
Mobility Management for Computation-Intensive
Tasks in Cellular Networks with SD-RAN

Anna Prado, Zifan Ding, Fidan Mehmeti, Wolfgang Kellerer
Chair of Communication Networks, Technical University of Munich, Germany.

{anna.prado, zifan.ding, fidan.mehmeti, wolfgang.kellerer}@tum.de

Abstract—With the rapid increase in the amount of ex-
changed traffic over cellular networks, stemming partly from
computation-intensive tasks, and the highly mobile nature of
the users, mobility management exhibits considerable challenges
in next-generation cellular networks. A way to alleviate these
problems is by using Software-defined Radio Access Networks
(SD-RAN), where a centralized controller with a complete
overview of the network topology (distribution of users across
base stations and their channel conditions) can make decisions on
the user assignment and resource allocation. To that end, in this
paper, we formulate an optimization problem with the objective
of maximizing the network utility, where computation-intensive
tasks are sent from the users to edge clouds, taking into account
the communication constraints (uplink and downlink bandwidth)
as well as the finite storage and processing capabilities of edge
clouds. Moreover, we provide a user rate guarantee to satisfy
an additional application for all users. The problem is NP-hard,
therefore, we propose to use Deep Reinforcement Learning (DRL)
to solve it. Extensive realistic simulations show that our approach
is close to the optimal solution, where the latter is obtained using
a solver, while outperforming a benchmark by up to 65%.

Index Terms—Handover, mobility management, SD-RAN, 5G.

I. INTRODUCTION

The traffic over 5G cellular networks has experienced a
tremendous increase in the last years [1]. This is partly due to
the rapid increase of the number of smartphones and other
high-tech gadgets, offering services that are data-intensive.
Such examples are Augmented Reality (AR), Virtual Real-
ity (VR), Extended Reality (XR), online gaming, live video
streaming [2], etc.

Coping with the traversal of this large amount of data
through a network is not straightforward because of the
finite resources, despite the fact that in 5G there are more
resources available. Besides the Radio Access Network (RAN)
resources, i.e., the resources needed to transmit/receive those
data, the aforementioned applications require considerable
computational power as well. For example, when running
some AI-related tasks a large amount of data have to be
processed. Therefore, in-network computing [3] has become
one of the features of today’s cellular networks, with data
being processed at the entities known as edge clouds. Usually,
edge clouds are collocated with Base Stations (BSs).

An additional issue is the high mobility of the users, which
requires changing frequently over time the serving BS. Given
the huge amount of data that need to be uploaded, which
may take seconds or minutes, the users would be changing

their service BSs multiple times. Therefore, the users will be
sending the (large) data to different BSs, and therefore multiple
edge clouds. So, the important question that arises is how are
those data going to be assembled and processed?

In the next step, the data need to be processed, which will
take some time depending on their processing requirement,
the capacity of the edge clouds, and the number of competing
users for these resources. After this has been done, the results
would need to be downloaded to the user. As it has been
some time since the user sent the request and data, it is to
be expected that it has changed the position (or experiences
a blockage of the Line of Sight (LoS) to the serving BS)
and would at that time be assigned to another BS compared
to the time it started uploading its data. In case there are a
large amount of data associated with the results, the user while
downloading them would be changing the serving BSs, which
adds to the challenge of impeccable network operation.

A potential way to alleviate the aforementioned problems
is by using Software-defined Radio Access Networks (SD-
RANs), which are the adaptation of Software-defined Net-
works (SDNs) [4] in RAN. SD-RAN represent a paradigm
shift in the operation of cellular networks in general, and
in how resource management is handled, in particular. In
SD-RAN, the control is decoupled from the data plane and
transferred to a centralized unit, known as SD-RAN controller.
With this feature, the controller can dynamically assign the
Physical Resource Blocks (PRBs)1 to BSs, with the instruc-
tions/decisions on how to further allocate them to the users
within the coverage area of each BS.

The increased flexibility in resource allocation brought by
SD-RAN can be exploited in improving the mobility manage-
ment in cellular networks. Namely, while the data-intensive
task is being uploaded, performing handovers would not be
good as then the remaining part of task would need to be
sent to another edge cloud after the user is handed over to the
next BS, increasing thus the complexity of the operation. On
the other hand, having a centralized knowledge of all the net-
work (which the SD-RAN controller does), to avoid frequent
handovers, the controller has an extra degree of freedom by
increasing the amount of resources (in terms of the number
of PRBs) that can be assigned to a user while uploading
the task and while downloading results. This would lead to
fewer interruptions and would reduce both signaling and data

1PRBs are the unit of resource allocation in 5G.

information exchange, leaving more resources available for
serving more users or providing better level of service of the
existing ones.

There are some important questions that arise related to the
mobility management for data-intensive tasks with SD-RAN:

• If successfully serving a task brings some utility to the
operator, how does one decide which tasks to serve when
there are not enough resources, given the heterogeneous
network requirements of the task, so that the total network
utility is maximized?

• What resource allocation policy should be followed both
in terms of the RAN and edge cloud resources?

To answer these questions, in this paper we formulate an
optimization problem, which has the time component, whose
objective is to maximize the overall network utility by deciding
which tasks to serve (each task has its own utility), given
the limited network resources in terms of the upload band-
width, download bandwidth, storage in edge clouds, and finite
computational capacity, whose solution would determine the
resource allocation and user assignment policy when handling
data-intensive tasks. Given the complexity of the problem,
we then propose a Deep Reinforcement Learning (DRL)
approach, which yields solid performance. Our approach is
particularly important for network operators in deciding which
(computation-intensive) tasks to admit and how to allocate the
resources. The main message is that one cannot directly use
the objective with penalties for constraint violations to train
a well-performing DRL agent. Instead, the reward function
needs to be carefully designed to guide the agent.

Specifically, our main contributions in this work are:
• We propose using SD-RAN to handle the problem of

communication, computation, and mobility management
in a cellular network when dealing with data-intensive
tasks. To that end, we propose an optimization problem
with the time component whose objective is to maximize
the total utility while taking into account the possible
constraints in terms of communication resources (both in
uplink and downlink) and computation resources.

• As the problem exhibits exponential complexity, we pro-
pose an approach relying on DRL, which is shown to
perform very closely to the optimal solution, considerably
outperforming state of the art.

• We provide directions on how this approach can be
implemented in practice.

The remainder of this paper is organized as follows. In Sec-
tion II, the formulation of the optimization problem is given.
This is followed by a detailed description of the proposed
approach in Section III. In Section V, the performance of our
approach is assessed and compared against state of the art
that is presented previously in Section IV. Section VI presents
some related work. Finally, Section VII concludes the paper.

II. PROBLEM FORMULATION

In this section, we present the system model first and then
provide the optimization formulation.

TABLE I: Notation

Variable Explanation

U Set of all users in the network
B Set of all Base Stations (BSs) in the network
T Simulation time (slots)
Uu The utility of user’s u task
au The arrival time of user’s u task
du The deadline of user’s u task
su The storage requirement (data size) of user’s u task
Ku The computation requirement of user’s u task
s′u The result size of user’s u task
ru The minimum required application rate of user u
Ru,b Per PRB rate of user u at BS b
ηu,b Overhead due to handover of user u to BS b

dUL
u The upload time of user’s u task

dCP
u The computational processing time of user’s u task

dDL
u The download time of user’s u result

σu(t) The amount of task data of user u sent at slot t
σ′
u(t) The amount of results of user u sent at slot t

κu(t) The amount of computing resources allocated to user u
at slot t

Cb The total computational capacity of BS b
Sb The total storage capacity of BS b
KPRB

b The total number of PRBs at BS b
NCP

b The total number of computational resources at BS b
xu,b User u to BS b assignment decision variable
zu Processing of user’s u task decision variable
yu,b Number of PRBs that user u obtains from BS b for

uploading the task
y′u,b Number of PRBs that user u obtains from BS b for

downloading the task
yappu,b Number of PRBs that user u obtains from BS b for its

application rate ru
ku,b The amount of computational resources that user u

receives from edge cloud b for processing its task

Fig. 1: Illustration of the system model.

A. System Model

The network consists of multiple BSs, which are managed
by a central controller. The sets U and B denote the sets
of all users and BSs (macro and micro) in the network,
respectively. The problem is considered over a time horizon
of a duration T time slots. The system model is depicted in
Fig. 1. Mobile users move across the area covered by the
network and require two types of services: edge computing
services to solve computation-intensive tasks and constant bit
rate services, such as video calls.

Each user can have at most one task that they want to be
processed. Serving each task consists of the following three
steps: (1) uploading the data to one of the BSs/edge clouds;
(2) processing the task at the edge cloud; and (3) sending the

Fig. 2: Serving the task: upload, processing, and download.

result data back to the user. We assume that edge clouds are
co-located with the BSs. For task processing, the entire task
must be uploaded before processing can begin. This is known
as batch processing [5]. For instance, a complete video upload
is necessary before it can be analyzed. We allow tasks to span
multiple time slots, reflecting a realistic scenario.

The arrival time of the task is denoted as au; its deadline, by
which the task must be served, is du. The utility achieved if a
task is completely processed by its deadline is Uu. Task u has
a storage requirement (or task data size) of su, which is split
into small chunks of a fixed size that are transmitted one by
one. Task’s total computational requirement is Ku, and a result
size that needs to be sent back to the user after processing is
s′u (that is also split into fixed size chunks). The total storage
capacity of the edge cloud located at BS b is denoted as Sb,
while its total computational capacity is Cb units per slot.

The network manages the following resources: (1) band-
width resources (PRBs) at macro and micro BSs that are
shared between uplink and downlink transmissions; (2) storage
resources at edge clouds to store the task until the processing
can start and the result is sent back to the user; and (3)
computing resources at edge clouds. The BSs are connected
among each other and can forward the data instantly. This is
especially beneficial if a user has to switch from one BS to
another, the process called a handover, where user’s data need
to be forwarded from the previous BS to the target one.

The wireless resource unit, a PRB is defined as 12 con-
secutive subcarriers in the frequency domain and one slot in
the time domain. We denote by Ru,b the rate user u ∈ U
receives from every allocated PRB from BS b ∈ B. As such,
Ru,b depends on the Signal to Noise Ratio (SNR)2 of the user,
the type of BS b and its bandwidth. We calculate Ru,b using
Shannon’s formula, as in [6], [7]. Additionally to tasks, the
focus is on a constant bit rate application as well. Therefore,
the aim is to ensure that each user receives a minimum data
rate, denoted as ru that satisfies the traffic requirements.

Computation resources are measured as the amount of data
that can be processed per unit of time (expressed in this
work as MB/s), while the storage resources are defined as
the required storage for the task to run on the edge cloud. We
assume that the total computational and storage resources can
be split into a finite number of units of integer size, which can
be then allocated to a task. Table I summarizes the notation
used throughout this paper.

2We refer to it as SNR, and not Signal to Interference plus Noise Ratio
(SINR) because the reuse factor is 1 in our simulations.

B. Handover Approaches

To the best of our knowledge, the 3GPP standard does not
define when handovers should be performed in applications
such as computational intensive task processing. Several ques-
tions may rise, e.g., shall a user be forced to stay connected
to its serving BS until the task is completed or shall the user
be able to switch to another BS at any time? In this work, we
consider three scenarios regarding the handover execution. A
handover is possible 1) only after the entire task is completed,
2) after a part of the task (e.g., uploading of su or processing)
is completed, or 3) at any time (e.g., after a chunk of data
su was uploaded or chunk of s′u was downloaded, and at
any time during computing). We evaluate these scenarios in
Section V, but one can already notice that in millimetre Waves
(mmWaves) forcing the user to stay connected not to the best
BS might result in a Radio Link Failure (RLF). Moreover,
depending on the task size and available resources, the task
processing can take a long time during which a user might
leave the coverage of its serving BS or obtain a LoS to another
BS, thus, also a better SNR. Next, in this section, we formulate
an optimization problem for the latter case, when a handover
is possible at any time (i.e., after transmitting a chunk of data).
We omit problem formulations for two other cases due to space
limitation. An example of serving two tasks with chunk-based
handover policy is presented in Fig. 2, where user 1 executes a
handover from BS 2 to BS 1 at time slot t = 5 while uploading
their data. Then, the user switches back to BS 2 at t = 8.
This handover was necessary because the user experiences a
blockage of the LoS and could not communicate with BS 2.

C. Optimization Formulation

Next, we introduce four decision variables: (i) xu,b(t) that
states whether user u is assigned to BS b; (ii) zu(t) that
states whether the task of user u is being processed in time
slot t; (iii) ku,b(t) that denotes the amount of computing
resources allocated to task u by edge cloud b in slot t; (iv)
yu,b(t) and y′u,b(t) indicate the amount of PRBs allocated
for task uploading and downloading, respectively; (v) yappu,b (t)
represents the amount of PRBs allocated to satisfy the running
application’s required rate; and (vi) dUL

u , dCP
u , and dDL

u ,
whose values represent the time it takes to upload and process
the task, as well as to download the result, respectively.

The optimization formulation is similar to [5]. Neverthe-
less, differently from [5], we consider mobility management,
studying the impact of handovers, as well as we provide a
guarantee of an additional sensitive-rate service. The indicator
variable θu(t) reserves the necessary storage for a task since
the start of its upload until it is completely processed:

θu(t) =

1, ifmin{au + tt|κu(au + tt) > 0} ≤ t

≤ max{au + tt|κu(au + tt) > 0}
0, otherwise,

(1)

where tt is a time slot when the task is completely processed
(0 ≤ tt ≤ du − 1).

In line with the objective of this paper, the formulation of
the optimization problem is as follows:

max

|U |∑
u=1

Uuzu (2)

s.t.
|B|∑
b=1

xu,b(t) = 1, ∀u ∈ U,∀t ∈ T, (3)

|B|∑
b=1

xu,by
app
u,b Ru,b(1− ηu,b) ≥ ru, ∀u ∈ U,∀t ∈ T, (4)

T∑
t=1

σu(t) = suzu, ∀u ∈ U, (5)

T∑
t=1

κu(t) = Kuzu, ∀u ∈ U, (6)

T∑
t=1

σ′
u(t) = s′uzu, ∀u ∈ U, (7)

σu(t) =

|B|∑
b=1

xu,bzuyu,bRu,b(1− ηu,b), ∀u ∈ U,∀t ∈ T,

(8)

σ′
u(t) =

|B|∑
b=1

xu,bzuy
′
u,b(t)Ru,b(1− ηu,b), ∀u ∈ U,∀t ∈ T,

(9)

ηu,b(t) = (1− xu,b(t− 1))
THIT

Tslot
,

∀b ∈ B, ∀u ∈ U,∀t ∈ T\{0},
(10)

κu(t) =

∑|B|
b=1 xu,bzuku,bCb

NCP
b

, ∀u ∈ U,∀t ∈ T, (11)

|U |∑
u=1

xu,bzusuθp,u ≤ Sb, ∀b ∈ B, ∀t ∈ T, (12)

|U |∑
u=1

xu,bzuku,b ≤ NCP
b , ∀b ∈ B, ∀t ∈ T, (13)

|U |∑
u=1

(
xu,bzu(yu,b + y′u,b) + xu,by

app
u,b

)
≤ KPRB

b ,

∀b ∈ B, ∀t ∈ T,

(14)

xu,b(t) ∈ {0, 1} , ∀b ∈ B, ∀u ∈ U,∀t ∈ T, (15)

zu(t) ∈ {0, 1} , ∀u ∈ U,∀t ∈ T, (16)

ku,b(t) ∈
{
0, 1, · · · , NCP

b

}
, ∀u ∈ U,∀t ∈ T, (17)

yu,b(t) =
{
0, 1, · · · , NPRB

b

}
, ∀b ∈ B, ∀u ∈ U,∀t ∈ T,

(18)
y′u,b(t) =

{
0, 1, · · · , NPRB

b

}
, ∀b ∈ B, ∀u ∈ U,∀t ∈ T,

(19)

yappu,b (n) =
{
0, 1, · · · , NPRB

b

}
, ∀b ∈ B, ∀u ∈ U,∀t ∈ T,

(20)
ηu,b(t = 0) = 0, ∀b ∈ B, ∀u ∈ U, (21)

σu(t) = 0, ∀u ∈ U, t =
{
1, · · · , au − 1, au + dUL

u , · · · , T
}
,

(22)
σu(t) ≥ 0, ∀u ∈ U, t =

{
au, · · · , au + dUL

u − 1
}
, (23)

κu(t) = 0, ∀u ∈ U,

t =
{
1, · · · , au + dUL

u − 1, au + dUL
u + dCP

u , · · · , T
}
,

(24)

κu(t) ≥ 0, ∀u ∈ U,

t =
{
au + dUL

u , · · · , au + dUL
u + dCP

u − 1
}
,

(25)

σ′
u(t) = 0, ∀u ∈ U,

t =
{
1, · · · , au + dUL

u + dCP
u − 1, au + du, · · · , T

}
,

(26)

σ′
u(t) = 0, ∀u ∈ U,

t =
{
1, · · · , au + dUL

u + dCP
u − 1, au + du, · · · , T

}
,

(27)

σ′
u(t) ≥ 0, ∀u ∈ U,

t =
{
au + dUL

u + dCP
u , · · · , au + du − 1

}
,

(28)

dUL
u + dCP

u + dDL
u ≤ du, ∀u ∈ U, (29)

dUL
u = {1, 2, · · · , du − 2} , ∀u ∈ U, (30)

dCP
u = {1, 2, · · · , du − 2} , ∀u ∈ U, (31)

dDL
u = {1, 2, · · · , du − 2} , ∀u ∈ U. (32)

The objective (2) is to maximize the network sum utility of all
tasks. Constraint (3) states that the user must be connected to
exactly one BS in every time slot t. Constraint (4) ensures that
user u receives a certain data rate ru required for a constant-
rate application (in addition to task processing). Constraint (5)
defines the total amount of uploaded data that needs to be
stored if the task is served, while constraints (6) and (7)
state the amount of total required computational resources for
processing and the amount of the result data that should be
transmitted in the downlink. Serving a task consists of multiple
steps captured by constraints (22)-(28), i.e., the uploading can
start only after the task has arrived, the processing can start
only after the uploading has finished, while the transmission
of the results in the downlink requires the processing to be
finished in the previous slot.

Constraints (8) and (9) limit the amount of transmitted data
in the uplink and downlink, which depends on the per-PRB
rate Ru,b and the amount of allocated PRBs yu,b. Also, the
handover overhead is included in these constraints, which is
defined by Eq. (10). It depends on the previous user-to-BS
assignment; namely, on xu,b(t−1). The handover overhead at
the first time slot t = 0 is zero since there are no handovers
possible (see constraint (21)).

Constraint (11) captures the amount of data processed at slot
t. The storage capacity, computational, and wireless resources
of every BS are limited as stated in constraints (12)-(14).

Constraint (15) and (16) define the binary decision variables
xu,b and zu, while the constraints (18)-(20) define the variable

that states the number of PRBs allocated for task upload and
download, as well as for the application rate.

Finally, the task must be served before the deadline du
expires, which is captured by constraint (29). It consists of
uploading, processing, and downloading times, and is defined
by constraints (30)-(32).

This optimization problem is solved once for the entire time
horizon T , assuming the complete knowledge of future tasks,
including their arrival times, sizes, and utilities. Therefore,
we refer to this solution as the Oracle, given the assumed
knowledge of all the parameters of interest. The problem (2)-
(32) is an Integer Non-linear Program (INLP). Therefore, it is
NP-hard [8]. Because of that, we can obtain the optimal solu-
tion using a solver, like Gurobi, assuming that the information
about all users in the network is available at time slot t = 0,
only for a very small scenario. Therefore, an approach that
provides results faster, although they would be sub-optimal,
is needed. To that end, in the next section we propose a
practical DRL-based solution and compare its performance to
the Oracle in Section V.

III. DRL APPROACH

This section explains the proposed DRL-based approach for
handover management as well as its state space, action space,
and reward function.

A. PPO as a DRL Algorithm

In Reinforcement Learning (RL), an agent learns a policy by
interacting with the environment by trial and error, receiving
feedback in the form of rewards based on its actions. The
goal of the RL algorithm is to predict the expected reward
given the current state. By continuously refining its predictions
and strategies, the agent can perform well even in complex
environments.

To overcome the curse of dimensionality in tabular RL, DRL
algorithms utilize Neural Networks (NNs) to approximate var-
ious functions involved in the learning process [9]. Proximal
Policy Optimization (PPO) [10] uses two NNs to approximate
the value and policy functions. DRL generalizes well to unseen
states, and an NN does not need to visit every state [9]. This
allows creating a well-performing agent for users with various
task parameters, channel conditions, and mobility patterns.

PPO [10] is a state-of-the-art model-free DRL algorithm
that belongs to the policy gradient methods. It outperforms
other popular algorithms such as Deep Q Network (DQN) and
Asynchronous Advantage Actor-Critic (A3C), yet it is simple
to implement and tune [10]. The current πθ(at|st) is being
updated, while the old πθold(at|st) is used to generate new
trajectories of state, action, reward, next state; specifically,
{(st, at, rt, st+1)}. This improves sample efficiency. After
several iterations, the current policy network is synchronized
with the old one. To measure the difference between the new
and old policies, the ratio rt(θ) =

πθ(at|st)
πθold (at|st) is computed. The

objective function clips the estimated advantage Ât if the new
policy deviates significantly from the old one.

The main objective function is expressed as [10]

LCLIP (θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where ϵ is a small hyperparameter that controls the range of the
clipping. The second term clips the probability ratio, so that
rt is inside the interval [1− ϵ, 1+ ϵ]. Finally, the minimum of
the clipped and unclipped objectives is taken, and the overall
objective becomes a lower bound on the unclipped objective.
PPO clips the objective so that the updates to the policy do not
cause excessively large policy updates, which ensures stable
learning. To summarize, the advantages of PPO are stability,
simplicity, and sample efficiency.

Algorithm 1 Reward Design

1: The agent outputs b, yu,b, and ku,b for user u in time slot
t

2: Compute yappu,b based on b and Ru,b

3: if handover then
4: Reduce user’s task and application rates by HIT ηu,b as

in Eqs. (4), (8)-(9)
5: end if
6: Set reward = 0
7: if handover & SINRb(t) ≤ SINRb′(t− 1)− thhandover

then
8: reward += phandover
9: end if

10: if wireless resource violation because of PRBs to satisfy
user’ rate then

11: reward += pappresource−violation

12: else
13: Allocate yappu,b to user u from the serving b
14: if yappu,b > thPRB then
15: reward += ptoo−many−PRBs

16: end if
17: end if
18: if wireless or compute resource violation for tasks then
19: reward += ptaskresource−violation

20: else if one task is completed then
21: reward += Uu

22: else if one task is processed in any stage then
23: Compute the progress ratio of up-

load/processing/download progress
24: reward += progress

10
25: end if

B. PPO-based Approach

1) Resource and mobility management as an RL problem:
We deploy one agent at the network controller that can
communicate with low latency to all BSs. This agent makes
task processing- and application rate-related decisions for all
users in the network. Serving BSs signal measured SNR
values of their connected users to this controller as well as
the amount of available resources (wireless/communication,
computational, and storage). The agent makes assignment and

resource allocation decisions and signals them back to the
serving BSs. The agent actions correspond to the decision
variables (per user per slot) in the optimization problem in
Section II-C. Note that our approach re-uses most of the
signaling proposed by 3GPP in [11].

The Oracle from Section II-C knows everything about future
tasks, such as their arrival and deadline times, as well as task
parameters. Although this is a very unrealistic assumption, it
provides the best possible performance. Another unrealistic
assumption is that the Oracle considers the information from
all users and outputs decision variables for all of them at
once. Firstly, this creates a combinatorial problem, leading
to an exploding action and state space size, making learning
infeasible. Secondly, the number of users in the network is
expected to vary over time, making it impractical to assume
that the number of users is fixed, and that the decision for
all of them must be made at the same time slot. Therefore,
our agent makes assignment and resource allocation decisions
for every user one by one, and each user is a separate vector.
The architecture of our NN is independent from the number
of users in the network.

2) Design: The effectiveness of RL algorithms is signif-
icantly impacted by the reward function, state space, and
action space design. Our PPO-based approach uses the existing
information at the BSs and users, such as measurement reports,
task parameters, task completion status, and the available
resources to output its decision.

State space: The state space includes channel measure-
ments of the BSs, their available resources, as well as task
parameters and the current progress of task processing. So,
the state of user u can be expressed as a flattened array of
the following arrays: (i) the measured SNR values per BS;
(ii) the id of the serving BS; (iii) task parameters (arrival au,
deadline du, its utility Uu); (iv) task requirements (data size su,
computation Ku, and results’ data size s′u); (v) the available
PRBs per BS; (vi) the available compute resources per BS;
(vii) the remaining number of users to be served; (viii) the
current user stage (upload, process, download, or no task);
(ix) the remaining task size to be served, which is an updated
tuple from (iv); and (x) the current time slot.

It is worth mentioning that before feeding SNR values and
the resource arrays to the agent, they are normalized to be in
the range [0, 1] to speed up learning.

Action space: The action space consists of the set of all
BSs along the user trajectory and the set of wireless and
computational resources. Hence, the action consists of the
index of the next serving BS b for user u, the number of
allocated wireless/communication yu,b or y′u,b, and compute
resources ku,b. We compute yappu,b after the agent outputs b
based on Ru,b, ru, and handover overhead. Note that this is
not an integer value and must be rounded up. One could also
let the agent output yappu,b directly, but this complicates the
learning as our training results show.

Reward function: As the goal is to maximize the task
utility and satisfy users’ application rate, we provide a positive
reward for task completion and penalize the agent if the user

rate is not satisfied (due to the lack of wireless resources or a
poor choice of the serving BS). One key finding of this work is
that directly using the objective function from the optimization
formulation with penalties for constraint violations does not
result in a well-performing DRL agent. The agent needs to
complete three steps in the right order, which are task upload,
processing, and download, before the deadline expires in order
to receive the utility value as the reward. The rewards are
sparse and delayed, which is a well-known problem in RL [9].
Eventually, the agent learns to act safely to avoid penalties,
but achieves a very low utility because it does not do anything
beyond satisfying the constraints.

Thus, we propose a more complex reward design summa-
rized in Algorithm 1, where we guide the agent by providing
a small reward for some progress. Initially, we set the reward
to zero. We penalize the agent for handovers by considering
Handover Interruption Time (HIT) in the user’s data rate
(Line 4 of Algorithm 1). Additionally, for handovers to a
target BS where the SNR is worse by a threshold thhandover

(e.g., 2 dB) compared to the serving BS’s SNR, we apply a
small penalty phandover to reduce the handover rate. For the
wireless and computational violation of resources allocated
to tasks, we assign the penalty ptaskresource−violation, whereas
pappresource−violation is given for wireless resource violations
allocated to satisfy the user’s rate. We differentiate between
these penalties so that it is easier for the agent to learn. We also
discourage the agent from connecting the user to a BS with a
poor channel by giving a penalty if too many PRBs have to
be allocated to satisfy user’s rate (Line 15 of Algorithm 1).
Finally, if there was any progress on task completion, e.g., a
part of the task was uploaded or processed, the agent receives
an immediate reward progress (Line 24 of Algorithm 1).
When a task is completed, the reward is incremented by the
full utility Uu.

IV. SNR-BASED BASELINE MODEL

Next, we describe the baseline model against which we are
going to compare the performance of our approach later in
Section V. The user periodically measures the channel and
sends the Measurement Report (MR) to its serving BS, which
contains the signal strength of the serving and neighboring
BSs. We assume that users signal their measured channels
to their serving BSs periodically. In the baseline handover
algorithm, the network makes handover decisions and signals
them to the users [11]. Before reporting the measurements, the
user applies Layer-3 filtering and averages Reference Signal
Received Power (RSRP) or SNR values over 200 ms [11].
Based on these measurements, the serving BS selects the target
BS that should be prepared for handover. The network initiates
a handover when a neighboring BS becomes better than the
serving BS by a certain margin (e.g., 3 dB) during a certain
period of time (e.g., during 320 ms), similarly to [12]. We use
SNR measurements to make handover decisions, hence, we
refer to this baseline algorithm as the SNR-based handover.

Next, after the user assignment was performed, the baseline
algorithm allocates to all users the minimum required number

(a) (b) (c)
Fig. 3: a) and b): The utility and handover rate with Oracle with full-, part-task and chunk-based approaches; c) the utility
with Oracle, Baseline and PPO-based algorithms for handover overhead values (HIT) of 0, 0.9, and 0.99.

TABLE II: Performance with direct and curriculum learning.

Learning Task utility Handover rate User rate satisfaction
Direct 4.167 1.069 0.940
Curriculum 6.1 0.392 0.963

of PRBs to satisfy the user’s rate if there are enough resources
available. In the second step, the remaining PRBs are allocated
to the tasks to maximize the utility. Here, we prioritize tasks
according to their arrival time, i.e., the tasks that arrive first
receive wireless resources to upload their data first. We allocate
to a user kallocu = min{kreq, kb}, where kreq are the required
resources to upload/process/download the task, kb are the
available resources at BS b.

V. PERFORMANCE EVALUATION

First, we describe the simulation setup. Then, we evaluate
the performance with network scenarios of 10 and 15 users.

A. Simulation Setup

We evaluated the algorithms with 4 BSs (one macro and
three micro BSs) over 1000 s. We consider a two-tier network
with urban channel models for macro and micro cells, respec-
tively, from 3GPP 5G Release 14 [13] when simulating the
channel. We model the path loss and shadowing for LoS and
no LoS as in [13]. Macro BS operates at 2.5 GHz, while micro
BSs at 28 GHz. Random Waypoint mobility model is used to
generate the mobility-related data [14] for pedestrian users,
bikes, and cars. An RLF occurs when the user’s SNR falls
below an RLF Tout threshold during T310 timer. We consider
one cluster of BSs and the frequency reuse factor is 1, hence,
there is no interference from the first neighbors.

We set the following parameters [5], [15]: Uu = 1, Cb =
7.2 Mbps, Tslot = 100 ms, THIT = 80 ms, NCP

b = 100 units,
ru = 1 Mbps. Other parameters are normally distributed: κu

with the mean µ = 4.7 Mbit and standard deviation σ = 0.15;
Sb with µ = 3.6 GB and σ = 0.3; du with µ = 270 time slots
and σ = 2; su and s′u with µ = 50 MB and σ = 3.125; au
with µ = 2 tasks per slot and σ = 1.

B. Evaluations of Three Handover Approaches with Oracle

Fig. 3a and Fig. 3b present the results of Oracle for three
different handover approaches described in Section II-B. The
first, denoted as full-task is characterized by the fact that
once the task processing starts, the complete task needs to

be processed (uploaded, computed, and downloaded) before a
handover to another BS can be performed. In this case, we
assume that the BSs cannot exchange task-related information
with each other and the task processing must be completed at
one BS. In the second, denoted as part-task, one of the three
parts needs to be completed before a handover, i.e., a handover
can be executed after the uploading finishes. An example of
this scenario is when the previous BS can send the result data
s′u after processing to another BS. In the third case, called
chunk-based, the user can be handed over to another BS after
transmitting a small chunk of data, e.g., 10 MB. This scenario
is especially well suited for fast-changing radio conditions, to
avoid RLFs and benefit from high SNR after a handover.

As can be observed from Fig. 3a, the chunk-based approach
achieves the highest sum utility. Moreover, the other two ap-
proaches cause RLFs in case of fast changing radio conditions,
especially for large tasks or when very few bandwidth or
computing resources are allocated to the user, i.e., when the
task completion time is high. So, with our DRL-based solution,
we focus on the chunk-based case. Note that the handover rate
in Fig. 3b is very high because Oracle assumes instantaneous
handovers. As will be shown in Section V-D, the handover
rate can be reduced by considering the handover overhead.

C. Impact of Curriculum Learning

To reduce the handover rate, the handover overhead must
be considered in the user rate calculation. Training an agent
with a high HIT value is more challenging because the agent
keeps the handover rate very low (to avoid the penalty for
it) and completes only a small number of tasks. Therefore,
we apply curriculum learning [16], which is a technique in
RL, where the agent is trained first on easier samples and
then on harder ones. In our case, the agent first trains in an
environment with HIT = 0 and then we increase the difficulty
level by setting HIT = 0.9. As the results in Table II show,
the average value of utility increases by 46%, the handover
rate reduces by 63%, and the user rate satisfaction increases
by 2% when using curriculum learning. Note that the number
of the training episodes is kept the same with both types of
learning. Therefore, in all the following results with DRL, the
agent was trained with curriculum learning.

(a) (b)
Fig. 4: Performance with Oracle, Baseline and PPO-based algorithms for handover overhead values (HIT) of 0, 0.9, and 0.99.

(a) (b) (c)
Fig. 5: The performance with the Baseline and PPO-based algorithms for 15 users with an overhead of 0 and 0.9.

D. Performance Evaluation for a Scenario with 10 Users

Fig. 3c and Fig. 4 portray the performance results of
Oracle, the SNR-based baseline (denoted as Baseline) and the
proposed PPO-based algorithm for different overhead values:
0, 0.9, and 0.99. The Oracle achieves the highest utility
thanks to its global and future knowledge about all users and
tasks. It is followed by PPO-0 with the optimality gap of
30% because PPO-0 trades-off a high handover rate for the
increased utility. The PPO-based algorithm improves the sum
utility by up to 65% and achieves a user rate satisfaction of
≈ 96% by increasing the user rate y 35%. The handover rate
with the Baseline and PPO-0.99 reduces only slightly (0.2 with
Baseline vs. 0.19 with PPO-0.9).

E. DRL Solution Evaluation for a Scenario with 15 Users

As shown in Fig. 5, PPO-based solution increases the utility
by ≈ 40% while increasing the user rate satisfaction from
52% to 96% at the cost of slightly higher handover rate. If the
operator wants to keep the handover rate even lower, a larger
handover overhead like in Fig. 4 can be set. Interestingly,
with PPO, a higher handover overhead increases the user rate
satisfaction (Fig. 5c), as handovers result in outages. Higher
handover rate results though in a larger utility value, hence,
there is a trade-off between the handover rate, utility, and user
rate. Even though the Baseline prioritizes satisfying user rate
to utility maximization (see Section IV), it achieves a very
low user rate satisfaction (see Fig. 5c) because users are not
well-distributed across BSs.

VI. RELATED WORK

The authors in [1] show that handovers negatively impact
the performance of 5G networks, with the throughput dropping
significantly after a handover, and the latency skyrocketing

up to 14.5×. While video conferencing is a popular service
that 5G should easily support, conferencing over currently
deployed 5G networks remains challenging for mobile users
due to handovers, even though videoconferencing applications
like Zoom require less than 1 Mbps. Another application which
performance was evaluated is volumetric video streaming. The
video bitrate reduces by 59%, while the latency increases by
over 100% in mmWaves [1].

Numerous solutions have been proposed to enhance mobil-
ity management, i.e., adjusting handover parameters [17], [18]
performing jointly resource allocation and handover manage-
ment [6], [7], reducing mobility-related signaling [19], apply-
ing DRL to select the target BS [20], and using lower level
signaling for mobility [12]. In [17], the authors tune handover
margin and Time-to-Trigger (TTT) based on the user speed and
measured channel. The authors in [18] also adjust handover
parameters based on the user speed as well as on the cell
load, and perform load-balancing between neighboring cells.
However, handovers in dense scenarios are not only caused
by mobility, but also by LoS blockages and load-balancing
decisions. The authors in [20] also apply the PPO algorithm
for the handover management problem. Their objective is to
assign the user to the strongest BS while at the same time
avoiding RLFs and ping-pong handovers. However, in [20]
the available resources are neglected in the decision process.

The problem of running computation-intensive tasks has
been considered in [21], [22], where the best options when
to solve a task locally or to send it to a cloud have been
investigated for different optimization goals. However, this
was done for users that do not change their serving BSs.
Running computation-intensive tasks, where the limitations in
the uplink/downlink bandwidth and finite storage and com-
putation capacities in the clouds were fully incorporated in

the problem setup, with different optimization objectives and
different processing structure have been considered in [5]
and [23]. For example, in [5] the authors assign tasks to edge
clouds using a bidding approach in a distributed manner. They
consider two scenarios: pipeline, where the data units can be
processed as they arrive, and batch processing, where all data
must be uploaded before processing can begin. However, their
study does not consider handover management, which is a
crucial component and must be included in the process of
resource allocation as prior works [1], [6] have shown.

As far as SD-RAN is concerned, its potential in improving
various aspects of network performance has already been doc-
umented in [24] with improving the total network throughput
compared to the traditional resource allocation in cellular
networks, in [25] with providing proportional fairness, and
in [26] with guaranteeing delay fairness among all the users
in the network. However, in none of these works the possibility
of users moving across different cells is not considered.
Furthermore, the computing aspect is not considered either.
On the other hand, in the current work we show the great
potential of SD-RAN in handling data-intensive tasks with
highly-mobile cellular users, leading to a maximization of the
network utility, beneficial to cellular operators.

Finally, we have proposed in [27] a two-level wireless re-
source allocation using SD-RAN with the goal of maximizing
network sum throughput, ensuring a minimum user rate and
minimizing the number of handovers. However, as opposed
to the current work where we consider both communication
and computation resource allocation, in [27] the analysis is
confined to communication resources only. To our best knowl-
edge, there are no other works that propose the utilization of
SD-RAN in handling mobility management for computation-
intensive tasks in cellular networks.

VII. CONCLUSION

In this paper, we considered the problem of joint mobility
management and resource allocation (communication, compu-
tation, and storage) using SD-RAN. To that end, we formulated
an optimization problem, which is NP-hard. Because of its
complexity, we proposed a DRL-based solution and showed
that it significantly outperforms another baseline with an
optimality gap of 30% to the Oracle, where the latter assumes
complete future knowledge of everything in the network.
Furthermore, we provide a user rate guarantee up to 96% to
satisfy an additional constant bit rate application. In the future,
we plan to consider a cross-layer optimization in the mobility
management, by considering also the transmission power.

REFERENCES

[1] A. Hassan, A. Narayanan, A. Zhang, W. Ye, R. Zhu, S. Jin, J. Carpenter,
Z. M. Mao, F. Qian, and Z.-L. Zhang, “Vivisecting mobility management
in 5G cellular networks,” in Proc. of ACM SIGCOMM, 2022.

[2] A. Hazarika and M. Rahmati, “Towards an evolved immersive experi-
ence: Exploring 5G-and beyond-enabled ultra-low-latency communica-
tions for augmented and virtual reality,” Sensors, vol. 23, no. 7, 2023.

[3] S. Kianpisheh and T. Taleb, “A survey on in-network computing:
Programmable data plane and technology specific applications,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, 2022.

[4] X. Foukas, N. Nikaein, M. M. Kassem, M. K. Marina, and K. Konto-
vasilis, “FlexRan: A flexible and programmable platform for software-
defined radio access networks,” in Proc. of ACM CoNEXT, 2016.

[5] C. Rublein, F. Mehmeti, M. Towers, S. Stein, and T. F. La Porta,
“Online resource allocation in edge computing using distributed bidding
approaches,” in Proc. of IEEE MASS, 2021.

[6] A. Prado, F. Stoeckeler, F. Mehmeti, K. Patrick, and W. Kellerer,
“Enabling proportionally-fair mobility management with reinforcement
learning in 5G networks,” IEEE Journal on Selected Areas in Commu-
nications, vol. 41, no. 6, 2023.

[7] A. Prado, D. Gölitz, F. Mehmeti, and W. Kellerer, “Proportionally Fair
Resource Allocation Considering Geometric Blockage Modeling for
Improved Mobility Management in 5G,” in Proc. of ACM Q2SWinet,
2022.

[8] R. Srikant and L. Ying, Communication Networks: An Optimization,
Control, and Stochastic Networks Perspective. Cambridge University
Press, 2013.

[9] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT press, 2018.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[11] 3GPP, “NR; NR and NG-RAN Overall description; Stage-2,”
3rd Generation Partnership Project (3GPP), Technical Specification
(TS) 38.300, 3 2021, version 16.5.0. [Online]. Available:
http://www.3gpp.org/DynaReport/38300.htm

[12] A. Gündogan, A. Badalıoğlu, P. Spapis, and A. Awada, “On the
modelling and performance analysis of lower layer mobility in 5G-
advanced,” in Proc. of IEEE WCNC, 2023.

[13] 3GPP, “Study on channel model for frequencies from 0.5 to
100 GHz,” 3rd Generation Partnership Project (3GPP), Technical
Report (TR) 38.901, 1 2020, version 16.1.0. [Online]. Available:
http://www.3gpp.org/DynaReport/38901.htm

[14] X. Lin, R. K. Ganti, P. J. Fleming, and J. G. Andrews, “Towards
understanding the fundamentals of mobility in cellular networks,” IEEE
Transactions on Wireless Communications, vol. 12, no. 4, 2013.

[15] N. Naz, A. Haseeb Malik, A. B. Khurshid, F. Aziz, B. Alouffi, M. I.
Uddin, and A. AlGhamdi, “Efficient processing of image processing
applications on CPU/GPU,” Mathematical Problems in Engineering, vol.
2020, pp. 1–14, 2020.

[16] X. Wang, Y. Chen, and W. Zhu, “A survey on curriculum learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 9, 2022.

[17] A. Alhammadi, M. Roslee, M. Y. Alias, I. Shayea, S. Alraih, and
K. S. Mohamed, “Auto tuning self-optimization algorithm for mobility
management in LTE-A and 5G HetNets,” IEEE Access, vol. 8, 2019.

[18] A. Hatipoğlu, M. Başaran, M. A. Yazici, and L. Durak-Ata, “Handover-
based load balancing algorithm for 5G and beyond heterogeneous
networks,” in Proc. of ICUMT, 2020.

[19] A. Prado, F. Mehmeti, and W. Kellerer, “Cost-efficient mobility man-
agement in 5G,” in Proc. of IEEE WoWMoM, 2023.

[20] P. J. Gu, J. Voigt, and P. M. Rost, “A deep reinforcement learning-based
approach for adaptive handover protocols in mobile networks,” arXiv
preprint arXiv:2401.14823, 2024.

[21] N. Felemban, F. Mehmeti, H. Khamfroush, Z. Lu, S. Rallapalli, K. Chan,
and T. L. Porta, “PicSys: Energy-efficient fast image search on dis-
tributed mobile networks,” IEEE Transactions on Mobile Computing,
vol. 20, no. 4, 2021.

[22] K. S. Wheatman, F. Mehmeti, M. Mahon, H. Qiu, K. S. Chan, and
T. F. L. Porta, “Optimal resource allocation for crowdsourced image
processing,” IEEE Transactions on Mobile Computing, vol. 22, no. 10,
2023.

[23] C. Rublein, F. Mehmeti, T. D. Gunes, S. Stein, and T. F. La Porta,
“Scalable resource allocation techniques for edge computing systems,”
in Proc. of ICCCN, 2022.

[24] F. Mehmeti, A. Papa, and W. Kellerer, “Maximizing network throughput
using SD-RAN,” in Proc. of IEEE CCNC, 2023.

[25] F. Mehmeti and W. Kellerer, “Proportionally fair resource allocation in
SD-RAN,” in Proc. of IEEE CCNC, 2023.

[26] ——, “Delay fairness in 5G networks with SD-RAN,” in Proc. of
ICCCN, 2023.

[27] A. Prado, M. Ciki, F. Mehmeti, and W. Kellerer, “Enhanced mobility
management with SD-RAN in 5G networks,” in Proc. of IFIP/IEEE
Networking, 2024.

