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Abstract

Weather forecasting relies on large-scale simulation datasets, which are generated by nu-
merical weather prediction (NWP) models. To account for the inherent uncertainties
of weather prediction, numerical simulations are repeated multiple times with slightly
different initial conditions and model configurations. The resulting forecast ensembles
provide forecasters with information about weather trends and prediction uncertainties.
Due to the central role of numerical simulation data within this process, recent develop-
ments in data-driven modeling, computational technologies, machine learning (ML), and
deep learning (DL) have advanced the state of the field. Examples of data-driven infer-
ence tasks in NWP include the statistical postprocessing of weather simulations as well
as the visualization and visual analysis of multi-dimensional and multivariate forecast
ensembles. Such applications can benefit from the adoption of ML and DL techniques
and are subject to ongoing research.

In this publication-based dissertation, we compile research results from five articles,
which explore the use of data-driven modeling techniques for postprocessing, analyzing,
and compressing the outputs of NWP models. A specific focus is put on the design and
validation of adequate ML and DL model architectures to meet the requirements and
quality criteria of the respective modeling tasks. The proposed DL models are assessed
critically regarding their performance advantage over more classical approaches and the
interpretability of models’ predictions. The developed methods profit from interdisci-
plinary connections between meteorological applications and data-driven learning tasks
in other scientific domains, such as computer vision, image processing, and visualization.

The first group of studies focuses on ML and DL approaches for postprocessing NWP
model outputs. Specifically, we address forecast quality limitations in NWP due to model
resolution constraints and systematic statistical model errors. Commonly, the finite grid
resolution of NWP models constrains the models’ ability to resolve physical processes on
horizontal spatial scales smaller than several kilometers. In NWP datasets, this induces a
lack of prediction accuracy on small spatial scales and statistical error patterns on larger
scales. In our first study, we examine how convolutional neural networks (CNNs) can im-
prove the resolution of weather forecasts in these conditions, using near-surface wind field
forecasts as a practical application. Drawing parallels to image superresolution, the study
compares various CNN architectures and combines aspects of the best-performing archi-
tectures to build a new CNN model with high prediction accuracy and low computational
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Abstract

footprint compared to costly high-resolution simulations. Our second study focuses on
ensemble postprocessing, using DL models with a permutation-invariant neural network
(NN) architecture that is natively suited for processing ensemble-valued inputs. Our
ensemble-focused approach contrasts previous methods, which often operate on simple
ensemble summary statistics and thus discard information potentially prematurely. Case
studies with applications to wind gust and surface temperature forecasting demonstrate
the utility of the approach, and dedicated model explanation techniques are developed to
explore the reasoning processes in the model. In our third study, we develop a simple sta-
tistical model for postprocessing surface temperatures in complex terrain. We introduce
a simple, physically motivated method that adjusts temperature predictions according
to the altitude difference between terrain altitudes in the real world and the approxi-
mate coarse representation inside the NWP model. A 3D visualization tool is developed
alongside the postprocessing scheme to help understand how terrain variations impact
the forecast accuracy.

In the second group of studies, we address the visual analysis and compressed represen-
tation of ensemble forecast datasets using DL and visualization techniques. Due to their
sheer data volume, large ensemble datasets impose challenges on interactive visualization
systems. Motivated by advances in computer vision in representing 3D scenery data in
NN-based data structures, our fourth study looks at compressive neural representation
for ensemble datasets. We illustrate how neural data representations can be adapted to
ensemble datasets and explore the impact of data properties, such as value distributions,
on the representation quality. The proposed ensemble representation networks (ERNs)
achieve high compression rates while maintaining data quality and facilitating rapid data
access. Our fifth and final study explores this line of research further. Neural dependence
fields (NDFs) are introduced as a specialized NN-based data structure to enable the in-
teractive exploration of statistical dependencies in volumetric ensemble datasets. Using
a dedicated NN architecture, NDFs learn to represent bivariate dependence fields in large
ensemble data. Integrating NDFs into an interactive visualization tool enables the visual
exploration of correlations and interdependence patterns in large ensemble datasets.
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Zusammenfassung

Wettervorhersagen stützen sich auf großskalige Simulationsdatensätze, die von nume-
rischen Wettermodellen generiert werden. Um Unsicherheiten zu berücksichtigen, wer-
den Wettersimulationen mehrfach wiederholt und jeweils mit leicht unterschiedlichen
Anfangsbedingungen und Modellkonfigurationen ausgewertet. Die daraus resultieren-
den Ensemble-Vorhersagen liefern Informationen über Wettertrends und zu erwartende
Vorhersagefehler. In Anbetracht der zentralen Rolle, die numerischen Simulationsdaten
in der Wettervorhersage spielen, motivieren Fortschritte in der Entwicklung von daten-
getriebenen Modellierungsansätze und in der Verfügbarkeit von computergestützten Tech-
nologien neue Forschungsansätze. Insbesondere maschinelles Lernen (ML) und Deep
Learning (DL) haben großes Potential, numerische Wettervorhersagen zu verbessern.
Beispiele für datengetriebene Forschungsfragen in der numerischen Wettervorhersage sind
die statistische Nachbearbeitung von Wettersimulationen und die computergestützte vi-
suelle Analyse von mehrdimensionalen und multivariaten Ensemble-Vorhersagen.

In der vorliegenden publikationsbasierten Dissertation stellen wir Forschungsergeb-
nisse aus fünf Artikeln vor, die sich mit diesen Themen beschäftigen. Insbesondere
untersuchen die Studien den Einsatz von datengetriebenen Modellierungstechniken für
die Nachbearbeitung, die Analyse und die Komprimierung von Vorhersagedaten aus nu-
merischen Wettermodellen. Ein besonderer Schwerpunkt liegt dabei auf dem Entwurf und
der Validierung geeigneter ML- und DL-Modellarchitekturen, um den Anforderungen und
Qualitätskriterien der jeweiligen Anwendungen nachzukommen. Die vorgeschlagenen DL-
Modelle werden kritisch auf ihre Leistungsvorteile gegenüber klassischeren ML-Ansätzen
untersucht und die Interpretierbarkeit ihrer Vorhersagen beurteilt. Die entwickelten
Methoden profitieren dabei davon, dass meteorologische Anwendungen oft große Ähn-
lichkeiten mit Anwendungen in anderen Wissenschaftsbereichen aufweisen. Relevante
Methoden aus der vorliegenden Arbeit kommen beispielsweise aus dem maschinellen Se-
hen, der Bildverarbeitung und der computergestützten Visualisierung.

In der ersten Gruppe von Studien konzentrieren wir uns auf ML- und DL-Ansätze
für die Nachbearbeitung von numerischen Wettervorhersagen. Insbesondere befassen
wir uns mit Einschränkungen der Vorhersagequalität, die aus der limitierten räumlichen
Auflösung von Wettermodellen resultieren, und mit systematischen statistischen Mod-
ellfehlern. Die beschränkte Auflösung der numerischen Wettermodelle hat Einfluss auf
die Korrektheit der Abbildung von räumlich kleinskaligen physikalischen Prozessen auf
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der Größenordnung von einigen Kilometern horizontaler Ausdehnung. In Wettervorher-
sagen führt dies zu Ungenauigkeiten auf kleinen räumlichen Skalen sowie zu statistis-
chen Fehlern auf größeren Skalen. In unserer ersten Studie untersuchen wir, wie fal-
tungsbasierte neuronale Netze (Convolutional Neural Networks; CNNs) Wettervorher-
sagen verbessern können. Als Anwendung nutzen wir dabei die Vorhersage von boden-
nahen Windfeldern. Unter Einbeziehung von Erkenntnissen aus der Bildverarbeitung,
insbesondere aus Methoden zur Verbesserung der Auflösung von Bilddaten, vergleicht
die Studie verschiedene CNN-Architekturen bezüglich ihrer Vorhersagegenauigkeit und
kombiniert Aspekte der leistungsstärksten Architekturen, um ein neues Modell zu kon-
struieren. Unsere zweite Studie konzentriert sich auf die Nachbearbeitung von Ensemble-
Vorhersagen. Dabei verwenden wir DL-Modelle mit einer permutations-invarianten Net-
zwerkarchitektur, die nativ für die Verarbeitung von Ensembles geeignet sind. Unser
ensemble-basierter Ansatz unterscheidet sich von früheren Methoden, die oft mit ein-
fachen Architekturen arbeiten, statistische Zusammenfassungen der Ensemble-Verteilung
verwenden und damit potenziell wichtige Informationen in der Ensemble-Verteilung vor-
zeitig verwerfen. Fallstudien zur Vorhersage von Windböen und Oberflächentempera-
turen zeigen den Nutzen des Ansatzes. Weiterhin werden spezielle Techniken zur Erk-
lärung der Modelle entwickelt, die Einblicke in die modell-interne Informationsverar-
beitung erlauben. In unserer dritten Studie entwickeln wir ein einfaches statistisches
Modell für die Nachbearbeitung von Oberflächentemperaturen in komplexem Gelände.
Wir stellen ein einfaches, physikalisch motiviertes Schema vor, nach welchem Temper-
aturvorhersagen korrigiert werden können, wenn Höhenunterschiede zwischen der realen
Welt und der Terrain-Repräsentation im Wettermodell vorliegen. Zusätzlich entwickeln
wir ein 3D-Visualisierungstool, um zu verstehen, wie sich Geländeunsicherheiten auf die
Vorhersagegenauigkeit auswirken.

In der zweiten Gruppe von Studien befassen wir uns mit der visuellen Analyse und
komprimierten Darstellung von Ensemble-Vorhersagen und untersuchen, wie DL und
spezialisierte Visualisierungstechniken diese verbessern können. Aufgrund ihrer Daten-
menge stellen große Ensemble-Datensätze eine Herausforderung für interaktive Visual-
isierungssysteme dar. Motiviert durch Fortschritte im maschinellen Sehen und in der
Repräsentation von 3D-Szenen-Daten in Form von neuronalen Datenstrukturen, befasst
sich unsere vierte Studie mit der komprimierten Darstellung von Ensemble-Datensätze
durch neuronale Repräsentationen. Wir zeigen, wie neuronale Datenrepräsentationen
an Ensemble-Daten angepasst werden können und untersuchen die Auswirkungen von
Dateneigenschaften, wie z.B. der Werteverteilungen, auf die Qualität der Darstellung.
Die vorgeschlagenen Ensemble-Repräsentationsnetzwerke (ERNs) erreichen hohe Kom-
pressionsraten bei guter Datenqualität und erleichtern den schnellen Zugriff auf die ge-
speicherten Daten. In unserer fünften und letzten Studie führen wir diesen Forschungs-
zweig weiter. Insbesondere stellen wir Neural Dependence Fields (NDFs) als eine spezial-
isierte neuronale Datenstruktur vor, die die interaktive visuelle Exploration von statis-
tischen Abhängigkeiten in volumetrischen Ensemble-Datensätzen ermöglicht. Unter Ver-
wendung einer speziellen NN-Architektur lernen NDFs, bivariate Abhängigkeitsfelder in
großen Ensemble-Daten zu enkodieren. Durch die Integration von NDFs in ein interak-
tives Visualisierungstool wird die Anwendbarkeit des Ansatzes illustriert.
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CHAPTER 1

Introduction

Weather prediction is inherently a data-driven science. Vast amounts of observation
data from weather stations, radiosondes, satellites, radar stations, buoys, and airplane-
and vessel-mounted sensors are collected each day to probe the current state of the
atmosphere and enable informed projections of what the weather will be like – most
likely and subject to inherent uncertainties. Probabilistic future projections are based
on weather prediction models that simulate the evolution of the atmosphere and provide
insights into weather trends and expected error margins. Weather forecasts are issued
daily by national and international weather centers, such as the German Weather Service
(Deutscher Wetterdienst; DWD) and the European Centre for Medium-Range Weather
Forecasts (ECMWF), covering forecast lead times between a few hours and up to several
weeks. Sustaining and extending the current level of forecast skill requires continuous
improvements to the quality of the prediction models and the analytical methods used
in the evaluation of forecast datasets.

As of today, operational forecasting systems rely on a forecasting pipeline that com-
bines statistical data assimilation techniques with numerical weather prediction (NWP)
models and postprocessing methods to optimize the forecast quality. While data as-
similation uses statistical techniques and comprehensive observation datasets to assess
the current state of the atmosphere, NWP models apply the laws of physics to project
the available information into the future. NWP models operate on discretized grid rep-
resentations of the atmosphere and use numerical integration schemes to simulate the
atmospheric dynamics. Monte Carlo methods provide probabilistic forecast information
and account for uncertainties about the current state of the atmosphere and its future
dynamics. The resulting ensemble forecasts represent multi-samples of possible future
weather scenarios, allowing insights into the respective likelihoods and interrelations of
different events. Postprocessing of the model outputs is required to correct model-specific
prediction biases and miscalibrations of the simulation results.
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1 Introduction

Limitations of operational forecasting systems arise from the interplay between fore-
cast quality, timeliness constraints, and the computational complexity of NWP models.
Among the key determinants of achievable forecast quality are the spatial resolution
of the model’s simulation grid and the number of independent runs considered in the
ensemble (cf., e.g., Palmer 2019). More fine-granular models achieve potentially better
representations of small-scale dynamical effects, and larger ensemble sizes facilitate more
accurate estimates of event probabilities, especially for weather extremes (e.g., Tempest
et al. 2023). However, both come at the cost of larger computational simulation com-
plexity, longer computation times, and increased volume of the generated data. As a
compromise between computational complexity and forecast quality, forecasting systems
such as the Integrated Forecast System (IFS) at the ECMWF use supercomputing hard-
ware to run global NWP models with kilometer-scale resolution and ensemble sizes of
around 100 runs. While the generated data volume amounts to tera- and petabytes each
day, the resolution is still too coarse to account for local-scale physical effects below the
grid resolution or provide useful forecast information on sub-grid scales. Accordingly,
postprocessing methods aim to refine the spatial resolution of forecast products and cor-
rect for biases in the predictions due to, e.g., misrepresentations of sub-grid physical
effects (e.g., Hewitson and Crane 1996; Vannitsem et al. 2021; Wilby and Wigley 1997).
Postprocessing methods with a focus on spatial refinement are called downscaling meth-
ods and are especially helpful for forecasting atmospheric variables close to the Earth’s
surface. Ensemble postprocessing, additionally, addresses the calibration and sharpness
of ensemble forecasts.

Regarding forecast analysis, challenges arise from the inherent complexity of the gener-
ated forecast data. NWP datasets are defined on multi-dimensional simulation domains,
may show temporal variability, combine information from multiple different physical pa-
rameters, and involve a stochastic component due to the use of Monte Carlo procedures.
Notably, ensemble forecasts are stochastic representations of high-dimensional forecast
distributions. Spatiotemporal correlation patterns and interrelations of physical variables
give rise to intricate interdependencies, which may affect the statistical interpretation of
forecasts. For instance, the occurrence of high precipitation in a few simulation runs may
provoke limited interest or only careful reactions by forecasters when it is confined to a
small area but may justify flood warnings when the extremes extend coherently across a
wider region. Similarly, the ability to study interrelations between different kinds of data
is a key requirement for improving the prediction quality of existing forecasting systems.
Statistical analysis methods based on historical data and interactive visual exploration
methods for forecast datasets play a central role in recognizing relevant patterns. The
increasing availability and volume of NWP data offer diverse opportunities for new in-
sights but keep pushing existing data storage and analysis solutions to their technical
limits. Concerning data storage, for example, common data compression techniques (e.g.,
Ballester-Ripoll et al. 2020; Di and Cappello 2016; Düben et al. 2019; Lindstrom 2014)
enable reductions of the data’s memory footprint but often discard parts of the informa-
tion and cause compression artifacts (cf., e.g., Baker et al. 2017; Cappello et al. 2019).
In visual analysis settings, additionally, extensive decompression or data loading times
impede interactive analysis workflows.
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In light of the central importance of data in NWP, data-driven modeling and analysis
methods offer a wide range of opportunities to improve the achievable forecast quality,
computational efficiency, and interpretability of NWP systems. Across a wide range of
research domains, developments in computational technology have advanced the abilities
of researchers to process and analyze large datasets. Scientific models and analysis proce-
dures are increasingly augmented with data-driven model components using automated
machine learning (ML) methods and deep learning (DL). Meteorology and weather fore-
casting are immaculate examples of these developments. ML and DL techniques are
adopted at an increasing pace (see, e.g., Ben-Bouallègue et al. 2024; Dueben et al. 2022;
Reichstein et al. 2019) and yield new insights and research methodologies.

Therein, DL has emerged as a particularly powerful and flexible modeling approach, of-
ten exceeding the capabilities of more classical ML methods. DL models rely on artificial
neural networks (NNs), which are trained to learn functional mappings from comprehen-
sive datasets using scalable gradient-based optimization schemes. The flexibility of DL
models is due to a variety of design options and NN architectures, i.e., neuron layouts and
connectivity structures, that allow adapting the models precisely to the requirements of
different learning tasks. Examples of common NN architectures include fully-connected
networks (FCNs; e.g., Rosenblatt 1958), which can learn from vector-valued or tab-
ular data inputs, convolutional neural networks (CNNs; e.g., Fukushima 1988; LeCun
et al. 1998) for image-like data or data on spatially distributed grids, and transform-
ers (Vaswani et al. 2017) for sequentially ordered or unordered inputs, such as text and
set-structured data. Following applications in computer vision (e.g., Krizhevsky et al.
2012), medical imaging (e.g., Ronneberger et al. 2015), and natural language processing
(e.g., Radford et al. 2018), DL methods have flourished also in the natural sciences (e.g.,
Jumper et al. 2021; Kochkov et al. 2024; Reichstein et al. 2019) – including meteorology
and weather prediction.

Data-driven learning algorithms promise improvements in various steps of the forecast-
ing pipeline. In postprocessing applications, ML and DL methods offer flexible modeling
capabilities that allow the exploration of new data types and sources that were unacces-
sible to earlier statistical or physics-based approaches (e.g., Hewitson and Crane 1996;
Vannitsem et al. 2021; Wilby and Wigley 1997). In applications concerning the evalua-
tion and analysis of probabilistic NWP datasets, ML-based feature extraction methods
can help to distill relevant information from large datasets and alleviate complexity and
storage constraints (cf., e.g., Han et al. 2021; Lu et al. 2021; Weiss et al. 2022).

A strong benefit of ML and DL techniques is their adaptability to diverse learning
tasks and their wide adoption across diverse research domains. Several research ques-
tions in meteorology resemble inference problems in other scientific domains. Examples
include, e.g., the resolution enhancement of images in computer vision and downscaling
of weather data or the representation of 3D scenery information in computer graphics
and 3D simulated physical variable fields in meteorology. These interdisciplinary connec-
tions give rise to new research opportunities in transferring modeling approaches between
scientific domains and help accelerate scientific progress. ML and DL methods developed
in computer vision or visualization research can be applied to modeling tasks in mete-
orology or motivate the development of inherently new data-driven solutions. Research
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1 Introduction

is required to understand the scientific background of the respective applications and
adapt the modeling approaches accordingly. Next to plain model development, statisti-
cal analysis and visualization techniques developed in computer vision and visualization
research can help to better understand the inference process of data-driven learning mod-
els and foster their adoption in meteorology. Research questions for such studies arise
from the peculiarities of meteorological modeling tasks due to, e.g., the required domain
expertise and the dependence on unique data formats, such as simulation data on NWP
model grids and forecast ensembles.

1.1 Contributions

In this publication-based dissertation, we compile research results from five articles with
a focus on ML and DL applications in meteorology. The work presented in this thesis
explores the use of data-driven modeling techniques for postprocessing, analyzing, and
compressing the outputs of NWP models. A specific focus is put on the design and vali-
dation of adequate DL model architectures to meet the requirements and quality criteria
relevant to the respective applications. In close collaboration with domain scientists, the
proposed DL models are assessed critically regarding their performance advantage over
more classical approaches and the interpretability of models’ predictions. Statistically
founded and visualization-based analysis methods are presented, which enable the inves-
tigation of model predictions and their dependence on the raw NWP data. The studies
address two distinct lines of research.

Three of the presented contributions focus on ML- and DL-based statistical postpro-
cessing models that target the downscaling of gridded forecast fields in complex terrain
and the postprocessing of ensemble forecasts:

• In Höhlein et al. (2020), we examine the use of CNNs for downscaling forecasts
of low-level wind fields on extended spatial domains. Four exemplary CNN archi-
tectures and a multilinear regression model are compared concerning downscaling
accuracy and adaptability of the models to additional predictor variables. Using
architectural optimizations, a skillful novel CNN architecture, DeepRU, is devel-
oped, which outperforms the remaining models in terms of downscaling quality
while maintaining a low computational footprint. Feature relevance metrics are
computed to explore how different model architectures combine the information
from different sources of predictive information.

• In Höhlein et al. (2024b), we design DL models for ensemble postprocessing that
operate natively on ensemble-valued input data. Our ensemble-focused approach
contrasts previous methods, which often operate on simple ensemble summary
statistics and thus discard distribution details before the model has even seen the
data. Different model designs are compared with respect to the achievable quality
of probabilistic forecasts. Case studies in postprocessing wind gust and surface
temperature predictions illustrate the utility of our approach. Additionally, we

4



1.1 Contributions

present a feature importance analysis for ensemble-valued predictors that general-
izes a previous model explanation technique for scalar-valued features. The novel
method highlights specific features in the ensemble that are considered important
by the trained postprocessing models. Our analysis reveals that most of the rele-
vant information is contained in only a few ensemble-internal degrees of freedom,
spawning new research questions on the capabilities and limitations of ensemble
forecasts.

• In Höhlein et al. (2024a), we develop a simple downscaling scheme for near-surface
temperatures in complex terrain. Based on gridded temperature records and ele-
vation information, the method provides case-specific information about local tem-
perature variations due to altitude differences. The information is used in a sim-
ple physics-inspired downscaling scheme that corrects temperature predictions for
elevation difference effects. To assess forecast improvements and hyperparame-
ter dependencies, the technique is embedded into a 3D topographic visualization
system. The tool enables surface- and volume-based visualizations of near-surface
temperature predictions and observations in the context of the surrounding terrain.
Selected case studies identify and illustrate topographic dependencies of prediction
errors. The results are unpublished and not peer-reviewed.

The remaining projects address the visual analysis and compressed representation of
ensemble forecast datasets using a combination of DL and visualization techniques:

• In Höhlein et al. (2022), we evaluate the utility of NN-based data representations
for compressing meteorological ensemble data on 3D simulation domains. Inspired
by scene representation networks (SRNs) in computer vision and volume represen-
tation networks (VRNs) in visualization research, NNs are used as a compressive
data structure to encode volumetric ensemble information. The proposed ensemble
representation networks (ERNs) exploit similarities between the ensemble mem-
bers by sharing NN parameters between them, yielding competitive compression
ratios relative to traditional compression algorithms. Since meteorological ensem-
bles contain multiple physical parameters with different statistical characteristics,
we analyze the impact of data normalization schemes on the representation quality.

• In Farokhmanesh et al. (2023b), we present neural dependence fields (NDFs) to
facilitate interactive analysis of bivariate correlation and interdependence relation-
ships in large ensemble datasets. NDFs constitute a specialized NN-based data
structure, which stores two-point correlation and interdependence maps in 3D sim-
ulation ensembles. NDFs circumvent the evaluation of compute-intensive statisti-
cal summary statistics at runtime by precomputing the required values and storing
them. The compactness of the representation together with its ability to efficiently
provide data access at random locations facilitate the integration of NDFs into an
interactive visualization tool.
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1.2 Outline

Chapters 2 and 3 introduce fundamentals and relevant background information that
enable a detailed understanding of the presented methods. Emphasis is put on the
fundamentals of atmospheric dynamics and weather forecasting (chapter 2) as well as on
DL methods and their applications in computer vision (chapter 3). The fundamentals
of DL are followed by a more detailed discussion of NN architectures and the principles
of DL model design, a brief overview of DL model explanation techniques, and DL
applications in computer vision that inspired parts of this work. Chapter 4 lists and
discusses related work, and chapter 5 provides summaries of the presented articles and
original contributions of this thesis. Chapters 6 and 7 conclude the thesis with final
discussions and an outlook on future research opportunities. The original publications
with license information and supplemental materials are shown in the appendix.
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1.3 List of Publications

1.3 List of Publications

Large parts of the work in this thesis have resulted in peer-reviewed journal articles and
conference proceedings. This section lists the publication details and states the articles’
relevance for assessing the thesis. Summaries of the contents and author contributions
in examination-relevant and additional publications are provided in chapter 5.

Core publications The following peer-reviewed journal and conference publications
form the core of this thesis and are the most relevant for the examination. The thesis
author acted as the lead author of these publications (> 50% contribution).

• Kevin Höhlein et al. (2020). “A comparative study of convolutional neural network
models for wind field downscaling”. In: Meteorological Applications 27.6, e1961.

• Kevin Höhlein et al. (2022). “Evaluation of Volume Representation Networks for
Meteorological Ensemble Compression”. In: Vision, Modeling, and Visualization
(VMV 2022). The Eurographics Association.

• Kevin Höhlein et al. (2024b). “Postprocessing of Ensemble Weather Forecasts Using
Permutation-Invariant Neural Networks”. In: Artificial Intelligence for the Earth
Systems 3.1, e230070.
© American Meteorological Society. Used with permission.

Coauthor publication The following publication is presented as part of this thesis and
is relevant for the examination. The thesis author contributed significant parts to the
publication but did not act as the lead author (≤ 50% contribution).

• Fatemeh Farokhmanesh et al. (2023b). “Neural Fields for Interactive Visualization
of Statistical Dependencies in 3D Simulation Ensembles”. In: Vision, Modeling,
and Visualization (VMV 2023). The Eurographics Association;
Coauthor contribution.

Unpublished work Contributions from the following unpublished article are presented
in this thesis but should not be considered in the examination.

• Kevin Höhlein et al. (2024a). Topographic Visualization of Near-surface Tempera-
tures for Improved Lapse Rate Estimation. arXiv: 2406.11894 [physics.ao-ph].
Unpublished work, not peer-reviewed, not relevant for the examination.
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CHAPTER 2

Atmospheric Dynamics and Weather Forecasting

This section provides an overview of the fundamentals of atmospheric dynamics and
weather prediction, introduces meteorology-related terminology, and locates the contri-
butions of the presented publications within the context of weather prediction research.

2.1 Physics of the Atmosphere

The atmosphere is a complex dynamical system that evolves according to the laws of
physics and chemistry. Current NWP models distinguish between two sorts of atmo-
spheric dynamics: phenomena that can be resolved by a (simplified) fluid and thermody-
namic model of the atmosphere, also referred to as dynamics, and phenomena that cannot
be covered by such models due to insufficient model resolution or non-fluid-dynamical
characteristics. The latter are referred to as physics (cf. Gross et al. 2018; Inness and
Dorling 2012) and must be captured through suitable approximations and parameteriza-
tion schemes (e.g., Palmer et al. 2009). The subsequent sections introduce the physical
background of both kinds of effects and highlight selected aspects that are relevant to
the presented studies.

2.1.1 Fluid and Thermodynamics

A large part of atmospheric physics is understood by modeling the atmosphere as a fluid
system in 3D space and time, evolving according to the laws of hydro- and thermo-
dynamics. A (macroscopic) dynamical state of the atmosphere is determined through
temperature, pressure, flow velocity (i.e., wind speeds), and mass densities for all rele-
vant components of the atmosphere. The variables are commonly denoted as T , p, u,
and ρ, respectively, and are understood as fields in a continuous theory of fluid and ther-
modynamics. For a single gaseous component of the atmosphere, such as air or water
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vapor, the fundamental equations are derived as partial differential equations from a
small number of physical principles (cf. Vallis 2017), namely:

• momentum conservation:

Du

Dt
= −1

ρ
∇p+

µ

ρ
∆u+ Fext, (2.1)

wherein µ is the viscosity and Fext denotes external forces (per unit mass), such as
gravity or drag forces, but also includes the Coriolis and centrifugal forces arising
from solving the equations in a rotating reference frame,

• mass conservation:
Dρ

Dt
+ ρ∇u = qext, (2.2)

with qext denoting mass source and sink terms.

• the first law of thermodynamics:

Q̇ext = cp
DT

Dt
− 1

ρ

Dp

Dt
, (2.3)

with cp denoting specific heat at constant pressure, and Q̇ext measuring heat fluxes
in and out of the air parcel due to external heating and cooling,

• and the ideal gas law:
p = ρRsT , (2.4)

wherein Rs is the specific gas constant of the component.

In all of the above equations, t indicates time, and ∇ denotes the gradient operator
with respect to spatial coordinates (in an inertial frame of reference). ∆ denotes the
Laplace operator, and Df

Dt = ∂f
∂t + (u · ∇)f is the material time derivative of fields f .

Respecting the spherical symmetry of the Earth, it is common to transform the equations
to spherical coordinates. The spherical form of Equations 2.1 to 2.4 form the backbone of
operational weather prediction models. For more details, we refer to dedicated textbooks
such as Holton (2013) or Vallis (2017).

2.1.2 Approximations and Alternative Parametrizations

Solving the equations jointly for all components of the atmosphere generally requires
numerical integration procedures. However, qualitative insights on generic dynamical
patterns can be obtained from simple approximations, which enable an intuitive un-
derstanding of weather situations without invoking costly simulations. Three common
approximations are introduced here that address the pressure distribution in the atmo-
sphere, approximate the wind direction based on known pressure fields, and provide an
explanation for the temperature distribution in the atmosphere.
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2.1 Physics of the Atmosphere

Vertical coordinates and hydrostatic balance The simplest possible approximation
of atmospheric conditions is a static, i.e., time-invariant, atmosphere that is symmetric
under rotations around the Earth’s rotational axis. In absence of atmospheric motion,
Equation 2.1 states that the vertical pressure gradient must balance gravity, i.e.,

∂p

∂z
= −ρg, (2.5)

wherein z denotes the vertical coordinate, and g = g(z) is the gravitational acceleration at
height z. Equation 2.5 is called the hydrostatic balance condition and is often a reasonable
approximation of the true atmospheric conditions, even in the non-static case.

Due to ρ, g > 0, p decreases monotonically with z. This fact and the close connection
between p and the remaining state variables motivates the use of pressure coordinates,
which measure the vertical elevation in terms of pressure p instead of z. Replacing z
with p offers advantages in relating spatiotemporal dynamical equations to the laws of
thermodynamics. A related quantity is the geopotential,

Φ =

∫ z

z0

g(z′) dz′,

= −Rs

∫ p(z)

p(z0)

T (p′)
p′

dp′,

with z0 denoting the height of the mean sea level. The second equality is obtained by
using Equation 2.4. The geopotential relates pressure and elevation coordinate through
the geopotential height, Z = Φ/g(z0), which measures vertical differences in terms of the
gravitational energy required to elevate a unit mass object by the respective amount.
Surfaces of constant geopotential are considered as horizontal in terms of dynamical
motion and are perpendicular to the direction of gravity. In particular, geopotential
heights on pressure isolevels, such as 500 hPa, are important diagnostics for weather
forecasting and flow inference.

Geostrophic balance and geostrophic winds In the upper layers of the atmosphere,
and far enough from the equator, the dominating forces in Equation 2.1 are the pressure
force, gravity, and the Coriolis force, as drag forces are often negligible (Vallis 2017). A
steady state solution in the presence of spatial pressure variations amounts to solving
Equation 2.1 for Du

Dt = 0 in a rotating reference frame. The resulting conditions are
called geostrophic balance.

The wind field in geostrophic balance is called geostrophic wind and is oriented parallel
to isolines of the pressure field, i.e., perpendicular to pressure gradients. Since pressure
isocontours are commonly shown in meteorological charts and geostrophic balance is often
satisfied approximately in mid-latitude regions, geostrophic winds constitute an easily
accessible approximation to the true wind field. In hydrostatic balance, the geostrophic
wind field can also be expressed in pressure coordinates. The winds are then directed
parallel to the isolines of the geopotential height Z at constant pressure (Holton 2013).
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2 Atmospheric Dynamics and Weather Forecasting

Temperature variation with height and atmospheric stability The temperature dis-
tribution in the atmosphere is determined jointly by Equations 2.3 and 2.4 (Vallis 2017).
Due to potential condensation effects, the air-water content affects temperature varia-
tions considerably. In unsaturated air and hydrostatic balance, the equations predict a
linear temperature decrease with height at a rate of

dT
dz

= −Γdry, where Γdry :=
g

cp
. (2.6)

The quantity Γdry is called the dry adiabatic lapse rate and has a value of Γdry =
9.8K km−1 for dry air in standard gravity1. When air becomes cooler, its ability to
hold water vapor decreases until saturation is reached and condensation effects start to
set in. Beyond this point, the heat release due to condensation decreases the cooling rate.
The moist adiabatic lapse rate, Γmoist, accounts for condensation and has values, typically,
between 3K km−1 and 6K km−1, depending on ambient temperature and pressure.

The environmental lapse rate, Γenv, describes the observed rate of temperature decrease
in real weather situations and can be used to assess the dynamical stability of a weather
situation. Depending on how Γenv compares to Γdry and Γmoist, the atmosphere can be
in three configurations:

• Γenv < Γmoist: The weather situation is stable. Air parcels that rise in the sur-
rounding air cool faster than their environment, resulting in a decelerating force
that counteracts further ascent.

• Γmoist ≤ Γenv ≤ Γdry: The weather situation is conditionally unstable. Unsaturated
air masses cool faster than the environment and remain stable. Yet, in saturated
air, the heat released due to condensation pushes the air beyond the stability barrier
and accelerates the ascend of air parcels.

• Γdry < Γenv: The weather situation is unstable. Air parcels experience an acceler-
ating force when displaced vertically, leading to convective air movements.

The International Civil Aviation Organization (ICAO) defines an international stan-
dard atmosphere (ISA) as a simplified model of common atmospheric conditions. The
ISA assumes a value of Γenv = 6.5K km−1 for the troposphere between mean sea level
and 11 km above (International Civil Aviation Organization 1993).

The vertical temperature variation in the free air directly affects temperature values in
the vicinity of the Earth’s surface. Surface temperatures are among the most important
forecast variables in operational weather predictions and exhibit a strong dependence on
the reference altitude for which they are computed. In complex terrain, where details
of the terrain shape remain unresolved by coarse grid representations in NWP models,
this may lead to systematic but dynamically changing prediction errors, depending on
the stability conditions in the ambient atmosphere. Prediction errors of this type are
addressed by the methods in Höhlein et al. (2024a).

1Gravity varies only marginally over the relevant elevation differences of a few 100m to 1000m and is
assumed constant here.

12



2.1 Physics of the Atmosphere

Wind

Orographic
lifting

Descending air

Precipitation

Cloud formation

(a) Orographic lifting

Solar
irradiation

Warm air
rising

Convective
cloud

(b) Convection and convergence

Radiative
cooling

Cold air
descending Cold pool formation

in valleys

(c) Cold pool formation

Figure 2.1: Simplified examples of orography-mediated interactions between boundary layer at-
mosphere and Earth’s surface.

2.1.3 Earth System and Planetary Boundary Layer

In addition to its intrinsic fluid and thermodynamics, the atmosphere is tightly coupled
to other Earth system components. In particular, it is driven by solar radiation (captured
in Q̇ext in Equation 2.3; for details, see Wallace and Hobbs 2006). The energy intake
from solar irradiation causes water evaporation and heating of near-surface air, which
are precursors, e.g., of convective cloud formation processes.

The planetary boundary layer The planetary boundary layer (PBL) describes the
lowest part of the atmosphere that is in direct contact with the Earth’s surface. It takes
the role of a regulator of heat and momentum fluxes between the bulk atmosphere and the
Earth’s surface (Baklanov et al. 2011). Diurnal cycles and details of the Earth’s surface,
such as local topography or land usage, are important impact factors of the prevalent
interaction processes (Foken and Mauder 2008). PBL physics are particularly difficult
to express in NWP model equations due to the wealth of relevant phenomena and their
dependence on high-resolution terrain and land cover details. Accordingly, PBL physics
are a major source of uncertainties and prediction errors in NWP.

Impact of complex orography Of particular interest in the context of this work are
PBL phenomena due to variations in the local terrain shape, also referred to as orog-
raphy. In areas with complex orography, such as mountain ranges, terrain elevations
obstruct movements of air masses and deflect airflow. Depending on the spatial extent
of the obstruction, this may lead to the formation of local-scale turbulent wind systems
that deviate strongly from the ambient flow and, e.g., geostrophic winds. Figure 2.1
displays a schematic overview of the orography-mediated boundary layer effects. Larger-
scale phenomena include orographic lifting situations, in which air masses are forced to
ascend above obstructions (Figure 2.1, a). Orographic lifting frequently causes cloud for-
mation and orographically triggered precipitation on the windward side of the obstacle.
On the opposite side, it leads to oscillatory vertical air movements and an increase in
the air temperature due to latent heat from condensation. Additionally, mountainsides
with steep slopes may heat up quicker under solar irradiation than the surroundings,
thus leading to unstable atmospheric conditions and potentially triggering the spatially
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Figure 2.2: Schematic overview of a typical workflow for operational weather forecasting
(adapted from Düben et al. 2021). Arrows and labels indicate the direction and
type of data transmitted between the sub-steps. The NWP model, forming the core
of the process, is highlighted.

confined ascend of warm air masses, i.e., convection (Figure 2.1, b). Inversely, cold air
masses may accumulate in topographic depressions, e.g., due to night-time radiative cool-
ing of near-surface air (Figure 2.1, c). Cold air pools in valleys are characterized by a low
environmental lapse rate or even an inversion of the temperature profile, i.e., an increase
of temperature with height. For a more detailed discussion of meteorological phenomena
related to boundary-layer effects, see, e.g., Foken and Mauder (2008).

In NWP simulations, PBL physics are approximated through physics parameteriza-
tions, which emulate (the effect of) the unresolved processes through simplified (stochas-
tic) equations (Berner et al. 2017). Downscaling and postprocessing methods, as dis-
cussed in Höhlein et al. (2020) and Höhlein et al. (2024b), address the resulting prediction
errors in a post-hoc step.

2.2 Probabilistic Weather Forecasting and Postprocessing

Figure 2.2 displays an overview of a typical forecasting pipeline commonly applied in
operational weather forecasting. An NWP model, forming the backbone of the pipeline,
starts from information about the current state of the atmosphere and applies numerical
integration methods to simulate its spatiotemporal dynamics. In addition to the NWP
model, the workflow includes steps for probing the atmosphere’s current state through
observations (data collection), providing initial conditions for the NWP model (data
assimilation), and postprocessing its outputs to correct for potential deficiencies (forecast
postprocessing).

The contributions presented in this thesis address the postprocessing of model outputs
(Höhlein et al. 2024a, 2020, 2024b) and the subsequent analysis and representation of
probabilistic forecast data (Farokhmanesh et al. 2023b; Höhlein et al. 2022). This section
introduces the required background and formalism behind the proposed methods.
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2.2.1 Probabilistic Weather Forecasting

Probabilistic weather forecasts account for prediction uncertainties by considering initial
and future weather conditions as random variables. The probabilistic formalism enables
a statistical assessment of the likelihood of possible future weather scenarios. Formally, a
probabilistic prediction for a future weather state Y is issued as a probability distribution
P̂ on the space Y of possible weather scenarios.

The distribution information can be conveyed in different forms depending of the type
of the target variable. For binary prediction targets – i.e., Y = {0, 1} – such as the
occurrence of rain or no rain, a prediction can be identified with a scalar probability
value π ∈ [0, 1] of observing one of the outcomes. For real-valued targets – i.e., Y = R –
the prediction distribution can be expressed through its cumulative distribution function
(CDF) or, if it is defined, its probability density function (PDF).

2.2.2 Ensemble Forecasting

The most common approach for probabilistic forecasting of high-dimensional target vari-
ables is ensemble forecasting. An ensemble forecast is generated by sampling a set of
initial conditions consistent with the observed weather conditions and using different
model configurations to propagate these samples independently over time. The result of
this process is a set of estimates of plausible future weather conditions. The sample set
is called ensemble and serves as a stochastic representation of the forecast distribution
P̂. Each sample forecast separately is called an ensemble member.

For real-valued forecast targets, an M -member ensemble forecast ÊM is a set of M
real-valued member forecasts, i.e.,

ÊM = {ŷm ∈ R : m ∈ {1, ...,M}} , (2.7)

with ŷm ∈ {1, ...,M}. The corresponding forecast distribution is best described in terms
of its CDF, which is a step function with step increments 1

M at every member location
ŷm. Figure 2.3 illustrates this for an example with normal distributions for the variable
and ensemble members. Failure modes of probabilistic forecasts include the presence of
biases (shift between the CDFs) and the over- or underestimation of expected variability
of the forecast quantities (differences in the slope of the CDFs).

2.2.3 Verifying Probabilistic Forecasts

The assessment of the predictive quality of probabilistic forecasting methods is called
forecast verification (Jolliffe and Stephenson 2012). The skill of a probabilistic prediction
system is determined by the accuracy of the predicted values and the statistical consis-
tency of the predicted distribution with that of the observed weather states. Gneiting
and coauthors (Gneiting et al. 2007; Gneiting and Raftery 2005) refer to these aspects
as sharpness and calibration, and claim that an optimal forecasting system should maxi-
mize sharpness subject to calibration. A forecasting system is said to be calibrated if the
sample distribution of the target variable converges to the predicted distribution in the
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Figure 2.3: Illustration of ensemble samples relative to a reference distribution N (0, 1) as
groundtruth. 10-member ensembles are sampled from forecast distributions P̂true =
N (0, 1), P̂biased = N (0.5, 1), P̂narrow = N (0, 0.8), P̂wide = N (0, 1.2). The ensemble
members are indicated as dashed vertical lines. The ensembles’ empirical CDFs and
the reference distribution CDF are shown in blue and red, respectively.

limit of many observations. The prediction is sharper the less variability is predicted on
average. Throughout this thesis, the focus is on verification methods for real-valued pre-
diction targets. The subsequent explanations follow the argumentation in Gneiting and
Katzfuss (2014)2. The presented concepts are used in Höhlein et al. (2024b) to evaluate
the calibration and sharpness of the presented postprocessing models. For real-valued
predictions, we write F̂ to refer to the CDF of the forecast distribution and p̂ to indicate
the PDF.

Probability integral transform Calibration can be formalized using the probability
integral transform (PIT). For a real-valued random variable Y , the PIT is defined as the
value that the CDF attains at the materialized value of the observation, i.e.,

PIT(Y ) = F̂ (Y ). (2.8)

The value of the PIT is a random variable, ZF̂ := F̂ (Y ), that is standard uniform, i.e.,
ZF̂ ∼ U(0, 1), if F̂ is continuous and Y ∼ F̂ . The restriction to continuous distributions
can be alleviated through randomized generalizations of the PIT (Czado et al. 2009;
Rüschendorf 2009). Motivated by the uniformity property of the PIT, a forecast is said
to be probabilistically calibrated if ZF̂ ∼ U(0, 1).

2A mathematical framework for probabilistic weather forecasting and verification would be based on
probability and prediction spaces (Gneiting and Ranjan 2013) but is omitted here for brevity. An
introduction to the mathematical foundations of weather forecasting can be found in Gneiting and
Katzfuss (2014).
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A related quantity is the dispersion of the forecasts, which characterizes the predicted
variability relative to the variability of the target variable. If the predicted variability
is systematically smaller (larger) than that of the target quantity, relatively more (less)
probability weight is associated with PIT values close to the extremes. The variance of
the standard uniform distribution, Var(U) = 1

12 for U ∼ U(0, 1), motivates the defini-
tion of overdispersion, neutral dispersion and underdispersion for forecast systems with
Var(ZF̂ ) <

1
12 , Var(ZF̂ ) ≈ 1

12 and Var(ZF̂ ) >
1
12 , respectively.

For ensemble forecasts, the PIT analysis can be replaced with a rank computation.
Using the notation from Equation 2.7, the rank R(Y ) of an observation Y with outcome
y is defined as

R(Y ) = |{ŷ ∈ ÊM ∪ {y} : ŷ ≤ y}|, (2.9)

with | · | denoting the number of items in the set. Assuming calibration, Y is indistin-
guishable from the remaining observations, such that R(Y ) is uniformly distributed on
{1, ...,M + 1}. To align PIT and rank computations, Vogel et al. (2018) introduced the
unified PIT (uPIT) for ensemble prediction,

uPIT(Y ) =
R(Y ) + U − 1

M + 1
, (2.10)

wherein U ∼ U(0, 1). Similar to PIT, uPIT(Y ) ∼ U(0, 1) in the case of neutrally cali-
brated ensemble forecasts.

(u)PIT histograms Given a set of forecast-observations pairs, PIT and uPIT values can
be computed and summarized graphically in a (u)PIT histogram. Characteristic shapes
of the empirical distribution indicate systematic miscalibration patterns. U-shaped and
hump-shaped (u)PIT histograms indicate underdispersion and overdispersion, respec-
tively, and skewed histograms suggest a prediction bias. A flat histogram indicates neu-
tral dispersion, in which case the forecasting system is called well-calibrated. Analogous
to PIT histograms, rank counts for historical ensemble prediction-observation pairs can
be shown in rank verification histograms to assess calibration. Figure 2.4 shows examples
of synthetic uPIT histograms with characteristic shapes.

Prediction intervals Calibration and sharpness of probabilistic forecasts can also be
evaluated through prediction intervals (PIs). PIs are associated with an outlier proba-
bility α ∈ (0, 1]. A PI at the (1−α)-level provides a probabilistic forecast for an interval
[ŷmin, ŷmax] ⊂ R that covers the observation outcome with probability 1 − α. Given
prediction-observation pairs, calibration can be assessed through the empirical coverage,
which is the empirical frequency of the observation falling inside the interval and should
equal the theoretical coverage probability (1− α). Sharpness can be addressed through
the average length of the prediction interval, ŷmax − ŷmin.

Given a probabilistic forecast for a real-valued observation in terms of a CDF, a sym-
metric PI can be derived from the quantiles at levels α

2 and 1 − α
2 . An M -member

ensemble forecast suggests a series of natural outlier probabilities, αl for l = 1, ..., ⌊M2 ⌋,
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(a) P̂true: well-calibrated predictions
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(c) P̂narrow: underdispersion
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Figure 2.4: Overview of characteristic shapes in uPIT histograms. Histograms are computed by
simulating N = 10000 independent ensemble predictions for target variables with
distribution N (0, 1). 10-member ensembles are sampled from forecast distributions
P̂true = N (0, 1), P̂biased = N (0.5, 1), P̂narrow = N (0, 0.8), and P̂wide = N (0, 1.2).
The red line indicates the uniform distribution.

for which the order statistics of the ensemble, i.e., the sorted ensemble members in as-
cending order, {ŷ(1), ..., ŷ(M)}, can be used as interval bounds. For outlier probabilities

αl =
M + 1− 2l

M + 1
, (2.11)

the symmetric PI at the level (1− αl) is delimited by ŷmin = ŷ(l) and ŷmax = ŷ(M+1−l).

Proper scoring rules An alternative family of verification measures are scoring rules.
Let ΠY denote the space of distributions on Y and let R = R ∪ {−∞,∞} denote the
extended real line. A scoring rule is a function S : ΠY×Y → R that assigns a (potentially
infinite) numerical score S(P̂, y) to a tuple (P̂, y) consisting of a forecast distribution
and a materialized observation. S(P̂,P) is written to denote the expectation value of
S(P̂, ·) under the distribution P ∈ ΠY . A (negatively oriented) scoring rule is called
proper (relative to ΠY) if S(P,P) ≤ S(P̂,P) for all P̂ ∈ ΠY , and strictly proper if
S(P,P) = S(P̂,P) implies P̂ = P (i.e., the maximum is unique).

Scoring rules are designed to measure the consistency between observations and pre-
dicted distributions. They are sensitive to both calibration and sharpness at the same
time. Gneiting and Raftery (2007) provide an overview of various proper scoring rules.

One example is the log-score or ignorance score,

LogS(p̂,y) = − log p̂(y), y ∈ R
d, (2.12)
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2.2 Probabilistic Weather Forecasting and Postprocessing

which applies to both scalar- and vector-valued random variables and measures consis-
tency through the predicted PDF evaluated at the observed value.

For real-valued prediction targets, the continuous ranked probability score (CRPS) is
a popular rule that is defined in terms of the cumulative distribution function F̂ of the
predicted distribution,

CRPS(F̂ , y) =

∫ ∞

−∞
(F̂ (z)− 1{y ≤ z})2 dz, (2.13)

with 1{·} denoting the indicator function. The CRPS replicates the mean absolute error
(MAE; cf. also subsection 3.1.4) for deterministic predictions and can thus be seen as a
probabilistic generalization of it.

The integral in Equation 2.13 can be solved analytically for several types of proba-
bility distributions, including normal, exponential, and logistic distributions, truncated
versions thereof3, and ensemble forecasts. For examples and an implementation of various
scoring rules in R, see Jordan et al. (2018).

Earth observations and reanalysis data All verification methods rely on the avail-
ability of ground-truth data against which the forecast quality can be gauged. The
primary sources for such information are Earth observations and retrospective analysis
(reanalysis) data.

Earth observations come in various forms, including station observations, radar mea-
surements, satellite observations, or aircraft- and vessel-based measurements. The data
format varies between the different modalities, and the quality of the observations de-
pends on the reliability of the measurement procedures (Inness and Dorling 2012).

To obtain a comprehensive representation of the ground truth state of the atmosphere
at a given point in time, Earth observations are combined with short-term weather fore-
casts to yield a best-guess estimate of the atmospheric conditions at a certain point
in time (Dee et al. 2014). The result of this process are reanalysis datasets, which have
emerged as an important resource in the development of statistical models in meteorology
and climate research.

One of the most comprehensive reanalysis datasets, currently, is the fifth generation
of the ECMWF atmospheric reanalysis (ERA5), comprising global data records for at-
mospheric, land surface, and ocean wave variables on an hourly basis from 1950 on-
wards (Hersbach et al. 2020). The models by Höhlein et al. (2020) use ERA5 data as
one of the primary information sources.

2.2.4 Postprocessing

Postprocessing methods are used to translate raw NWP model outputs into forecast
products that are useful for the forecast user. This includes interpolating discretized
model outputs (horizontally and vertically) onto the location or area of interest and
correcting statistical deficiencies of NWP models.

3A truncated distribution on the real line is obtained by restricting the support of another distribution
to a shorter interval, and reweighting the remaining probabilities accordingly.
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(a) Downscaling from grid O320 to a fixed location.
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(b) Regridding from grid N320 to O640.

Figure 2.5: Overview of downscaling configurations. The map sections show the surrounding of
Munich. (a) Grid-to-point downscaling predicts the local conditions at a discrete tar-
get location (red) based on data from the surrounding grid points (light blue). Data
at distant locations (dark blue) is not used. (b) Regridding predicts the conditions
at new grid vertices (red) to enhance spatial resolution of low-resolution gridded
data (light blue). For definitions of the grid configurations, see subsection 2.3.1.
Background graphics from Natural Earth (2012).

Downscaling Downscaling4 describes a family of postprocessing techniques that enable
the generation of forecast products for local target quantities based on model outputs
at coarser spatial resolution. While linear or even nearest neighbor-based interpolation
approaches are common for downscaling single-site predictions, more elaborate methods
have been developed for downscaling gridded data.

At the methodological level, dynamical downscaling approaches are distinguished from
statistical downscaling. Dynamical downscaling relies on higher-resolution physics-based
regional climate models (RCMs) or limited-area models (LAMs), which simulate detailed
weather and climate dynamics within regional domains of limited size. The coarse-
resolution data serve as boundary conditions for the regional models. RCM and LAM
dynamics are driven accordingly while filling in the detailed dynamics consistent with
the coarse-scale conditions. Further details are found, e.g., in Giorgi (2019).

Statistical downscaling methods assimilate historical data records to establish a sta-
tistical mapping between coarse-scale and fine-scale information (see, e.g., Maraun and
Widmann 2018). Statistical downscaling models do not require physical prior knowledge
or simulation procedures and are often computationally cheap to evaluate. Once fit-
ted, the models thus offer considerable savings in computation time compared to RCMs.
Recent advances in ML and DL have brought algorithmic novelties to statistical down-
scaling, enabling significant improvements in prediction quality (Baño-Medina et al. 2020;
Höhlein et al. 2020).

4Note that the term downscaling in meteorology refers to decreasing the scale of the grid spacing, and
corresponds direction-wise to the application of superresolution and upscaling, as used in computer
vision.
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2.3 Properties of Numerical Weather Data

Downscaling methods commonly address two different application scenarios, which
we call grid-to-point downscaling and regridding. Figure 2.5 illustrates both configu-
rations. Grid-to-point methods aim to improve the quality of local forecast products,
such as scalar-valued or vector-valued prognostic variables at specific weather stations,
by minimizing biases or statistical miscalibration of the forecasts. Regridding refers to
the downscaling of prediction fields on extended domains and involves a gridded output
data format. Regridding generates higher-resolution weather maps, e.g., for local cli-
mate assessment, while avoiding the computational complexity of high-resolution NWP
simulations.

Statistical postprocessing Statistical postprocessing methods leverage statistical mod-
els and historical data records of numerical weather predictions and observations to com-
pensate for biases and miscalibrations (Inness and Dorling 2012; Vannitsem et al. 2021).
An important aspect is the improvement of probabilistic forecasts, notably ensemble
forecasts, as addressed in ensemble postprocessing.

Given suitable metrics of forecast quality, such as strictly proper scoring rules, sta-
tistical postprocessing translates to a supervised learning problem, in which the models
generate an optimized probabilistic forecast based on the information content of the raw
NWP predictions. Depending on the format of the output prediction, statistical post-
processing methods can be classified as distribution-based and distribution-free methods
(Vannitsem et al. 2021).

Distribution-based approaches, also called parametric approaches, train statistical
models to predict the parameters of prespecified distribution templates, such as the mean
and the standard deviation parameters of a normal distribution. While early methods em-
ployed simple linear regression models (Gneiting et al. 2005), newer approaches use more
expressive model designs, such as tree-based models (e.g., Messner et al. 2017; Schlosser
et al. 2019), and NNs (Rasp and Lerch 2018; Schulz and Lerch 2022). Distribution-free
methods avoid restrictive distribution assumptions, e.g., by modeling quantile levels or
quantile functions of the distribution (e.g., Bremnes 2020; Cannon 2018), parameter-
izing distribution histograms (Veldkamp et al. 2021), or processing ensemble members
separately, member-by-member, to generate a calibrated ensemble forecast (e.g., Van
Schaeybroeck and Vannitsem 2015, and references therein).

An important design challenge in ensemble postprocessing is how ensemble-valued
predictors are supplied to the models. Prominent options are aggregate representations
using low-dimensional summary statistics, such as, e.g., the ensemble mean and standard
deviation (e.g., Schulz et al. 2021), or sorted ensembles (Bremnes 2020). In Höhlein et
al. (2024b), we examine the impact of different representation schemes and suggest a
principled DL solution that works natively with ensemble data.

2.3 Properties of Numerical Weather Data

NWP datasets are a distinct kind of numerical data with high complexity due to their
physical interpretation, multivariate structure, and multi-dimensional variability in space,
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(a) Regular grid (64× 128) (b) Quasi-regular RGG (N32) (c) Octahedral RGG (O32)

Figure 2.6: Comparison of a regular horizontal grid with quasi-regular and octahedral reduced
Gaussian grids (RGGs) on the northern hemisphere.

time, and the ensemble dimension. As such, NWP data qualify as scientific data, which
is an umbrella term for datasets that are generated and analyzed in the context of the
physical sciences (Card et al. 1999; Tory and Möller 2004). This section summarizes
relevant aspects and properties of the scientific data types and formats encountered in
NWP and discusses methods for their exploratory analysis.

2.3.1 Grid-Based Representation of Spatial Fields

NWP models represent continuous physical variable fields through samples on a discrete
spatial grid. The gridded representation enables the computation of spatial derivative
fields, e.g., through finite-difference or spectral approaches (see, e.g., Coiffier 2011). Ded-
icated grid structures are used to realize efficient computing operations or enable compact
data storage. Data values on close-by grid points are typically affected by spatial corre-
lations. Commonly, the horizontal discretization is decoupled from the vertical.

Horizontal discretization NWP models rely on a horizontal parameterization of the
Earth’s surface in spherical coordinates, i.e., using latitude and longitude. Discretization
schemes cover (parts of) the spherical domain with 2D grids. Figure 2.6 illustrates
different variants used at the ECMWF and encountered in studies presented in this
thesis (Höhlein et al. 2024a, 2020).

Regular (rectangular) grids (Figure 2.6, a) consist of grid points with regular spacing
in both latitude and longitude. While the angular spacing is constant across the domain,
the effective physical grid spacing decreases towards the poles due to spherical distor-
tions, causing inefficiency in the data representation. However, regular grids enable the
assignment of independent axes in multidimensional array structures for latitude and lon-
gitude dimensions, which simplifies data access in storage applications. Regular grids are
thus well-suited for analysis and visualization purposes or for simulations on limited-size
domains where distortion effects are negligible.

Irregular grids are preferred for simulations on global domains. Irregular samples
allow for a more even distribution of the sample locations and offer increased flexibility
for tailoring the discretization to the requirements of the simulation algorithm. Many
of the datasets relevant to this study are sourced from the ECMWF and rely heavily
on Gaussian grids. Gaussian grids distribute sample points on a fixed number of circles
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2.3 Properties of Numerical Weather Data

with constant latitude. Denoting the number of circles between the equator and pole
on each hemisphere with N , the latitude values are determined by the roots of the
Legendre polynomial of order 2N to facilitate efficient numerical integration procedures.
Three types of Gaussian grids are used and annotated with capital letters F, N, and O,
respectively, to distinguish the format. The notations FN , NN , and ON (e.g., F320,
N640, O1280) are used to distinguish grids of the same type in terms of grid spacing.

In regular or full Gaussian grids (F-grids; Hortal and Simmons 1991), there are 4N
longitude points distributed evenly along each latitude circle, resulting in a total number
of 8N2 grid points in a grid FN . Full Gaussian grids are similar to standard regular
grids, with slight irregularity due to the uneven spacing between latitude circles.

Reduced Gaussian grids (RGGs) are defined to achieve a more even sampling density
globally. Quasi-regular RGGs (N-grids; Hortal and Simmons 1991) have the same number
of latitude circles as the corresponding F-grids but reduce the number of longitude points
per circle in discrete steps to obtain a quasi-uniform sampling density for all latitudes
(Figure 2.6, b) while maintaining feasibility for fast Fourier transform computations. The
circles closest to the equator contain 4N points.

Octahedral RGGs (O-grids; Malardel et al. 2016) reduce the number of points per
circle linearly from the equator to the poles (Figure 2.6, c). The procedure is inspired by
an octahedron-based projection of the sphere surface. Starting with 20 longitude points
on the latitude circle closest to the pole, the point count increases by 4 with every circle.
This results in a total count of 4N(N + 9) points for grids ON , enabling a preferable
memory-resolution trade-off compared to other grids.

Vertical discretization NWP models produce diagnostic outputs in three different ver-
tical coordinate systems. Figure 2.7 illustrates the differences. For meteorological analy-
sis of large-scale flow patterns, 2D fields are considered on isosurfaces of constant pressure,
exploiting the pressure coordinates introduced in subsection 2.1.2 (e.g., geopotential at
500 hPa). Pressure isosurfaces (Figure 2.7, a) provide faithful information in upper levels
of the atmosphere but can intersect with the terrain surface, leading to undefined values
for the physical variables close to the Earth’s surface. When storing data in array-based
structures, this causes missing data. For near-surface forecasts, it is common, thus, to
analyze diagnostic fields on terrain-following elevation surfaces (Figure 2.7, b), which
are called surface levels (e.g., temperature 2m above ground or wind speed 10m above
ground). Surface levels circumvent missing data, but hamper efficiency in the computa-
tion of (physically relevant) gradients. To account for both, the simulations at ECMWF
are carried out on so-called hybrid model levels, which define the local level height based
on the geopotential height corresponding to a weighted average of the surface and the
level pressure (Figure 2.7, c). The weighting is based on tabulated coefficients, which
guarantee that the model levels follow the terrain geometry near the Earth’s surface and
resemble pressure levels higher up in the atmosphere (Simmons and Strüfing 1983). Hy-
brid level schemes at the ECMWF are denoted as LN , where N is the number of levels
used. Hybrid-level data circumvents the problem of missing data but requires knowl-
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Figure 2.7: Comparison of vertical coordinate levels in standard atmosphere conditions and with
varying orography. The surface level is shown in red.

edge of 3D pressure and humidity fields when conversion between pressure and geometric
coordinates is required.

Data on hybrid levels was used in Höhlein et al. (2024a) to probe the volumetric
temperature fields. To limit the memory and compute requirements of the presented
downscaling approach, the vertical levels heights under the assumption of dry air in ISA
conditions.

2.3.2 Multivariate Structure of Numerical Weather Data

Meteorological datasets often comprise data from multiple simulated (or measured) vari-
ables. Each variable on its own can possess a complex multidimensional (spatio-temporal)
substructure. The data associated with distinct variables can have vastly different dis-
tribution characteristics, such as varying scales and value ranges of the numerical data
and differences in the likelihood of extreme observations (cf., e.g., Höhlein et al. 2022).

Commonly, the different variables are related through multivariate and multidimen-
sional correlation patterns. Understanding the interrelations between variables in NWP
data is crucial for uncovering patterns and making informed predictions. Dependence
measures assess the statistical relationship between two or multiple variables, indicating
how changes in one variable coincide with changes in another. Several different depen-
dence measures exist to measure different types of dependence. Variable relations and
interdependence patterns in multivariate NWP data can be more intricate than simple
pairwise dependencies and may affect the statistical reliability interpretation of the fore-
cast distribution. The work by Farokhmanesh et al. (2023b) addresses the visual analysis
of multivariate and spatial interdependence patterns in 3D ensemble forecasts. This re-
quires quantifying the association strength of pairs of real-valued random variables.

24



2.3 Properties of Numerical Weather Data

Dependence metrics Throughout this thesis, a bivariate dependence metric ρ is a
function that, when provided with a pair of real-valued random variables, (V1, V2), assigns
a real-valued dependence score ρ

(

V (1), V (2)
)

. In our work, the random variables reflect
the predicted values of physical variables at certain locations in space. We further assume
that ρ is symmetric under exchange of the variables, i.e., ρ

(

V (1), V (2)
)

= ρ
(

V (2), V (1)
)

, to
indicate that the association is mutual and undirected. The statistics literature provides
various metrics that assess different kinds of association (e.g., Tjøstheim et al. 2022).
Most common variants involve the computation of expectation values, e.g., with respect
to the joint distribution of the variables. However, such computations are infeasible
in practical applications because the full form of the joint distribution is unknown. In
practice, the association is measured based on a set of M paired samples,

{(

v
(1)
1 , v

(2)
1

)

, ...,
(

v
(1)
M , v

(2)
M

)}

,

and a statistical estimator ρ̂ which converges to ρ in the limit of infinite observations.
We write ρ̂

(

v(1),v(2)
)

to denote the finite-sample estimate of ρ
(

V (1), V (2)
)

, wherein

v(·) :=
(

v
(·)
1 , ..., v

(·)
M

)T
∈ R

M .

The required effort for estimating association strengths varies between different met-
rics. Farokhmanesh et al. (2023b) focus on Pearson’s product-moment correlation co-
efficient and on mutual information (MI), representing opposite sides of the complexity
spectrum (Berenjkoub et al. 2019).

Pearson product-moment correlation coefficient The Pearson correlation coeffi-
cient, also called Pearson’s r, measures the linear association between pairs of random
variables (e.g., Tjøstheim et al. 2022). It is commonly used in data visualization to
explore relationships between variables. Pearson’s r is defined as

r
(

V (1), V (2)
)

:=
Cov

(

V (1), V (2)
)

√

Var
(

V (1)
)

·Var
(

V (1)
)

, (2.14)

wherein Var(·) and Cov(·, ·) are variance and covariance of the random variables.
The finite-sample estimate is defined as

r̂
(

v(1),v(2)
)

:=
v(1) · v(2)

√
v(1) · v(1)

√
v(2) · v(2)

, (2.15)

with · denoting the standard scalar product.
Pearson’s correlation varies between −1 and 1, with 1 indicating positive correlation,

−1 anti-correlation, and 0 the absence of correlation. Pearson-correlated random vari-
ables are associated with a linear relation. The metric is easy to compute and interpret.
The coefficient presumes that the joint distribution of the random variables is Gaussian
with critical importance for the reliability of the estimate. Also, the requirement of a
linear relationship is very restrictive and excludes many alternative association patterns.
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Mutual information MI quantifies more general interdependencies, including nonlin-
ear and nonmonotonic associations (Cover, Thomas, et al. 1991). MI is defined as the
difference in uncertainty when considering the random variables separately or jointly.
Mathematically, this is expressed as

MI
(

V (1), V (2)
)

:= H
(

V (1)
)

+H
(

V (2)
)

−H
(

V (1), V (2)
)

, (2.16)

wherein H
(

V (1)
)

and H
(

V (2)
)

are the entropies of the separate random variables, and
H
(

V (1), V (2)
)

is the entropy of the joint distribution. MI values of 0 indicate statis-
tical independence, whereas positive values suggest some form of nontrivial statistical
association. Information about the details of the association is not conveyed.

Computing estimates M̂I
(

v(1),v(2)
)

from multi-samples of real-valued random vari-
ables is challenging. Existing algorithms rely on density estimation and nearest neighbor
computations, which do not scale well to large sample sizes (Kraskov et al. 2004; Moon
et al. 1995) and are thus unsuited for applications involving very large ensembles (e.g.,
Necker et al. 2020; Tempest et al. 2023). More recent estimators rely on copulas and
NNs (Belghazi et al. 2018; Zeng and Durrani 2011) but are complex, potentially inac-
curate, and computationally demanding. The complexity of MI estimators hampers the
online computation of MI scores and their integration into interactive analysis work-
flows. NDFs in Farokhmanesh et al. (2023b) therefore outsource the computation into a
preprocessing step and leverage a neural data structure for interactive data analysis.

2.3.3 Permutation Symmetry in Ensemble Data

In NWP ensemble datasets, each ensemble member constitutes a (potentially multivari-
ate) dataset comprised of field samples of the simulated variables. The level of ensemble
composition differs qualitatively from the dimensions associated with spatiotemporal
variation and multi-variable composition. Throughout this thesis, the members within
an ensemble are interpreted as independent random samples from the predictive distri-
bution of the forecast model. Unlike the space and time dimensions, the ensemble lacks
an intrinsic order relation, and unlike in multi-variable data, there is no uniquely deter-
mined way of labeling the members distinctly. As a result, any order in which subsequent
ensemble members are loaded into memory is arbitrary and should not affect the out-
come of analysis procedures. Suitable algorithms must be invariant to permutations of
the memory order and should respect the stochastic nature of the data.

2.4 Visualizing Numerical Weather Data

Visualization in this thesis focuses on NWP datasets that represent scalar- and vector
fields defined on continuous 2D and 3D spatial domains and station observations asso-
ciated with discrete locations. The visualization methods introduced in this section are
by no means complete. Instead, the selection is guided by the methods’ relevance to the
thesis. We refer to dedicated textbooks, such as Brodlie et al. (2012), or relevant review
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2.4 Visualizing Numerical Weather Data

(a) Synoptic chart showing pressure isocontours used
in Höhlein et al. (2020), cf. Figure 13 (b). Used
with permission.

(b) Map-based representation of a case study
in Höhlein et al. (2024a), cf. Figure 9 (b).
Used with permission.

Figure 2.8: Examples of map-based visualizations used in the presented publications illustrating
the use of isocontours and colormaps.

articles, such as the works by Rautenhaus et al. (2018) and Afzal et al. (2019), for a more
comprehensive discussion.

2.4.1 Map-Based Visualization

Map views are popular across many atmospheric forecasting and research tasks (Rauten-
haus et al. 2018). Despite the 3D structure of the atmosphere, meteorologists commonly
analyze physical parameters on surface or pressure isolevels (cf. subsection 2.3.1), which
are effectively 2D surfaces. In map views, the horizontal coordinates are projected to
the 2D plane, enabling a visually clear display of information without perspective-related
occlusion problems. Examples of map-view visualizations used in the presented publica-
tions are shown in Figure 2.8.

Different visualization methods are employed depending on the type of encoded in-
formation. Colormaps are commonly used to encode scalar values in the display color,
enabling a versatile and intuitive depiction of, e.g., scalar fields. Alternatives include
encoding information through ancillary geometry or image textures. For instance, pres-
sure fields or terrain elevation are commonly encoded through polylines representing the
fields’ isocontours. Higher-dimensional information, such as vectors or general multi-
variate data, can be encoded through glyphs (cf., e.g., Borgo et al. 2013). Glyph-based
representations are used in meteorological applications to embed information about ob-
servation data in the spatial context of the observation site (Rautenhaus et al. 2018).
Building glyph-based visualizations for spatially continuous data, such as vector fields,
requires care due to the visual complexity of the representations and occlusions (e.g.,
Elmqvist and Tsigas 2008). An example of a texture-based visualization method is line
integral convolution (LIC; Cabral and Leedom 1993), which displays the orientation of
the flow while circumventing the problems of glyph-based displays. LIC is preferred in
Höhlein et al. (2020) over glyph-based representations to obtain a spatially dense repre-
sentation of the downscaled wind fields while avoiding visual clutter.
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2.4.2 3D Visualization

3D visualizations are preferred when the vertical dimension provides added value, e.g.,
to combine representations of the real world with representations of abstract data em-
bedded therein (Bleisch 2012). 3D visualizations facilitate a spatial perception of value
distributions in the data. This thesis considers visualizations of scalar fields defined on
2D manifolds in 3D space, such as the terrain surface, and native volumetric scalar fields.

Throughout this thesis, scalar fields on 2D domains admit visualizations similar to map
views. Visualizing volumetric fields, however, requires methods that enable the user to
recognize features inside the volume without obstructions from the outer volume parts.
Common visualization methods for volumetric scalar fields include isosurface rendering,
direct volume rendering (DVR), and slicing. In isosurface rendering, user-selected level
sets of the scalar field are rendered to indicate the field’s value distribution. The rendering
techniques are based on rasterization approaches (e.g., Lorensen and Cline 1987; Treece
et al. 1999) or raytracing (e.g., Amanatides, Woo, et al. 1987; Levoy 1988, 1990). DVR
techniques use volumetric rendering algorithms to visualize scalar fields as translucent
objects (e.g., Max 1995). A central component is the transfer function, which maps
scalar values to the opacity and color values required for rendering. The transfer function
requires tuning to emphasize relevant features. In slicing, the volume is intersected with
one or several user-configurable 2D planes, and the field information is visualized only at
the intersections using surface-based visualization methods. Volumetric visualizations of
scalar fields can occlude large parts of the surface geometry, especially if geometries are
rendered opaque or if DVR volumes are dense.

Höhlein et al. (2020) and Höhlein et al. (2024a) use 3D visualizations to examine NWP
data in a spatial context. Slicing-based visualizations are generally preferred in Höhlein
et al. (2024a) to minimize visual obstructions and minimize the required user interactions.
In Höhlein et al. (2022), DVR visualizations are preferred due to the dense display of
information and for consistency with prior work.

2.4.3 Topographic Visualization

Next to standalone data examination, meteorologists require visualizations to assess in-
terrelations between different datasets and data in different meteorological conditions.
Due to the relevance of PBL effects for atmospheric dynamics (cf. paragraph 2.1.3), an
important concern is the visualization of meteorological datasets in the context of the
Earth’s surface geometry. The surface terrain is naturally represented in NWP models
as a 2D surface in 3D space. The resolution of the terrain geometry depends on the
grid spacing of the model grid, which is often too coarse to resolve fine details, especially
in global NWP applications. A comparison of terrain representations in two octahedral
RGGs (cf. subsection 2.3.1) with different resolutions is shown in Figure 2.9. The re-
sulting misrepresentations and uncertainties, as well as their impact on simulated and
measured data values, require exploration.

In Höhlein et al. (2024a), these aspects are explored in the context of temperature
downscaling. Important aspects of the visual exploration include:
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(a) Terrain at O1280 resolution: 9 km grid spacing. (b) Terrain at O8000 resolution: 1 km grid spacing.

Figure 2.9: Comparison of terrain representations with different grid resolution. Images repro-
duced from Höhlein et al. (2024b), Figure 1. Used with permission.

• the spatial distribution of physical variable values on the terrain,

• the relation between variable values on the surface and in the free air,

• the inherent uncertainty of the terrain surface due to sub-grid variability,

• and the allocation of station sites and station-specific variables in the terrain.

Intuitive visualization aspects suggest that an interactive 3D spatial representation is
well-suited for displaying the relevant information. However, the joint display of multiple
data entities, potentially using several instances of point-, line-, surface-, and volume-like
graphics objects, induces visual and analytical complexity.

In Höhlein et al. (2024a), we combine multiple 3D visualization techniques that address
the above-mentioned points in an interactive visualization system, enabling meteorolo-
gists to explore relevant data interactively while focusing on selected aspects as required.
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CHAPTER 3

Deep Learning

This chapter introduces key concepts and terminology from ML and statistical inference
with a focus on DL and NNs. The chapter concludes with a discussion of selected appli-
cations of DL methods in computer vision and a brief overview of DL model explanation
techniques.

3.1 Fundamentals of Deep Learning

3.1.1 Neural Networks

NNs are a family of ML models used to build nonlinear parametric function approxima-
tors. Given parameters ϕ, a NN represens a mapping hϕ : X → Y between (typically
vector-valued) inputs x ∈ X ⊆ R

din and outputs y ∈ Y ⊆ R
dout . A NN model consists

of a set of nodes, called neurons, and edges, which connect pairs of neurons, similar to
synapses connecting neurons in the brain. Each neuron represents an atomic informa-
tion processing unit capable of storing data, executing basic data transformations, or
responding to input signals from connected neurons. Networks in which information is
propagated in a single direction, i.e., networks without closed-loop connections between
groups of neurons, are called feed-forward networks. In such a network, each neuron
responds to the inputs received from its connected input neurons according to a response
function associated with each neuron. The outputs of the response function are typically
real scalar values and are called activations.

Commonly, NNs implement affine-linear response functions with a subsequent nonlin-
ear activation function. Mathematically, this can be expressed as

an := ρ





∑

m∈In(n)

wnmam + bn



 , (3.1)
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Function ρ(x) X Y Remarks

LeakyReLU max(x, αx) R R parameter α ∈ R (default: α = 0.01)

ReLU max(x, 0) R R
+
0 -

Sigmoid [1 + exp(−x)]−1
R [0, 1] -

SnakeAlt 0.5x+ sin(x)2 R R proposed in Weiss et al. (2022)

Softplus log(1 + exp(x)) R R
+ -

Table 3.1: NN activation functions ρ : X → Y used throughout the thesis.

wherein In(n) denotes the set of input neurons of n and an, am ∈ R are the respective
activations. The function ρ : R → R is a nonlinear activation function. Examples
of activation functions relevant to this work are listed in Table 3.1. The parameters
wnm ∈ R and bn ∈ R are the weights and biases of the affine-linear map and can be
tuned to change the neuron’s response. Using a nonlinear activation ensures that the
NNs can represent nonlinear mappings.

Network layers and tensor notation Due to the sequential structure of Equation 3.1,
neurons are often organized in a sequence of disjoint layers L(1), ...,L(L) ⊂ N . Assuming
a fixed ordering of the neurons in each layer, neuron activations and parameters can be
expressed in tensor notation1. Equation 3.1 for neurons in layer L(l) can be written as

a(l) := ρ
(

W (l)a(l−1) + b(l)
)

. (3.2)

Therein, a(l) ∈ R
dl and a(l−1) ∈ R

dl−1 denote the activations of neurons in layers L(l)

and L(l−1), respectively, with dl, dl−1 ∈ N being the number of neurons in L(l) an L(l−1).
The inputs of the first layer reflect the external inputs to the network, i.e., a(0) := x.

The parameters W (l) ∈ R
dl×dl−1 and b(l) ∈ R

dl are defined element-wise, such that
[

W (l)
]

nm
:= wnm and

[

b(l)
]

n
:= bn. Overloading the notation of Equation 3.1, ρ de-

notes an element-wise nonlinear activation function. Though activation functions can
be equipped with trainable parameters, the methods presented in this thesis use non-
parametric activation functions only.

Network parameters and hyperparameters According to Equation 3.2, each network
layer L(l) defines a parametric transformation h

(l)

ϕ(l) with parameters

ϕ(l) := {W (l), b(l)},
1The term tensor is often used in the DL context to refer to multi-dimensional arrays (e.g., Abadi

et al. 2016; Paszke et al. 2019), despite its different meaning in linear algebra (e.g., Brand 2020).
This thesis adheres to the DL interpretation, such that vectors and matrices are 1D and 2D tensors.
Given a tensor T , the notation [T ]. is used to express indexing of tensor elements.
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such that
a(l) = h

(l)

ϕ(l)(a
(l−1)). (3.3)

The function that is represented by the complete feed-forward network, i.e., the actual
ML model hϕ, is obtained by concatenating the layer-wise mappings sequentially,

hϕ = h
(L)

ϕ(L) ◦ ... ◦ h(1)

ϕ(1) . (3.4)

Therein, ϕ :=
{

ϕ(l) : l ∈ {1, ..., L}
}

refers to the full set of model parameters, which to-
gether determine the represented function. Model parameters can usually be represented
in tensorial form and admit the computation of gradients ∇ϕhϕ(x) of the model outputs
wrt. the parameters. Other design choices, such as the number of layers, the number of
neurons per layer, or properties of the activation function, affect the model outputs non-
differentiably and are usually considered separate from the model parameters. These
are called hyperparameters. Problem-specific constraints on the connectivity between
neurons or systematic deviations from the layered network structure are considered as
alternative network architectures and are discussed in more detail in section 3.2.

3.1.2 Modeling Non-Deterministic Functions

Probabilistic models represent parametric functions with non-deterministic outcomes.
Models of this kind are well suited for capturing uncertainties or ambiguities. Instead
of generating deterministic outputs, probabilistic models return random variables with a
distribution conditioned on the model inputs. The output distribution is often denoted
in terms of a conditional probability density function (cf., e.g., Prince 2023). Following
this convention, we write phϕ

(y|x) to denote the output distribution of a probabilistic
model that is parametrized through a NN hϕ and evaluated on inputs x.

Distribution regression networks (DRNs; Rasp and Lerch 2018) and deep generative
models (DGMs) are two probabilistic model classes that are important for this work.

Distribution regression networks In DRNs, NNs are used to predict parameters
θ = hϕ(x) that control the shape of a predefined distribution template pθ(y). The choice
of the template distribution depends on the characteristics of the target quantity. In this
thesis, the target quantities are scalar- or vector-valued continuous random variables.
Examples of distributions for scalar-valued continuous random variables, characterized
by probability density function, support, and parameters, are listed in Table 3.2. Distri-
butions for vector-valued variables can be constructed by joining multiple distributions
for the vector components – one component at a time – or using natively multivariate
template distributions (for examples see, e.g., Bishop 2006).

Deep generative models In real-world applications, parametric assumptions about
the shape of the predictive distribution may be overly restrictive. Generative models
avoid the limitations of a fixed-shape output distribution by expressing the predictive
distribution without an explicit functional form. DGMs are a class of ML techniques that
leverage NNs and DL to learn free-form representations of complex data distributions.
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Distribution Probability density function Support Parameters

Normal distribution 1
σ
√
2π

e−
1
2(

x−µ
σ )

2

x ∈ R µ ∈ R, σ ∈ R
+

Laplace distribution λ
2 e

−λ|x−µ| x ∈ R µ ∈ R, λ ∈ R
+

Logistic distribution e−(x−µ)/s

s (1+e−(x−µ)/s)2
x ∈ R µ ∈ R, s ∈ R

+

Log-normal distribution 1
xσ

√
2π

e
− 1

2

(

log(x)−µ
σ

)2

x ∈ R
+ µ ∈ R, σ ∈ R

+

Table 3.2: Parametric distributions for scalar-valued continuous random variables.

DGMs are trained to generate outputs indistinguishable from samples of the target
distribution. The sampling process involves randomness, which is captured in non-
deterministic latent variables. Latent variables are potentially high-dimensional unob-
served random variables that are introduced artificially in statistical models to encapsu-
late sources of randomness. The values of the latent variables are sampled randomly at
runtime and are supplied to the model as auxiliary inputs. Current DGM algorithms can
be coarsely subdivided into four categories: likelihood-based variational models, gen-
erative adversarial networks (GANs), energy-based models, and normalizing flows. A
detailed discussion and a comparison of DGM approaches can be found in Bond-Taylor
et al. (2022).

GANs and energy-based models, specifically diffusion models, are used most commonly
in applications related to this work. GANs (Arjovsky et al. 2017; Goodfellow et al. 2014;
Gulrajani et al. 2017) consist of a pair of neural networks, which take the role of a sam-
ple generator and a discriminator, respectively. While the generator learns to translate
latent variables into samples that are similar to those from the target distribution, the
discriminator learns to distinguish synthetic samples from real data and provides a train-
ing signal for the generator to improve the sample quality. Diffusion models implement
sequential sampling strategies that mimic the step-wise inversion of a noisy diffusion pro-
cess and are subject to ongoing research. A review of recent progress has been presented
by Yang et al. (2023).

3.1.3 Model Training and Hyperparameter Selection

The process of fitting deep learning models to data involves the selection of suitable model
parameters and hyperparameters, such that a performance metric is optimized. In the
following, we write P [hϕ;D] to denote the performance score of a model hϕ evaluated
on a set of available data samples, denoted as D.

Practical optimization procedures often operate iteratively and in two stages. An inner
optimization cycle using gradient-based optimization techniques is invoked to learn the
model parameters, whereas an outer optimization with more general optimization pro-
cedures is used to select the hyperparameters. To achieve the best results, the available
data D is commonly split into a training dataset, Dtrain, and a validation dataset Dval,
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such that D = Dtrain ∪ Dval, and Dtrain ∩ Dval = ∅. The process of learning model
parameters ϕ is called model training and involves a numerical optimization of the ob-
jective function P (ϕ) := P [hϕ;Dtrain]. In DL applications, the optimization objective is
commonly called the loss function and is assumed to be differentiable wrt. ϕ. The outer
optimization is referred to as hyperparameter selection and focuses on finding hyperpa-
rameters, such that the validation performance P [hϕ;Dval] of the model is optimized.
Jointly, the two stages guarantee that the final model performs as well as possible on
data not seen during training. Model intercomparisons are commonly based on indepen-
dent datasets, called test data, Dtest, that must not be used for optimization purposes.
A more comprehensive discussion of DL training methods can be found in dedicated DL
textbooks (e.g., Murphy 2022; Prince 2023).

Regularization Regularization methods are employed to counteract overfitting and im-
prove generalization. Frequently used regularization methods rely on loss-based penal-
ization schemes or architectural design patterns. A common approach from the first
category is weight decay, which penalizes the magnitude of model parameters such that
smoother function representations are learned. A popular architectural regularization
scheme is Dropout (Srivastava et al. 2014), which introduces noise into the neuron ac-
tivations, thus limiting the information flow between layers and enforcing redundancy
and smoothness in the learned activation patterns. Both weight decay and Dropout have
been used in various experiments presented in this thesis.

3.1.4 Training Objectives

Training objectives for DL are based on task-specific empirical performance metrics or
probability-based quality criteria, originating from statistical inference theory (Murphy
2022). This section discusses examples of objective functions used in the presented
studies. We focus on performance metrics for regression tasks, in which the models learn
to emulate a mapping between input items x ∈ X , and target outputs, t ∈ Y , with
X and Y as introduced in subsection 3.1.1. The datasets for training, validation, and
testing, accordingly, are of the form

D =
{(

x(n), t(n)
)}|D|

n=1
⊂ X × Y,

where |D| ∈ N is the number of data points in the respective set.

Mean squared error and mean absolute error In many studies, ML and DL models
are trained by optimizing the agreement between vector-valued model predictions and
targets (e.g., Höhlein et al. 2022; Lu et al. 2021; Weiss et al. 2022). Prominent examples
are the mean squared error (MSE),

PMSE[hϕ;D] :=
1

|D|
∑

(x,t)∈D
∥t− hϕ(x)∥22,
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and the mean absolute error (MAE),

PMAE[hϕ;D] :=
1

|D|
∑

(x,t)∈D
∥t− hϕ(x)∥1,

wherein ∥·∥1/2 denote 1- and 2-norm in the respective vector space.

Maximum likelihood and maximum a posteriori For probabilistic models, a com-
mon training approach derives from maximizing the so-called model posterior, i.e., the
likelihood p(hϕ|D) of a model hϕ explaining the observed pattern, given observed data
D. Bayes’ theorem states that this likelihood is proportional to a product of the likeli-
hood p(D|hϕ) of observing D under model hϕ and a model prior p(hϕ), measuring the
marginal plausibility of hϕ without knowing any data. Depending on the choice of p(hϕ),
this results in one of two optimization problems.

If the model prior encodes model preferences that are considered in the optimization,
this motivates the maximum a posteriori (MAP) approach,

ϕMAP = argmax
ϕ∈Φ

p(hϕ|D), (3.5)

which searches for the set of model parameters that is the most likely – in terms of
PMAP[hϕ;D] = p(hϕ|D) – to have generated the observed data.

If the prior assigns equal likelihood to all models, it can be neglected in the likelihood
optimization. The resulting model estimate,

ϕMLE = argmax
ϕ∈Φ

p(D|hϕ), (3.6)

optimizes the model to agree with the observed data and is called the maximum-likelihood
estimate (MLE) with loss function PMLE[hϕ;D] = p(D|hϕ).

In both cases, the relevant probabilities can be expressed in terms of the output dis-
tributions of the probabilistic model. Furthermore, optimizing the raw probabilities is
equivalent to optimizing the logarithmic probabilities, which are often easier and numer-
ically more stable to compute. The optimization problems arising from MSE and MAE
are special cases of Equation 3.6 when the model predictions are interpreted as the pa-
rameters of a probability distribution phϕ

(y|x). MSE and MAE objectives correspond to
component-wise normal distribution or Laplace distribution, respectively (Murphy 2022).

Among the contributions presented in this thesis, Höhlein et al. (2020), Höhlein et al.
(2022), Farokhmanesh et al. (2023b), and Höhlein et al. (2024a) train models, which are
based on MAP-like and MLE-like objectives.

Optimum score estimation Both MAP and MLE require a quantitative evaluation
of the predicted distribution density phϕ

(y|x). Optimum score estimation (OSE) has
been proposed by Gneiting and Raftery (2007) as an alternative to (and generalization
of) MLE for more general probabilistic models. The performance assessment of different
models relies on strictly proper scoring rules, as introduced in subsection 2.2.3.
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For compatibility with the previous notation, let phϕ
( · |x) ∈ ΠY denote the predicted

distribution of a NN model hϕ with inputs x ∈ X , and let S : ΠY × Y → R be a proper
scoring rule. Given a training dataset D ⊂ X × Y as introduced above, the mean score
PS [hϕ;D] is defined as

PS [hϕ;D] =
1

|D|
∑

(x,t)∈D
S
(

phϕ
( · |x), t

)

, (3.7)

and provides an objective for the optimum-score optimization,

ϕS := argmin
ϕ∈Φ

PS [hϕ;D]. (3.8)

OSE based on the CRPS (cf. Equation 2.13) is used in Höhlein et al. (2024b) for
training parametric probabilistic DL models for statistical postprocessing.

3.2 Neural Network Architectures

NNs are flexible parametric function approximations. Universal approximation proper-
ties have been proved for several types of network configurations (Cybenko 1989; Hornik
1991; Lu et al. 2017). In practical learning tasks, the quality of the learned functions is
determined by the architecture of a NN, i.e., the arrangement of neurons in the network,
their respective connectivity, and the choice of activation functions. The network archi-
tecture is critical for the model performance in learning tasks with scarce training data,
in applications where training and inference are subject to memory and time constraints,
or if the input data format requires special considerations. The quality of a trained net-
work is reflected in its ability to interpolate between training examples and generalize
to unseen data. The flexibility of NNs comes with a risk of overfitting the training data
(Zhang et al. 2021a). Different network architectures come with different inductive biases
(cf. Mitchell 1980), which guide the optimization towards different solutions. This may
be caused by implicit regularization induced by the gradient-based optimization (Smith
and Le 2018; Zhang et al. 2021a) or by explicit functional constraints encoded in the
network design.

The subsequent sections introduce several families of NN architectures that have ad-
vantages in certain learning tasks or are tailored to special types of input data. The
inductive biases of the architectures are discussed and related to applications in the
presented publications.

3.2.1 Fully-Connected Networks and the Multi-Layer Perceptron

Fully-connected networks (FCNs) are NNs where the neurons in a certain layer receive
input from all neurons in the previous layer. The response function corresponds to a
dense matrix-vector product with subsequent offset addition and nonlinear activation
(cf. Equation 3.2). A multi-layer perceptron (MLP) is an FCN with at least three layers.
The first and last layers serve as input and output neurons, respectively, and additional

37



3 Deep Learning

layers in between are called hidden layers. The number of neurons in the input layer
is fixed and determined by the dimension of the (vector-valued) input signal. Similarly,
the number of output neurons determines the output dimension. MLPs are used as
standalone regression models or as building blocks in more complex network architectures.

MLPs are well suited for mapping continuous scalar- or vector-valued inputs to scalar-
or vector-valued outputs. Applications often involve tabular data in which a data item
represents a row in a data table, and the table columns contain the attributes for each
item (Borisov et al. 2024). The concatenated attribute values are used as inputs or
targets in the learning pipeline. MLPs are able to process categorical inputs if they are
transformed into a vector-like format before the processing. MLP-based models are used
in Höhlein et al. (2024b) for postprocessing weather predictions.

Encoding categorical data Categorical predictors require encoding to embed discrete
category information in the context of the continuous-valued vector space of model in-
puts. A popular example is entity encoding (Guo and Berkhahn 2016), which maps
category labels c ∈ {c1, c2, ...} to demb-dimensional embedding vectors γc ∈ R

demb . Each
embedding takes the role of a pseudo-label for its respective category. The vector is
treated as a learnable parameter and updated iteratively during training. A review of
further encodings for categorical data can be found in Hancock and Khoshgoftaar (2020).

Rasp and Lerch (2018) use entity encoding in postprocessing models to represent
weather station identifiers, which help the respective models distinguish between the
stations. The presented strategy was adopted in Höhlein et al. (2024b).

Low-frequency bias When learning from data, FCNs and MLPs show a bias toward
learning functions that vary slowly with changing input signals (Basri et al. 2020, 2019;
Rahaman et al. 2019). Signal components with higher frequency are susceptible to noise
and are extracted only after longer training times. Together with the biasses of gradient-
based training algorithms, which prefer wider local minima over narrower ones (Smith
and Le 2018), this leads MLPs to implicitly prefer smoother explanations of the target
function, potentially at the cost of reduced accuracy.

The smoothing bias is beneficial in applications where the input data are known to be
noisy, enabling MLPs to generalize to unseen inputs despite considerable deviations from
the training data. MLPs perform worse if the predictors are sharp and contain informa-
tive low-frequency signals that map to high-frequency components in the target function.
MLPs may yield suboptimal representations even though the available predictors pro-
vide perfect information about the learning task (Rahaman et al. 2019). Preprocessing
steps, such as feature rescaling, nonlinear feature transformations, or input embeddings
for continuous predictors, can help boost the performance (Gorishniy et al. 2022).

3.2.2 Coordinate-Based Networks

Coordinate-based networks (CBNs) are an MLP-based NN design that was developed in
the computer vision community to learn compact representations for spatiotemporal sig-
nals on multi-dimensional domains (Mescheder et al. 2019; Müller et al. 2021; Sitzmann
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(a) CBN with Fourier encoding.
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(b) CBN with parametric position encoding.
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(c) CBN with spatially distributed parameters.

Figure 3.1: Overview of common CBN architectures. (a) Basic MLP architecture with Fourier
encoding, (b) MLP architecture with position encoding, and (c) distributed archi-
tecture with separate sub-models for different subdomains.

et al. 2019). CBNs predict scalar- or vector-valued target signals based on coordinate
vectors that denote point locations in the scenery domain – e.g., (x1, x2, x3)T ∈ R

3 for
3D spatial scenes. The outputs are field samples corresponding to the location of the
input samples. CBNs rely heavily on MLP architectures to represent the target signal as
a function of the input coordinates. As a consequence, CBNs inherit the low-frequency
bias of MLPs. Scenery details, such as corners or sharp edges, are difficult to learn be-
cause discontinuous signals involve high-frequency components, which are dampened by
the CBN’s bias. Dedicated activation functions, position encodings, and model decompo-
sitions have been developed to overcome these limitations. Position encodings translate
the raw position coordinates into a set of higher-dimensional coordinates, which are pro-
vided to the MLP instead of or in addition to the raw coordinate vector. An illustration
of the resulting CBN architectures is shown in Figure 3.1.

Fourier encoding A popular class of position encodings is based on Fourier modes
(Mildenhall et al. 2021; Tancik et al. 2020). In 3D space, the Fourier feature fk(x) ∈ R

2
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with wave vector k ∈ R
3 of a point x ∈ R

3 is computed as

fk(x) = (cos(k · x), sin(k · x))T , (3.9)

with · denoting the scalar product. The Fourier encoding combines Fourier features
for different wave vectors, i.e., Fourier modes with different directions and frequencies
(cf. Figure 3.1, a).

Given an orthogonal coordinate system in the scene domain, i.e., orthogonal axes with
labels x, y, and z, respectively, Mildenhall et al. (2021) introduced the axis-aligned Fourier
encoding with exponential frequencies. The wave vectors for these modes are

k
(i)
j = 2iπ êj , (3.10)

wherein i ∈ {0, 1, 2, ...}, and êj ∈ R
3 are the axis-aligned unit vectors along j ∈ {x, y, z}.

Other authors reported better performance with randomized wave vectors k ∼ N (0, σ2)
sampled from a zero-centered normal distribution and variance σ2, selected as a hyper-
parameter of the model architecture (Tancik et al. 2020).

Parametric position encoding and domain decomposition In addition to non-
parametric position encodings, empirical evidence suggests that CBNs can be trained
faster if the model parameters are associated more directly with specific locations in
space (Chabra et al. 2020). A variety of model designs have emerged, which place parts
of the trainable model parameters in a spatially distributed data structure (parametric
position encodings, cf. Figure 3.1, b), or decompose the scene domain and train separate
models for the non-overlapping subdomains. For inference, the relevant model is sampled
from a spatial data structure according to the input coordinates and evaluated accord-
ingly (cf. Figure 3.1, c). Notably, the model layouts depend on the domain properties,
and most work has focused on model designs for 3D spatial domains with or without
time. A more detailed overview of the available architectures is deferred to section 4.2.

Fourier encoding and parametric encoding schemes are used in Höhlein et al. (2022) and
Farokhmanesh et al. (2023b) to improve the models’ capability of learning high-frequent
features in the respective target signals.

3.2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) impose a spatial ordering on the neurons in each
layer according to a rectangular grid. Neurons in subsequent layers are connected through
convolution or pooling operations, which respect the spatial context. The dimension and
size of the spatial grid depend on the learning task. Throughout this thesis, CNNs are
used on 2D domains2.

For the 2D case, let Nx×Ny denote the dimensions of the spatial grid, with Nx, Ny ∈ N.
Each grid position holds a fixed number of neurons, called the layer’s channel number.

2CNNs work well also in 1D and 3D domains with applications, e.g., in time series processing (1D),
video processing (2D and time), and learning in volumetric domains (3D). We focus on CNNs for 2D
domains due to their relevance for the present work.
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Figure 3.2: Neuron arrangement and information propagation in 2D CNNs. Boxes illustrate
groups of neurons at specific grid locations. Blue boxes indicate the inputs of a
single kernel application, red boxes the outputs.

The grid dimensions and channel numbers may vary between layers. Denoting the channel
number with C, the neuron activations in a CNN layer can be summarized in a multi-
dimensional tensor A ∈ R

Nx×Ny×C , such that element-wise the value aijc := [A]ijc ∈ R

represents the activation of the c-th channel neuron at grid position (i, j). The 2D
activation maps per channel are called feature maps.

Convolution layer Considering now the l-th layer in a CNN, the activations A(l) of this
layer are connected to the activations A(l−1) of the previous one. Similar to Equation 3.2,
the neurons’ response function is parameterized as a convolution operation, denoted ∗,
with subsequent nonlinear activation:

A(l) = ρ
(

K(l) ∗A(l−1) + b(l)
)

. (3.11)

Therein, b(l) ∈ R
1×1×C(l)

is a bias vector, and K(l) ∈ R
Kx×Ky×C(l−1)×C(l)

denotes
the kernel tensor of the convolution. The kernel slices, [K(l)]···c, for c ∈ {1, ..., C(l)} are
Kx×Ky-sized, C(l−1)-dimensional filter kernels which are slid across incoming activation
maps and correlated against the local signal3. Each activation depends on the inputs
within a Kx×Ky-sized window on the previous layer’s grid. The kernel size is also referred
to as the receptive field size of the convolution. Mathematical formulas are omitted here
for brevity and can be found in textbooks like Goodfellow et al. (2016). An illustration
of a single kernel application is shown in Figure 3.2 (a).

3The use of the term convolution in convolution layers involves is actually inaccurate in many DL library
implementations, as convolutional layer are designed to execute a cross-correlation. The operations
differ in the relative orientation of the filter and the data tensor.
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Notably, the shape of the activation tensor after the convolution depends on the convo-
lution hyperparameters, namely the kernel dimensions, the padding size, and the stride.
Convolution inputs are commonly padded to compensate for resolution losses at the
grid boundary. Popular padding methods include zero-padding, i.e., extending the grid
with nodes with value zero; replication padding, i.e., using information from neurons at
the grid boundary to extend the grid; or padding with periodic boundary conditions.
Kernel size and padding affect the loss of grid nodes at grid boundaries due to sample
locations falling outside the grid. The stride of the convolution determines the size of
steps between successive evaluations of the correlation between the kernel and the input
activation maps. A stride parameter of s = 1 evaluates the kernel correlation at every
possible grid position, resulting in an activation map with roughly the same dimensions
as the input tensor (up to boundary effects). Stride s > 1 evaluates the correlations
only at every s-th grid position, leading to a resolution reduction by a factor of roughly
s. Strided convolutions help CNNs to resample activation maps, often accompanied by
increasing the channel number. This allows the model to extract more abstract features
at coarser spatial scales.

Transpose convolution Transpose convolutions (Zeiler et al. 2010), also called de-
convolution or reverse convolutions, invert the information flow of a regular convolution
operation. The kernel tensor has the same shape as in a regular convolution but is ap-
plied reversely. Each neuron in the input layer broadcasts its activation state to neurons
in a window of the size of the convolution’s receptive field (cf. Figure 3.2, a). Striding
and padding are applied in the convolution’s output layer, such that a stride of s > 1 in
the transpose setting leads to a resolution enhancement by a factor of roughly s.

Pooling and resampling In addition to convolutional layers, CNNs often comprise
intermediate processing steps that allow for resolution adaptations between convolu-
tion layers without invoking learned parameters. Non-parametric resolution reduction
is achieved through moving-window pooling operations, such as average or maximum
pooling, with stride s > 1. Resolution enhancement can be realized by resampling the
activation maps along the spatial dimensions, e.g., through nearest-neighbor-based, bi-
linear, or bicubic interpolation.

Translation invariance and the local inductive bias All processing operations in
CNNs are designed to enforce (approximate) equivariance of the learned mapping wrt.
spatial translations. Aside from potential information loss at the grid boundary or due
to resolution changes, input transformations of the form aijc 7→ a(i−δx)(j−δy)c, for in-
teger shift sizes δx and δy, result in an equivalent shift of the activation maps in each
layer, but leave the channel-wise information unchanged. The finite kernel and window
size of convolution and pooling operations further induce a local inductive bias on the
learned mappings. Together, these properties allow CNNs to generalize well in learning
tasks where spatial translations should not affect the prediction outcome. The use of
fixed-size kernels additionally limits the number of trainable parameters. CNNs thus
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NN

NN

NN

NN

NN

Contracting branch Expanding branch

... Subsampling ... Supersampling

... Feature concatenation

... Shortcut connection

Figure 3.3: Schematic illustration of the U-Net principle with three resolution stages. Solid lines
and arrows mark the information flow. NN modules operate at different resolution
stages, separated by subsampling and supersampling operations, implemented, e.g.,
through strided and transpose convolutions. High-resolution information is preserved
by forwarding feature tensors through shortcut connections between the contracting
and expanding branches.

consume less memory space than MLP-based architectures with a comparable number
of neurons and are computationally more efficient. Accordingly, CNNs have performed
well in image-based reasoning tasks, such as image classification, image segmentation, or
superresolution (see, e.g., Khan et al. 2020, for a survey on CNNs and their applications).

Multi-scale architectures and U-Net On the downside, CNNs face limitations in
learning from global features in the input data. Due to the limited receptive field of
each convolution layer, many layers, i.e., deep architectures, are required to relate infor-
mation from different locations in grid space. To increase the receptive field of CNNs,
studies have developed multi-scale CNNs that work with activation maps at different
spatial resolutions. While high-resolution activation maps (Nx/y large) allow informa-
tion extraction from local details, low-resolution activation maps (Nx/y small) enable
information to propagate over larger spatial distances.

The most prominent implementation of the multi-scale approach is the U-Net architec-
ture proposed by Ronneberger et al. (2015) for image segmentation. Inputs and outputs
of the U-Net have approximately the same spatial resolution. To exploit the multi-scale
idea, the U-Net architecture consists of two mirrored processing branches: the contract-
ing (or encoding) and the expansive (or decoding) branch. A schematic illustration of the
U-Net-like multi-resolution architecture is shown in Figure 3.3. The contracting branch
(left side of the U) applies a series of small-kernel convolution operations with intermit-
tent subsampling to successively reduce the spatial resolution of the activation maps.
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Network

... Feature addition

(a) ResNet

Network Network Network

... Feature concatenation

(b) DenseNet

Figure 3.4: Information flow in ResNet and DenseNet. NN blocks (Network) are wrapped by
shortcut connections. While feature addition in the ResNet architecture maintains
the dimensionality of the representation, repeated concatenation operations in the
DenseNet architecture successively accumulate additional dimensions

With decreasing resolution of the activation maps, the spatial extent of a convolution’s
receptive field increases. In the expansive branch, regular convolutions are interleaved
with transposed convolutions that increase the resolution again. Each resolution level
on the contracting branch has a corresponding level on the expansive branch, such that
information from the former branch can be forwarded to the latter via a shortcut connec-
tion. These connections disentangle the information content of the different resolution
levels and improve the model’s training efficiency.

Since its inception, U-Net-based architectures have been adopted in various applica-
tions. Specifically, the plain convolution operations have been replaced with more elab-
orate functional mappings, such as residual or attention blocks (see Khan et al. 2020,
for examples), and U-Net-like subnetworks are frequently used as backbones in advanced
learning frameworks, such as diffusion models (Croitoru et al. 2023).

The U-Net architecture was used in Höhlein et al. (2020) as an alternative to other
CNN architectures and outperformed the competitors.

3.2.4 Shortcut Connections

Deeper NNs with more layers are theoretically more expressive than shallower networks
and often perform better in practical applications (Prince 2023). With increasing depth,
however, the stability and effectiveness of the common training procedures decrease lead-
ing to training difficulties with very deep NNs (He et al. 2016). Shortcut connections in
NN are a common way to resolve training instabilities and enable training of very deep
and expressive networks (He et al. 2016; Huang et al. 2017).

Shortcuts deviate from the sequential layer structure of NNs and establish alternative
paths on which information can propagate through the network while bypassing parts of
it. The most prominent implementations of shortcuts are residual connections and dense
shortcuts. Both approaches are illustrated in Figure 3.4.

Residual connections Residual connections establish a fast-forward connection be-
tween the network inputs and outputs. Given a network function hϕ, the corresponding
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residual network is defined through the function hϕ, where for inputs x,

hϕ(x) = x+ hϕ(x). (3.12)

The network hϕ may be arbitrarily complex as long as its outputs have the same for-
mat as the inputs. In practice, hϕ often denotes a part of a larger network structure that
is wrapped by a shortcut connection to obtain a residual block. Each block comprises a
small number of densely connected or convolution layers and nonlinear activations. Nor-
malization layers, such as batch normalization (Ioffe and Szegedy 2015), are sometimes
added to improve the training stability further (Prince 2023). Deep residual networks
are constructed by chaining multiple residual blocks.

Dense shortcuts Dense shortcuts operate on a series of sequential fully-connected or
convolutional layers. Given a series of layer response functions, {h(l)

ϕ(l)
}Ll=1, as defined in

Equation 3.2 and an input x, a dense block is defined through the mapping

a(1) = h
(1)

ϕ(1)(x)

a(2) = h
(2)

ϕ(2)

(

concat
(

x,a(1)
))

...

a(L) = h
(L)

ϕ(L)

(

concat
(

x,a(1), ...,a(L−1)
))

,

wherein a(L) is the final output, and concat(·) denotes concatenation of the respective
inputs. Dense blocks admit more extensive reuse of extracted features but require large
amounts of memory and compute resources.

Relevance of shortcuts While the reasons for the efficiency of shortcut connections
are not understood in detail, a key factor seems to be the shattered gradient phenomenon
(Prince 2023). The term shattered gradients refers to the observation that the objective
function gradients with respect to network parameters become increasingly noisy the
earlier the parameters appear in the model. The noisy gradients carry less informa-
tion and limit the efficiency of gradient-based training. Shortcuts enable a more direct
propagation of gradient information and better parameter updates (Li et al. 2018).

Due to the advantages of shortcut architectures over purely sequential networks, short-
cuts are commonly applied in various applications, including image superresolution (e.g.,
Kim et al. 2016; Lim et al. 2017) and volumetric scene representations (Lu et al. 2021).
Residual connections are often preferred due to their ease of implementation and com-
putational efficiency compared to dense shortcuts.

3.2.5 Attention and Transformers

Attention is a form of nonlinear activation function for learning tasks on inputs of varying
sizes, such as sequences or sets of input items. To obtain a uniform representation format,
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each information piece is decomposed into a sequence of tokens. Attention enables the
translation of a sequence of input tokens of length Nin into a sequence of output tokens
of length Nout. Each input token is associated with a D-dimensional key vector and a
C-dimensional value vector. Outputs are computed as an attention-weighted average of
the input values and require a D-dimensional query vector per generated token.

Given a tensor of token values V ∈ R
Nin×C with associated keys K ∈ R

Nin×D and
queries Q ∈ R

Nout×D, the attention activation is defined as

Attention(Q,K,V ) := AV ∈ R
Nout×C , (3.13)

where A = Softmax

(

QKT

√
D

)

∈ [0, 1]Nout×Nin .

Therein, A denotes the tensor of attention weights, and Softmax is applied to normal-
ize the weights along the input dimension. To increase the flexibility of the activation
mapping, multiple key-query pairs are combined to obtain H-fold multi-head attention,

MultiHead(Q,K,V ) := concat(H1, ...,Hi, ...,HH)WO, (3.14)

where Hi = Attention
(

QW
Q
i ,KWK

i ,V W V
i

)

,

with learnable parameters W
Q
i ,WK

i ∈ R
D×D/H , W V

i ∈ R
C×C/H , and WO ∈ R

C×C ,
and concat indicating concatenation along the channel dimension. Self-attention refers to
a special case of input configuration where Q and K equal V , i.e., MultiHead(V ,V ,V ).

Compared to MLPs and CNNs, attention-based NNs are not limited to specific input
sizes (as MLPs are) while still admitting densely connected information flow between all
input tokens (as opposed to CNNs, which enforce locality in the grid domain). Attention-
based modeling originated in natural language processing (Vaswani et al. 2017), where
the tokens represent parts of words or grammatical structure descriptors in texts. The
corresponding NN architecture that uses attention is called a transformer. Subsequent
work has adapted transformers for other applications, such as computer vision (cf., e.g.,
Khan et al. 2022). In such contexts, the tokens represent image patches.

3.2.6 Neural Networks for Learning from Sets

Set-structured predictors, x = {ξ1, ..., ξ|x|}, that consist of multiple distinct but inter-
changeable items are challenging to represent in NN-based learning tasks. The number
|x| of items in each sample may vary and might not be known at training time. Fur-
thermore, each item ξ ∈ x may possess an intrinsic structure, such as a vector or tensor
format. This thesis considers the items as C-dimensional vectors.

Permutation symmerties As a defining property, set-structured predictors convey the
same information, irrespective of the order in which the set items are processed. The
output of an ML model should thus be the same for each ordering of the items or, if
the model predictions are associated with specific input items, reflect the interchange of
the items identically. The corresponding symmetries are called permutation invariance

46



3.2 Neural Network Architectures

if the model outputs remain unchanged under permutations of the predictor items and
permutation equivariance if the permutation is applied identically to the outputs. This
thesis focuses on permutation-invariant models that generate outputs not associated with
specific input items.

Several strategies have been suggested to account for set-structured inputs in DL,
including purely data-driven approaches, such as training on permuted predictors and
algorithmic adaptations that enforce permutation invariance by design. Algorithmic so-
lutions are often favorable and lead to better generalization and higher training efficiency
of the models (Lyle et al. 2020). Two algorithmic approaches, DeepSets (Zaheer et al.
2017) and set transformers (Lee et al. 2019), are described here in detail and adapted in
(Höhlein et al. 2024b) for learning from meteorological ensemble data.

DeepSets DeepSets, also called set pooling architectures, achieve permutation invari-
ance by extracting permutation-invariant summary features from the predictor set. The
features are obtained by first applying an encoder network fϕ(f) to all items separately,
followed by a permutation-invariant pooling and subsequent interpretation of the pooled
features through a decoder network gϕ(g) . The full model can be written as

hϕ(x) = gϕ(g)

(

pool
({

fϕ(f)(ξ) : ξ ∈ x
}))

. (3.15)

wherein pool is a permutation-invariant pooling function.
Pooling-type network architectures were introduced by Edwards and Storkey (2017)

and investigated in more detail by Zaheer et al. (2017) and Sannai et al. (2019), proving
that pooling architectures with additive pooling are universal approximators of functions
on sets. More expressive pooling functions may enhance the performance (Soelch et al.
2019). An additional determinant of the model capacity is the dimension of the outputs
of fϕ(f) and the resulting summary features. Higher-dimensional summary features al-
low the model to extract more information from the input set but support overfitting
(Wagstaff et al. 2019).

Set transformer Self-attention is equivariant with respect to permutations of the input
tokens. Set transformers (Lee et al. 2019) exploit this symmetry to model permutation-
invariant interactions between set items via self-attention. Specifically, the models com-
bine multi-head attention with an item-wise neural network hϕ and LayerNorm (Ba et al.
2016) to build a permutation-invariant set-attention block as

SetAttention(X) := LayerNorm(R+ hϕ(R)) ,

where R = LayerNorm(X +MultiHead(X,X,X)) .

Therein, X := concat(ξ1, ..., ξ|x|)
T ∈ R

|x|×C denotes the matrix of concatenated pre-
dictor items in arbitrary order. A set transformer is obtained by stacking multiple
set-attention blocks. Set transformers constitute a flexible architecture for extracting
item-wise feature vectors. In contrast to pooling architectures, the set structure is main-
tained throughout the inference process.
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To obtain vector-valued predictions from set-valued inputs, Lee et al. (2019) propose an
attention-based pooling mechanism in which the output query vectors are implemented
as learnable parameters. An additional MLP can be added after pooling to increase the
flexibility of the model outputs.

3.3 Machine Learning Explainability

While ML methods excel at extracting informative features and learning complex map-
pings from large amounts of data, human analysts often have difficulties understanding
their reasoning principles. This is particularly true for complex DL models, which resist
simple explanation methods due to their high-dimensional and nonlinear nature. ML ex-
plainability methods have been developed to address such concerns and widen the scope
of ML deployment. Detailed reviews of methods for different model classes and data
configurations have been conducted, e.g., by Linardatos et al. (2021), Sahakyan et al.
(2021), Burkart and Huber (2021), and Zhang et al. (2021b). Model explanation aims to
understand black-box algorithms by assessing their general logic or outcomes of specific
predictions. Depending on the purpose of the explanation, different granularity levels
are addressed (Guidotti et al. 2018).

Sample-wise explanations Sample-wise explanations are used, e.g., to assess the im-
pact of different predictors within the context of one specific prediction. Among these
approaches are Shapley values, which allow statements about the strength and direction
with which different predictors contribute to a final prediction. Shapley values are rooted
in game theory (Shapley 1951) and provide a unified view on various other popular expla-
nation techniques (Lundberg and Lee 2017). For reasons of computational complexity,
practical applications often rely on more targeted methods. Layer-wise relevance propa-
gation (LRP; Ba et al. 2016), for instance, enables the computation of 2D relevance maps
in CNN applications by exploiting the sequential structure of NN inference for efficient
computations. Applications of such methods in the earth-system sciences include the
works by Labe and Barnes (2021), Farokhmanesh et al. (2023a), or Rampal et al. (2022).

While attribution-based approaches are well suited for an in-depth investigation of the
model inference, they usually come at high computational cost and provide information
that is too detailed for higher-level tasks, such as comparing different ML algorithms or
assessing the overall importance of different predictors.

Model-level explanations The DL applications considered in this study require state-
ments about the relevance of different model inputs to the model performance. For such
tasks, averaged importance scores of certain predictors offer more information. Feature
permutation importance (PFI; Breiman 2001) is a popular method to access this kind
of information. PFI is applied to models after training and works by measuring the per-
formance reduction of models when withholding information about specific predictors.
PFI methods have been used previously in meteorological applications (e.g., Rasp and
Lerch 2018). In this work, PFI methods are adapted to measure the importance of 2D
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field-valued predictors in CNN-based statistical downscaling (Höhlein et al. 2020) and to
probe the relevance of features within ensemble-valued predictors (Höhlein et al. 2024b).

3.4 Deep Learning in Computer Vision

DL methods and NNs have advanced the state of the art in many fields of science. Many
new methods were proposed initially to solve tasks in computer vision. This section
introduces selected application areas that have impacted the research in this thesis.

3.4.1 Superresolution

Superresolution (SR) refers to a family of tasks concerned with increasing the resolution,
i.e., the sampling density, of pixelated or voxelized visual data, such as rasterized images
or discretely sampled scientific fields. Common to all these tasks is that some form of
low-resolution (LR) data, x(LR) ∈ X (LR), is used to generate a high-resolution (HR)
version of it, x(HR) ∈ X (HR). The case in which x(LR) and x(HR) are images is called
single-image superresolution (SISR). This is opposed to multi-image superresolution, in
which multiple LR images are used jointly to infer x(HR). Both types of methods are
collectively referred to as image superresolution (ISR).

Inverse problem formulation Mathematically, SR is often phrased as an inverse prob-
lem, in which the unknown x(HR) and the available x(LR) are related through a (formally
unknown) sub-sampling or degradation process, Degrade : X (HR) → X (LR), such that

x(LR) = Degrade
(

x(HR)
)

. (3.16)

Superresolution methods try to invert Degrade and provide estimates of what x(HR)

might have looked like. The degradation process usually involves a loss of information,
such that it is impossible to restore x(HR) perfectly. In the case of considerable infor-
mation loss, e.g., due to a large resolution difference between x(LR) and x(HR), even a
best guess estimate may not be uniquely defined. To account for ambiguities, superres-
olution methods apply regularization schemes, use generative modeling, or incorporate
prior information on the detail structure of x(HR) to fill the estimate with plausible and
realistic-looking details. In ISR applications, such prior information is called image priors
(Tappen et al. 2003; Ulyanov et al. 2018).

Methods SR algorithm can be classified as deterministic or probabilistic approaches
(Nasrollahi and Moeslund 2014). Deterministic approaches produce HR image estimates
based on a deterministic function of the input images and can be described as MLE
or MAP estimators. Common quality metrics are optimized for image data, including
the peak signal-to-noise ratio (PSNR) and the structural similarity metric (SSIM, Wang
et al. 2003). Probabilistic approaches use generative models, such as GANs, to emulate
sampling from the posterior distribution. State-of-the-art methods rely heavily on DL
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models, which are trained on extensive image datasets, containing paired examples of
HR and LR images (cf., e.g., Dong et al. 2016a; Wang et al. 2021). A more detailed
review of relevant methods is given in section 4.1.

Superresolution for scientific data In contrast to images, scientific data are con-
cerned with scientific scalar or vector fields. The fields are commonly defined on con-
tinuous spatial or spatiotemporal domains, and scientific data are stored as discretely
sampled values at predefined locations in space and time. Interpolation and resampling
are required in various processing tasks to enable data access at arbitrary locations.
SR methods for scientific data will be called scientific superresolution (SciSR) methods.
Approaches in this direction originate commonly from the visualization or data science
community (e.g., Jakob et al. 2021; Tang and Wang 2024; Wurster et al. 2023; Zhou et al.
2017) and are designed to resample general scientific data for analysis and visualization.

3.4.2 Neural Scene Representations

Computer vision and graphics applications rely heavily on digital representations of real-
world 3D scenery information. Scenery descriptions contain information about the lo-
cation, shape, and appearance of objects within the scene and are crucial for digital
image generation, scene understanding, or scene editing. Neural scene representations
are a promising alternative to classical representations based on explicit 3D geometry
and lighting and object appearance models. While classical representations are often
memory intensive and require detailed supervision by artists in the capturing or design
process, neural scene representations enable concise representations of complicated 3D
scenes and facilitate streamlined optimization-based procedures during scene generation.

Basic algorithms Neural scene representations encode 3D scenery information as a
mapping between algorithm-specific scenery coordinates and scene properties at the spec-
ified location. The mapping is implemented through a NN, which is often a CBN. Scene
information is stored implicitly within the parameters of the NN, and the model out-
puts are used in classical or dedicated neural rendering algorithms to visualize the scene.
Neural scene representations were pioneered by Sitzmann et al. (2019), who trained
CBN-based Scene Representation Networks (SRNs) to encode the shape and appearance
information of objects in 3D visual scenes. Their work was published concurrently with
similar approaches (Chen and Zhang 2019; Mescheder et al. 2019; Michalkiewicz et al.
2019; Park et al. 2019), which used CBNs as generative models for 3D shapes.

SRNs output high-dimensional feature vectors, which are interpreted in a subsequent
neural rendering step to yield images of the encoded scenery. Alternative rendering
methods were proposed by Mildenhall et al. (2021) and Sitzmann et al. (2021), leading to
the development of Neural Radiance Fields (NeRFs) and Light Field Networks (LFNs),
respectively. In NeRFs, the CBN generates four-dimensional outputs, interpreted as
three color channels and a scalar opacity value. Volume rendering is applied to the
resulting color-opacity field to obtain visual output. The rendering procedures require
many sequential network evaluations per pixel, which are computationally costly and
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Representation SRN NeRF LFN

Model input 3D coords. 3D coords. & 2D view dir. 6D ray coords.

Model outputs high-dim. features 3D color & opacity 3D color

Rendering algorithm neural rendering raycasting model query

Table 3.3: Comparison of neural scene representations wrt. model configurations used in the
different approaches.

memory-intensive. LFNs alleviate such problems by emulating a representation of the
light field in the scene and reducing the number of CBN evaluations. A comparison of
the respective algorithms regarding model inputs, outputs, and rendering algorithms is
shown in Table 3.3. A more detailed review can be found, e.g., in the survey article by
Xie et al. (2022).

Neural scene representations can be fitted to classical digital scenery models or real-
world scenes. During the training process for existing digital models, both scenes are
rendered, and the renderings are compared through suitable loss functions. The param-
eters of the neural scene are tuned to minimize the deviation between both renderings.
Differentiable rendering algorithms are required for the neural scene to enable gradient-
based parameter optimization. For real-world scenes, the optimization is commonly based
on photographic image data. Neural scene representations commonly encode one scene
at a time, i.e., they are overfitted to a specific scene, or require additional parametric
inputs to determine the rendered scene.

Efficiency considerations The representation quality, runtime performance, and mem-
ory efficiency of neural scene representations are critically determined by the architecture
of the used CBNs and by the practical implementation of the model evaluation on com-
puting hardware.

The representation quality of neural scene representations was shown to profit consid-
erably from using sinusoidal activation functions (e.g., Sitzmann et al. 2020; Weiss et al.
2021; Ziyin et al. 2020) and from positional encodings applied to the spatial coordinate
inputs (e.g., Mildenhall et al. 2021; Tancik et al. 2020). Both adaptations improve the
models’ ability to represent high-frequent visual details in the scene by circumventing
the MLP-specific low-frequency bias (cf. subsections 3.2.1 and 3.2.2). The parameter
and learning efficiency, as well as the evaluation time, have been improved through para-
metric coordinate embeddings (cf., e.g., Chabra et al. 2020; Martel et al. 2021; Müller
et al. 2022; Takikawa et al. 2021, and subsection 3.2.2). Parametric embeddings enable
the use of very small MLPs, which, in turn, better exploit acceleration structures on
GPU hardware (Müller et al. 2022; Weiss et al. 2021). When combined into one model,
such improvements can enable real-time rendering speeds of the neural representation
with a reduced memory footprint compared to traditional representations.
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CHAPTER 4

Related Work

In this chapter, we review related work relevant to the context of the presented publi-
cations. The topics are grouped by research area, covering research on SR, neural scene
representations, postprocessing, and the visual analysis of meteorological data. The rel-
evance of the different subsections to the presented publications is outlined in Table 4.1.

4.1 Superresolution

SR methods for images and scientific data are closely related to the work in Höhlein et al.
(2020). Following the orientation of the work therein, we focus on the use of CNNs for
SR and highlight advancements and current trends in the design of the employed models.

4.1.1 Image Superresolution

Following the far-reaching adoption of DL methods in computer vision, the landscape of
ISR algorithms has witnessed significant changes. While classical approaches focused on
image interpolation, kernel methods, or simple regression schemes, virtually all recent
ISR approaches rely on DL. The comprehensive reviews by Nasrollahi and Moeslund
(2014) and Anwar et al. (2020) illustrate the shift in focus. A turning point is marked
by the introduction of CNN-based SISR algorithms (Dong et al. 2016a,b; Kim et al.
2016), which lead to substantial improvements in image quality and runtime compared
to earlier methods. The exceptional performance of CNNs in SR tasks was attributed
to their inductive bias, which provides a favorable image prior (Chen and Zhang 2019;
Ulyanov et al. 2018).

CNNs for image superresolution SRCNN (Dong et al. 2016a) was the first CNN-
based model for SISR. SRCNN uses a shallow 3-layer network architecture with kernel
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Article Topic Subsection

Höhlein et al. (2020) Superresolution section 4.1

Statistical downscaling subsection 4.3.1

Höhlein et al. (2024b) Ensemble postprocessing subsection 4.3.2

Model explanation subsection 4.4.3

Höhlein et al. (2024a) Statistical downscaling subsection 4.3.1

Topographic visualization subsection 4.4.1

Höhlein et al. (2022) Neural scene representations section 4.2

Ensemble visualization subsection 4.4.2

Farokhmanesh et al. (2023b) Neural scene representations section 4.2

Ensemble visualization subsection 4.4.2

Table 4.1: Overview of relevant sections in the related work for the presented articles.

sizes of 9× 9, 1× 1, and 5× 5 pixels, respectively, and operates on a bicubic interpolated
version of the original LR image (iLR) to predict the HR image. VDSR (Kim et al. 2016)
improved on SRCNN by training deeper networks with up to 20 layers and uniform kernel
size 3× 3 while copying the strategy of postprocessing the iLR image. The smaller ker-
nels help save compute operations, resulting in better runtime performance. To account
for problems with exploding and vanishing gradients, Kim et al. (2016) suggest residual
learning. For example, instead of predicting the HR image directly, VDSR is trained to
predict a residual difference between HR and iLR. FSRCNN (Dong et al. 2016b), subse-
quently, used similarly deep networks together with additional architectural refinements,
such as pixel-wise convolutions, to improve data efficiency and runtime.

Subsequent research optimized the architectures further or explored additional design
patterns. Notable examples include the works by Lim et al. (2017) and Ahn et al. (2018),
who use ResNet-like residual blocks for ISR. Lai et al. (2017) process features in multiple
resolution stages, thus splitting the superresolution process into simpler steps with a
smaller upsampling factor. REDNet (Mao et al. 2016) employs a U-Net-like encoder-
decoder architecture, which allows the model to infer feature representations at multiple
resolution levels and improves runtime performance.

Anwar et al. (2020) identify residual connections as an important aspect in ISR model
design and distinguish two types of residual learning. Global residual learning refers to
VDSR-style prediction of HR image residuals, whereas local residual learning concerns
ResNet-like shortcut connections inside the network architecture.
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The above work guided the selection of network architectures in Höhlein et al. (2020).
The presented model architectures exploit residual connections, residual learning, and
multi-scale information processing, which are also reflected in the downscaling architec-
tures in our comparison.

Generative image superresolution All of the above architectures generate determin-
istic HR estimates and are trained using MAE- or MSE-based loss functions. Beyond
this, several studies have explored using DGMs for SR tasks. In particular, GANs have
been a popular choice. Examples of such models include Enhancenet (Sajjadi et al. 2017),
SRGAN (Ledig et al. 2017), ESRGAN (Wang et al. 2019b), or SRFeat (Park et al. 2018).
The GAN-based approaches use generator architectures similar to those of the deter-
ministic models. SRGAN and Enhancenet, for instance, are based on ResNet blocks.
Similar approaches have been used in visualization research to achieve image-space SR
for scientific visualizations (e.g., Weiss et al. 2021).

To avoid excessive deviations from the target image distribution, GAN training is
often regularized using global residual learning (e.g., Sajjadi et al. 2017) or by adding
additional pixel-wise or feature-based loss components to the training objective. More
recently, studies have explored alternative generative model classes, such as normalizing
flows (Lugmayr et al. 2020) or diffusion models (Li et al. 2022). Training methods
and model architectures of these approaches are determined by the requirements of the
learning algorithms and deviate significantly from the CNN-based regression methods.
GAN-based approaches were therefore excluded from the comparison in Höhlein et al.
(2020), but have been used frequently in subsequent downscaling studies.

4.1.2 Superresolution for Scientific Data

Compared to image data, scientific data vary largely wrt. statistical properties and value
ranges. Scientific data are also multi-faceted (Kehrer and Hauser 2013), i.e., datasets
may be multi-dimensional (often 2D or 3D space and time) or multivariate, and the data
may comprise scalar- and vector-valued components. SciSR approaches have to account
for such properties or may even take advantage of them. This section thus discusses
SciSR methods for scalar-valued and vector field data.

Superresolution for scalar fields Zhou et al. (2017) were the first to train a CNN
to increase the resolution of volumetric scalar fields. Their approach is close in spirit to
SRCNN (Dong et al. 2016a) while replacing 2D image convolutions with 3D convolutions
to account for the volumetric domain. In a series of works, Han and Wang suggested
GAN-based models for spatial (Han and Wang 2022) and temporal (Han and Wang 2020)
superresolution of time-varying vector fields, as well as a framework for joint superres-
olution in both space and time (Han et al. 2022). All works focus specifically on the
temporal coherence of the SR estimates, which is achieved through recurrent network
architectures or dedicated regularization losses. Notably, many of the presented studies
operate on volumetric fields and time-varying data, whereas the data in Höhlein et al.
(2020) is two-dimensional.
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Several more recent studies have shifted the focus away from CNN architectures. Ex-
amples include the hierarchical model by Wurster et al. (2023), the normalizing flow
model by Shen and Shen (2023), and the CBN-based model by Tang and Wang (2024).

Superresolution for vector fields While vector fields – such as wind fields – are not
univariate, in terms of data dimension, the vector components, e.g., in flow fields, are
often strongly correlated. Vector fields also possess additional theoretical structure, such
as topological features, and admit a more profound analysis than a plain collection of
scalar fields, e.g., in terms of streamlines, divergences, or rotation fields. The work
presented in this section is closely related to the setting of Höhlein et al. (2020), which
has been an early contribution to the field.

Similar to our study, Guo et al. (2020) present SSR-VFD, a CNN-based solution for
super-sampling volumetric vector fields. While each vector component is processed by
a separate model branch (one branch per vector component), the objective function
considers the predictions for all components jointly. The loss function is based on a
linear combination of magnitude and cosine-based angle losses, as used in the evaluation
of our models. Several authors have followed up on their work by proposing other refined
loss functions (An et al. 2021; Sahoo and Berger 2021).

Among vector fields, fluid flows have attracted particular attention due to their high
relevance in many areas of science and engineering. Contributions include the work by
Xie et al. (2018), who explore the use of targeted GAN architectures for temporally
coherent fluid flow SR, as well as Pant and Farimani (2021) and Fukami et al. (2021),
who study multi-scale CNN and U-Net-based architectures for fluid flow SR. A more
comprehensive review of machine learning approaches in fluid flow superresolution has
been conducted by Fukami et al. (2023). However, contributions from the fluid flow
community often focus on idealized flow settings in closed systems, where boundary
conditions and obstacles strongly determine the structure of the flow. Such assumptions
do not necessarily apply to atmospheric flows on length scales of tens or hundreds of
kilometers and with sparse data sampling on kilometer-scale grid resolutions.

4.2 Neural Representations for Scenes and Scientific Data

Neural scene representations constitute an important inspiration for the development
of ERNs (Höhlein et al. 2022) and NDFs (Farokhmanesh et al. 2023b) as efficient data
representations of 3D ensembles. Overviews on the fundamentals of neural scene rep-
resentations and neural rendering have been provided, e.g., by Xie et al. (2022), Gao
et al. (2023), and Tewari et al. (2022). A comprehensive review of progress in the field
is beyond the scope of this work. Instead, we emphasize work addressing the memory
and runtime efficiency of neural scene representation, and studies applying neural scene
representations to scientific data.

Parametric positional encodings and spatial decomposition schemes Key im-
provements to the training and runtime efficiency of neural scene representations are
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due to the introduction of parametric coordinate embeddings. Early neural shape rep-
resentations, such as the models by Park et al. (2019) and Mescheder et al. (2019),
used high-dimensional feature vectors to generate different shapes with a single model.
The feature vectors were learned during training in parallel with the MLP model parame-
ters, laying the foundation for auto-decoder CBNs with parametric coordinate encodings.
Chabra et al. (2020) and Jiang et al. (2020) used multiple feature vectors per object to
encode information about the object’s shape in local subdomains. The locality-specific
feature vectors were stored in a regular sparse voxel grid, thus constituting an early form
of parametric positional encoding. However, the required grid resolution grows quickly
for fine-granular shapes or sceneries with dense output fields. Müller et al. (2022) over-
come this limitation through multi-resolution hash grids, which provide a fixed budget
of feature vectors, which are reused in different grid locations. The feature vectors are
stored in a fixed-size lookup table, and a hashing function is used to connect the features
to the 3D-indexed grid locations. While the non-unique grid assignment leads to poten-
tially ambiguous update signals for the feature vectors during training, the procedure
was found to help distribute the model capacity locally where needed. The expressive
feature grid enables the authors to shrink the subsequent feature decoders considerably,
enabling the exploitation of hardware acceleration structures for evaluating the neural
scene representations (Müller et al. 2021).

Some of the above concepts are adopted in the work presented as part of this thesis.
In Höhlein et al. (2022), we employ fixed-resolution regular feature grids, similar to those
by Chabra et al. (2020) and Jiang et al. (2020). In Farokhmanesh et al. (2023b), multi-
resolution hash grids together with a small MLP-based feature encoder improved the
model performance and were adopted in the model design.

Parametric encodings for higher-dimensional coordinates High-dimensional coor-
dinate spaces are difficult to cover with grid-based parametric encodings. For instance,
dynamic scenes involve 4D space-time coordinates, and radiance fields require the speci-
fication of 3D spatial and 2D (or more) view direction coordinates. While feature grids
have been applied in such scenarios (e.g., Fridovich-Keil et al. 2022; Yu et al. 2021), the
resulting feature grids require large amounts of memory, even in sparse configurations.
Hash grids alleviate the memory problem but remain vulnerable to insufficient sample
coverage during training (Müller et al. 2022).

Chen et al. (2022) realized that feature grids in high-dimensional coordinate spaces
can be interpreted as multi-dimensional tensors. To reduce the memory size and number
of degrees of freedom, the authors apply a tensor decomposition (Kolda and Bader 2009)
and represent the full-grid feature tensor as a sum of lower-rank tensor products. A 3D
tensor is obtained from the outer product of three 1D vectors or a 2D matrix and a 1D
vector, resulting in linear or quadratic memory complexity, respectively, when increasing
the grid resolution. Jang and Kim (2022) use tensor products of four 1D vectors or two 2D
matrices, respectively, to generalize the approach to 4D feature tensors and dynamic scene
representations. Similar approaches have been suggested by Fridovich-Keil et al. (2023)
and Cao and Johnson (2023). Both works project high-dimensional coordinates to a set
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of axis-aligned 2D planes and extract features from 2D grids – i.e., matrices – embedded
in these planes. The features from different planes are combined using multiplication. A
similar representation was used by Chan et al. (2022) to represent data on 3D volumetric
grids but with an additive feature combination. To further reduce memory consumption,
Fridovich-Keil et al. (2023) suggest using multi-scale grids in all planes, similar to the
multi-resolution hash grids by Müller et al. (2022).

In Farokhmanesh et al. (2023b), we follow the idea of tensor decompositions to param-
eterize the feature grid for the 6D feature space spanned by a pair of 3D point coordinates
– the query points for the two-point dependencies. The features are sampled indepen-
dently for both query points from a 3D multi-resolution hash grid, then transformed by
a small MLP, and subsequently combined by multiplication. The strategy corresponds
to a tensor decomposition of the 6D grid into a pair of 3D grids. This decomposition
scheme simplifies the implementation of symmetries into the learned two-point depen-
dence fields. Symmetric model outputs are obtained by reusing the same 3D feature
grid for both query locations. 2D-based decompositions, as suggested by Fridovich-Keil
et al. (2023) and Cao and Johnson (2023), require more grid evaluations and additional
symmetry constraints on some of the planar grids.

Neural representations for scientific data Early DL approaches for scientific data
representation used NNs as feature extractors. Jain et al. (2017), for instance, derived
compressed representations for time-varying volumetric data using an encoder-decoder
NN architecture, achieving compression ratios between 10 and 20. Larger compression
ratios of up to 200 can be achieved through subsampling and subsequent superresolution
(Han et al. 2022; Wurster et al. 2023), but remain less performant than CBN methods.

Other approaches skip the representation of the volumetric dataset and generate visual
output directly. For instance, Berger et al. (2019) use GANs to directly generate rendered
images, given view and transfer function parameters for color and opacity, and He et al.
(2020) facilitate parameter space exploration in numerical simulation experiments by
predicting renderings of the data. Similarly, Shi et al. (2023) support the generation of
visuals based only on simulation hyperparameters.

CBN-based representations for volumetric scalar fields were introduced by Lu et al.
(2021). The authors use a monolithic MLP architecture called Neurcomp without para-
metric positional encoding. Despite slow evaluation performance, the authors demon-
strate good representation quality at compression ratios up to 1000 and more. Weiss
et al. (2022) introduced fV-SRN as an accelerated alternative to Neurcomp. Key im-
provements include a positional encoding based on Fourier features, a dense parametric
feature grid, and an optimized implementation of the neural representations on recent
GPU hardware. This enables real-time volumetric rendering directly out of the compact
representation. The work in Höhlein et al. (2022) is inspired strongly by the contributions
by Weiss et al. (2022) and reuses parts of the code base of this work.

Neural representations have also been developed for ensemble datasets. Notably, Shi
et al. (2022) present a model to emulate the output of ocean simulations based on sim-
ulation input parameters, and Han and Wang (2023) present a parameter-conditioned
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volume representation with applications to SciSR and volume visualization. We note
that several studies with a focus on ensemble parameter space exploration assume an
injective relationship between simulation hyperparameters and ensemble members (e.g.,
He et al. 2020; Shi et al. 2023; Wu et al. 2023). The methods presented in these studies
do not account for the stochastic sampling dimension of NWP ensemble forecasts and
thus address a different notion of ensemble datasets compared to Höhlein et al. (2022)
and Farokhmanesh et al. (2023b).

4.3 Postprocessing

4.3.1 Statistical Downscaling

ML-inspired downscaling approaches have been adapted for multiple application sce-
narios, such as the downscaling of coarse-scale numerical model outputs (Maraun and
Widmann 2018) or remote sensing data (Atkinson 2013; Sdraka et al. 2022). Relevant to
this work are approaches that enhance the resolution of gridded NWP or climate model
outputs, approaches for downscaling wind predictions, and grid-to-point approaches fo-
cusing on temperature downscaling in complex terrain.

CNNs for regridding prediction data Due to the striking similarity between ISR and
statistical downscaling, many authors have taken inspiration from ISR to design CNN-
based downscaling models. DeepSD (Vandal et al. 2017) was the first of these approaches,
using a CNN in the style of SRCNN to downscale gridded precipitation predictions. To
adapt the architecture for meteorological purposes, Vandal and coauthors use multiple
stacked instances of SRCNN and add high-resolution orography information as additional
predictors into the model. Similar studies include the works by Passarella et al. (2022),
who adapt FSRCNN to downscale precipitation, temperature, and solar irradiation maps,
Stengel et al. (2020), who build upon SRGAN to downscale wind fields and solar irradia-
tion, Cheng et al. (2022), using ESRGAN for precipitation downscaling, and Serifi et al.
(2021), who generalize REDNet to downscale precipitation and temperature predictions.
Other authors deviate from the established ISR architectures. The works by Pan et al.
(2019) and Baño-Medina et al. (2020) use convolution layers for feature extraction and
apply dense layers to generate the downscaled prediction. Mu et al. (2020) propose a
CNN-based multi-scale model with residual connections to account for multi-scale spatial
correlation patterns.

The work by Höhlein et al. (2020) follows this line of research and compares a selection
of ISR-inspired CNN-based downscaling models regarding their prediction accuracy. The
best-performing model is a U-Net-like multi-scale architecture with residual blocks. U-
Net-based model designs have been popular in several subsequent studies, as well (Doury
et al. 2023; Serifi et al. 2021; Sha et al. 2020a,b).

Downscaling wind fields in complex terrain While many studies downscale temper-
ature and precipitation, the work presented in Höhlein et al. (2020) addresses wind field
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downscaling in complex terrain. Due to the tight coupling between terrain shape and
wind dynamics, wind downscaling requires carefully integrating high-resolution terrain
information into the downscaling models. Traditional downscaling approaches, such as
the works by Fiddes and Gruber (2014) and Forthofer et al. (2014), apply physics-based
models for downscaling winds. Earlier statistical methods, such as the approaches by
Winstral et al. (2017) and Helbig et al. (2017), use carefully engineered feature descrip-
tors to encode local terrain shapes. Höhlein et al. (2020), instead, leverage the feature
extraction capabilities of deep CNN architectures. Other CNN-based approaches fol-
low similar strategies (e.g., Stengel et al. 2020; Zhang and Li 2021). WindTopo by
Dujardin and Lehning (2022) is another CNN-based approach but operates in a grid-to-
point setting. Nevertheless, the authors put particular emphasis on feature extraction
from auxiliary data. Next to terrain information, the model receives several additional
meteorological predictors, and features are extracted separately for each predictor.

Downscaling temperatures in complex terrain The work presented in this thesis is
inspired by the earlier study by Sheridan et al. (2010). The authors study the occurrence
and estimation of non-adiabatic ambient lapse rates and suggest a linear height-based
correction scheme similar to the one by Höhlein et al. (2024b). The original down-
scaling scheme has been combined with more elaborate methods that focus on physical
parameterizations for cold-pooling effects in valleys and on parameterizations for hill-site
locations (Sheridan et al. 2014; Sheridan et al. 2018; Smith et al. 2010; Vosper and Brown
2008). Physics-based parameterizations are not used in the dynamical scheme discussed
here to keep the approach as simple and scalable as possible.

Downscaling of surface temperatures has been addressed independently in several other
works. Frei (2014) and Hiebl and Frei (2016), e.g., suggest fitting nonlinear tempera-
ture profiles from which temperatures are interpolated at the target altitude. While the
approach offers greater flexibility for the shape of the vertical temperature dependence,
the methods rely on observation data, require intricate fitting and clustering procedures
to work, and do not scale to global reanalysis applications. Uboldi et al. (2008) and
Lussana et al. (2018) describe 3D spatial interpolation methods for surface temperatures
in regional-scale reanalysis and climate applications. The approach fits multiple para-
metric functions to local subregions, which is computationally more involved than ours.
All such approaches, furthermore, use observation data, which is scarce in many regions
of the world. Volumetric temperature model data on pressure levels are used by Luo
et al. (2019) and Fiddes and Gruber (2014) but require potentially expensive memory
access operations when deployed for global domains. Fiddes and Gruber (2014) and,
subsequently, Fiddes et al. (2022) focus on very-high-resolution downscaling down to
hillslope-scale resolution and operate at the border between empirical statistical down-
scaling and full dynamical modeling.

4.3.2 Ensemble Postprocessing

Statistical postprocessing is an important component of operational forecasting pipelines,
enabling the delivery of seamless forecasts for end users. A broad literature base covers
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application studies of postprocessing across different variables and geographic regions.
A comprehensive review of studies in the field has been conducted by Vannitsem et al.
(2021) but is beyond the scope of the present work. Instead, we focus on methodological
contributions and studies that suggest original postprocessing algorithms based on ML
and DL techniques related to the methods in Höhlein et al. (2024b).

Two of the first statistical methods for postprocessing ensemble forecasts are ensemble
model output statistics (EMOS, Gneiting et al. 2005) and Bayesian model averaging
(BMA, Raftery et al. 2005). While EMOS performs a distributional regression based
on a suitable family of parametric distributions and summary statistics of the ensemble,
BMA generates a mixture distribution based on the individual ensemble members. Due
to its simplicity, EMOS has been applied to a wide range of weather variables (Pantillon
et al. 2018; Scheuerer 2014; Schulz et al. 2021; Thorarinsdottir and Gneiting 2010) and
is commonly considered as a baseline approach in comparison studies (e.g., Demaeyer et
al. 2023; Schulz and Lerch 2022). Basic statistical methods were succeeded by machine
learning approaches, e.g., based on regression trees (Messner et al. 2017; Taillardat et al.
2016), which incorporate information about auxiliary meteorological variables or spatio-
temporal context.

The first approaches based on NNs are DRNs (cf. subsection 3.1.2) for postprocessing as
an extension of the EMOS framework (Rasp and Lerch 2018), and the Bernstein quantile
network (BQN; Bremnes 2020), which use a more flexible parameterization of the output
distribution and an adapted loss function. A comprehensive selection of standard ML-
based and NN-based postprocessing approaches was evaluated by (Schulz and Lerch 2022)
in the context of wind gust postprocessing. A broader review of statistical postprocessing
techniques for weather forecasts is found in Vannitsem et al. (2021). Following the success
of the first NN-based postprocessing methods, research has focused on further developing
these approaches. An important aspect has been integrating multivariate and spatial
information for postprocessing. Several common NN architectures have been explored in
this context, including CNNs (Grönquist et al. 2021; Horat and Lerch 2024; Scheuerer
et al. 2020; Veldkamp et al. 2021) and graph-based NNs (Feik et al. 2024).

Concurrently with our work, several authors explored transformer NNs for ensemble
postprocessing. Most similar to our work, Mlakar et al. (2024) evaluate an attention-
based NN architecture and achieve the overall best postprocessing performance in a
comparison study by Demaeyer et al. (2023). Their work focuses on a single hand-crafted
architecture rather than a comparison of different symmetry-motivated architectures as
considered in Höhlein et al. (2024b).

All works discussed above postprocess scalar-valued predictions of meteorological pa-
rameters at station sites. Finn (2021) and Ben-Bouallègue et al. (2023), instead, post-
process gridded forecast fields as a special case of multivariate forecasts. Ongoing work
extends the focus on this aspect (e.g. Chen et al. 2024; Lerch et al. 2020)
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4.4 Visual Analysis of Meteorological Data

Several of the articles in this thesis involve the use of visual analysis approaches or develop
methods to facilitate the visual analysis of meteorology-related datasets. Visualization
methods for meteorological and climate data have been discussed comprehensively in
several textbooks (e.g., Andrienko and Andrienko 2006; Hoffman et al. 2023; Middleton
et al. 2005; Monmonier 2000), surveys, and review articles (e.g., Afzal et al. 2019; Nocke
et al. 2008; Rautenhaus et al. 2018; Röber et al. 2021). A comprehensive review is beyond
the scope of this work. In this section, we highlight selected aspects of visualization and
visual analytics research that have influenced the presented contributions.

4.4.1 Visualizing Weather Data in Their Spatial Context

Guidelines for visualizing weather and climate data Based on a user study with
domain scientists, Dasgupta et al. (2015) discuss trade-offs between design problems in
visualizing weather and climate data and provide guidelines for designing effective visu-
alizations. Notably, the considerations about the encoding of data items apply to the
work in Höhlein et al. (2024a). Dübel et al. (2014) categorize visualization methods for
spatially referenced data based on the dimensionality of the visual representations, i.e.,
2D or 3D visualizations of the spatial reference space and 2D or 3D embeddings of ab-
stract data therein. Both 2D and 3D views are commonly used by weather and climate
researchers (cf., e.g., Afzal et al. 2019; Rautenhaus et al. 2018) and are supported in the
presented visualization tool. Helbig et al. (2014) discuss the advantages of 3D visual-
izations for weather and climate data and suggest a workflow for composing informative
visualizations. Emphasis is put on how 2D and 3D datasets are composed and repre-
sented visually, as well as on how color schemes can help to encode relevant information.
The authors provide guidelines for representing volumetric scalar fields and recommend
slice-based representations as used in Höhlein et al. (2024a).

Guidelines for using colors in meteorological visualizations have been provided by the
American Meteorological Society (1993) and refined later by, e.g., Stauffer et al. (2015).
Important considerations include the familiarity of the visualization users with the uti-
lized color schemes and the consistency of the colors, e.g., among different variables in
the data with corresponding value ranges and physical interpretation. The latter is es-
pecially relevant in 3D visualizations, where colors can be distorted due to lighting and
shading effects. Höhlein et al. (2024a) account for this via consistent default settings of
color schemes for different physical variables and by providing options to disable lighting
and shading on demand.

Visualizing terrain uncertainty The communication of data uncertainties is an im-
portant topic in visualization, often requiring the depiction of uncertainty information
jointly with the actual data values. Comprehensive reviews of methods and taxonomies
in uncertainty visualization are given in summary articles, e.g., by Griethe and Schumann
(2006), Bonneau et al. (2014), and Kamal et al. (2021). MacEachren et al. (2005) review
uncertainty visualization methods specifically for geospatial data and distinguish uncer-
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tainty in the spatial allocation of the data from uncertainty in the data attributes. The
uncertainty of the model terrain in Höhlein et al. (2024a) falls into the latter category.

Diverse methods exist to visualize such uncertainties. Retchless and Brewer (2016)
review and compare map-based visualizations for temperature change projections in cli-
mate studies and visualized value uncertainty jointly with the data values by using color
and texture variations. Dübel et al. (2017) study methods for visualizing data in its
terrain context while also communicating uncertainty in the data through intrinsic and
extrinsic encodings. In both studies, uncertainties concern data attributes that are not
related to the terrain itself. In our work, the elevation coordinate itself is uncertain, and
uncertainty bounds possess a spatial context themselves.

Kao et al. (2002) examine visualization methods for uncertain data distributed across a
2D domain. The authors suggest density-based visualizations of local data distributions
in a 3D view and present visualizations of 3D probability volumes using linked views,
cutting planes, PDF isosurfaces, and DVR. The approach is similar to the one in Höh-
lein et al. (2024a). Local elevation distributions are obtained by aggregating elevation
samples within a specified radius and can be visualized using volumetric representations.
While Kao et al. (2002) focus on the PDF and probability isovalues to represent the
distributions, we prefer the CDF and quantile isovalues as the basis of the presented
elevation summary plots.

Alternative visualization methods for uncertain surfaces include point-based proba-
bilistic surfaces (Grigoryan and Rheingans 2004), the representation of uncertain sur-
faces through crossing probabilities (Pfaffelmoser et al. 2011), or occurrence probabilities
(Pothkow and Hege 2011), and the use of confidence surfaces for bounding the extent of
a surface uncertainty interval (Zehner et al. 2010).

4.4.2 Visual Analysis of Ensemble Datasets

As a special form of multi-faceted data (Kehrer and Hauser 2013), ensemble datasets are
conceptually complex and offer varied visualization options. A comprehensive review of
visualization methods for ensemble datasets has been conducted by Wang et al. (2019a),
who identify analytical tasks for visual ensemble analysis and provide references with
specific visualization methods.

Next to efficiency improvements to the in-memory representation of ensemble data
through neural representations, as discussed in section 4.2, the presented studies focus
on methods for assessing correlations and dependence structures in ensemble datasets
and are related to studies within this context. Correlations and interdependence effects
impact the reliability of uncertainty estimates and parameter sensitivity studies (e.g.,
Ancell and Hakim 2007; Molteni et al. 1996). Visual analysis methods facilitate the
study of relevant patterns on global, local, and multi-variable levels. On the global
level, clustering approaches are used to identify groups of similar ensemble members,
which helps to structure the ensemble information and reduces the complexity of required
visualizations (e.g., Bordoloi et al. 2004; Ferranti and Corti 2011; Kumpf et al. 2018).
Local dependencies, such as autocorrelations within forecast fields or correlations between
ensemble forecasts at different locations in space, affect the statistical interpretation of
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the forecast and the likelihood of extreme events, e.g., due to spatially correlated extreme
precipitation. Visualizing local dependencies comprehensively is considered challenging
due to the complexity of the dependence fields and is listed as an open problem in the
review article by Wang et al. (2019a). Several approaches have visualized dependence
and correlation fields through clustering approaches (e.g., Kumpf et al. 2019; Liebmann
et al. 2018; Pfaffelmoser and Westermann 2012), using dedicated glyph representations
(e.g., Pfaffelmoser and Westermann 2013), or using spatial chord diagrams (Neuhauser
et al. 2024). Multi-variable dependencies have similar effects on the statistical validity
of forecast probabilities and have been examined, e.g., using correlation graphs (e.g., Liu
and Shen 2016; Sauber et al. 2006; Zhang et al. 2015).

In Farokhmanesh et al. (2023b), spatial dependence fields and multi-variable dependen-
cies have been visualized through interactive DVR. Using DVR as a particularly costly
and sample-intensive approach demonstrates the feasibility of NDFs as an efficient data
structure for storing the precomputed fields. NDFs as a storage method are indepen-
dent of the specific downstream visualization and can be combined arbitrarily with other
postprocessing and correlation visualization techniques.

4.4.3 Machine Learning Explanation for Ensemble-Valued Predictors

In Höhlein et al. (2024b), we propose a conditional PFI measure for ensemble-valued pre-
dictors to assess the importance of different aspects of the ensemble-internal variability.
The proposed method is based on a conditional permutation scheme, which preserves
specific aspects of the distribution information while destroying the remaining aspects.
Conditional PFI measures have been considered in earlier works (e.g., Molnar et al. 2024;
Strobl et al. 2008), aiming to assess interaction effects between different predictors. For
this, the importance of specific predictors is evaluated in the context of the remaining
predictors. In these studies, each predictor is understood as a scalar-valued feature that
can be distinguished unambiguously from the remaining ones. In contrast, the approach
in Höhlein et al. (2024b) addresses ensemble-valued predictors, in which each predictor
channel receives a set of scalar samples as input. Features refer to specific aspects of
the ensemble distribution. For a broader review of model explainability techniques in
meteorological applications, we refer to the review article by McGovern et al. (2019).
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CHAPTER 5

Publication Summaries

The following sections contain summaries of the presented publications in line with the
guidelines for publication-based dissertations of the TUM School of Computation, Infor-
mation and Technology at the Technical University of Munich and the doctoral regula-
tions of the Technical University of Munich as of 23 August 2021.
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5.1 Paper I – A Comparative Study of Convolutional Neural

Network Models for Wind Field Downscaling

Summary Low-level winds, i.e., wind speed and direction in the lowermost layers of
the atmosphere, are important forecast products, e.g., for energy planning, aviation,
and marine transport. Close to the Earth’s surface, winds are affected by the large-scale
atmospheric pressure distribution and local-scale interactions with the terrain (cf. subsec-
tion 2.1.3). Numerical weather models commonly operate on discrete grid representations
of the atmosphere and terrain, which are too coarse to capture such interactions in de-
tail. This constrains the quality of forecast products on scales below the spacing of the
simulation grid. Improving the resolution of wind field forecasts in regions with complex
terrain requires regridding methods (cf. subsection 2.2.4) that emulate local turbulence
effects while maintaining computational efficiency.

In Höhlein et al. (2020), we examine the utility of convolutional neural networks (CNNs;
cf. subsection 3.2.3) for increasing the spatial resolution of wind field simulations at the
100m-level. The models are trained to infer the outputs of high-resolution simulations
with an average grid spacing of 9 km based on data from a simulation with 31 km grid
spacing. CNNs are selected for their exceptional interpolation capabilities on spatially
distributed data, as demonstrated in image superresolution and superresolution for sci-
entific datasets (cf. subsection 3.4.1). Based on a review of prior work in these fields, we
select three representative CNN architectures, which are evaluated in a comprehensive
comparison. To assess the skill advantage of CNN-based models over classical downscal-
ing approaches, the CNNs are also compared against linear baseline models. Finally,
we use the acquired insights to design a new model with optimized architecture and
performance.

Next to architectural improvements, we study the capabilities of CNNs to incorpo-
rate auxiliary predictor information as a means to improve prediction accuracy. Based
on meteorological prior knowledge, we select a set of auxiliary predictor fields, includ-
ing boundary layer height, low-resolution, and high-resolution orography, and study the
performance improvements achieved when using the predictors for inference. The im-
portance of different predictor channels is assessed using model explanation methods
based on permutation feature importance (PFI; cf. section 3.3), which we adapt for 2D
field-valued predictors. The results suggest that both architectural complexity and the
inclusion of auxiliary predictors benefit the prediction accuracy.

Author contribution The first author was responsible for the model design, the im-
plementation and execution of experiments, and the final evaluation. Michael Kern
contributed to the implementation and execution of the experiments. Architectural op-
timizations and the overall structure of the paper were developed jointly by the first au-
thor, Michael Kern, and Rüdiger Westermann. Timothy Hewson provided the dataset,
suggested meteorological quality metrics, and contributed discussions of potential appli-
cations of the models in the meteorological context.
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5.2 Paper II – Ensemble Postprocessing

5.2 Paper II – Postprocessing of Ensemble Weather

Forecasts Using Permutation-Invariant Neural Networks

Summary Raw ensemble forecasts based on numerical weather simulations often show
systematic errors and miscalibrations that must be corrected through ensemble postpro-
cessing (cf. subsection 2.2.3). A key question in designing effective models for this is how
the models are informed about the distribution information conveyed in the ensemble.
Common postprocessing methods aggregate the ensemble information in early inference
stages or sort the ensemble members, leading to constrained representations and potential
information loss.

Extending earlier work on distribution regression networks (DRNs; cf. subsection 3.1.2)
for ensemble postprocessing, we suggest permutation-invariant neural network (NN) ar-
chitectures (cf. subsection 3.2.6) to overcome such bottlenecks. In contrast to traditional
postprocessing models, permutation-invariant NNs are natively suited for learning from
set-structured data and are more flexible in extracting features from the sample distribu-
tion. Using DeepSets and Set Transformers as representative examples, we compare dif-
ferent permutation-invariant NN architectures regarding their utility for ensemble post-
processing. Our results demonstrate that the proposed models achieve state-of-the-art
quality in postprocessing wind gust and temperature forecast ensembles.

We also study the relevance of selected features in the ensemble distribution for the
prediction quality in different model architectures. Classical model explainability tech-
niques work well only for scalar-valued predictors and require adaptations to work in the
high-dimensional ensemble setting. Inspired by permutation feature importance (PFI),
we develop a permutation-based method for studying the importance of ensemble-valued
predictors through an inverse reasoning trick. While the common PFI measure quantifies
the information loss after perturbing specific aspects of the input signal, the proposed
method quantifies the information gain when leaving certain aspects unperturbed. An-
alyzing the models with ensemble PFI methods provides insights into which weather
variables or ensemble features influence the postprocessed forecast quality.

Author contribution The first author was responsible for developing the permutation-
invariant postprocessing models, implementing and executing the relevant experiments,
and developing the importance analysis for ensemble-valued predictors. Benedikt Schulz
contributed experimental data for the evaluation of the baseline models and suggested
suitable methods for evaluating the postprocessing quality. The structure and final form
of the paper were composed in close collaboration between all authors. Sebastian Lerch
further provided access to the data used in the study.

Copyright © American Meteorological Society. Used with permission.
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5.3 Paper III – Temperature Downscaling

5.3 Paper III – Topographic Visualization of Near-Surface

Temperatures for Improved Lapse Rate Estimation

Summary A key challenge in forecasting surface temperatures is the variation of tem-
peratures with height. Predictions of surface temperatures need to account for this by
compensating for temperature deviations due to differences in the prediction reference
altitude. Modeling the change of temperatures with height is complicated, especially in
complex terrain, due to strong variations of the relation in different weather conditions
(cf. subsection 2.1.3). Operationally, temperatures are corrected by adding an offset to
the model-predicted temperature, which is proportional to the height difference with a
fixed lapse rate coefficient as a multiplicative factor. Due to the fixed coefficient, this
method can cause significant forecast errors in certain weather situations. In a loca-
lized study over Great Britain, Sheridan et al. (2010) suggest estimating locally varying
lapse rates by fitting a linear model to paired samples of point-wise model predictions
and model terrain altitudes in the vicinity of the target location, resulting in higher
prediction accuracy.

In Höhlein et al. (2024a), we adopt this approach and generalize it to larger do-
mains and coarser grids by using an improved importance-weighted estimation procedure.
While the original method was applied to data on a limited domain, the novel method is
applied to global near-surface temperature forecasts and evaluated on a comprehensive
dataset of global temperature observations.

To facilitate interactive exploration of the benefits and parameter dependencies of
the method in different weather situations, the scheme is embedded into an interactive
visualization tool. The presented tool enables joint visualizations of temperatures and
temperature gradients on the model terrain surface and in the surrounding atmosphere
using common surface-based and volume visualizations (cf. section 2.4). Predictions for
weather stations and corresponding observation data can be visualized additionally and
explored in the context of the model terrain. The integration of a higher-resolution terrain
model allows the assessment of sub-grid terrain variability using a dedicated visualization
based on summary statistics for terrain uncertainties.

The study is unpublished, not peer-reviewed, and not relevant for the examination.

Author contribution The first author was responsible for implementing and evaluating
the downscaling scheme and the visualization tool. Timothy Hewson brought up the
original idea, provided the required data, and suggested test cases for the downscaling
scheme. The visualization tool was developed in close collaboration between the first
author and Rüdiger Westermann. The final paper was composed jointly by all authors.

Copyright © 2024 The Authors. Reprint as hosted on arXiv.org under the terms of the
CC BY Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).
Used with permission.
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5.4 Paper IV – Ensemble Representation Networks

5.4 Paper IV – Evaluation of Volume Representation

Networks for Meteorological Ensemble Compression

Summary Meteorological ensemble datasets consist of a set of weather forecast simu-
lations, which can differ in initial conditions, model parameters, or model assumptions.
Researchers have kept pushing ensemble sizes to larger scales while, at the same time,
extending the spatial domain size and grid resolution. The resulting ensemble datasets
can become extremely large, making any attempt to analyze such datasets intrinsically
difficult. Interactive analytics applications require rapid data access, optimally at ran-
dom domain locations. In-memory data representations are often preferred due to I/O
bandwidth restrictions when loading data from disk. While existing data compression
approaches would be able to compress the data sufficiently to load large ensembles into
the working memory, the subsequent decompression times are frequently incompatible
with timing constraints in interactive applications. Fast volume scene representations
(fV-SRNs) have been proposed as an alternative neural network-based representation
for volumetric scalar fields, offering both high compression ratios and rapid data access.
Extending fV-SRNs to the case of ensemble data introduces new challenges due to the
multivariate and set-structured format of ensemble forecasts.

In Höhlein et al. (2022), we explore the use of neural data representations for rep-
resenting meteorological ensemble datasets. Targeting visual analysis applications, the
proposed ensemble representation networks (ERNs) are trained to store an approximate
representation of the ensemble dataset within the network parameters of a coordinate-
based neural network (CBN, cf. subsection 3.2.2). We suggest and evaluate two design
approaches for ERN architectures, which facilitate ensemble data compression via net-
work parameter sharing between the neural representations of different ensemble mem-
bers and physical variable fields. Numerical experiments address the impact of distribu-
tion characteristics of the physical variables on the achievable reconstruction accuracy
and the models’ ability to exploit coherence between ensemble members. Our results
demonstrate en-par or better compression-reconstruction trade-offs in comparison with
classical compressors and highlight the different error and memory characteristics of the
architectures.

Author contributions The first author conceptualized the proposed model architec-
tures, implemented and executed the majority of the experiments and method compar-
isons, and acted as the lead author of the publication. Sebastian Weiss contributed an
initial code basis, originating from prior work, which included a GPU-accelerated imple-
mentation of neural volume representations and a volume visualization tool, which was
used in the paper to generate the visualizations. The code base was used and extended by
the first author to implement the ensemble models. Rüdiger Westermann developed the
original idea for the project and supervised the study. The objectives of the study as well
as the final form of the paper were composed in close collaboration between Sebastian
Weiss, Rüdiger Westermann and the first author. Tobias Necker, Martin Weissmann,
and Takemasa Miyoshi provided the dataset used in the study.
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5.5 Paper V – Neural Dependence Fields

5.5 Paper V – Neural Fields for Interactive Visualization of

Statistical Dependencies in 3D Simulation Ensembles

Summary Uncertainty assessments in ensemble forecasting often involve the computa-
tional and visual exploration of spatial and spatiotemporal correlation patterns within the
ensemble distribution. For nonlinear dependence measures, such as mutual information
(cf. subsection 2.3.2), estimating the dependencies or even keeping the required ensemble
dataset in the working memory can be computationally challenging. For instance, the
visual exploration of bivariate dependencies, e.g., between the values of physical variables
in an ensemble, involves estimating bivariate dependence metrics between the simulated
physical variables at different locations in space and time. Spatial or spatiotemporal con-
text visualizations commonly require access to many such dependence scores in parallel.
Computing the dependencies on the fly may be computationally too costly in interactive
settings, and storing all bivariate dependencies leads to an explosion in required memory.

In Farokhmanesh et al. (2023b), we address these challenges through neural depen-
dence fields (NDFs) as a novel representation of correlation and dependence structures
in large-scale multi-variable ensembles. The required dependence estimates are inter-
preted as the values of a scalar field defined over a multi-dimensional query domain.
The resulting dependence field is encoded in a coordinate-based neural network (CBN;
cf. subsection 3.2.2). Once trained, the NDF can be queried at interactive speeds and
integrated into GPU-accelerated visualization workflows. By design, the proposed model
architecture respects the symmetries of the underlying dependence fields. This is achieved
by combining efficient feature-based positional encodings with feature combination ap-
proaches for high-dimensional encodings inspired by tensor decompositions. To demon-
strate the utility of the approach, the proposed representations are integrated into an
interactive direct volume renderer, which enables volumetric visualizations of the encoded
fields. Extensive experiments demonstrate the feasibility of the approach and illustrate
the visual exploration of dependence fields in univariate and multivariate use cases.

Author contributions The author of this thesis suggested the idea underlying the
publication, provided an initial proof of concept implementation of the proposed models,
and contributed significant aspects of the model design. Fatemeh Farokhmanesh acted as
the lead author of the paper, prepared the final implementation of the models, and carried
out the experiments, leading to the results shown in the paper. Christoph Neuhauser
developed a GPU-based visualization tool in which the proposed models are used to store
the dependence field information. The final model and the written form of the paper were
developed in close collaboration between Fatemeh Farokhmanesh, Christoph Neuhauser,
Rüdiger Westermann, and the author of this thesis. Tobias Necker, Martin Weissmann,
and Takemasa Miyoshi provided the dataset used in the study.

Copyright © 2023 The Authors. Reprint as published in the proceedings of VMV:
Vision, Modeling, and Visualization 2023 under the terms of the CC BY Attribution
License 4.0 (https://creativecommons.org/licenses/by/4.0/) with extended authors
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CHAPTER 6

Discussion and Future Work

6.1 Discussion

In this thesis, we have outlined the contributions from several articles that examine
applications of ML- and DL-based modeling approaches to postprocessing and ensemble
data analysis in meteorology. This section summarizes observations and key insights
from the presented studies and discusses the findings in a coherent context.

6.1.1 Impact of Network Architectures on Model Performance

A common scheme in several of the presented publications has been the comparative eval-
uation of different model architectures for specific learning tasks. A central motivation
for this has been the search for guidelines that facilitate the design of skillful DL mod-
els. Our findings support the view that model architectures strongly impact the model
quality, but the performance also depends on the modeling task and available data.

In Höhlein et al. (2020), we found that deeper and more complex CNN architectures
achieve a higher accuracy of the downscaled wind fields, and overly simplistic nonlinear
models may perform even worse than baseline interpolation schemes. Similar findings
apply to the neural data representations in Höhlein et al. (2022) and Farokhmanesh et al.
(2023b), where a higher model complexity improved the representation quality. Despite
the potential improvements, more complex models tend to overfit the training data.
While neural data representations are trained to overfit by design, overfitting requires
regularization, e.g., in the downscaling models, or implies a need for more training data.
Simple linear or physics-based models, as employed in Höhlein et al. (2024a), can operate
in more data-scarce scenarios but may not exploit the full potential of the available data.

Across all our experiments, we recognize strong dependencies of the model quality
on the amount and information content of the available data. The findings concerning
the auxiliary predictors in Höhlein et al. (2020) and Höhlein et al. (2024b) as well as
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the relevance of positional encodings in neural representations in Höhlein et al. (2022)
and Farokhmanesh et al. (2023b) imply that the performance of DL models is highly
sensitive to the input data. This is backed by the PFI analyses applied in Höhlein et
al. (2020) and Höhlein et al. (2024b), which imply that the highest quality models are
obtained when all available predictor variables are considered in the model. Omitting
certain parameters during training and inference in both studies caused stronger accuracy
losses than architectural adaptations. Accordingly, several studies have explored ways to
incorporate auxiliary information and physical prior knowledge in learning tasks related
to our work (e.g., Dujardin and Lehning 2022; Mlakar et al. 2024; Mu et al. 2020; Rampal
et al. 2022). Systematic research on the impact of different pieces of information on the
learning performance of data-driven models in meteorology may help to build a better
understanding of the field.

Interpreting the results of the model comparison in Höhlein et al. (2024b) is less clear.
Despite operating on notably different representations of the input data, no significant
differences were observed between the baseline models using summary statistics and the
more complex permutation-invariant ensemble models. While the PFI analysis suggests
that most of the relevant information in the ensemble predictors is conveyed in the ensem-
ble mean and standard deviation, it remains unclear why this is the case. One hypothesis
would be that, in fact, the ensemble mean and standard deviation together are sufficient
statistics that summarize all relevant information that the input ensemble contains about
the target variable. This appears unlikely, however, in light of the potential complexity
of distribution shapes. An alternative hypothesis is that potentially more information
is contained in the ensemble but cannot be resolved due to its finite size and stochastic
character. This view is supported by ongoing research, demonstrating that large ensem-
ble sizes may be required to accurately capture certain distribution features and extreme
weather events (Craig et al. 2022; Necker et al. 2020; Tempest et al. 2023). Further
research is needed to explore the underlying reasons for the observed model performance
in detail.

6.1.2 Statistical Reliability Assessment

Well-founded verification procedures are required to identify the models’ abilities and
limitations. In our downscaling and postprocessing studies, we have tried to achieve
this by adopting standard verification procedures using, e.g., cross-validation methods
and independent test datasets and evaluating the models with comprehensive sets of
quality metrics. Nevertheless, data limitations affect the results, and the choice of model
quality metrics requires expert knowledge and depends on the learning task. The choice
of quality metrics in our studies was guided by comprehensive literature research and
the expert knowledge of collaborating domain scientists. Data availability, however, has
been a central topic in several projects.

Meteorological datasets commonly comprise a sequence of example cases observed over
time. When sampled at high frequency, subsequent examples in the dataset become
correlated, and temporal data may exhibit trends and periodic patterns on a global
level. In Höhlein et al. (2020), we used numerical simulation data from three consecutive
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years, with example cases sampled hourly. Daily and annual weather cycles, as well
as an expected lifetime of weather situations in central Europe of several days, imply
that subsequent example cases are, in fact, not fully independent. The effect of temporal
dependencies has been minimized by splitting the dataset appropriately. Still, the limited
time span considered in the experiment, covering only three annual cycles, rules out
conclusive statements about the long-term reliability of the models, which would be
important, e.g., for assessing the models’ utility in climate applications. The results in
Höhlein et al. (2024b) are less vulnerable to such effects due to the longer considered time
span in the datasets. In Höhlein et al. (2024a), the data is not split along the temporal
dimension but in the spatial domain. Spatial correlations are likely less pronounced due
to the distance between neighboring sample locations.

6.1.3 Datasets and Model Comparisons

A key challenge in our comparative studies (Höhlein et al. 2020, 2024b, 2022) has been
comparing the proposed methods against prior and concurrent work. Postprocessing and
compression methods are often developed for specific application scenarios and tested
on unique data configurations. Proprietary data policies and data access impediments
hamper informative model comparisons. The work in this thesis is largely based on pro-
prietary datasets and custom evaluation procedures. Best efforts were made to guarantee
fair model comparisons by applying competitor methods identically to the available data
or reusing results from prior work, where applicable.

Motivated by the success of benchmark datasets for model comparisons in computer
vision, such as MNIST (LeCun et al. 1998) and ImageNet (Deng et al. 2009), similar
comparison projects have been established in meteorology (e.g., Ashkboos et al. 2022;
Demaeyer et al. 2023; Rasp et al. 2020, 2024) and scientific data processing (Jakob
et al. 2021; Zhao et al. 2020). Next to publicly accessible data, the benchmarks offer
guidelines for evaluating novel models. Currently, the available benchmarks cover only
a few learning tasks and some are subject to ongoing work or data restrictions (e.g.,
Demaeyer et al. 2023; Rasp et al. 2024). Specifically, analysis and compression tasks
on spatial and spatiotemporal ensemble datasets are not covered appropriately, yet. A
broader adoption of publicly available benchmarks will foster progress in the field.

6.1.4 Modeling Uncertainties

All models in this study are based on empirical methods that exploit finite, historical
data records to infer predictions about the future. Uncertainties are an inherent part of
the considered prediction problems. In Höhlein et al. (2024b) and Höhlein et al. (2024a),
postprocessing and downscaling uncertainties were addressed explicitly using appropriate
statistical quality metrics and visualization methods.

The work in Höhlein et al. (2020) and Höhlein et al. (2022) was limited to deterministic
downscaling models and compression approaches. The proposed models, thus, do not
admit a direct assessment of the involved uncertainties due to downscaling or compression
reconstruction. Subsequent studies have explored the use of DGMs for downscaling,
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using GANs (cf., e.g., Sun et al. 2024, and references therein) and normalizing flows
(Groenke et al. 2021; Shen and Shen 2023; Winkler and Rolnick 2024). DGMs could, in
principle, enable a targeted assessment of downscaling and reconstruction uncertainties
through probabilistic predictions. However, reliable verification of the output statistics
remains challenging due to the high-dimensional character of the predicted fields. Future
research must explore suitable verification methods, e.g., based on appropriate scoring
rules (Gneiting and Raftery 2007; Gneiting et al. 2008; Scheuerer and Hamill 2015).

NDFs, proposed in Farokhmanesh et al. (2023b), are subject to very specific uncer-
tainties. Next to the investigated model errors in the reconstructed dependence field,
the raw bivariate dependence estimates are inherently uncertain due to the finite size of
the underlying ensemble dataset (cf. subsection 2.3.2). For the dataset considered in our
study, such uncertainties should be minor due to the size of the underlying ensemble.
For more general applications, especially with smaller ensembles, the uncertainty of the
estimates should be considered. Correlated error patterns in the estimates could lead to a
misinterpretation of the significance of spatially distributed dependence patterns (Wilks
2016). Future research should address such limitations and adapt the model architecture
and visualization procedures accordingly.

6.2 Future Work

The work presented in this thesis offers several starting points for future research. This
section highlights selected research directions that appear particularly promising.

6.2.1 Improving the Proposed Models

While the proposed models used state-of-the-art architectures at the time of publication,
architectural novelties developed in the meantime and design patterns excluded from the
studies could lead to more skillful models.

Specifically, for Höhlein et al. (2020), potential extensions include the use of attention
mechanisms, which have gained popularity in ISR and computer vision research (cf., e.g.,
Anwar et al. 2020; Khan et al. 2022), and geometric and graph-based DL methods (cf.,
e.g., Bronstein et al. 2017; Wu et al. 2021), which adapt more easily to irregular grid
structures and the spherical geometry of the Earth’s surface. Similarly, neural operator
learning (Guibas et al. 2022; Kovachki et al. 2024; Li et al. 2021) has emerged as an
alternative to convolution-based model designs. Applications of neural operators to ISR
(Wei and Zhang 2023), fluid dynamics (Li et al. 2024), and DL-based weather prediction
(Pathak et al. 2022) suggest that such models can benefit downscaling workflows for
spatially distributed prediction fields. Methodological improvements could be achieved by
adopting uncertainty-aware modeling approaches, e.g., based on DGMs. While existing
studies have explored the utility of GANs (cf. Sun et al. 2024, and references therein)
and normalizing flow models (e.g., Groenke et al. 2021; Shen and Shen 2023), diffusion
models have not been considered in detail, so far. SR-related studies involving diffusion
models (e.g., Li et al. 2022) suggest that diffusion models are a viable alternative to other
DGM classes.
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Neural data representations, as examined in Höhlein et al. (2022) and Farokhmanesh et
al. (2023b), offer great compression opportunities for meteorological simulation datasets
due to their flexibility and independence on grid specifications. Yet, the current im-
plementations are still in a proof-of-concept phase and require further improvements to
become ready for adoption in the domain sciences. Current neural data representations
often require long training times and hyperparameter tuning to adapt the models to
the peculiarities of diverse data configurations. Future work could provide application-
ready compression interfaces with improved training times and automated routines for
hyperparameter tuning and architecture search. Computer vision research suggests that
generative hypermodels can learn to predict the network parameters of neural representa-
tions directly without costly iterative optimizations (Erkoç et al. 2023). Similar strategies
could lower the compression times when ported to neural data representations. Recent
work is starting to explore the use of hypermodels for predicting the parameters of neural
data representations but does not adopt the generative approach yet (Wu et al. 2023).
Hyperparameter selection could be addressed through self-tuning model architectures,
which automatically adapt the model size and memory requirements to the complexity
of the considered dataset. Automated model size selection and compression are subject
to active research (cf., e.g., Mishra et al. 2020; Ren et al. 2021), and their adoption for
neural data representations would elevate the models’ practical utility.

Potential improvements appear less obvious in the settings of Höhlein et al. (2024a) and
Höhlein et al. (2024b). In both cases, the modeling task involves learning from tabular-
like datasets, where each physical predictor variable represents an attribute column in
a table. As opposed to computer vision applications, DL models are known to offer
limited benefits over more straightforward ML approaches on tabular-like datasets (cf.,
e.g., Borisov et al. 2024; Shwartz-Ziv and Armon 2022). Therefore, an alternative focus
has been on exploiting new sources of forecast skill, such as spatial context information
(Feik et al. 2024). Future work could follow up in this direction and investigate the
inclusion of, e.g., temporal context information or examine the information content of
ensemble forecasts in more detail.

6.2.2 Understanding the Information Content of Ensemble Forecasts

Statistical postprocessing of ensemble forecasts is intrinsically an intriguing environment
for ML research due to the very nature of the learning task. Using probabilistic distribu-
tion representations to infer a different notion of probabilistic information constitutes a
unique learning setting. The findings in Höhlein et al. (2024b) raise questions about the
nature of relevant features in the input ensemble, effective methods to represent them,
and ways to use them efficiently in ML and DL models. Addressing such questions is
complicated because both the raw input ensembles and the postprocessing models may be
subject to uncertainties and deficiencies that reduce the achievable prediction accuracy.
Separating the deficiencies of postprocessing models from those of the input ensembles
could benefit both the design of future postprocessing models and the understanding of
prediction capabilities and biases of NWP models.
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The PFI analysis for ensemble-valued predictors, proposed in Höhlein et al. (2024b),
constitutes a first step in this direction and highlights important characteristics of the
ensemble distribution and information overlap between different summary statistics. A
key limitation, however, is its reliance on hand-selected summary statistics and the qual-
itative character of the provided information. A more quantitative and automated ap-
proach, e.g., based on information theoretic methods (e.g., Schulz et al. 2020; Tishby
et al. 2000), unsupervised feature learning, and targeted visual analysis solutions, could
yield more detailed insights. Throughout such experiments, the development and use of
ensemble-oriented toy datasets may help to limit the complexity of the analysis task.

6.2.3 Adopting Foundation Models

A key limitation to the adoption of elaborate DL methods in meteorological research
lies in the immense amounts of computing resources required to build skillful models.
Currently, the best-performing models across various prediction tasks are trained on large
datasets and use very deep model architectures. Naturally, training large DL models from
scratch is compute-intensive and potentially inefficient when specializing the model to one
single learning task. Foundation models have become popular as a way to reuse a model’s
capabilities in different learning settings. For this, foundation models are trained once
on large datasets and for multiple different prediction tasks, and refined subsequently
for specific applications. Refining pre-trained models for new learning tasks requires
less computational effort than training from scratch. The idea of generalist foundation
models originates in computer vision and natural language processing (Bommasani et al.
2022; Radford et al. 2021) and is now also adopted in meteorology and climate research
(e.g., Nguyen et al. 2023). In the long run, efforts to develop and improve the adoption
of foundation models might – in many applications – promise more sustainable progress
than pushing the capabilities of dedicated models for specific tasks.

6.2.4 Deep Learning-Based Weather Prediction

Beyond data-driven postprocessing and analysis models, recent years have brought rapid
advancements in developing inherently DL-based weather prediction models. An overview
of relevant works can be found, e.g., in the article by Olivetti and Messori (2024). Such
models are trained to generate weather forecasts based on historical data records, often
bypassing the need for physical modeling entirely. The field is developing rapidly, and
various approaches have demonstrated promising forecasting capabilities (e.g., Bi et al.
2022; Lam et al. 2023; Pathak et al. 2022). Even operational DL models for weather
predictions have entered a testing phase (Lang et al. 2024).

The work in this thesis is unaffected by this form of weather prediction. In particular,
all datasets used in this study are based on traditional physics-based numerical weather
simulations. Nevertheless, the developed postprocessing and ensemble analysis methods
remain applicable, and the proposed feature importance methods can be adapted, poten-
tially, for the new class of DL-based prediction models. Ongoing studies are examining
the physical and statistical reliability of the DL-based models (e.g., Ben-Bouallègue et al.
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2024; Selz and Craig 2023). Model explanation and visual analysis techniques similar to
those presented in this thesis will play a vital role in developing a better understanding
of the new models’ characteristics and building trust in the new technology.
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CHAPTER 7

Conclusion

In this thesis, we have compiled the results from a series of studies applying data-driven
machine learning (ML) and deep learning (DL) techniques to improve numerical weather
prediction (NWP) and meteorological data analysis. The proposed methods address key
challenges in postprocessing numerical weather forecasts, meteorological data compres-
sion, and visualization. Our research demonstrates the potential of recent neural network
(NN) models to handle complex meteorological datasets, such as simulation datasets on
unstructured grids and ensemble forecasts, in diverse applications.

In Höhlein et al. (2020), we explored the use of convolutional neural networks (CNNs)
for downscaling near-surface wind fields on extended spatial domains. The study demon-
strates that deeper, more complex models can exploit nonlinear relations between phys-
ical predictor variables and the target wind fields, benefiting particularly from high-
resolution predictors like orography. The findings highlight the potential of CNNs for
improving downscaling while suggesting applications in operational forecasting systems
and future research directions.

In Höhlein et al. (2024b), we applied permutation-invariant NN architectures for post-
processing ensemble forecasts of wind gusts and surface temperatures. The proposed
models achieve state-of-the-art prediction accuracy and offer the potential to exploit
rich features in multi-variate predictor ensembles. A feature importance analysis, de-
veloped specifically for ensemble-valued predictors, suggests that the key informative
features relevant to the final prediction are confined mainly to the ensemble mean and
standard deviation. Our findings motivate future work on the information content and
representation capabilities of ensemble forecasts and the use of ensemble-based models
in postprocessing.

In Höhlein et al. (2024a), we developed a physically motivated downscaling scheme for
surface temperatures using data-driven estimates of the local ambient lapse rate. Our
work shows substantial improvements in the accuracy of surface temperature predictions

85



7 Conclusion

under complex topographic conditions. The technique is embedded into a 3D topographic
visualization system, enabling surface-based and volumetric visualizations of near-surface
temperature predictions and observations in the context of the surrounding terrain.

In Höhlein et al. (2022), we introduced ensemble representation networks (ERNs) for
compressing meteorological ensembles in visualization applications. The study illustrates
that ERNs perform on par with or outperform traditional compression methods while
maintaining fast reconstruction capabilities. ERNs offer promising capabilities for in-
teractive data analysis, paving the way for future work to improve their usability in
large-scale visual analysis applications.

Finally, in Farokhmanesh et al. (2023b), neural dependence fields (NDFs) were in-
troduced as a novel method for encoding and visualizing statistical dependencies in 3D
meteorological ensemble simulations. NDFs facilitate the interactive exploration of com-
plex correlation structures in ensemble datasets, which would otherwise be intractable
due to computation time and memory constraints. NDFs use targeted coordinate-based
network architectures, which enable a promising trade-off between memory savings and
reconstruction accuracy.

Collectively, the presented studies advance the field of numerical weather forecasting
and meteorological data analysis through the development of new modeling and model
analysis techniques. Notably, our work adapted model architectures and took inspiration
from adjacent research domains, such as computer vision and visualization research. In
light of the increasing importance of data-driven methods in meteorology and climate
science, the interdisciplinary fusion of expertise and modeling techniques between com-
puter science and meteorology has turned out as a productive research approach. We
hope that the developed model explanation techniques and insights gained in the pre-
sented studies facilitate a deeper understanding of the emergent technologies and help to
build more reliable data-driven ML and DL systems for future applications in weather
forecasting and meteorological data analysis.
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Abstract

We analyze the applicability of convolutional neural network (CNN)

architectures for downscaling of short-range forecasts of near-surface winds on

extended spatial domains. Short-range wind forecasts (at the 100 m level) from

European Centre for Medium Range Weather Forecasts ERA5 reanalysis ini-

tial conditions at 31 km horizontal resolution are downscaled to mimic high

resolution (HRES) (deterministic) short-range forecasts at 9 km resolution. We

evaluate the downscaling quality of four exemplary CNN architectures and

compare these against a multilinear regression model. We conduct a qualita-

tive and quantitative comparison of model predictions and examine whether

the predictive skill of CNNs can be enhanced by incorporating additional

atmospheric variables, such as geopotential height and forecast surface rough-

ness, or static high-resolution fields, like land–sea mask and topography. We

further propose DeepRU, a novel U-Net-based CNN architecture, which is able

to infer situation-dependent wind structures that cannot be reconstructed by

other models. Inferring a target 9 km resolution wind field from the low-

resolution input fields over the Alpine area takes less than 10 ms on our

graphics processing unit target architecture, which compares favorably to an

overhead in simulation time of minutes or hours between low- and high-

resolution forecast simulations.

KEYWORD S

convolutional neural network (CNN), deep learning, statistical downscaling, wind field

simulation

1 | INTRODUCTION AND
CONTRIBUTION

Accurate prediction of near-surface wind fields is a topic
of central interest in various fields of science and indus-
try. Severe memory and performance costs of numerical

weather simulations, however, limit the availability of
fine-scale (high-resolution) predictions, especially when
forecast data are required for extended spatial domains.
While running global reanalyses and forecasts with a spa-
tial resolution of around 30 km is computationally afford-
able (e.g., Hersbach et al., 2020), these models are unable
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to reproduce wind climatology accurately in regions with
complex orography, such as mountain ranges. Since wind
speed and direction are determined by localized interac-
tions between airflow and surface topography, with
sometimes the added complication of thermal forcing,
accurate numerical simulation requires information on
significantly finer length scales, particularly in regions
that are topographically complex. For instance, (sub-grid-
scale) topographic features such as steep slopes, valleys,
mountain ridges or cliffs may induce wind shear, turbu-
lence, acceleration and deceleration patterns that cannot
be resolved by global models that lack information on
these factors. Moreover, meteorologically relevant factors
such as the vertical stability, snow cover or the presence
of nearby lakes, river beds or sea can strongly influence
local wind conditions (e.g., McQueen et al., 1995;
Holtslag et al., 2013). In these regions, finer-resolution
regional numerical models with grid spacings of the
order of kilometers or less need to be applied in order to
obtain reliable low-level winds (e.g., Salvador et al., 1999;
Mass et al., 2002).

One approach to circumvent costly high-resolution
simulations over extended spatial scales is known as
downscaling, that is, inferring information on physical
quantities at local scale from readily available low-
resolution simulation data using suitable refinement pro-
cesses. Downscaling is a long-standing topic of interest in
many scientific disciplines, and in particular in meteoro-
logical research there exists a large variety of methods
to downscale physical parameters. Such methods can
be broadly classified into dynamical and empirical-
statistical approaches (e.g., Hewitson and Crane, 1996;
Rummukainen, 1997; Wilby and Wigley, 1997).

In dynamical downscaling (e.g., Räisänen et al., 2004;
Rummukainen, 2010; Radi�c and Clarke, 2011; Kotlarski
et al., 2014; Xue et al., 2014), high-resolution numerical
models are used over limited sub-domains of the area of
interest, and numerical model outputs on coarser scales
provide boundary conditions for the simulations on a
finer scale. While the restricted size of the model domain
leads to a significant reduction of computational costs
compared to global domain simulations, dynamical
downscaling still remains computationally demanding
and time-consuming.

Statistical downscaling, on the other hand, aims to
avoid simulation at the finer scales by using a coarse-
scale simulation (referred to as predictor data) to infer
predictions at fine scale (referred to as predictand data).
Correlations between the quantities at fine and coarse
scales are learned by training statistical models on a set
of known predictor–predictand data pairs.

Over time, a large number of empirical-statistical
downscaling approaches have been developed, which

apply statistical regression methods for downscaling pur-
poses, such as (generalized) multilinear regression
methods (e.g., Chandler, 2005) or quantile mapping
approaches (e.g., Wood et al., 2004). With recent develop-
ments in data-driven machine learning and computer sci-
ence, however, more powerful modeling techniques have
become available, which may have the potential to out-
perform previous methods in terms of both accuracy and
efficiency. Only a few studies have examined the use of
nonlinear regression methods or more recent non-
classical machine learning techniques (e.g., Eccel
et al., 2007; Gaitan et al., 2014; Vandal et al., 2019). Spe-
cifically, the extent to which nonlinear machine learning
approaches can provide additional value over classical
methods is a question that has not been answered conclu-
sively, as yet.

Deep learning methods are among the most promi-
nent examples of state-of-the-art machine learning tech-
niques (e.g., LeCun et al., 2015; Goodfellow et al., 2016).
In particular, convolutional neural networks (CNNs)
have found manifold applications in complex image
processing and understanding tasks (e.g., Guo
et al., 2016; Yang et al., 2019). One of these is single-
image super-resolution, that is, the generation of high-
resolution images from low-resolution images (e.g., Yang
et al., 2019), which, formally, can be thought of as a very
similar task to downscaling of climate variables.

CNNs rely on expressing regression models that oper-
ate on an extended spatial domain as a set of localized
linear models (localized filter kernels), which are applied
repeatedly at varying spatial positions across the domain
through convolution operations. The restriction of the
model parametrization to local filter kernels effectively
limits the number of trainable parameters, and thus
reduces the tendency of the model to overfit spurious pat-
terns in the data, while increasing model efficiency.
While also applicable to irregular graph-based data struc-
tures (Kipf and Welling, 2016), for example data defined
on irregular grids, CNNs work most effectively with
regular-gridded data in multi-dimensional array repre-
sentations, facilitating an efficient parallel computation
of optimization tasks on graphics processing unit (GPU)
based computer hardware. Computational efficiency
through parallelization is one of the major selling points
of CNNs and should be considered as an important
aspect during model design and data preparation.
Furthermore, more complex mappings can be learned by
stacking multiple layers of convolution operations
(increasing the depth of the models) and applying
these successively to generate more abstract feature rep-
resentations. Similar to standard artificial neural net-
works, applying nonlinear activation functions between
successive convolution layers can enable the model to
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learn nonlinear mappings. Beyond purely sequential fea-
ture processing, more elaborate model design patterns,
like skip connections between pairs of convolution
layers (Srivastava et al., 2015), residual learning (e.g., He
et al., 2016) or changes in the spatial resolution of inter-
nal feature representations (e.g., Ronneberger et al.,
2015), can be leveraged to improve model performance.

CNNs are thus particularly well suited for learning tasks
involving spatially distributed data, which are often encoun-
tered in meteorology. Although CNN-based model architec-
tures are increasingly adopted also in Earth-system sciences
(e.g., Shen, 2018; Reichstein et al., 2019; Vannitsem
et al., 2020), their use for downscaling applications has
rarely been discussed (e.g., Vandal et al., 2018; Baño-
Medina et al., 2019). In particular, earlier studies focused on
simple CNN architectures which do not make use of recent
model design patterns and thus do not exploit the full
potential of state-of-the-art CNN architectures.

1.1 | Contribution

In this work, we perform a study of fully-convolutional
neural network architectures for statistical downscaling
of near-surface wind vector fields. The results are com-
pared to those obtained by a multilinear regression
model, with respect to both quality and performance. We
train models to predict the most likely outcome of a high-
resolution simulation of near-surface winds 100 m above
ground, based on low-resolution short-range wind field
forecasts as primary predictors. The data are defined on
irregular octahedral and triangular reduced Gaussian
grids with 9 km and 31 km horizontal resolution, respec-
tively. To enable efficient processing of the data with
CNNs and to avoid destroying local detail via interpola-
tion, the data are mapped to regular grids through suit-
able padding. We view this work as an initial “proof of
concept” step, to pave the way to using finer resolutions,
for both predictor and predictand. If the predictand scale
could reach 1 or 2 km we would envisage a much greater
range of practical applications emerging.

We compare the capabilities of different existing models,
which reflect varying degrees of model complexity and elab-
oration. Starting with a multilinear regression model and a
light-weight linear convolutional model, we continue the
comparison with nonlinear convolutional models of increas-
ing complexity. By incorporating beneficial design patterns
identified beforehand, in combination with adaptations in
architectural design and training methodology, we propose
DeepRU—a U-Net-based CNN model that improves the
reconstruction quality of existing architectures.

For all models, we analyze whether incorporating
additional climate variables and high-resolution

topography like surface altitude and land–sea mask (LSM)
improves the network's inference capabilities. We further
train the models on sub-regions of the domain, to avoid
learning relationships between low- and high-resolution
winds purely based on geographical location, that is, to
avoid overfitting to a particular domain. The reconstruction
quality of all downscaling models is compared to the high-
resolution simulations of real-world weather situations for a
topographically complex region in central and southern
Europe for the period between March 2016 and September
2019 (Figure 1). Our key finding is that thought-out archi-
tecture design and appropriate model tuning enable
network-based downscaling methods to generate high-
resolution wind fields efficiently in which local- and global-
scale structures are reproduced with high fidelity.

To further analyze the usability of network-based
downscaling, the relationships between model complex-
ity, network performance and computational require-
ments such as memory consumption and prediction time
are evaluated. We show how the model depth as well as
the design patterns used, that is, residual connections
across successive convolution layers and U-shaped
encoder–decoder architectures, are leveraged to balance
between model complexity and prediction quality.

We have made our implementations publicly avail-
able at Höhlein and Kern (2020).

2 | RELATED WORK

2.1 | Empirical-statistical downscaling

In describing downscaling options available at the time,
Wilby and Wigley (1997) distinguish between regression
methods, weather typing approaches and stochastic weather
generators. Regression-based methods build upon the con-
struction of parametric models, which are trained in an opti-
mization procedure to establish a transfer function between
low-resolution predictor variables and high-resolution
predictands. Weather typing approaches, in contrast, rely on
finding a suitable match between a set of predictor values
and predictor value sets contained in the training data, in
order to select out the most appropriate weather pattern ana-
logue (e.g., Zorita and von Storch, 1999). Stochastic weather
generators provide a probabilistic approach and are trained
to replicate spatio-temporal sample statistics, as implied by
the training data (e.g., Wilks, 2010; 2012).

A comprehensive review and comparison of empirical-
statistical models for downscaling climate variables has
been conducted by Maraun et al. (2015; 2019) and Gutiér-
rez et al. (2019), who showed that many of the approaches
perform well generally but leave space for improvement.
For instance, realistic replication of spatial variability in
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the high-resolution predictand variables remains a major
challenge for many of the models (Maraun et al., 2019).

Specifically addressing the problem of wind field down-
scaling and forecasting, Pryor (2005) and Michelangeli
et al. (2009) proposed distribution-based approaches for
wind field inference, and Huang et al. (2015) proposed a
physical-statistical hybrid method for downscaling.

The question of what methods provide additional
value over classical approaches has only been
addressed by a number of smaller model comparison
studies—with varying results. While Eccel et al. (2007),
Mao and Monahan (2018) and Vandal et al. (2019)
found hardly any or no advantage in applying non-
classical machine learning methods, Gaitan
et al. (2014) show non-classical methods out-
performing classical ones, with artificial neural net-
works being a particular method example. More
recently, Buzzi et al. (2019) used neural networks for
nowcasting wind in the Swiss Alps and achieved very
skillful models. These apparently contradictory find-
ings raise the question of when, and under what con-
ditions, deep learning methods can be profitably
employed for downscaling.

Within meteorology, only a small number of studies
have dealt with using CNNs for downscaling applications.

For example, Vandal et al. (2018) proposed “DeepSD,” a
simple CNN for downscaling precipitation over extended
spatial domains, and more recently Baño-Medina
et al. (2019) studied the performance of a set of CNNs for
downscaling temperature and precipitation over Europe.
Pan et al. (2019) proposed a similar architecture, again
with a focus on precipitation.

While the influence of model complexity has been exam-
ined by Baño-Medina et al. (2019) in terms of model depth,
that is, the number of convolution layers, the models in use
did not exploit recent design patterns, like skip or
residual connections (e.g., Srivastava et al., 2015; He
et al., 2016) or the fully-convolutional U-Net-like architecture
(Ronneberger et al., 2015), which enable network models to
achieve state-of-the-art results in computer vision tasks.

2.2 | Upscaling of images and physical
fields

Computer vision, being the origin of a large number of
technological developments in machine learning, pro-
vides a problem setting, which is closely related to down-
scaling in meteorology and climatology—single-image
super-resolution. There, the goal is to identify mappings

FIGURE 1 Wind field on December 5, 2018, at 1200 UTC. Left: Low-resolution simulation based on ERA5 reanalysis data. Middle:

High-resolution simulation based on HRES. Right: Prediction from the low-resolution field, our proposed convolutional neural network

DeepRU. Streamlines are color coded with wind magnitude. (a) Coastal region enclosing the French Riviera and Corsica. (b) Highly varying

winds over part of the Swiss Alps
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which allow the resolution of single low-resolution input
images to be increased, while maintaining visual quality
and avoiding pixel artifacts and blurriness. Within this
context, the use of deep learning has led to remarkable
improvements compared to standard statistical models
(e.g., Yang et al., 2019). In particular, CNNs were found
to be particularly successful (e.g., Dong et al., 2014;
2016a; 2016b; Sajjadi et al., 2017).

Also in scientific data visualization researchers have
begun to explore the capabilities of CNNs for upscaling
and reconstruction of 2D/3D steady and time-varying sci-
entific data, including both scalar and vector fields. Zhou
et al. (2017) presented a CNN-based solution that down-
scales a volumetric dataset using three hidden layers
designed for feature extraction, nonlinear mapping and
reconstruction, respectively. Han et al. (2019) took a two-
stage approach for vector field reconstruction via deep
learning. The first stage initializes a low-resolution vector
field based on the input streamline set. The second stage
refines the low-resolution vector field to a high-resolution
one via a CNN. The use of neural-network-based infer-
ence of data samples in the context of in situ visualization
was demonstrated by Han and Wang (2020), by letting
networks learn to infer missing time steps between 3D
simulation results. Guo et al. (2020) designed a deep
learning framework that produces spatial super-
resolution of 3D vector field data. They demonstrate the
downsampling of vector field data at simulation time and
upsample the reduced data back to the original resolu-
tion. Weiss et al. (2019) extend image upscaling to geome-
try images of isosurfaces in 3D scalar fields by including
depth and normal information.

3 | TRAINING DATA

For model training and evaluation, we use short-range
weather forecast data, which include near-surface wind

field simulations at different scales. The data are taken
from the European Center for Medium Range Weather
Forecasts (ECMWF) Meteorological Archival and
Retrieval System (MARS) (Maass, 2019) and cover a spa-
tial domain in central and southern Europe.

3.1 | Domain description

The training domain is restricted to 40 �
–50 � N and

0 �
–20 � E (Figure 2a) and is composed of sub-regions

with varying orographic properties. Specifically, the
domain contains high mountains of the Alps, some
smaller mountain ranges in central Europe, flat areas in
France, parts of the Mediterranean Sea and southwest-
facing coastal regions of the Adriatic, to confront the
employed models with challenging scenarios where
winds are highly influenced by the topography. In partic-
ular, in the Dinaric Alps, situated in the eastern part of
the domain, topographically forced gap flows are known
to be an important phenomenon (e.g., Lee et al., 2005;
Beluši�c et al., 2013). Significant differences between the
low- and high-resolution numerical simulation results
are most commonly observed in and around mountain
ranges and coast lines, leading to the question of whether
downscaling techniques can learn these differences and
accurately predict the high-resolution fields from the
low-resolution versions.

3.2 | Low- and high-resolution
simulations

As “low-resolution” input to our models, we use data
derived from the ERA5 reanalysis product suite
(Hersbach et al., 2020). ERA5 is the fifth in the series of
ECMWF global reanalyses and provides estimates of the
3D global atmospheric state (climate) over time, based on
a 4D variational data assimilation of past observations
into a recent version of the operational ECMWF numeri-
cal forecast model. Output is provided on a regular
reduced Gaussian grid with a horizontal resolution of
31 km (0.28125�). In this study we use hourly forecast
fields, from data times of 0600 and 1800 UTC, at time
steps of T + 1, 2, …, 12 hr. We use these short-range fore-
casts instead of the true reanalysis fields to avoid system-
atic small jumps in low-level winds seen in the latter at
0900 and 2100 UTC (documented in Hersbach
et al., 2020).

The higher-resolution target dataset was provided by
operational short-range forecasts from ECMWF's high-
resolution (HRES) model, also at hourly intervals, initial-
ized twice per day. HRES is a component of the ECMWF

FIGURE 2 (a) Map of the surface topography in Europe

representing the data domain. (b) Low-resolution (N320) and high-

resolution octahedral Gaussian simulation grid (O1280) used by

ERA5 and HRES respectively. Over our domain the high-resolution

grid comprises about three times more grid points in longitude and

about four times more in latitude
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Integrated Forecast System that can provide relatively
accurate forecast products into the medium ranges (≥72
hr ahead) (ECMWF, 2017). HRES is the highest available
resolution model at ECMWF (�9 km) and, as with
reanalyses, incorporates observations and information
about the Earth-system as a prior for simulation runs.
The output is provided on an octahedral reduced Gauss-
ian grid (O1280). Forecast time steps used were T + 7, 8,
9, …, 18 hr from the 0000 UTC and 1200 UTC runs. These
were chosen as a compromise between being long
enough to reduce any contamination from model spin-up
and short enough to retain forecast accuracy. The differ-
ent spatial resolutions of ERA5 and HRES are illustrated
in Figure 2b.

Products for HRES on the O1280 grid were first intro-
duced operationally in March 2016 and so are only avail-
able from that point onwards. Therefore, we restrict our
analysis to time periods between March 2016 and
October 2019.

3.3 | Predictor and predictand variables

Both the low-resolution predictors and the high-
resolution predictands provide two wind variables, which
contain spatio-temporal information on the horizontal
wind components 100 m above ground. The wind vari-
ables are denoted by U (meridional wind) and V (zonal
wind). At the same locations (i.e., grid points), land sur-
face elevation (altitude, ALT) and a binary LSM are avail-
able in low- and high-resolution variants. These are used
as static predictors.

From the low-resolution dataset, supplementary pre-
dictor variables are obtained and used as dynamical, that
is, time-varying, predictors. The additional variables were
manually selected according to the following
considerations:

• Boundary layer height (BLH) is a model diagnostic
that describes the vertical extent of the lowest layer of the
atmosphere within which interactions take place
between the Earth's surface and the atmosphere
(Stull, 2017). Its value typically ranges between about 0.3
and 3 km and it is essentially a metric for low-level stabil-
ity, with larger values implying deeper layers of
instability-driven mixing. Earlier studies (e.g., Holtslag
et al., 2013) found that boundary-layer effects can have a
significant impact on model performance in numerical
temperature and wind predictions. Therefore, BLH may
encode information that affects the matching between
the low- and high-resolution variants. Also, BLH can pro-
vide the model with information about diurnal cycles.
For these various reasons there was clear potential for

this standard model output variable to be a useful
predictor.

• Forecast surface roughness (FSR) denotes the sur-
face roughness as represented in the forecast and thereby
provides information on the frictional retardation of the
near-surface airflow. Contributory factors are vegetation
types and land cover such as soil or snow. The only
dynamic component in the ECMWF modeling architec-
ture is snow cover; other aspects are fixed year-round.
We expected a small but direct impact from the snow
cover.

• Geopotential height at 500 hPa (Z500) designates
the elevation of the 500 hPa pressure level above mean
sea level, and typically has values around 5,500 m. At this
height, the pressure gradients and Coriolis force are typi-
cally in balance and winds are roughly parallel to Z500
isolines (see, for example, geostrophic winds in Wallace
and Hobbs, 2006). Fields of Z500 very commonly serve as
a proxy for forecasters of the general atmospheric flow
structure and indeed synoptic pattern. So on the one
hand one might expect a link with near-surface winds,
but on the other the level is so far from the surface that it
is unlikely to be a good predictor of local winds. This var-
iable was partly included as a test of the veracity of our
results. Even though on physical grounds we did not,
overall, expect strong predictive skill from this variable,
our results indicate an apparent influence on the inferred
fields.

3.4 | Data padding

The training data obtained from MARS is defined on
irregular grids where the number of grid nodes per lati-
tude decreases with increasing latitude. As CNNs require
the input data as multi-dimensional data arrays, the data
need to be resampled on a regular grid structure. Since
resampling using interpolation can smooth out and even
remove relevant structures, the initial data are copied
into rectangular 2D grids and padded appropriately.
Therefore, the maximum number of longitudes for the
latitude nearest to the equator is computed, and new
points are padded to the remaining latitudes for each grid
(cf. Figure 3). This approach preserves the spatial adja-
cency of grid nodes for a large proportion of the nodes,
which is important to facilitate proper learning of spatial
correlations. The true distance between grid nodes in
world space is ignored, however, in the training process.
The padded points are marked in a binary mask, which is
passed to the objective function during network training
to distinguish between valid and padded values in the
loss computation.
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Padding is chosen based on the fact that CNNs do not
take into account only neighborhood relations but also
relative changes of neighboring values. Zero padding,
which may cause steep gradients between neighboring
values, is thus deemed unsuitable and replaced by repli-
cation padding using the values of the boundary grid
points of the valid domain.

The initial low- and high-resolution data with respec-
tively 1,918 and 20,416 grid points on irregular grids are
mapped to regular grids of size 36 × 60 and 144 × 180 in
latitude and longitude directions. This results in an
increase in the number of grid points by a factor of 4 × 3
between low-resolution and high-resolution grids, which
reflects the actual difference in resolution between ERA5
and HRES simulations (see Figure 2).

3.5 | Data scaling

Before training, the padded data are standardized by sub-
tracting sample mean and dividing by sample standard
deviation. Standardization has proved useful in machine
learning for improving the stability and convergence time
of nonlinear optimization methods (e.g., Srivastava
et al., 2014; Ioffe and Szegedy, 2015). For time-dependent
predictors, sample mean and standard deviation were
computed node-wise from the snapshot statistics of the
respective training datasets. Node-wise scaling is pre-
ferred over global domain scaling as spatial inhomogenei-
ties are reduced, which we found to improve the
downscaling results in our experiments. For static predic-
tors, mean and standard deviation were computed from
domain statistics. For sample standard deviations, we
considered the unbiased ensemble estimate. Validation
data are transformed accordingly before processing.

Standardization is performed also for the predictand
variables. We found this useful due to strong differences
in average wind speeds between coast or sea sites and
mountain ranges. Further details are discussed in
Section 5.3.

4 | NETWORK ARCHITECTURES

All of the models we use and compare in this work are
constructed as parametric mappings of the form

y= f xjβð Þ ð1Þ

where y represents the array of high-resolution
predictands, x denotes the array of predictor variables
and β summarizes the model-specific parameters to be
optimized during training. We use in particular CNNs,
which repeatedly apply convolution kernels of fixed size
to gridded input data at varying spatial positions to cap-
ture different types of features.

For the downscaling CNNs in our study, we consider
input predictor arrays of shape c

LRð Þ
X × slat × slon or

c
HRð Þ
X × 4slat × 3slon , for low-resolution or high-resolution
predictors x(LR) and x(HR) respectively. Here, c LRð Þ

X and
c
HRð Þ
X indicate the number of low- and high-resolution
predictor variables per grid node, and slat and slon denote
the number of grid nodes of the low-resolution array grid
in the latitude and longitude directions, as specified in
Section 3. Note here that the values of slat and slon may
equal the maximum values slat = 36 and slon = 60,
corresponding to running the model on the full domain
inputs, but may also be set to smaller values as the convo-
lution operations can adapt to varying input sizes by
returning outputs of smaller size, accordingly. Choosing
smaller values of slat and slon corresponds to running the
models on limited sub-domains, which we use for data
augmentation, as discussed in Section 5.2. Predictands y

are assumed to be of shape cY× 4slat× 3slon, with cY indi-
cating the number of predictand variables.

While cY = 2 is fixed for all our models,
corresponding to high-resolution wind components
U and V, c LRð Þ

X and c
HRð Þ
X vary depending on the predictors

supplied to the models, as detailed in Section 6. In partic-
ular, some of the models are provided with low-
resolution predictors exclusively, whereas other model
configurations are informed additionally with high-
resolution topography predictors.

The (rectangular) filter kernels are parametrized per
convolution layer as arrays of shape cin × cout × klat ×

klon, with cin and cout denoting the numbers of input and
output features of the layer, and klat and klon the spatial
extent of the kernel filters in latitude and longitude. Due

FIGURE 3 Example of padding and masking used to

resample the initial (low-resolution) data from an irregular

Gaussian grid to a Cartesian grid. Blue cells indicate the data points

of the gridded wind field. The interior of the data domain is shown

in light-blue, boundary points are drawn in dark-blue, and their

values are represented by numbers. A regular grid is achieved by

padding new data points to the grid (light-red cells) while

replicating the corresponding boundary values
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to the size of the kernel, the number of elements in con-
volution output arrays differs from that of the input
arrays. To compensate for this, suitable replication pad-
ding between successive convolution layers is employed
to maintain the spatial shape of feature arrays constant
throughout the series of convolutions.

In the following, the details of the different model
architectures used in our evaluation are described. A
schematic summary of all models is provided in Figure 4.

4.1 | Linear convolutional network
model: LinearCNN

A simple way of mapping the low-resolution data to the
high-resolution domain while exploiting the parameter
sharing capabilities of CNNs is to learn local linear rela-
tionships between predictors and predictands via a linear
convolutional model, that is, without nonlinear activa-
tion functions. For our experiments, we propose Linear-
CNN, an efficient two-layer CNN which is composed of
two branches for processing low-resolution and high-
resolution inputs separately.

The low-resolution branch is composed of a single
standard convolution layer with kernel size (klat, klon) = (5,
5), followed by a transposed convolution with kernel size
(12, 9) and stride (4, 3). Transpose convolutions can be
understood as linear operations which are used to expand
the spatial dimension of the input tensors using a linear
kernel, which is applied pixel-wise to the inputs of the
transpose convolution. A gain in resolution could also be

achieved by applying an interpolation scheme, but to let
the network learn the proper transformation automati-
cally the transpose convolution is preferred. Striding
thereby refers to skipping pixels in the output domain
between accumulating successive kernel evaluations and
is applied to regulate the difference in resolution between
input and output of the transpose convolution
(e.g., Dumoulin and Visin, 2016). The architecture of the
low-resolution branch of LinearCNN can be thought of
as an encoder–decoder scheme. The standard convolu-
tion layer transforms the (5 × 5)-pixel input patch into a
multi-dimensional (1 × 1)-pixel feature representation,
whereas the transpose convolution decodes the features
and expands the output to match the resolution of the
target domain. Thereby, the dimension of the hidden fea-
ture representation can be chosen freely. Settings below
25c LRð Þ

X , with c
LRð Þ
X denoting the number of low-resolution

predictor variables, correspond to a linear reduction of
dimensionality before the decoding step. To maximize
flexibility of the model, we choose 25c LRð Þ

X features, thus
avoiding implicit constraints on the feature representa-
tion. By passing the decoding layer, a (1× 1)-pixel hidden
feature vector is transformed into an output tensor of spa-
tial shape 12× 9 in terms of high-resolution pixels. This
output corresponds to a high-resolution estimate of the
region, which marks the central (3× 3)-pixel sub-patch of
the (5× 5)-pixel low-resolution input. Again, the parame-
trization of the transpose convolution does not constrain
the rank of the linear mapping between predictors and
predictands. When both convolution kernels are passed
across the domain, the high-resolution estimates of

FIGURE 4 Schematic of all downscaling models used in this paper. Input sizes of convolutional neural network (CNN) models refer to

the final evaluation setting with full domain data. Training was conducted on smaller sub-patches of size c LRð Þ
X × 24× 36 (low resolution) and

c
HRð Þ
X × 96× 108 (high resolution), as detailed in Section 3
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neighboring kernel evaluations overlap by 8 and 6 high-
resolution pixels in latitude and longitude directions
respectively, due to the selected stride values. Effectively,
this results in an implicit averaging of predictions from
neighboring predictor patches. This is useful to compen-
sate for potential offsets between low-resolution and
high-resolution coordinates in latitude and longitude,
which may vary across the domain.

On the high-resolution branch, the predictors are fed
into a single standard convolution layer with kernel size
(9, 9). The outputs of this layer are directly added to those
of the low-resolution transpose convolution. Empirically,
we found that models with larger kernel sizes did not
improve the performance.

4.2 | Simple nonlinear CNN: DeepSD

DeepSD is a simple nonlinear CNN architecture which
has been proposed by Vandal et al. (2018) for downscal-
ing climate change projections over extended spatial
domains. The design of DeepSD builds upon the super-
resolution CNN (SRCNN) by Dong et al. (2014)—one of
the first CNN-based architectures for single-image super-
resolution. SRCNN is composed of three convolution
layers with rectified-linear activation functions in
between, which are used to post-process the result of a
bicubic interpolation of the low-resolution image data.
Although Vandal et al. (2018) proposed composing
DeepSD of several instances of stacked SRCNNs for bet-
ter predictions, we found that for the magnification ratio
of 3× in longitude and 4× in latitude a single stage of
SRCNN already attains results on a par with those
achieved by other SRCNN instances.

In the implementation of DeepSD we follow the
design proposed by Dong et al. (2014) and Vandal
et al. (2018). The first layer uses a large kernel size of
(9, 9) to transform the input predictor fields into an
abstract feature space representation with 64 features,
followed by a nonlinear activation. The second layer
applies a pixel-wise dimensionality reduction with a con-
volution of kernel size (1, 1) and 32 output features, and
a second nonlinear activation. The final layer applies a
convolution with kernel size (5, 5) to transform the fea-
tures to the target resolution.

Vandal et al. (2018) further proposed to inform the
model with high-resolution orography to learn the influ-
ence of the topography on the inferred climate variables.
Hence, we include the high-resolution static orography
predictors during training of all our DeepSD models. To
match low-resolution and high-resolution predictors, the
low-resolution predictors are first interpolated to high-
resolution using a bicubic interpolation, and then

concatenated to the high-resolution predictors to create a
combined input array. A schematic of the high-resolution
input (HR-input) block is shown in Figure 5.

4.3 | Fast nonlinear CNN: FSRCNN

Beyond previously proposed downscaling models, we also
took inspiration from ongoing work in computer vision
on image super-resolution. With fast super-resolution
CNN (FSRCNN) proposed by Dong et al. (2016a; 2016b),
we include a direct successor of SRCNN in our
comparison.

SRCNN has limitations in computational speed as it
operates on a high-resolution interpolant of the original
low-resolution image. This leads to an increased amount
of floating point operations and requires larger convolu-
tion kernel sizes with a large number of trainable param-
eters to capture spatial features in high resolution.
FSRCNN circumvents these problems by applying seven
convolution layers to the low-resolution inputs directly
and upsampling features to the final target resolution
only at the very end. FSRCNN replaces convolution
layers with large kernels, that is, (9, 9) or (5, 5), in
SRCNN with a sequence of convolutions using smaller
kernel sizes of (3, 3) and (1, 1). The smaller-sized convo-
lutions, however, speed up the computation time by a
factor similar to the magnification ratio in each dimen-
sion and are thus beneficial in terms of inference speed.
Dong et al. (2016a; 2016b) also proposed an hourglass-
shaped network architecture, where the highest number
of feature channels is used for the outermost layers, while
the channel size of the inner layers is reduced. This

FIGURE 5 Input blocks used in fast super-resolution

convolutional neural network (FSRCNN), EnhanceNet, DeepRU

(left) and DeepSD (right)

HÖHLEIN ET AL. 9 of 31Meteorological Applications
Science and Technology for Weather and Climate

 14698080, 2020, 6, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/m
et.1961, W

iley O
nline L

ibrary on [20/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



design pattern is supposed to avoid costly computations
while maintaining prediction quality.

In our experiments, we slightly adapt the architecture
of FSRCNN and split the model into three parts: an input
processing stage for primary feature extraction, a feature
processing stage and a super-resolution stage for succes-
sively increasing the resolution until the target resolution
is reached.

The design of the input stage varies depending on the
predictors in use. When employing low-resolution predic-
tors exclusively, a single convolution layer of kernel size
(5, 5) is used to transform the inputs into a set of 56 spa-
tial feature fields, which coincides with the original
design by Dong et al. (2016a; 2016b). For model configu-
rations that employ both low-resolution and high-
resolution predictors, a combined feature representation
in the low-resolution spatial domain is created by apply-
ing the input block as depicted in Figure 5. We apply two
independent convolution chains to low- and high-
resolution predictors separately, and restrict the number
of feature channels for both chains to c(LR) = c(HR) = 28.
While on the low-resolution branch one single convolu-
tion with kernel size (5, 5) is used for feature extraction,
the high-resolution branch consists of a sequence of
strided convolutions with kernel sizes as indicated in
Figure 5. This reduces the resolution of the features suc-
cessively to low-resolution scale. The resulting features
are concatenated with the previously computed low-
resolution features and supplied to the feature processing
stage.

The feature processing stage again reflects the origi-
nal design choices by Dong et al. (2016a; 2016b). In an
hourglass-like architecture, a convolution with a (1, 1)
kernel is applied to reduce the number of features from
56 channels to 12, which is then followed by a sequence
of four convolution layers with kernel size (3, 3), 12 out-
put feature channels, batch normalization and nonlinear
activation. The last convolution layer of the processing
stage uses a (1, 1) kernel to return to the 56 feature
channels.

In the original FSRCNN, the resulting features are
used as input for a single transpose convolution with a
kernel size of (9, 9) for upsampling. In our experiments,
however, we found that this very large transpose convo-
lution can lead to slow training progress and can even
prevent training from convergence. Furthermore, Odena
et al. (2016) have shown that transpose convolutions can
introduce checkerboard-like artifacts in the final predic-
tion. To circumvent these problems, the extracted fea-
tures are fed into a super-resolution block, as sketched in
Figure 6, after the final batch normalization and
nonlinear activation layer of the feature extraction stage.
Hence, we avoid transpose convolutions in our work and,

instead, use bilinear upsampling first and apply conven-
tional convolution afterwards to obtain an upsampled
result (e.g., Dong et al., 2016a; 2016b). In addition, we
replace a single upsampling convolution with scaling fac-
tor (4, 3) by a sequence of three upsampling blocks with
smaller scaling factors of (2, 1), (1, 3) and (2, 1) to obtain
the final image in target resolution. The upsampling
blocks are composed of bilinear interpolation, convolu-
tion layers with kernel size (3, 3), (3, 5) or (3, 3), batch
normalization and a nonlinear activation function.
Finally, upsampling is followed by an additional convolu-
tion layer with batch normalization and nonlinear activa-
tion, and a single output convolution without any
activation function. Being a nonlinear model, all but the
very last convolution layers in FSRCNN are followed by
nonlinear activations, which are realized as parametric
rectified linear units (PReLU), as proposed by Dong
et al. (2016a; 2016b).

Note that, in the original FSRCNN architecture, batch
normalization was not used. In our experiments, how-
ever, we found it beneficial to regularize the feature rep-
resentations through batch normalization, since the
increased depth of our FSRCNN variant may lead to
instabilities in training due to, for example, internal
covariate shifts (Ioffe and Szegedy, 2015). By applying
batch normalization after each convolution, we could
successfully stabilize the training process.

4.4 | Deep nonlinear CNN: EnhanceNet

Previous work in deep learning (e.g., Timofte et al., 2017,
and references therein) has shown that increasing net-
work depth can help improve prediction quality and can

FIGURE 6 Super-resolution block (left) and residual block

(right) for fast super-resolution convolutional neural network

(FSRCNN), EnhanceNet and DeepRU
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lead to network architectures which outperform shallow
networks. However, deep networks can easily introduce
instabilities in the optimization process, which is typi-
cally based on backpropagation of gradients. Specifically,
training may become inefficient due to vanishing gradi-
ents (Glorot and Bengio, 2010), which originate from the
accumulation of small parameter gradients in the chain-
rule-based estimation of model parameter updates. The
sequential algorithm for gradient estimation causes an
exponential decay of parameter updates in early layers of
the network, and prevents the parameters from changing
significantly during training. While batch normalization
may help to stabilize network training, vanishing gradi-
ents remain an intrinsic problem of deep neural network
architectures.

An effective way to address this problem is the inte-
gration of so-called short-cut connections. The purpose of
these connections is to pass output features of earlier
layers directly to a later stage in the network, effectively
skipping parameter dependences of intermediate model
parts and circumventing the accumulation of small gradi-
ents. Two prominent examples are the skip connections
used by Srivastava et al. (2015) and Ronneberger
et al. (2015), as well as residual connections proposed by
He et al. (2016). With skip connections, the output of a
previous layer is concatenated with the result of an inter-
mediate layer. An example is given in Figure 7, which is
discussed in more detail in Section 4.5. Residual connec-
tions are similar to skip connections but, instead of being
concatenated, the features before and after intermediate
processing are added. This enables the model to learn
mappings that are close to identity more directly.

As a deep CNN architecture with residual connec-
tions we selected EnhanceNet (Sajjadi et al., 2017),
which was originally proposed for image super-resolu-
tion. EnhanceNet is composed of an input stage for raw
feature extraction, followed by a stack of 20 convolution
layers for feature processing and a super-sampling stage
(see Figure 6), similar to that of FSRCNN. Residual
learning is incorporated into the architecture in two var-
iants. On the one hand, convolutions for feature
processing are subdivided into 10 blocks of two layers
each, where each block is wrapped by a residual connec-
tion. A schematic representation of one of these residual
blocks is shown in Figure 6. On the other hand, bicubic
interpolation is used to interpolate the low-resolution
wind field inputs to target resolution, yielding a baseline
estimate for the high-resolution field, which is added to
the model output.

For reasons of efficiency, the convolution layers of
EnhanceNet use a kernel size of (3, 3). In our experi-
ments, the number of feature channels is set to 64, which
is equivalent to the parameters chosen in the original

paper by Sajjadi et al. (2017). The nonlinear activation
functions for EnhanceNet are realized through rectified
linear units. Similar to LinearCNN and FSRCNN, we
consider network variants with varying settings of low-
resolution dynamical predictors, as well as with and
without high-resolution topography. Depending on the
predictor configuration, either a single convolution layer
with kernel size (3, 3) or the input block depicted in
Figure 5 is used for primary feature extraction. Since the
main focus of our study is on pixel-wise accuracy of the
downscaling results, we refrain from using perceptual
and adversarial losses that are typically used in super-
resolution image tasks (Sajjadi et al., 2017) and instead
use pixel-wise losses as discussed in Section 5.3.

FIGURE 7 Schematic of the DeepRU architecture
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4.5 | DeepRU

Network architectures for super-resolution image genera-
tion have been optimized for natural images, which pos-
sess properties that are different from those of
meteorological simulation results. For instance, natural
images typically depict coherent objects, like cars or
animals, with well-defined shapes and boundaries. In
contrast, meteorological data contain different meteoro-
logical variables, which vary smoothly yet less coherently
across the domain. Therefore, we expect that more skill-
ful models can be obtained by tailoring model architec-
tures explicitly to meteorological data.

For the present application, we argue that near-
surface wind systems result from a complex interplay
between a large-scale weather situation, that is, a
continental-scale pressure distribution, and boundary-
layer processes at finer horizontal scales. The correct
treatment of physical processes at varying scales therefore
appears as an important aspect in downscaling wind
fields on extended spatial domains. This motivates the
use of a model architecture that is not restricted to a sin-
gle resolution scale for feature extraction, but uses differ-
ent resolution stages to understand the data on multiple
scales.

To account for this, we propose to use a U-Net archi-
tecture (Ronneberger et al., 2015) with residual connec-
tions (He et al., 2016) for downscaling, which we call
deep residual U-Net (DeepRU). The U-Net architecture
enables an efficient extraction of multi-scale features by
design. It consists of two symmetric branches, which are
connected by skip connections for simplified information
transfer: an encoding branch, on which the data are
encoded into an abstract reduced feature representation,
and a decoding branch, on which the feature representa-
tions are then decoded to reconstruct wind fields at fine-
scale target resolution. During the encoding stage, the
number of grid points is successively reduced, at the
same time increasing the number of feature channels per
grid point. In this way, patterns of larger spatial extent
can be extracted with small-size convolution kernels.
During the decoding stage, the features are super-
sampled to a finer scale while reducing the number of
feature channels. The skip connections enable a direct
information flow between encoding and decoding stages
at equal resolutions. By concatenating features from the
encoding branch with corresponding features on
the decoding branch before further processing, details in
the data that could get lost during the compression pro-
cess can be preserved and localized precisely. In recent
work, the U-Net architecture has also been employed for
super-resolution tasks (e.g., Hu et al., 2019; Lu and
Chen, 2019).

The design of DeepRU is inspired by the results of
prior work in image super-resolution (Yang et al., 2019).
Starting from the standard U-Net architecture
(Ronneberger et al., 2015), we conducted several tests
with different U-Net variants to obtain the best model for
downscaling. During our studies, we found that making
the architecture deeper, that is, increasing the number of
resolution levels, led to better training results. The maxi-
mum number of levels is limited by the input resolution,
since during encoding the input can only be reduced to a
tensor of spatial size 1 × 1. For downscaling, however,
we found that a reduced tensor size of at least 3 × 5 in
lowest-resolution latent space led to more accurate pre-
dictions during patch training and more stable training
progress.

While increasing the number of convolution layers
with each encoding–decoding stage did not result in bet-
ter prediction quality, an improvement could be observed
when replacing standard convolutions with residual
blocks (He et al., 2016). When implementing residual
connections across two and even three convolutions at
each encoding–decoding stage, we have encountered
noticeably improved prediction accuracy.

The reconstruction accuracy could be further improved
by interpolating the primary input features after the input
block to match the target scale before applying the U-Net
model and using skip connections at both high- and low-
resolution scale at each encoding–decoding stage. This
option gave the most accurate downscaling results
between a variety of alternatives that we have tried to pro-
cess the input. Based on these gained insights, we propose
the following architecture for DeepRU.

DeepRU is a six-stage U-Net architecture with both
residual and skip connections at every resolution stage
(see Figure 7). Similar to FSRCNN and EnhanceNet, we
use the input blocks depicted in Figure 5 to transform the
inputs to 64 primary low-resolution feature channels. We
then super-sample the features using bilinear interpola-
tion, to match the high-resolution grid of size 144 × 180.
The high-resolution features are then fed into the
adapted U-Net architecture. We use strided convolutions
to downsample the features during encoding and bilinear
interpolation with a successive convolution layer to
increase the resolution again during decoding.

At each resolution stage, we apply batch normaliza-
tion and leaky-ReLU activation before passing features to
a residual block, as depicted in Figure 6. The residual
blocks, originally proposed by He et al. (2016), have been
slightly modified for the downscaling task. We find that
extending the original residual block by another convolu-
tion layer before the addition operation leads to an
increase in flexibility of the residuals, which translates to
a better overall model performance.
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We implemented skip connections so that a new com-
bined input can be formed by concatenating the features
from the encoding stage to the corresponding super-sampled
features in the decoding stage. The combined input is then
processed by a single convolution layer with batch normali-
zation and leaky-ReLU activation to further reduce the
number of feature channels. The reduced features are finally
passed to an additional residual block. After the last residual
block at the target resolution in the decoding stage, a convo-
lution layer is added to output a set of features which are
added to a bicubic interpolant of the low-resolution winds,
resulting in the final wind field prediction.

4.6 | Localized multi-linear regression
model: LinearEnsemble

To enable a comparison of the CNN models with more
classical approaches, we also consider a model that is
based on standard multilinear regression instead of suc-
cessive convolutions. Due to simplicity and interpretabil-
ity, multilinear regression models are frequently used in
downscaling and post-processing tasks (e.g., Eccel
et al., 2007; Fowler et al., 2007; Gaitan et al., 2014).

For multilinear regression models, Equation (1) can
be rewritten in simplified form as

y=Wx+ b ð2Þ

where W is a (cYd
(HR)

× cXd
(LR))-shaped matrix of weight

parameters capturing linear relationships between flat-
tened predictor vectors x�ℝcXd

LRð Þ

and flattened
predictand vectors y�ℝcYd

HRð Þ

, and b�ℝcYd
HRð Þ

is a vector of
offset parameters. Again, cX and cY denote the number of
predictor and predictand variables per grid node, and
d(LR) and d(HR) are the numbers of nodes in the low-
resolution and high-resolution domain. Due to the strong
increase in the number of trainable parameters with
O d LRð Þd HRð Þ
� �

for increasing domain size, typical appli-
cations of multilinear downscaling models have been
focused on local station data or small spatial domains
with limited numbers of grid nodes.

For our comparison, we limit the number of trainable
parameters to O k�d HRð Þ

� �

, for some user-defined con-
stant k≤ d(LR). An ensemble of multilinear regression
models is trained, where each model uses the k-nearest
nodes from the low-resolution input to predict the wind
components U and V at a single grid node of the high-
resolution domain. This corresponds to an induced spar-
sity pattern on W, which allows at most k � cX � cY � d

(HR)

entries of W to be non-zero.
In contrast to CNNs, we train only two different vari-

ants of the model ensemble. In a first step, we use only

the low-resolution wind components U and V to inform
the model, resulting in a channel number of cX = 2. In a
second step, we also add the complementary low-
resolution dynamic predictors BLH, FSR and Z500,
resulting in a total of cX = 5 predictor channels. Static
predictors are not included in the training process, as the
resulting contributions in Equation (2) would be indiffer-
ent between samples and can thus be incorporated into
the offset-vector b without loss of information. The k-
nearest low-resolution grid nodes are determined based
on the standard L1 distance (in latitude–longitude space)
to the target node. We empirically determined that neigh-
borhood sizes beyond k = 16 did not improve the results
significantly in our application.

5 | TRAINING METHODOLOGY

The time range of about 3 years that is covered by our
data is comparatively short, when set in relation to time
scales commonly used to define “climatology.” Moreover,
temporal correlations between successive samples limit
the number of independent examples of weather situa-
tions across the domain. This raises the need for efficient
data splitting using cross-validation and employing suit-
able methods to increase the number of training samples.
In the following, we shed light on the training methodol-
ogy and loss functions used in our experiments, and pro-
vide details on the optimization process.

5.1 | Cross-validation

For all models, including LinearEnsemble, we employ
cross-validation with three cycles of model training and
validation. In each cycle, we exclude a subset of the
data from training. As the data exhibit both short-term
temporal correlations on time scales of up to a few days
and variations due to seasonality, we decided to pick
full consecutive years of data for validation. This mini-
mizes information overlap between training and valida-
tion data due to systematic correlations at the
beginning and end of validation intervals. Furthermore,
it reduces impacts of seasonality on results by averaging
model performance over the full seasonal cycle. The
excluded validation epochs are chosen pair-wise dis-
joint and cover the time ranges from June 2016 to May
2017, June 2017 to May 2018 and June 2018 to May
2019, respectively. Each model was trained three times
with varying random initializations of the regression
parameters in each validation cycle. After convergence,
the model with the smallest average validation loss was
selected for further evaluation. The performance of the
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overall model architecture was then assessed by com-
bining the results of the best models of each of the three
validation cycles.

5.2 | Patch training

To further increase diversity and variance of training
samples, we perform CNN training on sub-patches of the
full domain. This procedure limits the dimensionality of
the model inputs, thus enforcing models to base their
predictions on local information and reducing the chance
of overfitting to statistical artifacts in the data. Specifi-
cally, fitting of potentially non-physical long-distance cor-
relations is efficiently avoided.

From another perspective, patch training is advanta-
geous due to an improved usage of static predictor infor-
mation in comparison to full domain training. Static
predictors remain invariant when training on the full
domain and can thus be ignored by the network or be
leveraged to establish a network operation mode of local
pattern matching, instead of regression. In such a mode,
models might learn to associate the invariant topogra-
phy with preselected local patterns, learned by heart,
instead of using the provided dynamic information to
regress on.

Confirming our expectations, we found that patch-
trained models yield lower training and validation losses
compared to models trained on the entire domain.
Experiments show that intermediate patch sizes yield
the best training results. For very small patch sizes, we
observe a decrease in prediction quality, which may be
attributed to a loss of context information due to insuffi-
cient data supply. These findings may also be related to
the concept of the minimum skillful scale of the under-
lying low-resolution simulation (Benestad et al., 2008),
that is, the smallest spatial domain size, for which the
low-resolution data provide a sufficient amount of infor-
mation for the downscaling model to generate skillful
predictions.

In our experiments, low-resolution data were
processed in patches of size 24 × 36 and matched with
the corresponding high-resolution patches of size
96 × 108. This was found to yield the most accurate full-
grid predictions when applied to validation samples. The
sub-patches for training were selected randomly for each
predictor–predictand data pair and each training step, so
that the induced randomness further decreases the
chance of overfitting to the training input. Note, how-
ever, that patching was applied exclusively during train-
ing of the models. For validation and evaluation of model
performance, predictions were computed based on the
full domain.

5.3 | Loss functions

For measuring error magnitude between predictions and
high-resolution targets, we consider different deviation
measures, which put weight on distinct aspects of recon-
struction accuracy. For optimization purposes we con-
sider spatially averaged deviation scores, whereas for
further evaluation we consider both average and local
deviations.

Given that t
!

i and y
!

i represent the target wind and
prediction wind vectors at node i, with 1≤ i≤ d(HR)

indexing the nodes of the high-resolution grid, we con-
sider in the first place the mean square error (MSE) with

MSE t
!

i

n o

, y
!

i

n o� �

= t
!

i− y
!
i

�

�

�

�

�

�

2
� �

D

Here, t
!
i

n o

and y
!
i

n o

denote the sets of predictand
and prediction vectors throughout the domain at a partic-
ular point in time, j�j indicates the standard L2 vector
norm and h�iD indicates an average over the spatial
domain. The main advantage of MSE is its invariance
with respect to rotations of local vector directions, that is,
predictand–prediction pairs which differ only by node-
wise rotations of wind directions are assigned an identi-
cal deviation score.

However, a potential drawback of MSE is that local
deviation scores scale quadratically with wind magnitude
(the significance of this will ultimately depend on the
application). In particular, small-angle deviations in areas
of large wind speeds may contribute largely to the overall
deviation score, whereas some strong directional devia-
tions, such as opposite wind directions in areas of low
wind speed, are hardly taken into account. This problem
becomes particularly serious in certain scenarios where
slow but strongly variable winds over mountainous areas
are accompanied by increased wind speeds over the sea.

A solution to weaken the square dependence effect is
to linearize MSE, resulting in the mean absolute error
(MAE). Unfortunately, even MAE does not fully over-
come the scaling issue and inherits the problems of MSE.
Considering angular deviations instead, for instance as
measured by cosine dissimilarity, does not provide an
alternative either since angle-based deviation measures
do not provide the model with information on differences
in wind speed magnitude. A potential alternative would
be to use a weighted average of the above-mentioned
deviation metrics. However, we refrained from using
such metrics as this would require an optimization of
additional ad hoc hyper-parameters.

An effective solution is to use the standard MSE and
reduce spatial inhomogeneity through node-wise stan-
dardization of the target predictands. The models then
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learn to mimic a reduced representation of the non-
standard predictands, which can easily be converted back
to true scale through an easily invertible linear transfor-
mation. As stated in Section 3.5, sample mean and stan-
dard deviation are computed from the respective training
dataset. For validation and evaluation purposes, we con-
vert back to real-scale target predictands and predictions.

5.4 | Implementation and optimization

All models have been realized and evaluated in PyTorch
(Paszke et al., 2019). Optimization is performed using
the ADAM optimizer (Kingma et al., 2014) with an ini-
tial learning rate of 10−3, which is reduced by a factor of
0.1 whenever the validation loss in terms of MSE does
not decay by more than a fraction of 10−4 over a period
of five training epochs. The process is continued until a
minimum learning rate of 10−6 is reached. To guarantee
a proper convergence of the models, we train for
150 epochs in each of the three runs per cross-validation
cycle, without early stopping. Saturation of training and
validation losses was usually achieved after 50–60
epochs, and both training and validation losses showed
only minor variations beyond. In particular, we did not
observe tendencies of additional overfitting once the
models converged.

5.5 | Regularization

During training, we employ weight decay with a rate of
10−4 (Kingma and Welling, 2013). Additionally,
nonlinear convolutional models use batch normalization
(Ioffe and Szegedy, 2015) after each convolution opera-
tion, which we find to accelerate training convergence
significantly. For DeepRU, we apply 2D dropout regulari-
zation (Srivastava et al., 2014) with a dropout rate of 0.1
after each residual block; that is, succeeding each resid-
ual block a fraction of 0.1 of the respective output feature
channels is selected randomly and set to zero. Although
earlier studies reported performance issues when using
batch normalization and dropout regularization in com-
mon (see for example Li et al., 2019), we did not encoun-
ter any such negative effects.

6 | EVALUATION

To compare the different model architectures with
respect to downscaling performance, we consider sample-
wise deviations between target predictands and model
predictions and investigate the extent to which the

predictions depend on particular predictors. To shed light
on the importance of the choice of predictors, the CNN
models are trained with four different predictor configu-
rations, including low-resolution wind fields and orogra-
phy only, providing supplementary high-resolution
orography predictors or additional low-resolution
dynamic predictors, or the full set of parameters. The pre-
dictor settings are detailed in Table 1 and indicated with
letters (A) through (D).

Exceptions from this strategy arise for DeepSD and
LinearEnsemble. In the case of DeepSD, we refrain from
suppressing the use of high-resolution static predictors in
order to stay close to the original implementation, which
included high-resolution orography predictors by design.
Therefore, for DeepSD, we only consider configurations
(B) and (D). For LinearEnsemble we exclude static pre-
dictors in both low resolution and high resolution, as by
design the model does not take advantage from static pre-
dictors (see Section 4.6); we therefore consider only con-
figurations (A) and (C).

6.1 | Run-time performance and
memory requirements

A general overview of the model performance with
respect to the number of trainable parameters, memory
consumption and computational time for yearly or daily
predictions is provided in Table 2. The time measure-
ments were conducted on the NVIDIA TITAN RTX GPU
with 24 GB video memory.

At training time, data for all models except for Lin-
earEnsemble were processed in batches of 30 to 200 sam-
ples, depending on the model complexity and memory
requirements. During training, a significant amount of
the memory consumption is caused by optimization com-
putations which are significantly more complex for
deeper model architectures. The measured training time
spans the full training period until convergence of the
respective model, including prediction time as well as
time for loss computation and optimization. In the refer-
ence trainings, we considered all dynamic and static pre-
dictors at low and high resolution.

LinearEnsemble is exceptional here, as memory limi-
tations arise from the need for rapidly accessible storage
of the training data rather than from optimization com-
putations. As the nearest-neighbor positions vary
irregularly with spatial position, data selection for Lin-
earEnsemble cannot be realized through efficient array-
slicing operations, as is the case for CNNs. Nearest-
neighbor indexing has to be performed for all linear
models separately and was found to be too slow to be
conducted at training time. As a result, data for the
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LinearEnsemble had to be preselected and stored with
high redundancy during training. For the full ensemble
of 20,416 linear models with 16 nearest neighbors, the
3 year dataset, including all low-resolution dynamic pre-
dictors, required the allocation of roughly 137 GiB of
memory, which is not feasible to be stored in RAM on a
local machine with typically less than 32 GiB available.
Hence, the data were outsourced to a separate HDF5 file
and streamed from the hard drive during training, which
delivers, by a large margin, the highest training time
among all trained models. The training times for the
remaining models scaled with model complexity, with
the highest being for the most complex model—that is,
DeepRU.

In contrast to the above, and for reasons of fair compari-
son, the computational time for model prediction is com-
puted using a batch size of 220 for all networks; note that
timings for loss computations and optimization are not
included in the measurements. To compute the total time
for model predictions, we make use of Python's timer

module to measure the plain time required by the model to
perform downscaling on all input hours for 1 year, in our
case 8,760 hr. As timings are often distorted due to hard-
ware communication and process management, we con-
ducted three measurement runs for all models and
averaged the results to obtain the final total prediction time.
The time for single hour predictions is represented by the
ratio between the total computational time and the total
number of inputs. In our study, we experienced that the
measured time increased with the model complexity, with
highest computational costs for DeepRU.

Regarding the number of trainable parameters, the
deeper nonlinear solutions EnhanceNet and DeepRU
exhibit a significantly higher number of convolutional
layers in comparison to the remaining models and thus
require more memory to store the trained parameters.
Consequently, the general memory consumption scales
with the model complexity (see MEM column in Table 2).
Despite the higher consumption of memory for nonlinear
models, in particular for DeepRU, we found that they
achieved the best overall results in our experiments, which
is further discussed in the following sections.

6.2 | Quantitative analysis

The statistics of spatially averaged MSE on the validation
data are illustrated in Figure 8, confirming that both
model architecture and predictor selection have a consid-
erable effect on model performance. The weakest model
is LinearCNN, showing the largest overall errors and pro-
fiting the least from supplementary predictor informa-
tion. In particular, the use of high-resolution static
predictors, which proved to be useful for all the nonlinear
models, appears to have no effect on the performance of
LinearCNN. The model appears unsuited to extracting
useful correlations between low-resolution predictors and
high-resolution wind fields. The reason for this is the

TABLE 1 Predictor configurations for model trainings with varying combinations of low-resolution (LR) and high-resolution (HR)

predictors

LR HR

Wind Dynamic Static Static

Configuration c
LRð Þ
X c

HRð Þ
X U V Z500 BLH FSR LSM ALT LSM ALT

(A) 4 0 ✓ ✓ — — — ✓ ✓ — —

(B) 4 2 ✓ ✓ — — — ✓ ✓ ✓ ✓

(C) 7 0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ — —

(D) 7 2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Notes: c
LRð Þ
X and c

HRð Þ
X denote the total number of low-resolution and high-resolution predictor fields supplied to the models.

Abbreviations: ALT, altitude; BLH, boundary layer height; FSR, forecast surface roughness; LSM, land–sea mask; Z500, geopotential height at 500 hPa .

TABLE 2 Run-time performance statistics for LinearCNN,

DeepSD, FSRCNN, EnhanceNet, DeepRU and LinearEnsemble

Model TP (k)

MEM

(MiB)

TR

(hr)

PR

(s)

TS

(ms)

LinearCNN 68.9 0.3 0.7 5.4 0.6

DeepSD 50.6 0.2 0.9 5.8 0.7

FSRCNN 165.3 0.6 1.9 8.0 0.9

EnhanceNet 942.6 3.6 4.0 15.4 1.8

DeepRU 37,113.9 142.0 13.5 82.5 9.4

LinearEnsemble 3,307.4 12.6 25.8 11.8 1.4

Notes: For each model, the columns describe the total number of trainable

parameters (TP) in k (thousands), individual memory consumption to store

a model (MEM) in MiB, duration of an entire training procedure for a cross-

validation run with 8,760 hourly data (TR), prediction time for all 8,760

inputs (PR) and the prediction time for one single time step (TS) in

milliseconds.

Abbreviation: FSRCNN, fast super-resolution convolutional neural network.
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restrictive parametrization scheme, which is unsuitable
for capturing random offsets and distortions between
low- and high-resolution field variables caused by the
data padding procedure (see Section 3.4). As the same lin-
ear kernels are shared across the entire domain, Linear-
CNN is forced to yield a most likely estimate, which,
however, is found to be inaccurate for most of the grid
nodes and poor regarding spatial detail.

In contrast, LinearEnsemble takes advantage of the
local parametrization and achieves considerably better
results, comparable with or better than those of the
nonlinear models DeepSD and FSRCNN. The gain in
performance, however, comes at the expense of a higher
tendency of the model to overfit on the training data. In
particular, for model variants with a large number of
predictors, either due to the use of additional dynamic
predictors or larger environment size k, one observes
severe overfitting. This is visible also in Figure 8, as the
maximum reconstruction error of LinearEnsemble
models with full predictor set (UV, Dyn, Oro(LR) and
UV, Dyn, Oro(LR, HR)) exceeds the maximum error of
even LinearCNN. L2 regularization did not improve

generalization performance but increased the recon-
struction error on both training and test data. For the
nonlinear models, in contrast, overfitting could be
minimized through weight decay during optimization—
having a similar effect as L2 regularization—and drop-
out regularization.

In agreement with earlier studies by Dong
et al. (2016a; 2016b), FSRCNN achieves smaller down-
scaling errors than DeepSD. The quality of the down-
scaled wind fields, however, is slightly below that of the
LinearEnsemble model for all predictor variants under
consideration.

Nevertheless, prediction quality can be further
improved by considering more complex models.
EnhanceNet, which differs from FSRCNN by an
increased number of convolution layers and the use of
residual connections in combination with bicubic down-
scaling as additive baseline estimate, is the first model to
surpass the performance of LinearEnsemble. Notably,
EnhanceNet achieves slightly worse results than
LinearEnsemble when omitting the high-resolution orog-
raphy predictors, but catches up after adding the high-
resolution predictors. The same is true for DeepRU,
which achieves another reduction of MSE.

Comparing DeepRU and LinearEnsemble directly, we
find that DeepRU not only reduces the MSE but can also
more effectively take advantage of additional predictors.
Whereas LinearEnsemple responds with an increased
tendency of overfitting, DeepRU achieves a reduction in
deviation score when supplied with high-resolution static
and low-resolution dynamic predictors. Specifically,
model configuration (D) of DeepRU is the most accurate
model in our comparison with an average MSE of around
2.7 (m�s–1)2.

6.3 | Spatial distribution of prediction
errors

To examine the spatial distribution of reconstruction
errors, we consider additional angular and magnitude-
specific deviation measures, which we average over the
sample distribution instead of the spatial domain. Specifi-
cally, we consider cosine dissimilarity (CosDis)

CosDis t
!

i, y
!

i

� �

=
1

2
1− cos t

!
i, y
!
i

� �D E

X

� �

for angular deviations between target predictands and
predictions. Systematic deviations in wind speed magni-
tude are measured in terms of the magnitude differ-
ence (MD)

FIGURE 8 Comparison of validation losses for model variants

with varying combinations of input predictors wind components

(UV), orography variables altitude (ALT) and land–sea mask (LSM)

in low and high resolution (Oro, LR/HR) and supplementary

dynamic predictors boundary layer height (BLH), forecast surface

roughness (FSR) and Z500 (Dyn). Circles indicate maximum

deviation observed on the validation set; black triangles signal

maximum reconstruction error beyond the scale of the plot
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MD t
!

i,y
!

i

� �

= jt
!

ij− jy
!

ij
D E

X

which provides a measure for how much the respective
models overestimate or underestimate wind speed magni-
tudes. In both measures, t

!
i and y

!
i represent snapshots of

target and prediction wind vectors at node i, and h�iX
indicates the sample average over the validation sets of
the three cross-validation cycles, respectively.

Figure 9 shows the spatial distribution of magnitude
difference and cosine dissimilarity for low-resolution
forecasts interpolated bilinearly to the high-resolution
grid, as well as outputs of the best-performing DeepRU and
LinearEnsemble models relative to the high-resolution fore-
casts. Regarding the low-resolution simulation, velocities in
specific regions near the coasts are not well captured and
are mainly underestimated with magnitude shifts greater
than 1.0 m�s–1. Angular deviations are more pronounced in
mountainous areas. Typical values of cosine dissimilarity
range between 0.25 and 0.30, which corresponds to average
deviation angles of more than 40�. In the northern part of
the Mediterranean Sea, the magnitude difference plot for
the low-resolution simulation suggests checkerboard-like
artifacts, which, however, are most likely due to a mismatch
in spatial resolution and grid structure of low-resolution
and high-resolution grids, as well as the use of bilinear
interpolation for visualization purposes.

In contrast to the low-resolution simulation, Lin-
earEnsemble tends to underestimate, on average, wind
magnitudes at all local grid nodes. We expect that this

is mainly caused by an underestimation of extreme
winds through LinearEnsemble, which is a common
problem of statistical models that are optimized for
minimizing MSE losses (e.g., Bishop, 2006). As
expected, cosine deviations for LinearEnsemble are
much lower than for the low-resolution simulations.
However, in areas close to the mountains, Lin-
earEnsemble fails to predict extreme shifts in both
magnitude and direction properly, for example due to
ridge lines.

DeepRU shows overall better performances with
lowest cosine and magnitude differences. Prediction
errors exhibit a spatially similar pattern to Lin-
earEnsemble but with generally smaller amplitudes.
Furthermore, DeepRU outperforms LinearEnsemble in
capturing local variance in wind speed magnitude and
directions. As a result, magnitude differences appear
less uniform, with overestimation and underestimation
in flat areas and near the boundaries, which are caused
by imperfect information due to convolution padding.
In the Mediterranean Sea, magnitude errors show large-
scale wave-like patterns, which especially north of Cor-
sica and east of Sardinia resemble ringing artifacts due
to the Gibbs phenomenon (Gibbs, 1898). In turn this
relates to the model's spectral representation of topogra-
phy; issues arise in regions adjacent to where steep
slopes meet flat land or sea. In fact the provided topo-
graphic height fields contain very similar patterns; sea
altitudes look invalid.

FIGURE 9 Mean magnitude difference (top row) and mean cosine deviations (bottom row) between target high-resolution forecast and

low-resolution forecast simulation (left), prediction of LinearEnsemble (middle) and DeepRU (right). The average is taken over all three

validation years
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6.4 | Analysis of feature importance

For the model configuration which was trained on the full
set of predictors (D), we also investigate the importance of
particular predictors according to the method proposed by
Breiman (2001). For this, we perturb the model inputs
from the validation dataset by randomly shuffling single
predictors, and then measure the change in the prediction
error that is caused by the perturbation.

Let X = {x1, …, xt, …, xT} be the (plain) validation
dataset for the respective model run, with data samples

xt = x
1ð Þ
t … x

pð Þ
t …x

cXð Þ
t

� �

containing the predictor variables

x
pð Þ
t �ℝ

slon × slat for 1≤ p≤ cX = c
LRð Þ
X + c

HRð Þ
X . Then, for every

predictor p we generate a random permutation Π of the
sample index set {1,…, t,…,T}, so that the feature-p-

perturbed dataset ~X
pð Þ
contains samples of the form

~xt = x
1ð Þ
t … Φ x

pð Þ
Π tð Þ

� �

… x
cXð Þ
t

� �

Here, Φ(�) denotes an additional shuffling operation
in the spatial domain by decomposing the predictor data
into equally sized sub-patches, rearranging the patches
randomly and concatenating them again. In our experi-
ments, we fix a patch size of 6 × 6. Results for different
patch sizes are comparable, though. From the perturbed
and non-perturbed predictions ~y

pð Þ
t and yt, the relative

change in prediction error is computed as

ρ
pð Þ
t =

MSE ~y
pð Þ
t ,y�t

� �D E

Π,Φ

MSE yt,y
�
tð Þ

where y�t denotes the ground-truth predictand and h�iΠ,Φ
denotes an average over 10 realizations of Π and Φ. Large
values of the change ratio ρ

pð Þ
t indicate a stronger impact

of predictor p on downscaling accuracy, and thus higher
importance of the predictor.

Figure 10 illustrates the sample statistics of ρ pð Þ
t for

the full set of predictors and all downscaling models. In
good agreement with expectations, perturbations in the
predictor wind components U and V have the largest
effects on model performance for all architectures in our
comparison, indicating that the models in fact use mainly
the information on wind speed and direction for down-
scaling. The effect of perturbations in the wind compo-
nents strengthens with increasing model complexity.
Reasons for this may lie in the nonlinear structure of the
more complex models, which could increase the sensitiv-
ity of the predictions to perturbations. Also, as shown in
Figure 8, more complex models achieve smaller deviation
scores when informed with unperturbed data. A similar

increase in prediction error in terms of absolute deviation
score therefore yields a larger change ratio for more com-
plex models. This implies that the change ratios ρ

pð Þ
t

should be interpreted in a model-specific context.
Assessing the relative importance of the remaining

predictors, we find that least information is extracted
from FSR, as perturbations in this predictor hardly affect
any of the models. As FSR is provided on the same coarse
grid resolution as the predictor winds, all the information
it provides could already be encapsulated in the winds
themselves, so that most models learn to ignore the
redundant information. Interestingly, LinearEnsemble is
the only model that fits correlations between FSR and
high-resolution winds, which may be related to the over-
fitting problem of the model. Perturbations in BLH also
have only a slight impact on prediction performance.
This was quite a surprising result, given that this quantity
varies considerably over time and given that wind speeds
at 100 m can be closely related, especially when BLH
values are small.

Z500 is leveraged mainly by the less complex models
LinearCNN and DeepSD. Z500 provides information on
large-scale weather patterns, and there is a known rela-
tionship between its gradients and 500 hPa geostrophic
winds, which seems to be recognized most prominently
by DeepSD. Nevertheless, direct links between Z500 and
100 m winds tend to be relatively weak, which explains
its minor impact on the performance of other models.

6.5 | Analysis of reconstructed flow
patterns

The quantitative analysis provides high-level abstract
information on overall downscaling performance of the
models, yet it does not convey detailed information on
the ability of the models to reproduce the complex flow
patterns that we see in the high-resolution simulation. To
investigate this aspect in more detail, we select two exam-
ple cases, which exhibit strong discrepancies between
ERA5 and HRES forecasts, and compare the prediction
skills of two different models for these examples. For con-
ciseness, we limit the comparison to outputs of the best-
performing nonlinear model DeepRU and the localized
linear model LinearEnsemble.

To visualize wind vector fields, we use line integral
convolution (LIC), introduced by Cabral and
Leedom (1993). To generate a LIC visualization, a
randomly sampled white-noise intensity image of user-
defined resolution is convolved with a 1D smoothing ker-
nel along streamlines in the vector field. Thus, while LIC
generates high correlation between the intensities along
the streamlines, different streamlines are emphasized by
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low-intensity correlation between them. In addition,
color mapping is used to encode additional parameters,
such as the local vector field magnitude. In contrast to
alternative visualizations, such as vector glyphs or
streamline plots, LIC provides a global and dense view of
the vector field and can avoid occlusion artifacts due to
improper glyph size or sparse sub-domains due to
improper streamline seeding. A disadvantage of LIC is
that there is ambiguity about which of two opposite
directions is represented.

The first example is given for lead time October 17,
2017, at 0900 UTC. This case represents a rather anticy-
clonic scenario with generally low wind speeds, as denoted
by the surface charts in Figure 11. Figure 12 shows LIC
visualizations of the underlying wind vector fields,
obtained from low- and high-resolution forecast simula-
tions. Color coding reflects total wind speed magnitude.
Differences in flow patterns indicate that, especially in
mountainous regions like the Alps, Apennines (Italy) and
Dinaric Alps (Croatia), the low-resolution simulation fails
to capture properly the local variability in wind direction
and magnitude, which is present in the HRES simulation.

The results of LinearEnsemble and DeepRU are
shown in Figures 12c and 12d, respectively. We have
highlighted the most important visual differences
between the two predictions with rectangles; specific
cases are labeled with the letters A–C. In-detail views of

the streamlines for all highlighted cases are shown in Fig-
ures 13a–c, respectively. Quantitative differences to the
HRES simulation are measured in terms of wind direc-
tion through local cosine dissimilarity and wind speed
through local absolute relative error (ARE)

ARE t
!

i, y
!

i

� �

=
j t
!
i j − j y

!
ij

j t
!
i j

as well as local L2 deviation which combines both
aspects. Results for the outputs of the low-resolution sim-
ulation and model predictions are depicted in Figure 14.

Based on the quantitative evaluation of all models in
Section 6.2, it can be conjectured that both Lin-
earEnsemble and DeepRU reconstruct meaningful down-
scaling results, with DeepRU leading to overall better
prediction quality in scenarios of high inhomogeneities.
As seen, for example, in the cases A (Adriatic Sea) and B
(Austrian Alps) in Figure 12, LinearEnsemble tends not
to reconstruct the flow features when there is a pro-
nounced mismatch in flow patterns between the low-
resolution and high-resolution forecast simulations.
DeepRU, in contrast, uses both local and global informa-
tion about the orography, and presumably additional
parameters, and is able to replicate the HRES wind fields
better. In particular, over the Adriatic Sea (A) the winds
are mainly northwesterly, tangential to the coast, and
higher magnitudes are more pronounced. Lin-
earEnsemble relies solely on local information in the
low-resolution fields and is not able to reconstruct the
ground truth faithfully.

In areas of complex surface topography, such as near
the Austrian Alps (B), variations in wind speed and direc-
tion are usually more pronounced, as wind fields are
highly influenced by surface interactions. Here, both
models learn a reasonable mapping and are able to han-
dle these cases quite well. According to cosine dissimilar-
ity (Figure 14a), DeepRU performs slightly better than
LinearEnsemble in terms of direction predictions. Also,
DeepRU is able to replicate extreme transitions in magni-
tude occurring on small spatial scales better, which
results in smaller relative and L2 errors (see
Figure 14b,c).

A scenario with generally stronger and rather laminar
flow, which exhibits some large differences in wind speed
magnitude, is given in (C), where fine-scale mountains
slow down winds in eastern France. Since fluctuations in
wind direction are small in this area, both models exhibit
small errors overall in wind direction. Nonetheless, Lin-
earEnsemble is not really able to account for orography-
mediated flow adjustments on small spatial scales, whilst
DeepRU can more precisely predict deviations from

FIGURE 10 Relative change in mean square error (MSE)

(sample-wise) for different models, when provided with perturbed

predictor data. Circles indicate maximum values
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laminar flow. This is also clearly demonstrated by the
absolute relative errors in Figure 14b.

The second example is for March 19, 2017, 0100 UTC.
Figure 15 depicts LIC plots of the wind fields for the simula-
tions and predictions similar to Figure 12. As illustrated in
Figure 11b, the weather pattern over our domain is mainly
dominated by an Alpine lee cyclone, situated between Cor-
sica and northwest Italy. Comparing low-resolution and
high-resolution forecast simulations, major parts of the flow
are rather laminar with high wind speeds up to 18 m�s−1.
Contrary to the low-resolution simulation, HRES exhibits
sharper changes in magnitude over mountain ridges and
mountain edges, and exhibits higher distortions in wind
directions over the sea. Two particular cases with differences
between forecast simulations and model predictions are
highlighted in Figure 15 and are labeled A and B.

In case A, the outputs of both the low-resolution simu-
lation and the LinearEnsemble suggest a rather circular
vortex pattern with moderate wind speeds over the Ligu-
rian Sea, between the French Riviera and Corsica. The
high-resolution simulation, in contrast, displays a distorted,
more elongated flow pattern. DeepRU here elongates the
flow around the vortex towards northern Italy and addi-
tionally enhances the southerly wind near the western
coast of Corsica, which, in summary, better mirrors the
predictions of HRES. Case B emphasizes the wind field
above northern Italy, where the flow is more inhomoge-
neous since regions of high wind speeds are interleaved
with topographically triggered vortex structures. Here, Lin-
earEnsemble fails to predict as well as DeepRU the sharp
magnitude changes seen in HRES along the mountain
ridge of the Appenines and near to the three marked lakes.

7 | APPLICATIONS IN
FORECASTING

As our study sheds lights on the conceptual use of CNNs for
downscaling of wind fields, it was not intended that the CNN

architectures proposed here would be used directly in opera-
tional forecasting. Indeed the spatial resolutions of our pre-
dictor and predictand datasets are not competitive relative to
current operational configurations. In Europe, for example,
operations nowadays use global models with spatial resolu-
tion �10–20 km, and for shorter leads up to, for example,
day 3 use limited area models (LAMs) with resolution �1–
4 km. Nonetheless, our results are sufficiently promising to
provide a blueprint for future operational systems that suc-
cessfully serve the needs of automated and forecaster-based
predictions. So howmight this work?

To realize this, we envisage first stepping down in
scale to use predictor and predictand resolutions of �5–
10 km and �1–2 km respectively. Regarding the predic-
tors, international modeling centers such as ECMWF will
upgrade their global ensembles to this resolution range in
the next few years. Regarding the predictand, this is
needed only for training and so need not be run opera-
tionally in real-time. So one could use, for example, a 1-
or 2-year global reanalysis-style dataset, similar to that
described by Dueben et al. (2020) but created with
repeated observation-based initializations. This would
deliver worldwide downscaling options, for any region
the user selected. An alternative would be to use real-
time LAM output for any region for which that was
available.

Real-time CNN predictions realized via this route
could be used in different ways. Where no LAM cover-
age exists, predictions could be delivered for short- and
medium-range lead times. Where LAMs are available
use would focus on the medium range, and if the
same LAM were used for training this could nicely
provide continuity across the LAM–global temporal
boundary.

Another difficulty to address, at least in ECMWF out-
put, is the apparently poor representation of 10 m winds
over mountains—the reason we use 100 m winds in this
study. This may improve in future, but if not the CNN
approach is such that one could use 100 m winds as

FIGURE 11 Synoptic charts showing mean sea level pressure (hPa) for 0900 UTC October 17, 2017, and 0100 UTC March 19, 2017
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predictor and 10 m winds as target, if the latter were bet-
ter represented at 1–2 km resolution—which there is
some evidence for, at least for LAMs (Hewson, 2019,
Figure 7).

There are numerous application areas that need bet-
ter, locally refined wind speed predictions. Renewable
energy is clearly one. Others include local pollutant dis-
persal, coastal and open water shipping, rig operations,
leisure activities such as sailing, aviation, the construc-
tion industry and warnings in general. Applications for
which mean speed predictions are important across the
full speed range, such as renewables, will potentially
benefit most. For applications with a focus on extremes

more investigation will be needed; the training period
may not be sufficient. Predictions may be systematically
too weak, or become unstable. For very hazardous but
less rare gap-flow phenomena we can be more optimis-
tic, however. Here we expect the CNN predictions to
deliver major benefits for users compared to raw model
output.

Society requires not only predictions of mean wind
speeds, but also forecasts of gusts, particularly extreme
gusts, because of the dangers posed to life and infrastruc-
ture. Gusts have not been directly explored in this study.
One might be able to convert mean speeds into reason-
able gust forecasts using empirically defined gust-to-

FIGURE 12 Wind fields over Europe, as obtained from low-resolution and high-resolution short-range forecast simulations and model

predictions for October 17, 2017, 0900 UTC. The top figures show the flow field for (a) the low-resolution and (b) the high-resolution

simulation and highlight differences between the two predictions, (c) depicts the predictions of the localized linear model, LinearEnsemble,

whilst (d) represents the wind flow predicted by DeepRU. These line integral convolution (LIC) images show the current motion of particle

flow produced from the wind field products. The LIC field is colored according to local wind magnitude in m�s−1. Regions with strong

differences between predictions are marked by rectangles A, B and C. Errors of LinearEnsemble are MSE = 1.33 (m�s−1)2, CosDis = 0.15, and

of DeepRU are MSE = 0.88 (m�s−1)2, CosDis = 0.097
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mean relationships (see for example Ashcroft, 1994),
developed for different land surface types, although for
cyclone-related gusts, which tend to be the major wind-
related hazard in the vicinity of storm tracks (e.g., in
northern and western Europe), caution is needed. Low-
level stability, and destabilization mechanisms, as out-
lined in Hewson and Neu (2015), are of paramount
importance for determining the strengths of phenomena
such as the cold jet, warm jet and sting jet (see also
Browning, 2004). In that context it is curious that the
BLH parameter used in our study, which relates directly
to stability, did not add much predictive value for the
CNNs. Our use of a region that is relatively remote from
storm tracks may explain this.

It is important to reiterate that airflow, and thus
winds, can be very scale dependent. On meter scales
speeds around city buildings vary dramatically, whilst
on a lake the behavior of a yacht can be influenced by
clumps of bushes nearby. Indeed scale dependence is
more acute than it is for other parameters, such as rain-
fall and temperature. Thus model resolution increases
bring with them more and more application areas for
forecasts, particularly for regions that are topographi-
cally and/or physically complex. In turn this brings sus-
tainability, whereby the method outlined in this paper,
and variants of it, can find utility for the foreseeable
future as numerical weather prediction models continue
to evolve.

8 | DISCUSSION AND OUTLOOK

Driven by fast developments in computer science, appli-
cations of data-driven machine learning methods in a
meteorological context are attracting increasing interest.
In the current study, we have investigated the use of
CNNs for learning-based downscaling of wind fields.
However, the sheer volume of potential design choices
which could impact model performance tends to preclude
a complete understanding of reasons for the performance
of particular model architectures. Therefore, we have
selected a set of design patterns based on the experience
of what model types have worked well on similar tasks.
Our proposed final architecture marks the preliminary
endpoint of an iterative process of repeated model train-
ing, evaluation and architectural refinement, and was
found to achieve the most promising performance in our
application. It is clear, on the other hand, that even with
only a limited range of design patterns the computational
cost of training a large number of CNNs rules out a com-
plete and direct comparison of model architectures. Thus,
given the ever-increasing number of studies in data sci-
ence and machine learning, it can be expected that alter-
native architectures can be found that achieve similar or
superior downscaling accuracy, ideally with reduced
model complexity.

Our study has shown that the prediction accuracy of
a linear ensemble model is higher than what can be

FIGURE 13 Example flow patterns on 0900 UTC October 17, 2017, as obtained from low-resolution and high-resolution short-range

forecast simulations, and predictions of LinearEnsemble and DeepRU, visualized as line integral convolution (LIC) plots. The location of the

regions within the data domain is marked on a global map on the left for each case. (a) The flow field outputs in a region between Italy and

Croatia over the Adriatic Sea, (b) the flow over the Austrian Alps with low-speed winds and large directional variations, and (c) the wind

flow of areas near central France
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achieved with shallow nonlinear CNN architectures. In
particular, for simplistic nonlinear models with only a
few convolution layers, it seems that the nonlinearity
even hinders performance. We attribute this to distortion
of the wind field information by the nonlinear activations
on its way through the network, which prevents the
model from benefitting from simple mapping schemes,
such as for example interpolation kernels. Thus the use
of overly simplistic and shallow nonlinear models may be
one reason why earlier studies found hardly any addi-
tional value in applying neural-network-based machine
learning methods (e.g., Eccel et al., 2007; Vandal
et al., 2019).

Deeper nonlinear CNNs, on the other hand, are able
to compete with the prediction quality of the linear
ensemble model and even show superior results when
incorporating an increasing number of predictors and
high-resolution topographic information. In particular,
we identified EnhanceNet, previously proposed for
single-image super-resolution, as a deep CNN that
achieves this. As seen in Figure 9, EnhanceNet exhibits a
clear increase in prediction quality with additional

parameters while LinearEnsemble is unable to make use
of this information and tends to overfit on the training
data, finally with an overall slightly inferior prediction
performance. EnhanceNet thus appears more flexible
and minimizes the need for incorporating prior knowl-
edge and manual selection of suitable predictor variables.
Instead one can select candidate predictor variables and
refine those later based on an analysis such as is shown
in Figure 10.

With DeepRU, we propose a novel deep residual U-
Net architecture, which outperforms both the linear
model and EnhanceNet in terms of reconstruction accu-
racy. The major advantage of DeepRU lies in its ability to
process features at different spatial scales. This is particu-
larly useful for downscaling of wind fields, where local
wind systems have to be consistent with large-scale flow
patterns. Although we still observe some deviations
between high-resolution model predictions and native
high-resolution forecast simulations, we are confident
that CNNs can provide promising downscaling results
and add more value to downscaling than linear models at
a reasonable computational cost.

FIGURE 14 Visualization of spatial deviations of the low-resolution simulation, LinearEnsemble, and DeepRU wind predictions

compared with the output of the high-resolution simulation shown in Figure 12. Here, the deviations are (a) cosine dissimilarity,

(b) absolute relative error and (c) L2 norm
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Our study suggests that deep CNN approaches are
particularly effective for downscaling with high magnifi-
cation ratios on large spatial domains. In this setting, the
use of classical models becomes computationally ineffi-
cient, and linear link functions between predictor vari-
ables and predictands become insufficient to account for
non-trivial variability in the local flow, for example due
to pronounced flow distortion around obstacles. We
found that deep CNNs are better suited to replicating this
variance, especially in mountainous areas or over the sea
near to coasts, and expect that the same holds true also at
finer spatial scales.

Important aspects that need to be further examined
in the future are model verification and generalizability.
In our study, we have trained CNNs on downscaling
tasks using wind fields over a particular spatial domain,
that is, the predictive skills of the resulting networks are

specific to this concrete setting. Low-level winds were
selected as a variable assumed to be particularly appro-
priate for this type of methodology, because their struc-
ture in the vicinity of coasts and complex topography is
very much determined by those physical features
together with the broader scale flow patterns delivered by
ERA5. Downscaling of some other climate variables will
require different modeling approaches, because physi-
cally the problem can be very different. Each variable,
and suitability thereto, must be considered individually.
For accumulated precipitation, for example, the range of
possible outcomes at high resolution, for a given low-
resolution representation, might be limited for one type
of precipitation (e.g., orographically enhanced) but con-
siderable for another (e.g., convective) and therefore pre-
cipitation downscaling lends itself to a completely
different and innately probabilistic approach

FIGURE 15 Wind fields over Europe, as obtained from low-resolution and high-resolution short-range forecast simulations and model

predictions for March 19, 2017, 0100 UTC, similar to Figure 12. Color coding indicates the local wind velocity
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(e.g., Hewson and Pillosu, 2020). Even so, there will be
climate variables other than low-level winds for which,
given suitable predictor variables, the model architec-
tures proposed in this paper can serve as flexible feature
extractors and yield skillful downscaling results.

An alternative notion of generalizability refers to
applying readily trained network models to predictor data
which formally depict the same climate variables as the
data used during training but deviate from the training
set with respect to certain properties, such as geographic
reference domain or applied simulation model. In such
cases, we expect a poorer performance. Specifically, we
have applied our networks to wind field data over a
region in North America, covering parts of the west coast
of the northern United States and Canada, as well as the
Rocky Mountains and parts of the interior plains.
Although the data were generated with the same simula-
tion procedures as for the original training data over
Europe, we observed a drop in performance of about 70%
in MAE and 90% in cosine dissimilarity. When training
directly on the data from North America, however, simi-
lar reconstruction quality as reported in this paper could
be achieved also on the other domain. Our findings indi-
cate that the generalizability of our CNN-based down-
scaling approaches should be assessed carefully. One
possible workaround for future applications could be
accepting the lack of portability of the models and train-
ing many different networks, each of which is specialized
and validated within its particular scope. Additionally,
though, it seems promising to examine further how net-
works can learn to model concurrently the relationships
occurring between meteorological variables over a variety
of different domains and data sources. Our results suggest
that the apparent lack of generalizability is not due to
insufficient flexibility of the models, which is in line with
earlier work on generalizability of deep learning models
(e.g., Zhang et al., 2016). Specifically, our models can be
taught to achieve high reconstruction scores over both
domains, North America and Europe, when data from
both regions are seen during training. The main focus
should thus be on increasing the data efficiency of the
models to facilitate generalization, for example by incor-
porating prior physical knowledge concerning recurring
atmospheric processes into model design or training
regularization.

What we have neglected so far in this paper is the
temporal dimension of the data, which can probably be
used to understand the model predictions better and fur-
ther to improve their performance. In preliminary
research, we have assessed how temporal correlations are
reflected in the model's predictions and found that tem-
poral correlation between model predictions and target
wind fields yields information complementary to that

conveyed by MSE measurements. In particular, we found
that, according to temporal correlation, our models
exhibit highest uncertainty over mountains while MSE
deviation is largest over the sea. In the present experi-
mental setting, however, the role of the temporal dimen-
sion is more similar to that of a sample index, instead of
a temporal coordinate, which parametrizes the time evo-
lution of physical processes. Specifically, training of our
proposed models has focused on purely spatial correla-
tions on a single-time-step level and temporal coherence
between predictions has not been enforced. Conse-
quently, it would be interesting in the future to design
neural network models which consider the temporal cor-
relation of wind vector fields across multiple time steps
and analyze the models in terms of predictability. This
would require the definition of a suitable and interpreta-
tive temporal correlation measure for vector-valued
inputs which, in our opinion, appears to be a non-trivial
task. For instance, we have found that the temporal aver-
age of the scalar product between mean-centered predic-
tor and predictand wind vectors, as a standard
correlation measure, strongly resembles cosine devia-
tions, which we attribute to the strong relationship
between the scalar product and the definition of the
cosine deviation. Another option would be to examine
local coordinate-wise temporal correlations between the
scalar wind components, which, however, would require
the selection of reference directions for computing these
correlations. The best candidates for these may not be
known beforehand and presumably depend on the local
surface topography. Beyond coordinate-wise correlations,
full correlation matrices might be necessary to examine
existing cross-correlations between wind components in
a complete and principled way.

Furthermore, including temporal information also
into the process of model building (e.g., using long short-
term memory (Hochreiter and Schmidhuber, 1997), gated
recurrent units (Cho et al., 2014) or related temporal neu-
ral network building blocks) or model training
(e.g., using optimization objectives, which enforce tempo-
ral coherence) could be an interesting direction for future
research. To be convincing to an end-user, one ultimately
wants the time-series coherence in predictions for given
sites to be comparable to time-series coherence in the
training data, and therefore devoid of odd jumps except
those that are physically realistic—for example due to
passage of a front. The current time-independent
approach is good in that it might help preserve frontal
passage wind-shifts at points, but on the other hand this
may possibly be at the expense of other unexplainable
temporal shifts in wind velocity.

Another important question for future research, which
directly follows on from these ideas, is how to account for
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the spherical domain geometry in CNN-based downscal-
ing. While data padding was found to be well suited for
reshaping irregular grids on domains of up to a few thou-
sand kilometers of horizontal extent, increasing domain
size even further may lead to distortion artifacts due to dis-
regard of the spherical geometry of the Earth's surface.
The same is true for interpolation-based resampling
methods, where the horizontal spacing of the sampling
points varies with latitude, limiting data resolution close
to the equator and enforcing data redundancy closer to the
poles. Furthermore, an inappropriate treatment of domain
geometries might become a serious problem, especially for
models which are supposed to work on multiple domains.
The use of more appropriate convolutional model architec-
tures, like spherical CNNs for unstructured grids
(e.g., Jiang et al., 2019) or geometric deep learning
approaches in general (e.g., Bronstein et al., 2017), may
help to overcome such limitations, thus increasing physi-
cal plausibility and data efficiency of the models.

From the exciting perspective of real-time application,
one would ideally want to step down in scale and apply
the results of this proof-of-concept study in a finer resolu-
tion setting. We envisage that operational real-time fore-
cast runs—single deterministic and/or ensemble—could
be downscaled in real-time to 1–2 km, over any
preselected domains, for customer applications. This
could be activated on a central cloud-type platform or
locally by customers to meet their own needs. Given the
small number of low-resolution predictors, data transfer
requirements for the second option would be minimal,
compared to say the task of transferring 4D (full-atmo-
sphere) fields for many variables.

At such very high target resolutions, particularly if a
high multiplier were used, the correct treatment of ambi-
guity in the data becomes increasingly important, since
the same coarse-scale flow pattern may correspond to
multiple fine-scale realizations. Similar to stochastic
weather generators, generative CNN models like varia-
tional auto-encoders (Kingma and Welling, 2013) or con-
volutional generative adversarial networks (e.g.,
Goodfellow et al., 2014; Radford et al., 2015) may provide
promising approaches for building flexible models for
ensemble-based probabilistic downscaling. Moreover, if
the low-resolution feed were based on ensemble data
itself, one could then generate a super-ensemble
(i.e., ensemble of ensembles) to provide the final smooth-
format probabilistic output for users.

9 | CONCLUSION

In this study, we have analyzed convolutional neural net-
works (CNNs) for downscaling of wind fields on

extended spatial domains. By going from a simple linear
CNN to deeper and more elaborate nonlinear models, we
have investigated how the network complexity affects
downscaling performance. We have further compared
the performance of different CNNs to that of an ensemble
of localized linear regression models.

We have shown that deeper and more complex net-
work models are able to discover skillful mappings by
exploiting nonlinear correlations for modeling the rela-
tionship between low- and high-resolution fields. Specifi-
cally, we found that all nonlinear models in our study
take advantage of additional high-resolution static predic-
tor data, such as information on local orography. In com-
parison, the use of three pre-defined low-resolution
dynamic predictors gave only minor improvements.

Building upon the results of our study, we have
envisioned a number of possible further research direc-
tions, like inclusion of temporal information into the
training process, or examination of generative neural net-
work models for probabilistic downscaling. We firmly
believe that the demonstrated performance of CNNs for
downscaling tasks should motivate further research
towards the use of such architectures for predictive tasks.

ACKNOWLEDGEMENTS

This research has been done within the subprojects B5
and A7 of the Transregional Collaborative Research Cen-
ter SFB/TRR 165 Waves to Weather funded by the Ger-
man Research Foundation (DFG). We thank all
reviewers for their constructive criticism and valuable
comments. Open access funding enabled and organized
by Projekt DEAL.

ORCID

Kevin Höhlein https://orcid.org/0000-0002-4483-8388
Michael Kern https://orcid.org/0000-0002-8060-3367
Timothy Hewson https://orcid.org/0000-0002-3266-8828
Rüdiger Westermann https://orcid.org/0000-0002-3394-
0731

REFERENCES

Ashcroft, J. (1994) The relationship between the gust ratio, ter-

rain roughness, gust duration and the hourly mean wind

speed. Journal of Wind Engineering and Industrial Aerody-

namics, 53(3), 331–355. https://doi.org/10.1016/0167-6105

(94)90090-6.

Baño-Medina, J., Manzanas, R. and Gutiérrez, J.M. (2019) Configu-

ration and intercomparison of deep learning neural models for

statistical downscaling. Geoscientific Model Development Discus-

sions, 13(4), 2109–2124. ISSN 1991-959X.

Beluši�c, D., Hrastinski, M., Večenaj, Ž. and Grisogono, B. (2013)
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ABSTRACT: Statistical postprocessing is used to translate ensembles of raw numerical weather forecasts into reliable
probabilistic forecast distributions. In this study, we examine the use of permutation-invariant neural networks for this
task. In contrast to previous approaches, which often operate on ensemble summary statistics and dismiss details of the
ensemble distribution, we propose networks that treat forecast ensembles as a set of unordered member forecasts and learn
link functions that are by design invariant to permutations of the member ordering. We evaluate the quality of the obtained
forecast distributions in terms of calibration and sharpness and compare the models against classical and neural network–
based benchmark methods. In case studies addressing the postprocessing of surface temperature and wind gust forecasts,
we demonstrate state-of-the-art prediction quality. To deepen the understanding of the learned inference process, we fur-
ther propose a permutation-based importance analysis for ensemble-valued predictors, which highlights specific aspects
of the ensemble forecast that are considered important by the trained postprocessing models. Our results suggest that most
of the relevant information is contained in a few ensemble-internal degrees of freedom, which may impact the design of
future ensemble forecasting and postprocessing systems.

KEYWORDS: Neural networks; Ensembles; Probability forecasts/models/distribution; Model evaluation/performance;
Postprocessing; Model interpretation and visualization

1. Introduction

Operational weather forecasting relies on numerical weather
prediction (NWP) models. Since such models are subject to
multiple sources of uncertainty, such as uncertainty in the initial
conditions or model parameterizations, a quantification of the
forecast uncertainty is indispensable. To achieve this, NWP
models generate a set of deterministic forecasts, so-called en-
semble forecasts, based on different initial conditions and varia-
tions of the underlying physical models. Since these forecasts
are subject to systematic errors such as biases and dispersion er-
rors, statistical postprocessing is used to enhance their reliability
(see, e.g., Vannitsem et al. 2018). Recently, machine learning
(ML) approaches for statistical postprocessing have shown su-
perior performance over classical methods. For instance, Rasp
and Lerch (2018) propose a distribution regression network
(DRN) that predicts the parameters of a temperature forecast
distribution from a suitable family of parametric distributions.
In subsequent work, Schulz and Lerch (2022b) found that shal-
low multilayer perceptrons (MLPs) with forecast distributions
of different flexibility achieve state-of-the-art results in postpro-
cessing wind gust ensemble forecasts.

An ensemble forecast consists of multiple separate member
forecasts, which are generated by repeatedly running NWP

simulations with different model parameterizations and initial
conditions. Typically, the configurations of different runs are
sampled randomly from an underlying distribution of plausible
simulation conditions, obtained, for example, from uncertainty-
aware data assimilation. The member forecasts can then be
seen as identically distributed and interchangeable random sam-
ples from a distribution of possible future weather states. In this
setting, statistical postprocessing of ensemble forecasts can be
phrased as a prediction task on unordered predictor vectors and
requires solutions that are tailored to match the predictor for-
mat. Specifically, member interchangeability demands that the
predictions of a well-designed postprocessing system should not
be affected by permutations, that is, shuffling, of the ensemble
members. Systems that satisfy this requirement are called per-

mutation invariant. Established postprocessing methods rely on
basic summary statistics of the raw ensemble forecast to inform
the estimation of the postprocessed distribution and are thus
permutation invariant by design. However, especially in large
ensembles, the details of the distribution may carry valuable in-
formation for postprocessing, and a more elaborate treatment
of the inner structure of the raw forecast ensembles may help to
improve forecast accuracy for example in ambiguous forecast
situations, where summary-based methods fail to evaluate the
likelihood of different weather patterns accurately.

While studies have started to explore how specialized model
architectures can help to improve postprocessing only recently
(Bremnes 2020; Mlakar et al. 2023; Ben-Bouallegue et al.
2023), ML provides a variety of further approaches to enforc-
ing permutation invariance in data-driven learning. Motivated
by the success of permutation-invariant neural network (NN)
architectures in representation learning, anomaly detection or
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set classification (e.g., Ravanbakhsh et al. 2016; Zaheer et al.
2017; Lee et al. 2019; Sannai et al. 2019; Zhang et al. 2019),
where the models profit from the ability to extract concise fea-
ture representations from unordered data, permutation-invariant
NNs appear as promising candidates for improving ensemble
postprocessing.

Contribution

In this study, we investigate the capabilities of different
permutation-invariant NN architectures for univariate post-
processing of station predictions. We evaluate the proposed
models on two exemplary stationwise postprocessing tasks
with different characteristics. The ensemble-based network
models are compared to classical methods and basic NNs,
which operate only on ensemble summary statistics but are
trained under identical predictor conditions otherwise. We
further assess how much of the predictive information is car-
ried within the details of the ensemble distribution, and how
much of the model skill arises from other factors. To shed
light on the sources of model skill, we propose an ensemble-
oriented feature importance analysis and study the effect of
ensemble-internal degrees of freedom using conditional fea-
ture permutation.

2. Related work

a. Statistical postprocessing of ensemble forecasts

One of the most popular methods for statistical postprocessing
of ensemble forecasts is ensemble model output statistics
(EMOS; Gneiting et al. 2005), which performs a distributional re-
gression based on a suitable family of parametric distributions
and summary statistics of the ensemble. Due to its simplicity,
EMOS has been applied to a wide range of weather variables in-
cluding temperature (Gneiting et al. 2005), wind gusts (Pantillon
et al. 2018), precipitation (Scheuerer 2014), and solar radiation
(Schulz et al. 2021). Following the simple statistical EMOS
approach, the success of ML methods (Taillardat et al. 2016;
Messner et al. 2017), which are able to incorporate additional
information and learn more complex patterns, have motivated
the use of modern NN methods. First NN-based approaches
are DRN (Rasp and Lerch 2018) as an extension of the EMOS
framework, and the Bernstein quantile network (BQNs; Bremnes
2020) that provides a more flexible forecast distribution. In
Schulz and Lerch (2022b), NN-based approaches were adapted
toward the prediction of wind gusts and outperformed classical
methods. Recently, research has shifted toward the use of
more sophisticated network architectures. Examples include
convolutional NNs that incorporate spatial NWP output
fields (Scheuerer et al. 2020; Grönquist et al. 2021; Veldkamp
et al. 2021; Horat and Lerch 2023), and generative models to
produce multivariate forecast distributions (Dai and Hemri
2021; Chen et al. 2022).

Only recently, Mlakar et al. (2023) have proposed NN models
that explicitly admit the use of ensemble-structured predictors
by employing a dynamic attention mechanism. The resulting
models perform best in the benchmark study of Demaeyer et al.
(2023). Mlakar et al. (2023) address postprocessing with similar

methods as this work, but do not focus explicitly on comparing
different network design patterns for inference based on ensem-
ble-valued predictors. In orthogonal work, Finn (2021) and
Ben-Bouallegue et al. (2023) apply transformer-based NNs to
ensemble postprocessing. In contrast to this study, both ap-
proaches focus on gridded predictor data, thus relying on different
network architectures, and postprocess ensembles in a member-
by-member fashion, whereas this work concentrates on distribu-
tional regression.

For a general review of statistical postprocessing of weather
forecasts, we refer to Vannitsem et al. (2018), a review of re-
cent developments and challenges can be found in Vannitsem
et al. (2021) and Haupt et al. (2021).

b. Neural network architectures for regression on

set-structured data

From an ML perspective, postprocessing of ensemble fore-
casts can be phrased as a regression task on set-structured
predictors. Multiple studies have demonstrated that dedicated
permutation-invariant NN architectures can help to improve
prediction quality and generalization in diverse learning prob-
lems (e.g., Vinyals et al. 2015; Lyle et al. 2020), thus motivating
the exploration of permutation-invariant NNs also for ensem-
ble postprocessing. Early works on permutation-invariant
layers for NNs (Ravanbakhsh et al. 2016) and pooling-based
permutation-invariant NNs (Edwards and Storkey 2016) were
followed by the more comprehensive framework DeepSets

(Zaheer et al. 2017), which encompasses some of the most
common design patterns for ML inference on set-structured
predictors. Due to its generality, DeepSets is selected as one
of the representative learning approaches in this study and is
further discussed in section 4a. Soelch et al. (2019) highlight
that architectural improvements, such as the use of more ex-
pressive pooling functions, may enhance model performance,
which we consider in the design of the model architectures for
postprocessing.

An alternative approach to permutation-invariant inference
has been proposed by Lee et al. (2019), who use (multihead)
attention functions (Vaswani et al. 2017) for permutation-
invariant inference on set-valued data. Attention-based NNs,
also known as transformers, have proven powerful in a variety
of computer vision tasks (e.g., Khan et al. 2022) as well as
postprocessing (Finn 2021; Ben-Bouallegue et al. 2023, see
their section 2a) and are thus considered as a second para-
digm for building permutation-invariant NNs.

c. Machine learning explainability and feature importance

ML explainability has attracted substantial interest throughout
the last decade (for recent surveys, see, e.g., Guidotti et al. 2018;
Linardatos et al. 2021; Burkart and Huber 2021) and is increas-
ingly adopted in the Earth-system sciences (e.g., Reichstein et al.
2019; Höhlein et al. 2020; Labe and Barnes 2021; Farokhmanesh
et al. 2023) to gain understanding on the reasoning mecha-
nisms behind ML-based inference approaches. The most rele-
vant approaches for this work are based on permutation
feature importance (PFI; Breiman 2001), which aims to assess
the (relative) importance of different predictors for inference.
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In PFI, relevance scores are assigned to the predictors based
on the accuracy loss after permuting the predictor values
within the test dataset and have been applied in the postpro-
cessing before (e.g., Rasp and Lerch 2018; Schulz and Lerch
2022b) with a focus on scalar-valued predictors. In this work,
we propose a conditional PFI measure for ensemble-valued
predictors, which allows attributing importance values to dif-
ferent aspects of the ensemble-internal variability. Conditional
perturbation measures have been considered in earlier works
(e.g., Strobl et al. 2008; Molnar et al. 2024), where the condi-
tioning is used to evaluate the importance of specific predic-
tors in the context of the remaining predictors. By contrast,
our approach addresses specifically the distribution charac-
teristics of the ensemble-valued predictors encountered in
postprocessing.

3. Benchmark methods and forecast distributions

a. Assessing predictive performance

We evaluate probabilistic forecasts based on the paradigm
of Gneiting et al. (2007), that is, a forecast should maximize
sharpness subject to calibration. Both sharpness and calibra-
tion can be assessed quantitatively using proper scoring rules
(Gneiting and Raftery 2007). A popular choice is the continu-
ous ranked probability score (CRPS; Matheson and Winkler
1976):

CRPS(F, y) 5
�

‘

2‘

[F(z) 2 1{y # z}]2dz,

wherein y 2 R is the observed value, F is the cumulative distri-
bution function (CDF) of the forecast distribution, and 1 is
the indicator function. The CRPS can be computed analyti-
cally for a wide range of distributions including the truncated
logistic distribution and probabilistic forecasts in ensemble
form (Jordan et al. 2019).

In addition to the CRPS, we assess calibration based on the
empirical coverage of prediction intervals (PIs) derived from
the forecast distribution, and sharpness on the corresponding
length. Under the assumption of calibration, the observed
coverage of a PI should match the nominal level, and a forecast
is sharper the smaller the length of the PI. In line with Schulz
and Lerch (2022b), we choose the PI level based on the size of
the underlying ensemble. For an ensemble of size M 2 N, this
gives rise to a PI with nominal level (M2 1)/(M1 1).

Further, we qualitatively assess calibration based on (unified)
probability integral transform (PIT) histograms (Gneiting and
Katzfuss 2014; Vogel et al. 2018). While a flat histogram indi-
cates that the forecasts are calibrated, systematic deviations indi-
cate miscalibration. For more details on the evaluation of
probabilistic forecasts, we refer to Gneiting and Katzfuss (2014).

b. Distributional regression with parametric forecast

distributions (EMOS, DRN)

In this study, we consider postprocessing of the ensemble
forecast for a real-valued random variable Y as a distribu-
tional regression task on ensemble-structured predictors. We
focus on the case of stationwise forecasts, which are given as

prediction vectors x 2 R
p, each comprising the predictions of

p scalar-valued meteorological variables, such as surface tem-
perature or 10-m wind speed at a station site. Typically, one
of the forecast variables corresponds directly to the target vari-
able Y and is thus termed the primary prediction. AnM-member
ensemble forecast X 5 {x1, …, xM} , R

p is composed of M

such prediction vectors, which represent samples from the pre-
dicted distribution of future weather states. The space of M-
member ensemble forecasts will be denoted as [Rp]M.

Within the (parametric) distributional regression frame-
work, the parameter vector u of a parametric distribution F

u

is linked to the predictors via a function that is estimated by
minimizing a proper scoring rule. The underlying model can
be written as

Y|X ; F
u
,

u 5 g(X) 2 Q, (1)

where g : [Rp]M"Q is called the link function and QMR
D

denotes the D-dimensional parameter space corresponding
to F

u
.

For EMOS, g is defined as a generalized affine-linear func-
tion of ensemble summary statistics, such as ensemble mean
or standard deviation, and provides only limited flexibility for
distribution estimation. DRN (Rasp and Lerch 2018; Schulz
and Lerch 2022b), in contrast, admits the data-driven estima-
tion of arbitrary link functions using NNs, thus increasing the
learning ability. The forecast distribution as well as the under-
lying proper scoring rule used for optimization are two imple-
mentation choices.

c. Flexible distribution estimator (BQN)

Distributional regression methods based on a parametric
forecast distribution are robust but lack flexibility as they are
bound to the parametric distribution family of choice. Typical
choices of forecast distributions include the normal (Gneiting
et al. 2005; Rasp and Lerch 2018), logistic (Schulz and Lerch
2022b) or generalized extreme value distribution (Lerch and
Thorarinsdottir 2013; Scheuerer 2014). They all lack the abil-
ity to express multimodalities that are required, for example,
when different weather patterns occur. Hence, methods that
do not rely on parametric assumptions have been proposed
in the postprocessing literature. Examples are the direct ad-
justment of the ensemble members (van Schaeybroeck and
Vannitsem 2015) or quantile regression forests (Taillardat
et al. 2016). BQN (Bremnes 2020) models the forecast distri-
bution as a quantile function, which is represented as a linear
combination of Bernstein (basis-) polynomials of degree d 2 N

with variable mixing coefficients a5 (a0, …, a
d
) 2 R

d11, such
that a0 # · · ·# ad. The inference network is designed to output
parameters u that parameterize the mixing coefficients, that is,
a5 a(u). In contrast to DRN, this formulation offers increased
flexibility for modeling multimodality, while requiring hard up-
per and lower bounds for the values of the forecast variable. For
BQN models, the optimization is guided by an average of quan-
tile scores (Koenker and Bassett 1978), which can be seen as a
discrete approximation of the CRPS (Gneiting and Ranjan 2011).
For the evaluation of BQN forecasts, we generate an ensemble
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of equidistant quantiles analogous to Schulz and Lerch (2022b).
In the original implementation, the link function of BQN is
specified as an NN, which receives a sorted sequence of univari-
ate ensemble predictors as its input (Bremnes 2020). Schulz and
Lerch (2022b) augment this approach by using ensemble-valued
predictors for the predictor of the target variable and ensemble
means for additional auxiliary predictor variables. Despite ad-
mitting permutation-invariant inference, both model variants
are constrained to processing ensembles of fixed size. To allevi-
ate this limitation, we avoid the sorting operation in this work
and inform BQN models analogous to DRN using ensemble
summary statistics. A comparison of both variants is conducted
in the online supplemental materials, demonstrating the equiva-
lence of the approaches.

d. Use of auxiliary predictors

In addition to the predictions of the target variable, most al-
gorithms use auxiliary information to improve the prediction
performance (see Table 1). We distinguish between ensemble-
valued and scalar-valued predictors, where ensemble-valued
predictors vary between different members and scalar-valued
predictors do not. In the ensemble-valued case, we differenti-
ate the primary prediction from auxiliary predictions of other
meteorological variables. For either of these, postprocessing
models can have access to the full set of ensemble values or
only to summary statistics.

Scalar-valued predictors refer to contextual information,
such as station-specific coordinates and orography details (cf.
Table 1, station predictors), as well as to temporal informa-
tion, such as the day of the year. We consider only models
that are trained on predictions for specific initialization and
lead times, such that information about the diurnal cycle is
not required. While most approaches include the scalar pre-
dictors explicitly as features in the regression process, EMOS
takes advantage of categorical location and time information
implicitly by fitting independent models for each station and
month (Schulz and Lerch 2022b). BQN- and DRN-type models
are trained separately for each lead time but employ a learned
station embedding (Rasp and Lerch 2018; Schulz and Lerch
2022b) to share the same model between different station sites.
Notably, the permutation-invariant models (cf. Table 1, permu-
tation-invariant) considered in this study have access to the

richest predictor pool. A complete list of model inputs on the pa-
rameter level can be found in Tables A1–A3 in appendix A.

4. Permutation-invariant neural network architectures

From the variety of permutation-invariant model architec-
tures, we select two representative approaches, set pooling
architectures and set transformers, which we adapt for distribu-
tional regression. Compared with the benchmark methods of
section 3, the proposed networks replace the summary-based
ensemble processing while the parameterization of the fore-
cast distributions remains unchanged. A schematic compari-
son of both permutation-invariant architectures is shown in
Fig. 1.

a. Set pooling architectures

Set pooling architectures (Zaheer et al. 2017), also known
as DeepSets, achieve permutation invariance via extraction
and permutation-invariant summarization of learned latent
features. The features are obtained by applying an encoder
MLP to all ensemble members separately, followed by a per-
mutation-invariant pooling function and a decoder MLP,
which outputs the distribution parameters u. Due to the divi-
sion into encoding, pooling, and decoding, we will thus use
the names set pooling and encoder–decoder (ED) architecture
synonymously.

In experiments, we considered different variants of ensem-
ble summarization based on average and extremum pooling,
as well as adaptive pooling functions based on an attention
mechanism (Lee et al. 2019; Soelch et al. 2019), discussed be-
low. Overall, we find that the pooling mechanism is of minor
importance. Detailed comparisons are thus deferred to the
supplemental materials and all subsequent experiments use
attention-based pooling consistently.

b. Set transformer

Set transformers (Lee et al. 2019) are NNs, that model in-
teractions between set members via self-attention. Attention is
a form of nonlinear activation function, in which the relevance
of the inputs is determined via a matching of input-specific
key and query vectors. Multihead attention allows the model to
attend to multiple key patterns in parallel (Vaswani et al. 2017).

TABLE 1. Predictor utilization by postprocessing methods. Methods used in this study are indicated by “ours.” Abbreviations:
permutation-invariant (perm.-inv.); standard deviation (SD), station embedding (SE); station predictors and embedding (SP 1 SE).

Predictors Ensemble-valued Scalar-valued

Method Primary prediction Auxiliary predictions Spatial Temporal

EMOS (Schulz and
Lerch 2022b, ours)

Mean 1 SD } Different models per station and month

BQN (Bremnes 2020) Ensemble (sorted) } SE }

BQN (Schulz and
Lerch 2022b)

Ensemble (sorted) Mean SP 1 SE Day of year

BQN (ours) Mean 1 SD Mean SP 1 SE Day of year
DRN (Schulz and

Lerch 2022b, ours)
Mean 1 SD Mean SP 1 SE Day of year

Perm.-inv. DRN 1

BQN (ours)
Ensemble (perm.-inv.) Ensemble (perm.-inv.) SP 1 SE Day of year
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Lee et al. (2019) combine multihead attention with a mem-
berwise NN to build a permutation-invariant set-attention
block, from which a set transformer is constructed by stack-
ing multiple instances. Set transformers apply straightfor-
wardly to ensemble data and can exploit all aspects of the
available ensemble dataset by allowing for information ex-
change between ensemble members early in the inference
process. We construct a set transformer by using three set-
attention blocks with 8 attention heads (Vaswani et al.
2017; Lee et al. 2019). Each block comprises a separate MLP
with two hidden layers. Additionally, the first set-attention
block is preceded by a linear layer to align the channel
number of the ensemble input with the hidden dimension
of the set-attention blocks. To construct vector-valued pre-
dictions from set-valued inputs, Lee et al. (2019) propose
attention-based pooling, in which the output query vectors
are implemented as learnable parameters. After pooling,
the final prediction u is obtained by applying another two-
layer MLP.

5. Data

We evaluate the performance of the proposed models in two
postprocessing tasks using the datasets described in Table 2. An
overview of the predictor and target variables is provided in
appendix A.

a. Wind gust prediction in Germany

In the first case study, we employ our methods for station-
wise postprocessing of wind gust forecasts using a dataset that
has previously been used in Pantillon et al. (2018) and Schulz
and Lerch (2022b). The ensemble forecasts are based on the
COSMO ensemble prediction system (COSMO-DE; Baldauf
et al. 2011) and consist of 20 members forecasts, simulated
with a horizontal resolution of 2.8 km. The forecasts are ini-
tialized at 0000 UTC, and we consider the lead times 6, 12,
and 18 h. Other than wind gusts, the dataset comprises ensem-
ble forecasts of several meteorological variables, such as tem-
perature, pressure, precipitation, and radiation. An overview
of all predictors is shown in Table A1 (appendix A). The

TABLE 2. Overview of the data used in the postprocessing applications described in section 5.

Dataset Wind gust forecasts EUPPbench (re)forecasts

Underlying NWP model COSMO-DE-EPS ECMWF-IFS
Initialization time 0000 UTC 0000 UTC
Ensemble size M 20 Reforecasts: 11

Forecasts: 51
Predicted ensemble forecast quantities p 61 28
Region Germany Central Europe
Stations 175 117
Lead times considered in h 6, 12, 18 24, 72, 120
Training samples 315 000 374 000
Test samples 63 000 Reforecasts: 97 000

Forecasts: 85 000
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FIG. 1. (a) Set pooling architecture, consisting of encoder and decoder MLPs, and (b) set trans-
former, featuring attention blocks and intermediate MLPs with residual connections. While the
encoder–decoder architecture admits interactions between members only inside the pooling step,
the set transformer admits information transfer between the members in each attention step.
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predictions are verified against observations measured at
175 stations of the German Weather Service [Deutscher Wet-
terdienst (DWD)]. Forecasts for the individual weather sta-
tions are obtained from the closest grid point. The time period
of the forecast and observation data starts on 9 December 2010
and ends on 31 December 2016. The models use the data from
2010 to 2015 for model estimation, using 2010–14 as training
and 2015 as validation period. The forecasts are then verified in
2016. As in Schulz and Lerch (2022b), each lead time is proc-
essed separately.

As detailed in Schulz and Lerch (2022b), a minor caveat is
caused by a nontrivial substructure of the forecast ensembles.
The 20-member ensembles constitute a conglomerate of four
subensembles, which are generated with slightly different model
configurations. While this formally violates the assumption of
statistical interchangeability of the members, the subensembles
are sufficiently similar to justify the application of permutation-
invariant models.

For the benchmark methods EMOS and DRN, we use the
exact same forecasts as in Schulz and Lerch (2022b), both esti-
mating the parameters of a truncated logistic distribution by
minimizing the CRPS, see their section 3 for details. BQN is
adapted as described in section 3 and Table 1.

b. Temperature forecasts from the EUPPBench dataset

In a second example, we postprocess ensemble forecasts
of surface temperature using a subset of the EUPPBench
postprocessing benchmark dataset (Demaeyer et al. 2023).
EUPPBench provides paired forecast and observation data
from two sets of samples. The first part consists of 20 years of
reforecast data (1997–2016) from the Integrated Forecasting
System (IFS) of the ECMWF with 11 ensemble members.
Mimicking typical operational approaches, the reforecast da-
taset is used as training data, complemented by additional two
years (2017 and 2018) of 51-member forecasts as test data.
EUPPBench comprises sample data from multiple European
countries}Austria, Belgium, France, Germany, and the
Netherlands}which are publicly accessible via the CliMetLab
API (ECMWF 2013). Additional data for Switzerland can be
requested from the Swiss Weather Service but is not used in
this study. EUPPBench constitutes a comprehensive dataset
of samples over a long time period. In contrast to the wind
gust forecasts, the EUPPBench ensemble members are ex-
changeable, so that permutation-invariant model architec-
tures are optimally suited.

Deviating from the EUPPBench convention, models are
tested on the 51-member forecasts, and the last 4 years of the
reforecast dataset are considered as an independent test set of
11-member forecast samples. This allows us to assess the gen-
eralization capabilities of the ensemble-based postprocessing
models on data equivalent to the training data, as well as on
data with larger ensemble sizes. Furthermore, we use the full
set of available surface- and pressure-level predictor variables,
whereas the original EUPPBench task is restricted to using
only surface temperature data. While this design choice hin-
ders the direct comparison of the evaluation metrics in this
paper with the original EUPPBench models, it enables a

more comprehensive assessment of the relative benefits of us-
ing summary-based versus ensemble predictors. An overview
of the predictors can be found in Table A2 (appendix A).
From the pool of available forecast lead times, we select 24,
72, and 120 h for a closer analysis.

Unlike previous postprocessing applications for tempera-
ture (e.g., Gneiting et al. 2005; Rasp and Lerch 2018), we
employ a zero-truncated logistic distribution as parametric
forecast distribution for DRN, instead of a zero-truncated
normal, as preliminary tests showed a slightly superior predic-
tive performance of the logistic distribution pattern (see
supplemental material for details). The zero-censoring arises
from the use of the Kelvin scale for measuring temperatures
and allows the use of the same model configuration for both
temperature and wind gust predictions. In particular, the
EMOS and DRN benchmark approaches are identical for
both datasets.

6. Performance evaluation

For each of the postprocessing methods, we generated a
pool of 20 networks in each forecast scenario. To ensure a fair
comparison to the benchmark methods, we follow the ap-
proach from Schulz and Lerch (2022a,b), who build an ensem-
ble of 10 networks and combine the forecasts via quantile
aggregation. Hence, we draw 10 members from the pool and
repeat this procedure 50 times to quantify the uncertainty of
sampling from the general pool. For all model variants and re-
samples, we select those configurations as the final forecast
that yield the lowest CRPS on the validation set. Details on
hyperparameter settings are listed in appendix B and tuning
procedures are discussed in the supplemental material. For
both datasets, we compute the average CRPS, PI length, and
PI coverage for the different forecast lead times based on the re-
spective test datasets. The average is calculated over the resam-
ples of the aggregated network ensembles. In what follows, we
refer to pooling-based encoder–decoder (ED) models and set
transformers (ST), and suffixes DRN and BQN indicate the pa-
rameterization of the forecast distribution. The model catego-
ries DRN and BQN without additional prefixes refer to the
benchmark models based on summary statistics.

a. Wind gust forecasts

Table 3 shows the quantitative evaluation for lead times 6,
12, and 18 h. All permutation-invariant model architectures
perform similarly to the DRN and BQN benchmarks and out-
perform both the EPS and conventional postprocessing via
EMOS, thus achieving state-of-the-art performance for all
lead times. Further, the PI lengths and coverages are similar to
those of the benchmark methods with the same forecast distribu-
tion, indicating that the ensemble-based models achieve approxi-
mately the same level of sharpness as the benchmark networks
while being well calibrated. Note that the underlying distribution
type should be taken into account when comparing the sharpness
of different postprocessing models based on the PI length, as the
DRN and BQN forecast distributions exhibit different tail be-
havior, which affects the PI lengths for different nominal levels
(see supplemental materials for details). A noticeable difference
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between the network classes is that the ED models result in
sharper PIs than the ST models. This coincides with the empiri-
cal PI coverages of the methods in that wider PIs typically result
in a higher coverage. Figure 2 shows the PIT histograms of
the postprocessed forecasts. While differences are seen be-
tween DRN-type and BQN-type models, all DRN-type and
all BQN-type models show very similar patterns. While all
models are well calibrated, DRN-type models reveal limita-
tions in the resolution of gusts in the lower segment of the
distribution. BQN-type models all yield very uniform cali-
bration histograms.

b. EUPPBench surface temperature reforecasts

As shown in Table 4, both ED and ST models show signifi-
cant advantages compared to the EPS and EMOS in terms of
CRPS and PI length for the EUPPBench dataset. Differences
between the network variants arise mainly due to the use of

different forecast distribution types. Note that the lead times
of the wind gust dataset are in the short range with a maxi-
mum of 18 h, whereas the lead times considered in the
EUPPBench dataset range from one to five days. Hence, the
differences between the lead times in the effects of postpro-
cessing are more pronounced. For example, for a lead time of
120 h, the improvement of the network-based postprocessing
methods over the conventional EMOS approach is much
smaller than for shorter lead times. In particular, ST models
perform the best for lead time 24 h and all newly proposed
models result in the smallest CRPS for lead time 120 h. In
terms of the PI length and coverage, we find that the ED and
ST models tend to generate slightly sharper predictions. A
more detailed discussion of the differences in the PI lengths
due to the choice of the underlying distribution is provided in
the supplemental material. The PIT histograms in Fig. 2 show
that the BQN models struggle to set accurate upper and lower

TABLE 3. Mean CRPS (m s21), PI length (m s21), and PI coverage (%) of the postprocessing methods for the different lead times
of the wind gust data (20-member ensemble, year 2016). Recall that the nominal level of the PIs is approximately 90.48%. The best-
performing models (w.r.t. CRPS) are marked in bold.

Lead time 6 h 12 h 18 h

Method CRPS PI length PI coverage CRPS PI length PI coverage CRPS PI length PI coverage

EPS 1.31 2.37 43.18 1.26 3.31 56.32 1.32 3.80 59.78
EMOS 0.88 5.58 92.83 0.97 6.01 91.92 1.04 6.43 92.46

BQN 0.79 4.60 90.23 0.85 4.90 89.65 0.95 5.56 90.70
DRN 0.79 4.75 91.43 0.85 5.11 91.08 0.95 5.68 91.78

ED-BQN 0.80 4.56 89.83 0.86 4.92 89.56 0.95 5.55 90.55
ED-DRN 0.79 4.70 91.17 0.86 5.15 91.13 0.95 5.76 92.07
ST-BQN 0.80 4.67 90.20 0.87 5.01 89.94 0.96 5.61 90.70
ST-DRN 0.80 4.77 91.34 0.86 5.17 91.13 0.96 5.83 92.24

FIG. 2. PIT histograms of the postprocessing models for EUPPBench (left) 11-member reforecast and 51-member forecast ensembles and
(right) 20-member wind gust forecasts.
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bounds for the predicted distribution, whereas DRN distribu-
tions do not show such issues. Instead, they face the problem
that the tail is too heavy. Overall, all postprocessing methods
result in calibrated forecasts, while the DRN forecasts appear
slightly better calibrated than the BQN forecasts, yielding
PIT histograms with a wavelike structure.

c. Generalization to 51-member forecast ensembles

As before, postprocessing outperforms the EPS forecasts
and results in calibrated and accurate forecasts (cf. Table 5
and Fig. 2). Notably, all models have been trained purely on
11-member reforecasts and are not fine-tuned to the 51-member
forecast ensembles. The CRPS scores are similar with almost
identical values for all models, except EMOS, for all lead times.
The ST models again perform the best for the shortest lead time.
For the DRN forecasts, we find that the ensemble-based net-
works tend to reduce the PI length, as it is smaller for all cases
except for lead time 120 h. The corresponding PI coverages are
closely connected to the length of the PIs and indicate that the
PIs are too large for most postprocessing models, as the observed
coverages are above the nominal level.

The calibration of the methods is not as good as in the other
case studies, as indicated by the PIT histograms in Fig. 2,
which may be a consequence of the large learning rate used in

training the models (cf. supplemental materials). All BQN
forecasts have problems in the tails, where the lower and up-
per bound are too extreme, such that insufficiently many
observations fall into the outer bins. DRN yields similar results
as for the reforecast data with too heavy-tailed forecast distri-
bution, as indicated by the least frequent last bin. The differ-
ences between the methods themselves are again minor. Still,
all postprocessing methods generate reasonably well-calibrated
forecasts. Overall, the ensemble-based models result in
state-of-the-art performance for generalization on 51-member
forecasts or offer advantages over the summary-based bench-
mark methods.

7. Analysis of predictor importance

We analyze how the different model types distill relevant
information out of the ensemble predictors. For this, we pro-
pose an ensemble-oriented PFI analysis to assess which distri-
bution properties of the ensemble-valued predictors have the
most effect on the final prediction. In its original form, PFI
(e.g., Breiman 2001; Rasp and Lerch 2018; Schulz and Lerch
2022b) is used to assign relevance scores to scalar-valued
predictors by randomly shuffling the values of a single predic-
tor across the dataset. While the idea of shuffling predictor

TABLE 4. Mean CRPS (K), PI length (K), and PI coverage (%) of the postprocessing methods for the different lead times for the
EUPPBench reforecast data (11-member ensemble, years 2013–16). Recall that the nominal level of the PIs is approximately 83.33%.
The best-performing models (w.r.t. CRPS) are marked in bold.

Lead time 24 h 72 h 120 h

Method CRPS PI length PI coverage CRPS PI length PI coverage CRPS PI length PI coverage

EPS 1.21 1.81 39.85 1.28 3.29 56.62 1.54 4.89 63.44
EMOS 0.82 3.85 82.56 0.96 4.72 83.96 1.25 6.05 83.12

BQN 0.67 3.32 84.73 0.87 4.44 86.08 1.20 6.24 86.09
DRN 0.67 3.28 84.16 0.86 4.27 84.58 1.19 5.70 83.09

ED-BQN 0.67 3.29 84.57 0.87 4.45 86.05 1.19 6.03 85.45
ED-DRN 0.67 3.19 83.39 0.87 4.25 84.11 1.19 5.64 82.60
ST-BQN 0.66 3.16 84.01 0.87 4.31 84.85 1.19 6.07 85.15
ST-DRN 0.66 3.06 82.67 0.87 4.18 83.44 1.19 5.77 83.17

TABLE 5. Mean CRPS (K), PI length (K), and PI coverage (%) of the postprocessing methods for the different lead times for
EUPPBench forecast data (51-member ensemble, years 2017–18). Recall that the nominal level of the PIs is approximately 96.15%.
The best-performing models (w.r.t. CRPS) are marked in bold.

Lead time 24 h 72 h 120 h

Method CRPS PI length PI coverage CRPS PI length PI coverage CRPS PI length PI coverage

EPS 1.21 2.65 57.54 1.18 4.71 74.78 1.38 7.14 83.26
EMOS 0.79 6.31 96.26 0.90 7.74 97.49 1.16 9.92 97.47

BQN 0.64 4.32 94.13 0.80 6.52 97.23 1.13 9.18 97.58
DRN 0.64 5.48 97.92 0.80 7.21 98.37 1.13 9.58 98.28

ED-BQN 0.64 4.74 96.30 0.81 6.49 97.42 1.12 8.81 97.15
ED-DRN 0.64 5.31 97.62 0.81 7.09 98.19 1.12 9.61 97.90
ST-BQN 0.62 4.61 95.96 0.80 6.18 96.31 1.13 8.68 96.05
ST-DRN 0.62 5.10 97.40 0.81 6.88 97.55 1.13 9.43 97.11
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samples translates identically from scalar-valued to ensemble-
valued predictors, ensemble predictors possess internal degrees
of freedom (DOFs), such as ensemble mean and ensemble
range, which may affect the prediction differently. In addition
to ensemble-internal DOFs, the perturbed predictor ensemble
is embedded in the context of the remaining multivariate ensem-
ble predictors, such that covariances, copulas or the rank order
of the ensemble members may carry information. To account
for such effects, we introduce a conditional permutation strategy
that singles out the effects of different ensemble properties.

a. Importance of the ensemble information

Following the notation of section 3, let g : [Rp]M"Q de-
note a postprocessing system that translates a raw ensemble
forecast X 5 {x1, …, xM} 2 [Rp]M into a postprocessed distri-
bution descriptor u 2 Q, and let for each member forecast xm
the forecast value of the ith predictor be x

(i)
m 2 R (for i 5 1,

… , p). Given a test dataset consisting of known raw forecast-
observation pairs, as well as a (negatively oriented) accuracy
measure S, such as the expected CRPS, we write S[g] to denote
the accuracy score of g on the test data. In this notation, the rela-
tive PFI, as used in Schulz and Lerch (2022b), can be written as

D0(P) :5
S[g + P] 2 S[g]

S[g]
, (2)

wherein P indicates a perturbation operator that alters parts
of the predictor data, and the + symbol denotes function com-
position. For the classical PFI, we denote the permutation op-
erator as P(i)

p , which shuffles the ith predictor channel of the
raw ensembles according to a permutation p of the dataset.

For ensemble-valued predictors, we consider two generalizations
of this operator. We refer to these as the fully random permutation
P(i)

p and the rank-aware random permutation P̃(i)
p . The former acts

as a direct analog of the scalar-valued permutation case, that is,
given a dataset D :5 {(X(t), y(t)) : t5 1, …, T}M[Rp]M 3 R of
forecast–observation pairs, it replaces for allm5 1, … ,M the values
x
(i)
m of the ensemble X(t) with arbitrary values x(i)m′ , 1 # m′ # M,

from the ensemble X(p(t)), without replacement. Thus, it destroys
all information of the original ensemble. The latter ranks themem-
ber values x

(i)
m in X(t) and replaces them with values x

(i)
m′ from

X(p(t)), wherem′ are chosen such that all members are used ex-
actly once and the perturbed ensemble possesses the same ranking
order as the original one. It thus preserves the ordering of the per-
turbed predictors in the context of the remaining predictors. In
practice, we note that the differences in feature importance for
both variants are very minor, such that we select only the rank-
aware variant for further analysis.

To probe the importance of ensemble-internal DOFs, we
consider additional perturbation operators, which rely on con-
ditional shuffling of the ensemble predictors. For this, let
s : [R]M" R be a summary function, which translates an en-
semble of scalar predictor values into a real-valued summary
statistic, such as ensemble mean or standard deviation. Then
an s-conditional shuffling operator P(i)

{pb}|s
is defined as follows.

For all raw predictions X(t) in the dataset, the predictor en-
semble for the ith predictor, X(i)(t)5 {x(i)m : x

m
2X(t)}, is ex-

tracted and summary statistics s(X(i)(t)) are computed. The

observed summary statistics are ranked from 1 to T and the
corresponding ensembles X(t) are distributed into B 2 N

evenly spaced bins, according to these ranks. For each bin
b, 0 # b , B, a permutation pb is sampled randomly and the
values of the ith predictor are shuffled binwise according to these
permutations. For suitably sized bins, the shuffling preserves in-
formation about s and erases information about other DOFs,
thereby ensuring that each of the bins contains an approximately
equal number of samples, independent of the details of the pre-
dictor distribution. Empirically, B5 100 bins yielded a good bal-
ance between information preservation and randomization.
Results for larger and smaller bin sizes were qualitatively similar.
Note that for predictors in which certain values appear with large
multiplicities, such as zero in censored variables like precipita-
tion, the ranking is computed on the unique values of the sum-
mary statistics. This enforces a small amount of variation even in
bins with degenerate values. In analogy to the rank-aware (un-
conditional) shuffling, the rank-aware s-conditional shuffling is
denoted as P(i)

{pb}|s
. For the conditional PFI analysis, we suggest

the computation of importance ratios,

x(P|R) :5 S[g + P] 2 S[g]
S[g + R] 2 S[g]

, (3)

which measure the fraction of skill restored (or destroyed)
by applying a shuffling operation P instead of a reference op-
eration R. The ratios of interest are x

(

P̃
(i)
{pb}|s

, P̃(i)
p

)

, which
measure how much of the prediction skill deficit due to ran-
domized shuffling of predictor i is restored by preserving in-
formation about the summary statistic s. In absence of
sampling errors due to finite data, x

(

P̃
(i)
{pb}|s

, P̃(i)
p

)

yields values
between 0 and 1, with 0 indicating uninformative summary
statistics, and 1 suggesting that knowledge of s is sufficient to
restore the original model skill entirely. Empirically, we find
that the theoretical bounds are preserved well for predictors
with sufficiently large PFI.

b. Results

We compute PFI scores D0

(

P(i)
p

)

for all ensemble predictors
and model variants. Figure 3 depicts a selection of the PFI
scores of the most important ensemble-valued predictors in
both tasks. A figure with all ensemble-valued predictors is
shown in the supplemental materials. Scalar-valued predictors
(cf. section 3d for the terminology) are omitted to simplify
comparisons with the conditional importance measures. The
bar charts show the median of ratios obtained from 20 sepa-
rate model runs, which have been evaluated independently,
and the error bars indicate the interquartile range (IQR).

The accuracy of the wind gust models is dominated by
VMAX-10M and supplemented by additional predictors with
lower importance. Temperature-like predictors obtain similar
or higher scores than, for example, winds at the 850- and
950-hPa pressure levels. Note that for each lead time, the im-
portance highlights different temperature predictors, which may
be attributed to the diurnal cycle. Similar arguments can explain
the increasing importance of short-wavelength radiation bal-
ance at the surface (ASOB-S) with increasing lead time. In a di-
rect comparison of the model variants, we find that the
differences between BQN-type and DRN-type models are very
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minor. However, ED-type models attribute higher importance
to the most relevant predictors (VMAX-10M, T1000, T-2M),
whereas ST-type models distribute the importance more evenly
and use more diverse predictor information.

In the EUPPBench case, the models focus mainly on
temperature-like predictors as well as surface radiation balan-
ces. Notably, for the summary-based models, mn2t6 and
mx2t6 tend to be more important than the primary predictor
t2m up to lead time 72 h. Since the diurnal cycle does not
cause variations between the lead times here, differences in
the predictor utilization must be due to the increasing uncer-
tainty at longer lead times. The ensemble-based models rely
relatively more strongly on the t2m predictor for the shorter

lead time, whereas for longer lead times, the information utili-
zation is more diverse. Qualitative differences between ED-
and ST-type models are observed with respect to the
humidity-related predictors tcw and tcwv. Only ST models rec-
ognize the value in these predictors, which may explain in parts
the different generalization properties of ED and ST models on
the EUPPBench reforecast and forecast datasets.

Figures 4 and 5 investigate the importance of ensemble-
internal DOFs of selected ensemble predictors for the permutation-
invariant model architectures. For both datasets, we choose a
set of representative high-importance predictors and display
the DOF importance for the ensemble-based models. Corre-
sponding figures for the remaining predictors are shown in the

FIG. 3. (top) Permutation feature importance for summary-based networks and (bottom) permutation-invariant models for EUPPBench
and wind gust postprocessing. Bar heights indicate the median of an ensemble of 20 separate models, the error bars depict the IQR. Predictors
named “ens” in the top panels correspond to the primary predictors t2m and VMAX-10M, respectively. The suffix “sd” indicates the ensem-
ble standard deviation of the predictor.
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supplemental materials. For all predictors and lead times, we
compute importance ratios x

(

P̃
(i)
{pb}|s

, P̃(i)
p

)

for a selection of
commonly used ensemble summary statistics. Specifically, we
consider the ensemble mean as a proxy for the location of the
distribution, ensemble maximum and minimum to assess the
impact of extreme values, standard deviation, IQR, and full
range (difference between maximum and minimum) to quan-
tify the scale of the distribution, as well as skewness and kurto-
sis as higher-order summary statistics. Due to the pairwise
similarity of some of the measures, it is to be expected that
conditional shuffling with respect to one of the measures pre-
serves information about others. To assess the information
overlap between shuffling patterns with different reference
statistics, Spearman rank correlations are computed between

the shuffled statistics and the original statistics. The resulting
correlation matrices illustrate how accurately the rank order
for one statistic is preserved if the data is conditionally shuffled
with respect to another. Rank correlations are chosen to mini-
mize the effect of the marginal distribution of the respective
statistics values, since these may vary considerably between
different predictors and summary statistics. The results are de-
picted as heat maps in Figs. 4 and 5.

For wind gust postprocessing (Fig. 4), the importance ratios
suggest in many cases that most of the predictor information
can be restored by conditioning the shuffling procedure on
the ensemble mean. This is the case for T-1000, T-G, and
FI850. The interaction plots suggest that the mean condition-
ing preserves information about extrema to a high degree,

FIG. 4. Importance of ensemble-internal DOFs for wind gust postprocessing. Bar charts show importance ratios x
(

P̃
(i)
{pb}|s

, P̃(i)
p

)

for se-
lected summary statistics s, and heat maps display the Spearman rank correlation between the summary statistics computed on the original
dataset and the same statistics after conditional shuffling with respect to the different summary statistics. Bar heights indicate the median
of an ensemble of 20 separate models, and the error bars depict the IQR.
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whereas ensemble range and higher-order statistic informa-
tion are randomized. These findings are supported by obser-
vations in Schulz and Lerch (2022b), who note that omitting
the standard deviation of the auxiliary ensemble predictors
helps to improve the quality of the network predictions.
Larger importance ratios of the scale-related and higher-order
DOFs are observed, for example, for T-G at lead time 12 h
and ASOB-S at lead time 6 h. However, these cases coincide
with increased correlations between the respective perturba-
tion patterns and the location-preserving perturbations, which
show fractional skill ratios close to unity. This may be seen as
an indication that the relevance of the remaining DOFs must
in part be attributed to information overlap with the location-
related DOFs. Note here that the strong information overlap
between locationlike and scalelike metrics for ASOB-S pre-
dictors at 6-h lead time is again an artifact due to the diurnal
cycle. At 6-h lead time, a substantial fraction of the ASOB-S

predictor ensembles falls to zero mean and no variance due to
the lack of solar irradiation, which impacts the correlation val-
ues as well as the effectiveness of perturbations. WIND850 is
a corner case, in which the mean conditioning restores sub-
stantial amounts of the model skill but fails to restore the un-
perturbed performance completely. This indicates that, while
the ensemble mean is an important predictor, the remaining
DOFs deliver complementary information that modulates the
interpretation of the mean value. VMAX-10M, being the pri-
mary predictor, constitutes the only example for which no sin-
gle predictor is sufficient to restore the unperturbed model
skill, thus indicating that both ED- and ST-type models learn
to attend to the details of the ensemble distribution.

In surface temperature postprocessing, t2m is the primary
predictor and displays similar characteristics as VMAX-10M
in the wind-gust study. The mean-conditional shuffling of t2m
tends to become more effective in restoring the model skill

FIG. 5. As in Fig. 4, but for temperature postprocessing.
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with increasing lead time. This may be due to the decreasing
reliability of the EPS-based predictor ensembles with increas-
ing lead time. Similar patterns are observed also in the re-
maining predictors. While the model skill cannot be restored
with mean-only conditioning for 24-h lead time, the mean ap-
pears to become more informative for longer lead times. The
radiation parameter ssrd6 sticks out visually with high correla-
tions between location-related predictors, which occurs due to
the same reasons as for the ASOB-S parameter discussed
before.

8. Discussion and conclusions

We have introduced permutation-invariant NN architec-
tures for postprocessing ensemble forecasts by selecting two
exemplary model families and adapting them to postprocess-
ing. In two case studies, using datasets for wind gusts and
surface temperature postprocessing, we evaluated the model
performance and compared the permutation-invariant models
against benchmark models from prior work. Our results show
that permutation-invariant postprocessing networks achieve
state-of-the-art performance in both applications. All permu-
tation-invariant architectures outperform both the raw en-
semble forecast and conventional postprocessing via EMOS
by a large margin, but systematic differences between the
(more complex) permutation-invariant models and existing
NN-based solutions are very minor and can mostly be attrib-
uted to differences in the distribution parameterization. Qual-
itatively similar results were observed for extreme events in
both case studies but are not shown explicitly in the interest
of brevity.

Based on a subsequent assessment of the permutation im-
portance of ensemble-internal DOFs, we have seen that for
many auxiliary ensemble predictors, preserving information
about the ensemble mean is sufficient to maintain almost the
complete information about the postprocessing target, while
more detailed information is required about the primary pre-
dictors. These findings are consistent with prior work and are
more comprehensive due to the larger variety of summary sta-
tistics considered in the analysis.

A striking advantage of the permutation-invariant models
lies in the generality of the approach, that is, the models pos-
sess the flexibility of attending to the important features in
the predictor ensembles and the capability of identifying
those during training (as shown in our feature analysis). As
the added flexibility comes with a surplus of computational
complexity, the benefits of the respective methods should be
weighed carefully. In operational settings, it may be reasonable
to consider permutation-invariant models, as proposed here, as a
tool for identifying relevant aspects of the input data. The gained
knowledge can then be used for data reduction and to train
reduced models with a more favorable accuracy–complexity
trade-off.

Despite this, the apparent similarity between the perfor-
mance of the ensemble-based and summary-based models

remains baffling and requires further clarification. Supposing
capable ensemble predictions, it seems reasonable, from a
meteorological perspective, to expect that postprocessing
models that operate on the entire ensemble can learn more
complex patterns and relationships than models that operate
on simple summary statistics. The lack of substantial improve-
ments, as seen in this study, admits different explanations.
One possibility would be that the available datasets are insuf-
ficient to establish statistically relevant connections between
higher-order ensemble-internal patterns and the predicted
variables. Problems could arise, for example, due to insuffi-
cient sample counts of the overall datasets or due to ensemble
sizes being too low to provide reliable representations of the
forecast distribution. Yet another reason could lie in the fact
that the generation mechanisms underlying the NWP ensem-
ble forecasts fail to achieve meaningful representations of
such higher-order distribution information, which would raise
follow-up questions regarding the design of future ensemble
prediction systems. Given the impact and potential implica-
tions of the latter alternative, future work should examine the
information content of raw ensemble predictions in more de-
tail. The proposed permutation-invariant model architectures
may help to achieve this, for example, by conducting postpro-
cessing experiments with dynamical toy systems that are
cheap to simulate and simple to understand, such that large
datasets can be generated and evidence for both hypotheses
can be distinguished.
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APPENDIX A

Description of Predictors

The descriptions of the ensemble-valued predictor varia-
bles used in both case studies are shown in Tables A1 and
A2 for wind gust and surface temperature postprocessing,
respectively. The predictors listed in Table A3 are not en-
semble-valued and are used equally in both case studies.
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TABLE A1. Description of meteorological parameters for wind-gust postprocessing (cf. Schulz and Lerch 2022b). Target variable:
wind speed of gust (observations). Primary predictor: VMAX-10 m (ensemble forecast).

Short name Units Full name Levels

VMAX m s21 Max wind, i.e., wind gusts 10 m
U m s21 U component of wind 10 m, 1000 hPa, 950 hPa, 850 hPa,

700 hPa, 500 hPa
V m s21 V component of wind 10 m, 1000 hPa, 950 hPa, 850 hPa,

700 hPa, 500 hPa
WIND m s21 Wind speed, derived from U and V via

������������

U2 1 V2
√

10 m, 1000 hPa, 950 hPa, 850 hPa,
700 hPa, 500 hPa

OMEGA Pa s21 Vertical velocity (pressure) 1000, 950, 850, 700, 500 hPa
T K Temperature Ground-level, 2m, 1000 hPa, 950 hPa,

850 hPa, 700 hPa, 500 hPa
T-D K Dewpoint temperature 2 m
RELHUM % Relative humidity 1000, 950, 850, 700, 500 hPa
TOT-PREC kg m22 Total precipitation (accumulated) }

RAIN-GSP kg m22 Large-scale rain (accumulated) }

SNOW-GSP kg m22 Large-scale snowfall}water equivalent (accumulated) }

W-SNOW kg m22 Snow depth water equivalent }

W-SO kg m22 Column integrated soil moisture Multilayers: 1, 2, 6, 18, 54
CLC % Cloud cover T: total; low (L): soil to 800 hPa;

middle (M): 800 to 400 hPa;
high (H): 400 to 0 hPa

HBAS-SC m Cloud base above mean sea level, shallow connection }

HTOP-SC m Cloud top above mean sea level, shallow connection }

ASOB-S W m22 Net shortwave radiation flux Surface
ATHB-S W m22 Net longwave radiation flux (m) Surface
ALB-RAD % Albedo (in shortwave) }

PMSL Pa Pressure reduced to mean sea level }

FI m2 s22 Geopotential 1000, 950, 850, 700, 500 hPa

TABLE A2. Description of meteorological parameters for surface temperature postprocessing (EUPPBench, cf. Demaeyer et al. 2023).
Target variable: t2m (observations). Primary predictor: t2m (ensemble forecast).

Short name Units Full name Levels

t K Temperature 2 m, 850 hPa
mx2t6 K Max temperature (6 h preceding) 2 m
mn2t6 K Min temperature (6 h preceding) 2 m
z m2 s22 Geopotential 500 hPa
u m s21 U component of wind 10 m, 100 m, 700 hPa
y m s21 V component of wind 10 m, 100 m, 700 hPa
p10fg6 m s21 Max wind gust in the last 6 h 10 m
q kg kg21 Specific humidity 700 hPa
r % Relative humidity 850 hPa
cape J kg21 Convective available potential energy }

cin J kg21 Convective inhibition }

tp6 m Total precipitation (6 h preceding) }

cp6 m Convective precipitation (6 h preceding) }

tcw kg m22 Total column water }

tcwv kg m22 Total column water vapor }

tcc 0–1 Total cloud cover }

vis m Visibility }

sshf6 J m22 Surface sensible heat flux (6 h preceding) }

slhf6 J m22 Surface latent heat flux (6 h preceding) }

ssr6 J m22 Surface net shortwave (solar) radiation (6 h preceding) }

ssrd6 J m22 Surface net shortwave (solar) radiation downward (6 h preceding) }

str6 J m22 Surface net longwave (thermal) radiation (6 h preceding) }

strd6 J m22 Surface net longwave (thermal) radiation downward (6 h preceding) }

swv m3 m23 Volumetric soil water l1: 0–7 cm
sd m Snow depth–water equivalent }

st K Soil temperature l1: 0–7 cm
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TABLE A3. Auxiliary predictors for both datasets (cf. Schulz and Lerch 2022b).

Predictor Type Description

yday Temporal Cosine transformed day of the year
lat Spatial Latitude of the station
lon Spatial Longitude of the station
alt Spatial Altitude of the station
orog Spatial Difference of station altitude and model surface height of nearest grid point
loc-bias Spatial Mean bias of ensemble forecasts, computed from the training data
loc-cover Spatial Mean coverage of ensemble forecasts, computed from the training data
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APPENDIX B

Model Hyperparameters

Table B1 displays the hyperparameter settings for all
model configurations used in the experiments. For details
about the hyperparameter tuning process, we refer to the
supplemental material.
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1. Hyperparameter selection

Appropriate tuning of the training- and architecture-

related hyperparameters of the respective model classes

is essential to achieve a fair comparison. In what follows,

we detail the hyperparameter settings chosen for the re-

spective model classes, as well as the methods that led to

the decision. To find good sets of hyperparameters for

all model variants, we follow the suggestions by Godbole

et al. (2023) and conduct an multi-phase parameter search,

consisting of randomized parameter space exploration, fol-

lowed by automated tuning of the hyperparameters using

Bayesian optimization, and ablations to avoid excessive

complexity of the models.

a. Model classes

As shown in Fig. 1, we impose a hierarchical classifica-

tion on the model types for parameter tuning. On the high-

est level, we distinguish ensemble-based from summary-

based models, which is the most severe differentiation,

since models of both groups are trained on data with dif-

ferent information content. On the second level, we group

the models by the architecture. This is relevant mainly for

ensemble-based models, where encoder-decoder models

process information differently from transformers. Fol-

lowing Schulz and Lerch (2022), all summary-based mod-

els use simple MLPs. The third level distinguishes with

respect to posterior parameterization, i.e., DRN-type vs.

BQN-type output parameterization. Note that all DRN

models parameterize a truncated logistic distribution, both

for wind-gust and temperature postprocessing. The fourth

level is relevant only for ensemble-based encoder-decoder

models and separates the models by the merging strategy

used between member-wise encoder and decoder.

Corresponding author: Kevin Höhlein, kevin.hoehlein@tum.de
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Fig. 1. Model hierarchy for parameter tuning. Models are grouped

by 1) input type, 2) architecture, 3) posterior parameterization and 4)

merging strategy (encoder-decoder models only).

b. Initial exploration

For each model class, we execute a number of initial

trial runs to gain an understanding of how different pa-

rameters affect the model performance. Performance was

assessed by comparing average losses on the training and

validation parts of the respective datasets. We found that

the batch size for training can be chosen flexibly, as long

as the remaining parameters are tuned accordingly. We

saw that similar sets of training-related hyperparameters

(learning rate, patience for early stopping, dropout rates)

lead to different results 1) when predicting different lead

times and 2) when changing architecture-related hyper-

parameters (number of layers, channels per layer) of the

respective model classes. Especially encoder-decoder and

transformer models with larger MLP components appeared

to profit from dropout-based regularization. We also found

that the dimension of the station embedding affects the

performance of ensemble models. Starting from a default

value of 10 (cf. Schulz and Lerch 2022), trials showed that

smaller values improve the quality of single-model predic-

1
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tions but penalize the accuracy of the ensemble prediction,

while larger values lead to overall reduced performance.

The station embedding was therefore not considered in the

subsequent parameter search. Similarly, the model depth

was excluded early on as a hyper parameter since there was

no indication that increasing the model depth to more than

three layers (three attention blocks for set transformers)

leads to better results.

c. Bayesian parameter search

Based on the findings of the parameter space explo-

ration, we designed Bayesian optimization experiments for

the ensemble-based model classes. The complete set of

hyperparameters is split into training-related (cf. Tab. 1)

hyperparameters and architecture-related hyperparameters

(cf. Tab. 2). Bayesian search is used for the former,

grid search was found more reliable for the latter. During

Bayesian tuning, we use the Bayesian optimization func-

tionality of Ax (https://github.com/facebook/Ax)

and optimize for a multi-objective, consisting of validation

loss and training time. Due to time constraints, we train

only one model per parameter configuration, i.e., ensem-

bling multiple models is not considered. Once an optimal

setting was identified, a full ensemble of 20 models is

trained and the best configuration of architecture-related

parameters wrt. validation scores is selected. To save addi-

tional time in tuning encoder-decoder models, we choose

to tune parameters only for the attention-based merger,

which was found to yield the best results in the early explo-

ration phase. Other merger configurations are considered

in ablation studies. The respective parameter selections

and ranges for parameter search are summarized in Tabs. 1

and 2. Hyperparameters are tuned separately for different

datasets and lead times, since models for larger lead times

were found to require stronger regularization. The final

hyperparameters are shown in Table B1 in Appendix B of

the main paper.

d. Ablations

To evaluate the effect of various changes in model ar-

chitecture, we conduct ablation experiments, in which we

disable specific aspects of the training or replace them by

other mechanisms. We conduct the following ablations:

No dropout: For ensemble-based models, the Bayesian

parameter search indicated that randomized dropout

during training can improve model performance. To

evaluate the veracity of this finding for the full en-

semble model, we retrain an ensemble of 20 mod-

els with optimal Bayesian hyperparameters but with

dropout disabled, and evaluate the performance of

10-member average models. The results show that

dropout slightly worsens CRPS as well as PI length

Table 1. Search space of training-related hyperparameters.

Model class Parameter Range

DRN learning rate
[

10−5
, 10−2

]

patience [12, 24]

BQN learning rate
[

10−5
, 10−2

]

patience [12, 24]

ED-DRN learning rate
[

10−5
, 10−2

]

patience [12, 24]

encoder dropout rate [5× 10−3
, 0.5]

decoder dropout rate [5× 10−3
, 0.5]

ED-BQN learning rate
[

10−5
, 10−3

]

patience [12, 24]

encoder dropout rate
[

5× 10−3
, 0.5

]

decoder dropout rate
[

5× 10−3
, 0.5

]

ST-DRN learning rate
[

10−5
, 10−3

]

patience [8, 24]

transformer dropout rate [5× 10−3
, 0.5]

decoder dropout rate [5× 10−3
, 0.5]

ST-BQN learning rate
[

10−5
, 10−3

]

patience [8, 24]

transformer dropout rate
[

5× 10−3
, 0.5

]

decoder dropout rate
[

5× 10−3
, 0.5

]

Table 2. Selection of architecture-related hyperparameters.

Model class Parameter Values

DRN channels (first layer) 32, 48, 64

BQN channels (first layer) 32, 48, 64

polynomial degree 8, 12, 16

ED-DRN channels (encoder) 48, 64

channels (decoder) 48, 64

ED-BQN channels (encoder) 48, 64

channels (decoder) 48, 64

polynomial degree 8, 12, 16

ST-DRN channels (transformer) 48, 64

channels (decoder) 48, 64

ST-BQN channels (transformer) 48, 64

channels (decoder) 48, 64

polynomial degree 8, 12, 16

for DRN-type ED models. For the final comparison,

dropout is therefore disabled in this class.

1D vs. 2D yearday embedding: In contrast to the orig-

inal DRN and BQN Schulz and Lerch (2022),

ensemble-based models in this study use a 2D em-

bedding of the day of year information through sine

in cosine modes, which was found profitable during

the initial exploration. We evaluate the effect of using
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both variants but do not find significant differences

upon closer inspection.

Spherical vs. plain lat-lon embedding: In contrast to

the original DRN and BQN Schulz et al. (2021),

ensemble-based models in this study use a 3D em-

bedding of station positions in terms of spherical co-

ordinates. The 3D embedding offers a more accurate

representation of the spherical geometry of the Earth,

which may have an advantage when considering sta-

tions all around the globe. We ablate this design

choice and supply the models with plain latitude- and

longitude coordinates instead (whitened and normal-

ized). For the data considered in this study, the loca-

tion embedding is found to be of minor importance.

We attribute this to the fact that for both datasets all

stations are located in Europe, such that potential dis-

tortions due to coordinate projections are sufficiently

small to not affect model performance.

Choice of the merger: We compare the model perfor-

mance of ensemble-based encoder-decoder models

with different merging algorithms. Attention-based

merging is overall favorable for both DRN- and BQN-

type models. For DRN, the results for long lead times

suggest that the training outcomes suffer from insta-

bility and don’t always converge to good local optima.

BQNs are less prone to this behaviour.

2. Additional results

a. Comparison of PI length for DRN and BQN

Here, we briefly comment on the differences arising

from the underlying distribution type, which agree for both

data sets considered in this work. Plotting the PI length

on the nominal level for different choices thereof in Fig. 2,

we find that the choice of the forecast distribution defines

the magnitude of the PI length. Up to a nominal level of

around 90%, the PI lengths of the DRN and BQN forecasts

both increase linearly at the same length, but for higher

levels, they start to deviate as the PI lengths of the DRN

models increase exponentially, while that of the BQN mod-

els still increase linearly. This can be explained by the fact

that the BQN forecast distribution has compact support

defined by the coefficients, whereas the distributions of

DRN models are heavy-tailed with support on the positive

real line. However, a detailed comparison of these two

approaches for modeling tails of distributions in terms of

predictive accuracy and appropriateness is not discussed

in the following.

The data sets we consider include ensembles of three

different sizes with ensemble ranges that correspond to PIs

at the 83.33%, 90.48%, and 96.15% levels. Comparing

the BQN and DRN forecasts for these different levels, we

find that for 11-member EUPPBench reforecasts the DRN
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Fig. 2. PI length as a function of the nominal level for 11-member

reforecast and 51-member forecast ensembles. PI lengths are computed

based on averaged predictions of 10-member model ensembles. The

shown values are averaged over 50 such ensemble models. The vertical

dashed lines indicate the nominal level of the underlying ensemble.

models result in sharper forecasts, while the BQN mod-

els generate sharper forecasts for the 51-member ensemble

forecasts. In the case of the wind gust data, the 20-member

ensemble corresponds to a nominal level close to the in-

tersection of the PI length curves, hence the differences

between the distribution types are less pronounced than for

the EUPPBench data.

Fig. 3 shows the relative deviation of the PI lengths

of the permutation-invariant models from the mean-based

models. In general, we cannot conclude that either of the

approaches produces sharper forecasts, in general. Com-

paring the behavior over the nominal levels, we find that

differences in the PI lengths are constant for the DRN

models, while we see a trend in the differences for the

BQN models, namely, either a monotonic increase or a

decrease. This means that the permutation-invariant BQN

models lead to different behavior in the tails of the distri-

bution. In the case of wind-gust postprocessing, we see a

decrease in the deviation, which corresponds to a lighter

tail. For both temperature datasets, we see an increase in

deviation for 24h lead time, i.e., a heavier tail, whereas for

120h lead time a decrease is seen as in the wind-gust case.

At lead time 72h, the difference remains roughly constant

with values close to zero on reforecast data, indicating ap-

proximately equal weighting of the tails. On the forecast

dataset, a slight negative trend is observed. Further, the

confidence bands, corresponding to the 95% interval of the

mean, show that the tendency is fixed for each of the nine

different forecast cases.

b. Variability over neural network resamples

Comparing the differences between the permutation-

invariant model classes for the wind gust data, we find
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Fig. 3. Relative deviation of PI length from the mean-based model

as a function of the nominal level for 11-member reforecast and 51-

member forecast ensembles. PI lengths are computed based on averaged

predictions of 10-member model ensembles. The shown values are

averaged over 50 such ensemble models. PI lengths for DRN and BQN

are considered as the baseline for the respective permutation-invariant

models. The vertical dashed lines indicate the nominal level of the

underlying ensemble.

only minor differences. Fig. 4 explores these differences

in more detail. Shown are boxplots of the CRPS and PI

length of the permutation-invariant network classes dis-

tinguished by the employed ensemble merging algorithm.

For all lead times and network classes, the same pattern

is observed. Mergers based on extreme values such as the

minimum or maximum result in a worse CRPS and wider

PIs than those based on calculations of the mean and at-

tention models. The same pattern as for the extreme value

models is observed for the set transformer models, that is,

a worse CRPS and wider PIs. With respect to the bench-

mark models, we find that the CRPS is larger for almost all

cases considered. In terms of the PI length, we find that the

mergers based on the mean mostly result in slightly smaller

PIs. The overall differences observed are however only on

a small scale. Attention-based merging is employed for all

experiments in the main text.

c. DRN for EUPP: Truncated logistic vs. truncated normal

posterior

To maintain close similarity between the wind gust and

the EUPPBench case study, we construct DRN models

that parameterize a truncated logistic posterior distribu-

tion, analogous to the case of wind gust postprocessing.

Note that temperature observations )obs are recorded in

Kelvin, such that )obs > 0 holds, which justifies the trun-

cated logistic distribution as a valid choice for temperature

postprocessing. However, a more common choice would

be the (truncated) normal distribution (e.g., Gneiting et al.

2005; Rasp and Lerch 2018). To ensure a fair comparison,

we validate here that the design choice of using the trun-

cated logistic posterior does not affect the postprocessing

capabilities of DRN negatively.

Tab. 3 displays the prediction metrics as obtained for

DRN models with truncated logistic (DRN-TL) and nor-

mal posterior (DRN-TN). Note that DRN-TN has under-

gone the same hyperparameter search as DRN-TL mod-

els and that the model selection was based on validation

scores, not on the test scores that are shown in Tab. 3.

DRN-TN models are identical in architecture to the DRN-

TL counterparts, including the softmax constraint for both

the location and the scale parameters, but are trained to op-

timize an analytical expression of the CRPS for a normal

distribution Gneiting et al. (2005), given the training data.

For evaluation, we compute the CRPS based on a zero-

truncated normal distribution. The distinction is made to

avoid numerical instabilities that are caused by the trunca-

tion terms during training. Due to the magnitude of the

temperature observations and the expected value range of

the fitted distributions, )obs ∼ 300K, Δ)obs ∼ ±30K, how-

ever, this does not have a large effect on the final outcome.

As seen in Tab. 3, we find that DRN-TL and DRN-TN score

roughly identically in terms of CRPS. Due to the heavier

tails, the PI length of DRN-TL models is slightly larger,

and the coverage probabilities are met slightly more accu-

rately for DRN-TN. Fig. 5 displays calibration histograms

for both model variants. We note that both models over-

estimate high-temperature extremes slightly at lead times

24h and 72h on reforecast data, and underestimate low-

temperature extremes at lead times 72h and 120h. Similar

findings apply to the case of forecast data. Despite minor

differences, both forecasts appear overall well-calibrated

and we do not see reasons to expect qualitatively different

results in our study when exchanging the truncated logistic

posterior with the truncated normal.

d. BQN: Full ensemble vs. summary statistics as predic-

tors

To enable a more direct comparison between DRN- and

BQN-type models, we deviate from prior work and train

MLP-based models with BQN posterior using the mean

and the standard deviation of the primary predictor ensem-

ble (t2m for EUPPBench, VMAX-10M for wind gusts).

This differs from the work by Bremnes (2020) and Schulz

and Lerch (2022), who use the full ensemble in sorted order

as input to the BQN models. Here we validate this design

decision and show that both approaches yield qualitatively

similar results. The case of EUPPBench is of particular

interest here, since ensemble-based models have to cope

with different ensemble sizes in the reforecast and forecast

test cases.

But first, we compare the forecasts for the wind gust

data set. Table 4 shows the evaluation metrics for the

different lead times, where we observe almost identical
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Lead Time 24h 72h 120h

Dataset Method CRPS PI length PI cov. CRPS PI length PI cov. CRPS PI length PI cov.

Reforecasts DRN-TN 0.67 3.27 83.87 0.86 4.14 83.41 1.20 5.93 84.17

DRN-TL 0.67 3.28 84.16 0.86 4.27 84.58 1.19 5.70 83.09

Forecasts DRN-TN 0.64 5.01 96.91 0.81 6.58 97.35 1.14 8.62 96.83

DRN-TL 0.64 5.48 97.92 0.80 7.21 98.37 1.13 9.58 98.28

Table 3. Test scores for DRN architectures with truncated normal (TN) and truncated logistic (TL) posterior on EUPPBench data for different

lead times. PI length and coverage are computed for a significance level corresponding to an 11-member ensemble (∼ 83.33%) for reforecasts and

a 51-member ensemble (∼ 96.15%) for forecasts.
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Fig. 5. Calibration of postprocessing models on 11-member EUPP-

Bench reforecast ensembles (top) and 51-member forecast ensembles

(bottom).

results. The negligible differences seen only in the PI

lengths and coverages might also be a result of the different

realizations of the underlying network ensembles trained.

For the wind gust data, we conclude that there are no

differences in the predictive performance between the two

variants.

Tab. 4 shows the model scores on EUPPBench refore-

cast and forecast datasets, comparing a BQN model in-

formed with summary statistics (mean and standard devia-

tion, BQN-Sum) and the full ensemble model (BQN-Ens).

Both models adhere to the hyperparameter configuration

listed in Appendix 1. Most notably, BQN-Ens comes with a

slightly larger PI length on reforecast data at 24h lead time,

while yielding the same CRPS as BQN-Sum. According

to PI coverage, BQN-Sum matches the theoretical value of

83.33% more accurately. For the remaining lead times, the

differences are negligible. To make BQN-Ens applicable

to the forecast dataset, which comprises more members per

ensemble, we distinguish randomized subsampling (BQN-

Ens-R, 11 out of 51 members, sampled without replace-

ment) and quantile-based subsampling (BQN-Ens-Q). For

the latter, we sort the 51-member ensemble in ascending

order and pick the members with rank (51+1)/(11+1) ∗ 8,

for 8 = 1, ...,11, as the predictor ensemble. BQN-Sum

yields marginally sharper forecasts at 24h and 120h lead

time. The differences between the subsampling variants

are negligible. Fig. 6 displays calibration histograms for

all model variants. All histograms exhibit a wave-like

structure, but appear otherwise very similar, despite slight

differences in the placement of the distribution peaks. The
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Fig. 6. Calibration of postprocessing models on 11-member EUPP-

Bench reforecast ensembles (top) and 51-member forecast ensembles

(bottom).

120h case achieves the most uniform calibration, overall.

Again, hardly any differences are seen between the sub-

sampling variants. We conclude that it is well justified to

replace the full ensemble with the summary-based predic-

tors for BQN models

3. Additional figures

Here we include figures, which are obtained using the

methods in the main paper but are too exhaustive to in-

clude in the main text. We add an overview of the com-

plete set of permutation feature importance values, shown

in Fig. 7. We also provide illustrations of the ensemble-

oriented permutation feature importance for all variables

and lead times. The data for wind gust postprocessing are

shown in Figs. 8 to 16, the data for the EUPPBench case

are shown in Figs. 17 to 20. Note that for some predictors

the bar charts show large variations. The reason for these

behaviors is extreme outliers, which distort the statistics.

However, such extreme cases are only observed for param-

eters of limited permutation importance (cf. Fig. 3 in the

main text).
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Lead Time 6h resp. 24h 12h resp. 72h 18h resp. 120h

Dataset Method CRPS PI length PI cov. CRPS PI length PI cov. CRPS PI length PI cov.

Wind gusts BQN-Sum 0.79 4.60 90.23 0.85 4.90 89.65 0.95 5.56 90.70

BQN-Ens 0.79 4.61 90.20 0.85 4.94 89.91 0.95 5.56 90.65

Reforecasts BQN-Sum 0.68 3.19 82.90 0.87 4.43 85.87 1.19 5.91 84.75

BQN-Ens 0.68 3.37 84.92 0.87 4.43 85.93 1.19 5.90 84.58

Forecasts BQN-Sum 0.64 4.32 94.13 0.80 6.52 97.23 1.13 9.18 97.58

BQN-Ens-Q 0.65 4.97 96.36 0.80 6.50 97.11 1.13 9.31 97.65

BQN-Ens-R 0.65 5.00 96.39 0.81 6.56 97.11 1.13 9.30 97.65

Table 4. Test scores for BQN architectures with predictors based on the full ensemble (BQN-Ens) of primary predictors and predictors based

on summary statistics (mean and standard deviation, BQN-Sum). PI length and coverage are computed for a significance level corresponding to a

20-member ensemble (∼ 90.48%) for the wind gust data, an 11-member ensemble (∼ 83.33%) for the EUPPBench reforecasts, and a 51-member

ensemble (∼ 96.15%) for the EUPPBench forecasts. In the case of the EUPPBench forecast data with ensemble-valued predictors, the full 51-

member ensemble is subsampled randomly (BQN-Ens-R) or based on quantiles (BQN-Ens-Q) to match the 11-member training dataset.
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Fig. 7. Permutation feature importance for summary-based networks (top) and permutation-invariant models (bottom) for EUPPBench and wind

gust postprocessing. Predictors named ens in the top figure correspond to the primary predictors t2m and VMAX-10M, respectively. The suffix sd

indicates the ensemble standard deviation of the predictor. Same as Fig. 3 in the main text.
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Fig. 8. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 1). Same as Fig. 4 in the main text.
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Fig. 9. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 2). Same as Fig. 4 in the main text.
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Fig. 10. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 3). Same as Fig. 4 in the main text.
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Fig. 11. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 4). Same as Fig. 4 in the main text.
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Fig. 12. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 5). Same as Fig. 4 in the main text.
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Fig. 13. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 6). Same as Fig. 4 in the main text.
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Fig. 14. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 7). Same as Fig. 4 in the main text.
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Fig. 15. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 8). Same as Fig. 4 in the main text.
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Fig. 16. Importance of ensemble-internal DOFs for wind-gust postprocessing (predictor batch 9). Same as Fig. 4 in the main text.
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Fig. 17. Importance of ensemble-internal DOFs for temperature postprocessing (predictor batch 1). Same as Fig. 5 in the main text.
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Fig. 18. Importance of ensemble-internal DOFs for temperature postprocessing (predictor batch 2). Same as Fig. 5 in the main text.



20

24h: t2m

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

24h: t850

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

24h: tcc
m

ea
n

m
ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

24h: tcw

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

24h: tcwv

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

24h: tp6

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

24h: u10

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: t2m

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: t850

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: tcc

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: tcw

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: tcwv

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: tp6

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

72h: u10

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: t2m

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: t850

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: tcc

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: tcw

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: tcwv

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: tp6

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

120h: u10

m
ea

n
m

ax m
in st
d

ra
ng

e iq
r

sk
ew ku
rt

Perturbation

Fig. 19. Importance of ensemble-internal DOFs for temperature postprocessing (predictor batch 3). Same as Fig. 5 in the main text.
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Fig. 20. Importance of ensemble-internal DOFs for temperature postprocessing (predictor batch 4). Same as Fig. 5 in the main text.
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Topographic Visualization of Near-surface Temperatures

for Improved Lapse Rate Estimation

Kevin Höhlein , Timothy Hewson , and Rüdiger Westermann

Abstract—Numerical model forecasts of near-surface temperatures are prone to error. This is because terrain can exert a strong
influence on temperature that is not captured in numerical weather models due to spatial resolution limitations. To account for the
terrain height difference between the forecast model and reality, temperatures are commonly corrected using a vertical adjustment
based on a fixed lapse rate. This, however, ignores the fact that true lapse rates vary from 1.2K temperature drop per 100m of ascent
to more than 10K temperature rise over the same vertical distance. In this work, we develop topographic visualization techniques
to assess the resulting uncertainties in near-surface temperatures and reveal relationships between those uncertainties, features in
the resolved and unresolved topography, and the temperature distribution in the near-surface atmosphere. Our techniques highlight
common limitations of the current lapse rate scheme and hint at their topographic dependencies in the context of the prevailing weather
conditions. Together with scientists working in postprocessing and downscaling of numerical model output, we use these findings to
develop an improved lapse rate scheme. This model adapts to both the topography and the current weather situation. We examine the
quality and physical consistency of the new estimates by comparing them with station observations around the world and by including
visual representations of radiation-slope interactions.

Index Terms—Topographic Visualization, Surface Temperature, Spatio-temporal Data.

1 INTRODUCTION

One of the most important parameters for weather forecast users is tem-
perature. Ordinarily, and by convention, this means "2 m temperature"
– i.e., measured ∼ 2 m above ground. Numerical weather prediction
models are generally good at forecasting 2 m temperatures over flat
terrain but can struggle elsewhere. This is because 2 m temperature
depends strongly on altitude and because (away from plains) the al-
titude of a selected site does not generally equal the altitude of the
corresponding numerical model region. Numerical models have a finite
spatial resolution, and within a grid box, all terrain is implicitly at the
same height. For instance, the global model of the European Centre for
Medium-range Weather Forecasts (ECMWF) operates on grids with
a box size of approximately 9 km by 9 km, which is far too coarse
to resolve topographic details. Figure 1 illustrates this by comparing
terrain representations of the same geographical region at different
resolutions. Shown is the terrain around Mont Blanc, as an example,
at 9 km and 1 km resolution. Topographic extremes are smoothed out
significantly or dismissed entirely in the coarser representation.

Downscaling methods are needed to correct the model outputs and
remove the low-res bias. An introduction to the goals and princi-
ples of basic downscaling methods can be found, e.g., in Wilby and
Wigley [55]. To correct near-surface temperatures for terrain altitude
mismatches, a common approach is modeling the local lapse rate –
i.e., the rate of temperature change with height – and using the terrain
height difference as a multiplier for this to estimate the required cor-
rection. Simple correction schemes apply a fixed lapse rate such that,
e.g., temperatures always drop, going upwards, by 0.65 K per 100 m,
or 6.5 K/km, as specified in the standard Atmosphere, defined by the
International Civil Aviation Organization (ICAO) [22].

In practice, however, lapse rates vary a lot in different situations. In
sunny weather, near-surface air tends to be markedly warmer than air
higher up. The temperature drop rate then reaches around 10 K/km
before the air masses become unstable to convection. Indeed, values of
12 K/km can be reached temporarily during strong insolation.
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(a) (b)

Fig. 1: Comparison of the orography around Mont Blanc at different
resolutions. (a) Average grid spacing 9 km, as used in the ECMWF
medium range model; (b) Average spacing 1 km.

In other scenarios, the drop rate can fall below 5 K/km and even
reverse its sign. Weather situations where the temperature rises with
increasing altitude are called inversions. In calm and clear weather
conditions, inversions can lead to positive temperature gradients of,
say, 100 K/km across tens or hundreds of meters. Diurnal variations
in lapse rate are also commonplace, especially in light wind situations
with predominantly clear skies. Figure 2 illustrates temperature profiles
associated with regular and more unusual weather conditions.
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Fig. 2: Vertical temperature profiles in the bulk atmosphere above se-
lected grid points in the domain of Figure 1. Each line represents the
temperature profile over one grid point. Dashed lines are shown for refer-
ence. (a) Temperature profiles on a summer afternoon (July 23, 2021,
1400 UTC); the profiles are dominated by regular negative temperature
gradients. (b) Inversion situation on a winter morning (December 19,
2021, 0600 UTC); at the lower end of the profiles, the temperature in-
creases with altitude, indicating an inversion situation close to the earth’s
surface. Towards the upper end of the profiles – i.e., away from the
surface – the regular temperature stratification is resumed.
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In this study, we set out to improve upon the fixed lapse rate assump-
tion by using 3D topographic visualizations to assist in understanding
forecast-observation mismatches and to evaluate and optimize an alter-
native adjustment approach based on dynamically varying lapse rates.
Through analysis of the immediate impact of adjustments to lapse rate
parameters on model temperature output, one can clarify how, when,
and where there is a high sensitivity, obtain enhanced process under-
standing, and eventually improve the predictions. On the one hand,
this requires a methodology to effectively locate sensitive behavior
precisely in space, but on the other, there is a need to contextualize
relative to the geospatial frame and simulated atmospheric processes.
To achieve both, we present topographic visualizations to assess the
sensitive behavior of estimated 2 m temperature to lapse rate definitions
and reveal relationships between sensitive regions, features in low- and
high-res orography, and the vertical temperature distribution in the
near-surface atmosphere.

Contribution

We propose an interactive visualization workflow to

• picture how downscaled 2 m temperature varies with height,

• identify common limitations of the current lapse rate scheme,
including its topographic dependencies in the context of the pre-
vailing weather conditions,

• compare low-res and station site near-surface temperatures and
visualize temperature distribution in the near-surface atmosphere,

• assess the downscaling accuracy by comparing with observations.

We use the proposed workflow for analyzing near-surface temper-
ature, downscaled from model data, i.e., orography and hourly tem-
perature fields, at (e.g.) 9 km spatial resolution to 1km. Our work is
motivated by the following analysis questions relevant to different user
groups in meteorology:

• To what degree do 2 m temperature values corrected with a
fixed lapse rate assumption make physical sense in different topo-
graphic/meteorological settings? (Q1)

• When fixed-lapse-rate-based correction fails, how do the result-
ing errors relate to temperature distribution in the near-surface
atmosphere? (Q2)

• What is the impact of changing the lapse rate formula, and how
well can such alternatives correct the 2 m temperature? (Q3)

• What is the accuracy of 2 m temperature fields, corrected in dif-
ferent ways, relative to independent surface station observations,
scattered across the terrain and expected to be imperfect due to
measurement and metadata errors in different classes? (Q4)

Q1 to Q4 are relevant to scientists working in postprocessing and
downscaling of numerical model output, as well as forecasters and
specialist forecast users where the emphasis shifts more to real-world
scenarios such as, e.g., operating a ski resort. The code for the project
is publicly available [21]

2 BACKGROUND AND RELATED WORKS

Our dynamic lapse rate scheme was motivated by work by Sheridan
et al. [46, 47]. These studies focused on small regions of the British
Isles, using data from a limited area model as input. Here, we expand
to use a global domain instead. In Sheridan et al. [46], the input data
spatial resolution (L) = 4 km, whilst in our case L = 9 km. Our data is
sourced from the operational global medium-range weather forecasts
produced by the ECMWF, where one author is based. This step down in
resolution presents some different challenges, although the overarching
scientific hypothesis we use is similar.

Regarding output data, Sheridan et al. [46] present values at a set of
measurement sites in a region of England; here, our aim is instead to
expand substantially by devising methods that are scalable to very-high-
resolution global grids (1 km in this study, see section 3), whilst still
using high-density observations for verification. Sheridan et al. [47]
describe some complex refinements to the earlier study, such as the

representation of cold air pooling in valleys. In this study, those are not
explicitly used, partly for simplicity and partly because topographic
characteristics worldwide are much more diverse than in the UK. From
the application perspective, our main aim is to improve upon the stan-
dard lapse rate assumption to deliver better forecasts whilst keeping the
new method explainable and intelligible for users.

2.1 Downscaling surface temperatures

Given low-res model outputs and higher-res orography fields, com-
mon operational downscaling schemes use horizontal interpolation (or
"nearest neighbor") in combination with a vertical correction according
to a constant lapse rate linked to the ICAO standard atmosphere [22].
Especially in regions with complex orography, this simplistic approach
leads to physically implausible or inaccurate predictions, which must
undergo further postprocessing to produce useful predictions (cf., e.g.,
Fiddes and Gruber [12]).

More elaborate downscaling and interpolation approaches have been
developed (e.g., [13, 19, 27, 28]) but often come with a significant com-
pute footprint (as in full dynamical downscaling – e.g., two of the
three methods in [25]) or data requirements and are therefore difficult
to deploy to global-scale applications. Several studies rely on observa-
tions (rather than model data) as input and derive a range of complex
techniques for handling those [13, 19, 28]. Whilst these engender more
vertical lapse rate complexity and potentially greater accuracy, the
techniques are considered too involved for global application. Also,
the needed high-density observations are missing in most parts of the
world. Numerical methods for downscaling meteorological variables
to sub-grid resolution use orography-related predictors at high spatial
resolution [11], downscale temperatures by interpolating pressure-level
data [12], or quantile mapping is applied in postprocessing to compen-
sate for station-wise statistical biases [10]. The authors of [13] suggest
fitting nonlinear vertical temperature profiles with compact parametric
forms emulating the vertical variation in temperature. The approach
uses a two-step procedure by first estimating a background temperature
field on coarse spatial resolution, which is then superimposed with the
vertical variation. So-called optimal interpolation methods have been
applied to derive high-res temperature maps from high-res observation
networks in the Alps region [52] and Norway [28]. The authors of [27]
propose to reduce elevation-related biases in reanalysis datasets using
an elevation correction method with internal lapse rates derived from
different reanalysis pressure levels.

2.2 Meteorological map visualisation

Analyzing the spatio-temporal distribution and relations between atmo-
spheric variables, measured and numerically simulated, is at the core
of meteorological data visualization. Central to this task is the use of
visualizations that can simultaneously provide views of topographic
information to reveal geospatial information, such as station locations
and terrain as spatial frames of reference [2], and the physical variables
on the terrain and in the surrounding atmosphere.

The process of meteorological map-making was discussed by Mon-
monier [33], and the review by Stephens et al. [49] focuses on proba-
bilistic information communication in atmospheric sciences. In several
follow-up summary reports, the tools and techniques in climate and
weather research have been reviewed [31, 34]. More recently, Rauten-
haus et al. [40], Aftal et al. [1], and Roeber et al. [42] have provided
overviews of atmospheric data visualization, including taxonomies of
techniques, discussions of differences between operational use and
research, as well as specific approaches in climate science.

Advice on the generation of meteorological maps to enable effective
human comprehension of the displayed data is given in the book by
Hoffmann et al. [20]. In operational settings, 2D surface maps using
color coding of temperature in combination with contour lines of sur-
face pressure are still most often used. These maps are augmented by
glyphs to indicate station data and linked to domain-specific diagrams.
Pressure level charts often visualize the 500 hPa level via 2D maps
to represent atmospheric flow at the mid-troposphere. In this context,
especially the effectiveness of visual attributes such as color has been
studied [48, 51]. Improved readability and better communication of
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(a) (b) (c)

Fig. 3: Low-res orography with near-surface temperature encoded in color. Station locations are shown as spheres, with their color displaying
temperature differences. Vertical lines below station sites provide a reference for locating the stations in the 2D domain. Dots on the terrain suggest
the presence of stations below the surface at this location. The shading of the spheres can be toggled off (a) or on (b) to enhance the readability of
the color scale. A 2D map-like view (c) is obtained by toggling a bird view with parallel projection along the elevation axis.

quantitative meteorological variables have been reported with the per-
ceptional linear hue-chroma-luminance color space. An evaluation
of maps and additional climate-specific visualization was pursued by
Dasgupta et al. [6], who provide a list of design guidelines for color and
visual saliency. Duebel et al. [7] discuss the visualization of geospatial
data on 2D height fields, i.e., terrain fields, and provide means to visu-
ally communicate simultaneously the terrain field and data, including
data-associated uncertainty.

Driven by the use of numerical ensemble simulations in atmospheric
science, the visualization of uncertainty has become a major research
area in recent years. Prevalent to many of the existing ensemble visual-
ization techniques is the question of visually conveying the ensemble
spread of atmospheric variables from different numerical simulations.
Guidance on the mapping of uncertain variables was provided by Kaye
et al. [24] and Retchless and Brewer [41], for instance, to combine color
and pattern for visualizing climate change parameters with uncertainty.
The survey by MacEachron [29] focuses explicitly on uncertainty in
geospatial science and cartography. Griethe et al. [14] categorize uncer-
tainty visualization into intrinsic and extrinsic techniques, depending on
whether existing graphical representations are modified to convey the
uncertainty or additional graphical primitives are added. Several sum-
maries shed light on the sources and models of uncertainty [3,23,38,53],
including categorizations of uncertainty visualization techniques de-
pending on whether stochastic uncertainty models or ensembles are
used. Representative examples of atmospheric data visualizations, to
name just a few, are statistical summaries [17, 37], spaghetti plots [43],
contour box plots [54] and streamline variability plots [9]. Most sim-
ilar to our method for visualizing confidence information across the
terrain are visualizations of the effect of uncertainty on the position and
structure of isosurfaces, e.g., by using surface displacements [15] and
confidence surfaces [35, 36, 56].

3 DATASETS

The dataset for our study comprises global temperature prediction data
generated by the medium-range prediction system at the ECMWF.
Data are available on a (cubic octahedral) reduced Gaussian grid [30]
(O1280) with global coverage and average grid spacing of 9 km. Model
predictions are retrieved for 2 m temperatures and volumetric tem-
peratures for the 20 lowest model levels. As the model operates on
terrain-following hybrid levels, volumetric visualizations require the
precomputation of the local geometric altitude of the respective model
levels. While the accurate elevation levels usually depend on the pres-
sure and humidity distribution of the weather situation, the altitude
of the lowest model levels is only marginally affected by such varia-
tions. Therefore, we approximate the model levels using a standard
atmosphere assumption. This procedure does not affect the quantitative
evaluation of the proposed methodology, as model-level data is not used
here. We have verified that the difference between approximate and
physical model levels is imperceptible for the visualizations. Hourly
data are available for the time period from April 1, 2021 to March
31, 2022, resulting in a total size of the dataset of approx. 2 TB. For

quantitative analysis, we use the full dataset. For visualizations, case
studies are selected based on meteorological prior knowledge (see sub-
section 5.1). As a test case for a region with complex topographic
structure, we select a geographic region between 43◦ and 49◦ latitude,
as well as 4◦ and 18◦ longitude. The region is located in central Europe
and covers the Alps mountain range and parts of northern Italy.

In addition to the model elevation field, we use a high-res orog-
raphy dataset with 1 km average grid spacing (O8000) provided by
the ECMWF and composited together from the following sources:
SRTM30 for 60S to 60N [8]; GLOBE for the north of 60N [16],
RAMP2 for the south of 60S [26], BPRC for Greenland [5], IS 50V
for Iceland [45]. A high-resolution land-sea mask is computed by
downsampling a watermask at 100m resolution [32] to the O8000 grid.

Global near-surface temperature observations are retrieved from
the HDOBS database of the ECMWF, comprising 86 Mio. records of
surface temperature, station location, and station elevation from more
than 16000 weather stations worldwide (see [39]). Missing values
and faulty observations reduce the number of valid records to 65 Mio.
observations at 14500 station sites. Data records cover the time between
April 1, 2021, and March 31, 2022, and are generally available multiple
times a day, with frequency depending on each station’s schedule.

4 METHODS

The topographic visualization workflow by which we address the re-
quirements from meteorology features three different visualization
options: the terrain map, including station data, the atmosphere layer,
and the elevation variability plot. Additionally, control panels facil-
itate data selection and interaction with data processing and display.
The result of applying our improved lapse rate scheme for tempera-
ture correction can be compared directly to station data. The tool is
implemented in Python, using the visualization library PyVista [50],
providing Python bindings to the visualization toolkit (VTK) [44]. The
graphical user interface is based on Python bindings of Qt5.

4.1 Terrain map

The terrain map panel displays the 3D terrain field augmented by intrin-
sic and extrinsic visual encodings [14] of additional information like
the temperature distribution, orography, or land cover. It provides an
interactive environment allowing one to switch between low- and high-
res terrain, showing differences in height between them and showing
differences between the low-res surface temperature and ground truth
station data. Via zooming, this interaction facilitates analysis at both
global and regional scales.

Figure 3 shows visualizations of the low-res terrain map with color
coding of temperature. For temperature fields, meteorology users de-
mand color maps that are compatible with the ones used in operational
forecasting. Specifically, temperature maps should clearly distinguish
temperatures with a resolution of around 2 K and follow a predefined
listed color map. For lapse rate-related color maps, the user prefers
color schemes that respect physical prior knowledge and allow for a
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(a) (b)

Fig. 4: Visualizing two terrains simultaneously. (a) High-res orography
occludes low-res geometry. (b) Color coding elevation difference on the
low-res domain helps to display positive and negative offsets equally.

simple comparison against the default lapse rate of −6.5 K/km. We ad-
dress this by employing diverging color maps with configurable opacity
functions (see subsection 5.1).

Temperature is encoded intrinsically by mapping the respective
fields to color. We employ an extrinsic encoding on spheres embedded
into the terrain to visualize stations and temperature measurements or
differences. We provide two different visualization options:

I) Spheres can be colored with a constant color indicating tempera-
ture or difference but without applying shading. This gives the most
unobscured display of temperature values, yet it makes comparison to
near-surface temperature on the terrain – whose colors are modulated
by surface shading – difficult (see Figure 3 (a)). Constant sphere color-
ing, however, is advantageous if a 2D map view is generated by looking
from above the terrain using an orthographic projection and showing
only unmodulated surface colors (see Figure 3 (c)).

II) Spheres can be shaded according to the selected lighting condi-
tions to let spheres stand out less in the visualization (see Figure 3 (b)).
We use the 3-light illumination model provided by PyVista, which sim-
ulates multiple lights to realize shading without letting certain sphere
parts become too dark. In either case, we use additional lines to em-
phasize how much above or below the terrain a station is located. Note
here that while accurate station positions are available, the terrain – re-
gardless of whether it is the low- or high-res version – never represents
orography perfectly. Since some stations are located below the terrain,
the user can use transparency for the terrain surface to let these stations
shine through, change the camera position, or invert the station offset to
show stations below the surface on the opposite side. The line color is
chosen to stand out against the white background and diverge from the
colors in the temperature color map toward the extreme temperatures.
Optionally, the user can switch to an alternative lighting mode, which
simulates parallel sunlight. This is useful for investigating factors that
are potentially impacting temperature anomalies (see subsection 5.1).

To show the height differences between the low- and high-res terrain,
both geometries can be visualized simultaneously, with the common
perceptional problems arising from such a visualization like occlusions
and clutter (see Figure 4 (a)). Note that in our use case, the low-res ter-
rain field is needed to show the relation between simulated temperatures
and either measured temperatures at stations or differences between
measured and corrected temperatures at stations. The high-res field is
needed to show the relation between station temperature mismatches
and high-res orographic features. Thus, the domain expert usually does
not use the option to show both terrains in one single view. Overall,
a direct depiction of the low-res terrain can be preferable due to its
simpler structure. Then, to indicate the high-res orography, height
differences can be encoded via color; this is shown in Figure 4 (b).

4.2 Atmosphere layer

The user can visualize atmospheric variables in a volumetric layer over
the terrain via the atmosphere layer. This functionality was deemed
important by domain experts because it shows the relationship between
lapse rate, orographic features, and the 3D temperature profiles, which
are predicted by the numerical weather model.

To enable such visualizations, the terrain-following model grid on
which a variable is given is loaded and can be shown as a colored
wireframe (Figure 5 (a)). Then, the gridded data can be rendered via

(a) (b)

(c)

Fig. 5: (a) The 3D terrain-following model grid as wireframe. (b) Direct
volume rendering of the 3D temperature field. (c) Slicing the 3D temper-
ature volume.

(a) (b)

Fig. 6: Direct volume rendering of vertical temperature gradient field,
including a slice plane encoding true elevation via color. (a) No offset
scaling. (b) With offset scaling. While the atmosphere layer and slice are
scaled, the terrain remains unchanged. Here, the red density feature in
the left-hand valley (see box) shows no connection to the valley bottom,
in contrast to the red areas on top of the mountains. Colors on the
reference slice indicate the red feature at around 250m altitude.

volume ray-casting, with or without the terrain (Figure 5 (b)). While
volume visualization can provide a rough overview of the temperature
profiles of bulk atmosphere, it hinders a fine granular analysis due to the
typical attenuation and blending effects inherent to volume rendering.

To enable a more unoccluded view of the values of a gridded vari-
able, we offer the possibility to select 2D slices oriented parallel to the
2D domain over which the terrain heightfield is given or aligned verti-
cally along the latitudinal or longitudinal direction. Slicing is shown in
Figure 5 (c). Importantly, since the slices can be moved along their re-
spective orthogonal direction, they can be positioned to capture certain
orographic features. From the color coding of temperature on the 2D
slices, the temperature distribution in the near-surface atmosphere can
be revealed effectively.

We provide visualizations of the vertical temperature gradient to
further shed light on the local weather situation, e.g., to indicate the
strength of inversions or cooling/heating effects over ground and water.
Figure 6 shows a volume rendering of this temperature gradient field
overlaid on the terrain. The elevation of the sliced terrain is color-coded
onto a vertical slice. Since the atmosphere layer is very narrow, the
gradient distribution cannot be perceived well. To mitigate this problem,
we enable offset rescaling, i.e., vertical scaling of only the extrinsic
parts of the visualization, such as the volumetric grid and the slice,
relative to the terrain altitude.

4.3 Elevation summary plots

Both the visualization of stations over the terrain and vertical slices
through the 3D temperature field can be seen as a vertical reference
indicator relative to the model orography. We provide another type of
visualization in a reference frame that is defined by an elevation quantile
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(a) (b)

(c)

Fig. 7: Overview of a vertical reference frame relative to the model
orography. (a) station sites, (b) terrain-following model levels, and (c)
elevation summary quantile levels with a summary radius of 60 km. The
vertical coordinate of the volumetric grids is shown as color code on
vertical slices through the volume. The elevation volumes stretch on both
sides of the terrain, whereas the model levels are located exclusively on
the upper side.

coordinate. We call these elevation summary plots (see Figure 7).

Elevation summary plots share similarity with confidence surfaces
indicating quantiles with respect to a mean surface. Such approaches
typically build upon the presence of a stochastic uncertainty model or a
set of ensembles from which the required statistics can be computed.
In our scenario, we derive such plots for either the low- or the high-res
terrain to assess respectively the elevation statistics of the lapse rate
algorithm or to examine the expected sub-grid variability below the
resolution of the low-res terrain.

Firstly, the user sets a search radius in units of kilometer to be
considered in the statistics computation, as well as the number of
quantiles to compute. For each vertex of the low-res terrain, all vertices
from the so-called summary grid (the high-res or the low-res terrain
surface) that are closer than the specified radius are retrieved. Note here
that the distance between vertices is considered in the 2D domain over
which the terrain is defined. From the elevation values of all retrieved
vertices, the minimum and maximum elevation, as well as uniformly
spaced quantiles of the elevation distribution according to the user-set
value are computed. The quantiles are interpreted as z-coordinates of a
new volumetric grid (different from the model levels), on which scalar
quantities can be computed and displayed using volume visualization
In Figure 7 (c), for example, the vertical extend of the volume slices is
determined by the range of minimum and maximum surface elevation
in a radius of 60 km around the reference point.

Quantile computation is repeated for the area covering the interquar-
tile range from 25% to 75%, yielding another volumetric mesh. On this
mesh, special quantiles can be shown independently as surface meshes,
e.g., the median surface and iso-layers of the 25% and 75% quantiles
(IQR bounds). By analogy with statistical box-and-whisker plots, two
additional surfaces are defined through the local elevation values:

zupper = z(75%)+ f · IQR,

zlower = z(25%)− f · IQR,

IQR = z(75%)− z(25%)

(1)

The upper and lower whisker heights are then given as the largest, re-
spectively, smallest elevation sample that falls inside the range between
zupper and zlower. Figure 8 illustrates the components of the elevation
summary. In Figure 8 (a), the median field is shown together with
the summarized grid. In (b), the elevation summary is augmented by
surfaces that visualize the IQR as well as the whisker levels. In (c),
we show slices through the volume that is spanned by the minimum

(a) (b)

(c)

Fig. 8: Elevation summary plots for the O1280 model grid with a summary
radius of 60 km. (a) model grid (wireframe) with the median surface, (b)
elevation boxplot with the median surface (red), IQR bounds (blue), and
whiskers, and (c) model grid (wireframe) with slices through the elevation
summary volume. Color on the slices indicates quantile isolevels.

and maximum elevation levels of the local environments and use the
slices to display statistical information. All summary elements can
be rendered jointly with stations or high-res orography, to obtain a
notion of outliers in terms of local orography. For instance, the surface
summary can be rendered jointly with the prediction error encoded on
station sites to find stations that have high errors due to deviation.

The provided visualization methods can be used to assess the quality
of the current lapse rate scheme (see subsection 5.1) by showing the
error between the corrected temperatures at stations and the temperature
that was measured at these sites. As we will show in our case study, the
constant lapse rate scheme introduces significant deviations to the mea-
sured temperatures. Thus, in the following we suggest an alternative
lapse rate scheme that results in improved temperature corrections.

4.4 Improved lapse rate scheme

Instead of a fixed global lapse rate, we propose to compute a local lapse
rate from the current model data. The method starts with estimating
the local lapse rate at the vertices (gridpoints) of the low-res model
grid. To do this, the domain expert sets a radius that corresponds to
a "reasonable" scale in terms of local weather conditions, typically
a value between 40 and 60 kilometers. From all vertices (excluding
non-land vertices) within the region indicated by the set radius, all 2
m temperatures and elevation values are collected. Through a linear
model that fits predicted temperature as a function of elevation, we
obtain a local weight coefficient relating elevation to temperature. This
coefficient is used as the local lapse rate estimate. To avoid spatial
discontinuities as a consequence of using a hard cutoff radius, a Gaus-
sian weighting scheme is applied, which assigns a higher weight to
the samples close to the reference location. Validity of the local linear
model is assessed via the coefficient of determination, also called R2

score. To guarantee proper convergence of the estimator, lapse rates
are estimated only for grid vertices, which have at least 20 non-sea grid
vertices within their radial neighborhood. For other sites, the scheme
reverts to the default lapse rate.

To circumvent the potentially harmful effects of extreme lapse rate
estimates, min-max clamping is applied, in which the upper and lower
bounds depend on R2 of the local linear model. We provide an interface
to parametrize upper and lower bounds bup/low as a ramp function:

b· =











clower if R2 < rlower,

cupper if R2 ≥ rupper,

clower +
cupper−clower

rupper−rlower
(R2 − rlower) else.

(2)
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(a) (b) (c)

Fig. 9: Overview of prediction errors and model surface temperatures for (a) summer and (b) winter case study, and (c) shows the winter prediction
errors in the context of the model orography. The box indicates the focus region of figures 10 and 11.

(a)

A

(b)

B

(c)

Fig. 10: Northward overview of prediction errors and model surface temperature for the winter case, (a) in regular view on the mountain stations, (b)
with inverse station offset to display valley stations, and (c) with solar lighting, highlighting vertical structures in the model temperature field.

Default values for the parameters are selected empirically
(see subsection 5.3) and are set to (clower,cupper,rlower,rupper) =
(20 K/km,50 K/km,0,1) for the upper lapse rate bound, and
(−6.5 K/km,−11 K/km,0.75,0.95) for the lower bound. Based on
the estimated lapse rate, a corrected prediction for each location
of interest (grid vertex or station site) is then obtained as Tsite =
Tmodel + γ(zsite − zmodel), wherein Tmodel, zmodel, and γ are 2 m tem-
perature model prediction, model grid elevation, the local lapse rate
estimate at the closest vertex in the model grid, and zsite is the station
altitude.

5 USE CASE

5.1 Visual analysis of near-surface temperature correction

To obtain an impression of the limitations of the constant lapse rate
approach (Q1 + Q2), two timestamps are selected, for which model
predictions are visualized jointly with station observations. The cases
are indicative, over central Europe, of the two ends of the lapse rate
spectrum. That is a meteorologically less stable situation, from a
summer afternoon, July 12, 2021, 1500 UTC, and a meteorologically
more stable situation from an anticyclonic winter morning, December
19, 2021, 0600 UTC. Both featured light near-surface winds, as stronger
winds tend to promote more standard lapse rates via turbulent mixing.
Furthermore, due to the low-level inversion / high stability, the winter
case had proved especially challenging for operational model 2 m
temperature forecasts and reanalysis (Figure 3 in [4]).

Figure 9 (a) and (b) display top-down map views for both cases. A
constant-altitude projection is used to enable the display of stations
above and below the terrain at the same time. The color of station indi-
cators encodes the prediction errors of the standard lapse rate scheme
at the station site. Orography is displayed as isocontours to reveal rela-
tions between temperature distribution and terrain properties. Station
indicators and terrain isocontours are shaded as volumetric spheres and
tubes, respectively, to improve their perception in front of the bright
model temperature map in the background. Temperature isocontours
are visible as color boundaries in the temperature color map.

In the summer case, temperature isocontours adhere closely to the
contour lines of the orography field, both in orientation and spacing.
This indicates that the constant lapse rate assumption is a good approxi-

mation of the weather situation. Correspondingly, the prediction errors,
encoded in sphere color, are generally no more than a few Kelvin.

In the winter case, the prediction errors are much larger, especially
in the mountainous areas. This suggests that the constant lapse rate
scheme does not yield skillful predictions here. The deviation of the
temperature conditions from the idealized model is also confirmed by
the relation of the temperature and orography isocontours. In parts, the
isocontours intersect orthogonally, indicating that temperatures do not
change with altitude at all. To examine the relation between orography
and prediction errors in more detail, the model temperature map is re-
placed with a map representation of the high-res orography in Figure 9
(c). The view reveals even more clearly that the magnitude of pre-
diction errors correlates with the mountainous character of the terrain.
Additionally, the user may recognize that stations with large prediction
errors are located mainly in places with right-facing mountain slopes
(i.e., on eastern slopes). An area where this is particularly apparent
is highlighted with a white box in Figure 9 (c) and examined in more
detail in a 3D view in Figure 10.

In Figure 10 the surface color is used to encode model 2 m temper-
ature. Station sites are shown on top of tube lines, which are colored
according to the elevation difference between station and model terrain.
Stations with an elevation difference above 50 m are classified as con-
vex (mountain) stations, whereas stations more than 50 m below the
model orography are classified as concave (valley) stations. Figure 10
(a) displays station sites above the model orography, and suggests that
convex stations exhibit large positive discrepancies versus the model
predictions (see box A). The offset inversion feature is then used to
switch to the view of Figure 10 (b), in which convex stations change
positions with concave stations. In contrast to the convex stations, the
view now suggests that valley stations on the backside of the mountain
ridge (see box B) have a tendency to show lower values than predicted.

Considering the timestamp of the weather situation, 0600 UTC, cor-
responding to 0700 CET – the local time in the area of interest – the
temperature anomalies may be caused by the formation of cold air pools
in mountain valleys for various reasons: e.g. radiative cooling overnight,
katabatic drainage into the valleys, mountains casting shadows onto the
valleys by day. The latter aspect can be investigated by switching to
solar lighting mode, which simulates a light source coming from the
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direction of the solar irradiation. This option is seen in Figure 10 (c),
indicating that this may indeed contribute to higher temperature mea-
surements, as the sunlight is coming from the south-eastern direction.

Figure 11 (a) and (b) illustrate the distribution of model-level temper-
atures for the summer and the winter case using vertical slices through
the temperature volume. The lighting of the slices has been turned off,
and the density of elevation isocontours has been increased to achieve
a visual contrast between the appearance of the terrain surface and the
slice surfaces. For the user, this improves the possibility of accurately
detecting the intersection between terrain and slice surfaces. Slicing is
generally preferred over volume ray-casting due to the better run-time
performance of the visualization, which enhances interactivity.

In the summer case, Figure 11 (a), the isolevels of the volumetric
temperature are mostly flat, supporting the validity of a constant lapse
rate scheme again. The isolines curve slightly upwards at the intersec-
tion between slices and terrain (see box A1). This may be interpreted as
a sign of warm air masses rising on the terrain surface as superadiabats
form due to ground heating by solar irradiation. Further clarity on
this could be obtained using additional information on near-surface air
movement but it is not of primary importance for the lapse rates and is,
therefore, beyond the scope of this work.

In the winter case, Figure 11 (b), the isolevels near the surface
indicate a significant temperature gradient between the lowest model
level and the 2 m temperature. The gradient is manifested in a strong
curvature of the isolines close to the surface (see box A2). To examine
the vertical temperatures in more detail, Figure 11 (c) displays the
same scene as Figure 11 (b), but with slice color encoding the vertical
temperature gradient. The color mapping uses a dedicated diverging
color scale, which respects the physical limits of plausible temperature
gradients. The color scale is centered and −6.5 K/km, corresponding to
the value of the default lapse rate of the temperature correction model,
and is capped at −12 K/km due to the physical instability of air masses
beyond that limit (10 K/km is the true standard for instability, using
12 K/km allows for some superadiabatic behavior at the 2 m level). A
V-shaped opacity function is applied to minimize occlusions, which has
a user-configured minimum opacity at the color scale center and higher
opacity towards the extremes. By default, the visualization applies a
linear slope for the opacity increase. However, to prune larger parts of
the volume or increase the visualization’s density, the user can switch
to a polynomial opacity increase with exponents > 1 or < 1. Figure 11
(c) shows clearly the complexity of the volumetric temperature field.
Close to the surface, temperature gradients of more than 50 K/km are
observed. Inside the valley (boxes B1 and B2), multiple air layers
with alternating gradient signs are stacked on top of each other, clearly
invalidating the assumption of a constant lapse rate. Only at higher
altitudes do the temperature gradients revert towards the regular value
of −6.5 K/km.

5.2 Visual analysis of the adaptive lapse rates

To evaluate the quality and tune parameters of the proposed adaptive
lapse rate scheme (Q3), we support the visual analysis of lapse rate
scores and the associated clamping metrics R2 score. For this, the user
selects the required hyperparameter in the graphical user interface, ob-
tains handles to view the lapse rate estimates, and applies the clamping
as a postprocessing step.

Visualizing the data is challenging since multiple aspects of the local
model and terrain data determine the lapse rate. The primary input
variables are the orography and the land-sea mask, which determines
whether a grid vertex is used as a valid sample location. The threshold
for evaluating the land-sea mask can be set interactively, but a value of
0.5 is a good default as this is implicit in the model formulation.

The radius parameter is more critical and is explored in Figure 12.
The figures display the range of elevation values used in computing the
lapse rate estimate. Notably, the range size changes discontinuously,
especially for radii 60 km and 90 km, when grid vertices with extreme
elevation enter or fall out of the radius neighborhood (circle patterns
in Figure 12 (b) and (c)). Using a hard cutoff radius also leads to a
discontinuity in the lapse rate estimates and motivates the use of a
distance-based Gaussian weighting scheme. This way, more weight

is put on vertices closer to the reference location during the lapse rate
estimation. Empirically, a cutoff radius of 60 km in combination with a
Gaussian weight scale of 30 km yields the best balance of stability of
the estimates and feature resolution.

Figure 13 displays lapse rate estimates for the summer case using
these parameters. It appears that the estimator yields extreme lapse rate
estimates. In Figure 13 (a), the estimates are displayed in the land-sea
mask and orography context. It is seen that many of the extreme cases
arise in the transition region between land and sea, where lapse rate
estimation tends to be difficult, and adaptive lapse rate estimation using
temperature and elevation samples is ill-defined due to the lack of oro-
graphic variation. Therefore, the scheme reverts to the default lapse rate
for sea-site locations. One should also note that "extreme" lapse rates
diagnosed in topographically almost-flat areas are inconsequential for
2 m temperature reconstruction, as the elevation difference multipliers
are so small.

In Figure 13 (b), the volumetric display includes additional informa-
tion about the lapse rate reliability metric R2. Values of R2 are shown
as isocontours on the terrain and are color-coded by their respective
value. For additional context, an elevation range summary is added as
vertical slices, indicating the elevation values range seen by the lapse
rate estimator (cf. Figure 12). It can be seen that large values of R2

may occur both in regions with large elevation ranges and in areas with
minimal elevation ranges. Especially in the latter regions, the resulting
lapse rate estimates exhibit extremes, which appear unreasonably large
and are more likely a numerical sampling artifact rather than evidence
in favor of a positive or negative lapse rate different from the default.
Like sea-site locations, such stations are handled by reverting to the
default lapse rate.

Based on the user interface, the clamping of the lapse rates can
be optimized. Figure 14 displays maps with the clamped lapse rate
encoded in the surface color and the raw lapse rate in the color of
the mesh parameters. A difference in overall shade can be perceived,
indicating more negative values for the summer case (blue shades) and
more positive lapse rates (red shades) for the winter case.

5.3 Quality of the lapse rate estimator

Despite the possibility to visualize predictions and lapse rates, decisions
on the parameterization of the lapse rate scheme have to be put on
a statistical footing (Q4). The observation dataset is used for this
purpose as follows. The observations are first grouped by the station
that generated the data. Then, from the pool of ca. 14500 available
stations, 20% are selected for parameter tuning, and the remaining are
kept for testing. The station groups are sorted by the amount of available
observations and split into consecutive groups of 5 stations each. From
each group, one station is selected randomly, and the observations of
this station are moved to the training dataset. This procedure yields
training and test datasets with a similar average number of observations
per station and minimizes information overlap between training and
test data. Note that the fraction of training data is chosen low compared
to other statistical estimation tasks. This is done because the low
parameter count of the models justifies a reduction of training data.
More data is available for verification.

Parameter tuning involves mainly the threshold settings of the clamp-
ing functions. For this, lapse rates and R2 scores are computed for all
available observations and are divided into ten groups according to the
value of R2. For each group, a grid search is performed to identify the
set of fixed upper and lower bounds on the lapse rate, for which the
prediction accuracy is optimized. The parameterization of the clamping
functions Equation 2 is obtained by comparing and balancing bound
parameters of all R2 groups.

For quantitative testing, lapse rates, R2 scores, and predictions are
computed for observations from the evaluation dataset. The stations
are grouped into ten bins according to the value of R2 and are classified
further concerning their elevation difference against the model terrain.
As in subsection 5.1, stations more than 50 m below the model terrain
are classified as concave (valley) stations, whereas stations more than
50 m above the terrain are called concave (mountain) sites. Stations in
between are called neutral.
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(a)

A1

(b)

A2

B1

(c)

B2

Fig. 11: Westward detail view of the temperature distribution on vertical slices through the model level volume, (a) using model level temperatures for
the summer case, (b) using model level temperatures for the winter case, and (c) using vertical temperature gradients for the winter case.

(a) (b) (c)

Fig. 12: Elevation range (surface color) and land-sea mask (grid lines) as seen by the lapse rate algorithm with radius settings (a) 30 km, (b) 60 km
and (c) 90 km. Orography isocontours are shown for orientation.

(a) (b)

Fig. 13: Visualisation of summer-case lapse rates (a) in terrain context with orography contours and land-sea mask on grid lines, and (b) as a 3D
view with clamping metrics terrain range and R2 score displayed on elevation summary slices and isocontours, respectively, as well as land-sea mask
on grid lines.

(a) (b)

Fig. 14: Visualisation of lapse rates after clamping for (a) the summer case and (b) the winter case. Isocontours indicate the orography for orientation.
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Fig. 16: Histograms of adaptive lapse rates after clamping for different
ranges of the observed R2 score. Ranges are given on the vertical axes.
The black dashed line indicates the default value of −6.5 K/km.

Figure 15 shows the predictions’ root mean squared error (RMSE)
against the temperature observations. For both valley and mountain
stations, the adaptive lapse rate scheme improves the prediction accu-
racy by between 10% and 20%. The histograms indicate the amount of
observations falling into each bin during the evaluation.

Figure 16 visualizes the distribution of estimated lapse rates for
different levels of the observed R2 score. The lapse rates are shown
after clamping, which explains why no lapse rates with values below
−6.5 K/km are observed for the score groups below 75%. However, the
mode of the distribution persists even in the most determined category.
This is reassuring since the models often suggest physically sensible
lapse rates. It is seen that with increasing determination coefficient, the
lapse rates develop an increasingly bimodal distribution with growing
variance. No lapse rates are observed between 5 and 10 K/km among
the most determined models. The histograms demonstrate that the lapse
rate scheme identifies weather situations in which the local lapse rates
deviate from the default.

6 DISCUSSION AND CONCLUSION

We have applied existing and developed new topographic visualization
techniques to assess the quality of lapse rate schemes in the context
of low- and high-res orography. Through these techniques, relations
between lapse rate quality, orographic features, and seasonal conditions
could be revealed. The visualizations have helped to spot specific
relationships that have been considered in developing an improved
adaptive lapse rate scheme.

Figure 15 shows that our adaptive lapse rate scheme, on average, im-
proves 2 m temperature RMSE in concave and convex locations. Such
improvements are all the more striking given the relatively high fre-
quency of cases where the dynamic lapse rate is similar to the standard
value and errors are the same. Concave sites exhibit larger errors than
concave in both lapse rate schemes, perhaps because of the particular
challenge of cold air pooling (which attracted an additional postprocess-
ing step in [47]). Such errors fall into the class of situation-dependant
systematic model biases, which can be an Achilles heel for attempts
to reduce downscaling errors [46]. Though not included directly in
this study, a further global postprocessing step could be included in a
future operational incarnation of our dynamical lapse rate adjustment.
This is, for instance, to use the ECMWF postprocessing framework
ecPoint [18] to apply, in tandem, situation-dependant grid-scale bias
correction to raw model 2 m temperatures (Figure 3 (a), (b), (d) in [4]
is an example).

An interesting question for future work is the role of outliers in the
local environments. In the present study, lapse rate estimation is per-
formed with linear regression models. Despite achieving considerable
improvements in prediction skill, Figures 13 and 14 show that there
exist weather situations in which the lapse rate scheme suggests ex-
treme lapse rates beyond physical plausibility. The issues become more
visible the smaller the environment radius is selected. Clamping has
been identified as a countermeasure but may lead to information loss at
the cost of reduced prediction accuracy. We believe that robust regres-
sion methods (which are more stable against outlying temperature and
elevation samples than standard linear regression) may help to improve
the accuracy further. As such models have their own intricacies and
limitations, this aspect is left for future work.

A statistically robust extension of the proposed scheme would also be
suitable for downscaling other meteorological variables. While we have
focused on 2 m temperature in this study, rainfall is an equally important
variable for forecast users in certain applications. Precipitation, too,
can have a strong but variable topographic dependence. Therefore,
a possible extension of this work would be investigating a similar
dynamical lapse-rate scheme for rainfall downscaling, wherein "lapse
rate" would reference rainfall rate or rainfall totals.

User motivation for the improved lapse rate scheme derives from the
most-used graphical product out of the many produced operationally
by ECMWF, namely meteograms. These display the range of possible
forecast outcomes in the upcoming 10-15 days for a handful of key sur-
face weather parameters, including 2 m temperature. The user selects a
site, and then, via the fixed lapse rate assumption, adjustments are auto-
matically made to deliver the meteogram 2 m temperatures for them.
The uncertainty range bounds are derived from the use of multiple
(ensemble) forecast realizations. Due to the computational simplicity
of the adaptive approach, the novel scheme is perfectly portable to
forecast ensembles. We envisage that an operational implementation
of our approach would replace the fixed lapse rate assumption in this
processing chain with a situation-dependent variable lapse rate.

The used visualizations show that while 3D representations often
help and are even necessary to convey the relevant information, at the
same time, they can hinder effective information communication due to
occlusions and visual clutter when overloaded with too many additional,
yet functional, visual mappings. Our analysis shows that 2D maps are
still indispensable for topographic data visualization, especially in
operational use. In the future, we intend to develop dedicated 2D map
views to effectively convey the many aspects that need to be considered
in operational forecast products, and we will equip them with linked
3D views to support specific investigations and/or representations.

Given that numerical models now represent the vertical structure
of the atmosphere in great detail, one could imagine that extraction
from a model profile would suffice for higher elevations. For relatively
isolated peaks, this can work, but within the terrain, near-surface tem-
peratures can be decoupled from the free atmosphere due, for example,
to the sometimes strong influence of surface fluxes (see [47]). The 3D
visualizations developed in this work will be helpful in investigating
such aspects since they allow for a comprehensive view of different
atmospheric conditions and their interplay with orography.
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Abstract

Recent studies have shown that volume scene representation networks constitute powerful means to transform 3D scalar fields

into extremely compact representations, from which the initial field samples can be randomly accessed. In this work, we evaluate

the capabilities of such networks to compress meteorological ensemble data, which are comprised of many separate weather

forecast simulations. We analyze whether these networks can effectively exploit similarities between the ensemble members, and

how alternative classical compression approaches perform in comparison. Since meteorological ensembles contain different

physical parameters with various statistical characteristics and variations on multiple scales of magnitude, we analyze the

impact of data normalization schemes on learning quality. Along with an evaluation of the trade-offs between reconstruction

quality and network model parameterization, we compare compression ratios and reconstruction quality for different model

architectures and alternative compression schemes.

CCS Concepts

• Computing methodologies → Learning latent representations; • Applied computing → Earth and atmospheric sciences;

1. Introduction

Meteorological ensemble data comprise multiple weather forecast
simulations, which can differ in initial conditions, numerical ap-
proximations or even physical model assumptions, and are used to
assess uncertainties of the forecast outcome. Over the last decade,
researchers have continually pushed ensemble sizes to larger scales,
while, at the same time, extending spatial domain size, resolution
and time horizon. Thus, meteorological ensembles can become ex-
tremely large. Ensembles are produced daily by weather centers
and require large amounts of secondary disk space for backup.

Due to the shear volume of meteorological ensemble data,
any attempt to analyse such datasets is intrinsically difficult.
In the scenario we consider, the ensemble dataset comprises
1000 runs of a high-resolution numerical atmospheric dynamics
model [NGW∗20], thus pushing the data volume to 60GB of mem-
ory for only a single time step. This makes it impossible to keep
the data entirely on recent GPUs and fosters the need for effec-
tive compression schemes for multi-dimensional arrays of floating-
point data. Yet, besides targeted strategies for reducing I/O band-
width and storage requirements by converting such ensembles into
compact data representations, random access to the data is manda-
tory to avoid decoding the entire ensemble for analysis tasks.

While lossless compression schemes allow for bit-wise accu-
rate reconstruction of the original data, they typically achieve up

to only 2x compression or less [SCH∗14]. Lossy data compression
schemes, such as ZFP [Lin14], SZ [DC16], or TThresh [BRLP19],
in contrast, offer higher compression ratios of 100x or more, at
the cost of introducing noticeable reconstruction errors. For most
downstream analysis tasks, however, a certain error level is accept-
able, such that lossy compression becomes a suitable tool for mem-
ory reduction [BHM∗16, CDL∗19].

As an alternative to classical lossy compressors for multi-
dimensional scalar fields, compression schemes based on fully-
connected neural networks have been proposed recently. Volume
scene representation networks (V-SRNs) have been introduced by
Lu et al. [LJLB21], and were further improved and accelerated
by Weiss et al. [WHW21] (fV-SRN). V-SRNs are an extension of
scene representation networks (SRNs), which were first developed
for representing opaque surface models [MON∗19,CZ19,PFS∗19].
Besides offering the ability to directly reconstruct single samples
from the compressed representation, V-SRNs are capable of ex-
ploiting non-local coherence in the data [CLI∗20]. This makes V-
SRNs a promising tool for compressing meteorological ensemble
data, in which coherence and correlation are often observed be-
tween multiple parameter fields of the same simulation run or be-
tween different members of the same ensemble, but are more diffi-
cult to exploit for compression than, e.g., auto-correlations in space
and time.

c© 2022 The Author(s)
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Contribution In this work, we evaluate the potential of V-SRNs
for learning compact representations of ensembles of volumetric
multi-parameter fields. We compare two different model architec-
tures, which allow for efficient parameter sharing between multi-
ple parameter fields and ensemble members. We demonstrate that
this results in compression rates that are higher or on par with
those achieved by classical compression schemes, which have been
adapted to exploit redundancy between different ensemble mem-
bers. We do not focus on data with temporal variability explicitly,
but our methods generalize straight-forwardly also to ensembles of
time-variate multi-parameter fields.

We propose and analyze binary model architectures, leverag-
ing a combination of low-resolution grids of trainable spatial la-
tent features and small neural networks to read out the features and
serve as non-linear interpolation functions. Different combinations
of grids and networks are evaluated to identify trade-offs between
model parameterization, reconstruction accuracy, and compression
rate. Our analyses are tightly coupled to a case study using me-
teorological simulation data from a convective-scale ensemble by
Necker et al. [NGW∗20]. Based on this ensemble dataset, we dis-
cuss general methodological aspects, such as model design and
training procedures, and highlight the importance of data-related
aspects, such as the impact of data normalization. The code for the
project is publically available at [HW22].

2. Related Work

Scene representation networks The concept of scene rep-
resentation networks (SRNs) was concurrently introduced by
Mescheder et al. [MON∗19], Chen and Zhang [CZ19] and
Park et al. [PFS∗19], who present the idea of encoding an opaque,
uncolored surface model as an implicit function that is imple-
mented as a fully-connected neural network. The authors use
feature vectors to encode object specific information and enable
reusing models for different objects. The idea of trainable latent
features was developed further by Chabra et al. [CLI∗20], who
replace the single feature vector by a feature grid to improve re-
construction accuracy. Multiple studies explore improvements and
extensions of this idea. Martel et al. [MLL∗21] use an adaptive
data structure that is refined during training to allocate more re-
sources in areas of larger errors. A fixed multi-resolution grid is
used by Takikawa et al. [TLY∗21] and later extended with spatial
hashing by Müller et al. [MESK22], together with an efficient net-
work implementation [MRNK21]. For a more comprehensive re-
view of SRN-related literature, we refer to the overview articles by
Hoang et al. [HSB∗20] and Tewari et al. [TFT∗20]. The works by
Lu et al. [LJLB21] and Weiss et al. [WHW21] extend SRNs for
volumetric data compression. The latter contributes in particular a
fast network evaluation method to speed up training and decom-
pression. Mishra et al. [MHBB22] leverage fully-connected neural
networks for interpolating scientific data. We build upon and ex-
tend these works by focusing explicitly on the multi-parameter and
ensemble compression capabilities of V-SRNs.

Lossy volume compression schemes Prior work in the area of
lossy compression schemes can be categorized into three classes
of algorithms. Transform coding-based schemes [YL95, LCA08]

Table 1: List of available simulation parameters.

Name (Short name) Unit Value range

Temperature (tk) Kelvin [200,300]
3D wind speed (u, v, w) ms−1 [−40,40]

relative humidity (rh) % [0,100]
water vapor mixing ratio (qv) 1 [0,0.02]

mixing ratio of hydrometers (qhydro) 1 [0,0.01]
geopotential height (z) m [200,20000]
radar reflectivity (dbz) dBZ [−30,40]

employ the discrete cosine or wavelet transformation to transform
the data into a basis in which only few coefficients are relevant,
while many others can be removed. Quantization schemes represent
contiguous data blocks by a single index or a sparse combination
of learned representative values [SW03, FM07, GIGM12, GG16].
One instance of this class of compression algorithms is the SZ
algorithm [DC16, ZDL∗20] using lossy curve fittings. Tensor de-
composition schemes decompose the data directly using, e.g., a
singular value decomposition. As one instance of such schemes,
TThresh [BRLP19] can achieve extremely high compression ra-
tios of 1000x or more. In interactive scenarios, mostly transform
coding-based schemes are applied brick-wise, in which case high
compression ratios are traded in on fast GPU-based decompres-
sion, see e.g. [DMG20, MAG19]. Focusing on applied scientific
data compression, various studies have evaluated the applicability
and performance of lossless and lossy data compression algorithms
on atmospheric datasets [HWK∗13, BHM∗16, DCG19, KRD∗21],
and Dueben et al. [DLB19] discuss methods for efficient storage of
weather forecast ensembles. Baker et al. [BPH22] have introduced
a data-based similarity measure, termed DSSIM, for evaluating the
quality loss in scientific data after lossy compression.

3. Data

We evaluate the compression capabilities of V-SRNs on a multi-
parameter ensemble dataset, which was generated to study corre-
lation patterns in atmospheric dynamics [NGW∗20]. The dataset
comprises 1000 runs of an atmospheric dynamics model over a
rectangular domain in central Europe. Nine prognostic atmospheric
parameters are stored at regular time steps of one hour, on a rectan-
gular grid with 352×250 nodes and 20 levels in height. Due to the
presence of mountain ranges and topography in the simulated do-
main, large parts of the data in lower levels are missing due to grid
cells lying below the earth surface. For simplicity, we omit grid lev-
els with missing values and restrict the dataset to the 12 top-most
levels, which are free of missing values. A list of the available pa-
rameters is given in Tab. 1. The fields possess different physical
interpretations and differ in value range and statistical distribution.
As shown in Fig. 1, the distribution of field values varies not only
between different parameters, but also between height levels of the
same field, which complicates the learning task for deep learning-
based compression algorithms.

Data normalization To facilitate model optimization, we exam-
ine the effect of different normalization methods, which rescale all
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Figure 1: Value distribution marginalized over different height lev-

els for parameters tk, rh and qv. Distributions of the same parame-
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Figure 2: Influence of the three variants of interval rescaling on

the data parameters tk (top row), qv (middle row) and rh (bottom

row): a) global min-max, b) local min-max, c) level-wise min-max.

.

parameters to a value range of [0,1]. In the context of data compres-
sion, data rescaling has been discussed by Dueben et al. [DLB19]
and was found to improve compression efficiency. We compare
three alternative variants of min-max normalization (see Fig. 2),
which reflect a trade-off between expressiveness of the rescaling
and storage space required for keeping the meta information:

• Global min-max rescaling: minimum and maximum values are
computed over the whole domain, all ensemble members, and
all time steps. Minimum and maximum values can be stored as
one floating point number each.

• Local min-max rescaling: minimum and maximum values are
computed for each grid location separately from the statistics of
all ensemble members and all time steps. Minimum and maxi-
mum values are stored as a full grid of floating point numbers.

• Level min-max rescaling: minimum and maximum values are
computed separately for each height-level in the data. Minimum
and maximum values are stored as one-dimensional arrays of
floating point values.

4. Model design

(V-)SRNs, in their basic form, are fully-connected neural networks
that define a parametric mapping from 3D position coordinates
to the d-dimensional data domain [MON∗19, CZ19, PFS∗19]. To
enable sharing of model parameters between different ensemble
members, we consider generalized V-SRN mappings, which re-
ceive information about the member identity as an additional input.

Encoding of the spatial coordinates For our experiments, we
assume that position coordinates are normalized to have val-
ues in [0,1]3. The analyzed V-SRN architectures can be sub-
divided into three modules: a constant input encoding, a low-
resolution grid of trainable feature vectors, and a compact fully-
connected auto-decoder. For the input encoding, we use Fourier
features [MST∗20], which map the position coordinates, p =
(px, py, pz) ∈ [0,1]3, to wave-like features

fi j =
(

sin(2πνi n jp),cos(2πνi n jp)
)

with frequency scales νi = 2i, i ∈ N, and axis-aligned unit direc-
tions n j, j ∈ {x,y,z}. Note here, that similar embeddings with ran-
domly chosen frequencies and orientations have been proposed by
Tancik et al. [TSM∗20], but did not yield better results in our ex-
periments. Additionally, we utilize an axis-aligned, regular grid of
multi-dimensional feature vectors [CLI∗20]. The grid has a pre-set
coarse spatial resolution (compared to the resolution of the origi-
nal data grid) and captures non-local variability in the data. Dur-
ing inference, the features are interpolated trilinearly to match the
input position. The network weights and the feature grid are opti-
mized jointly during training. More elaborate multi-resolution fea-
ture grids have been proposed recently [MESK22], but were found
to not improve the compression-accuracy trade-off of our architec-
tures. For the auto-decoder network, we employ multi-layer percep-
trons (MLPs) with l fully-connected layers with c hidden channels.
Each layer performs an affine transformation with non-linear acti-
vation. Following Weiss et al. [WHW21], we use the SnakeAlt ac-
tivation in all but the last layer, and discretize the network weights
using half-precision floats and the latent grid using 8 bit per chan-
nel. Multi-parameter data is represented by augmenting the output
dimension of the decoder models.

Encoding of the ensemble dimension To inform the V-SRN
about which ensemble member to reproduce, we explore two
different ensemble encoding strategies. First, a separate grid
of feature vectors is allocated for each ensemble member
and the auto-decoder network is shared between ensemble
members. This is similar to how the time dimension is en-
coded in fV-SRN [WHW21], and replicates the approach of
Park et al. [PFS∗19] in the limit of vanishing spatial resolution.
We term this architecture the multi-grid configuration. Second, we
consider SRNs with a single feature grid, which is shared among
all ensemble members, and a separate auto-decoder per ensemble
member. The intuition is, that the ensemble information is stored in
the shared feature grid, and the separate decoders learn to extract
member-specific features from the common grid, thus allowing for
efficient reuse of model parameters. We term this variant the multi-

decoder configuration. As a baseline comparison method, we con-
sider training a separate V-SRN with a single decoder and a single
feature grid for every member.
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Figure 3: Reconstruction accuracy of multi-parameter models for

parameters u, v and w. Results are shown for single-parameter

models (solid lines), two-parameter models (u and v, dashed lines),

and three-parameter models (u, v and w, dotted lines). Colors in-

dicate different model configurations, chosen appropriately to have

good reconstruction accuracy at each compression ratio.

Training At training time, we draw 6×106 random positions uni-
formly distributed in [0,1]3 and sample the original member vol-
umes using trilinear interpolation. We choose a fixed number of
samples per ensemble member proportional to the number of sam-
ples in the original data grid. The network predictions are matched
against the ground truth using the L1 loss function and stochastic
gradient descent. In every mini-batch, we balance the number of
samples evenly between all ensemble members to ensure equally
distributed gradient variances for all member models. We use the
Adam optimizer with an initial learning rate of 10−2 and learning
rate decay of 0.2 after every 20 epochs. Training lasts for a total
of 50 epochs with resampling of the training data applied after ev-
ery 10 epochs. Loss-adaptive resampling strategies, as described by
Weiss et al. [WHW21], were found to increase training stability for
high-capacity models and slightly improve overall model accuracy.
Switching to L2 loss or omitting the balanced sample distribution
among ensemble members led to inferior results.

5. Single-member experiments

To assess the performance of V-SRNs, we first examine the re-
construction accuracy of models which are trained to represent pa-
rameter fields from single ensemble members, without accounting
for the ensemble dimension. To guarantee proper gradient back-
propagation, we fix the decoder architecture as a three-layer MLP
and vary the number of channels per layer as well as the resolution
and the number of channels in the feature grid. Models were trained
separately for dataset parameters tk, rh, qv, u, v and w, and sep-
arately for multiple ensemble members. Exemplary compression-
accuracy curves for parameters u, v and w with level-wise min-max
normalization are shown in Fig. 3 (solid lines).

Impact of model parameterization For all parameters, we find
that the details of the decoder architecture have a minor effect
on the reconstruction accuracy compared to the parameteriza-
tion of the latent grid, which is consistent with prior work by
Weiss et al. [WHW21]. We note that the compression and recon-
struction performance of the models depends crucially on an appro-
priate choice of the grid resolution in horizontal and level direction.
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Figure 4: Impact of data normalization on reconstruction accuracy

(RMSE) for models with varying complexity. Point size indicates

model complexity (larger point → bigger model). Global min-max

normalization is considered as baseline. Points below the dashed

diagonal line indicate an improvement.

Given a fixed grid resolution, we observe a sigmoid-shaped depen-
dence of the reconstruction accuracy on the number of grid feature
channels. This indicates that an increasing number of grid channels
can partially compensate for a reduction in spatial grid resolution,
but not indefinitely. This behavior is observed in qualitatively the
same way for various decoder complexities.

Impact of data normalization To evaluate the impact of data nor-
malization on the training outcomes, we retrain single-parameter
models on target data to which we apply different normalization
schemes. We consider global min-max normalization as a baseline
and investigate the effect of applying level-wise or local min-max
normalization instead. Specifically, we train model configurations
with a three-layer MLP (c= 32), and set the latent grid resolution to
a fraction of 1/2 to 1/8 of the original data grid in all directions. We
consider grid feature dimensions of 4 or 8. Fig. 4 illustrates the out-
come of such experiments for three parameters with different statis-
tical distributions in height (cf. Fig. 1). For qv and rh, only minimal
improvements can be observed from global min-max normalization
to level-wise min-max, independent of the model configuration. For
tk, which exhibits a much stronger variation of value distribution
with height (see Fig. 1, left), both local and level-wise min-max
normalization help to reduce the reconstruction error. Local nor-
malization performs better than level-wise min-max only for mod-
els with high parameter complexity. We attribute this to the fact that
local normalization improves uniformity of the data, but potentially
destroys spatial coherence patterns due to high-frequency compo-
nents in the minimum- and maximum-value fields (see Fig. 2, mid-
dle column). Due to the preferable compression rate vs. accuracy
trade-off, we use level-wise min-max normalization as a default
for all further experiments. More generally, we conjecture that the
importance of appropriate data normalization arises due to the in-
ability of the L1 loss function to properly resolve multi-scale ef-
fects. For the field parameter tk, the pronounced field gradient in
the vertical direction provides a strong learning signal, while the
variability of the data within each level is weighted as relatively
less important. Differences in variability, as seen in parameter qv
(see Fig. 1, middle), appear less problematic.

Multi-parameter models To evaluate the ability of V-SRNs to
fit multi-parameter data, we select a triplet of field parameters –
u, v and w, i.e. 3D wind components – for which strong inter-
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Figure 5: Reconstruction accuracy vs. compression rate for clas-

sical compression algorithms, applied to ensemble data separately

for each 3D member volume (solid line) or to a 4D array of stacked

member volumes (dashed line).

parameter correlations can be expected due to physical reasoning.
We train model configurations of different complexity on predict-
ing single parameters one at a time, all jointly, or only the horizontal
winds. We use model configurations identical to those of the single-
parameter experiments, except for adapting the final model layer to
the number of required model outputs. Results of the trainings are
shown in Fig. 3. The multi-parameter models show qualitatively
the same accuracy-compression trade-off as the single parameter
models. In particular, the grid parameterization is found to be more
important than the decoder complexity. Models with wider decoder
layers did not yield higher accuracy than shown in Fig. 3. At low
compression ratios (blue curves), u and v are predicted best by the
two-parameter model, which suggests that knowledge of both pa-
rameters supports accurate reconstruction. At the same time, the
three-parameter configuration yields the largest reconstruction er-
ror, indicating that joint prediction of unsuitable pairs may hamper
high reconstruction accuracy. The parameter is difficult to predict
even by single-parameter models, as seen from the low DSSIM val-
ues, and thus disturbs the reconstruction of u and v. Only at very
high compression ratios, the three-parameter model yields the high-
est reconstruction accuracy on all parameters.

6. Ensemble experiments

For all subsequent experiments, we use a subset of 64 members
of the original ensemble, if not stated otherwise. Experiments are
carried out using data for the parameter tk, subject to level-wise
min-max normalization.

Classical compression baseline To set a baseline for achievable
compression ratios from parameter sharing in the ensemble dimen-
sion, we select three commonly used compression algorithms from
the literature and evaluate compression performance for ensemble
member volumes compressed separately and jointly. We choose
SZ3 [DC16] as an example of predictor-based compression algo-
rithms, ZFP [Lin14] as an algorithm with block-wise transform
coding, and TThresh [BRLP19], which is based on the Tucker de-
composition of tensor data. To allow for a fair comparison between
the algorithms, we apply all algorithms with a suitable set of thresh-
olds on absolute error, record the achieved compression ratio and
measure the resulting reconstruction accuracy in terms of root mean
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Figure 6: Comparison of compression algorithms, averaged over

all ensemble members. For the baseline compression methods, the

best configuration from Fig. 5 are selected. Every point repre-

sents a trained network or an invocation of a baseline compression

method. Arrows indicate improving quality.

square error (RMSE) and DSSIM [BPH22]. To evaluate the ability
of compression algorithms of exploiting inter-member similarities,
we propose a test setting, where an ensemble of 3D volumetric
scalar fields is first compressed in a member-by-member config-
uration (i.e. one 3D volume at a time) and subsequently with all
members in common. The comparison of the required storage space
per member allows to draw conclusions about whether similarities
between ensemble members are exploited efficiently.

Fig. 5 depicts the trade-off between reconstruction accuracy vs.
compression ratio found in this procedure. ZFP does not take ad-
vantage of between-member similarities. For most accuracy set-
tings, a higher compression ratio is obtained when the 3D vol-
umes are compressed separately. ZFP generally yields poor quality
for compression ratios above 30x, but single-member compression
is generally preferable. Ensemble compression is favorable with
the SZ3 algorithm, in the case of low error thresholds and low-
ratio compression. For intermediate and highly lossy compression
single-member compression yields lower errors at a given com-
pression ratio. We therefore select the single-member configura-
tion as a baseline for comparison against V-SRN models. TThresh
yields overall the best reconstruction accuracy, and is the only algo-
rithm to take advantage from the ensemble dimension throughout
the whole range of reconstruction accuracies. We therefore select
the ensemble-wise compression for further comparisons.

Ensemble V-SRNs We apply both V-SRN configurations under
the same conditions as the classical compressors. For both architec-
tures, we train model variants with three- and four-layer MLP de-
coders and 32, 64 and 128 channels per layer, and find that models
with four layers and 32 channels yield the best balance between re-
construction quality and compression rate. For multi-decoder mod-
els, higher decoder capacity is needed to achieve good accuracy,
in comparison to V-SRNs trained on single member volumes. This
can be seen as a consequence of sharing local feature vectors be-
tween multiple decoders. Due to the decoder being unique for every
member, increases in decoder size limit the achievable compression
ratio. For the multi-grid models, we note that four-layer MLPs with
32 channels yield similar reconstruction accuracy as three-layer ar-
chitectures with 64 channels, at less than half the storage cost. Fur-
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Figure 7: Qualitative comparison when compressing three member volumes of the tk parameter using SZ3, TThresh, and our two methods

“multi-decoder” and “multi-grid”. The models were trained on 64 ensemble members, the first three are shown along the rows. Compression

ratios of the methods are as follows: SZ3: 248.81x, TThresh: 253.25x, Multi-decoder: 251.88x, Multi-grid: 248.00x. For colorbar, see Fig. 2.

ther increase of decoder complexity led to only marginal accuracy
improvements at significant additional storage cost. Given a fixed
decoder configuration, feature grid resolution and channel number
of the investigated architectures are determined empirically to op-
timize reconstruction accuracy.

Fig. 6 illustrates the complexity-accuracy trade-off for differ-
ent configurations of both architectures in comparison to the se-
lected variants (single-member or ensemble-wise compression) of
the classical compressors. Multi-grid models allow for higher com-
pression ratios in our test because the majority of parameters is
concentrated in the feature grid, which is stored in 8 bit format,
thus requiring only half the memory space of an identical number
of half-precision network parameters. The accuracy of multi-grid
models reaches an optimum around compression ratios of 10x, and
is limited by stochastic noise in the optimization of the grid param-
eters at lower compression ratios. For intermediate and high com-
pression ratios, above 20x, both model variants outperform SZ3
and ZFP in reconstruction accuracy with respect to both RMSE
and DSSIM. Given a fixed storage budget, the multi-decoder con-
figuration achieves slightly better reconstruction accuracy. At com-
pression ratios above 200x, both architectures come close to the
accuracy of TThresh.

In Fig. 7, we compare the visual quality of renderings of three en-
semble members, obtained from reconstructions with compression
ratios around 250x. ZFP has been omitted from this comparison
due to very low reconstruction quality. The multi-decoder model
preserves visual high-frequency structures the best. Both TThresh
and the multi-grid model show a tendency to smooth fine-scale
details, with TThresh additionally introducing stripe-like artifacts.
SZ3 is found to preserve high-frequency field structures in regions
of high variability, but introduces fine-granular noise in regions,
where the fields should be smooth. The V-SRN models, in contrast
rather have a tendency to smooth out fine details, which can be seen

as another advantage, depending on the subsequent analysis task. A
significant advantage of the V-SRN-based approaches lies in their
decompression speed. To reconstruct the full-resolution voxel grid,
the reference implementations of TThresh and SZ3 require 50ms
and 10ms, respectively, on an Ubuntu 20.04 workstation with In-
tel Xeon W-2133 CPU (3.60GHz), 32GB RAM, and Nvidia Ti-
tan RTX GPU. Our proposed multi-grid and multi-decoder models
sample the full-resolution data in less than 2ms, and allow for ren-
dering and random data access directly out of the compressed data
structure.

We note that the performance benefit of V-SRNs over classi-
cal compression algorithms in our application appears compara-
tively smaller at first sight than was reported in earlier works, such
as [WHW21,LJLB21]. We attribute this to the properties of the data
that we use for our experiments. The meteorological data differs
from previously studied datasets with respect to data size and dis-
tribution of variability. In particular the low voxel number and high-
frequent variability in the vertical direction prevent the grid-based
V-SRNs from achieving higher reconstruction accuracy, because
subsampling of the feature grid vertically impedes reconstruction
accuracy. Additionally, many of the datasets in earlier studies pos-
sess areas of constant field values. Closest to our example is the
Hurricane Isabel dataset [isa] as studied by Lu et al. [LJLB21],
finding that V-SRNs perform similar to TThresh at compression
rates around 500x. We expect larger storage savings for simulation
data at sub-kilometer resolution, where the fields are determined
by low-frequent variability, and for data with higher resolution in
the vertical direction, which would simplify the exploitation of data
coherence along a third spatial dimension.

Generalization to new ensemble members In Fig. 8, we inves-
tigate whether the shared representations of the proposed mod-
els encode information that is representative of the full ensem-
ble. For this, we re-used the trained models from previous experi-
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Figure 8: Reconstruction accuracy on unseen ensemble members

after retraining of only the member-specific model parts for differ-

ent model configurations. Marker size encodes model complexity,

black dotted line indicates identity.

ments, fixed the parameterization of the shared model components,
and retrained the member-specific components from scratch. Multi-
decoder models with higher-capacity decoders (solid lines) achieve
better reconstruction accuracy than models with simpler decoders
(dashed lines). Nevertheless, all multi-decoder models fail to retain
the same accuracy for new members. Models with higher complex-
ity in the latent features perform comparatively worse in fitting un-
seen ensemble members. The pattern is apparent for model config-
urations that build on the highest-resolution grid in the test (Fig. 8,
blue lines, 2x subsampling), and which exhibit the largest recon-
struction error compared to the remaining configurations. We con-
jecture that a lack of complexity in the latent grid forces the models
to learn more abstract and generalizable representations, thus pro-
viding better starting conditions for training on unseen members.
For the multi-grid configuration, all models are able to achieve al-
most identical loss levels on unseen members as on the original
member set, which confirms the intuition that member-specific in-
formation is stored in the feature grids.

Impact of ensemble size Experiments with different numbers of
ensemble members were conducted for ensemble sizes between 2
and 128 members. The results indicate that multi-grid models are
not affected significantly by changes in ensemble size, suggesting
once more that member-specific information is stored in the feature
grids. Multi-decoder models yield comparable accuracy for vari-
ous ensemble sizes at equal compression rates, as well. However,
for large ensembles, the evaluation of multi-decoder models is con-
strained by the memory capacity of the GPU, since the shared fea-
ture grid for the full ensemble must be held in device memory, or
streamed from system memory or disk.

7. Conclusion

We have analyzed how volume scene representation networks (V-
SRNs) can be used to transform a meteorological multi-parameter
ensemble into compact neural data representations. We compared
two model architectures, which exploit relationships between dif-
ferent field parameters and between ensemble members. Our find-
ings suggest that V-SRNs, in particular in the multi-grid config-
uration (see Sec. 4), yield promising performance at high com-
pression ratios, where they outperform the classical compressors

SZ3 or ZFP in reconstruction accuracy. We found that in meteo-
rological applications the accuracy of V-SRNs may be affected by
the choice of hyper parameters and peculiarities of the data dis-
tribution. We demonstrate that the latter can be counteracted with
appropriate data normalization. However, the necessity of tuning
grid resolution and feature channels currently remains a drawback
of V-SRN-based data compression. Nevertheless, V-SRNs come
with a significant advantage in reconstruction speed and flexibil-
ity on multi-parameter data, compared to classical floating-point
compressors. This makes them appealing for visual analytics tasks,
where an interactive exploration of large multi-parameter ensem-
bles is paramount, using parallelizable statistical evaluations on the
whole dataset.

In the future, we intend to shed light on the embedding of
network-based compression of multi-parameter ensembles into vi-
sual data analysis workflows. For large ensembles comprising bil-
lions of data points with many parameters per point, visual analysis
techniques like parallel coordinates plots or scatter plot matrices
cannot be realized on the GPU due to memory limitations. The fast
random access capabilities of V-SRNs allow to overcome these lim-
itations, while at the same time preserving the spatial structure of
the data, so that linked 3D spatial data views can be integrated.
To improve usability, we will analyze how to design generalizing
V-SRNs to limit retraining for new datasets. For this, we consider
V-SRNs as a mapping from a latent space representation to an en-
semble, and explore speeding up training through direct prediction
of the feature representation for new ensembles. Another promis-
ing approach could be the combination of V-SRN decoders with
generative network architectures, such as variational auto-encoders
or generative adversarial networks, which could help to circumvent
storage of member-specific feature grids by generating the required
features efficiently on demand. Furthermore, we plan on exploring
improved methods for hyper-parameter selection, which will en-
able a higher level of automation and adaptivity, and will improve
accessibility of V-SRNs for practical compression applications.
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(a) Ground truth (b) NDF reconstruction (c) Ground truth (d) NDF reconstruction

Figure 1: Neural dependence fields have learned to infer 1500 billion point-to-point Pearson correlation (left) or mutual information

estimates (right) in a 1000-member simulation ensemble. Inference of the dependencies between data values at an arbitrary grid vertex (red

dot) to all other vertices in a 250× 352× 20 grid takes 9 ms on a high-end GPU. Ground truth volume renderings and network results,

respectively, are shown in Figures 1a, 1c and 1b, 1d. The network requires only 1 GB at runtime.

Abstract

We present neural dependence fields (NDFs) – the first neural network that learns to compactly represent and efficiently recon-

struct the statistical dependencies between the values of physical variables at different spatial locations in large 3D simulation

ensembles. Going beyond linear dependencies, we consider mutual information as an exemplary measure of non-linear depen-

dence. We demonstrate learning and reconstruction with a large weather forecast ensemble comprising 1000 members, each

storing multiple physical variables at a 250× 352× 20 simulation grid. By circumventing compute-intensive statistical esti-

mators at runtime, we demonstrate significantly reduced memory and computation requirements for reconstructing the major

dependence structures. This enables embedding the estimator into a GPU-accelerated direct volume renderer and interactively

visualizing all mutual dependencies for a selected domain point.

CCS Concepts

• Computing methodologies → Neural networks; Computer graphics; • Applied computing → Earth and atmospheric

sciences;

1. Introduction

Estimating statistical dependencies between physical variables at
different spatial locations is crucial for understanding physical sys-
tems in various scientific and engineering fields. An important
application lies in meteorology, where accurate weather forecast-
ing relies on extensive numerical simulations. Weather forecasts
need to account for randomness, and ensembles of simulations
with varying initial conditions and model specifications are used to

quantify uncertainty. It is essential to analyze statistical relations,
such as spatio-temporal auto-correlations within forecast fields or
correlations between different forecast variables, to translate vol-
umetric ensemble fields into reliable forecasts. Studying statisti-
cal dependence between random variables is well-researched, and
measures exist for assessing linear and non-linear relationships.
However, determining relations in 3D ensemble fields presents
challenges. Computing dependencies on the fly may be compu-
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tationally costly, and storing all point-to-point correlations leads
to an explosion in required memory. For example, in a simulation
ensemble with 1000 members on a 250 × 352 × 20 grid, storing
all correlations would need over 3 terabytes of memory, making it
infeasible. Additionally, computing correlations between arbitrary
point pairs on the fly requires the entire ensemble to fit into the
working memory, and more complex measures like mutual infor-
mation (MI) take roughly 16 minutes on a recent multi-core CPU,
hindering interactive analysis of correlation structures.

In this work, we address these challenges by introducing neural
dependence fields (NDFs), a novel compact representation of the
major correlation structures in large multi-variable ensembles. For
this, we propose to interpret fields of two-point correlation mea-
sures in 3D ensembles as scalar fields R over the domain of po-
sition pairs in 3D space, i.e., R : Ω×Ω → R, for Ω ⊂ R

3. Tak-
ing inspiration from recent progress in neural scene representations
and multi-dimensional tensor decomposition, we design a neural
network architecture that exploits self-similarity in the correlation
fields to learn a compact representation thereof. At the same time,
the network enables fast sampling out of the neural representation.
Thus, we can avoid holding the ensemble in memory and are able
to speed up the computation of correlation estimates significantly,
especially for complex non-linear dependence measures. For the
ensemble considered in this work, it takes roughly 9 ms to recon-
struct dependencies between an arbitrary reference point and all
other points in the domain. This allows embedding the network into
an interactive volume rendering pipeline, which enables instant vi-
sualization and comparison of single-variable auto-correlation and
inter-variable correlation fields. In summary, our contributions are:

• A compact neural network architecture to learn statistical point-
to-point correlations in large ensemble fields.

• The embedding of neural network-based correlation reconstruc-
tion into direct volume rendering to enable interactive visual ex-
ploration of the dependencies in the 3D domain.

• A demonstration of interactive correlation analysis for a large
meteorological 3D ensemble field.

The proposed method is agnostic towards the choice of correla-
tion measure, such that both linear (e.g., Pearson correlation) and
compute-intensive non-linear measures (e.g., MI) are supported.
The network manages to reconstruct the major correlation struc-
tures faithfully, despite showing a tendency to smooth out fine de-
tails (cf. Fig. 1). In view of the complexity of the information to
be learned, our results demonstrate the potential of network-based
correlation learning and open the door for future research in this
field, e.g., by looking into more powerful architectures or special-
ized loss functions. The code for the project is publicly available
at [FH23, NS23].

2. Related work

Scene representation networks and neural fields Scene rep-
resentation networks (SRNs) are neural networks trained to de-
rive compact representations of 3D models and scenes. Origi-
nally, they were proposed for 2D or 3D position coordinate map-
ping. Early examples include encoding surface models as implicit
functions or occupation maps using fully-connected neural net-
works [MON∗19, CZ19, PFS∗19]. Later, they evolved to encode

diverse volumetric scenery information, such as neural radiance
fields [TSM∗20,MST∗21] and were named neural fields [XTS∗22].
A neural field is a neural network that learns a parametrization
of spatio-temporal multi-dimensional physical fields over spatial
coordinates. In inference, coordinates are transformed into latent-
space representations and then decoded to obtain the physical quan-
tity.

Recent work on neural fields has shown that domain-oriented in-
put feature encodings can significantly boost reconstruction qual-
ity. Chabra et al. [CLI∗20] proposed laying out trainable param-
eters in a grid of latent features to learn spatial variations more
directly. Refinements include adaptive data structures [MLL∗21],
fixed multi-resolution grids [TLY∗21], and multi-resolution spa-
tial hashing [MESK22, MRNK21a], enabling multi-scale learning
of spatial feature maps. Comprehensive reviews of SRN-related
literature focusing on neural scene representations are available
[HSB∗20, TFT∗20].

In scientific data visualization, Lu et al. [LJLB21] introduced
SRNs for volumetric data compression, which was sped up and re-
fined by Weiss et al. [WHW22] through the use of trainable feature
representations in combination with an efficient GPU implementa-
tion. Höhlein et al. [HWW22] employ neural fields for compress-
ing ensemble data by sharing model parameters between different
ensemble members. Both works demonstrate the combination of
volume rendering and network inference as used in this study.

Correlation visualization Volume rendering was chosen to
demonstrate network-based reconstruction for correlation visual-
ization in interactive workflows. However, alternative techniques
for correlation visualization have been proposed, including clus-
tering [PW12, LWS18, EHL21], correlation matrices [CWMW11,
EHL21], diagram views [STS06, BDSW13, ZMZM14, LS16], and
specific feature-based approaches like analyzing dependencies in
flow fields with particle trajectories [BMLC19]. Correlation sub-
sampling [GW10, CWMW11] identifies prominent features in cor-
relation fields for analysis. These approaches complement our con-
tribution, as they address significant structures in correlation fields
or develop effective visual encodings. Our approach seamlessly in-
tegrates with these techniques, reducing memory and computation
requirements for accessing correlations in large 3D fields.

3. Statistical dependence in ensemble fields

We quantify statistical dependencies in ensemble datasets through
bivariate correlation measures ρ : RN ×R

N → R between vectors
of paired random samples. For this, let Ω ⊂ R

3 be a simulation
domain in 3D space, and let E = {Ei : 0 ≤ i < N} be an ensemble
of N multi-variable fields Ei : Ω →R

d . The index i suggests a fixed
but arbitrary enumeration of the members. For all i and 0 ≤ ν < d,
let Eν

i : Ω → R denote the scalar field associated with variable ν in
member Ei. For a given position p ∈ Ω, we refer to the local sample
of variable values as eν(p) := (Eν

i (p) : 0 ≤ i ≤ N) ∈ R
N . Then, for

variables µ and ν, we consider the field of µ-ν-correlations, Rµν :
Ω×Ω →R, where for all pairs of positions (pµ,pν) ∈ Ω2 the field
value is defined as Rµν(pµ,pν) := ρ(eµ(pµ),e

ν(pν)). Note that the
indexing of the position variables is used to imply that position pµ

(position pν) alters the value of Rµν(·, ·) by changing the reference
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position in field µ (field ν), respectively. Special attention is payed
to the case µ = ν, which we refer to as the µ-self-correlation field
Sµ := Rµµ. Notably, Sµ is symmetric under exchange of position
coordinates, i.e., Sµ(p1,p2) = Sµ(p2,p1) for all p1,p2 ∈ Ω.

This work uses Pearson correlation and MI from the wide range
of possible dependence measures. Both represent opposite sides of
the spectrum of computational cost and indicate different kinds of
dependence [BMLC19].

3.1. Pearson product-moment correlation coefficient

The Pearson correlation coefficient, or Pearson’s r, measures the
linear correlation between random variable pairs. It is commonly
used in data visualization to explore relationships between vari-
ables. Given a set of paired random samples, e1,e2 ∈R

N , the Pear-
son correlation coefficient is defined as

r =
cov(e1,e2)

√

var(e1)var(e2)
, (1)

wherein var(·) and cov(·) denote sample variance and covariance
of the respective random samples. With a range of -1 to 1, Pearson
correlation indicates correlation (+1), anti-correlation (-1), or the
absence of correlation (0). It is easy to interpret, quantifying the
strength and direction of the relationship between variables. How-
ever, caution is needed when the relationship is nonlinear or when
outliers are present, as they can significantly affect the correlation
coefficient.

3.2. Mutual information

MI is widely used in machine learning, statistics, and information
theory [CT∗91] to measure similarity or correlation between ran-
dom variable pairs. Unlike linear correlation, MI can detect non-
linear and non-monotonic dependencies that are not evident in co-
variance. Mathematically, this is expressed as

I(X1;X2) = H(X1)−H(X1|X2) = H(X2)−H(X2|X1), (2)

wherein X1 and X2 are random variables, I(X1;X2) is the MI of X1
and X2, H(X1) is the entropy of X1, and H(X1|X2) is the condi-
tional entropy of X1 given X2. Note that MI is symmetric under the
exchange of X1 and X2.

Estimating MI from finite samples e1 and e2 of random vari-
ables X1 and X2, i.e. computing I(e1,e2), is computationally ex-
pensive. Existing algorithms struggle to scale with large sample
sizes [KSG04, MRL95]. More recent copula-based and neural-
network-based variational MI estimators offer better performance
in high-dimensional data spaces but still pose computational chal-
lenges [ZD11, BBR∗18]. In our study, we compute ground truth
MI fields using the nearest-neighbor-based estimator of Kraskov
et al. [KSG04], implemented in parallel. However, detailed perfor-
mance analysis in section 6 shows that estimating MI fields for vi-
sualization exceeds the time constraints of interactive data analysis.
Mutual information neural estimation (MINE) is a recent method
that uses neural networks to estimate MI [BBR∗18]. It trains a neu-
ral network to learn a lower bound on MI, which provides an esti-
mate. MINE has shown better performance than traditional MI es-
timation methods on benchmark datasets. Nevertheless, in our sce-
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tion of the encoder outputs.

nario, the inefficiency arises because MINE operates on a member-
wise basis and requires all members to be present in memory.

4. Neural dependence fields

To enable the use of large sets of point-to-point dependence mea-
sures, we perform the computationally expensive calculations of
these measures in a preprocess and encode the two-point µ-ν-
correlation fields Rµν (as defined in section 3) with memory- and
compute-efficient neural scene representations, Φµν : Ω×Ω → R.
The network is obtained by solving the optimization problem

Φµν := argmin
Φ

E(p1,p2)∼U(Ω2) [d(Φ(p1,p2),Rµν(p1,p2))] , (3)

wherein Φ(·, ·) is the neural network, d(·, ·) is a similarity metric,
such as L1 or L2 loss, and the expectation E[·] is taken over sam-
ples of position pairs from a uniform distribution, U(Ω2), with sup-
port Ω2. The optimization is carried out iteratively using stochastic
gradient descent. Using tractably sized batches of position pairs si-
multaneously avoids storing excessive amounts of correlation sam-
ples. After training, Φµν is a compact correlation field encoding,
enabling rapid sample reconstruction. Classical compression meth-
ods like TThresh and SZ cannot achieve similar compaction due to
fixed discretization and computational infeasibility. Additionally,
once the correlation network is trained, there is no need to keep the
entire ensemble dataset in memory, allowing the approach to scale
efficiently to large ensemble sizes.

4.1. Network architecture

NDFs differ from classical neural scene representations as they op-
erate on a bi-spatial domain with six dimensions (6D). Due to the
curse of dimensionality, training efficiency is lowered by the addi-
tional dimensions since covering the domain adequately with sam-
ples becomes exponentially more complex. To overcome this, we

© 2023 The Authors.
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construct NDFs to utilize sparse sampling information efficiently,
which improves memory efficiency and avoids the computation of
excessive amounts of correlation samples.

As shown in Figure 2, we propose a bipartite network archi-
tecture, which consists of two variable-specific encoder networks,
Encµ, and Encν, along with a shared decoder network. All net-
works are implemented as multi-layer perceptrons (MLPs) with l

fully-connected layers and c hidden channels using SnakeAlt acti-
vation [WHW22]. Each encoder model receives information about
one of the two positions between which the correlation should be
reconstructed. Positions are translated into a latent feature vector,
which is merged via element-wise multiplication and forwarded to
the decoder for the final prediction. This architecture allows each
encoder to be trained on only the marginal space Ω ⊂ R

3, which
improves the training efficiency by increasing the effective amount
of correlation samples per volume. In combination with the spatial
coherence of the ensemble fields, this enables the model to infer
correlations even for point pairs that were not seen during training,
thus saving computation time and memory requirements.

The decomposition is similar in spirit to the approach used in
TensoRF [CXG∗22] or K-planes [FKMW∗23], where 3D feature
tensors are decomposed into linear combinations of tensor prod-
ucts between lower-dimensional feature vectors and matrices for
higher parameter efficiency. In the proposed NDF, features over a
6D domain are decomposed into an outer product of fields over
a 3D domain. The accuracy of predictions relies heavily on using
multiplication for feature merging. Alternative combination meth-
ods, such as concatenation, addition or absolute difference, result in
a substantial drop in prediction fidelity, which is in line with find-
ings in [FKMW∗23]. Deviating from TensoRF and K-planes, we
found applying MLPs before and after feature merging beneficial,
which we validate in more detail in section 6.

For self-correlation fields Sµ (as defined in section 3) and the
corresponding NDFs Φµµ, we further constrain the architecture
to use identical encoders for both positions, i.e., Encµ = Encν

(and Gridµ = Gridν, see below for details). This helps to keep
the models small and ensures symmetry of the learned fields un-
der exchange of the query positions on an architectural level, i.e.,
Φµµ(p1,p2) = Φµµ(p2,p1) is fulfilled trivially by design and does
not need to be learned in expensive training iterations. To improve
the capability of the encoders to learn high-frequency patterns as
well as spatially distributed and multi-scale features, we employ
Fourier features [MST∗21, TSM∗20] as well as multi-resolution
hash-grids [MESK22] on the position coordinates, which are con-
catenated to the raw positions before being processed by the en-
coders. The input embedding modules are marked with dashed rect-
angles in Figure 2.

4.2. Input embedding

For a given vector of input coordinates, p = (px, py, pz) ∈ R
3,

Fourier features increase the spread between spatially close po-
sitions by embedding the position information into a higher-
dimensional space using the fixed feature mapping

fi j = (sin(ωi n j ·p),cos(ωi n j ·p)), (4)

wherein ωi = 2iπ for 0 ≤ i < L ∈ N, and n j ∈ R
3 are the axis-

aligned unit vectors for j ∈ {x,y,z}. With Fourier features, the
model can better resolve high-frequent patterns while not affecting
the number of trainable parameters (and thus memory consump-
tion) due to the fixed functional form of the mapping. In our imple-
mentation, we empirically determined L = 12 as a good choice for
the number of Fourier frequencies.

Multi-resolution hash grids use hash tables filled with train-
able feature vectors to populate the domain at various resolu-
tions [MESK22]. By hashing 3D grid indices, vectors are assigned
to regular grid positions at multiple scales, enabling retrieval of fea-
ture vectors at arbitrary positions through tri-linear interpolation.
This allows the creation of virtual feature grids at any resolution
with a fixed memory budget.

The feature vectors for different resolution levels are con-
catenated and trained jointly with subsequent model parts us-
ing stochastic gradient descent. Hash collisions equilibrate during
training due to the pseudo-random hash mapping and multiple res-
olutions, ensuring adaptive and local feature capacity distribution.
The critical parameter for the expressiveness of the hash grid is the
hash table size, 2T for T ∈N, which also determines memory com-
plexity. Other hyper-parameters include the dimension of the fea-
ture vectors per resolution level, the number of resolution levels,
and the grid resolution on each level. We use 6 resolution levels
with virtual grids of size 163 on the coarsest level, doubling with
each finer level. These parameters ensure that the feature granular-
ity matches the spatial resolution of the original dataset, avoiding
higher memory consumption with finer levels while maintaining or
improving the reconstruction accuracy.

4.3. Training

During training, we use a rectangular simulation domain Ω with
data samples on a regular grid, rescaled to fill the symmetric unit
cube, i.e., Ω = [−1,1]3. We generate 106 pairs of uniformly dis-
tributed random positions (pµ,pν) in [−1,1]3, retrieve samples
eµ(pµ) and eν(pν) using trilinear interpolation in the original en-
semble dataset, and compute correlations Rµν(pµ,pν). The models
are trained to optimize the L1 loss as a similarity measure, with L2
loss yielding similar results in our experiments. We use the Adam
optimizer [KB14] with an initial learning rate of 3×10−4 and 1000
samples per batch. An adaptive learning rate scheduler reduces the
learning rate by a factor of 0.1 after 5 passes without improvement
in reconstruction accuracy. After every epoch, the training samples
are renewed. The total training duration is 200 epochs.

5. Correlation visualization

Once trained, the network can estimate dependencies for any po-
sition pair. Multiple queries can be batched efficiently for parallel
processing on a GPU using the tiny-cuda-nn framework [Mü21],
which features a fully-fused MLP implementation [MRNK21b]
with fast 16-bit inference using tensor cores on NVIDIA GPUs
and provides functionality for the multi-resolution hashed fea-
ture grids [MESK22]. The custom activation functions Snake and
SnakeAlt [WHW22] were added to a fork of the library to support

© 2023 The Authors.
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(a) µ = tk, PSNR = 87.63 (b) µ = u, PSNR = 86.39

Figure 3: Point-to-point Pearson self-correlations Sµ for different

variables µ (temperature tk and longitudinal component u of wind

speed) and reference positions pref. Figures show ground truth (left)

and NDF reconstruction (right). The reference is shown in red.

the model architecture, as simpler activation functions like ReLU
led to inferior reconstruction accuracy.

Network training is performed in PyTorch using the Python bind-
ings of the library. To enable interactive visualizations, the binary
weights of the MLP encoder and decoder can then be loaded by a
tiny-cuda-nn module into whatever GPU correlation visualization
is used. In our primary use case, we access the network from a
GPU-based volume renderer implemented in Vulkan [The23]. The
renderer is tied to a graphical interface, in which the user is able to
select reference points pref ∈ [−1,1]3, for which correlation sam-
ples are reconstructed and displayed as a density field. Specifically,
we consider the case of displaying volumetric correlation fields,
φ : [−1,1]3 → R, where φ(p) := Φµν(p,pref) or Φµν(pref,p).

For visualization, the correlation fields are sampled on a grid
with resolution X ×Y ×Z. A CUDA input buffer is prepared for the
reference point pref and passed to the tiny-cuda-nn encoder mod-
ule to get the encoded reference vector. The grid is divided into
⌈(X ×Y ×Z)/M⌉ query batches of size M. Each batch is encoded,
and the reference and query features are multiplied before being
passed to the tiny-cuda-nn decoder module to obtain correlation es-
timates in an output buffer shared between Vulkan and CUDA, pre-
venting race conditions with shared semaphores. Finally, the shared
output buffer is copied to a 3D Vulkan image for visualization in
the volume renderer.

6. Performance and Quality Analysis

Here, we showcase the NDF model for interactive visual analysis of
spatial statistical dependencies in a large weather forecast ensem-
ble. We examine the network’s reconstruction speed and memory
requirements and compare the results to ground truth dependence
fields obtained using Pearson correlation coefficients and MI on
GPU and CPU.

6.1. Dataset

We validate our approach using a convective-scale multi-variable
ensemble dataset (CSEns) by Necker et al. [NGW∗20]. It con-
sists of 1000 numerical simulations of a 3D atmospheric dynam-
ics model over a rectangular region in central Europe, with a grid
size of 250 × 352 nodes and 20 discrete height levels. The sim-
ulations span six hours, and we select the last time step with the
most interesting features for visualization [HWW22]. The dataset

(a) µ = tk, PSNR = 86.44 (b) µ = u, PSNR = 85.27

Figure 4: Point-to-point MI self-correlations Sµ for different vari-

ables µ (temperature tk and longitudinal component u of wind

speed) and reference positions pref. Figures show ground truth (left)

and NDF reconstruction (right). The reference is shown in red.

includes 3D data for nine meteorological variables. For validation,
we compute ground truth correlation fields for temperature (tk) and
longitudinal wind (u) using all 1000 ensemble members. The gener-
alization of our approach to multiple time steps and inter-temporal
dependencies will be explored in future work.

6.2. NDF model performance

To shed light on the performance of the NDFs, we conducted a
comparative analysis of the runtime of NDFs against reference im-
plementations of Pearson correlation and MI. The implementation
of the MI estimator follows Kraskov et al. [KSG04]. All perfor-
mance measurements are based on the CSEns dataset and were
performed on an NVIDIA RTX 3090 GPU and a 6-core Intel Xeon
W-2235 CPU, respectively. Notably, a parallel MI estimator is only
available on the CPU, whereas we restricted ourselves to a GPU im-
plementation of NDF-based reconstruction. Table 1 shows that our
model is about 26x faster than the GPU implementation of the Pear-
son correlation coefficient. Compared to the CPU implementation
of the MI estimator, the factor is 114,106×. Once the NDF model
is trained, it takes 9 ms to reconstruct the dependencies between
the data values at a selected grid point and all other grid points.
The network model requires roughly 1 GB of memory while keep-
ing the entire dataset in memory for one variable would amount to
7 GB. Training of the NDF takes approximately one hour on the
aforementioned machine. Even though it is difficult to estimate the
performance of a GPU implementation of the MI estimator, it can
be assumed that even an optimized GPU-accelerated estimator will
be significantly slower than the NDF model. The MI estimator must
construct search structures for nearest-neighbour queries for all re-
quested samples, a much more elaborate process than passing data
through fully-fused MLP kernels.

Table 1: Performance comparison. For a selected grid point, the

dependence measures are computed for all other grid points in a

250 × 352 × 20 simulation grid using a single variable. A GPU

implementation of the MI estimator is not available.

NDF (ours) Pearson MI [KSG04]

CPU – 4772ms 1026957ms

GPU 9ms 234ms –

© 2023 The Authors.
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Figure 5: Impact of hash table size and MLP hyperparameters on

NDFs’ reconstruction quality. The horizontal axis displays various
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ers and hidden channels. The vertical axis shows the log-2 hash

table size T from section 4.1. The plot considers variable temper-

ature (tk) and Pearson correlation, with similar behavior observed

for other variables and similarity metrics.

6.3. NDF model accuracy

Figures 1, 3, and 4 visually compare the network’s ability to recon-
struct major dependence structures in the variable fields. While fine
details may not be equally well reproduced due to the limited num-
ber of correlation samples during model training, the proposed bi-
partite NDF architecture uses sample information efficiently by in-
creasing the effective sampling density for the encoder parts of the
model (see section 4.1). Furthermore, experiments with increased
sample counts did not significantly improve reconstruction, indicat-
ing that sampling density is not the limiting factor for reconstruc-
tion accuracy. A trade-off between model capacity (memory size)
and reconstruction quality is observed, suggesting that the quality is
primarily bounded by the model’s ability to store training informa-
tion rather than sample availability. The figures displayed depen-
dence fields for selected reference points, representing 3D slices in
a much larger 6D correlation space where the model was trained.
Storing all possible two-point correlations in 32-bit floating point
format would require 6 TB of memory space for the CSEns grid
of size 250× 352× 20. The resulting network size of 1 GB corre-
sponds to an effective compression factor of over 6,000×, showing
promising results.

Figure 5 shows the trade-off between model size and reconstruc-
tion quality. NDFs are trained with various settings for the hash-
table size 2T and different complexities of encoder and decoder
MLPs, using Pearson self-correlation fields of variable tk. PSNR
values are computed on a set of 106 position pairs, sampled uni-
formly from the grid domain. Models are trained for a shorter du-
ration of 50 epochs for efficiency. The figure indicates a minor ad-
vantage for models with more complex encoder and decoder MLPs.
However, the most significant factor affecting achievable PSNR is
the hash table size, which also strongly affects model memory con-
sumption. Increasing the table size leads to higher PSNR values.
A doubling of the table size 2T roughly doubles the model mem-
ory requirements, while the volume of the MLP parameterization is
limited to only a few kB, making it negligible. In our implementa-
tion, we set the maximum table size to less than 232. For further ex-
periments, we choose T = 30 with 6-layer encoders and decoders,
each having 128 channels per layer.

To validate our design choices against TensoRF [CXG∗22] and
K-planes [FKMW∗23], we compare the reconstruction quality of
the proposed architecture against a TensoRF-like model, where the
MLP in the encoder part is omitted, predicting based solely on the

(a) Ground truth (b) NDF (ours) (c) NDF, grid only

Figure 6: Accuracy comparison between NDFs with MLP encoder

(complete) and pure grid model (without encoder) using Pearson

self-correlation fields for variable temperature (tk).

outputs of the input embedding. Figure 6 displays reconstructed
Pearson correlation fields for both approaches, highlighting the sig-
nificant added value of using the MLP before feature merging.

6.4. Additional experiments

The following are quantitative results using NDFs for reconstruct-
ing Pearson correlation coefficients and MI values. We begin with
experiments on variable self-correlation fields Sµ and their corre-
sponding networks Φµµ.

Single-point experiment Firstly, the user selects a point in the 3D
domain, and the dependence field φ(r) is instantly displayed via
volume rendering (see supplementary video). Volumetric visual-
izations, including reconstruction and rendering, can be generated
below 10 ms. Moving the reference point interactively highlights
different regions with high correlation. This allows the user to iden-
tify areas of high internal correlation or observe how correlations
change with distance from the reference. The transfer function can
be adjusted interactively for better visibility of specific features dur-
ing the analysis.

Multi-point experiment Secondly, the user selects two points in
the domain, and the difference between the reconstructed depen-
dence fields for each point is visualized (Figure 7a for Pearson cor-
relation and Figure 7b for MI). The images show the correlation
decay around the points and reveal additional structures in other
areas within the fields. This allows users to efficiently analyze the
differences in the dependence structures related to different points
in the 3D domain.

Multi-variable experiment Our last experiment demonstrates the
use of NDFs for analyzing spatial dependencies between dif-
ferent variables. For a set of d ∈ N variable fields, i.e., V =
{ν1,ν2, ...,νd}, this requires training of d(d + 1)/2 NDFs Φνiν j ,
for each of the combinations νi,ν j ∈ V with 1 ≤ i ≤ j ≤ d. For a
pair of two different physical variables, such as ν1 = tk and ν2 = u,
this amounts to training three NDFs, Φtk,tk, Φu,u and Φtk,u, which
emulate the corresponding correlation fields. Note that no sepa-
rate model is required for Φu,tk if the underlying correlation mea-
sure ρ (see section 3) is symmetric under exchange of arguments,
since due to the symmetric architecture of NDFs Φu,tk(p1,p2) =
Φtk,u(p2,p1) for all p1,p2 ∈ Ω.

Elaborating on the example of tk and u, we propose a matrix-like

© 2023 The Authors.
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(a) µ = u, PSNR = 82.77 (b) µ = u, PSNR = 83.91

Figure 7: Difference field visualization for multiple points in lon-

gitudinal component u of wind speed. a) Pearson correlation field

for two different points, ground truth (left), model reconstruction

(right). b) MI for two different points, ground truth (left), and model

reconstruction (right).

tk-tk tk-u

u-tk u-u

(a) Ground truth

tk-tk tk-u

u-tk u-u

(b) NDF reconstruction

Figure 8: Visualizing dependencies between variables temperature

(tk) and longitudinal component u of wind speed using Pearson

correlation coefficients. a) Ground truth, b) NDF model reconstruc-

tion. Fields show correlations between variables tk or u at selected

points to the same or different variable at other points.

arrangement of linked volumetric correlation visualizations in the
spirit of standard correlation matrix visualizations, i.e., correlation
volume matrices. For this, a single reference point is selected, and
correlation fields with respect to this point are rendered for all NDF
configurations, i.e., all combinations of variables. Figure 8 shows
an example of this.

NDFs enable easier visualization with multiple variables as they
reduce computation time and memory usage compared to on-the-
fly computations using raw data. The standard method would re-
quire all variables’ data in GPU memory, and even high-end GPUs
with 24 GB of memory can only load two variable fields simul-
taneously in practice. NDFs of 1 GB each allow networks for up
to four variables to fit into the same memory. Exploring the reuse
of variable-specific encoder grids in different networks could pre-
vent the memory requirements of NDFs from growing quadrati-
cally with the number of variables.

7. Conclusion and Future Work

We have introduced and evaluated neural dependence fields
(NDFs), a novel approach for encoding and visualizing statistical

dependencies in large 3D ensemble fields. NDFs infer spatial de-
pendencies within single variables and in pairs of different vari-
ables. They offer compact representations of linear and non-linear
dependence patterns in large ensembles, facilitating the rapid re-
construction of correlation samples from the compact representa-
tion. We demonstrated interactive visual analysis of 3D dependence
structures through GPU-accelerated direct volume rendering.

Our evaluations show that NDFs faithfully encode and recon-
struct the prominent dependence structures in 3D fields while
smoothing out some details due to limited network capacities. In
the future, we aim to enhance these capacities by adding net-
work stages in the encoder and decoder, exploring alternative ar-
chitectures like diffusion networks, and trying different loss func-
tions for preserving fine details better (e.g., gradient regulariza-
tion [LJLB21]). Additionally, we plan to extend NDFs to infer tem-
poral dependence structures in time-varying ensemble fields by de-
composing the data into independent fields with spatial variation.
This extension would enable new application scenarios in scientific
workflows, such as ensemble sensitivity analysis [KRRW19].
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