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Abstract. The steady-state vehicle-track interaction or the interaction
of the moving train with rail defects may result in unstable vibrations.
The interaction of the moving train with such track defects induces ad-
ditional dynamic stresses in the track system that may prove harmful for
the structural health of the track. In this paper, a new iterative approach
is proposed for analyzing the coupled equations of the vehicle-track sys-
tem. The proposed approach can account for the wheel/rail contact loss.
The results show that the proposed approach is computationally efficient
and can be employed to study the effect of a wide range of track defects
on the vehicle-track response. As an example,the vehicle-track response
is obtained for the case where the wheel is traversing a rail-head cor-
rugation. A loss of contact is observed when the wheel encounters the
rail-head corrugation. The wheel-rail contact loss results in high impact
loads over the rail beam leading to a sudden increase in rail beam de-
flections (by up to 85% and 57% for the undamped and damped cases,
respectively).
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1 Introduction

In operation, the railway track structure is subjected to motion-induced
steady-state interactions as well as the arbitrarily time-varying loads caused
by the interaction of a moving vehicle with various track defects. Such track de-
fects include, e.g., vertical rail imperfections, rail discontinuities, and local track
irregularities. To study the effects of time-dependent loads caused by track de-
fects, the railway track structure is commonly analyzed with the help of various
numerical and analytical models [6,7].

Further aspects of vehicle-track interaction modelling are the idealization
of the vehicle system and the evaluation of the time-dependent loads caused
by the interaction of a moving vehicle with the track. Usually, two frameworks
are followed for the idealization of the vehicle system. In the first framework,
the vehicle is idealized as a point force with a magnitude equal to the axle
load. This idealization, where the inertial and internal degrees of freedom of
the vehicle are neglected, is more suited for studying the dynamic behaviour of
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the track itself or wave propagation analysis in the soil medium underlying the
track [11]. In the second framework, the degrees of freedom of the vehicle are
duly considered by modelling the vehicle as a moving mass [16,20], a single or
multi-degree-of-freedom (SDOF or MDOF) moving oscillator system [3,17], or
as a multi-degree-of-freedom lumped mass model [11,19].

A commonly used vehicle idealization that can account for the inertia and
the degrees of freedom of the vehicle is the ‘moving oscillator models’. It may
be mentioned that the more accurate representation of the vehicle system is by
MDOF systems (in comparison to SDOF systems), where the masses can rep-
resent both the unsprung (wheel) and sprung masses of the vehicle (bogie, car
body). Further, the primary and secondary suspension systems of the vehicle can
be represented via spring-damper systems. For evaluating the time-dependent
loads due to the moving oscillator, a coupling is established between the gov-
erning equations of the oscillator and track model via a pre-defined wheel-rail
contact model (e.g., permanent, linear, nonlinear contact models). In some stud-
ies, the coupled equations of motion associated with the vehicle-track system are
solved by using analytical method [3], modified numerical integration techniques
[13,14,15], and finite element method [4,17]. In addition to that, this problem
has also been investigated by employing the Green’s function [21,12,10] derived
using the conventional frequency-domain approach.

A recent study by Dimitrovová [3] has shown that it is also possible to analyze
the moving oscillator problem using a semi-analytical approach. In their study,
the beam deflections are evaluated for beam on the viscoelastic-Pasternak model
under one and two mass uniformly moving oscillators. The solution is presented
as a sum of the steady-state part (derived analytically), induced harmonic part
(derived semi-analytically), and transient part (derived numerically). However,
it may be noted that the proposed solution is only applicable to the permanent
wheel-rail contact model. For more complex vehicle-track models that take into
account the possibility of contact loss, most studies tend to use numerical ap-
proaches [1,18]. Those numerical approaches are in general cumbersome and, in
some cases, computationally intensive [1].

In this study, a new analytical iterative approach is presented to analyze the
coupled equation of motion of the vehicle-track system. The vehicle is modeled
as a multi-degree-of-freedom system moving on a one-dimensional track model.
The proposed approach is validated with the above-described analytical study
[3]. The results show the vehicle-track response for three cases. In the first case,
the wheel (unsprung mass) remains in permanent contact with the rail beam.
In the second case, the wheel interacts with the rail via a nonlinear Hertzian
spring. In the third case, in addition to modeling the wheel-rail interaction us-
ing the Hertzian spring, the wheel is considered to be moving over a rail-head
corrugation.
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2 The Iterative Approach

2.1 Track model

The model used to idealize and study the behaviour of the railway track
system is shown in Figure 1. The rail beam is modeled as an infinite Euler-
Bernoulli beam (with x denoting the space coordinate measured along the length
of the rail beam) overlying a two-parameter foundation model consisting of (1)
Pasternak shear layer of thickness HP and shear modulus GP per unit beam
length and (2) viscoelastic Winkler spring layer with K0 denoting the spring
stiffness per unit beam length. The model is subjected to a time-varying vertical
force P (t) resulting due to interaction between the rail beam and a multi-degree-
of-freedom (MDOF) oscillator system moving with uniform velocity v.

Rail beam ( , )

Pasternak shear layer 
( , )

Viscoelastic layer ( )

Fig. 1: Definition sketch of the model idealizing railway track section.

Under the above-described idealizations, the equation of motion of a rail
beam is described by [8]

EI
∂4w

∂x4
−K1

∂2w

∂x2
+K0w + c

∂w

∂t
+ ρ

∂2w

∂t2
= P (t)δ(x− vt) (1)

where w(x, t) is the transverse deflection of the rail beam (considered positive
downwards), E is the Young’s modulus of rail beam material, I is the moment of
inertia of the rail beam cross-section about the axis of bending, K1 = (GPHP ) is
the shear parameter associated with the Pasternak shear layer, ρ is the mass per
unit length of the beam, c is the coefficient of viscous damping per unit beam
length, and δ is the Dirac’s delta function.

Denoting ι =
√
−1 and f̂(ω) as the Fourier transform of an arbitrary time-

varying function f(t) can be expressed as,

f̂(ω) =

∫ ∞

−∞
f(t)e−ιωtdt (2)
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f(t) =
1

2π

∫ ∞

−∞
f̂(ω)eιωtdω (3)

On taking Fourier transform of Equation 1 (assuming that w(x, t) and its
time derivatives vanish at t = ±∞) using Equation 2 and solving for the rail
beam deflection ŵ (x, ω) in space-frequency-domain, we obtain,

ŵ (x, ω) =

(
P (x/v)v3

EIω4 +K1ω2v2 +K0v4 − ρω2v4 + ιcωv4

)
e−iω( x

v ) (4)

Further, using Equations 4 and 3 the expression for the rail-beam deflection
w0(t) = w(vt, t) at the point of contact with the load P (t) can be written in a
concise form as

w0(t) =
P (t)

2π
I(v, t) (5)

where

I(v, t) =

∫ ∞

−∞

v3dω

EIω4 +K1ω2v2 +K0v4 − ρω2v4 + ιcωv4
(6)

here ω stands for frequency. The mathematical technique exponential window
method [5] is employed while evaluating the above integral.

2.2 Vehicle Model

𝑘𝑘1 𝑐𝑐1

𝑘𝑘2 𝑐𝑐2

𝑘𝑘𝑁𝑁−1 𝑐𝑐𝑁𝑁−1

𝑚𝑚1

𝑚𝑚2

𝑚𝑚𝑁𝑁

𝑤𝑤(𝑥𝑥, 𝑡𝑡)

𝑥𝑥
Rail Beam

𝑣𝑣

Track Model

𝑤𝑤0(𝑡𝑡)

𝑤𝑤1(𝑡𝑡)

𝑤𝑤2(𝑡𝑡)

𝑤𝑤𝑁𝑁(𝑡𝑡)

Fig. 2: MDOF oscillator moving over the track model with no loss of contact.
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Figure 2 shows the considered oscillator system comprising N masses (m1,
m2,...,mN ), connected via N − 1 springs (of stiffness, k1, k2, ..., kN−1), and N −
1 dash-pot systems (with viscous damping coefficients, c1, c2, ..., cN−1). Fur-
ther, (wi)i=1 to N respectively represent the absolute displacements of the masses
(mi)i=1 to N . The contact between the oscillator and the rail beam is such that
the unsprung mass m1 always remains in contact with the rail beam (see Figure
2),

w1(t) = w0(t) (7)

On considering the vertical equilibrium of the mass m1 and using Equations 5
and 7 the displacements w1 (of the unsprung mass m1 or rail beam) and w2 (of
the sprung mass m2) can be related as

m1ẅ1 +

(
k1 +

2π

I(TP , v)

)
w1 + c1ẇ1 = k1w2 + c1ẇ2 + P0 (8)

here P0 = (m1 +m2 + ... +mN )g (where, g is the acceleration due to gravity)
is the static load which is considered equal to the total weight of the oscillator.
Furthermore, on considering the vertical equilibrium of the forces acting on the
sprung masses (m2, m3, ...,mN ) of the oscillator system following expression
can be written

mẅ(t) + kw(t) + cẇ(t) = f(t) (9)

where w(t) = {w2(t), w3(t), . . . , wN (t)}T is the displacement vector and, ẇ(t)
and ẅ(t) respectively denote the corresponding velocity and acceleration vectors
of the sprung masses (m2, m3, ...,mN ). Further, m, k, and c are respectively the
mass, stiffness, and damping matrices, and the column vector f(t) representing
the forces acting on the sprung masses is given by,

f(t) =


k1w1 + c1ẇ1

0
...
0

 (10)

It may be noted that Equation 9 is a set of N − 1 coupled differential equations
governing the displacements w(t) resulting due to forces f(t). This system pos-
sess N − 1 classical natural modes ϕn corresponding to N − 1 natural vibration
frequencies ωn, where n describes the mode number (n = 2, 3, ..., N). Further-
more, those N − 1 natural modes can be written in the form of a modal matrix
Φ as,

Φ =
[
ϕjn

]
(11)

where j indicates the degrees of freedom (j = 2, 3, ..., N). Further, using the
modal matrix, the displacement vector can be represented in the following form

w(t) = Φq(t) (12)

where q(t) = {q2(t), q3(t), . . . , qN (t)}T are the modal coordinates.
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Further, the classical modal analysis procedure [2] is used to transform the
equation of motion for the sprung masses (see Equation 9) to N uncoupled
differential equations in modal coordinates q(t), described by

Mq̈(t) +Kq(t) +Cq̇(t) = F(t) (13)

where, M, K, and C are diagonal matrices given by

M = ΦTmΦ K = ΦTkΦ C = ΦT cΦ (14)

and the vector F(t) as,
F(t) = ΦT f(t) (15)

The uncoupled, modal differential equations (see Equation 13) can be solved
to find the modal responses q(t), which are then combined to determine the
displacement response w(t) using Equation 12.

It may be observed from Equations 9 and 10 that w(t) is dependent on w1(t).
Furthermore, as seen from Equation 8, w1(t) itself depends on w2(t) (and hence
on w(t)). To solve this coupled system of equations governing the displacement
responses w1(t) (or w0(t)) and w(t) a two-step iterative scheme is employed. In
the first step, w(t) (or w2(t)) is determined using Equations 9–15 for a given
w1(t) (or w0(t)). In the second step, the above-evaluated w2(t), is used to find
w1(t) using Equation 8. These two steps are repeated until the respective values
of w1(t) and w(t) converges.

Figure 3 illustrates the steps of the proposed iterative scheme via a flowchart.
In this figure, the variables k and ϵ(t) represent the iteration number and required
precision, respectively. It may be noted that for the first iteration (k = 1),
w0(t) = w1(t) = 0 is used.
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Start

Initialization:
(w0(t))k = (w1(t))k = 0

Formulate f(t) for given
(w1(t))k using Equation 10

Solve for w(t) for given f(t)
using Equations 9 and 11–15

Find (w1(t))k+1 for given
w(t) using Equation 8

Is
| (w1(t))k+1 − (w1(t))k | ≤ ϵ(t)

Update Model:
(w1(t))k = (w1(t))k+1

End

no

yes

Fig. 3: Flow chart showing the steps of the iterative approach used for analyzing
the track model traversed by a MDOF system (k and ϵ(t) represent the iteration
number and required precision, respectively).
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3 Validation of the proposed approach

The results show the response analysis of a MDOF oscillator comprising three
masses (m1, m2, and m3) connected via two springs (of stiffness k1 and k2) and
two dash-pot systems (with viscous damping coefficients, c1 and c2) moving uni-
formly over the rail beam overlying the Pasternak-viscoelastic model. The track
and oscillator parameters used for this analysis are given in Table 1.
Before analysing the vibration responses of the MDOF oscillator, a validation

Table 1: Track and oscillator parameters [9,12]

Parameter Value

Rail Beam
Mass per unit beam length, ρ 60 kg/m
Modulus of Elasticity of rail, E 210 GPa
Central moment of Inertia of rail, I 3055 cm4

Pasternak Layer
Shear Modulus, GP 43.3 MPa
Height, HP 0.3 m
Viscoelastic Layer
Stiffness, K0 4.08 MPa
Coefficient of viscous damping, c 1.56 kNs/m
Oscillator
Lower Mass, m1 1125 kg
Middle Mass, m1 2000 kg
Upper Mass, m1 6875 kg
Stiffness of lower connecting spring, k1 6.3 MN/m
Stiffness of upper connecting spring, k2 390 kN/m
Coefficient of viscous damping of lower connecting dashpot, c1 23 kNs/m
Coefficient of viscous damping of upper connecting dashpot, c2 20 kNs/m

Hertz’s constant, CH 98.92 GN/m3/2

exercise is carried out. The proposed approach is implemented to find the deflec-
tion response of a mass-spring system with mass m1 and stiffness k1 (see Table
1) traversing the rail beam overlying a viscoelastic layer (GP = 0) with velocity
v=100 m/s (see Fig. 4). It is assumed that there is no loss of contact between
the mass-spring system and rail beam. Fig.5 compares the normalized deflection
values of the rail beam at the position of the moving mass-spring system (w0(t)),
and that of mass m1 (w1(t)) obtained using the proposed approach with those
evaluated using a recently proposed analytical solution by Dimitrovová [3]. The
deflection values (w1 and w0) are normalized with respect to the rail beam deflec-
tion value, w0(t) = (m1g/2π)I(TP , v) (see Eq.(5)), where, g is the acceleration
due to gravity. The agreement between the vibration responses evaluated using
the two approaches lends confidence in the proposed approach. The validation
shown in this section is for a single-mass oscillator deflection solution compared
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to the rail and mass-deflection obtained using semi-analytical approach shown
in Dimitrovová [3]. It may be mentioned that this a partial comparison and can
be extended for case of the two-mass moving oscillator.

𝑥
Rail Beam

𝑚1
𝑣

Viscoelastic layer

𝑐1𝑘1

Fig. 4: MDOF oscillator moving over the track model with no loss of contact.

Fig. 5: Comparison of the normalized rail beam deflection (w̄0) and normalized
oscillator deflections (w̄1) computed using the proposed approach and analytical
solution by Dimitrovová [3].
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4 Wheel-Rail Contact Loss

In previous sections it is assumed that the moving oscillator system (see
Figure 2) never loses contact with the rail beam. However, for more realistic
modelling of vehicle-track interaction it is essential to consider the wheel-rail
contact loss. The complex vehicle-track models that take into account the pos-
sibility of contact loss tend to use numerical approaches. Those approaches are
generally based on time integration (via Newmark-β, Runge-Kutta, or precise
integration methods) of the equation of motion derived from the finite element
vehicle-track models [1,18]. In this section, it is assumed that the wheel interacts
with the rail via a nonlinear Hertzian spring (see Figure 6). The track model is
same as shown in Figure 1.

For analyzing this system, the equation relating the rail beam deflection w0(t)
to the load P (t) acting on the rail beam (see Equation 5) is modified as,(

P (t)

CH

)2/3

= ξ(t)H [ξ(t)] (16)

where, CH is the Hertz’s constant, H(.) is the Heaveside function, and

ξ(t) = w1(t)− w0(t)− z(t) (17)

here z(t) denotes the rail or wheel roughness.
Using the proposed iterative approach, the response analysis of the moving

MDOF oscillator comprising three masses (see Figure 6) is performed for three
different cases. In the first case, the wheel (unsprung mass) always remains in
contact with the rail beam. In the second case, the wheel interacts with the
rail via a nonlinear Hertzian spring. In the third case, in addition to modelling
the wheel-rail interaction using the Hertzian spring, the MDOF oscillator is
considered to be moving over a rail-head corrugation (see Equations 16 and 17)
of the form,

z(t) = −e

2
(1− cos(2πvt)) ,

xz1

v
≤ t ≤ xz2

v
(18)

where e represents the depth of the rail indentation, and xz1 and xz2 respectively
denote the start and end locations of the rail corrugations along the length of
the rail beam. Further, each of the above case is analyzed considering both the
undamped and damped oscillator systems. The track parameters and oscilla-
tor parameters are shown in Table 1. The vertical deflections of the rail beam
(w0(t)) and those of the masses m1 (w1(t)), m2 (w2(t)), and m3 (w3(t)) are
evaluated at the location x = vt. It is assumed that the oscillator is at rest and
all deflections values are zero at the location x = 0 and time t = 0. Further,
the computed deflection values are normalized by the rail beam deflection value,
w0(t) = (P0/2π)I(TP , v) (see Equation 5), where P0 = (m1 +m2 +m3)g.
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Figures 7 and 8 show the normalized deflection w0(t)), w1(t), w2(t)), and
w3(t) with time t for the above-mentioned cases of wheel-rail contact undamped
and damped oscillator systems, respectively. Here, the oscillator velocity is con-
sidered as v = 100 m/s and, for illustration, the rail corrugation depth, start and
end locations are respectively chosen as, e = 0.35 mm, xz1 = 20 m, and xz2 = 40
m (see Equation 18). For both figures, parts, (a), (b), and (c) respectively cor-
respond to the cases of (1) no loss of wheel-rail contact, (2) Hertzian wheel-rail
contact, and (3) wheel moving over a rail-head corrugation (see Equation 18).

It may be observed for both the considered cases of wheel-rail contact (no
loss of contact and Hertzian) that introduction of damping into the oscillator
results in the decay of deflection amplitudes of the rail beam as well as that of
the oscillator masses. Moreover, it is interesting to note that the damping brings
the normalized rail beam deflection closer to w0 =1, i.e., the deflection value
observed if a point load of magnitude P0 moves over the rail beam with velocity
v = 100 m/s.

Further, it is found that the idealisation of wheel-rail contact via a Hertzian
spring (see Figures 7b and 8b) leads to slightly higher amplitude (by up to 8%) of
the rail beam deflection as compared to those observed for the case where there
is no loss of wheel-rail contact (see Figures 7a and 8a). Similar behaviour is
observed for the deflection responses (w1(t)), w2(t)), and w3(t)) of the oscillator
masses m1, m2, and m3.

It may also be seen that similar to the case of no wheel-rail contact loss (see
Figures 7a and 8a), the unsprung mass m1 remains in contact with the rail beam
even for the case of Hertzian contact (see Figures 7b and 8b). However, a loss of
contact is observed when the oscillator encounters the rail-head corrugation at
t =0.2 s (see Figures 7c and 8c). The wheel-rail contact loss results in high impact
loads over the rail beam leading to a sudden increase in rail beam deflections (by
up to 85% and 57% for the undamped and damped cases, respectively). It may
be noted that the time required for the evaluation of the deflection responses
shown in Figure 7c on a a personal computer (with 8 GB RAM and 3.40 GHz
quad-core Intel i5 processor) is ∼40 s.
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𝑤𝑤0(𝑡𝑡)

Fig. 6: MDOF oscillator moving over the track model with nonlinear Hertzian
contact.
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Fig. 7: Normalized deflections of the rail beam (w0(t)), and masses m1 (w1(t)),
m2 (w2(t)), and m3 (w3(t)) with time t at location x = vt (v = 100 m/s) of an
undamped oscillator system for the cases of (a) no loss of wheel-rail contact, (b)
Hertzian wheel-rail contact, (c) rail-head corrugation.
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Fig. 8: Normalized deflections of the rail beam (w0(t)), and masses m1 (w1(t)),
m2 (w2(t)), and m3 (w3(t)) with time t at location x = vt (v = 100 m/s) of an
damped oscillator system for the cases of (a) no loss of wheel-rail contact, (b)
Hertzian wheel-rail contact, (c) rail-head corrugation.
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5 Conclusions

A new iterative approach is proposed for investigating the effect of various
track defects on vehicle-track response. It is found that this approach is com-
putationally efficient and can be implemented for analyzing different cases of
wheel-rail contact, namely, permanent wheel-rail contact and linear and non-
linear Hertzian wheel-rail contact. As an example, the vehicle-track response is
obtained for the case when the wheel is traversing a rail-head corrugation. A loss
of contact is observed when the wheel encounters the rail-head corrugation. It is
found that the wheel-rail contact loss results in high impact loads over the rail
beam leading to a sudden increase in rail beam deflections (by up to 85% and
57% for the undamped and damped cases, respectively). The proposed approach
can be extended for a more complex vehicle model with multiple wheel-rail con-
tacts. Furthermore, by implementing the track’s Green function [9], one can
quickly evaluate the rail-beam response at any other track location. Finally, it is
essential to highlight that the contemporary analytical approaches available for
analyzing the moving-oscillator problem can only evaluate the rail and oscillator
deflection for the case where there is no loss of wheel-rail contact. On the other
hand, the presented approach can incorporate the nonlinear wheel-rail contact
model and consider the possibility of wheel-rail contact loss.
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