CPONOoOC: Critical-Path-Aware Physical Implementation for Optical
Networks-on-Chip

Yan-Ting Chen'!, Zhidan Zheng?, Shao-Yun Fang!, Tsun-Ming Tseng?, and Ulf Schlichtmann?*
IDepartment of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
2Department of Electronic Design Automation, Technical University of Munich, Munich, Germany
{M11107418,syfang}@mail.ntust.edu.tw

ABSTRACT

Optical networks-on-chips (ONoCs), which adopt optical waveguides,
microring resonators (MRRs), and the wavelength division multiplex-
ing (WDM) scheme to transmit optical signals, serve as promising
solutions for integrating multi- and many-core systems to provide
high-bandwidth, low-latency, and low-power on-chip communica-
tion. To minimize the insertion loss of a wavelength-routed ONoC
(WRONOoC) during physical implementation, existing studies either
adopt conventional standard cell placement techniques or maximally
avoid waveguide crossings; however, all of them ignore the fact that
the critical path suffering from the maximum insertion loss dominates
the overall power efficiency and system performance. In this work,
we propose CPONoC, a critical-path-aware physical implementation
tool for WRONOoC:s. Different from existing studies, CPONoC focuses
on minimizing the insertion loss of the critical path using an iterative
crossing-aware force-directed method, and it is compatible with differ-
ent representative logic schemes and input configurations. Compared
to the state-of-the-art design automation tools, CPONoC achieves an
average reduction of 9.6% in maximum insertion loss.

1 INTRODUCTION

As technology advances, the density of integrated transistors continues
to increase, which contributes to the development of multi- and many-
core systems. To facilitate on-chip communications among cores and
memory components, optical networks-on-chip (ONoC) has been pro-
posed as an emerging interconnect solution for high communication
bandwidth, low power, low latency.

There are two types of ONoCs: control-network-based ONoCs and
wavelength-routed ONoCs (WRONoCs). The control-network-based
ONoC, referred to as active ONoCs, use a control network to mod-
ulate the refractive index of microring resonators (MRRs), dynami-
cally tuning their resonance to control signal routing. In contrast, the
WRONOCs, also known as passive ONoCs, set up collision-free signal
paths for all master-slave pairs in advance by allocating specific wave-
lengths to each communication path. WRONoCs are usually preferred
over active ONoCs especially in high-performance computing (HPC)
pursuing extremely high performance, high bandwidth, and low power.

ONoCs apply wavelength-division multiplexing (WDM) to accom-
modate signals of different wavelengths in a single waveguide. Addi-
tionally, signals on the same waveguide can be directed to different
destinations by employing microring resonators (MRRs) or photonic
switching elements (PSEs) composed of MRRs. An MRR is a circular
waveguide coupled to straight waveguides and operates in two states:
in the on-state, matching wavelengths resonate within the ring and
drop into the output waveguide; in the off-state, non-matching wave-
lengths pass straight through the input waveguide without coupling,
as shown in Fig. 1(a). In Fig. 1(b), a 2 X 2 PSE is illustrated, consisting
of a pair of MRRs. When the wavelength of the input signal is A; and

“This work was partially supported by TSMC, Synopsys, and NSTC of Taiwan under Grant
No’s NSTC 113-2927-1-011-502, 113-2640-E-002-001, 113-2640-E-006-001, and 113-2222-E-
011-005-MY3.

Permission to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASPDAC ’25, January 20-23, 2025, Tokyo, Japan

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0635-6/25/01...$15.00

https://doi.org/10.1145/3658617.3697727

\ 7N\
[MRR) [MRR)

Off-state On-state

A A% A
(a) (b)

Figure 1: Microring resonators (MRRs) and Photonic switch-
ing elements (PSEs). (a) When an optical signal resonates with
an MRR (on-state), it drops; otherwise (off-state), it passes. (b)
Whether an input signal passes or drops in a PSE is determined
by its resonance with the MRRs.

matches the resonant wavelength A, of the MRR, the signal is coupled
and undergoes a 90-degree deflection, known as a drop operation. Con-
versely, when A; does not match A, the input signal passes directly
through the PSE, known as a cross operation.

The design of WRONOoCs is typically achieved with two main steps.
The first is topological design, which focuses on determining the con-
figuration of waveguides and MRRs, allocating wavelengths between
different signals, planning paths, and interconnecting network com-
ponents. The second step is physical implementation, which empha-
sizes the placement of network components and the routing of the
waveguides. So far, several topological designs have been proposed.
The A-router [1], built by cascading 2 X 2 PSEs, stands out thanks to
its efficient handling of data traffic without causing congestion. The
GWOR [2] and Light [3], on the other hand, propose to construct larger
topologies using basic building blocks. For GWOR [2], the positioning
of its interfaces aligns well with the input and output ports of mem-
ory controllers and hubs, resulting in excellent performance. On the
other hand, Light [3] significantly reduces the number of MRRs, which
not only lowers power consumption but also minimizes the impact of
crosstalk, providing distinct advantages.

Concerning physical implementation, multiple design automation
approaches have been developed to automate the implementation pro-
cess. PROTON [4] is the first automated placement and routing tool for
3-dimensional (3D) ONoC. It adopts conventional nonlinear cell place-
ment and maze routing techniques, approximates waveguide crossings
during PSE placement, and allows waveguide crossings during routing
with additional costs. PROTON+ [5] is an extension of PROTON, which
improves the crossing approximation function during the placement
stage and introduces a new net order during the routing stage, result-
ing in outstanding performances in terms of insertion loss. Platon [6]
applies a force-directed placement method to enhance the overall effi-
ciency, albeit with slight performance degradation. PlanarONoC [7]
aims to find a crossing-free physical implementation result to prevent
any insertion loss caused by waveguide crossings. The approach re-
lies on a Hamiltonian path-finding process, which limits its generality
considering that the derived layout strongly relies on the quality of
the found Hamiltonian path. ToPro [8] utilizes a dynamic pushing
mechanism to eliminate additional crossings and strategically chooses
shorter paths when detours occur, leading to the currently best results
for some specific topologies.

Despite the presence of excellent design automation approaches,
the physical implementation still faces numerous challenges. First of
all, some of these approaches are only applicable to specific topologies
or specific positions of components with fixed port arrangements. For

https://doi.org/10.1145/3658617.3697727

PSE6 o

(@)

L]

ol]
Ol

PSES

Hi E 65' [9] ’_O%‘ﬁ HO

’_ﬁ

PSE2 PSE3 PSE4 PSEl

(@)

@

PSES

O]

PSE3

PSE2

(b)

Figure 2: An example motivating this work. (a) A layout gener-
ated by PlanarONoC where the worst-case path is routed around
the boundary. (b) A better PSE placement and waveguide routing
result with a short worst-case path.

example, ToPro is not applicable to A-routers, and PlanarONoC can
hardly handle communication nodes at irregular positions. Moreover,
existing approaches often fail to strike a good trade-off between wave-
guide crossing number and waveguide length. For example, to achieve
crossing-free layouts, one may need to tolerate extremely long waveg-
uide detours that aggravate the insertion loss, while the wave-guide
might be significantly shortened when a few crossings can be allowed.
More importantly, existing approaches overlook certain worst-case
scenarios in their optimization framework. For instance, as a part of
the strategy to eliminate waveguide crossings, PlanarONoC arranges
components sequentially around the perimeter of the placement area,
as shown in Fig. 2(a), which can lead to a long critical path that spans
almost the entire boundary, while other PSE arrangements shown in
Fig. 2(b) could significantly shorten the critical path.

In order to tackle the issues mentioned above, this paper introduces
a physical implementation tool, CPONoC, which is designed to handle
various types of topologies and take worst-case scenarios into account
during optical component placement and routing for power optimiza-
tion. The main features and contributions of CPONoC are summarized
as follows:

o This work proposes the first automatic placement and routing
approach considering insertion loss minimization for critical
paths based on a force-directed algorithm.

o The approach has outstanding generality, making it applicable
to various topologies that already exist and will emerge in the
future.

o Experimental results show that the proposed method can aver-
agely reduce the maximum insertion loss by 9.6% compared to
the state of the art.

The rest of the paper is organized as follows: Section 2 introduces the
background of this work. Section 3 presents the proposed placement
and routing algorithms. Section 4 discusses the experiment results, and
a brief conclusion is given in Section 5.

Array of off-chip lasers
Memory controller Hub [z T T]

A /=

Photonic layer —

Network interface
of the photonic
layer

7 LT LT T LT L7/ Clusters of
processors

Electronic layer -~

Figure 3: A 3-D stacked architecture for a multi-core system.

2 PRELIMINARIES

This section introduces the preliminaries of this work, covering the
3-D stacked architecture in Section 2.1, WRONoC design constraints
in Section 2.2, and power evaluation metrics in Section 2.3.

2.1 3-D Stacked Architecture

A 3-D stacked architecture for multi- or many-core systems is shown
in Fig. 3, which comprises an optical layer for high-speed data com-
munication and an electronic layer for data processing and computing.
These layers are interconnected using Through-Silicon Vias (TSVs),
which enable efficient vertical communication and integration between
the two layers. The electrical signals transmitted from a cluster of pro-
cessors on the electronic layer have a dedicated gateway to a hub on
the optical layer, and an optical signal is transmitted between two hubs
or between a hub and a memory controller of an off-chip memory,
e.g., a dual in-line memory module (DIMM). Note that for a given 3-D
architecture, the positions of hubs and controllers are usually specified
and cannot be changed during the physical implementation.

2.2 Topological and Physical Design of WRONoCs

In a WRONoC, the topology refers to how optical paths are organized
and interconnected to realize data transmission. WRONOC typically
uses MRRs for optical signal routing. During the design phase, MRRs
are configured to determine the path and connectivity of each optical
link. The topology design in WRONOC aims to maximize system per-
formance and minimize power consumption, supporting high-speed
and efficient optical communication.

The physical implementation of WRONoCs determines the positions
of PSEs or MRRs during placement and routes the waveguides to mini-
mize the maximum insertion loss required among all the signal paths.
Typtically, two constraints need to be satisfied. First, the positions of
the memory controllers and hubs are fixed and cannot be changed.
Second, the input and output ports of the same communication node,
i.e., a hub or a memory controller, should be placed next to each other
during the physical implementation.

2.3 Power Consumption

The insertion loss of each path p in an ONoC is mainly composed of
(1) propagation loss, (2) crossing loss, (3) drop loss, and (4) bend loss.
According to [9], the insertion loss of p, il(p), can be computed as
follows:

il(p) = 1.5ﬁ X L +0.15db X C + 0.5db X D + 0.005db X B, (1)
cm

where L, C, D, B separately represent the waveguide length, the number
of waveguide crossings, the number of MRR drops, and the number of
waveguide bends in p. Various processes today affect the calculation
of insertion loss, primarily influencing its parameters. The maximum
insertion loss il;uqx of @ WRONoOC is then computed as follows:

ilmax = max il(p), (2)
peEP

where P is the set of all signal paths. We refer to the path with il;;4x
as the critical path of the WRONoC.

In the optimization of WRONOoCs, the number of drops depends on
the signal path routing determined in the topology design and is irrele-
vant with the physical implementation. Besides, considering the small
impact of bends on the insertion loss, the physical implementation
usually ignores them but focuses on reducing waveguide lengths and
crossings.

3 CRITICAL-PATH-AWARE PHYSICAL
IMPLEMENTATION FLOW

This section presents the proposed automatic placement and routing
tool CPONoC for WRONoCs that is applicable to various existing and
emerging topologies. CPONoC aims to minimize maximum insertion
loss by directly reducing the waveguide length and crossings of critical
paths. The overall algorithm flow is described in Section 3.1, with the
major steps detailed in the subsequent subsections.

3.1 Algorithm Flow

Our research methodology can be broadly divided into four steps:

Step 1: Topology Categorization:

As introduced before, current WRONoC routers handle the input
and output ports in their topologies differently. For example, the A-
router divides the input and output ports into two sides in the topology,
while the GWOR and Light routers place them adjacent to each other.
Since the difference will require different treatments for insertion
loss optimization, we classify these routers into physical-aware and
non-physical-aware categories based on their input and output port
characteristics.

Step 2: Topology Preprocessing

The input topology is first transformed into a graph representation.
To minimize the insertion loss caused by waveguide crossings, we
adopt the idea of planar embedding similar to that in PlanarONoC. For
a physial-aware topology, the topology itself should be planar or can be
regarded as planar by treating the crossings in the topology as graph
vertices. For a non-physical-aware router, additional preprocessing
is required. In addition, we perform node clustering based on their
connectivity, which not only accelerates the optimization process but
also improves the results.

Step 3: Force-Directed Placement:

We propose a force-directed algorithm to determine the placement
of all vertices. In the iterative node movement process, we consider
the impact of a move on the critical path to minimize the maximum in-
sertion loss. Additionally, we address the congestion issues to facilitate
the subsequent routing stage.

Step 4: Routing;:
A simple L-shape routing is adopted to connect the edges among

vertices, which contributes to simple waveguide routing results and
thus better performances of optical signal transmission.

In the following subsections, we introduce each step with compre-
hensive details and examples.

3.2 Step 1: Topology Categorization

Currently, there are two distinct types of topologies for handling input
and output interfaces of memory controllers and data transmission
hubs. The first type separates the input and output ports to the two sides
in a logic scheme, as the 4 X 4 A-router shown in Fig. 4(a). Since each
pair of an input and an output belongs to the same hub/controller, the
input and output terminals are actually physically adjacent. Therefore,
many crossings could easily be caused by directly merging the input
and output ports, as illustrated in Fig. 4(b). The second type of topology
assumes the input and output ports of the same hub/controller adjacent
to each other, as the 4 x 4 GWOR shown in Fig. 4(c).

It is clear that the second topology type is more friendly to physical
implementation since it considers the nature of physical implementa-
tion. It is also the reason why some existing work on physical imple-
mentation can easily tackle the topologies of the second type using
straightforward heuristics. Since the two different types of topologies

HO

@

I_'[g [0)
T
]]

) OO

-

Iy
&

I
® ® ® 6

E

| o
0
[0
@ T o - o
(a ()
o1 11
P OG oa 04

02, Oﬂ Oﬂ 14

Figure 4: Two types of topologies. (a) A non-physical-aware
topology separates the inputs and outputs into two sides. (b)
Extra crossings can be easily generated when merging the input
and output ports. (c) A physical-aware topology assumes the
input and output of a hardware device are in adjacent locations.

require different treatments in the following steps, we respectively re-
gard the first and the second types as physical-aware and non-physical-
aware topologies.

3.3 Step 2: Topology Preprocessing

Given an input WRONoC topology, We first model the topology as a
connection graph, where Nf;y¢q is a set of nodes representing the fixed
components such as hubs and memory controllers, and Ny,,peabie
is a set movable nodes such as PSEs or other switching elements.
Collectively, N = Nfjxeq U Nmoveable- An edge e belonging to the
edge set E is constructed between two nodes if the two corresponding
components are connected in the topology.

For a non-physical aware router, straight-line embedding [10] is
first applied to derive a crossing-free initial solution. After that, we
perform node clustering based on the embedding result. As shown in
Fig. 5(a), three nodes forming a 3-clique in the straight-line embedding
are clustered and contracted into one node. Note that the nodes of fixed
components are excluded from the clustering process, and once nodes
are clustered, they cannot be further merged with others. This process
continues iteratively until no more nodes can be clustered, as shown
in Fig. 5(b). The major reason for adopting node clustering is to reduce
problem size and thus enhance the efficiency of the problem-solving
process. In addition, clustering every three highly connected nodes
can contribute to crossing minimization in the placement stage. For a
physical-aware router, since the topology is planar or almost planar, we
directly transform it into an initial planar embedding. After that, the
same node clustering procedure is applied as that for a non-physical-
aware router.

3.4 Step 3: Force-Directed Placement

We develop our placement method based on the Fruchterman-Reingold
force-directed algorithm [11]. This algorithm models the edges of a
graph as springs and the nodes as support points, forming a mechanical
system and seeking force equilibrium. Using a spring system helps
identify which nodes should be positioned closer together and farther
apart. However, this model does not directly account for crossings. To
make the existing approach suitable for our application, we adjust the
attractive and repulsive forces among vertices to facilitate adequate
moves of movable components. In addition, in each movement iteration,
we calculate the insertion loss of each signal path, identifying the paths
with the maximum insertion loss as the critical paths. Therefore, our

(@ (®)

Figure 5: Clustering nodes based on their connectivity. (a) A
straight line embedding of the 4x4 A-router. (b) Clustering three
nodes that form a 3-clique.

objective is different from that in [11], and the major task is to minimize
the insertion loss along these critical paths.

In the following, we first explain some crucial elements of the pro-
posed force-directed and critical path-aware placement approach. After
that, the overall placement process will be summarized with a pseudo-
code.

3.4.1 Force Computation. The force-directed algorithm balances at-
tractive and repulsive forces between vertices to achieve force equilib-
rium. The magnitudes of the attractive and repulsive forces imposed
on movable components are dependent on the area of the pre-specified
movable region. For example, in a larger zone, with more available
area, the repulsive force can be larger and the attractive force can be
smaller. We define the movable region as the zone of placement, and it
is determined by the bounding boxes of all vertices in N;yeq-

The placement procedure begins with placing the vertices in Nfiyeq
in their fixed positions, and the remaining vertices in Ny,,peqple are
randomly placed within the zone. After that, we define a parameter k
as follows:

po [7ome area,)
IN|
which can be interpreted as the congestion level within the space.
Therefore, k should be inversely proportional to the attractive force
and proportional to the repulsive force.

In addition, attractive forces act only between two vertices con-
nected by an edge to minimize waveguide lengths. In contrast, repulsive
forces are exerted between any pair of vertices to evenly distributed
movable components, which facilitate the following waveguide rout-
ing. We define d as the Manhattan distance between two vertices in
N. When defining the attractive force, we aim for a pair of nodes
connected by an edge to be closer, especially if the edge belongs to
some critical path. To enhance critical path optimization, the attrac-
tive force is multiplied by a weight that increases with the number of
iterations. Therefore, the calculation formula for the attractive force,
F,, magnitude is given by:

Fazwix(d?z)’ (4)

where wj is the weight of the i-th iteration. On the other hand, repulsive
forces primarily prevent vertices of fixed and non-fixed components
from overlapping with each other and ease waveguide routing. Thus,
we design the formula of repulsive forces, F, as follows:
k2

—. 5
) ©

3.4.2 Critical Path-aware Switching Component Movement. Using at-
tractive and repulsive forces, we determine the directional motion
vectors for all nodes. Because all forces are pairwise in nature, for two
nodes in Ny,ppables their attractive forces are added up. On the other
hand, when one of the two nodes of an edge is in Nf;yeq, we do not
move its position but add its attractive force to the other movable and
connected node.

Fr =

Node 1 Critical path

Critical path

Node 1
Node 3

Node 2

Node 4

(@)

Node 1 Critical path Node 1 Critical path

Node 3
Node 2
Node 3 Node 2
Node 4
Node 4
(b)

Figure 6: Critical path-aware node movement. (a) Moving Node
2 does not affect the critical path. (b) Moving Node 3 impacts
the critical path.

(2) (®) ©

Figure 7: Additional crossing generation and resolving. (a) The
connection order of the center PSE in the counter-clockwise
direction is < A, B,C, D >, determined based on the relative com-
ponent locations (top-right, top-left, bottom-left, and bottom-
right). (b) The connection order is < B, A,C, D >, causing an extra
crossing. (c) The connection order is < C, B, A,D >, the two extra
crossings can be resolved by flipping the PSE.

After calculating the motion vectors for all nodes according to the
forces, the new position of each node can be determined. However,
moving nodes by merely considering the forces may worsen the maxi-
mum insertion loss caused by critical paths. For example, moving Node
2 in Fig. 6(a) does not affect the critical path, and thus it is usually
feasible to be conducted. However, as shown in Fig. 6(b), moving Node
3 will cause an additional crossing on the critical path, and thus, it may
greatly increase the maximum insertion loss. Therefore, we check if
the increase in the maximum insertion loss Aily,qx exceeds a threshold
value using Equation (2). If it does, the node move is forbidden. In addi-
tion, it is also undesirable to cause too many additional crossings due
to a node move, even if they are not on critical paths. This is because
every path may become a critical path during the optimization process,
and additional crossings are difficult to remove once created.

3.4.3 Connection Order Consideration. It can be observed that after
modeling the topology of an optical router as a graph, the graph only
keeps the connection relationship among vertices while losing the
connection order information of switching components, which may
lead to unpredictable waveguide crossings in the subsequent steps of
moving switching components. Fig. 7 illustrates an example, where
Fig. 7(a) shows a PSE in the center and connects counter-clockwise to
four neighboring components with the connection order < A, B,C, D >.
With forced-directed moves, an extra crossing may occur if the posi-
tions of A and B are swapped, as illustrated in Fig. 7(b). This crossing
cannot be detected in the connection graph, because each node in a
general graph does not record/limit the connection order of its inci-
dent edges. In contrast, Fig. 7(c) illustrates another situation after PSE

ABCD ABDC ACBD ACDB ADBC ADCB
BACD BADC BCAD BCDA BDAC BDCA
CABD CADB CBAD CBDA CDAB CDBA
DABC DACB DBAC DBCA DCAB DCBA
()
ABCDABCD ABCDABCD
—_— —
—
BACD

CBAD
X v
()

Figure 8: The feasibility of connection order. (a) Enumerated
connection orders. (b) Whether a connection order causes addi-
tional crossing can be checked with substring comparison.

movement, where two crossings are caused, while they can be resolved
by flipping the center PSE.

To determine whether the move of a switching component could
cause unresolvable crossings, we check the connection order of the
component before and after the move. When the connection order
is changed after a component move, it can be guaranteed that no
crossing occurs if the connection order can be obtained by rotating
or/and flipping the component. For example, the connection in Fig. 7(b)
is < B,A,C,D >, which cannot be derived by rotating and flipping
the center PSE. In contrast, the connection order < C,B,A,D > is
actually a reversed and rotated order of < A, B,C, D >, and thus the
two crossings in Fig. 7(c) can be resolved by flipping the center PSE.

Fig. 8(a) lists all the permutations of the connection order for the
PSE that we consider, and the feasible connection orders are high-
lighted. To check whether a connection order is feasible or not for any
switching elements with varied numbers of ports, a systematic method
is proposed. We first regard the connection order before a component
move as a string and replicate it to become twice as long, which is
denoted as S;. The connection order after the component move is also
regarded as a string and denoted as Sy. After that, we check whether
Sy is a substring of S1 or a substring of the reverse of ;. If it is, the
change in the connection order will not cause any additional crossing;
otherwise, crossing-free movement is not guaranteed. For example,
S1is < A,B,C,D,A,B,C,D > for the instance in Fig. 7(a), and Sy is
respectively < B,A,C,D > and < C, B, A, D > in Figs. 7(b) and (c). As
illustrated in Fig. 8(b), since < B, A, C, D > is not a substring of both S;
and the reverse of Sy, it causes additional crossings. In contrast, since
< C,B,A, D > is a substring of the reverse of Sy, it is determined as a
feasible connection order. The checking process can be done by linearly
scanning S and thus can be regarded as a constant-time operation.

3.4.4 Congestion Avoidance. To prevent the subsequent routing step
from causing additional crossings due to routing congestion, we divide
the zone of placement into a grid and ensure that the number of nodes
contained in each grid cell after node movement does not exceed a user-
defined value y. Otherwise, the node will be moved to a neighboring
grid cell that minimally impacts ilpax, as shown in Fig. 9.

3.4.5 Overall Placement Flow. Algorithm 1 outlines the overall place-
ment procedure. Lines 1-2 perform initialization. In each optimization
iteration, Line 4 calculates the attraction and repulsion forces for each
node, and Line 5 determines the new position of each node according
to its motion vector. Lines 6-20 try to move a node at a time. Whether
a node is moved to its new position is determined by its impact on
the maximum insertion loss (il,4x), the number of crossings (AC), and
whether the target grid is congested or not. If the move of a node bene-
fits or does not greatly deteriorate the overall physical implementation
result, it will be accepted.

3.5 Step 4: Routing

Having an optimized placement of movable components, waveguide
routing is conducted by applying simple L-shaped routing. We first
separate each clustered node generated in the pre-processing stage into

2 3 4 +0.1 +0.2 +0.5
2 5 1 +0.1 +0 +0.15
1 2 3 +0.3 +0.05 | +0.2

Figure 9: When congestion occurs, the concerning node moves
to a nearby grid cell considering the impact on insertion loss.
(a) Numbers of nodes contained in the grid cells. (b) Quantified
impact on insertion loss when moving a node to a nearby grid
cell.

Algorithm 1 Critical Path-aware Movable Component Placement

Input: A connection graph derived from Step 2
Output: Optimized placement locations of the movable components
1: Construct the placement zone according to fixed nodes
2: Randomly place movable nodes and record their positions in a
vector Vpos
3: for a fixed number of iterations do
4 Calculate the attraction and repulsion forces for all nodes ac-
cording to Vpos
5. Calculate the new positions for all nodes based on the forces
and record them in another vector V

pos
6: for each node do
7: Determine the connection orders before and after the move
8: Calculate Ailyqx based on its positions in Vpos and V;;os
9: Calculate AC with straight lines and connection orders
10: if Ailpax < @ && AC < ff then
11: Calculate grid congestion
12: if the congestion of the target grid cell < y then
13: Move the node to the new position
14: Update Vs
15: else
16: Move the node to a non-overflow neighboring grid cell
with the least Ail,qx
17: Update Vg
18: end if
19: end if

20 end for
2. Vpos < V)

pos
22: end for

R * -

| R
A R A
! . ®--- 1I
| @-a----- LT
1 1 I :I
1 ! I h
1 1 I II
- ® [T —

(a) (®) () (d

Figure 10: L-shape routing. (a) The boundary is not completely
enclosed. (b) The boundary is enclosed. (c) Shift overlapping
line segments to eliminate the overlap. (d) Choose different
directions to avoid overlap.

three nodes and connect them without crossing. After that, we route
the waveguides on critical paths with L shapes. Finally, we route the
remaining waveguides by generating as few crossings as possible and
avoiding generating crossings with the waveguides on critical paths.
We use some heuristics that have been widely adopted in many routers.
For example, for the two nets shown in Fig. 10(a), the blue net needs

Table 1: Experimental results for 8 x 8 routers with different hardware configurations. “il;;4x”, “C”, “L”, and “t” separately denote the

maximum insertion loss, the number of crossings, the total waveguide length, and the runtime in seconds.

Pos(a) Pos(b) Pos(c) Pos(d)
Topology Work ilmax C L t ilnax C L t ilnax C L t ilnax C L t
Proton+ 79 | 27.0 | 20817.0 | 146.9 | 7.8 | 29.0 | 18513.0 | 1365 | 7.5 | 310 | 177480 | 1354 | 6.6 | 27.0 | 127260 | 1340
PlanarONoC 5.23 7.0 | 24140.0 0.3 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
A-router ToPro n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Our 4.8 | 170 | 117550 | 7.2 52 | 150 | 166000 | 7.8 53 | 18.0 | 138010 | 8.2 4.7 | 160 | 119580 | 6.2
Proton+ 84 | 380 | 130000 | 77.1 85 | 37.0 | 146610 | 7.7 80 | 360 | 125280 | 907 | 81 | 350 | 13806.0 | 79.0
PlanarONoC 6.38 10.0 | 28620.0 0.1 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
GWOR ToPro 38 | 80 | 142000 | 019 | 50 | 80 | 222000 | 0.15 45 | 80 | 184000 | 0.14 | 4.0 | 100 | 13500.0 | 0.17
Our 3.6 | 110 | 98510 | 102 | 4.2 | 100 | 145280 | 119 | 4.0 | 13.0 | 103230 | 114 | 4.0 | 120 | 112470 | 97
Proton+ n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
PlanarONoC n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
Light ToPro 55 | 120 | 210000 | 0.19 | 64 | 6.0 | 333000 | 0.2 52 | 120 | 190000 | 0.15 | 43 | 120 | 135000 | 0.07
Our 44 | 150 | 111310 | 89 4.7 | 110 | 172490 | 85 4.2 | 140 | 106390 | 83 3.8 | 120 | 101420 | 8.2
v MC, it is hardly applied to various hardware configurations without addi-
- - - - - - tional manual effort. Compared to PlanarONoC for Pos(a), CPONoC
MG Ho e MG, Ho e achieves a 8% reduction in maximum insertion loss by focusing on crit-
ical paths during the force-directed optimization process. Compared to
the layouts synthesized by Proton+, the layouts produced by CPONoC
MC; H, H MC H, H, consistently reduce the number of crossings and waveguide lengths,
v e, resulting in an average reduction of 32.25% in maximum insertion loss.
b For the two physical-aware topologies (GWOR and Light), ToPro has
(2) (b) S :
the best physical implementation results among the three state-of-the-
v art works. Compared to ToPro, CPONoC achieves an average reduction
o o
- - - - - of 10% in maximum insertion loss across the four positions for GWOR,
Ho . M Ho e and achieves 18.6% reduction for Light.
— - MC,
MC, MC; -
MC,
- - Me, - 5 CONCLUSION
o MCo Hy H In this paper, we propose CPONoC, a physical implementation tool
Mc, that categorizes optical routers and applies customized treatments to
(©) (d) accommodate different topologies. Instead of aiming to eliminate all

Figure 11: Four different positions of the memory controller.

to route the lower L-shaped path to avoid crossing with the red net. In
Fig. 10(b), for the two nets whose bounding boxes are overlapped at
their boundaries, the segments need to be slightly shifted to eliminate
waveguide overlap, as shown in Fig. 10(c), or route them with adequate
directions, as shown in Fig. 10(d). Some additional crossings could be
generated during L-shaped routing for some nets that are originally
non-crossing when they are represented by straight lines. In such cases,
we apply monotonic routing for these nets to find their non-crossing
routing paths.

4 EXPERIMENTAL RESULTS

We implemented CPONoC in the C++ programming language on a 2.00
GHz Linux workstation with 56 GB memory. Three state-of-the-art
works reporting the best physical implementation results are compared
by conducting their binaries, namely Proton+ [5], PlanarONoC [7], and
ToPro [8]. Three ONoC topologies including A-router [1], GWOR [2],
and Light [3] are adopted as the benchmarks, and four hardware con-
figurations with different positions of fixed ports are considered, which
are separately denoted as Pos(a), Pos(b), Pos(c), and Pos(d) and shown
in Fig. 11. The number of optimization iterations in the force-directed
placement method is set to 100. @ and f representing the thresholds for
Ailpgyx and AC (see Algorithm 1) are respectively set to 0.5 and 2. We
impose stricter requirements for crossings because additional waveg-
uide crossings will become a bottleneck for maximum insertion loss
minimization in later optimization iterations. The grid cell congestion
threshold y introduced in Section 3.4.4 is set to 5 in our experiments.
The experimental results are shown in Table 1, where “il;;4x” rep-
resents the maximum insertion loss, “C” represents the number of
crossings, “L” represents the total waveguide length, and “t” represents
runtime in seconds. It can be observed in Table 1 that for the A-router,
ToPro has no data because it cannot tackle non-physical-aware topolo-
gies. PlanarONoC achieves better results compared to Proton+, while

waveguide crossings, CPONoC minimizes the insertion loss of critical
paths by seeking a good trade-off between the number of crossings and
the waveguide length. The experimental results show that CPONoC
outperforms three state-of-the-art design automation approaches given
different input topologies and positions of ports.

REFERENCES

[1] M. Briere, B. Girodias, Y. Bouchebaba, G. Nicolescu, F. Mieyeville, F. Gaffiot,
and I. O’Connor, “System Level Assessment of an Optical NoC in an MPSoC
Platform,” Proc. Design, Automation & Test in Europe Conference & Exhibition,
2007.

[2] X.Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a Scalable, Non-Blocking
Optical Router for Photonic Networks-on-Chip Designs,” Proc. Symposium on
Photonics and Optoelectronics, 2011.

[3] Z. Zheng, M. Li, T.-M. Tseng, and U. Schlichtmann, “Light: A Scalable and
Efficient Wavelength-Routed Optical Networks-On-Chip Topology,” Proc. Asia
and South Pacific Design Automation Conference, 2021.

[4] A. Boos, L. Ramini, U. Schlichtmann, and D. Bertozzi, “PROTON: An auto-
matic place-and-route tool for optical Networks-on-Chip,” Proc. IEEE/ACM
International Conference on Computer-Aided Design, 2013.

[5] A.v.Beuningen, L. Ramini, D. Bertozzi, and U. Schlichtmann, “PROTON+: a
placement and routing tool for 3d optical networks-on-chip with a single optical
layer,” ACM Journal on Emerging Technologies in Computing Systems, vol. 12,
no. 4, article 44, 2015.

[6] A.v.Beuningen and U. Schlichtmann, “PLATON: A Force-Directed Placement
Algorithm for 3D Optical Networks-on-Chip,” Proc. ACM International Sympo-
sium on Physical Design, 2016.

[7] Y.-K. Chuang, K.-J. Chen, K.-L. Lin, S.-Y. Fang, B. Li, and U. Schlichtmann, “Pla-
narONoC: Concurrent Placement and Routing Considering Crossing Minimiza-
tion for Optical Networks-on-Chip,” Proc. ACM/ESDA/IEEE Design Automation
Conference, 2018.

[8] Z.Zheng, M. Li, T.-M. Tseng, and U. Schlichtmann, “ToPro: A Topology Projector
and Waveguide Router for Wavelength-Routed Optical Networks-on-Chip,” Proc.
IEEE/ACM International Conference On Computer Aided Design, 2021.

[9] J. Chan, G. Hendry, A. Biberman, and K. Bergman, “Architectural design ex-

ploration of chip-scale photonic interconnection networks using physical-layer

analysis,” Proc. Conference on Optical Fiber Communication, collocated Na-

tional Fiber Optic Engineers Conference, 2010.

M. Chrobak, and T. Payne, “A Linear-time Algorithm for Drawing a Planar

Graph on the Grid,” Information Processing Letters, vol. 54, no. 4, pp. 241-246,

1995.

[11] T. M.]J. FRUCHTERMAN, and E. M. REINGOLD, “Graph Drawing by Force-

directed Placement,” Software, Practice & Experience, vol. 21, no. 11, pp 1129—
1164, 1991.

(10]

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 3-D Stacked Architecture
	2.2 Topological and Physical Design of WRONoCs
	2.3 Power Consumption

	3 Critical-Path-Aware Physical Implementation Flow
	3.1 Algorithm Flow
	3.2 Step 1: Topology Categorization
	3.3 Step 2: Topology Preprocessing
	3.4 Step 3: Force-Directed Placement
	3.5 Step 4: Routing

	4 EXPERIMENTAL RESULTS
	5 CONCLUSION
	References

