
Citation: Dal Cero, M.; Gibert, J.;

Grande, L.; Gimeno, M.; Osorio, J.;

Bencivenga, M.; Fumagalli Romario,

U.; Rosati, R.; Morgagni, P.; Gisbertz,

S.; et al. International External

Validation of Risk Prediction Model

of 90-Day Mortality after

Gastrectomy for Cancer Using

Machine Learning. Cancers 2024, 16,

2463. https://doi.org/10.3390/

cancers16132463

Academic Editor: Alain P. Gobert

Received: 17 June 2024

Revised: 28 June 2024

Accepted: 2 July 2024

Published: 5 July 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

International External Validation of Risk Prediction Model of
90-Day Mortality after Gastrectomy for Cancer Using
Machine Learning
Mariagiulia Dal Cero 1,† , Joan Gibert 2,† , Luis Grande 1, Marta Gimeno 1 , Javier Osorio 3, Maria Bencivenga 4,
Uberto Fumagalli Romario 5, Riccardo Rosati 6 , Paolo Morgagni 7, Suzanne Gisbertz 8 ,
Wojciech P. Polkowski 9 , Lucio Lara Santos 10, Piotr Kołodziejczyk 11, Wojciech Kielan 12 ,
Rossella Reddavid 13 , Johanna W. van Sandick 14, Gian Luca Baiocchi 15 , Ines Gockel 16 , Andrew Davies 17,
Bas P. L. Wijnhoven 18, Daniel Reim 19 , Paulo Costa 20 , William H. Allum 21, Guillaume Piessen 22,
John V. Reynolds 23, Stefan P. Mönig 24, Paul M. Schneider 25, Elisenda Garsot 26 , Emma Eizaguirre 27,
Mònica Miró 28, Sandra Castro 29 , Coro Miranda 30, Xavier Monzonis-Hernández 2, Manuel Pera 1,*
and on behalf of the Spanish EURECCA Esophagogastric Cancer Group and the European GASTRODATA Study Group ‡

1 Hospital del Mar Research Institute (IMIM), Section of Gastrointestinal Surgery, Hospital del Mar,
Department of Surgery, Universitat Autònoma de Barcelona, 08003 Barcelona, Spain; 1325220@uab.cat

2 Department of Pathology, Hospital Universitario del Mar, Cancer Research Program,
Hospital del Mar Research Institute (IMIM), 08003 Barcelona, Spain

3 Section of Esophagogastric and Bariatric Surgery, Hospital Clinic, Department of Surgery,
Universitat de Barcelona, 08193 Barcelona, Spain

4 Department of Surgery, General and Upper G.I. Surgery Division, University of Verona, 37126 Verona, Italy
5 Digestive Surgery, European Institute of Oncology, IRCCS, 20122 Milan, Italy
6 Department of GI Surgery, IRCCS, San Raffaele Hospital, Vita-Salute University, 20135 Milan, Italy
7 GB Morgagni-L Pierantoni Surgical Department, 47121 Forli, Italy
8 Department of Surgery, University Medical Center, 1007 Amsterdam, The Netherlands
9 Department of Surgical Oncology, Medical University of Lublin, 20-080 Lublin, Poland
10 Experimental Pathology and Therapeutics Group and Surgical Oncology Department,

Portuguese Institute of Oncology, 4200-072 Porto, Portugal
11 Department of Surgery I, Jagiellonian University, 31-007 Krakow, Poland
12 2nd Department of General and Oncological Surgery, Wroclaw Medical University, 50-367 Wroclaw, Poland
13 Division of Surgical Oncology and Digestive Surgery, Department of Oncology, University of Turin,

San Luigi University Hospital, Orbassano, 10043 Turin, Italy
14 Department of Surgery, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital,

1066 Amsterdam, The Netherlands
15 General Surgery Unit, Department of Clinical and Experimental Sciences, University of Brescia,

ASST Cremona, 26100 Cremona, Italy
16 Department of Visceral, Transplant, Thoracic and Vascular Surgery, University Hospital of Leipzig,

04103 Leipzig, Germany
17 Department of Digestive Surgery, Guy’s & St Thomas’ National Health Service Foundation Trust,

London SE1 7EH, UK
18 Department of Surgery, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands
19 Department of Surgery, School of Medicine and Health, Technical University of Munich,

81675 Munich, Germany
20 Department of General Surgery, Faculdade de Medicina, Universidade de Lisboa, Hospital Garcia de Orta,

1649-028 Lisboa, Portugal
21 Department of Surgery, Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
22 Department of Digestive and Oncological Surgery, University Lille, Claude Huriez University Hospital,

59037 Lille, France
23 Department of Surgery, Trinity College Dublin, St. James’s Hospital, D08 W9RT Dublin, Ireland
24 Division of Abdominal Surgery, University Hospital of Geneva, 1205 Geneva, Switzerland
25 Center for Visceral, Thoracic and Specialized Tumor Surgery, Hirslanden Medical Center,

5000 Zurich, Switzerland
26 Department of Surgery, Universitat Autònoma de Barcelona, Hospital Universitari Germans Trias i Pujol,

08916 Barcelona, Spain
27 Department of Surgery, Hospital Universitario de Donostia, 20014 Donostia, Spain
28 Department of Surgery, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain

Cancers 2024, 16, 2463. https://doi.org/10.3390/cancers16132463 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers16132463
https://doi.org/10.3390/cancers16132463
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-0558-2244
https://orcid.org/0000-0002-0742-0759
https://orcid.org/0000-0003-3237-9927
https://orcid.org/0000-0002-2608-5749
https://orcid.org/0000-0001-9655-7601
https://orcid.org/0000-0001-6455-5636
https://orcid.org/0000-0001-6116-6504
https://orcid.org/0000-0003-0603-9953
https://orcid.org/0000-0003-2402-2178
https://orcid.org/0000-0001-7423-713X
https://orcid.org/0000-0001-9736-3307
https://orcid.org/0000-0002-7550-8285
https://orcid.org/0000-0003-3132-4756
https://orcid.org/0000-0001-8518-749X
https://orcid.org/0000-0002-9449-1810
https://doi.org/10.3390/cancers16132463
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers16132463?type=check_update&version=2


Cancers 2024, 16, 2463 2 of 13

29 Department of Surgery, Universitat Autónoma de Barcelona, Hospital Universitari Vall d’Hebron,
08035 Barcelona, Spain

30 Department of Surgery, Hospital Universitario de Navarra, 31008 Pamplona, Spain
* Correspondence: pera@psmar.cat
† These authors share first authorship criteria.
‡ Membership of the Group is provided in the Appendix A.

Simple Summary: A 90-day mortality predictive model for curative gastric cancer resection based
on the Spanish EURECCA Esophagogastric Cancer database was externally validated using the
GASTRODATA registry. The externally validated model showed a modestly worse performance
compared to the original model, nevertheless maintaining its discriminating ability in clinical practice.

Abstract: Background: Radical gastrectomy remains the main treatment for gastric cancer, despite
its high mortality. A clinical predictive model of 90-day mortality (90DM) risk after gastric cancer
surgery based on the Spanish EURECCA registry database was developed using a matching learning
algorithm. We performed an external validation of this model based on data from an international
multicenter cohort of patients. Methods: A cohort of patients from the European GASTRODATA
database was selected. Demographic, clinical, and treatment variables in the original and validation
cohorts were compared. The performance of the model was evaluated using the area under the
curve (AUC) for a random forest model. Results: The validation cohort included 2546 patients
from 24 European hospitals. The advanced clinical T- and N-category, neoadjuvant therapy, open
procedures, total gastrectomy rates, and mean volume of the centers were significantly higher in the
validation cohort. The 90DM rate was also higher in the validation cohort (5.6%) vs. the original
cohort (3.7%). The AUC in the validation model was 0.716. Conclusion: The externally validated
model for predicting the 90DM risk in gastric cancer patients undergoing gastrectomy with curative
intent continues to be as useful as the original model in clinical practice.

Keywords: gastric cancer; gastrectomy; mortality; prediction; machine learning; validation

1. Introduction

Despite a significant decline in its incidence in recent years, gastric cancer remains the
fourth leading cause of cancer death worldwide [1]. Surgical intervention continues to be
the primary potentially curative option for patients with gastric cancer, even in the setting
of multimodal treatment [2]. This intervention in benchmark patients is associated with an
overall morbidity rate of 16.2% and with 30- and 90-day mortality rates of 0.3% and 0.5%,
respectively [3]. Though, in other series, morbidity has risen to 20–45% [4–7] and mortality
to 2–7% rates [4,6,7].

An accurate preoperative risk assessment for these procedures is important to help
with the selection of patients. However, in gastric cancer surgery, few risk prediction
models have been developed [8]. Most models focus on predicting survival following
a curative resection, whereas only few studies have been conducted to predict operative
mortality [9–13]. Moreover, the majority of these studies are based on classical logistic
regression or Cox regression analysis, even though artificial intelligence (AI)-related tools
are now available and being increasingly used to assist clinicians in providing tailor-made
treatment decisions [14].

Additionally, it is important to mention that despite the growing number of predictive
models (classical or developed with AI), their quality and clinical impact are often insuffi-
cient, also because of the lack of an external validation that would guarantee validity and
clinical applicability [14]. The external validation of a risk prediction algorithm, in fact,
is an important step in the process of building and evaluating a model, since it provides
information about the reproducibility and generalizability of the model and assures its
clinical applicability [14]. In gastric cancer surgery, only 13% of the predictive models
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developed have undergone a high-quality validation [8]. External validation is rarely per-
formed because of its practical difficulty (need for multi-institutional collaboration across
different geographic regions to achieve datasets of external cohorts in different settings) [15]
and because of discriminative ability reduction in validation studies, which makes them
unattractive for publication [8].

A clinical model for predicting the risk of 90-day mortality (90DM) after gastrectomy
using AI was recently developed. The model showed an excellent performance (AUC
0.829) in the original cohort [16], but external validation of the risk prediction algorithm
is necessary to provide information on its reproducibility and generalizability (or trans-
portability), as well as to define its clinical applicability [14,17]. To our knowledge, external
validation studies of ML models in the setting of gastric cancer surgery have not been
previously reported [18].

The objective of the study was to perform an external validation of a 90DM risk
prediction model using ML in gastric cancer patients undergoing gastrectomy with curative
intent using a cohort from the European GASTRODATA database.

2. Materials and Methods

This study conformed to the TRIPOD10 (Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis) reporting guidelines (Appendix S1) [19].

2.1. Source of Data
2.1.1. Study Development Cohort

The cohort for which the risk prediction model was derived has been previously
described [16]. Briefly, data were retrieved from the Spanish EURECCA Esophagogastric
Cancer Registry (SEEGCR) that covers data from 39 public hospitals of the National Health
Care System from six regions in Spain, covering nearly a population of 14 million inhabi-
tants. The SEEGCR database was audited for the 2014–2017 period with a completeness
of 97% and data accuracy of 95% [20]. The SEEGCR is linked to the EURECCA Upper
Gastrointestinal network, a multi-institutional population-based cohort registry that col-
lects prospective clinical data from all patients with primary esophageal, gastro-esophageal
junction (GEJ), and gastric cancer undergoing resection with curative intent.

2.1.2. Validation Cohort

For the present study of multi-institutional validation, data were collected from the
European GASTRODATA database. The registry collects retrospective and prospective
clinical data from patients with primary gastric cancer, including cancer of the GEJ, that
underwent surgical resection with curative intent between 2015 and 2022, in 25 hospitals
from 11 European countries. As in the SEEGCR database, patients’ information was
collected using an online platform (www.gastrodata.org, accessed on 5 September 2022) in
which the following six sections had to be completed: (1) clinical features, (2) oncological
characteristics and surgical data, (3) perioperative complications, (4) outcome at hospital
discharge, and (5) outcome at 30 and 90 days postoperatively [5].

In fact, most variables used in the development of the model were also available in
the GASTRODATA registry. Moreover, both registries used the same definition criteria for
these variables, especially for those related to complications and outcome measures [21].

2.1.3. Ethics

The local ethics committees of the centers participating in each of the registries
(SEEGCR and GASTRODATA) approved the collection of anonymized data. The scientific
committee of the GASTRODATA group approved sharing the dataset for the external
validation project.

www.gastrodata.org
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2.1.4. Eligibility and Primary Outcome

All patients with primary gastric or GEJ cancer (excluding Siewert 1 tumors) who
underwent gastrectomy (partial or total) with curative intent included in the GASTRODATA
registry from 2015 to 2022 were eligible. The primary outcome was 90DM defined as
all-cause mortality within 90 days after surgery.

2.1.5. Predictor Characteristics and Statistical Analysis

The preoperative variables of the SEEGCR database used for the development of the
original ML-based algorithm were also obtained from the GASTRODATA registry and com-
pared each other. The principal investigators of the GASTRODATA centers were requested
to retrieve some missing variables or variables not available in the registry, such as preop-
erative hemoglobin level and center volume. Age, body mass index (BMI), hemoglobin
and albumin serum levels, and hospital volume activity (number of gastrectomies per
center per year) were considered as continuous variables. The remaining variables (gender,
BMI index, weight loss, ASA score, ECOG score, tumor location, clinical stage, neoadju-
vant therapy, minimally invasive or open approach, subtotal or total gastrectomy, elective
or urgent surgery, comorbidity as renal disease, pulmonary disease, peripheral vascu-
lar disease, myocardial infarction, diabetes mellitus, cerebrovascular disease, congestive
heart failure, peptic ulcer disease, malignant lymphoma, dementia, liver disease, connec-
tive tissue disease, leukemia, hemiplegia, AIDS, malignant tumor, and metastatic tumor)
were categorized as dichotomous variables by using one-hot encoding [22]. Missing data
were imputed by including a separate category of predictor variables that had missing
values [23]. Descriptive statistics are presented as means and standard deviations or num-
bers and percentages for continuous and categorical variables, respectively. Differences
between the groups of patients who survived and those who died within
90 postoperative days were evaluated using the Fisher’s exact test for categorical vari-
ables or the Kolmogorov–Smirnov test for continuous variables. Statistical significance was
set at p < 0.05.

2.1.6. External Validation of the Predictive Model

Trained models developed in the previous study (Random Forest, cv-Enet, and glm-
boost, ensemble) [16] were used on the external validation set. Briefly, cv-Enet (Cross
Validated Elastic net regularized logistic regression) [24] is an algorithm that determines
the optimal coefficients for lasso and ridge penalties through internal cross-validation,
whereas RF (Random Forest) and glmboost are composed of decision trees or a gener-
alized linear model fitted with a boosting algorithm, respectively [25–27]. Finally, the
ensemble model uses the 3 previous models combined with a linear blend of predicted
probabilities using logistic regression. The discrimination of the models on the external
validation dataset was assessed using the area under the curve (AUC). Sensitivity, speci-
ficity, positive predictive value (PPV), negative predictive value (NPV), and area under the
precision–recall curve (AUPRC) were also reported for each model. In order to assess the
feature attributions for each variable on the model testing, the “predict parts” function from
the DALEX was used. [28]. For each sample, the absolute features’ attributions were calcu-
lated and averaged on the whole cohort. Data analysis was performed using R software
version 4.2.0 (R Foundation for Statistical Computing, Vienna, Austria). The models were
validated using mlr3 package [29].

The final model is freely available at https://gastrohmar.shinyapps.io/rf_eurecca_
model/ (accessed on 1 July 2024).

3. Results

A total of 2595 patients from 25 hospitals in 11 European countries were included in the
GASTRODATA database over an 8-year period (2015–2022), with 90-day follow-up avail-
able for all patients. Patients from the Hospital del Mar registered in the GASTRODATA reg-
istry were excluded because they were part of the development cohort. Finally, 2546 patients

https://gastrohmar.shinyapps.io/rf_eurecca_model/
https://gastrohmar.shinyapps.io/rf_eurecca_model/
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from 24 hospitals in 11 European countries were included for the analysis (Supplementary
Table S1). The overall rate of missing data for variables was 4% (3215 items in 86,564 cells).
The most frequently missing characteristics were preoperative albumin (n = 668 [26%]) and
Eastern Cooperative Oncology Group (ECOG) score performance status (n = 554 [21%]).

Table 1 shows data on the preoperative variables for the development and external val-
idation cohorts. The mortality rate in the GASTRODATA cohort was lower than that in the
SEEGCR, indeed, 3.7% (95 patients) versus 5.6% (179 patients) of the SEEGCR died within
90 days. Age, BMI, and the rates of congestive heart failure, chronic obstructive pulmonary
disease (COPD), cerebrovascular disease, complicated diabetes mellitus, leukemia, malig-
nant lymphoma, and liver disease were significantly lower in the GASTRODATA cohort.
Furthermore, the GASTRODATA patients more frequently had a lower ECOG performance
status and American Society of Anesthesiologists (ASA) score, with higher percentages
of weight loss and more advanced clinical T and N stages. Regarding the localization of
the tumor, there were more cases of linitis plastica and GEJ tumors. Additionally, elective
and open procedures were more commonly performed in the external validation cohort, as
well as neoadjuvant treatment and total gastrectomy. The mean volume of the centers was
higher in the external validation cohort.

Table 1. Potential risk factors for 90-day mortality in the development and external validation cohorts.

Development Cohort (n = 3182) Validation Cohort (n = 2546) p Value

Sex, n (%)
0.252Male 1978 (62.1) 1544 (60.6)

Female 1204 (37.9) 1002 (39.4)

Age, years, mean (SD)
Body mass index $, kg/m2, mean (SD) 26 (4.6) 25 (4.5)

<0.001Missing 90 (2.8) 94 (3.7)

ECOG performance status, n (%)

<0.001

0 1185 (37.2) 1203 (47.2)
1 1661 (52.2) 626 (24.6)
2 269 (8.5) 118 (4.6)
>3 51 (1.6) 45 (1.8)
Missing 16 (0.5) 554 (21.8)

ASA index, n (%)

<0.001

I 110 (3.5) 300 (11.8)
II 1435 (45.0) 1288 (50.5)
III 1510 (47.5) 878 (34.5)
IV 127 (4.0) 55 (2.2)
Missing, n (%) 0 (0) 25 (1.0)

Weight loss $, %, n (%)

<0.001
0–5% 2164 (68.0) 1368 (53.7)
6–10 603 (19.0) 646 (25.4)
>10% 390 (12.3) 370 (14.5)
Missing 25 (0.7) 162 (6.4)

Preoperative hemoglobin level, g/dL, mean
(SD) 12.0 (1.9) 12.0 (2.1)

<0.038
Missing, n (%) 24 (0.8) 470 (18.5)

Preoperative albumin level, mg/dL, mean (SD) 38 (6.2) 38 (6.4)
0.431Missing, n (%) 441 (13.9) 668 (26.2)

Myocardial infarction, n (%)

0.653
Yes 253 (8.0) 193 (7.6)
No 2929 (82.0) 2348 (92.2)
Missing 0 (0) 5 (0.2)



Cancers 2024, 16, 2463 6 of 13

Table 1. Cont.

Development Cohort (n = 3182) Validation Cohort (n = 2546) p Value

Congestive heart failure, n (%)

0.026
Yes 183 (5.8) 112 (4.4)
No 2999 (94.2) 2429 (94.4)
Missing 0 (0) 5 (0.2)

Chronic pulmonary disease, n (%)

<0.001
Yes 450 (14.1) 246 (9.7)
No 2732 (85.9) 2295 (90.1)
Missing 0 (0) 5 (0.2)

Connective tissue disease, n (%)

0.647
Yes 47 (1.5) 33 (1.3)
No 3135 (98.5) 2508 (98.5)
Missing 0 (0) 5 (0.2)

Peripheral vascular disease, n (%)

0.098
Yes 226 (7.1) 211 (8.3)
No 2956 (92.9) 2330 (91.5)
Missing 0 (0) 5 (0.2)

Cerebrovascular disease, n (%)

0.021
Yes 200 (6.3) 123 (4.8)
No 2982 (93.7) 2420 (95.1)
Missing 0 (0) 3 (0.1)

Dementia, n (%)

0.944
Yes 33 (1.0) 25 (1.0)
No 3149 (99.0) 2518 (98.1)
Missing 0 (0) 3 (0.1)

Peptic ulcer disease, n (%)

0.214
Yes 158 (4.9) 146 (5.7)
No 3024 (95.1) 2397 (94.2)
Missing 0 (0) 3 (0.1)

Diabetes mellitus (uncomplicated), n (%)

1.000
Yes 519 (16.3) 414 (16.3)
No 2663 (83.7) 2127 (83.5)
Missing 0 (0) 5 (0.2)

Diabetes mellitus (end-organ damage), n (%)

<0.001
Yes 137 (4.3) 39 (1.5)
No 3045 (95.7) 2499 (86.4)
Missing 0 (0) 0 (0.3)

Leukemia, n (%)

0.002
Yes 16 (5.0) 0 (0)
No 3166 (99.5) 2193 (86.1)
Missing 0 (0) 353 (13.9)

Malignant lymphoma, n (%)

<0.001
Yes 34 (1.1) 0 (0)
No 3148 (98.9) 2193 (86.1)
Missing 0 (0) 353 (13.9)

Liver disease/moderate to severe, n (%)

<0.001
Yes 82 (2.6) 0 (0)
No 3100 (97.4) 2526 (99.2)
Missing 0 (0) 20 (0.8)

Hemiplegia, n (%)

1.000
Yes 8 (0.3) 6 (0.2)
No 3174 (99.7) 2537 (99.6)
Missing 0 (0) 3 (0.2)
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Table 1. Cont.

Development Cohort (n = 3182) Validation Cohort (n = 2546) p Value

Metastatic tumor present, n (%)

1.000
Yes 36 (1.1) 28 (1.1)
No 3146 (98.9) 2513 (98.7)
Missing 0 (0) 5 (0.2)

Moderate to severe renal disease, n (%)

0.654
Yes 162 (5.1) 137 (5.4)
No 3020 (94.9) 2404 (94.4)
Missing 0 (0) 5 (0.2)

AIDS, n (%)

0.453
Yes 6 (0.2) 2 (0.1)
No 3176 (99.8) 2539 (99.7)
Missing 0 (0) 5 (0.2)

Timing of surgery, n (%)

<0.001
Elective 3002 (94.3) 2476 (97.2)
Emergency 180 (5.7) 68 (2.7)
Missing 0 (0) 2 (0.1)

Tumor location, n (%)

<0.001

Antrum-pylorus 1276 (48.1) 1212 (47.6)
Corpus-fundus 76 (40.1) 848 (33.3)
Linitis plastica 33 (1.0) 86 (3.4)
Stump 81 (2.6) 0 (0)
Gastro-esophageal junction 259 (8.1) 348 (13.7)
Missing 3 (0.1) 52 (2.0)

Tumor cT stage &, n (%)

<0.001

T1 528 (16.6) 235 (9.2)
T2 792 (24.9) 447 (17.6)
T3 1082 (34.0) 1095 (43.0)
T4 569 (17.9) 544 (21.4)
Tx 173 (5.4) 206 (8.1)
Missing 38 (1.2) 19 (0.7)

Tumor cN stage &, n (%)

<0.001
Negative 1771 (55.7) 858 (33.7)
Positive 1377 (43.3) 1299 (51.0)
Missing 34 (1.0) 389 (15.3)

Neoadjuvant therapy, n (%)

<0.001
None 2232 (70.1) 1383 (54.3)
Chemoradiotherapy 54 (1.8) 46 (1.8)
Chemotherapy 888 (27.9) 1117 (43.9)
Missing 8 (0.2) 0 (0)

Surgical approach, n (%)
<0.001Open 1706 (53.6) 1884 (74.0)

Laparoscopic 1476 (46.4) 662 (26.0)

Type of gastrectomy, n (%)

<0.001
Partial 1818 (57.1) 1211 (47.6)
Total 1364 (42.9) 1331 (52.3)
Missing 0 (0) 4 (0.1)

Volume activity, mean/year/hospital, mean (SD) 24 (10) 60 (49) <0.001

90-day mortality, n (%) 179 (5.6) 95 (3.7) <0.001
$ At the time of diagnosis; & According to the seventh edition of the AJCC; AIDS indicates acquired immune
deficiency syndrome; ASA, American Society of Anesthesiologists; ECOG, Eastern Cooperative Oncology Group;
SD, standard deviation.
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3.1. Model Performance: Discrimination

Table 2 summarizes all the precision metrics obtained with the random forest model,
which was the model with the best performance both on the development and the external
validation cohorts (Figure 1). The AUCs for the development and external validation
cohorts were 0.844 and 0.716, respectively, leading to a 11.3% performance reduction. The
precision metrics obtained with the other models (cv-Enet, glmboost, and ensemble) are
shown in Supplementary Table S2.

Table 2. Performance metrics from the development and external validation cohorts for the Random
Forest (RF) model.

Metrics Development Cohort External Validation Cohort

AUC 0.829 (95% CI 0.743–0.916) 0.716 (95% CI 0.663–0.769)

Sensitivity 0.125 (95% CI 0.016–0.383) 0.074 (95% CI 0.030–0.146)

Specificity 0.979 (95% CI 0.953–0.993) 0.984 (95% CI 0.979–0.989)

PPV 0.286 (95% CI 0.037–0.710) 0.156 (95% CI 0.065–0.295)

NPV 0.945 (95% CI 0.909–0.969) 0.965 (95% CI 0.957–0.972)

AUPRC 0.253 0.093
Abbreviations: AUC, Area under the curve; PPV, positive predictive value; NPV, negative predictive value;
AUPRC, area under the precision recall curve; and CI: confidence interval.
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The AUC for random forest (RF) model in the development cohort was 0.844 (95% confidence interval
[CI] 0.84–0.85) as compared with an AUC of 0.716 (95% confidence interval [CI] 0.66–0.77) of the
external validation cohort.

3.2. Variable Importance

A feature attribution analysis on the external validation dataset was assessed by
decomposing the model predictions using variable-attribution measures that could be
assigned to specific variables. The most important factors for the prediction were age,
ASA score, volume center, preoperative serum albumin level, ECOG, preoperative serum
hemoglobin level, and neoadjuvant treatment (Figure 2).
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4. Discussion

We conducted an external validation of the ML-based SEEGCR risk prediction model
of 90DM on patients undergoing gastric cancer resection with curative intent using the
GASTRODATA registry, a large multicenter European database. To our knowledge, this
is the first external validation study of an ML-based model for the prediction of mortality
in the field of gastric cancer surgery. The AUC for the external validation cohort was
0.716, which is lower than those achieved previously on the development (0.844) and
internal–external validation (0.829) cohorts. However, this drop in performance may not
invalidate the usefulness of having available an additional tool for assessing the prognosis
of surgical patients with gastric cancer.

The external validation of a risk prediction algorithm is important to assess the clinical
applicability of the model in similar (reproducibility) or different populations (generaliz-
ability or transportability) [14,17]. Despite the growing interest in developing predictive
models in clinical practice, a recent review provided a summary of the state of the art
of AI-enabled decision support in surgery and found that, among 36 studies, external
validation was performed in only 5 of them (13.8%) [18]. In the field of esophagogastric
cancer surgery, the discriminative ability of models was significantly lower in the validation
than in the development phase [8]. In an evaluation of the external validation processes of
31 prediction models of different conditions (cardiovascular diseases, gastrointestinal-related
diseases, malignancies, and other) [30], it was shown that the AUC decreased on average
by 0.062, which, in fact, would be quite similar to the AUC higher than 0.716 found in our
study. The limited number of external validation studies may be explained by two reasons,
such as difficulties in obtaining external cohorts with a sufficiently large sample size and
the performance of the validation model with a discriminating ability usually being inferior
to that found in the development model.

A collaboration between the SEEGCR and the GASTRODATA registry allowed us
to use their dataset with 2546 cases for the external validation, which conforms to the
recommendation of having a cohort of at least 1000 patients for the validation [18]. How-
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ever, both registries present differences. First, the SEEGCR is a population-based registry
that includes all consecutive patients operated on in all centers from six Spanish regions,
representing real-world practice, whereas the GASTRODATA registry includes a selection
of patients operated on in 25 medium- and high-volume hospitals from 11 European coun-
tries. Second, an overall assessment of the relatedness between the development and the
external validation samples revealed case mix differences of predictor variables, as well as
a different outcome (90DM) occurrence. While patients in the SEEGCR appeared to be in
poorer physical conditions (older, worse ECOG and ASA scores, and more comorbidities),
patients in the GASTRODATA cohort had more advanced clinical T and N stages, more
frequently received neoadjuvant treatment, and had more elective and open procedures,
with total gastrectomy as the most common procedure. Additionally, the mean volume
of the participating hospitals was significantly higher in the external validation cohort.
The mortality rates in the GASTRODATA registry were lower than those in the SEEGCR
registry. This may be explained by the higher volume of hospitals contributing to the
GASTRODATA as compared to the heterogeneity of the volume and technologic level of
hospitals participating in the SEEGCR [20].

It is still important to note that the AUC alone may not provide a complete picture of
the predictive performance of a model, as it does not take into account factors such as the
model calibration or prevalence of the outcome being predicted. Therefore, it is typically
recommended to consider other performance metrics in addition to the AUC, such as
sensitivity, specificity, predictive values, and calibration measures [18]. Another important
performance metric is the area under the precision–recall curve (AUPRC), which is based
on the PPV value and sensitivity and evaluates how well a model can identify positive
examples in a dataset. The importance of AUPRC relies on the fact that it maintains its
strength even under imbalanced datasets, mostly in datasets in which relatively rare events
are predicted [31,32]. Based on metrics data, the RF model is the best model to identify
patients at risk of 90DM, as it showed the highest PPV together with the lowest sensitivity
and the highest AUPRC in the GASTRODATA cohort.

The current study provides insights into the additional value of particular input
variables to predict the risk of 90DM. The differences between the values of the variables
detected in the development and validation cohorts were minimal, and four of the most
important factors (age, volume, and preoperative serum levels of hemoglobin and albumin)
were shared by the two cohorts. These four variables were also clinically relevant and easy
to obtain at the bedside.

Several potential limitations of the study are noted. First, the GASTRODATA registry
includes a selection of patients undergoing gastrectomy at the different participating
hospitals, and not all patients were consecutively recruited (it has been estimated that
396 cases are missing based on the mean real volumes reported by each hospital). Secondly,
there was a difference in the quality of the datasets. Indeed, the GASTRODATA has not
undergone an audited process, in contrast to the SEEGCR registry that was audited (period
2014–2017) with a 97% and 95% of completeness and data accuracy, respectively [20].
A third limitation is the overall rate of missing data of 4% in the GASTRODATA dataset
(3215 items in 86,564 cells) and 0.6% (677 items in 101,824 cells) in the SEEGCR. This higher
rate of missing data could also be explained due to some differences in the classification
of variables. For example, in GASTRODATA, the variables “leukemia” and “malignant
lymphoma” were collected as the same variable, and the option “cNx” in “Tumor cN stage”
was not considered in SEEGCR. In both cases, data were recorded as missing. Additionally,
it should be noted that 11.8% of the validation cohort were classified as ASA I. It is probable
that ASA scores would have been underestimated because patients with cancer may fit in
the ASA II score as they already have a systemic disease. A fourth limitation is the few
events in the external validation cohort, 95 deaths at 90 days (compared with 179 of the
SEEGCR), at the threshold of the minimum required number of events (100) and well below
the optimal number (>250) [14].
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5. Conclusions

In conclusion, the ML-based algorithm of the SEEGCR registry for predicting the risk
of 90DM in patients undergoing gastric cancer surgery with curative intent performed
modestly worse in a European multi-institutional-based external validation study. However,
the predictive model continues to be useful to assess the post-surgical clinical outcome in
this population. The external validation of the 90DM predictive model adds value to the
original instrument.
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