]

39K

Reaxys (non-patents)[90] ∼1,3M

USPTO curated from ORD[147] ∼1,7M

Pistachio[158] 6,9M
Table 1.1 The table displays datasets with available yield information available for download from ORD[159].
Proprietary datasets not included in ORD are highlighted in bold.
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Table 1.2 Factors Influencing Recorded Yield of a Chemical Reaction

Factors Influencing Yield Explanation

Low Reactivity Reactants may not fully react, resulting in a low yield of the
desired product.

Side Reactions Other thermodynamically possible reaction paths may be fol-
lowed, leading to side products and lower yield.

Reactant/Reagent/
Catalyst Deactivation

Deactivation of reactants, reagents, or catalysts caused by
other reaction system components.

Thermodynamic and
Kinetic Factors

Reaction conditions (temperature, pressure, concentration,
etc.) can affect the reaction rate and yield.

Contaminants Impurities in reactants or reagents can interfere with the reac-
tion and reduce the yield.

Sensitivity to Environment Reactions may be sensitive to environmental factors like air,
moisture, or light.

Product Degradation/
Reactivity

The desired product may be too reactive or unstable, leading
to further reactions or degradation.

Product Isolation Difficulties isolating or purifying the product can result in a
lower yield.

Recording Errors Errors in the process of recording a reaction to ELN or in the
steps of incorporation of ELN records to a database.
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and their interactions is essential for accurate predictions. The presence of dependable, high-quality
data is a fundamental element driving progress in predicting yields for chemical reactions.

1.4.4 Complexity of recording chemical reactions

There is no fixed agreement on the structure of how the experimental or extracted data is recorded
and stored. This discrepancy could lead to incorrect recording of reagents, irrelevant yield records,
missing conditions of reactions, etc. This section will discuss general incongruities in recording yield
and chemical data, which I summarize in Figure 1.6.

I must address that yield data is often incomplete for reported reactions. Only the major product is
typically recorded, with side products frequently omitted. Even when side products are included, the
distribution may not be normalized to 1. Consequently, much of the reaction data is unsuitable for yield
models without extensive preprocessing.

Schwaller et al.[125] noted that the USPTO includes data from sub-gram and gram reaction scales.
Lower reaction scales typically indicate "test reactions," preliminary experiments assessing feasibility. In
contrast, higher-scale reactions, often called "optimized" reactions, usually involve thoroughly exploring
reaction conditions to identify those that yield the maximum product.

Fitzner et al.[176] examined biases and diversity within chemical literature, highlighting the shortcom-
ings in current reaction data. They provided data-driven guides by analyzing over 62,000 Buchwald-
Hartwig couplings from multiple databases. These guides recommend reaction conditions and help
identify less common ligands that perform optimally when matched with specific substrate properties
users choose.

Schleinitz et al.[174] conducted a curated extraction of Ni-catalyzed reactions, emphasizing the im-
portance of thorough data extraction from scholarly articles and optimization tables that support reac-
tion optimization experiments. They also benchmarked various advanced machine learning methods,
revealing a clear selection bias in published works and highlighting the significant lack of reported neg-
ative data.

In their recent study, Strieth-Kalthoff et al.[177] also examined biases in reported reaction data. They
focused on three main sources of bias: experimental errors, experimental selection bias, and result
reporting bias. By modeling these biases, they concluded that the interplay between data sparsity
and the absence of negative data is the primary constraint on deriving predictive models for chemical
reactions.

As emphasized in the editorial by Maloney et al.[178], there is a notable lack of reported negative
reaction data. They note that many HTEs conducted in academia often remain inaccessible in machine-
readable formats. Additionally, researchers presenting novel reactions in publications frequently neglect
to mention unsuccessful trials that contributed to discovering the conditions for successful ones.

Maloney and co-authors propose a more granular differentiation of unsuccessful experiments, divid-
ing them into three specific categories:

• Experiments with neither remaining starting material nor detectable product;

• Experiments where the majority, if not all, of the starting material remains unreacted;

• Experiments not conducted as initially planned.

Having access to such detailed negative reaction data would not only allow for a clearer distinction
between unreactive combinations and those that are overly reactive, leading to intricate mixtures but
also aid in identifying reactions that deviate from best practices. This would enable a more accurate
association between the failed experiments and the systems’ inherent reactivity.

The significance of negative reaction data and other experimental details often omitted or inconsis-
tently recorded in conventional publication templates was emphasized in a recent review [179]. Among
various considerations, the authors argue that organic synthesis lacks a community-accepted standard
for reporting reaction information compared to other domains, such as crystallographic or NMR data. In
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an initial attempt to address this issue, [180], the authors proposed the XDL markup language format,
designed to capture comprehensive experimental details, including the timing of additions, temperature,
and standard types of chemical equipment and glassware. Consequently, reaction data reported in this
format would be machine-readable and writable, allowing for the post-processing of historical reaction
data and generating new data through fully automated synthesis. To facilitate data extraction from
the literature and convert it into machine-readable format, Qian et al.[181] and Wilary and Cole[182]
introduced tools for automated extraction of reactions and reaction conditions from diagrams and
schemes. This tool holds promise in addressing the data extraction challenges previously mentioned.

Figure 1.7 Steps required in data preprocessing for reactions.

The data gathered over the
generation and storage pro-
cess should be written out
in machine-readable for-
mat, leading us to discuss
how to store and prepro-
cess the data, making it
suitable for usage.

1.5 Data
preparation
and cleaning

There is no general con-
sensus on reaction data
preparation and cleaning;
only a few papers discuss it.
There is a standard agree-

ment on the preprocessing of molecules[183, 184], but the reactions are more complicated since they
have more components and are more complex objects per se.

Gimadiev et al.[185] introduced a 4-step protocol for cleaning molecular structures using data from
Reaxys, USPTO, and Pistachio. They proposed a general logic for chemical structure curation, trans-
formation curation, and reaction conditions. The curation protocol involves functional group standard-
ization, valence checking, and curation of reaction transformations through reaction balancing and
atom mapping methods. However, they did not extend their work to applications like predictive mod-
eling. Their comprehensive overview of the challenges in reaction data standardization highlighted
issues such as inaccurate data recording and parsing. Despite the thoroughness of their data curation
pipeline, it may be overly broad for specific tasks like predicting reagents or stereochemistry due to its
procedures for removing ions, stereochemistry, and radicals.

Genheden et al.[186] released a rxnutils package which is designed to specifically preprocess reac-
tions from end-to-end for retrosynthesis purposes and a possible constructor for your own pipelines for
data preprocessing with easy integration of your own classes.

Andronov et al.[94] developed a cleaning pipeline that includes atom mapping, removal of isotope
information, and SMILES canonicalization, which was then used to train a transformer model for single-
step retrosynthesis.

Coley et al.[187] proposed a holistic strategic approach for designing experimental datasets with
modeling applications in mind and including recommendations on maximizing the information gained
per experiment. Their work proposes considering the quality of the data and model reactivity qualities
with respect to the quality.

The authors of the ORDerly[188] framework proposed a summary and merging of the past ap-
proaches, which includes additional frequency filters, removing reactions with too many components,
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and removing reactions with incorrect yield. Yield prediction requires a more specific procedure involv-
ing reaction-specific cleavage, a broad scheme I illustrate in Fig.1.7

1.6 Data representation, data encoding

In this section, I utilize the classification of different molecular and reaction representations described
in work by Wigh and colleagues[189].

1.6.1 String/linear representations

There are several ways a molecule could be represented with a string, like molecular formula, generic
name, IUPAC name, InChI (International Chemical Identifier), CAS RN, and others. But for the sake of
the relevance of my research, I will look in more detail at chemoinformatics-relevant linear representa-
tions of molecules and reactions.

SMILES, SMARTS and SMIRKS

Figure 1.8 Illustration of SMILES of
ciprofloxacin, a fluoroquinolone antibiotic.
Figure A shows the structure of the antibiotic.
Figure B shows the bonds of the cycles to
be broken to form a linear string. Figure C
highlights substrings that correspond to the
same colored substructures in SMILES in
Figure D. SMILES require breaking cycling
structures to be able to be recorded in a
linear way. Image credit: Wikipedia.

SMILES[52] (Simplified Molecular Input Line Entry Sys-
tem) is a text-based notation for recording the structures
of chemical compounds and reactions. It encapsulates
the same data as an extended connection table but is
more flexible due to its linguistic nature. With a simple
set of atom and bond symbols and minimal grammar rules,
SMILES is a language for storing chemical details and fos-
tering insights. I illustrate the process of the transformation
of a chemical structure into the string in Figure 1.8.

SMARTS[190], based on SMILES, specifies structural
patterns within chemical compounds. While SMILES rep-
resent entire molecular structures, SMARTS define spe-
cific features or arrangements, facilitating advanced search
and analysis.

SMIRKS[48] or reaction SMILES is a representation of a
reaction where "." separate reaction components and reac-
tants are separated from products with "»" with a possibility
to place reagents or solvent smiles between the arrows.

The drawbacks of all the line notations described are that
they are not unique, and there are ways to describe the
same molecule with different strings. Generating agreed
unique SMILES is derived from an established set of rules
called "canonicalization." Also, SMILES could be syntacti-
cally incorrect, which was tried to be tackled with the intro-
duction of SELFIES[191, 192] and DeepSMILES[193].

However, its use comes with inherent challenges, such
as non-standardized representations, difficulties in depict-
ing complex metalorganic compounds, and the possibility
of generating chemically inconsistent yet technically valid
strings. Sodium hydroxide, for instance, can be denoted as
[Na+].[OH−]. Yet, it could also be represented as [Na]O,
NaOH , O.[NaH] among other possible variants, some of which could be treated as invalid entries in
most chemoinformatics packages, such as RDKit[194], for example. These discrepancies can introduce
ambiguity and make data preprocessing more complicated.

https://en.wikipedia.org/wiki/Simplified_molecular-input_line-entry_system
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The limitations of SMILES representation become more apparent in the context of complex entities,
for example, transitional metalorganic compounds[195], such as palladium catalysts often employed
in Buchwald-Hartwig coupling reactions. Molecules like Pd(Ph3P )2+

2 and Pd(Ph3P )4 might be er-
roneously represented in a similar fashion using SMILES, introducing potential discrepancies into the
data. In addition, palladium complexes can be denoted in neutral and ionic forms, raising the likeli-
hood of generating incorrect SMILES notations, which can adversely impact the molecular encoding.
Moreover, during data storage, SMILES representations of diverse palladium catalyst ligands could mis-
takenly be classified as duplicates, potentially resulting in unintended exclusions from the final dataset.
I visually illustrate their problems in Fig.1.9. Also, for some approaches, reaction SMILES should have
the correct mapping of reactant atoms to the product atoms, which is a challenge in the field[59].

1.6.2 Table representations

Among the array of formats available for molecular data storage, 3D formats such as MOL, SDF, and
MDL RXN stand out for their level of detail and clarity in representing molecular structures. Yet, despite
their detailed nature, they do not enjoy the same widespread acceptance as string-based molecular
representations. The need for nontrivial preprocessing further reduces their use in chemistry reaction-
related ML tasks.

Table and coordinate formats are widely employed in QM/MM simulations and ML to learn the QM
properties of small molecules, such as scalar, vector, or tensor fields[196, 197]. The most suitable mod-
els for such natural graph instances are MPNNs; the most prominent example of them is SchNet[198].

Figure 1.9 Illustration of potential inaccuracies in the depiction of
molecules using PdCl2(dppf) as an exemplar. This Pd-containing
catalyst finds extensive application in diverse couplings, encom-
passing Suzuki coupling and Buchwald-Hartwig reactions.

1.6.3 Data encoding

The history of fingerprint encod-
ing can be traced back to the
1960s with the creation of the first
substructure-based fingerprints, no-
tably the Morgan fingerprints[199]
(structurally equivalent to ECFP fin-
gerprints[200]). Over the decades,
these substructure-centric fingerprints
have retained their prominence, cap-
turing the critical chemical attributes
of a compound. More recently devel-
oped fingerprints harness the capabil-
ities of Deep Learning models, includ-

ing GNNs and Large Language Models. This section will discuss fingerprints applied in reaction pre-
diction or reaction yield.

Structural and Molecular Fingerprints

Extended-Connectivity Fingerprints[200](ECFPs) are circular topological fingerprints crafted for molec-
ular characterization, similarity searching, and structure-activity modeling. ECFP fingerprints are gen-
erated through a process that circularly captures the molecular structure’s connectivity patterns. These
fingerprints encode structural features and their connectivity, enabling efficient similarity searching and
structure-activity modeling by comparing the presence or absence of specific molecule substructures.
RDKit[194] provides a free implementation of these fingerprints under the original name of Morgan
fingerprints.

DRFP[201] utilizes circular substructures from molecules and hashes their SMILES representations,
drawing inspiration from chemical fingerprints like ECFP and MHFP[202]. DRFP does not incorporate
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atom-mapping-based weights to distinguish between reactants and reagents, nor does it mandate the
calculation of molecular properties for the reagents. DRFP does not involve arithmetic operations on
individual molecular fingerprints, such as the atom pair fingerprint.

Kallisto[203] is a framework for efficient and robust generation of atomic features based on geometric
molecule input. It offers several important QM-level features such as polarizability, van-der-Waals radii,
proximity shells, and others. This framework serves as a bridge between more costly calculations for
the whole reaction object (like transitional states) and more simple calculations of substructures. I used
it in a framework for generating 3D features for reactants; I describe the methodology in more detail in
Section 2.

Section 2 discusses these fingerprints in more detail.
QM-derived fingerprints include multiple QM-accessible properties, a set of which is designed specif-

ically for each problem. These properties include molecular, atomic, and vibrational, including HOMO/
LUMO, polarizability, lengths of important for modeling bonds, etc.

Computer-Learned Fingerprints

CGR, or Condensed Graph of Reaction, is a representation that combines reactants and products
into a single 2D graph, encompassing both conventional and changing bonds. Developed by Varnek
and colleagues[204], the CGR approach encodes molecular structures using fragment occurrence in
a matrix. It offers a superposition of reactant and product molecules, describing alterations in atoms
and bonds, reminiscent of transition state concept[205]. This approach has seen increasing adoption
in recent cheminformatics research, leading to the creation of an open-source toolkit by Varnek and
colleagues to facilitate wider CGR utilization[206]. However, it’s worth noting that this approach relies
on correct reaction atom mapping, a current challenge in the field.

Chemprop[207] is based on CGR as a transformation from linear to graph representation and then
passed to a directed message-passing neural network (D-MPNN) block. The main weakness is that
SMILES are not accepted in stereochemistry, and some mapping of reactions is rejected. Section 2
discusses this model in more detail.

CDDD[208] (Continuous and Data-Driven Descriptors) are molecular descriptors derived by unsuper-
vised training on a large dataset of biologically relevant molecules (extracted from ZINC and PubChem)
using translation from InChi to SMILES task, using RNN and CNN architecture. The main weakness of
these fingerprints is that they can produce fingerprints only for the molecules within a specific applica-
tion domain. Also, it doesn’t accept SMILES with stereocenters.

RXNFP[1] is a molecular fingerprinting method developed by Schwaller that employs a transformer
neural network derivative to BERT[23] to represent chemical reactions as numerical vectors. The task of
learning was to restore masked SMILES tokens. By training on a Pistachio[158] dataset, RXNFP learns
to encode reactions into continuous vector representations, enabling applications such as reaction
outcome prediction, reaction classification, and similarity search. Section 2 discusses this fingerprint in
more detail.

1.7 Aims

So far, I have discussed the intricacies of yield prediction and the current state-of-the-art models, data,
and their place in CASP. To further advance the field, I will use current data to explore and address
some critical questions related to yield prediction:

• Is developing a predictive model for specific reaction classes using real-world data feasible?
This question explores the potential of leveraging extensive datasets from experimental reactions
to build robust predictive models. Analyzing patterns and correlations within the data aims to
create models that can accurately predict the outcomes of various reaction classes. This involves
understanding the underlying chemistry and employing advanced machine-learning techniques
to handle the complexity and variability inherent in real-world data.
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• How do the intricacies and quality of data influence predictive accuracy?
The accuracy of predictive models heavily depends on the quality and granularity of the input
data. This question addresses how factors such as data completeness, consistency, and the
presence of noise impact model performance. It also examines the role of detailed reaction
conditions, reagent properties, and intermediate states in refining predictions. Understanding
these intricacies can lead to better data curation and preprocessing methods, enhancing the
reliability of yield predictions.

• What improvements can be made from both data and modeling perspectives?
This question aims to identify potential enhancements in data collection, management, and model
development. On the data side, improvements might include increasing the volume and diver-
sity of data, standardizing data formats, and integrating data from various sources to enrich the
training datasets. From the modeling perspective, advancements could involve developing more
sophisticated algorithms that can handle the complexities of chemical reactions, incorporating
domain-specific knowledge into models, and improving computational efficiency. Additionally, en-
hancing the interpretability and explainability of models to provide actionable insights for chemists
is a key focus area.

In chapter 4, I discuss how the general reactivity models cannot capture the yield information from real-
world data. In chapter 5, I use the BEE model to predict the yield of the Enamine dataset and discuss
the current problems with Transformers-like architectures usage in yield prediction. In chapter 6, I will
discuss how elaborate data preprocessing and simplifying yield prediction as a classification problem
still pose great challenges in data transferability.
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2 Methods

It’s more fun to compute.

Kraftwerk, It’s more fun to compute

2.1 Basic Tools

2.1.1 Python Programming language

Python is a high-level, interpreted programming language known for its simplicity, readability, and ver-
satility. It is the most used in research for data analysis, machine learning, and scientific computing.

2.1.2 Pandas package

Pandas is a Python library for data manipulation and analysis. The main objects it operates with are
DataFrames (Python object derived from tabular data) and Series (Python object derived from column
data). It provides efficient tools for cleaning, exploring, transforming, and analyzing structured data,
making it indispensable for data preprocessing, statistical analysis, and visualization in data science
projects.

2.1.3 Numpy package

NumPy is a Python library for numerical computing, providing powerful array objects and essential
mathematical functions. It enables efficient operations on large multidimensional arrays and matrices,
making it essential for numerical simulations, data analysis, and machine learning tasks.

2.2 Machine Learning tools

2.2.1 Scikit-learn Package

Scikit-learn[209], often referred to as sklearn, is a widely-used machine learning library in Python,
providing a comprehensive suite of tools for various tasks such as classification, regression, clustering,
and dimensionality reduction. It offers simple and efficient tools for data preprocessing, model selection,
evaluation, and deployment.

2.2.2 Imblearn

Imbalanced-learn or Imblearn[210] is an open-source package based on Scikit-learn, which provides
tools for classification with imbalanced classes. It is useful to use different kinds of over- and under-
sampling metrics to navigate the model’s performance when dealing with imbalanced learning.
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2.2.3 Rxnutils package

Rxnutils[186] is a Python package developed by Kannas et al. aimed at standardizing chemical re-
actions. This package comprises various pipeline routines for data preprocessing, such as dropping
invalid entries, reaction mapping, etc. I used the 1.7.0 version of this package. For Chapter 6, the
following pipeline was used to preprocess the reaction data from AstraZeneca’s internal database:

query_dataframe :
query : ~rsmi . isna ( ) and rsmi != ’ ’

remove_unsani t izable :
in_column : rsmi
out_column : rsmi_processed

desal t_molecules :
in_column : rsmi_processed
out_column : rsmi_processed

d e t e c t _ r e a c t i v e _ f u n c t i o n s :
in_column : rsmi_processed
smar ts_ l i b : $ {REACTIVITY_SMARTS_LIB}
rsmi_column : rsmi_processed
max_reactants : 5

count_components :
in_column : rsmi_processed

atombalance :
in_column : rsmi_processed
out_column : nheavy_atoms_di f f

co r rec t_ reagents :
smiles_in_column : reagent_smi les
ids_in_column : reagent_ ids
ro les_in_column : reagent_ro les
co r rec t i ons_pa th : $ {REAGENTS_CORRECTIONS}
on ly_ ro les : [ reagent , c a t a l y s t ]

sample_reagent_smiles :
smiles_column : CorrectedReagentsSmiles
roles_column : CorrectedReagentsRoles
on ly_ ro les : [ reagent , c a t a l y s t ]
out_column : ReagentCatalystSmi les

2.2.4 Random Forest

Random forest[211, 212] is an ensemble learning method that constructs multiple decision trees during
training and outputs the mode of the classes for classification or the mean prediction for regression.
Each tree in the forest is built on a random subset of the training data and uses a random subset of
features at each split, which helps to reduce overfitting and improve generalization[213]. By averaging
the predictions from many trees, random forest enhances model accuracy and robustness, leveraging
the diversity among the individual trees to create a strong overall model. Random Forest is known for
its robustness to overfitting, handling of high-dimensional datasets, and capability to capture complex
relationships in the data.

2.2.5 Gradient Boosting

Gradient boosting[214] is an ensemble ML technique that builds models sequentially, where each new
model attempts to correct the errors made by the previous models. It starts with an initial weak model
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and iteratively adds additional weak models, typically decision trees, to form a strong predictive model.
Each added model is trained to predict the residual errors of the combined ensemble of all previ-
ous models, effectively minimizing the loss function through gradient descent in function space. This
method is powerful for both regression and classification tasks, often yielding high accuracy and robust
performance by combining the strengths of multiple models.

2.2.6 Support Vector Machines

Support Vector Machines[215] (SVM) is a powerful supervised learning algorithm used for classification
and regression tasks. SVM works by finding the hyperplane that best separates the data into different
classes in a high-dimensional space. The optimal hyperplane is the one that maximizes the margin
between the closest points of the classes, known as support vectors. For non-linearly separable data,
SVM employs kernel functions to transform the data into a higher-dimensional space where a linear
separator can be found. This approach allows SVM to effectively handle complex patterns and achieve
high classification accuracy.

2.2.7 Lazy Predict

Lazy Predict is a Python library that automates the preliminary model selection and evaluation by quickly
building and comparing multiple machine learning models with default settings. It provides a convenient
way to get an overview of how different algorithms perform on a given dataset without requiring exten-
sive manual configuration. Lazy Predict helps users identify promising models for further fine-tuning and
optimization, making it a valuable tool for rapid prototyping and initial exploration in machine learning
projects.

2.2.8 Hyperparameter optimization

Hyperparameter optimization refers to selecting the best set of hyperparameters for a machine learning
model. Unlike model parameters, which are learned during training, hyperparameters are predefined
and control aspects of the learning process, such as learning rate, regularization strength, and the
number of layers in a neural network. The choice of hyperparameters can significantly impact model
performance, making their optimization crucial for achieving the best possible results. This process
typically involves exploring the hyperparameter space using techniques like grid search, random search,
or more advanced methods like Bayesian optimization to identify the combination that yields the highest
validation accuracy or minimizes the loss function.

2.2.9 Optuna

Optuna[216] is an automatic open-source hyperparameter optimization software framework designed
to find the best hyperparameters for machine learning models efficiently. It uses a sophisticated search
algorithm that combines techniques such as Bayesian optimization, which models the objective func-
tion to be optimized and balances exploration and exploitation with other strategies like pruning and
parallelization. Optuna’s key feature is its flexibility and ease of use, allowing users to easily define a
search space and objective function. By dynamically adjusting the search based on past evaluations,
Optuna efficiently converges to optimal hyperparameter configurations, enhancing model performance
and reducing computational cost. I used it to search for optimal parameters for Random Forest, Here,
I present a simplified code snippet illustrating the parameters Optuna optimized while searching for the
best Random Forest model.

In the snippet, the following parameters are used: thresholds are the thresholds by which the float
yield data will be divided into classes.

n_estimators_rfc is the number of trees in Random Forest.
max_depth_rfc is the depth of a single tree in a Random Forest.
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max_features_rfc is the number of features to consider when looking for the best split in Random
Forest.

#Proposing th resho lds f o r y i e l d d i v i s i o n
t h resho lds = [

t r i a l . sugges t_ in t ( f " th resho ld_ { i } " , 1 , 99) for i in range ( num_classes − 1)
]
#Parameters o f Random Forest model
n_es t ima to rs_ r f c = t r i a l . sugges t_ca tegor i ca l (

" n_es t ima to rs_ r f c " , [300 , 500 , 800]
)
max_depth_rfc = t r i a l . sugges t_ca tegor i ca l ( " max_depth_rfc " , [ None , 3 , 5 ] )
max_features_r fc = t r i a l . sugges t_ca tegor i ca l ( " max_features_r fc " , [ " s q r t " , 200] )

2.3 Visualization tools

2.3.1 Matplotlib package

Matplotlib[217] is a comprehensive library for creating a variety of visualizations in Python. It offers
various plotting functions and customization options, making it suitable for various data visualization
tasks.

2.3.2 Seaborn package

Seaborn[218] is a statistical data visualization library built on top of Matplotlib in Python. It provides
an easy-to-use interface for creating attractive and informative statistical graphics. Seaborn simplifies
generating complex visualizations such as heatmaps, violin, and pair plots.

2.3.3 t-SNE

t-Distributed Stochastic Neighbor Embedding[219] (t-SNE) is a dimensionality reduction technique widely
used for visualizing high-dimensional data in lower-dimensional spaces. Originally proposed by Lau-
rens van der Maaten and Geoffrey Hinton in 2008, t-SNE aims to preserve the local structure of the
data while revealing its global patterns.

The method works by modeling the high-dimensional data as a probability distribution in both the
original high and lower-dimensional space (often two or three dimensions for visualization purposes).
It then minimizes the difference between these distributions, typically using the Kullback-Leibler diver-
gence, which is a type of statistical distance: a measure of how one reference probability distribution P
is different from a second probability distribution Q. This optimization process effectively maps the data
points from the high-dimensional space to the lower-dimensional space, where similar data points in
the original space are projected to nearby points in the visualization.

One of the key advantages of t-SNE is its ability to reveal clusters and patterns in the data that
might be difficult to discern in the original high-dimensional space. This makes it a powerful tool for
exploratory data analysis and visualization, allowing researchers to gain insights into the underlying
structure of their data.
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2.4 Model evaluation metrics

2.4.1 Confusion Matrix and Binary Classification Metrics

The confusion matrix is a table that summarizes the performance of a classification model by comparing
the model’s predicted labels with the actual labels. It is commonly used for binary classification but can
also be adapted for multi-class classification. The matrix provides counts for:

• True Positives (TP) – instances correctly classified as positive.

• False Positives (FP) – instances incorrectly classified as positive.

• True Negatives (TN) – instances correctly classified as negative.

• False Negatives (FN) – instances incorrectly classified as negative.

This layout is the foundation for calculating performance metrics such as accuracy, precision, recall,
and F1-score.

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

2.4.2 Multi-Class Classification Metrics

For multi-class classification, the confusion matrix is extended to multiple classes. I use the One vs
Rest (OvR) approach, where each class is treated as the "positive" class while all other classes are
treated as "negative." Metrics for each class k can then be defined as:

• True Positives (TPk): Instances correctly classified as class k.

• True Negatives (TNk): Instances correctly classified as not belonging to class k (the sum of all
other correctly classified instances).

• False Positives (FPk): Instances incorrectly classified as class k.

• False Negatives (FNk): Instances of class k incorrectly classified as another class.

Using the OvR approach allows the calculation of accuracy, precision, recall, and F1-score for
each class individually and enables an overall assessment of the model’s performance across multi-
ple classes.

2.4.3 Precision

Precision is a metric used in classification tasks to measure the accuracy of positive predictions. It
quantifies the proportion of correctly predicted positive cases out of all cases predicted as positive. In
multi-class classification, precision can be computed using macro and micro averaging. Macro averag-
ing calculates precision independently for each class and then takes the average, while micro averaging
aggregates the contributions of all classes before computing precision, thus giving equal weight to each
class.

Precisionmacro = 1
C

C∑
i=1

TPi

TPi + FPi

Precisionmicro =
∑C

i=1 TPi∑C
i=1(TPi + FPi)

Where C represents a number of classes.
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2.4.4 Balanced accuracy

Balanced accuracy is a performance metric commonly used in classification tasks, especially when
dealing with imbalanced datasets. It calculates the arithmetic mean of sensitivity (true positive rate)
and specificity (true negative rate), providing a balanced assessment of classifier performance across
all classes. This metric is particularly useful in situations where class distributions are uneven, ensuring
that the evaluation is not skewed by the dominance of one class over the others.

Balanced Accuracy = 1
C

C∑
c=1

TPc

TPc + FNc

where:

• C is the total number of classes.

• TPc is the number of true positives for class c.

• FNc is the number of false negatives for class c.

2.4.5 ROC-AUC

The Receiver Operating Characteristic Area Under the Curve (ROC-AUC) is a performance metric
commonly used to evaluate the discriminatory power of a binary classification model across different
thresholds. It quantifies the model’s ability to distinguish between positive and negative classes by plot-
ting the true positive rate against the false positive rate, with a higher AUC indicating better classification
performance.

ROC-AUC =
∫ 1

0
TPR(FPR−1(t))dt

2.4.6 F1 Score

The F1 score is a widely used performance metric in binary classification tasks, particularly when
dealing with imbalanced datasets. It represents the harmonic mean of precision and recall, providing
a single measure that balances the correctness and completeness of the model’s predictions. The F1
score ranges from 0 to 1, with a higher value indicating better model performance. It is particularly
useful when false positives and false negatives carry different costs, and the goal is to minimize both
types of errors.

F1 = 2 × Precision × Recall
Precision + Recall

where
Precision = TP

TP + FP
, Recall = TP

TP + FN
Here, TP represents true positives, FP false positives, and FN false negatives.

2.4.7 Matthews Correlation Coefficient

Matthews Correlation Coefficient (MCC) is a statistical metric commonly used to assess the quality of
classification models, particularly in scenarios with imbalanced class distributions. It considers true
positives, true negatives, false positives, and false negatives, providing a balanced measure ranging
from -1 to 1, where 1 indicates perfect prediction, 0 indicates random prediction, and -1 indicates total
disagreement between prediction and observation. It’s particularly robust when classes are of different
sizes or when the cost of false positives and false negatives is high and uneven. The MCC for multi-
class classification is typically calculated using a confusion matrix.

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)
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2.4.8 Geometric Mean

The geometric mean metric is a statistical measure commonly used to assess the performance of
classifiers, particularly in scenarios with unbalanced class distributions. It calculates the square root of
the product of class-wise sensitivity (true positive rate) and specificity (true negative rate), effectively
balancing the influence of both classes. This metric is especially valuable when one class dominates
the dataset, ensuring that the performance evaluation reflects the classifier’s ability to correctly predict
instances from all classes, regardless of their prevalence.

Geometric Mean =
√

Sensitivity × Specificity

Where
Sensitivity (TPR) = TP

TP + FN

Specificity (TNR) = TN
TN + FP

2.4.9 MAE and RMSE

Mean Absolute Error (MAE) is a statistical metric commonly employed to evaluate the accuracy of a
predictive model. It calculates the average of the absolute differences between predicted and observed
values, providing a measure of the model’s average prediction error magnitude without considering the
direction of errors.

MAE = 1
n

n∑
i=1

|yi − ŷi|

Root Mean Square Error (RMSE) is a statistical measure used to assess the accuracy of a predictive
model by quantifying the differences between predicted and observed values. It calculates the square
root of the average of squared differences between predicted and actual values, providing a single
value indicative of the model’s overall performance.

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

n represents the number of data points, yiis the true value, ŷi is the predicted value.

2.4.10 R2 coefficient

The R2 coefficient, also known as the coefficient of determination, is a statistical measure used to
evaluate the goodness of fit of a regression model. It quantifies the proportion of the variance in the
dependent variable that is predictable from the independent variables, with values ranging from 0 to 1.
A higher r2 value indicates that the independent variables explain a larger proportion of the variability
in the dependent variable.

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

Where n is the number of data points, yi is the true value, ŷi is the predicted values, and ȳ is the mean
of the true values.

2.4.11 Hold-out test set evaluation

Hold-out test set evaluation is a basic validation method in which the dataset is split into two non-
overlapping subsets: a training set and a test set. The training set is used to train the model, while the
test set is reserved for evaluating the model’s performance on unseen data. This approach is simpler
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and faster than cross-validation but may provide a less robust estimate of the model’s performance due
to the reliance on a single train-test split. Despite this, the hold-out method remains valuable as part of
cross-validation, where each fold essentially represents a different hold-out split. Both methods aim to
estimate the model’s generalization ability, though cross-validation reduces the variance of performance
estimates by averaging results across multiple folds.

2.4.12 Cross-validation

Cross-validation is a robust technique used to assess the performance of machine learning models
by partitioning the dataset into multiple subsets or folds. In each iteration, the model is trained on
a combination of several folds (the training set) and validated on the remaining fold (the validation
set). This process is repeated until each fold has been used as a validation set. Cross-validation is
essentially an extension of the hold-out method, where the dataset is split multiple times into different
train-test combinations, thus mitigating the randomness that can occur in a single hold-out split. This
approach helps evaluate the model’s generalization ability and reduces overfitting, particularly when the
available data is limited. Cross-validation provides a more reliable model performance estimate than a
simple hold-out validation.

2.4.13 Train-Validation-Test Splitting

In machine learning and deep learning, datasets are often divided into three distinct sets: a training
set, a validation set, and a test set. The training set is used to fit the model, while the validation
set is used to monitor the model’s performance during training. Rather than the model "seeing" the
validation set during training, the validation set provides a means to evaluate the model’s performance
after each epoch (i.e., each complete pass through the training data). This evaluation helps to tune
hyperparameters, select the optimal model configuration, and detect overfitting.

The test set is kept separate throughout the training process and is used for the final model evaluation.
The model is evaluated on this test set after training is completed, typically at a selected "checkpoint."
A checkpoint is a saved state of the model at a specific point during training, often corresponding to the
point at which the model achieves the best validation score. However, it is important to note that the
"best" validation score is context-dependent and may refer to the lowest error (e.g., Root Mean Squared
Error) or the highest accuracy, depending on the evaluation metric used. This method ensures that the
test set is used solely for the final, unbiased performance assessment without influencing the model
during training.

2.4.14 Imbalances in classes

If the class distribution is imbalanced, some methods aim to tackle this problem and avoid models to
classify all instances as the majorly represented class. For undersampling and oversampling, I used
the Imblearn package.

• Undersampling
Undersampling involves reducing the number of samples from the majority classes to match the
minority class. This can help balance the class distribution, but it comes with the risk of losing
valuable information from the majority classes, which may affect the model’s performance. I used
random oversampling, which removes samples from the majority classes until the desired balance
is achieved.

• Oversampling
Oversampling increases the number of samples in the minority classes to balance the dataset
without losing information. I used SMOTE (Synthetic Minority Over-sampling Technique)[220],
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which generates synthetic samples by interpolating them between existing minority class sam-
ples. SMOTE helps to create more diverse and informative synthetic samples, reducing the risk
of overfitting compared to simple duplication.

• Class weighting
Class weighting assigns different weights to classes during model training, giving more impor-
tance to the minority classes. This approach adjusts the learning process to be more sensitive
to underrepresented classes, often leading to improved performance in these classes. I used the
default Scikit-learn implementation class_weight=’balanced’ provided for the RF classifier. The
weight assigned to each class c is calculated as:

wc = nsamples

nclasses × nc

Where:

– wc is the weight for class c.

– nsamples is the total number of samples in the dataset.

– nclasses is the total number of unique classes.

– nc is the number of samples in class c.

This penalizes misclassifications of minority classes more heavily, encouraging the model to focus
on correctly predicting these classes.

2.4.15 Data scaling

In data preprocessing, it is crucial to scale the feature vectors to ensure that each feature contributes
equally to the model and to eliminate biases introduced by the differing scales of the data. This scaling
can help improve the performance of various machine learning algorithms, particularly those that rely
on distance metrics such as support vector machines.

For this purpose, I used the StandardScaler from the sklearn package. The StandardScaler stan-
dardizes features by removing the mean and scaling to unit variance. This process transforms the data
such that each feature has a mean of zero and a standard deviation of one, which is often beneficial for
many machine learning algorithms.

The formula used by the StandardScaler to transform a feature is as follows:

x′ = xi − µ

σ

where x′ is the scaled feature value, xi is the original feature value, µ is the mean of the feature values
and σ is the standard deviation of the feature values.

Applying this transformation makes the features become dimensionless and on a common scale. I
used the Standard Scaler in Chapter 6 for ECFP and Kallisto proximity shells features.

2.5 Machine learning in yield prediction

2.5.1 Yield-BERT

Yield-BERT[125] is a deep learning model designed specifically for predicting chemical reaction yields.
It leverages the BERT (Bidirectional Encoder Representations from Transformers) architecture to learn
representations of reaction conditions and reactant molecules. I discussed it as one of the breakthrough
methods in Chapter 1, and here I want to address more specifics of this method for my research. This
method operates on tokenizing reaction strings, and it is important to maintain the same ordering of
reactants and reagents in the string to avoid introducing additional uncertainty in the model and causing
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Figure 2.1 Mapping of an exemplary Buchwald-Hartwig reaction derived from a mapped reaction SMILES string
[C:7]1(Cl)[CH:12]=[CH:11][CH:10]=[CH:9][CH:8]=1.[NH:14]1[CH2:19][CH2:18][CH2:17][CH2:16][CH2:15]1>
C1C=CC(/C=C/C(/C=C/C2C=CC=CC=2)=O)=CC=1.C1C=CC(/C=C/C(/C=C/C2C=CC=CC=2)=O)=CC=1.
C1C=CC(/C=C/C(/C=C/C2C=CC=CC=2)=O)=CC=1.[Pd].[Pd]>[C:7]1([N:14]2[CH2:19][CH2:18][CH2:17]
[CH2:16][CH2:15]2)[CH:12]=[CH:11][CH:10]=[CH:9][CH:8]=1

a lack of reproducibility. I used the following order of reaction component strings for the chapter 4. The
order of reagents was arbitrary, meaning that it was not sorted by the role of the reagent, and as
originally provided in the reaction data:

reagents.reactants >> products

And the following order of reaction component strings for the chapter 6:

essentialreagent.reactants >> products

The concept of essential reagent is explained in more depth in Chapter 6. The Yield-BERT model has
two essential parameters to tune: dropout and learning rates. Dropout is a regularization technique
used in neural networks to prevent overfitting. It involves randomly "dropping out" (i.e., setting to zero)
a fraction of neurons during each training iteration. This helps the network to not rely too heavily on
any individual neuron and thus forces the network to learn more robust and generalizable features. The
learning rate is a hyperparameter that controls the step size at each iteration while moving toward a
minimum of the loss function. It determines how quickly or slowly a neural network model updates its
weights during training. I used the original learning rate and lowered the dropout rate to 0.1.

2.5.2 Chemprop

Chemprop[207] is D-MPNN, and it operates on a Condensed Graph of Reaction for reaction-related
modeling. This means that a reaction object needs to be constructed and passed to a regular D-
MPNN block for training. The reaction object is constructed from the mapped reaction for which I
use RXNMapper[1].I illustrate the concept of mapping in Figure 2.1. Reaction mapping aims to map
the atoms of reactants onto product atoms. The concept of mapping is complex, and currently, some
tools allow reaction mapping, such as RXNMapper[1], Indigo[221], and others. The problem of reac-
tion mapping belongs to the mathematical problem of subgraph isomorphism, which is believed to be
intractable without additional domain knowledge that could reduce the complexity of the problem(NP-
hard problem)[222]. Chemprop provides an option to adjust the MPNN layer to take a reaction and
a molecule as input and encode them with separate MPNNs. I included an essential reagent for this
option. Chemprop concatenates information to each atomic and bond feature vector in reaction mode.
I used flag –reaction-mode reac_prod, for which each atomic feature vector holds information on the
state of the atom in the reactant and concatenates information on the state of the atom in the product.
To add the essential reagent, I used additional flag –smiles-columns. I used Chemprop 2.0.4 and the
default training parameters.

2.6 Featurization

2.6.1 Kallisto proximity shells

The Kallisto proximity shells fingerprint[203] was developed as a bridge between purely substructural
motifs fingerprints such as ECFP, single numerical molecule description, such as combined molecular
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volume, and QM descriptors such as Gibbs free energy of reacting species. This fingerprint aims to
construct a 3D-information-containing vector that describes the charges and steric factors around the
reactive atoms in the reactants.

This is achieved by the pipeline illustrated in 2.2. This pipeline first detects the reactive functions of
our reaction, like whether the reacting species are amine and acid, for example, or halides. Then, a
3D conformer of the reactants is generated from which charges and proximity shells can be calculated.
Lastly, the fingerprint is assembled from the calculated 3D properties into a circular fingerprint centered
on the reactive atoms.

Figure 2.2 Scheme for generation of Kallisto
proximity shells and charges fingerprint.

In more detail, to identify the reaction center and reacting
atoms, the reaction SMILES components are compared
against a set of SMARTS to identify potential reactive func-
tions. This comparison examines the occurrence of func-
tions in both reactant and product parts, assuming that a
function no longer present or occurring less frequently in
the product part is involved in the chemical transforma-
tion. Then, those reactive functions are aligned to have
a reaction center in a correct enumeration, and the identi-
fied functions in both reactants are used as anchor points.
Each SMARTS is designed to match a specific atom, with
consistent charges and steric values recorded per neigh-
boring layer. Then, we use Corina to prepare a 3D con-
former of each molecule. This conformer is optimized with
Merck Molecular Force Field (MMFF) with RDKit[194], and
from this 3D structure, it can create a fingerprint based on
3D properties. The fingerprint is similar to a circular finger-
print, meaning it also has a radius from the reaction center
to calculate proximity shells and charge properties. It cal-
culates steric hindrance and partial charges for a radius of
up to eight. This results in a Kallisto Proximity fingerprint
comprising 198 float values for a reaction involving two re-
actants and yielding one product. Reactant alignment is
crucial since it produces a fingerprint with meaningful sort-
ing of fingerprint values, and order is important. Each of the 99+99 values could be decoded into a
simple formula of calculation:

• 3 sterimol numbers of the molecule that start the feature vector

• (6 calculated atomic charges + 6 calculated proximity) times 8, and each repeat is responsible for
a bigger atomic radius from the detected reaction center, meaning that the first 6+6 are for atomic
radius=0, the second is for atomic radius=1, and so on. One can see how the substructures
match illustrated in Figure 2.3.

Kallisto fingerprint is a fingerprint of an additive length, meaning that if we have a single molecule,
the length of the fingerprint will be 99; for two molecules, it will be 198, and so on. In my work, I
consider only bimolecular reactions and reactions with a number of components different than two that
are filtered out. Kallisto fingerprint does not encode reagents.

2.6.2 ECFP

Extended Connectivity Fingerprint (ECFP)[200] is a circular fingerprint method widely used in chemoin-
formatics to represent molecular structures in machine learning tasks. ECFP captures the molecule’s
presence and arrangement of substructures by iteratively expanding circular neighborhoods around
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each atom. Starting from each atom, ECFP generates initial identifiers based on the atomic prop-
erties and bonds. These identifiers are then iteratively updated by hashing the concatenation of the
atom’s identifier with those of its neighboring atoms up to a specified radius. This iterative process
ensures that ECFP encodes complex topological and chemical information, capturing various sub-
structures like rings, chains, and functional groups. The resulting hashed identifiers set bits in a fixed-
length binary vector, creating a compact and informative molecule representation. I used the ECFP
fingerprint of reaction, implemented in RDKit by the name Morgan fingerprints, and used a radius of
two for chapter 4, corresponding to the ECFP4 fingerprint and radius of three for chapter 6, corre-
sponding to the ECFP6 fingerprint. This fingerprint has a length of 2048, and it is a binary fingerprint.

Figure 2.3 Scheme of
the concept of molec-
ular radius. One
could see substruc-
tures matching molec-
ular radius up to 3.

For chapter 4, I used the order of reaction components as described for the
Yield-BERT model, and the reaction was encoded as a concatenation of reac-
tants and reagents and product Morgan fingerprints. This implementation used
the default RDKit function
rdkit.Chem.rdChemReactions.CreateStructuralFingerprintForReaction with de-
fault parameters.

For the chapter 6, the fingerprint construction was the following: the finger-
print was calculated separately for each reaction molecule, two reactants, and
one product. Then, the fingerprints of reactants were subtracted from the prod-
uct’s fingerprint. I didn’t encode reagents while generating the ECFP fingerprint
for reaction. This calculation used implementation from rxnutils package[186].

2.6.3 RXNFP

RXNFP[1] is a fingerprint method designed to represent chemical reactions for machine learning ap-
plications in cheminformatics. Unlike molecular fingerprints that capture individual molecules, RXNFP
focuses on encoding the transformation of reactants into products. It employs a neural network to gen-
erate fixed-length vector representations by processing reaction SMILES strings, including reactants
and products. This approach allows RXNFP to capture intricate details of the reaction mechanism,
such as bond changes and atomic rearrangements, providing a comprehensive depiction of the reac-
tion. RXNFP fingerprint reflects the encoding of the Transformer BERT model used as the RXNMapper
tool. This fingerprint has a length of 256 and consists of floats. I used the same reactants reagents
order described for the Yield-BERT for Chapter 4.

2.6.4 DRFP

DRFP[201] is a molecular fingerprinting method used to represent chemical reactions for machine
learning applications. Unlike other methods, DRFP does not distinguish between reactants and reagents,
including them in the SMILES notation. The algorithm extracts all circular substructures with radii of 0,
1, 2, and 3 and all rings from both the reactants and products, storing these as two sets of SMILES-
encoded molecular n-grams. It then computes the symmetric difference between these sets to form the
final set of molecular n-grams. This final set is hashed into a vector of 32-bit integers and folded into
a fixed-length binary vector using a modulo operation, resulting in a 2048-bit binary fingerprint. I used
the same reactants reagents order described for the Yield-BERT for Chapter 4.

2.7 NextMove reaction tagging

NameRxn[158] is a software tool developed by NextMove Software that automates the extraction and
tagging of reaction types from the chemical literature. Using a large rule-base of known reaction mech-
anisms and transformations, NameRxn categorizes reactions—such as those extracted from pharma-
ceutical ELNs or literature—into a NameRxn code, such as "3.1.1 Bromo Suzuki coupling," and assigns
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an RXNO ontology identifier, such as "RXNO:0000140." The RXNO ontology, maintained by the Royal
Society of Chemistry, provides a standardized framework for identifying named reactions.
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3 Data

Eins, zwei, drei, vier
Fünf, sechs, sieben, acht
One, two

Kraftwerk, Nummern

In this chapter, I provide a detailed description of the datasets used in this research. The datasets
were obtained in tabular formats, with columns representing reacting species, catalysts, reagents, reac-
tion conditions, and reaction yields. These datasets serve as the foundation for developing and testing
the machine learning models applied throughout the research.

3.1 Buchwald-Hartwig HTE Dataset

The Buchwald-Hartwig HTE (High-Throughput Experimentation) dataset, published by Ahneman et al.
[127], is a key dataset used for studying the Buchwald-Hartwig amination reaction, a vital carbon-
nitrogen bond-forming reaction in organic chemistry. This dataset was generated through systematic
experimentation and varying reaction parameters such as catalysts, ligands, bases, solvents, and tem-
peratures. The dataset includes thousands of reactions, providing yield data for each, making it ideal
for reaction yield prediction tasks. A more detailed discussion of the dataset’s cleaning and preprocess-
ing steps is provided in Chapter 4. Figure 3.1a illustrates the yield distribution of the reactions in this
dataset, highlighting its variability and the range of conditions tested.

3.2 AstraZeneca Buchwald-Hartwig ELN Public Dataset

This dataset was first introduced by Saebi et al. [147] and consists of 1000 instances of the Buchwald-
Hartwig reaction collected from AstraZeneca’s internal electronic lab notebook (ELN) entries. It has
been filtered to include only publicly available data, ensuring the confidentiality of proprietary com-
pounds. The reactions are accompanied by detailed information on reactants, catalysts, and yields.
Figure 3.1b presents the yield distribution for this dataset.

(a) Ahnemann HTE Buchwald-Hartwig reactions yield distribu-
tion.

(b) AstraZeneca public dataset Buchwald-Hartwig reactions
yield distribution.
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(a) Reaxys dataset Buchwald-Hartwig reactions yield distribu-
tion.

(b) USPTO dataset Buchwald-Hartwig reactions yield distribu-
tion.

3.3 Reaxys Dataset

The Reaxys dataset [90] was accessed through AstraZeneca’s internal scrape of the Reaxys database,
which compiles chemical reactions from the scientific literature using text mining algorithms. Text recog-
nition is not perfect, so certain chemical structures or yield inaccuracies are present. Nevertheless, this
dataset covers various reactions, providing valuable insights into yield outcomes under diverse condi-
tions. The specific reactions used in my research are discussed in Chapters 6 and A, where the yield
distributions are visualized. Figure 3.2a presents the yield distribution of the reactions after applying a
customized data cleaning procedure, further described in Chapter 4.

3.4 USPTO Dataset

The USPTO (United States Patent and Trademark Office) dataset [2] is a well-established resource in
computational chemistry, containing millions of reactions extracted from patent documents. It includes
information on reactants, products, catalysts, and reaction conditions, allowing researchers to use this
dataset as a benchmark for yield prediction and retrosynthesis. Some parsing errors are inevitable as
the dataset was generated via text parsing from patent filings. In this work, I utilized a subset of the
USPTO data and its yield distribution is shown in Chapter 6. Additional yield distributions for data used
in Chapter 4 can be found in Figure 3.2b.

3.5 AstraZeneca ELN Internal Dataset

This dataset was derived from reactions conducted within AstraZeneca from 2008 to 2024. These reac-
tions were logged in AstraZeneca’s ELN system and later transformed into a structured, tabular format
accessible through internal servers. It contains many reactions, including detailed information about
reactants, catalysts, solvents, and yield outcomes. The yield distributions for the subset of reactions
used in this research are presented in Chapters 6 and A.

3.6 Enamine Dataset

Enamine Ltd provided the Enamine dataset and consists of two temporal subsets: Enamine 2M and
Enamine 280K. The Enamine 2M dataset contains approximately 2 million reactions from 2015-2019,
while the Enamine 280K dataset includes 280,000 reactions from 2019-2021. General yield distribu-
tions for these datasets are illustrated in Chapter 5, while more detailed yield analyses for specific
reaction types are presented in Chapter 6.
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4 Data source and diversity matters for yield
prediction

I know the pieces fit.

Tool, Schism

Adapted with permission from "When Yield Prediction Does Not Yield Prediction: An Overview
of the Current Challenges"[115]. Copyright 2023 American Chemical Society.

4.1 Objectives

In this chapter, I investigate the data problems that influence medium- and large-scale data model-
ing scenarios. As an example of a challenging reaction, I use the Buchwald-Hartwig reaction and its
complex impact on the modeling process and the feasibility of modeling in general.

This section is structured into two cases: HTE and real-world data modes, corresponding to modeling
using the HTE Buchwald-Hartwig dataset and modeling with USPTO and Reaxys Buchwald-Hartwig
reaction selections, respectively. The Buchwald-Hartwig reaction is important in the pharmaceutical
industry and has received attention in the modeling community. Despite the attention, there are still
few successful cases of it, as it is an example of a reaction with inherent complexity determined by the
choice of ligands and conditions.

4.2 HTE data mode: HTE Buchwald-Hartwig amination yield prediction

Ahneman et al. contributed significantly to the yield prediction with their groundbreaking work on the
Buchwald-Hartwig reaction, Figure 4.1, within a high-throughput experimentation framework[127]. The
reaction dataset in this work was generated using high-throughput experimentation in three 1536-well
plates, enabling exhaustive variation of reaction components. The initial dataset retained 3955 reaction
data points after eliminating essential control experiments and reactions involving the additive 7. This
work used 15 aryl halides, 23 additives, four palladium catalysts, and three bases.

Ahneman et al. used a range of molecular properties derived from DFT-level theory simulations of the
reaction components as descriptors. These descriptors included the HOMO and LUMO energies, NMR
shifts, dipole moments, electronegativities, and others. The authors evaluated several machine learning
models, ranging from linear models, k-nearest Neighbours, Random Forest Regression, Support Vector

Figure 4.1 Buchwald-Hartwig Amination reaction[127] scheme
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Regression, and Bayes generalized linear models to a shallow Artificial Neural Network. Their findings
pointed towards the Random Forest model as the top performer.

Their research, however, did not go without contention. Chuang and Keiser critiqued their methodol-
ogy, presenting evidence that substituting the DFT descriptors with random values or adopting simple
one-hot encoding yielded comparable model performances[128]. They posited that the significance
Ahneman et al. attributed to the DFT features might have been overstated. Instead of dismissing
these claims, Ahneman and his team acknowledged this critique. They concurred on the importance
of integrating random controls in subsequent research, emphasizing its critical role in enhancing the
robustness and validity of future work[223].

This dataset possesses several unique characteristics worth noting in the context of yield prediction.
Firstly, it contains vast, dense reaction data encompassing diverse combinations of reactants, ligands,
and reagents, all annotated with the respective yield. This enables the visual representation of the data,
as shown in Figure 4.2, clustered into different regions colored by yield. It is possible to identify areas
with low and high yields from that.

Figure 4.2 t-SNE (t-distributed stochastic neighbor em-
bedding) plot for the Buchwald-Hartwig High-Throughput
Experimentation dataset, based on DRFP features.
Clusterized with K-Means, number of clusters=14.

Furthermore, the high data density and the
subsequent cluster analysis offered valuable in-
sights into the scenarios where specific ligands
in the HTE setup resulted in suboptimal yields.
A more comprehensive examination of this phe-
nomenon was undertaken in the study by Fitzner
et al.[176].

The consistent experimental setup maintained
throughout the entire HTE campaign ensured
the dataset was conducive to accurate predic-
tions of numerical yield values. In such a low-
noise environment, the model is more capable of
discerning patterns from the relevant reactions,
capturing critical information from adjacent data
points, and making accurate extrapolations, re-
sulting in highly precise predictions.

Nevertheless, the constraints of the HTE
datasets must be recognized. The data is bound
by the specific experimental design employed,
implying that the model’s predictive capability is
limited to the scope of this design. Predicting the
reaction outcomes for ligands or conditions absent from the dataset could be unreliable or even unfea-
sible, given the absence of respective training data. This underlines the importance of assessing the
applicability of the model domain before its deployment.

I undertook experiments to replicate existing results and evaluate the model’s generalization capabil-
ities to obtain a more comprehensive understanding of the state-of-the-art approaches applied to this
dataset.

I decided to employ two modeling approaches that reflect current trends in reaction yield modeling:

• A classical tree- and kernel-based ML models utilizing reaction fingerprints.

• The Yield-BERT model, utilizing SMILES encoding, as reported in[125]

Reaction fingerprints (ECFP4,6[200], RXNFP[1], DRFP[201]), described previously in more details in
Section 2 were used for SVR[215], RFR[212], and Gradient Boosting Regression[214] (GBR) models.
For the modeling process, I used Scikit-Learn[209] Python library.

The selected model types also exemplify various Machine Learning approaches. Random Forest
Regression and Gradient Boost Regression are ensemble methods; the former ensembles decision
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Figure 4.3 Comparison of the GBR model’s performance using different encodings and fingerprints, trained with
a random 80:20 ratio and 5-fold cross-validation. RMSE - Root Mean Square Error, R2 - determination coefficient.
The red line represents numpy linear fit. RFR and SVR models were excluded from the main figure for clarity,
and their detailed results can be found in the Appendix Figure A.1.

Cluster № 1 2 3 4 5 6 7 8 9 10 11 12 13 14

RMSE 7.71 8.50 12.97 13.54 4.77 23.66 13.33 7.66 9.15 5.59 4.46 17.90 9.56 7.78
R2 0.90 0.86 0.66 0.73 0.96 0.36 0.76 0.88 0.87 0.96 0.98 0.40 0.84 0.92

Mean yield 28.10 25.19 23.33 53.01 30.31 45.94 58.16 23.04 31.28 38.45 40.38 31.75 21.82 35.77

Table 4.1 Leave-one-out cluster performance of Gradient Boosting Regression model based on DRFP features.
For the visual representation of the model’s performance, see Figure A.4.

trees, while the latter ensembles weak models. On the other hand, Support Vector Regression utilizes
support vector machines to learn the best-fit hyperplane to categorize the data.

I chose these different fingerprint methods to compare various approaches for encoding reactions as
objects. RXNFP represents a pure data-driven encoding approach, while ECFP and DRFP represent
structural approaches. This comparison allows us to gain insights into the strengths and limitations of
each method in the context of yield prediction.

For embedding purposes and to avoid any possible bias connected to how different methods align
the reaction components, I use the following order to build the reaction object:

reagents.reactants >> products

Initially, the models performed modestly on a random split, as shown in Figure 4.3. The results
reveal that, among the simple models, the DRFP[201] encoding exhibits the best performance, slightly
outperforming ECFP4 fingerprints.

I conduct further evaluations on the different parts of the chemical space occupied by the dataset.
In Figure 4.2, the t-SNE dimensionality reduction performed on DRFP features and the fact that the
dataset nicely separates into different clusters. I employed a leave-one-cluster-out validation setup with
clusters defined based on the DRFP features. As summarized in Table 4.1, the results indicate generally
satisfactory performance, albeit with some variability in clusters that may be considered combinations
of smaller subclusters.

Upon analysis of the results, it became evident that the model’s efficacy tends to diminish less when
the mean of a given cluster is closer to the mean of the overall distribution. Conversely, there is a
marked decline in performance when the yield of a cluster deviates substantially from the overall mean.
This indicates that the model probably struggles when predicting yields at more extreme values.

Furthermore, I investigated the model’s ability to extrapolate across reactants by executing a leave-
one-reactant-out validation, explicitly focusing on aryl halides in Table 4.2 one could see the results of
the model trained on leave-one-reactant-out. The visual results are depicted in Figure A.5. The first
column row corresponds to chlorine-associated aryl halides, the middle column to bromine-associated
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Left-out aryl halide RMSE R2 Mean cluster yield

Chlorine(Cl) Bromine(Br) Iodine(I) Cl Br I Cl Br I Cl Br I

12.29 10.69 15.41 -0.49 0.38 -0.31 12.51 26.90 33.71

14.66 15.35 12.01 -13.84 0.61 0.75 3.87 43.51 52.58

14.68 10.86 12.90 -3.36 0.64 0.48 1.94 25.89 32.54

18.91 12.78 12.82 -0.52 0.8 0.8 13.85 43.0 51.26

10.51 11.09 14.37 0.85 0.82 0.71 43.48 52.45 58.61

Table 4.2 The performance of Gradient Boost Regression model on DRFP features with leave-one-aryl halide
out. For the graphical representation of the performance, see FigureA.5.

aryl halides, and the last column to iodide-associated aryl halides. The model performs moderately well
when the left-out species is a chemically reactive aryl halide. Still, the performance deteriorates when
the left-out species is less reactive, for example, chlorine-containing aryl halides. This observation
highlights the model’s susceptibility to variations in the chemical properties of the reactants and its
potential limitation to generalize across the chemical space, even for a well-defined single chemical
reaction type.

I also accessed Yield-BERT properties related to the BH HTE dataset, and they showed the same
results, as reported in [125], although, on leave-one-reactant out, it showed better performance than
simple models. See Appendix Figure A.3 for more information.

4.3 Real-world data mode: Diverse datasets Buchwald-Hartwig
amination yield prediction

Figure 4.4 Violin plot for yield distribution for the
datasets derived from public data and Reaxys.

In this section, I investigate the case that il-
lustrates the challenges of yield prediction and
emphasizes the importance of advancing our
knowledge in conditions encoding and enhanc-
ing the prediction methods overall. I showcase
various aspects of yield prediction, underscoring
the complexity involved.

To obtain the reaction data, I used the web in-
terface of Reaxys[90](7K entries), access pro-
vided by the Technical University of Munich,
and other available open-source datasets, such
as AZ ELN 750[147](500 entries), Doyle’s HTE
Buchwald-Hartwig[127](4K entries), and data
extracted from USPTO[2](6K entries). The reac-
tions were cleaned from duplicates and invalid
entries (non-parsed via RDKit), then mapped
with RXNmapper[1], and were classified with
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(a) Conditions excluded (b) Conditions included

Figure 4.5 The t-SNE plot depicts the distribution of reaction encodings based on DRFP representations. In
A.11a, where all conditions are excluded, the encodings show an even distribution in hyperspace, but the amount
of BH HTE reactions is reduced to only 15 since it is the amount of the unique aryl halides on which the reaction
conditions were tested. In A.11b, when conditions are included, a notable separation occurs between the BH
HTE dataset and others. This indicates that condition representations introduce diversity, adding a new layer of
complexity to the encodings. I investigate the data recordings more in detail in Figure 4.7.

NameRXN[158]. Reaction data labeled with the Next Move classes 1.3.1, 1.3.2, 1.3.3, 1.3.4 (Chloro-,
Bromo-, Iodo-, Trifluoxy-Buchwald-Hartwig Amination, correspondingly) was selected.

As shown in Figure 4.4, the datasets obtained from academic experiments and industrial patents are
characterized by higher reported yields, whereas datasets derived from Electronic Laboratory Notebook
records and High-Throughput Experimentation tend to often contain lower-yielding reaction data points.
It is worth noting that while the US Patent and Trademark Office (USPTO) dataset demonstrates a
similar, relatively uniform, yield distribution for this specific reaction, it is widely acknowledged that the
general distribution of the USPTO data is significantly skewed towards high-yielding reactions [125].

Furthermore, I analyzed the distribution of reaction embeddings using t-SNE. This will serve as a
qualitative analysis of the applicability domain of the models. Notably, when reagents were included,
the High-Throughput Experimentation dataset exhibited distinct separation in the DRFP embeddings,
as illustrated in Figure 4.5. Conversely, Reaxys, USPTO, and AZ ELN datasets occupied dissimilar
regions within the chemical space. This discrepancy could be attributed to variations in the fundamen-
tal recording of reaction components, particularly in the context of Palladium catalysts; I investigate
this more in Figure 4.7. This observation leads me to propose the hypothesis that Buchwald-Hartwig
reaction experiments documented in patents and articles may demonstrate a higher degree of reagent
diversity than HTE experiments and that we lack a general procedure for standardized recording of the
reagents. I touched on this topic in the Introduction, and the modeling supports the necessity of better
agreement on the standardization of recording reagents and catalysts of reactions.

Using the extracted data, I modeled using the same procedure detailed in the previous section.
The analysis of the model performances, as reflected in the RMSE and R2 in Figure 4.6, reveals that
the results achieved are unsatisfactory. When tested on Buchwald-Hartwig reaction data extracted
from various sources, simple models perform the same as the more complex Yield-BERT model, see
Appendix Figure A.6. The result gives us moderate performance with R2 0.23 on the inner USPTO
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Random Forest Regression USPTO train

Figure 4.6 RFR model trained on USPTO Buchwald-Hartwig selection and tested on other datasets. For clarity,
I only show DRFP fingerprint performance in these plots. Other fingerprints’ performance can be found in the
Appendix.
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(a) USPTO ID01456115 example

(b) AZ ELN example

(c) BH HTE example

Figure 4.7 While essential components like aryl halides, amines, palladium catalysts, ligands, and bases are
commonly used, variations in experimental conditions and the presence of additional additives or reaction com-
ponents highlight the complexity of standardizing data for this reaction. This issue becomes particularly evident
when comparing palladium catalyst representations across different data sources. For example, the catalyst ap-
pears "disassembled" in the USPTO entry, is represented as bare palladium in the AZ ELN, and takes the form
of a complex pre-catalyst in the BH HTE dataset. These divergent representations of the catalyst get encoded
differently and likely contribute to its separate clustering in t-SNE analysis.

test set and negative R2 for test sets. This lack of performance and generalization ability could stem
from various factors, including noise within the data. However, as indicated by the t-SNE plots in Figure
4.5, there is considerable overlap between the USPTO and Reaxys dataset, indicating that the Reaxys
reactions are within the applicability domain of the USPTO-derived model. The same can be said for at
least the AZ ELN data but less for the HTE dataset. This observation implies that current featurization
methods might struggle to capture the intricate nuances inherent to specific reactions.

Consequently, the challenges in capturing the intricate chemistry inherent in this specific reaction are
not unexpected, and the results of these experiments corroborate the challenges posed by the vast and
diverse chemical space. I will investigate this more in the following chapters, highlighting the challenges
connected with data standardization and the lack of quality of the data derived from reliable sources.

4.4 Conclusion

This study shows the weaknesses of the current encoding methods and the hardships in tackling met-
alorganic compounds widely used in popular chemical reactions. One could also see that on the diverse
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data, current SotA models struggle to generalize, but all the models perform similarly well on the con-
fined reaction space, showing that there are complexities with yield as a metric when used on the wide
dataset and even on selected subspaces of a confined dataset. This leads to a desire for better data
homogenization via more deliberate data preparation and filtering with the hypothesis that it may help
refine the data selection and make it more learnable. I will further investigate the influences of the
elaborate data preparation in Chapter 6.
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5 Conditions-enriched Enamine yield modeling

gonna make it right
gonna get it done
when it’s comin’ over me
what i can’t deny

Mariusz Duda, How To Overcome Crisis

5.1 Objectives

This study was performed during a one-month-long secondment in Janssen in February 2023. The ob-
jective of this study was to finetune the model called BEE or BERT-Equivalents-Enriched Embedding,
developed by Janssen scientists on proprietary Enamine data from Enamine chemists’ experiments
over 2015-2019 as the training set (Enamine2M in the text) and 2019-2021 as the test set (Enam-
ine280K in the text). This experiment was intended to evaluate the model trained on Enamine data on
Janssen internal data and vice versa. This would have shown the possibility of the transferability be-
tween differently derived data. The objective of this study was also to understand whether it is possible
to develop a general reactivity model that would generalize well over a broad chemical space.

5.2 Paper summary

Neves et al.[148] article describes the model used for this project, emphasizing the importance of inte-
grating reaction condition information into the model. Their motivation stemmed from the observation
that reactions with identical reactants can yield different results under varying conditions, a factor often
overlooked by current models. They employed the concept of general reactivity modeling and training
across all reaction classes. Previous regression models on general reactivity have shown poor perfor-
mance, partly due to the dataset’s bias toward high-yielding reactions. To address this, they opted for a
binary classification model with a yield threshold of 5%.

Key components of their methodology include:

• The use of Yield-BERT as a base model.

• An additional layer with IDs (classes) corresponding to the concentrations of reactants and prod-
ucts.

• Pre-training on the USPTO dataset, where all IDs were set to 0 due to the absence of concentra-
tion information in USPTO.

The paper introduces a key innovation by embedding molecular ratios into the model. The model
captures fundamental chemical differences influencing reactivity by incorporating the molar ratio be-
tween reagents and the limiting reactant. This approach enables more precise predictions of reaction
outcomes based on the reactants’ stoichiometry.

One limitation of the SMILES representation is the dual role of the molecule separator "." which
also denotes ionic bonds. A new embedding layer is introduced, assigning different representations to
distinguish these roles, as represented in Figure 5.1. This ensures a continuous and accurate depiction
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Figure 5.1 Principle of encoding additional conditions into the SMILES string on the example of a random reac-
tion. The figure is taken from the original paper.[148]

of molecular structures, such as salts. This differentiation leverages existing molecular entity separation
in the Janssen ELN, eliminating the need for additional algorithmic solutions.

The methodology draws an analogy to natural language processing, where "segment id" helps dis-
tinguish between questions and answers. Similarly, the BEE model treats reactants as the "question"
and products as the "answer." This distinction is embedded into the model, enhancing its ability to
differentiate between the roles of molecules within a reaction.

In cases where specific information is absent, particularly for solvents, the equivalent class in the
embedding can infer the molecule’s role. This feature is crucial for understanding the impact of various
molecules on reaction outcomes. For instance, the model can identify that certain solvents or catalysts
do not contribute atoms to the product but still influence reactivity.

The practical implementation involves converting molecules to embedding IDs, with each token, such
as the separator ".", assigned a unique ID based on its context. This consistent representation helps
the model learn the roles and impacts of different molecules. Numerical values like molar ratios, moles,
and concentrations are converted into categorical IDs based on predefined thresholds derived from
chemical knowledge and data distributions.

The new embedding layer is initialized during pre-training but remains inactive, with placeholders for
the additional information. This setup allows the embedding layer to be enriched during fine-tuning by
integrating vectors for each "Equivalent ID" with the standard embedding. This enrichment incorporates
various aspects such as molecule roles, stoichiometric data, and reaction conditions, thereby enhancing
the model’s predictive capabilities.

5.3 Methodology

To apply this model to Enamine historical data, the data required preprocessing. The data did not have
equivalents as described in the original work. Still, it had the time of reaction and temperature of the
reaction, which were provided as a dictionary of the reaction protocol and the corresponding standard-
ized time and temperature of this protocol. Each unique combination of time and temperature was
assigned to the reaction as "segment id" for all reaction tokens. Reactions went through preprocessing
as described in the paper and as described in[185], which involved aromaticity fixing, functional groups
transformation into single representation form, and atom-to-atom mapping. For atom-to-atom mapping,
RXNMapper[1] was utilized, and molecules were processed with CGRTools[206]. I used a pre-trained
model on USPTO for 20 epochs, provided in the supporting paper repository, and I fine-tuned this
model using Enamine2M data and Enamine280K as a hold-out test set to evaluate the training results.
The data had class imbalance, as shown in Figure 5.2. I trained the model in a binary classification
mode, where class 0 were Enamine reactions that yielded less than 5% and class 1 more than 5%. I
also trained the model in a regression mode with an actual reaction yield. I also trained the model in
the regression mode, which was gated to classification on the evaluation stage using the same thresh-
old used for training classification models. Two losses were used: cross-entropy for classification and
RMSE for regression.
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(a) Enamine2M (b) Enamine280K

Figure 5.2 I illustrate yield numeric value and class distributions after applying threshold at 5%. These plots show
a significant imbalance in classes of Enamine data.

5.4 Results and Discussion

I trained a number of models, and the general summary of the most important experiments performed
during the internship is summarized in Table 5.1. I started from a vanilla model trained in classification
mode for 25 epochs and tried to improve its performance. During training, the model exhibited instability
in classification mode, frequently getting stuck in a local minimum where it classified all data points as
class 1. I implemented class-weight adjustments to address this and counteract the class distribution
imbalance, but it didn’t increase performance. I also addressed this by training the models in regression
mode and applying a classifier gate on the prediction stage to evaluate the model. Additionally, I
experimented with various dropout and learning rates, though these adjustments had minimal impact
on performance.

The model’s performance was suboptimal in regression mode, with an RMSE exceeding 25% and
R2 less than 0.1. The inclusion of enrichment did not statistically improve performance. One can see
the performance of the best model on the Enamine280K test set in Figure 5.3.

Despite time constraints during the internship, significant insights were gained, although full explo-
ration of all potential solutions was impossible.

The persistently low performance and lack of substantial improvement with enrichment are likely due
to the low informational contribution of the dataset. The approach of assigning general classes to entire
reactions rather than to individual reacting species may be misaligned with the dataset’s structure.
Additionally, the yield data from Enamine, recorded as crude or using various purification methods,
might not accurately reflect true reactivity, and this critical information was missing from the dataset.
Also, the hypothesis on the general reactivity model did not hold true, as it was shown that the model’s
performance was not good enough even within the same dataset.

Moreover, the approach of incorporating equivalents is not broadly applicable, as this type of data
exists in only a very limited number of datasets, making it challenging to apply to other sources, such
as USPTO or Reaxys.

Unfortunately, I could not work directly with Janssen data or transfer the model to their servers, which
would have been ideal for testing the hypothesis as intended.

Looking forward, continued work on this project could involve direct communication with Enamine
representatives to obtain equivalents for the reactions included in the dataset. If this is not feasible,
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Additional
information

Test
set

Epochs
number

Eqvs
incl

Class
weight

Less
dropout

F1 Score ROC AUC MCC Precision

no Inner
hold-out

25 yes no no 0.928 0.778 0.676 0.873

no Inner
hold-out

25 no no no 0.926 0.773 0.669 0.870

no Enamine 280K 25 yes no no 0.887 0.550 0.109 0.875

no Enamine 280K 25 no no no 0.886 0.547 0.102 0.874

no Inner
hold-out

30 yes yes yes 0.867 0.666 0.393 0.817

no Inner
hold-out

30 no yes yes 0.864 0.666 0.386 0.819

no Enamine 280K 30 yes yes yes 0.865 0.539 0.074 0.873

no Enamine 280K 30 no yes yes 0.859 0.538 0.071 0.873

Regression as
classification

Inner
hold-out

40 yes no yes 0.852 0.5 0.0 0.742

Regression as
classification

Inner
hold-out

40 no no yes 0.883 0.621 0.436 0.791

Table 5.1 Results of final training epoch for the models trained as classifiers. All the models described there have
the base model as 20-epochs pre-trained USPTO. I tried to lower the dropout rate of the model since it was high,
and the high dropout rate negatively impacted the training, making it more unstable. Also, I tried to balance the
class’s contribution to the training, assigning more weight to underrepresented class. One could see that the best
performance was achieved using the vanilla model with no adjustments and "equivalents" included.

(a) "equivalents" included (b) "equivalents" excluded

Figure 5.3 Confusion matrices comparing the model’s performance, fine-tuned on Enamine2M dataset on a test
set of Enamine280K, with and without enrichment. The model: 25 epochs, no class weight, original dropout rate.
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Janssen scientists could be asked to prepare a dataset with the same label assignment as the Enamine
data, where each reaction is assigned a label based on a unique combination of temperature and time.

By aligning the datasets in this manner, it would be possible to rigorously test the models’ transfer-
ability between these two datasets, thereby advancing the understanding of their applicability across
differently derived data.
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6 Multi-class yield prediction

What if you could look right
Through the cracks?
Would you find yourself
Find yourself afraid to see?

Nine Inch Nails, Right Where It Belongs

6.1 Objectives

The general objective of this project was to develop yield models that could be variable for routine
usage to predict whether the new reactions for the synthesis of several classes have poor, moderate, or
good yields. In more detail, I wanted to test whether the transferability problem discussed in previous
chapters would be a problem if the training of the models is done on diverse datasets extracted from
the public domain (USPTO) and more high-quality data from Reaxys and internal data of AstraZeneca
and Enamine. The research also focused on developing a robust pipeline for data preprocessing and
cleaning using the textual description of reaction procedures. The reaction yield as a regression metric
is hard to predict since, as discussed in Section 1, the natural mean standard deviation of the datasets
available is around 16%, which leads to the decision to try to mitigate this challenge by binning the
data into several classes. In this chapter, I will focus on the amide coupling reaction findings, and other
reaction information will be described in the Appendix section.

I also involved chemists from the automated synthesis lab to help provide their library experiments for
some real-life applicable validation of the models, which I discuss in more detail in the results section
of this chapter.

6.2 Data

I focused on performing modeling on some selected reaction classes since the global reactivity mod-
eling is not feasible, as mentioned by Schwaller et al.[125]. I have started with the hypothesis that the
models should learn in-domain knowledge of specific reaction specifics to render them useful for every-
day use. Of course, in the future, an ensemble of such trained on specific reaction class models could
play as a "global reactivity model." My second hypothesis is that a reliable, good model should be able
to perform well within the same applicability domain over several different datasets. I work further to
make the applicability domain more precise with reagents curation and purification filtering of the data,
which I believe would help to make models more robust and precise. So, I had two hypotheses in mind
that could be summarized as: a reliable, useful model should perform well in a selected applicability
domain that I define as a reaction belonging to a selected reaction type.

6.2.1 Reaction classes utilized

I selected specific reaction classes to ensure transferability between datasets and model-challenging re-
actions that were previously researched. Only two reaction types were present in the Enamine dataset:
SnAr and amide coupling. These were also selected from ELN, Reaxys, and USPTO. Additionally, I
chose Suzuki and Buchwald-Hartwig couplings, as they are currently considered challenging reactions
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in the field[224]. Also, I considered reductive amination reactions in my studies. These classes were
chosen to leverage transferability across different datasets and address complex reactions. I illustrate
schemes of these reactions in Figure 6.1.

As a rough approximation of reaction classes, I used NextMove software classification[158] of reduc-
tive amination, Buchwald-Hartwig couplings, Suzuki couplings, SnAr, and amide coupling reactions.
Although the NextMove reaction type tagging is very good already, it still misclassifies some reactions;
for example, the most misclassified instances are reactions tagged as SnAr but having transitional
metal catalysts, which should not be present in this reaction type. Further cleaning is achieved via
reagent curation. The class codes and text description are in Table A.2.

In this chapter, I will describe the results and findings for amide coupling, and the necessary infor-
mation for other reaction types can be found in the Appendix, Figures A8-A20 and Tables A3-A30.
It was interesting to look closely at amide coupling reaction since it is known to be successful with a
higher probability than Buchwald-Hartwig amination, for example, and predicting whether a given amide
coupling reaction will be high-yielding or low-yielding is especially useful.

6.2.2 Data collection

I utilized reaction data from multiple sources: AstraZeneca’s internal Electronic Laboratory Notebook
(ELN), Reaxys, USPTO, and Enamine.

From AstraZeneca ELN data, I also extracted a subset of library data (Library test in the text), the ex-
periments produced by the automated synthesis team. These libraries are HTE data but are often used
directly in biological assays after an automated purification procedure. Since this work on yield predic-
tion is partially done in collaboration with this team, this test set is important to include as it gives a possi-
bility to estimate the usefulness of such models for the library design to exclude the poorly yielding reac-
tions. This data was processed with ELN data, but it was held as a separate test set of high interest. All
data were presented in a table format, with columns including reaction SMILES, reagents, yield, ID, data
source, and more.

(a) Amide coupling

(b) SnAr, EWG stands for electron-withdrawing group and X stands for
halogen

(c) Reductive amination

(d) Suzuki coupling

Figure 6.1 Scheme of reactions studied in this section.

I used source XML tree files to extract
the data from the USPTO dataset,
which I parsed to extract information
on reaction SMILES, yields, reagents,
and reaction procedures. I illustrate
the general algorithm for extraction in
the Algorithm 1. As one can see, the
algorithm includes parsing XML files
and extracting a number of data fea-
tures regarding how the data should
be written out in a table format. This
also included pre-curation of yield val-
ues, as there are different values cor-
responding to one reaction in the orig-
inal files, and I take care of it.

Data from Enamine was previously
described in Chapter 5. Addition-
ally, AstraZeneca provided data from
Reaxys.

6.2.3 Yield curation

I implemented a data preprocessing
pipeline to minimize noise and ensure high-quality data. As I am working with the reactions derived



57 6.2. Data

Algorithm 1 Data Extraction and Curation Pipeline for USPTO data extraction

1: Input: USPTO raw data in XML files grouped by years
2: Output: Curated data ready for featurization and modeling
3: for each year folder in the dataset do
4: for each XML file in the year folder do
5: Traverse the XML tree structure
6: Extract the following fields:
7: documentId, paragraphText, paragraphNum, reactionSmiles, PERCENTYIELD, CALCU-

LATEDPERCENTYIELD
8: Perform a sanity check:
9: if number of paragraphNum entries == number of reactionSmiles entries then

10: Store the results in a table with columns:
11: documentId, paragraphNum, reactionSmiles, PERCENTYIELD, CALCULATEDPER-

CENTYIELD
12: end if
13: end for
14: end for
15: for each record in the table do
16: if PERCENTYIELD is absent then
17: Use CALCULATEDPERCENTYIELD
18: else if CALCULATEDPERCENTYIELD is absent then
19: Use PERCENTYIELD
20: else if PERCENTYIELD == CALCULATEDPERCENTYIELD then
21: Use the yield value
22: else if absolute difference between PERCENTYIELD and CALCULATEDPERCENTYIELD is too

large then
23: Discard the instance
24: end if
25: end for
26: for each reaction in the curated data do
27: Map reactions and separate reagents
28: if reaction is not sanitizable then
29: Discard the reaction
30: end if
31: end for
32: The curated data is now ready for featurization and modeling with Yield-BERT and Chemprop
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from different data sources with different information available, I need to distinguish them and treat
them differently.

ELN

ELN data contains a column "conclusion phrase" that notifies the reader of the general conclusion
about the experiment. There are several phrases, and the phrases that I considered as indicative of
interesting data were only three: "Reaction successful," "Test reaction failed," and "Reaction failed."
The two latter were especially valuable since they provided negative data points to my dataset that
are negative with high certainty. I also selected reactions with a positive yield that has no conclusion
phrase. Still, all other instances with no conclusion phrase and 0 yield were discarded due to high
uncertainty around this value since 0 yield records with no explanation could mean different than the
reaction failed to happen.

USPTO, Reaxys, Enamine

I applied a different treatment to reactions from these datasets due to the lack of conclusive phrases
indicating the experiment’s outcome. Specifically, I excluded all reactions reported with a 0 yield, as
these datasets often use 0 in the yield field when the actual value could not be reliably parsed from
text. This approach is common in sources like Reaxys and USPTO, where the 0 yield value often
reflects parsing challenges rather than a true experimental outcome, introducing substantial uncertainty.
Consequently, I excluded these 0-yield reactions to avoid potentially significant noise in the data. The
origin of the 0-yield values in Enamine was also unclear, so these were similarly discarded.

While this decision improves data quality by removing ambiguous entries, it does, unfortunately,
eliminate a considerable portion of the negative data, adding complexity to the dataset and limiting the
representation of truly unsuccessful reactions.

General

The preprocessing pipelines were implemented with a set of assumptions that are described now. I
also describe the algorithm of yield preprocessing in the first part of Algorithm 2.

• Any reactions with yield values over 100% were discarded to ensure data accuracy.

• The 0-yielding reaction was dropped for duplicate reactions if the non-0-yielding pair was tagged
as successful.

• Regular duplicates with identical yield values were dropped with the first one left.

• Duplicates with significantly different yield values (differences greater than 1%) were retained to
preserve natural data variability.

6.2.4 Reagents curation

To ensure high-quality data selection, I developed a comprehensive manual dictionary for the five re-
actions chosen for study. This dictionary was based on the frequency of encountered reagents, cat-
egorized into solvent, base, acid, reducing agent, oxidizing agent, source of metal, source of ligand,
and activator. Each reagent could fall into multiple categories. I tagged the most popular reagents with
an instance count of over 30. Reactions with rarer reagents were excluded. Also, reagents could be
dropped if they are unsuitable for the reactions. In Figure 6.2, I illustrate the subselection of the reagents
that belong to different types of reactions but not to SnAr, highlighting the importance of well-rounded
reaction curation and not overly relying on proprietary software tagging.
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Algorithm 2 Data Preprocessing Pipeline

1: Input: Table original reaction data from AZ, Reaxys, USPTO, and Enamine
2: Output: Cleaned and preprocessed reaction data
3: Yield cleaning
4: for each reaction in the dataset do
5: if reaction yield == 0 AND no conclusion phrase then
6: Remove the reaction from the dataset
7: else if source is AZ then
8: if conclusion phrase indicates "Test reaction failed" then
9: Remove the reaction from the dataset

10: end if
11: end if
12: if source is Reaxys OR USPTO OR Enamine then
13: if reaction yield == 0 then
14: Remove the reaction from the dataset
15: end if
16: end if
17: if reaction yield > 100 then
18: Remove the reaction from the dataset
19: end if
20: end for
21: for each reaction pair (r1, r2) in the dataset do
22: if r1 and r2 are duplicates then
23: if one reaction has yield == 0 AND the other is tagged as successful then
24: Remove the 0-yielding reaction
25: else if both reactions have identical yield values then
26: Remove one of the duplicates
27: else if difference in yield values is greater than 1% then
28: Retain both reactions
29: end if
30: end if
31: end for
32: The cleaned data is now ready for reagent cleaning or modeling
33: Reagent cleaning
34: for each reaction in the dataset do
35: if reaction reagent is NOT in essential reagents then
36: Remove the reaction from the dataset
37: end if
38: end for
39: The cleaned data is now ready for purification cleaning or modeling
40: Purification cleaning
41: for each reaction in the dataset do
42: if reaction procedure text does NOT contain key phrases then
43: Remove the reaction from the dataset
44: end if
45: end for
46: The cleaned data is now ready for modeling
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(a) ECFP-based t-SNE (b) Kallisto-based t-SNE

Figure 6.3 The t-SNE plot depicts the distribution of reaction encodings based on ECFP and Kallisto proximity
shell representations for amide coupling. I provide more details on the plot data points selection in the text. As
one can see, the distribution of the feature space is uniform, and there are no distinct clusters populated by some
datasets and not by others.

To refine the selection of reaction classes, I defined "essential reagents" necessary for each reaction
type: an activator for amide coupling, a source of metal for Buchwald-Hartwig and Suzuki coupling, the
base for SnAr, and a reducing agent for reductive amination, as mentioned above the reaction arrows
in Figure 6.1. Reactions lacking these essential reagents were filtered out.

I used RDKit to sanitize and canonicalize the reagent molecules to avoid missing the same reagents
due to ambiguity in SMILES notation. Sanitization removes molecules that don’t pass sanitization
checks in RDKit, which involves valency checks, aromaticity checks, and other checks for the molecule
to be chemically valid. The canonicalization of a molecule is the process of outputting a unique canoni-
cal SMILES, which is important since a molecule could have many different SMILES representations, in-
cluding non-canonical SMILES and tautomers.

Figure 6.2 Wrong reagents were encountered during
reagents tagging for the SnAr reaction.

Although this approach is not ideal, I aimed to
test the hypothesis that introducing filters based
on reagents along with their roles would improve
the performance of the models since I would
eliminate the noise connected to false reaction
tagging.

I also illustrate the t-SNE distribution of the
data after this data filter based on ECFP and
Kallisto features in Figure 6.3. Since plotting ev-
ery instance on the plot is not possible, I needed
to make a selection of data points to get rep-
resented on the plot. This plot illustrates the
data selection based on the frequency of the es-
sential reagents of these reactions, so the data
points with more popular reagents get more rep-
resentation on this plot. I selected 1000 data
points from each dataset. One could see that the
data is distributed pretty homogeneously, with no
visible clusters populated by some data sources,
not others. For other reaction classes in the
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(a) ELN (b) Reaxys

(c) Enamine (d) USPTO

Figure 6.4 Float and class distributions of the yield after reagents filtering using thresholds determined by Optuna
trials. Colors indicate the classes after applying the thresholds defined by Optuna optimization with the lowest-
yielding class of under 10% in red, moderate class from 10% to 40% in blue, high moderate from 40% to 80% in
green, and top class from 80% to 100% in yellow.

Appendix, one could observe some variability
and formation of segregated clusters, although

mostly these clusters are populated with all representative datasets.
This is valuable insight since it provides an idea that the data I am working with is within the applica-

bility domain that I defined, and there are no significant discrepancies in the data.

6.2.5 Purification curation

I created a manual dictionary using raw text from reaction procedures to identify key phrases related
to purification methods. This allowed me to filter out reactions with crude yields, retaining only those
purified by column chromatography or other reliable methods, such as preparative LCMS or crystalliza-
tion. I hypothesized that it could improve data quality, allowing training higher quality models on lesser
data. The dictionary details can be found in the Appendix. The main point of such filtering was to filter
the reactions with the crude yields, which are known to be more optimistic and only leave the purified
reactions, thus showing an absolute value of yield of a given reaction.
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Unfortunately, only ELN and USPTO data had the raw text of the reaction procedures, while Reaxys
and Enamine did not.

I summarize the amount of data cleaned after each step of the cleaning pipelines in Tables A.3, A.4.
I also present the results for the amide coupling reaction training datasets in Figure 6.5. As one can
see, the quantity of data is dropping significantly, especially for USPTO, with the original selections
having 104.7K reactions; after the yield cleaning, it shortened by 2.5 times to 39.8K. After cleaning the
reagents, the amount was 23.5K; after purification cleaning, it was 16.8K, so it is almost tenfold less
left. The amount left is around a third or quarter for other reactions after reagent cleaning, as shown in
Figure6.5.

6.2.6 Data yield distribution

Figure 6.5 The data after the cleaning steps staked on
each other shows that yield cleaning is the most de-
manding step, and after it, the amount of data drops but
not too significantly. The illustration is for the amide cou-
pling reaction.

I illustrate the yield distribution among different
datasets of amide coupling after the reagents
cleaning step and divided by the classes, which
I later discuss in Results, in Figure 6.4. One
could see that due to the yield cleaning step that
removes 0-yielding reactions for all datasets,
except for ELN, lack representations of low-
yielding reactions. This was contributed by
the current reporting challenges in the litera-
ture, where the data from failed experiments
is not represented in patents, which USPTO
datasets consist of, and papers from which
Reaxys extracts the data, as well as patents,
included in Reaxys. One also can see a
peak of 100%-yielding reactions in the Enam-
ine dataset, which is an interesting finding sup-
ported by the fact that the company operates
with many quantitative reactions and has univer-
salized pipelines that operate on a limited num-
ber of protocols. One could also see that ELN
has well-represented middle and not-so-much
high-yielding reactions, compared to USPTO
and Reaxys, which have a high representation
of highly successful reactions.

6.3 Models

Since I have shown the challenges connected to different descriptors in the previous Chapter 4, I also
tested a slightly different but similar set of models and fingerprints to determine whether the model can
learn from high-quality data and predict data from other sources.

I used Yield-BERT[125] as the Natural Language Processing representative and Chemprop[207] as
the Graph Neural Network representative.

For the classical approach using fingerprints, I used ECFP and Kallisto proximity shell fingerprints to
represent the classical approach modeling. ECFP performance is a baseline for other models since it is
the simplest fingerprint to calculate and use, and its approach to calculating substructures is a classic
in chemoinformatics. Kallisto proximity fingerprint (abbreviated as Kallisto) is representative of a hybrid
methodology, which includes some knowledge of the chemical 3D structure of the molecule and quickly
calculated properties of the reactive center. The generation of Kallisto fingerprints and ECFPs was
discussed in Section 2.
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To get an initial guess on which classical model to use before using the classification to tune the
threshold values, I used the Python package LazyPredict, which I fitted to the regression task on whole
ELN data. I illustrate the findings in the Appendix Table A.5. The best-performing models were Ran-
dom Forest Regressor, ExtraTreesRegressor, and XGBRegressor. I also used the literature search for
current best-performing models on yield prediction and similar property prediction topics, and it sup-
ported my initial idea to use Random Forest as a model robust to overfitting, which is also known for its
capabilities of finding patterns in complex features[213].

Models were trained as described in the following:

• For training and evaluation on the inner hold-out test set, the model was trained on 80% of the
full data, and 20% of the data was used as a test set.

• The models were fit with the full dataset for evaluation on other datasets.

• For Library tests in ELN data, the subset of ELN data was selected as a test set using keywords,
and the model was fit on the rest of the data.

6.4 Results

6.4.1 Class optimization results

In a classification approach, it is crucial to define the classes of the target variable accurately, which,
in my case, is the reaction yield. This can be achieved by dividing the yield, originally a continuous
numeric value, into distinct classes based on threshold values. For instance, yields can be categorized
into multiple classes, with one class on each side of the threshold. I hypothesized that using 3-class
or 4-class designs would provide greater detail and insight than a binary classification (go/no-go) or
regression. This hypothesis is based on the observation that reaction yield deviates with a minimum
RMSE of 16%, and further improvement seems unlikely with the current hand-derived dataset.

To divide the data into three classes, I would need two threshold values; to divide the data into four
classes, I would need three values, correspondingly. I also hypothesized that the division would not
equally represent the available data distribution. For this, I would have needed to implement a strategy
for dealing with an unequal quantity of data points in each class. To perform this optimization of division
values, as well as the training parameters of the Random Forest Classifier model, we would need
to have two things: a good hyperparameter searching tool and good metrics to evaluate the models’
performance.

There are some hyperparameter optimization frameworks available; I decided to use the Optuna
framework[216] since it is easy to implement a custom objective function that would implement not only
a search of models’ hyperparameters but additional hyperparameters that are not related to the model,
in my case, threshold values and sampling technique for representation of underrepresented classes.

I implemented several metrics based on which the model’s performances have been evaluated. I used
four metrics: geometric mean, precision, balanced accuracy, and MCC. The optimization procedure of a
trial is as follows: Optuna selects the model’s hyperparameters and thresholds, and the average metric
values derived in 5-fold cross-validation are recorded. Based on the metrics values, Optuna will change
the selected parameters in the next trial to maximize the metrics.

So, to summarize, the objective was to optimize the Random Forest model’s hyperparameters and
the threshold values for class division. The hyperparameters included the number of trees, the depth of
trees, and the maximum features of trees. To address data imbalance, I evaluated the following strate-
gies: leaving the class distribution unchanged, undersampling the most common class, oversampling
the least represented class, and adjusting class weights. I mention these parameters in more detail in
Section 2.

The most successful weighting approach was to balance class weights, and I used it to further model
the random forest models.
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I selected the most successful trials and used metric averaging to determine the best thresholds
and parameters. The most successful trials are in the table 6.1. One could see that Optuna trials
often proposed very low thresholds to separate low-yielding reactions. These thresholds served as
preliminary orientations.

The 5-fold cross-validation results indicate that the models perform quite well across the selected
thresholds. High precision and balanced accuracy scores demonstrate the models’ effectiveness, par-
ticularly for the Amide coupling and Buchwald-Hartwig reactions. Although some reactions like Suzuki
coupling and SnAr exhibit lower balanced accuracy and MCC values, the overall metrics suggest that
the models are generally robust and capable of reliable performance in most cases.

Interestingly, they aligned with "chemist-relevant" points for each class option. This alignment vali-
dated the yield divisions described in Vogel’s textbook[225], where yields around 100% are "quantita-
tive," above 90% are "excellent," above 80% are "very good," above 70% are "good," above 50% are
"fair," and below 40% are "poor." Despite such coincidence, this is most likely contributed by the data
yield distribution and not due to the intrinsic physics of the reaction.

I used these optimization results as rough guidelines for future modeling and class division, adopting
threshold values of [15, 65] for 3-class classification and [10, 40, 80] for 4-class classification.

Table 6.1 Threshold optimization studies from Optuna trials with the best threshold results. Metrics reflect the
performance of 5-fold cross-validation.

Reaction Fingerprint Thresholds
Precision

Macro
Balanced
Accuracy

MCC
Geometric

Mean

Amide coupling RF Kallisto [2, 65] 0.671±0.013 0.605±0.006 0.430±0.014 0.582±0.007

Amide coupling RF ECFP [2, 63] 0.648±0.008 0.599±0.006 0.397±0.010 0.582±0.008

Suzuki coupling RF Kallisto [14, 67] 0.741±0.027 0.395±0.003 0.212±0.015 0.147±0.004

Suzuki coupling RF ECFP [15, 73] 0.739±0.015 0.383±0.001 0.194±0.006 0.143±0.007

Buchwald-Hartwig RF Kallisto [1, 54] 0.686±0.008 0.678±0.008 0.533±0.012 0.664±0.009

Buchwald-Hartwig RF ECFP [1, 62] 0.687±0.003 0.663±0.003 0.543±0.004 0.629±0.007

Reductive amination RF Kallisto [16, 76] 0.675±0.026 0.354±0.002 0.113±0.008 0.107±0.009

Reductive amination RF ECFP [24, 77] 0.676±0.025 0.369±0.004 0.130±0.005 0.118±0.008

SnAr RF Kallisto [11, 69] 0.717±0.017 0.372±0.002 0.156±0.005 0.137±0.007

SnAr RF ECFP [5, 79] 0.800±0.047 0.347±0.003 0.109±0.095 0.071± 0.011

Amide coupling RF Kallisto [5, 19, 61] 0.562±0.006 0.505±0.009 0.377±0.006 0.455±0.006

Amide coupling RF ECFP [9, 45, 79] 0.607±0.011 0.278±0.003 0.076±0.008 0.084±0.005

Suzuki coupling RF Kallisto [3, 18, 64] 0.516±0.003 0.555±0.004 0.372±0.003 0.539±0.003

Suzuki coupling RF ECFP [9, 50, 79] 0.655±0.038 0.293±0.003 0.149±0.008 0.059±0.006

Buchwald-Hartwig RF Kallisto [1, 41, 81] 0.563±0.007 0.568±0.006 0.475±0.010 0.541±0.008

Buchwald-Hartwig RF ECFP [9, 33, 62] 0.524±0.010 0.520±0.011 0.400±0.014 0.496±0.013

Reductive amination RF Kallisto [2, 33, 86] 0.578±0.013 0.517±0.008 0.360±0.014 0.493±0.012

Reductive amination RF ECFP [2, 18, 58] 0.556±0.009 0.504±0.004 0.363±0.005 0.462±0.007

SnAr RF Kallisto [3, 24, 63] 0.568±0.002 0.571±0.001 0.409±0.002 0.560±0.002

SnAr RF ECFP [2, 13, 79] 0.576±0.008 0.500±0.003 0.402±0.004 0.402±0.007
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6.4.2 Classification results

To understand whether my hypothesis of making the selection of training and test data precise to the
chosen reaction domain will positively influence the performance within the defined domain, I needed
to train the models on every step of my developed cleaning pipeline and evaluate them on different
test sets that were prepared in the same fashion. Thus, I have three subsections: the subset with only
basic yield and incorrect fingerprint removal, the more advanced subset where I removed reactions with
irrelevant reagents, and the final subset with only reactions with purification information.

For Chemprop, the performance in the table is based on the best-performing epoch based on the
evaluation set, and that checkpoint was tested on the test set; it has an inner implemented selection
process to evaluate the best epoch. For Yield-BERT, I evaluated the checkpoints of each epoch of the
training on the evaluation set and selected this epoch checkpoint for further evaluation on other test
sets, this model requires manual handling.

Results for only yield-cleaned data

I summarize findings for the 4 and 3-class classification based on amide coupling reaction in Tables
6.2 and 6.3. The models here are trained on the data derived from the first step of the reaction data
cleaning pipeline.

The tables are organized to depict a training set on the left side of the table, and test sets are under
the training sets. I sort them by the openness of the data utilized, as USPTO is a completely open-
source dataset, Reaxys is purchasable, and ELN is AstraZeneca’s proprietary data. For each training
dataset, the table contains performance on hold-out test sets and other datasets. For amide coupling
and SnAr reactions, I also have test data from Enamine, which I used as merged Enamine 2M and
Enamine 280K datasets described in the previous section. For ELNs, there is an additional test set:
reaction libraries, which were done in AstraZeneca’s automated synthesis labs (abbreviated as Libs.
test).

I used BA and the MCC to show the model’s performance. I put the best results in BA in bold. For
random prediction, for 4 classes, BA would be 0.25, and for 3 classes, 0.33. MCC > 0.3 is a moderate
correlation, and MCC around 0 is no better than a random classifier. The tables show that the models
perform better than this baseline on the inner test sets but do not manage to generalize to external test
sets.

Let’s start with the 4-class classification: Looking at USPTO-trained models, one can see that
Chemprop achieved the highest BA of 0.454 and an MCC of 0.300 on the inner test set, indicating
it handles the diversity within the USPTO dataset well. On the Reaxys test set, RF ECFP had the
best BA of 0.335 and an MCC of 0.107. This suggests that there is some, albeit limited, compatibility
between the USPTO and Reaxys datasets. On ELN and Enamine test sets, the best BA was 0.285 for
the ELN test set with RF ECFP and 0.261 for the Enamine test set with Chemprop. However, the MCC
values were low, indicating poor generalization.

Looking at Reaxys-trained models, on the inner test set, RF ECFP showed the highest BA of 0.470
and an MCC of 0.271. On the USPTO test set, RF ECFP had the best BA of 0.503 and an MCC of 0.317,
suggesting some overlap in the types of reactions covered by Reaxys and USPTO. Interestingly, this
high performance is not observed in any other models, suggesting better generalizability capabilities of
ECFP; this is also observed in other reaction types, supported by the tables in the Appendix. On ELN
and Enamine test sets, Yield-BERT performed best on the ELN test set with a BA of 0.319 and on the
Enamine test set with a BA of 0.257.

Finally, for the ELN-trained models, Chemprop achieved a BA of 0.548 and an MCC of 0.419 on the
inner test set, indicating strong performance. Yield-BERT performed best on the libraries test set with
a BA of 0.287. On USPTO, Reaxys, and Enamine test sets, RF ECFP had the highest BA on USPTO
with 0.288, Yield-BERT performed best on Reaxys with 0.300, and Yield-BERT again led on Enamine
with a BA of 0.258. Despite high performance in the inner test set, Chemprop showed close to random
performance on other test sets, indicating the tendency of this model to strongly overfit the data.
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Table 6.2 Results for 4-class models for amide coupling trained on only yield filtered datasets. Best balanced
accuracy performance in bold.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.439 0.221 0.419 0.254 0.454 0.300 0.365 0.175

Reaxys 0.335 0.107 0.274 0.109 0.278 0.057 0.257 0.028

ELN 0.285 0.039 0.269 0.032 0.286 0.021 0.251 0.007

Enamine 0.255 0.006 0.25 0.002 0.261 0.009 0.25 0.003

R
ea

xy
s

Inner test 0.47 0.271 0.449 0.323 0.464 0.360 0.419 0.274

USPTO 0.503 0.317 0.292 0.193 0.268 0.032 0.251 0.014

ELN 0.298 0.052 0.258 0.032 0.265 0.020 0.319 0.11

Enamine 0.256 0.009 0.25 -0 0.253 0.003 0.257 0.024

E
LN

Inner test 0.484 0.255 0.493 0.316 0.548 0.419 0.468 0.292

Libs test 0.261 0.024 0.27 0.065 0.229 -0.023 0.287 0.096

USPTO 0.288 0.049 0.275 0.042 0.264 0.020 0.267 0.025

Reaxys 0.296 0.057 0.273 0.031 0.263 0.029 0.3 0.081

Enamine 0.257 0.008 0.249 -0.002 0.250 -0.001 0.258 0.015

Next, we turn to the 3-class classification: the expected BA from a random classifier would be 0.33.
The models performed better than this absolute baseline on their inner test sets, with varying degrees
of success on external test sets. Starting with USPTO-trained models, on the inner test set, both RF
Kallisto and Chemprop achieved the highest BA of 0.531, with Chemprop having a higher MCC of
0.342, indicating better handling of the USPTO dataset. On the Reaxys test set, RF ECFP performed
best with a BA of 0.416 and an MCC of 0.143, again showing compatibility between these two datasets.
On the ELN and Enamine test sets, RF Kallisto led the ELN test set with a BA of 0.387, and RF ECFP
had the highest BA of 0.342 on the Enamine test set.

In Reaxys-trained models, RF ECFP had the highest BA of 0.548 and an MCC of 0.327 on the inner
test set. In the USPTO test set, RF ECFP again performed best with a BA of 0.565 and an MCC of
0.341. Yield-BERT led ELN with a BA of 0.426 in the ELN test set, while RF ECFP had the highest
BA of 0.346 in the Enamine test set. However, for both datasets, the MCC is low (0.189 and 0.05,
respectively), indicating limited generalizability.

In ELN-trained models on the inner test set, Chemprop achieved the highest BA of 0.612 and an MCC
of 0.504, indicating robust performance on the ELN dataset. Chemprop also performed best with a BA
of 0.376. On the libraries test set, MCC is 0.084, indicating problems with generalizability. In USPTO,
Reaxys, and Enamine test sets, RF ECFP had the highest BA on USPTO with 0.382, Yield-BERT led
on Reaxys with 0.394, and RF ECFP had the best BA on Enamine with 0.343.

To summarize, on inner test sets of each dataset, Chemprop and RF ECFP generally perform well,
showing good internal validation results. However, performance drops significantly on external test
sets, with MCC values often close to zero, indicating poor generalization across different datasets.

In this example, no single model consistently outperforms others across all datasets. Still, if one takes
a look at the performances in the Appendix, one can see that there is a clear winner for most reaction
types: RF ECFP, which leads me to the conclusion that for the not-so-clean reaction data, ECFP could
be the best fingerprint choice, although it has some limitations such its length, which leads the models
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Table 6.3 Results from 3-class models on amide coupling trained on only yield filtered datasets. Best balanced
accuracy performance in bold.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.514 0.262 0.531 0.322 0.531 0.342 0.44 0.235

Reaxys 0.416 0.143 0.384 0.147 0.338 0.034 0.36 0.081

ELN 0.368 0.06 0.387 0.118 0.337 0.014 0.345 0.063

Enamine 0.342 0.015 0.331 -0.007 0.336 0.015 0.333 -0.003

R
ea

xy
s

Inner test 0.548 0.327 0.538 0.408 0.533 0.429 0.507 0.359

USPTO 0.565 0.341 0.444 0.297 0.353 0.046 0.355 0.059

ELN 0.392 0.108 0.389 0.115 0.338 0.014 0.426 0.189

Enamine 0.346 0.024 0.33 -0.008 0.337 0.010 0.356 0.05

E
LN

Inner test 0.571 0.31 0.564 0.358 0.612 0.504 0.561 0.357

Libs test 0.352 0.02 0.33 -0.022 0.376 0.084 0.365 0.094

USPTO 0.382 0.081 0.353 0.103 0.367 0.094 0.333 0.001

Reaxys 0.383 0.09 0.341 0.06 0.363 0.085 0.394 0.168

Enamine 0.343 0.011 0.333 -0.002 0.331 -0.007 0.34 0.012

to train for a longer time and it is more time-consuming to retrain model every time the new data arrives
to the system.

Results for reagents-cleaned data

If one examines the performances of USPTO-trained models for both 3 and 4 classes, one can see that
the best-performing model on the inner test set is Chemprop, with BA 0.441 for 4 classes and 0.538 for
3 classes. However, it is important to note that this model is not performing well on other test sets, with
the performance around random. This means the predictions are not significantly better than random
chance, indicating performance issues.

After Chemprop, the next best-performing model is RF ECFP with BA 0.435 for 4-class and 0.507 for
3-class. This model performs better for other test sets with BA 0.320 and 0.398 for the Reaxys test set,
which leads to an observation that it could be due to partial overlap between Reaxys and USPTO data
since Reaxys contains patent data, which then becomes more evident when I look at the vice versa
performance of Reaxys-trained RF ECFP model which shows performance better than the inner test
set, in 4-class BA is 0.469 for inner test and 0.490 for USPTO test set. That is not observed for any
other fingerprint, which could communicate that ECFP is better at capturing the structural data of the
reaction than other fingerprints.

Unfortunately, none of the USPTO-trained models could predict the Enamine test set with a higher
degree of BA and MCC than the random. One could see that the same is true for the other datasets-
trained models, with MCC being around 0.01 for all the models, which is very close to 0, indicating the
complexity of the prediction.

If one looks at Reaxys-trained models, one can see that ECFP fingerprint performs best in 3 and
4-class models for the inner test and USPTO test sets, but for ELN prediction, Yield-BERT performs
better than other models. For Enamine, the performance of all models is close to the random.
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Table 6.4 Results from amide coupling trained reagents filtered datasets, 4 classes. On sides the training data
sources.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.435 0.215 0.402 0.251 0.441 0.282 0.377 0.172

Reaxys 0.320 0.092 0.265 0.084 0.249 0.009 0.257 0.025

ELN 0.278 0.031 0.268 0.030 0.254 -0.002 0.252 0.008

Enamine 0.255 0.004 0.250 -0.001 0.251 0.003 0.253 0.006

R
ea

xy
s

Inner test 0.469 0.269 0.455 0.328 0.447 0.328 0.446 0.306

USPTO 0.490 0.298 0.287 0.181 0.248 -0.003 0.252 0.008

ELN 0.292 0.043 0.257 0.035 0.250 -0.009 0.319 0.109

Enamine 0.257 0.010 0.250 -0.000 0.253 -0.000 0.255 0.018

E
LN

Inner test 0.473 0.236 0.470 0.301 0.531 0.415 0.467 0.293

Libs test 0.247 0.013 0.269 0.065 0.249 0.006 0.303 0.116

USPTO 0.284 0.048 0.267 0.026 0.254 0.010 0.269 0.031

Reaxys 0.295 0.051 0.269 0.025 0.259 0.013 0.296 0.081

Enamine 0.258 0.010 0.247 -0.009 0.264 0.015 0.263 0.028

One can see that Yield-BERT performs at its best in libraries by checking the performance of ELN-
trained models. The other reactions and performance tables in the Appendix also hold this statement
true. This finding is interesting, as the other models show performances much closer to the random.
However, the chemical space of AZ inner data should be more homogeneous than Reaxys or USPTO.
Also, for an inner set of ELN, Chemprop is performing best on all reaction classes. Unfortunately,
Chemprop models show close-to-random performances on other test sets, indicating overfitting.

As one can see, for inner test sets, most models perform better than random models with a definite
correlation. Still, the performance deteriorates drastically for most other datasets that models try to
predict. I also could see an interesting finding about the possible overlap of data between Reaxys and
USPTO since Reaxys also includes some part of patent data that could be seen in ECFP performance,
and this is observed for all models trained on Reaxys and evaluated on USPTO, which shows possible
superiority of ECFP fingerprints performance. Overall, observation shows that there is no clear winner
in the case of amide coupling, perhaps ECFP in the 4-class classification, but not in the 3-class; in the 3-
class, it’s more or less spread with Yield-BERT having a slightly better performance. The performances
of all models are similar on all the data, with some models having some chance of better performance.
However, if one takes Enamine datasets as a general test set for all models, one could see that the
difference in BA in models between the best and the worst is 0.004-0.028, which is basically within
a statistical error. One could see that Yield-BERT shows some distinctly better performance for the
Libraries test.

If one looks at the performances in the Appendix, there’s a recurring pattern of the RF ECFP model
being slightly worse on inner test performances but superior on other test sets. For the SnAr reaction
in 4 classes, ECFP was superior on USPTO inner, Reaxys, and Enamine test sets, with Kallisto being
better on ELN with negligibly higher MCC. This is the case for 3 classes, except Kallisto performed better
on the inner test and ECFP on all others. On Reaxys training set, the situation is slightly different, with
ECFP being superior in USPTO and ELN test sets for 3 classes and on inner test and USPTO for 4
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Table 6.5 Results from amide coupling trained reagents filtered datasets, 3 classes. On sides the training data
sources.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.507 0.266 0.505 0.305 0.538 0.361 0.476 0.259

Reaxys 0.398 0.116 0.383 0.144 0.348 0.041 0.335 0.013

ELN 0.366 0.056 0.388 0.117 0.342 0.017 0.335 0.017

Enamine 0.345 0.019 0.331 -0.008 0.350 0.038 0.335 0.012

R
ea

xy
s

Inner test 0.561 0.332 0.544 0.416 0.548 0.411 0.53 0.381

USPTO 0.556 0.33 0.439 0.284 0.333 0.01 0.359 0.076

ELN 0.387 0.098 0.39 0.116 0.355 0.062 0.428 0.195

Enamine 0.347 0.027 0.329 -0.012 0.333 -0.003 0.361 0.068

E
LN

Inner test 0.559 0.295 0.544 0.341 0.614 0.491 0.562 0.341

Libs test 0.354 0.023 0.334 0.003 0.321 -0.029 0.375 0.104

USPTO 0.380 0.073 0.354 0.106 0.333 0.005 0.334 0.009

Reaxys 0.384 0.087 0.339 0.051 0.334 0.003 0.390 0.174

Enamine 0.344 0.013 0.333 0.000 0.335 0.018 0.348 0.032

classes. For 3 classes, Chemprop was the best on the inner test; for the rest, Enamine in 4 classes
and ELN and Enamine in 3 classes, Yield-BERT performed best. For ELN models for SnAr reaction,
there is variability in different models performing best. ECFP performed best in USPTO for both 3 and
4 classes, as well as for Enamine in 3 classes. For the inner test, Chemprop performed best in both
cases. For the rest of the performances, Yield-BERT was superior to other models.

In Suzuki couplings, ECFP has the best performance in Reaxys and ELN test sets for USPTO-trained
models in bot 3 and 4 classes cases, also it demonstrated superior perfromance on USPTO test set for
Reaxys-trained models. In the case of ELN-trained models, ECFP was performing best in the USPTO
test set. Kallisto performed best only on an inner test set of USPTO 4 classes. Chemprop performed
best on an inner ELN and USPTO test set in both classification cases and libraries in the 3-class case.
Yield-BERT performed best on an inner test set of USPTO in the 3-class case and on the ELN test set
in the Reaxys-trained model. And vice versa, on Reaxys test set in ELN-trained models.

In reductive amination, the picture of performances is almost the same, with the same models per-
forming best on the same datasets and some minor differences, such as Kallisto performing better on
Reaxys and ELN for the 3-class case and Yield-BERT having the best performance on the inner test
set. Also, Yield-BERT was best on the library test set in both classification cases.

For Buchwald-Hartwig amination, ECFP is dominant in performances on test sets, with only Kallisto
performing better on an inner test set of USPTO in both classification cases, Chemprop having better
performance in inner test sets of Reaxys for the 4-class cases and ELN for both classification cases.
Yield-BERT performed better for the library test and the Reaxys test set for the model trained on ELN.

Comparing yield-cleaned results to the models trained on more clean data, which included reagent
cleaning, one can see that only Yield-BERT’s performance improved slightly. Other models overall
decreased performance by some minor negligible differences in BA and MCC, with most decrease
provided by Chemprop, which for the "dirty" mode of training was trained without reagents included,
as well as Yield-BERT also didn’t have reagents, only bare reaction string. For reagent-cleaned data,
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Table 6.6 Results from amide coupling trained on fully filtered ELN and evaluated on the inner test set of ELN
and fully cleaned USPTO.

3 classes 4 classes

Test set

RF ECFP RF Kallisto RF ECFP RF Kallisto

BA MCC BA MCC BA MCC BA MCC

E
LN

Inner test 0.546 0.273 0.532 0.319 0.445 0.214 0.447 0.274

USPTO 0.388 0.078 0.348 0.089 0.283 0.046 0.272 0.046

these two models were trained with reagents; for Yield-BERT, I included the essential reagent into the
reaction string, and for Chemprop, I included it as a separate reagent SMILES. Interestingly, including
reagents in Chemprop is a worsening factor, meaning this information introduces more noise than is
useful for the model. Other models, such as ECFP and Kallisto-trained, haven’t seen any improvement
compared to the less clean data, meaning that this cleaning did not help to eliminate the inherent noise
of the data as I would have expected.

Despite extensive data cleaning, the improvements in model performance are modest and inconsis-
tent across different models and test sets. This highlights the problem’s complexity and suggests a
missing point besides model architecture and the "purity" of the data.

Results for purification-cleaned data

In this section, I compare the results of two datasets after the full cleaning pipeline. The raw text of
the reaction procedure is available in ELN and USPTO datasets, so comparing the reactions filtered
by purification keyphrases is done on these. I present results on the Random Forest model with two
fingerprints and only ELN-trained models.

For the 3-class case, ECFP achieved a BA of 0.546 and an MCC of 0.273; Kallisto has a BA of 0.532
and an MCC of 0.319, showing a slightly better correlation than RF ECFP within the ELN dataset.
On the USPTO test set ECFP, a BA of 0.388 and an MCC of 0.078 were recorded, indicating some
generalization ability but with limited predictive power. Kallisto has a BA of 0.348 and an MCC of 0.089,
slightly underperforming RF ECFP in terms of balanced accuracy but having a marginally better MCC.

For the 4-class classification, both ECFP and Kallisto achieved similar BA of 0.445 and 0.447, with
Kallisto having a slightly higher MCC of 0.274, compared to ECFP, 0.214, showing reasonable perfor-
mance within the ELN dataset. ECFP has a BA of 0.283 and an MCC of 0.046, and Kallisto’s BA of
0.272 and an MCC of 0.046; both fingerprints’ performances indicate poor generalization of the USPTO
test set.

To summarize the findings, it is evident that, compared to the previous steps in the cleaning pipeline,
the filtering of datasets slightly diminished the performance on the internal test set while providing only
marginal improvements in generalization to the USPTO dataset. Although the rationale behind this
filtering was theoretically sound, it did not lead to an enhancement in predictive power as anticipated.

6.4.3 Regression models

I performed regression studies on the reagents-cleaned datasets. I show the results in the table 6.7 and
other results are in the Appendix. To access regression performance, I show RMSE, which indicates
how far the predicted values are from the actual values, and R2 metrics, which indicate how well the
model explains the variance in the data. As one can see, each model tends to perform best on its inner
test set, similar to earlier classification assessments, indicating good performance when the test data
comes from the same source as the training data. For example, RF Kallisto shows the best RMSE and
R2 on its inner test set when trained on USPTO with RMSE 21.444 and R2 0.271 and Reaxys with
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Table 6.7 Results for regression models from amide coupling trained on reagents filtered datasets.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

RMSE R2 RMSE R2 RMSE R2 RMSE R2

U
S

P
TO

Inner test 22.186 0.223 21.444 0.271 21.99 0.222 24.586 0.057

Reaxys 23.287 0.05 23.648 0.02 29.203 -0.493 23.933 -0.003

ELN 27.806 -0.164 27.165 -0.114 38.693 -1.26 25.786 -0.001

Enamine 27.321 -0.087 27.066 -0.021 37.338 -1.03 26.226 -0.002

R
ea

xy
s

Inner test 20.147 0.294 19.298 0.349 19.306 0.334 20.280 0.286

USPTO 22.467 0.208 23.917 0.104 39.254 -1.474 24.066 -0.474

ELN 27.784 -0.162 27.615 -0.151 32.821 -0.626 26.053 -0.022

Enamine 27.758 -0.122 27.274 -0.037 32.039 -0.495 28.666 -0.197

E
LN

Inner test 21.465 0.308 20.239 0.379 19.827 0.464 21.791 0.290

Libs test 21.512 0.32 20.431 0.388 27.448 -0.633 21.509 -0.000

USPTO 26.781 -0.126 26.952 -0.138 48.212 -2.732 25.137 0.008

Reaxys 26.793 -0.257 27.924 -0.366 32.869 -0.892 24.763 -0.074

Enamine 27.225 -0.079 28.208 -0.109 47.359 -2.266 26.753 -0.042

RMSE 19.298 and R2 0.349. If one looks at performance on external test sets, it is evident that models
generally perform poorly; for instance, Chemprop shows significantly higher RMSE and lower R2 on
external test sets like USPTO and Reaxys compared to its inner test set. Several negative R2 values
across different models and test sets indicate poor model fits, where the model performs worse than a
simple mean-based model, for example, Chemprop on Reaxys test set with R2 -1.474 and Yield-BERT
on Reaxys test set with R2 -0.474.

One also could notice a pattern we have seen before in classification: Reaxys-trained models per-
form decently on USPTO datasets with ECFP fingerprints, having R2 0.2. This is also true for other
reactions, supporting my suggestion about data overlap in Reaxys and USPTO. Another interesting
finding was that Kallisto fingerprints performed best at the Libraries test with R2 0.3 on all reactions.
This is interesting since this fingerprint did not show such superiority in classification settings.

These results again show evidence that something is missing from the predictions despite the data
being similarly distributed in the feature space, as seen in Figure 6.3.

6.5 Discussion

To summarize all findings, I would say that none of the DL methods beat the baseline ECFP, and the
hybrid Kallisto fingerprint also did not offer superiority over the baseline, except for some limited cases,
such as library predictions in the regression setting. I hypothesized that the elaborate cleaning pipeline
would help eliminate the noise in the data, but it did not improve the performance.

The modeling results reveal significant transferability challenges between datasets from different ori-
gins, even when they occupy similar chemical spaces (see Figure 6.3). The similar performance of
various models and their limited transferability indicate an inherent noise problem within the datasets,
which current state-of-the-art models cannot resolve. This outcome challenges the hypothesis that
transferability within similar applicability domains should be feasible. The diversity and potential biases
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within these datasets appear to be greater than anticipated, impacting model performance significantly.
Each dataset seems to contain unique elements that are not easily transferable, even with elaborate
preprocessing aimed at homogenizing the data as much as possible.

This finding is significant and interesting because the data within each of the mentioned datasets
is also not so homogeneous, as data from Reaxys is gathered from different articles with different
methods and ways of yield recording. USPTO is also collected from different patents from various
companies, which could have also been reporting yield differently. AstraZeneca’s ELN data is also
quite non-homogeneous. This reflection on the data makes a reasonable question stand up - what’s the
crucial difference between these different datasets that causes models to have mediocre performance?
Despite the reactions being from a similar domain of applicability, why can the models not extrapolate
to other data? Do models even learn something useful? There are no ways to test it except to try to
predict test reaction yield, which they render fruitless. These questions will be left open since there are
numerous possibilities of what could have gone wrong.

In my reagent-cleaned experiments, Yield-BERT and Chemprop had a theoretical advantage over
Random Forest ECFP and Kallisto-trained models because the former included reagent information
during training. However, their performance was either worse or on par with the ECFP and Kallisto
models, which did not utilize reagent information. This finding underscores the limited efficacy of so-
phisticated deep learning (DL) models compared to simpler Random Forest models. While DL models
excel in tasks like retrosynthesis or reaction mapping[1, 8, 185], they still fail to fully capture the chem-
ical essence of a given reaction. This is also shown in their limited ability to predict relevant reagents
for reactions as well[89, 94].

The results suggest that improving DL models to better capture the underlying chemistry is crucial.
Developing better reaction descriptors may be necessary if this improvement is not feasible. The mixed
approach of the Kallisto fingerprint, which considers hindrance and charges around reactive atoms,
did not outperform the regular substructure-based ECFP fingerprint. This suggests that our current
understanding and modeling of reactions might be missing critical aspects. Reactions are inherently
multidimensional, and our current methods may be too shallow to see the deeper picture.

Working with reactions produced in more controlled and reproducible environments, such as auto-
mated synthesis, could be key to improving yield prediction models. Automated synthesis eliminates
many untrackable parameters associated with manual reactions, making yield prediction more feasible.
However, this approach limits the application to scenarios with such controlled conditions, rendering
real-world yield prediction in diverse data contexts unattainable.
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7 Discussion

Don’t Panic.

Douglas Adams, The Hitchhiker’s Guide to
the Galaxy

In this work, I explored the potential of applying Machine Learning (ML) methods to predict reac-
tion yield, a crucial metric for synthesis success. I hypothesized that ML models could learn reactivity
patterns when trained on diverse, high-quality curated datasets and make relevant predictions on new
data. Additionally, I posited that models trained on data from one time period could extrapolate to an-
other time period, representing another form of transferability. Data transferability is important because
it could show that the models trained on differently derived data are robust and reliable for predicting
yields. This hypothesis was tested throughout my thesis using different models, datasets, data prepro-
cessing methods, and data encodings.

The results of my experiments highlight significant challenges in transferring models trained on one
dataset to another. Initially, I encountered difficulties with Buchwald-Hartwig reaction datasets from
different sources. Despite representing the same reaction type, these datasets did not perform well
when models trained on one were tested on another due to differences in the encoding of the reagents
and lack of standardization. Similarly, two time-split Enamine datasets posed challenges, and the ad-
vanced BEE model could not capture the data intricacies. Even though these datasets came from the
same vendor, they failed to work interchangeably, suggesting substantial variability or hidden biases
even within a single source or lack of the model’s generalizability. In Chapter 6, Models did not man-
age to demonstrate consistent performance across different datasets containing the same reaction but
sourced from various origins. Despite uniformizing the reactions and the reagents, none of the mod-
els and descriptors showed acceptable performance. This lack of consistent performance underscores
chemical reactions’ complex and multifaceted nature and the data representing them.

The results show the current limitation of developing any general yield prediction model for the same
reaction type, even if the data is derived from the same source. I also recognize that the current
methods for yield prediction are likely effective only on datasets derived from high-throughput experi-
mentation. It is challenging to achieve meaningful predictions from models trained on real-world data
due to the inconsistencies in maintaining identical conditions, such as isolation and purification pro-
cesses. Both experimental variability and poor recording contribute to this. Since models and data are
bound together, we need improvements from both sides to progress in the area.

To advance the field, we must reconsider the possibility of developing general yield prediction models
that can utilize various available data types, such as data derived from articles, electronic notebooks,
and HTE. Yield prediction is most meaningful for HTE data. At the same time, it requires understand-
ing which recorded data is crucial for yield or reagent prediction that is likely specific to each reaction
type. Some reactions may proceed well under various conditions, while others are highly sensitive and
require extensive trial and error. This necessitates collaborative work between chemists, chemoinfor-
maticians, and machine learning experts in designing new datasets, their properties, and their purposes
since determining the yield is often not a priority for synthetic chemists, but the purity of the end com-
pound and yield recording is pretty poor. At the same time, for regular experiments, it may be more
practical to focus on predicting whether a reaction will occur to avoid missing potentially synthesizable
compounds. However, improving the extraction of the data is still a valuable thing to consider since it
could be helpful to refine other spheres of synthesis prediction, such as retrosynthesis and condition
prediction. The field has the paradox of having limited high-quality data with maximum information
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available and an overwhelming amount of data with limited information. This paradox results in too little
high-quality data from reliable sources and an abundance of data from unreliable sources containing
minimal information. Major sources may include additional valuable information, but this data is often
untrustworthy due to imperfections in parsing algorithms since the data is mostly text-mined and not
recorded with the predefined structure in a database. These imperfections can significantly impact yield
prediction, making it necessary to improve current reporting systems. Including additional valuable in-
formation such as spectra, making data more machine-readable, and standardizing reporting practices
for academic datasets in repositories like the Open Reaction Database would be beneficial. Popu-
larizing open-source data reporting, which is common in machine learning, could also improve data
quality. Also, Large Language Models (LLMs) can extract necessary reaction data from sources such
as articles and patents, helping to standardize and clean historical data for predictive modeling. These
models can facilitate the extraction of crucial reaction data such as temperature, time, a complete list
of reagents, and their addition order, which are vital for accurate yield prediction.

Regarding reaction encoding, it remains unclear whether advanced deep learning models offer sig-
nificant advantages over simpler models with less advanced descriptors. This highlights the need
for better descriptors that can more effectively capture the reactivity of reacting species, including
reagents. Another modeling approach involves creating strong, limited applicability models derived
from high-quality datasets and trained on advanced quantum mechanical descriptors. These models
could predict various outputs, such as selectivity, go/no-go outcomes for reactions, and side product
formation. Although these models would have limited applicability due to their localized nature, they
would continuously refine themselves with each new data point.

Since yield prediction is a topic of narrow data availability, it is important to keep updating the current
databases with the most precise data possible. Still, we should not overlook other important fields such
as predicting the reagents, design of experiments, and general reaction feasibility that can utilize less
precise data.

Chatbots and LLM agents represent an exciting and hot topic in chemoinformatics[226–228]. These
advanced AI tools are increasingly being utilized to improve the parsing of scientific journals and extract
meaningful data[229–231]. One promising application is the development of chatbots that serve as
interfaces between chemists and trained models, aiding the decision-making process in experimental
planning and analysis. As described earlier, small, precise reactivity models could be included as part
of a larger pipeline, including a CASP interface with a user-friendly graphical interface for chemists.
Additionally, a chatbot interface could make interacting with these models more user-friendly, especially
for those who prefer it over command-line interfaces. Such a wrapper around models could streamline
their use in everyday tasks.

LLMs pre-trained on large corpora of chemistry data have the potential to enhance their utility sig-
nificantly. These models can understand and generate human-like text, making them suitable for ex-
tracting relevant information from various sources, including research articles, patents, and databases.
This capability is crucial for standardizing and cleaning historical data, thus making it more suitable for
predictive modeling. Augmenting regular LLMs with knowledge graph systems could further enhance
their performance. Knowledge graphs enable data representation in a structured form, highlighting re-
lationships and connections between different pieces of information. When integrated with LLMs, these
systems can help the models find connections and reasonings in chemistry-relevant queries, making
the AI’s responses more coherent and contextually accurate.

Using chatbots to propose reaction conditions is a particularly promising area[232]. These AI-driven
assistants could analyze a chemist’s input, such as the desired reaction and available reagents, and
suggest optimal conditions for the reaction based on the reported conditions in the text-mined literature.
This could include recommendations on temperature, solvent, reaction time, and other critical parame-
ters. Such a tool would be invaluable in high-throughput experimentation and everyday laboratory work,
where quick and reliable suggestions can save time and resources.

In addition to suggesting reaction conditions, chatbots could help design new experiments by pre-
dicting possible outcomes and highlighting potential pitfalls. They could access and integrate data from
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previous experiments, ongoing research, and theoretical models to provide comprehensive guidance.
This level of support would be especially beneficial in complex synthesis tasks and novel reaction ex-
plorations. Despite these advancements, significant challenges remain. Current chatbots and LLMs
can struggle with the nuanced and complex nature of chemical data, and there is still a long way to
go before they can fully understand and predict intricate chemical reactions as accurately as a human
expert. However, ongoing research and development in this area hold great promise for the future of
chemoinformatics, potentially transforming how chemists design and execute experiments.

In conclusion, while we are still far from asking a chatbot a vague question and receiving an answer
corresponding to our deepest chemical thoughts and desires, the integration of advanced AI tools like
LLMs and chatbots into chemoinformatics represents a promising frontier for enhancing the efficiency
and accuracy of chemical synthesis.
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8 Conclusion

Jigsaw falling into place
so there is nothing to explain.

Radiohead, Jigsaw Falling into Place

Despite the lack of significant breakthroughs in yield prediction, this work provides valuable contri-
butions by comparing various datasets, proposing standardization pipelines for handling reaction data,
and emphasizing the critical need for consistent and transparent reporting of reaction yields.

Although the results did not support the hypothesis on transferability between different datasets,
the study demonstrates that even with meticulously cleaned data, current methods are insufficient for
accurate yield prediction. This suggests that the challenges lie not within the models or descriptors but
within the inherent complexity and the quality of the data itself. The findings highlight the need for a
deeper understanding of what factors must be encoded to achieve reliable predictions. This indicates
that the field requires innovative approaches and perhaps entirely new methodologies to address the
multi-dimensional nature of chemical reaction yields.

The field of yield prediction remains highly challenging with limited advances. Several factors con-
tribute to these difficulties, including biases in reporting, poor reporting quality, and inconsistencies in
how data is recorded. Unlike the relatively straightforward prediction of qualitative metrics, such as
biological activity for compounds with standardized reporting, yield reports lack such coherence. This
inconsistency hampers the effectiveness of chemoinformaticians’ efforts and underscores the need for
improved data quality and standardization.
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A Appendix

Parameters of the Random Forest models used.

model = RandomForestClass i f ier (
n_est imators =600 ,
max_depth=None ,
max_features=" s q r t " ,
min_samples_leaf =2 ,
min_samples_spl i t =5 ,
random_state =42 ,
boo ts t rap=False ,
c r i t e r i o n = ’ g i n i ’ ,
c lass_weight= " balanced " ,

)

model = RandomForestRegressor (
n_est imators =600 ,
max_depth=None ,
max_features= ’ s q r t ’ ,
min_samples_leaf =2 ,
min_samples_spl i t =5 ,
boo ts t rap=True ,
random_state =42 ,

)

Procedure for extracting reactions that have been purified:
I designed dictionaries for a) dropping the unsuccessful reaction or reactions that proceeded with

the crude product to the next stage of the reaction and b) grasping reactions that had at least some
information on whether the reaction was well-documented and had information on the reaction product.
The final stage of determination aimed to determine the type of purification used for the reaction and
make the previous selection more precise.

Dropping the unsuccessful reactions had the next keywords:
"abandon", "no product", "not progressed", "only starting material", "discontinued", "discarded", "no

reaction", "no evidence", "no indication", "not continued", "not obtained", "product was not observed",
"reaction failed", "reaction trashed", "no conversion", "not isolated", "no target", "not detected".

Dropping the reactions where the crude was used in the next stage without the purification had the
next keywords:

"duplicated", "use as is", "used without purification", "used in the next", "crude was used", "used
directly", "without further purification", "next step", "did not set up", "didn’t set up", "used as a crude".

Selection of reaction with some information on the product:
"purif", "isolate", "to give", "obtain", "yielding", "reaction was complete", "afford", "collect", "to yield",

"gave", "provid", "giving", "given", "concentrat", "evaporat", "crystal", "dried". Selection of reactions
that provided more defined information on the purification procedure: "chromatograph", "HPLC", "bio-
tage", "ISCO", "triturat", "column", "silica", "gilson", "normal phase", "preparative LCMS", "Prep-LCMS",
"preparative TLC".
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Test datasets RMSE

Trained Model Fingerprints Training dataset USPTO (test) Reaxys (test) BH HTE AZ ELN

R
andom

ForestR
egression

R
X

N
FP

USPTO 23.99 25.88 32.37 33.35

Reaxys 28.54 20.70 40.29 40.26

E
C

FP

USPTO 22.22 24.13 33.90 32.97

Reaxys 26.72 18.25 43.30 39.15

D
R

FP

USPTO 22.84 25.39 30.86 34.39

Reaxys 28.31 18.70 42.26 40.23

G
radientB

oostR
egression

R
X

N
FP

USPTO 24.29 26.17 31.86 33.63

Reaxys 28.82 20.85 41.41 41.05

E
C

FP
USPTO 22.39 24.18 34.75 32.03

Reaxys 27.12 18.72 50.6 38.19

D
R

FP

USPTO 23.41 25.93 32.47 33.28

Reaxys 28.08 18.95 38.57 39.12
S

upportVectorR
egression

R
X

N
FP

USPTO 24.71 26.76 32.68 33.78

Reaxys 30.53 21.72 42.27 43.82

E
C

FP

USPTO 22.94 24.01 35.04 32.42

Reaxys 27.60 18.9 48.29 40.76

D
R

FP

USPTO 23.27 26.17 36.64 32.42

Reaxys 28.98 19.56 48.75 41.37

BERT-Yield
USPTO 24.82 38.41 42.13 45.42

Reaxys 38.45 20.99 47.18 48.61

Table A.1 RMSE for the models employed in the research
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Figure A.1 Comparison of the RFR, GBR, SVR model’s performance using different encodings and fingerprints,
trained with a random 80:20 ratio and 5-fold Cross-Validation.
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Figure A.6 Yield-BERT model trained on USPTO Buchwald-Hartwig selection and tested on other datasets. The
red line represents linear fit.

(a) Reaxys (b) AZ ELN 750 (c) USPTO

Figure A.7 t-SNE for other Buchwald-Hartwig datasets using DRFP fingerprint from different sources.
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(a) ECFP-based t-SNE (b) Kallisto-based t-SNE

Figure A.8 The t-SNE plot depicts the distribution of reaction encodings based on Kallisto and ECFP represen-
tations for the Buchwald-Hartwig reaction.

(a) ECFP-based t-SNE (b) Kallisto-based t-SNE

Figure A.9 The t-SNE plot depicts the distribution of reaction encodings based on Kallisto and ECFP represen-
tations for the SnAr reaction.
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(a) ECFP-based t-SNE (b) Kallisto-based t-SNE

Figure A.10 The t-SNE plot depicts the distribution of reaction encodings based on Kallisto and ECFP represen-
tations for the Suzuki reaction.

(a) ECFP-based t-SNE (b) Kallisto-based t-SNE

Figure A.11 The t-SNE plot depicts the distribution of reaction encodings based on Kallisto and ECFP represen-
tations for the reductive amination reaction. One could see an outlier in ECFP clustering
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Reaction
NextMove reaction

class code
NextMove reaction class name

Amide
coupling

2.1.2 Carboxylic acid + amine condensation

2.1.3 Carboxylic acid + hydrazine condensation

2.1.61 Carboxylic acid + amidine condensation

SnAr

1.3.6 Bromo N-arylation

1.3.7 Chloro N-arylation

1.3.8 Fluoro N-arylation

1.3.9 Iodo N-arylation

1.3.10 Triflyloxy N-arylation

1.3.12 Mesyl N-arylation

1.3.13 Mesyloxy N-arylation

1.3.14 Tosyloxy N-arylation

Reductive
amination

1.2.1 Aldehyde reductive amination

1.2.5 Ketone reductive amination

1.2.9 Alcohol + amine condensation

1.2.10 Formaldehyde reductive amination

Buchwald-Hartwig
coupling

1.3.1 Bromo Buchwald-Hartwig amination

1.3.2 Chloro Buchwald-Hartwig amination

1.3.3 Iodo Buchwald-Hartwig amination

1.3.4 Triflyloxy Buchwald-Hartwig amination

Suzuki coupling

3.1.1 Bromo Suzuki coupling

3.1.2 Chloro Suzuki coupling

3.1.3 Iodo Suzuki coupling

3.1.4 Triflyloxy Suzuki coupling

3.1.10 Tosyloxy Suzuki coupling
Table A.2 Summary of classes selected using NextMove software
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(a) ELN (b) Reaxys

(c) Enamine (d) USPTO

Figure A.12 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Amide coupling 3 classes
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(a) ELN (b) Reaxys

(c) Enamine (d) USPTO

Figure A.13 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. SnAr 4 classes
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(a) ELN (b) Reaxys

(c) Enamine (d) USPTO

Figure A.14 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. SnAr 3 classes

(a) ELN (b) Reaxys (c) USPTO

Figure A.15 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Reductive amination 4 classes
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(a) ELN (b) Reaxys (c) USPTO

Figure A.16 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Reductive amination 3 classes

(a) ELN (b) Reaxys (c) USPTO

Figure A.17 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Suzuki coupling 4 classes

(a) ELN (b) Reaxys (c) USPTO

Figure A.18 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Suzuki coupling 3 classes

(a) ELN (b) Reaxys (c) USPTO

Figure A.19 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Buchwald-Hartwig amination 4 classes
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(a) ELN (b) Reaxys (c) USPTO

Figure A.20 Float and class distributions of the yield after reagents filtering using thresholds determined by
Optuna trials. Buchwald-Hartwig amination 3 classes

Reaction Original selection Yield+fps Reagents Purification

E
LN

Amide coupling 208333 90126 75348 52112

SnAr 144106 57547 36048 25585

Reductive amination 110147 44797 23028 16876

Suzuki coupling 161731 63175 39783 32245

Buchwald-Hartwig amination 69841 22124 15625 12800

U
S

P
TO

Amide coupling 104729 39847 23493 16792

SnAr 74892 27045 6180 4194

Reductive amination 64605 24482 6993 5054

Suzuki coupling 68868 25210 12081 10320

Buchwald-Hartwig amination 13870 5685 2201 1844

R
ea

xy
s

Amide coupling 568466 255935 200918 -

SnAr 294290 149126 73905 -

Reductive amination 705433 319071 45393 -

Suzuki coupling 335450 204425 106776 -

Buchwald-Hartwig amination 97384 64999 44272 -

E
na

m
in

e

Amide coupling 1254391 1005331 758356 -

SnAr 105175 86180 84190 -
Table A.3 Number of data points at each stage of data cleaning for the datasets for ECFP fingerprint
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Reaction Original selection Yield+fps Reagents Purification

E
LN

Amide coupling 201593 88150 73823 51056

SnAr 108655 42142 26102 18835

Reductive amination 91104 37813 21646 15815

Suzuki coupling 150660 59529 37431 30286

Buchwald-Hartwig amination 65349 20670 14559 11977

U
S

P
TO

Amide coupling 104729 37566 22300 16009

SnAr 74892 18143 3772 2697

Reductive amination 64605 18453 6302 4659

Suzuki coupling 68868 23268 11181 9513

Buchwald-Hartwig amination 13870 4624 1690 1385

R
ea

xy
s

Amide coupling 543944 234358 186277 -

SnAr 283873 107521 34532 -

Reductive amination 606064 217245 39786 -

Suzuki coupling 328015 187301 25666 -

Buchwald-Hartwig amination 90178 55094 34188 -

E
na

m
in

e

Amide coupling 1254389 995002 745657 -

SnAr 105173 77209 75263 -
Table A.4 Number of data points at each stage of data cleaning for the datasets for Kallisto fingerprint
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Model R-Squared RMSE Time Taken

RandomForestRegressor 0.35 20.50 322.18

ExtraTreesRegressor 0.32 20.99 103.05

XGBRegressor 0.30 21.31 35.44

BaggingRegressor 0.30 21.39 32.66

LGBMRegressor 0.26 21.87 3.39

HistGradientBoostingRegressor 0.26 21.97 5.75

KNeighborsRegressor 0.22 22.44 4.03

MLPRegressor 0.20 22.77 41.08

GradientBoostingRegressor 0.17 23.28 69.51

SVR 0.16 23.42 385.18

NuSVR 0.14 23.61 403.28

LassoCV 0.10 24.20 3.53

LassoLarsCV 0.10 24.20 2.46

LassoLarsIC 0.10 24.20 1.12

ElasticNetCV 0.10 24.20 4.52

BayesianRidge 0.10 24.21 1.06

RidgeCV 0.10 24.21 1.34

Ridge 0.10 24.21 0.55

LinearRegression 0.10 24.21 0.81

TransformedTargetRegressor 0.10 24.21 0.81

PoissonRegressor 0.10 24.24 1.40

HuberRegressor 0.09 24.25 3.32

LinearSVR 0.09 24.33 10.91

GammaRegressor 0.06 24.67 0.56

AdaBoostRegressor 0.04 24.93 13.53

ElasticNet 0.04 24.97 0.61

Lasso 0.03 25.16 0.62

LassoLars 0.03 25.16 0.56

DummyRegressor -0.00 25.49 0.40

DecisionTreeRegressor -0.15 27.29 4.88

PassiveAggressiveRegressor -0.89 35.02 0.91

KernelRidge -3.41 53.50 377.87

GaussianProcessRegressor -5.00 62.44 4122.58
Table A.5 LazyPredict executed on yield-cleaned Kallisto FP Regression models.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.508 0.273 0.431 0.233 0.447 0.26 0.403 0.203

Reaxys 0.306 0.081 0.3 0.11 0.248 -0.008 0.272 0.058

ELN 0.287 0.047 0.287 0.06 0.276 0.033 0.255 0.004

Enamine 0.271 0.034 0.257 0.012 0.246 -0.008 0.249 0.001

R
ea

xy
s

Inner test 0.467 0.282 0.461 0.315 0.467 0.358 0.447 0.29

USPTO 0.541 0.401 0.42 0.371 0.259 0.035 0.258 0.016

ELN 0.322 0.101 0.284 0.073 0.264 0.032 0.316 0.128

Enamine 0.28 0.044 0.251 0.001 0.258 0.018 0.292 0.073

E
LN

Inner test 0.476 0.264 0.472 0.294 0.546 0.442 0.467 0.305

Libs test 0.245 -0.01 0.242 -0.028 0.227 -0.038 0.264 0.056

USPTO 0.308 0.093 0.291 0.065 0.256 0.014 0.279 0.05

Reaxys 0.288 0.057 0.29 0.054 0.295 0.03 0.305 0.09

Enamine 0.285 0.055 0.273 0.06 0.27 0.016 0.287 0.065
Table A.6 Results from SnAr trained reagents filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.542 0.262 0.576 0.374 0.541 0.339 0.47 0.225

Reaxys 0.398 0.124 0.391 0.143 0.342 0.023 0.355 0.072

ELN 0.388 0.106 0.381 0.104 0.351 0.043 0.349 0.058

Enamine 0.369 0.061 0.366 0.066 0.329 -0.011 0.363 0.076

R
ea

xy
s

Inner test 0.557 0.347 0.539 0.379 0.53 0.407 0.521 0.342

USPTO 0.597 0.42 0.488 0.38 0.326 -0.034 0.353 0.091

ELN 0.409 0.156 0.396 0.139 0.34 0.017 0.416 0.173

Enamine 0.381 0.086 0.37 0.073 0.355 0.044 0.393 0.13

E
LN

Inner test 0.584 0.34 0.589 0.385 0.616 0.518 0.57 0.376

Libs test 0.332 0.011 0.333 0.000 0.318 -0.037 0.359 0.086

USPTO 0.397 0.119 0.366 0.155 0.33 -0.01 0.373 0.106

Reaxys 0.384 0.087 0.352 0.114 0.357 0.039 0.39 0.138

Enamine 0.379 0.08 0.334 0.016 0.341 0.01 0.376 0.113
Table A.7 Results from SnAr trained reagents filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.444 0.208 0.462 0.256 0.371 0.191 0.461 0.211

Reaxys 0.335 0.108 0.272 0.11 0.254 0.002 0.276 0.093

ELN 0.281 0.042 0.259 0.035 0.264 0.015 0.255 0.006

R
ea

xy
s Inner test 0.438 0.268 0.428 0.342 0.474 0.397 0.443 0.324

USPTO 0.482 0.316 0.273 0.056 0.252 0.015 0.25 -0.001

ELN 0.284 0.059 0.26 0.013 0.26 0.007 0.295 0.118

E
LN

Inner test 0.468 0.247 0.433 0.248 0.517 0.397 0.426 0.288

Libs test 0.262 0.05 0.252 0.009 0.24 0.015 0.304 0.134

USPTO 0.291 0.059 0.264 0.034 0.25 0.002 0.261 0.023

Reaxys 0.273 0.024 0.255 -0.004 0.278 0.049 0.298 0.061
Table A.8 Results from Suzuki coupling trained reagents filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.534 0.265 0.511 0.279 0.54 0.336 0.564 0.285

Reaxys 0.415 0.136 0.408 0.21 0.35 0.047 0.329 -0.001

ELN 0.374 0.081 0.364 0.078 0.344 0.031 0.342 0.028

R
ea

xy
s Inner test 0.527 0.322 0.522 0.435 0.539 0.426 0.533 0.382

USPTO 0.54 0.35 0.368 0.115 0.336 0.015 0.349 0.053

ELN 0.377 0.092 0.336 0.008 0.349 0.033 0.396 0.14

E
LN

Inner test 0.538 0.268 0.516 0.295 0.601 0.473 0.521 0.301

Libs test 0.358 0.058 0.333 0.016 0.369 0.079 0.366 0.074

USPTO 0.385 0.097 0.345 0.068 0.333 -0.002 0.334 0.016

Reaxys 0.36 0.063 0.34 0.061 0.314 -0.045 0.389 0.164
Table A.9 Results from Suzuki coupling trained reagents filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.385 0.176 0.393 0.201 0.365 0.236 0.355 0.184

Reaxys 0.309 0.089 0.298 0.127 0.271 0.047 0.274 0.054

ELN 0.276 0.029 0.27 0.033 0.252 0.002 0.25 0

R
ea

xy
s Inner test 0.446 0.261 0.436 0.309 0.502 0.39 0.431 0.299

USPTO 0.449 0.285 0.375 0.289 0.251 0.027 0.262 0.021

ELN 0.289 0.048 0.273 0.049 0.267 0.036 0.328 0.158

E
LN

Inner test 0.472 0.261 0.462 0.293 0.514 0.373 0.469 0.306

Libs test 0.257 0.103 0.317 0.232 0.306 0.19 0.324 0.236

USPTO 0.286 0.042 0.276 0.032 0.248 -0.029 0.252 -0.001

Reaxys 0.279 0.036 0.279 0.037 0.26 0.019 0.301 0.1
Table A.10 Results from reductive amination trained reagents filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.462 0.189 0.451 0.259 0.477 0.292 0.487 0.292

Reaxys 0.393 0.107 0.401 0.171 0.34 0.02 0.344 0.041

ELN 0.364 0.052 0.38 0.098 0.342 0.017 0.337 0.038

R
ea

xy
s Inner test 0.523 0.313 0.507 0.365 0.538 0.422 0.519 0.348

USPTO 0.531 0.326 0.476 0.334 0.341 0.043 0.356 0.074

ELN 0.385 0.094 0.39 0.115 0.373 0.082 0.404 0.173

E
LN

Inner test 0.561 0.3 0.556 0.338 0.591 0.426 0.572 0.349

Libs test 0.34 -0.052 0.329 -0.027 0.355 0.04 0.38 0.151

USPTO 0.374 0.087 0.347 0.071 0.337 -0.01 0.338 0.054

Reaxys 0.364 0.057 0.347 0.091 0.334 0.027 0.403 0.172
Table A.11 Results from reductive amination trained reagents filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.396 0.167 0.414 0.195 0.377 0.268 0.364 0.193

Reaxys 0.326 0.101 0.303 0.119 0.254 0.005 0.284 0.079

ELN 0.286 0.077 0.279 0.067 0.242 -0.027 0.25 0

R
ea

xy
s Inner test 0.491 0.326 0.487 0.368 0.484 0.387 0.485 0.363

USPTO 0.594 0.441 0.286 0.169 0.228 -0.038 0.285 0.075

ELN 0.299 0.083 0.252 0.019 0.250 0.005 0.317 0.118

E
LN

Inner test 0.456 0.214 0.447 0.259 0.488 0.370 0.407 0.226

Libs test 0.368 0.084 0.311 -0.052 0.333 0.000 0.544 0.301

USPTO 0.288 0.057 0.271 0.044 0.252 0.021 0.266 0.054

Reaxys 0.285 0.036 0.297 0.086 0.262 0.007 0.325 0.141
Table A.12 Results from Buchwald-Hartwig amination trained reagents filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.488 0.236 0.541 0.296 0.443 0.240 0.425 0.219

Reaxys 0.406 0.137 0.379 0.165 0.327 -0.019 0.336 0.018

ELN 0.368 0.049 0.353 0.054 0.388 0.077 0.348 0.044

R
ea

xy
s Inner test 0.580 0.387 0.569 0.445 0.585 0.452 0.556 0.413

USPTO 0.657 0.459 0.450 0.323 0.333 0.000 0.364 0.081

ELN 0.398 0.096 0.351 0.036 0.364 0.047 0.381 0.071

E
LN

Inner test 0.552 0.255 0.551 0.306 0.567 0.366 0.55 0.305

Libs test 0.436 -0.096 0.500 0.000 0.522 0.213 0.709 0.412

USPTO 0.367 0.044 0.336 0.050 0.335 0.012 0.335 0.006

Reaxys 0.392 0.081 0.333 0.008 0.335 -0.002 0.41 0.142
Table A.13 Results from Buchwald-Hartwig amination trained reagents filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.45 0.242 0.42 0.252 0.498 0.332 0.357 0.157

Reaxys 0.349 0.125 0.323 0.145 0.252 0.006 0.253 0.021

ELN 0.306 0.077 0.294 0.081 0.255 0.017 0.251 0.008

Enamine 0.279 0.048 0.256 0.027 0.250 0.002 0.251 0.005

R
ea

xy
s

Inner test 0.472 0.284 0.46 0.331 0.462 0.362 0.433 0.279

USPTO 0.501 0.339 0.421 0.351 0.261 0.037 0.277 0.055

ELN 0.332 0.114 0.281 0.07 0.267 0.032 0.312 0.128

Enamine 0.282 0.05 0.251 0.004 0.249 -0.003 0.277 0.065

E
LN

Inner test 0.488 0.274 0.481 0.293 0.663 0.562 0.455 0.297

Libs test 0.339 0.073 0.284 0.101 0.192 0.013 0.339 0.029

USPTO 0.313 0.085 0.291 0.072 0.259 0.011 0.267 0.039

Reaxys 0.3 0.061 0.284 0.039 0.261 -0.001 0.302 0.081

Enamine 0.288 0.058 0.272 0.056 0.262 0.028 0.288 0.07
Table A.14 Results from SnAr trained on only yield filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.525 0.282 0.511 0.324 0.558 0.364 0.486 0.23

Reaxys 0.429 0.168 0.419 0.199 0.347 0.046 0.369 0.101

ELN 0.4 0.133 0.4 0.156 0.346 0.036 0.368 0.081

Enamine 0.372 0.066 0.351 0.045 0.338 0.014 0.35 0.043

R
ea

xy
s

Inner test 0.545 0.343 0.545 0.406 0.533 0.415 0.509 0.353

USPTO 0.565 0.381 0.49 0.362 0.353 0.05 0.367 0.104

ELN 0.419 0.158 0.396 0.136 0.36 0.059 0.416 0.188

Enamine 0.381 0.086 0.366 0.064 0.32 -0.024 0.386 0.12

E
LN

Inner test 0.58 0.341 0.568 0.359 0.773 0.651 0.565 0.374

Libs test 0.387 0.081 0.332 -0.02 0.333 -0.013 0.428 0.125

USPTO 0.397 0.122 0.361 0.139 0.354 0.06 0.36 0.074

Reaxys 0.387 0.091 0.348 0.095 0.349 0.049 0.386 0.125

Enamine 0.384 0.091 0.335 0.021 0.332 -0.001 0.375 0.113
Table A.15 Results from SnAr trained only yield filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.428 0.223 0.406 0.254 0.419 0.277 0.351 0.171

Reaxys 0.319 0.102 0.277 0.097 0.282 0.061 0.276 0.081

ELN 0.301 0.066 0.285 0.06 0.290 0.072 0.285 0.044

R
ea

xy
s Inner test 0.493 0.34 0.465 0.36 0.437 0.379 0.418 0.313

USPTO 0.485 0.314 0.292 0.149 0.259 0.024 0.269 0.058

ELN 0.319 0.1 0.277 0.055 0.265 0.027 0.33 0.148

E
LN

Inner test 0.517 0.303 0.506 0.31 0.580 0.423 0.458 0.307

Libs test 0.251 0.012 0.279 0.089 0.242 0.098 0.268 0.071

USPTO 0.3 0.074 0.285 0.053 0.264 0.017 0.28 0.068

Reaxys 0.294 0.05 0.272 0.011 0.271 0.027 0.315 0.097
Table A.16 Results from reductive amination trained on only yield filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.518 0.304 0.499 0.313 0.483 0.303 0.453 0.23

Reaxys 0.414 0.171 0.387 0.148 0.350 0.045 0.368 0.095

ELN 0.396 0.127 0.399 0.14 0.385 0.117 0.367 0.126

R
ea

xy
s Inner test 0.566 0.385 0.534 0.419 0.507 0.429 0.497 0.382

USPTO 0.56 0.36 0.403 0.203 0.345 0.032 0.374 0.11

ELN 0.404 0.149 0.36 0.061 0.350 0.037 0.422 0.196

E
LN

Inner test 0.587 0.34 0.569 0.338 0.665 0.498 0.569 0.372

Libs test 0.372 0.027 0.357 0.065 0.410 0.030 0.341 0.059

USPTO 0.387 0.117 0.36 0.104 0.365 0.096 0.355 0.09

Reaxys 0.394 0.137 0.346 0.067 0.363 0.081 0.395 0.173
Table A.17 Results from reductive amination trained on only yield filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.427 0.208 0.428 0.252 0.497 0.370 0.387 0.175

Reaxys 0.374 0.174 0.311 0.216 0.243 -0.014 0.281 0.104

ELN 0.281 0.04 0.258 0.03 0.256 0.001 0.255 0.009

R
ea

xy
s Inner test 0.46 0.3 0.442 0.353 0.294 0.218 0.417 0.309

USPTO 0.57 0.425 0.304 0.168 0.250 0.003 0.251 0.008

ELN 0.294 0.069 0.256 0.019 0.251 0.006 0.305 0.129

E
LN

Inner test 0.454 0.233 0.441 0.26 0.445 0.352 0.428 0.257

Libs test 0.315 0.099 0.239 -0.032 0.248 -0.021 0.3 0.138

USPTO 0.291 0.056 0.272 0.048 0.269 0.035 0.259 0.029

Reaxys 0.287 0.038 0.264 0.007 0.264 0.005 0.286 0.07
Table A.18 Results from Suzuki coupling trained on only yield filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.512 0.253 0.515 0.324 0.533 0.358 0.515 0.277

Reaxys 0.452 0.209 0.422 0.252 0.36 0.099 0.363 0.082

ELN 0.378 0.09 0.37 0.096 0.337 0.021 0.35 0.053

R
ea

xy
s Inner test 0.535 0.338 0.514 0.392 0.371 0.215 0.487 0.363

USPTO 0.63 0.45 0.437 0.277 0.335 0.012 0.365 0.098

ELN 0.381 0.098 0.352 0.043 0.333 -0.001 0.393 0.143

E
LN

Inner test 0.54 0.278 0.529 0.313 0.506 0.402 0.52 0.323

Libs test 0.365 0.089 0.333 0 0.351 0.009 0.361 0.064

USPTO 0.377 0.086 0.343 0.073 0.336 0.019 0.333 0

Reaxys 0.366 0.069 0.343 0.087 0.336 0.021 0.403 0.194
Table A.19 Results from Suzuki coupling trained on only yield filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.442 0.206 0.416 0.248 0.395 0.232 0.338 0.158

Reaxys 0.373 0.159 0.341 0.194 0.251 0.018 0.289 0.093

ELN 0.277 0.051 0.266 0.047 0.250 0.008 0.25 0.003

R
ea

xy
s Inner test 0.503 0.343 0.492 0.392 0.498 0.457 0.461 0.342

USPTO 0.629 0.471 0.333 0.232 0.295 0.058 0.266 0.035

ELN 0.309 0.081 0.255 0.01 0.270 -0.001 0.305 0.148

E
LN

Inner test 0.455 0.21 0.441 0.247 0.462 0.343 0.423 0.251

Libs test 0.398 0.117 0.264 -0.192 0.333 0 0.468 0.204

USPTO 0.281 0.047 0.275 0.06 0.266 0.045 0.255 0.04

Reaxys 0.278 0.015 0.281 0.071 0.258 0.012 0.293 0.067
Table A.20 Results from Buchwald-Hartwig amination trained on only yield filtered datasets, 4 classes.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

BA MCC BA MCC BA MCC BA MCC

U
S

P
TO

Inner test 0.501 0.209 0.466 0.238 0.439 0.184 0.459 0.19

Reaxys 0.445 0.184 0.405 0.23 0.34 0.007 0.344 0.056

ELN 0.367 0.046 0.348 0.047 0.334 0.001 0.348 0.041

R
ea

xy
s Inner test 0.583 0.391 0.58 0.469 0.587 0.507 0.56 0.403

USPTO 0.679 0.482 0.443 0.287 0.378 0.088 0.363 0.065

ELN 0.389 0.085 0.349 0.032 0.388 0.069 0.409 0.107

E
LN

Inner test 0.553 0.262 0.55 0.303 0.553 0.373 0.525 0.277

Libs test 0.546 0.103 0.5 0 0.5 0 0.685 0.39

USPTO 0.368 0.038 0.337 0.052 0.348 0.032 0.338 0.02

Reaxys 0.375 0.029 0.333 -0.003 0.344 0.001 0.382 0.062
Table A.21 Results from Buchwald-Hartwig amination trained on only yield filtered datasets, 3 classes.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

RMSE R2 RMSE R2 RMSE R2 RMSE R2

U
S

P
TO

Inner test 23.64 0.144 23.088 0.184 23.216 0.137 35.3 -1.101

Reaxys 24.359 0.035 23.89 0.078 27.656 -0.245 37.823 -1.326

ELN 27.986 -0.143 27.393 -0.1 31.631 -0.459 30.365 -0.346

R
ea

xy
s Inner test 21.267 0.265 20.333 0.341 19.927 0.39 22.176 0.198

USPTO 22.971 0.184 23.803 0.132 38.858 -1.389 25.435 -0.001

ELN 28.215 -0.162 27.511 -0.11 28.955 -0.222 25.749 0.032

E
LN

Inner test 21.765 0.308 20.863 0.357 20.725 0.354 22.451 0.256

Libs test 22.366 0.349 21.576 0.39 44.157 -3.082 20.724 0.101

USPTO 27.224 -0.146 27.559 -0.164 65.023 -5.688 26.48 -0.085

Reaxys 27.453 -0.226 27.448 -0.217 59.758 -4.812 27.321 -0.214
Table A.22 Results from reductive amination trained reagents filtered datasets, regression.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

RMSE R2 RMSE R2 RMSE R2 RMSE R2

U
S

P
TO

Inner test 22.821 0.218 21.982 0.291 22.188 0.264 26.35 -0.036

Reaxys 22.98 -0.07 24.643 -0.121 29.779 -0.791 27.308 -0.511

ELN 26.2 -0.038 26.232 -0.034 40.586 -1.469 25.722 -0

R
ea

xy
s Inner test 19.175 0.257 18.533 0.364 17.809 0.35 19.136 0.268

USPTO 23.744 0.155 26.307 -0.028 55.737 -3.659 25.922 -0.008

ELN 28.146 -0.197 29.401 -0.299 38.205 -1.188 25.271 0.035

E
LN

Inner test 21.836 0.284 21.433 0.322 19.136 0.441 22.352 0.25

Libs test 22.078 0.287 21.847 0.308 47.748 -3.149 23.752 -0.003

USPTO 26.337 -0.04 26.678 -0.057 61.38 -4.65 25.817 0.001

Reaxys 28.638 -0.661 30.974 -0.77 43.872 -2.888 23.838 -0.151
Table A.23 Results from Suzuki coupling trained on reagents filtered datasets, regression.
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Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

RMSE R2 RMSE R2 RMSE R2 RMSE R2

U
S

P
TO

Inner test 22.116 0.285 22.511 0.284 23.141 0.201 38.594 -1.235

Reaxys 23.964 0.052 24.642 0.031 27.813 -0.278 42.152 -1.933

ELN 27.464 -0.058 27.17 -0.04 33.785 -0.6 34.624 -0.681

Enamine 31.177 -0.232 30.111 -0.152 37.99 -0.83 32.758 -0.36

R
ea

xy
s

Inner test 20.254 0.314 20.339 0.343 19.493 0.343 21.652 0.237

USPTO 21.953 0.295 24.094 0.186 43.221 -1.733 26.205 -0.005

ELN 27.053 -0.026 27.237 -0.045 32.348 -0.467 25.717 0.073

Enamine 31.351 -0.246 30.469 -0.179 37.786 -0.81 28.978 -0.065

E
LN

Inner test 21.303 0.353 20.579 0.407 18.927 0.467 22.417 0.313

Libs test 21.368 0.377 20.414 0.427 28.566 -0.795 21.325 -0

USPTO 26.4 -0.02 28.097 -0.107 35.996 -0.896 26.17 -0.002

Reaxys 27.571 -0.255 28.415 -0.289 42.945 -2.048 26.4 -0.15

Enamine 27.618 0.033 27.595 0.033 33.477 -0.421 28.107 -0.002
Table A.24 Results from SnAr trained on reagents filtered datasets, regression.

Test set

RF ECFP RF Kallisto Chemprop Yield-BERT

RMSE R2 RMSE R2 RMSE R2 RMSE R2

U
S

P
TO

Inner test 21.948 0.187 23.41 0.199 22.538 0.247 44.687 -2.096

Reaxys 23.317 0.006 23.828 -0.014 22.815 0.05 53.006 -4.139

ELN 25.773 -0.086 25.811 -0.084 31.491 -0.621 37.87 -1.344

R
ea

xy
s Inner test 18.736 0.363 17.994 0.42 17.646 0.415 19.514 0.297

USPTO 21.036 0.306 24.192 0.126 50.412 -2.983 25.345 -0.007

ELN 26.913 -0.184 27.523 -0.232 34.626 -0.96 24.992 -0.021

E
LN

Inner test 20.749 0.297 19.968 0.328 19.544 0.365 22.056 0.189

Libs test 21.055 0.286 20.566 0.318 30.101 -2.584 15.856 0.006

USPTO 27.19 -0.159 27.495 -0.129 40.856 -1.616 25.589 -0.026

Reaxys 29.582 -0.601 29.244 -0.527 26.836 -0.315 28.402 -0.476
Table A.25 Results from Buchwald-Hartwig amination trained on reagents filtered datasets, regression.
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Table A.26 Results from reductive amination trained on fully filtered ELN and evaluated on the inner test set of
ELN and fully cleaned USPTO.

3 classes 4 classes

Test set

RF ECFP RF Kallisto RF ECFP RF Kallisto

BA MCC BA MCC BA MCC BA MCC

E
LN

Inner test 0.529 0.246 0.533 0.3 0.452 0.224 0.46 0.28

USPTO 0.361 0.077 0.336 0.028 0.268 0.033 0.272 0.043

Table A.27 Results from SnAr trained on fully filtered ELN and evaluated on the inner test set of ELN and fully
cleaned USPTO.

3 classes 4 classes

Test set

RF ECFP RF Kallisto RF ECFP RF Kallisto

BA MCC BA MCC BA MCC BA MCC

E
LN

Inner test 0.548 0.286 0.55 0.327 0.469 0.245 0.468 0.29

USPTO 0.392 0.101 0.348 0.097 0.287 0.052 0.277 0.054

Table A.28 Results from Suzuki coupling trained on fully filtered ELN and evaluated on the inner test set of ELN
and fully cleaned USPTO.

3 classes 4 classes

Test set

RF ECFP RF Kallisto RF ECFP RF Kallisto

BA MCC BA MCC BA MCC BA MCC

E
LN

Inner test 0.527 0.264 0.515 0.3 0.432 0.212 0.423 0.26

USPTO 0.387 0.107 0.347 0.085 25.803 -0.035 25.85 -0.029

Table A.29 Results from Buchwald-Hartwig coupling trained on fully filtered ELN and evaluated on the inner test
set of ELN and fully cleaned USPTO.

3 classes 4 classes

Test set

RF ECFP RF Kallisto RF ECFP RF Kallisto

BA MCC BA MCC BA MCC BA MCC

E
LN

Inner test 0.529 0.232 0.53 0.275 0.468 0.242 0.423 0.238

USPTO 0.375 0.056 0.34 0.098 0.285 0.052 0.276 0.063
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Table A.30 Results trained on fully filtered ELN and evaluated on the inner test set of ELN and fully cleaned
USPTO.

Test set

RF ECFP RF Kallisto

RMSE R2 RMSE R2

S n
A

r Inner test 21.081 0.313 20.639 0.337

USPTO 26.557 -0.06 27.673 -0.124

R
A ELN 21.603 0.257 20.43 0.322

USPTO 26.997 -0.157 26.977 -0.153

B
H Inner test 20.678 0.287 19.617 0.345

USPTO 26.07 -0.103 26.475 -0.081

A
C Inner test 21.345 0.272 20.397 0.33

USPTO 26.272 -0.08 26.258 -0.078

S
uz

uk
i

Inner test 21.458 0.273 20.702 0.326

USPTO 25.803 -0.035 25.85 -0.029
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