
Interaction-Aware Trajectory Repair in Compliance with
Formalized Traffic Rules

Youran Wang, Yuanfei Lin, and Matthias Althoff

Abstract— Traffic-rule compliance is crucial for motion plan-
ning of automated vehicles. If an initially-planned trajectory vi-
olates traffic rules, we suggest to repair it instead of completely
replanning it to save computational time. However, there exists
no trajectory repair framework that considers the interactions
among traffic participants, potentially leading to conservative
driving behaviors. To address this issue, we propose for the first
time an interaction-aware trajectory repair algorithm based
on game theory. Our novel algorithm predicts the influence
of the repaired trajectory on other traffic participants and
then executes the trajectory candidate with the best outcome.
To demonstrate our repair mechanism, we integrate it into a
receding-horizon motion planning framework. Our approach is
evaluated using the CommonRoad benchmark suite, revealing
that—compared to the interaction-unaware repair strategy—
our approach avoids unnecessarily conservative driving behav-
iors and achieves a higher repair rate.

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

I. INTRODUCTION

Motion planning in compliance with traffic rules is crucial
for realizing safe automated vehicles. Traffic rules formalized
in temporal logic [1] aid in precisely evaluating the rule
compliance of the planned trajectories. However, numerous
rules need to be considered simultaneously, and there exists
no scalable approach to convert arbitrary temporal logic
specifications to mathematical constraints [2]. To address
this issue, runtime monitors [3] are used to verify the
rule compliance of the trajectory after planning. A rule-
compliant trajectory repair approach using runtime moni-
toring is proposed in our previous work [4] to partially
rectify rule-violating trajectories. Nonetheless, the existing
repair framework in [4] overlooks the interactions among
traffic participants. Purposefully interacting with other traffic
participants makes it possible to drive less conservatively, as
illustrated in Fig. 1.

A. Related Work

Below, we summarize the literature in the fields of game-
theoretic and rule-compliant motion planning.

1) Game-Theoretic Motion Planning: Game theory is
well-studied for modeling interactions among agents. Com-
petitive driving scenarios such as racing can be modeled by
zero-sum games [5], where players aim to maximize their
own objectives while minimizing those of others. In con-
trast, non-competitive driving scenarios can be formulated
as general-sum games [6], which can be categorized based
on their solution structure: Nash equilibrium or Stackelberg
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(a) The trajectory is repaired by braking since a lane change is impeded by the dynamic
obstacle on the left adjacent lane.

(b) Considering the reaction of the dynamic obstacle, the trajectory can be repaired
by a lane change, avoiding the conservative braking maneuver.

Fig. 1: Sketch of trajectory repairing with and without interaction awareness.
The initial trajectory of the ego vehicle needs to be repaired as it is about
to collide with the static obstacle.

equilibrium. In [7]–[9], the authors aim for Nash equilibria
during motion planning, where all agents are assumed to
make decisions simultaneously [10]. However, in certain
scenarios (e.g., one vehicle merges in front of the other),
some traffic participants exhibit their decisions first, and
other traffic participants respond to them. This sequential
order of decision-making is described by the Stackelberg
equilibrium [11], where the leader in the game has the
advantage of selecting its trajectory based on the predicted
reactions of the followers. The works utilizing the Stackel-
berg leadership model can be categorized by the prediction
models used for the followers. In [12]–[14], the followers are
predicted as rational agents that generate the best response.
Mathematical models such as the intelligent driver model
[15] are employed to simulate the behaviors of the followers
in [16], [17], while a neural network is used for this purpose
in [18]. However, none of these works verify if the interactive
planning outcomes are compliant with traffic rules.

2) Rule-Compliant Motion Planning: To avoid the ambi-
guities raised from natural language descriptions, traffic rules
are formalized in temporal logic, e.g., for interstates [1],
intersections [19], and waterways [20]. Using robustness
evaluation [21], the rule compliance of motion planning
results can be quantitatively evaluated. To be employed as
constraints in motion planning problems, formalized traffic
rules are integrated into reachability analysis [22], converted
into mixed-integer constraints [2], or used as heuristics
for sampling-based approaches [23]. Other works verify
rule compliance after a trajectory is planned. In [24], rule
violations are predicted by reinforcement learning, then a



trajectory that is anticipated to violate traffic rules is re-
planned. To gain more computational efficiency, a trajectory
repair framework based on satisfiability modulo theories
(SMT) [25] that partially modifies the initial trajectory is
proposed in [4]. However, no existing work has considered
the interactive behaviors of other traffic participants during
traffic rule verification.

B. Contributions

We incorporate interaction awareness in the rule-compliant
trajectory repair framework proposed in [4] and integrate the
repairer in a receding-horizon motion planning framework.
Compared to existing works, the novelties of our approach
are summarized as follows:

1) incorporating interaction awareness into trajectory re-
pairing, which results in more efficient maneuvers and
enhances the comfort of the repaired trajectory;

2) demonstrating the performance of the interaction-
aware repairer within a motion planning framework
that can incorporate any motion planner; and

3) considering interactive behaviors during predictive rule
monitoring using online estimations of the social pref-
erences of other vehicles.

The remainder of this paper is structured as follows: In
Sec. II, required notations and definitions are introduced.
A social-preference-aware trajectory prediction approach is
introduced in Sec. III, followed by the interaction-aware
trajectory repair algorithm in Sec. IV. We evaluate our
approach in Sec. V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. System Description and Notations

We denote the planning horizon as th and use tp to rep-
resent the replanning interval. Each time step k corresponds
to the continuous time tk = k∆t, where ∆t is the length of
one time step. □k denotes the variable □ at time step k. The
considered vehicle dynamics are:

xk+1 = f(xk,uk), (1)

where xk ∈ Rn is the n-dimensional state vector of the
vehicle, and uk ∈ Rm is the m-dimensional input vector
to the system; xk and uk are subject to the admissable
states Xk ⊂ Rn and admissable control inputs Uk ⊂ Rm,
respectively. By solving (1) with the initial state x0 and
the input trajectory u([0, k]), we obtain a state trajectory
χ(x0,u([0, k])). For simplicity, a complete state trajectory
spanning the planning horizon kh is abbreviated as χ, and
χ(k) returns the k-th state of χ. We denote the i-th vehicle
in the driving environment as Vi. A subscript i indicates that
the variable □i is associated with Vi. In particular, the ego
vehicle in a motion planning task is denoted as Vego, and its
maximum acceleration and velocity are denoted as amax and
vmax, respectively. In the context of a Stackelberg game, the
leader and the follower of Vego are denoted as Vl and Vf,
respectively. The cost function of the i-th vehicle is denoted
as Ji. We denote the states of all other traffic participants as

Xobs and the road network as L, which collectively define
the driving environment Ω := (L,Xobs) of Vego.

A curvilinear coordinate system [26] is used to describe
the location of a vehicle along a reference path Γ. A position
(x, y)T is described by a coordinate (s, d)T in the curvilinear
frame, where s is the arc length along Γ and d measures
the orthogonal deviation to Γ at s. □̇ and □̈ (□ ∈ {s, d})
denote the velocity and acceleration in the corresponding
directions. If Γ is the centerline of a lane l, the functions
adjr(Γ) and adjl(Γ) return the centerlines of the right and
left adjacent lanes of l, respectively. In addition, |□| denotes
the cardinality if □ is a set.

B. Signal Temporal Logic

Signal temporal logic (STL) specifies temporal properties
of signals in dynamical systems [27]. An STL formula ϕ is
defined as [27, Sec. 2.1]:

ϕ := σ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1SIϕ2 | ϕ1UIϕ2 (2)

where σ represents an atomic proposition, ϕi represents
other STL formulas, and I is a time interval. SI and UI

are the since and until temporal operators, respectively.
The conjunction operator can be constructed from (2) as
ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2). Additionally, FI , GI , P, and
OI are the future, globally, previously, and once operators,
which are defined in [27, Sec. 2.1] as FIϕ := ⊤UIϕ,
GIϕ := ¬FI¬ϕ, Pϕ := ⊥S[0,∞)ϕ, and OIϕ := ⊤SIϕ,
respectively. We denote all considered STL traffic rules in a
planning problem as R.

C. Definitions

As in [4, Sec. II.B], we denote the time remaining until
the traffic rule is violated as time-to-violation (TV), and the
latest time for which a rule-compliant trajectory exists as
time-to-comply (TC). The state and time step from which
the repaired trajectory starts are denoted as xcut and tcut,
respectively. Additionally, we next define the set of violation-
free trajectories.

Definition 1 (Violation-Free Trajectories χVF
R):

The set χVF
R contains all rule-compliant trajectories of the

ego vehicle that spans the planning horizon, defined as:

χVF
R := {χ | χ |= R},

where χ |= R denotes that χ complies with R.

We finally introduce a measure for the social preferences
of the traffic participants.

Definition 2 (Courtesy Factor φ):
The courtesy factor, denoted as φ ∈ [0, 1], measures the
social preference of an agent. In the objective function of
the agent, its own objective is weighted by 1 − φ, and that
of the others is weighted by φ.

Other quantitative measures of social preferences for traffic
participants in, e.g., [28] and [29], can also be adapted in
our approach.



D. Problem Statement

For a rule-violating initial trajectory χint
ego, we first need

to compute TC to let our trajectory repairer intervene at the
latest possible time. Afterward, the repairer aims to solve the
following problem:

χ∗
ego = argmin

χego

Jego(·)

s.t. χego ∈ χVF
R ,

∀k ∈ [0, TC], χego(k) = χint
ego(k),

(3)

where two constraints are imposed on the repaired trajectory:
a) The repaired trajectory belongs to the violation-free set
χVF

R ; b) The deviation from χint
ego starts from the state at TC.

III. SOCIAL-PREFERENCE-AWARE TRAJECTORY
PREDICTION

To anticipate the influence of an intended trajectory of
Vego on other traffic participants, a social-preference-aware
prediction approach is introduced.

A. Leader-Follower Relationship

We predict the behaviors of the dynamic obstacles based
on their pairwise leader-follower relationships with Vego. In
this work, for vehicles heading in the same direction of Vego,
we define a vehicle ahead of Vego as Vl and a vehicle
with a smaller longitudinal position as Vf. For instance, in
Fig. 1, Vego recognizes the dynamic obstacle on the adjacent
lane as Vf. At intersections, if two vehicles are on different
incoming lanes, we define the vehicle with a smaller distance
to the intersection as Vl [30].

B. Trajectory Prediction Based on Social Preferences

In the sequential decision-making process of the Stack-
elberg game, Vl makes decisions ahead of Vego and is
not affected by Vego. We generate predicted trajectories for
Vl using the intelligent driver model [15]. In contrast, Vf

makes decisions after Vego and reacts to its actions. It is
noteworthy that drivers in the real world exhibit diverse
social preferences, implying that Vf may not necessarily
yield to the behavior of Vego (e.g., in Fig. 1, the dynamic
obstacle may refuse to brake, and block the lane change
behavior of Vego). Therefore, given the courtesy factor φf,
we predict the reaction of Vf in a social-preference-aware
manner by solving the following optimization problem:

arg min
uf([0,kh])

Jf(·) = (1− φf) gf (χf,uf([0, kh]))+

φf gego
(
χego,uego([0, kh])

)
with g(χ,u([0, kh])) : = jvel + jacc + jdobs + jdis,

s.t. xf,k+1 = f(xf,k,uf,k), xf,0 = xint
f ,

uf,k ∈ Uf,k, xf,k ∈ Xf,k,
(4)

where xint
f is the initial state of Vf and g(·) represents the

egoistic objective. As introduced in Sec. II-C, we use φf

as a weighting factor in Jf(·). Within g(·), jvel penalizes
the deviation from the desired velocity [31, Sec. III.B], jacc
measures comfort by penalizing the absolute acceleration as

in [31, Sec. III.B], and jdobs rewards the distance kept to
dynamic obstacles as in [32, Tab. I]. Additionally, we define
jdis = wdis∆s to account for driving efficiency, where wdis

is a weighting factor and ∆s is the distance from the terminal
state of χ to the nearest point in the goal region of the
vehicle.

IV. INTERACTION-AWARE TRAJECTORY REPAIR

In this section, we introduce the interaction-aware tra-
jectory repair framework, which is based on the rule-
compliant repair algorithm in [4] and generalized to con-
sider interactions. When rule violations are detected in
the current intended trajectory, we first generate high-level
repair strategies using the SAT-solving algorithm from [4,
Sec. IV.B]. The algorithm abstracts the violated traffic rules
into propositional formulas (denoted as Rp) and uses the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm [33]
to check its Boolean satisfiability. If Rp is satisfiable, a
rule-compliant assignment of the atomic propositions in Rp

is generated, denoted as Φ. Otherwise, the trajectory is
considered unrepairable.

The innovation of this work lies in an interaction-aware T -
solver, which checks the satisfiability of the repair strategies
from the SAT solver and generates repaired trajectories
considering interactions among the traffic participants.

A. Overall Algorithm of the Interaction-Aware T -Solver

The workflow of the novel T -solver is presented in
Alg. 1. The major enhancement compared to the T -solver
from [4] lies in line 4 and line 9, where we incorporate
interaction awareness. The assignment Φ is first compared
with its Boolean value at TV of the initial trajectory to
determine the atomic proposition ϕr ∈ Φ to be repaired
(see line 1). In line 2, we acquire a set of repair maneuvers
based on ϕr according to Tab. I, where the predicates
in STL traffic rules are associated with repair maneuvers
according to their categories [22]. For example, the predicate

Algorithm 1 T -SOLVER

Input: environment model Ω, solution from the SAT solver Φ,
initial assignment at TV Φint, TV, rule monitor M, estimated
courtesy factors of other participants φ̂obs

Output: repairability r, repaired trajectory χrep

1: ϕr ← OBTAINREPAIREDPROPOSITIONS(Φ, Φint)
2: M ← SETCOMPLIANTMANEUVERS(ϕr)
3: for all m in M do
4: TCm ← SEARCHTC(Ω, TV, m, M, φ̂obs) ▷ Sec. IV-B
5: end for
6: SORT(M) ▷ Based on the descending order of TCm

7: for all m in M do
8: if TCm >= 0 then
9: χrep ← GAMETHEORETICREPAIR(Ω, m, M, φ̂obs,

TCm) ▷ Alg. 2
10: if χrep is not None then
11: return ⊤, χrep

12: end if
13: end if
14: end for
15: return ⊥, None



TABLE I: Association of predicates, maneuvers, reference paths, and desired velocities.

Predicate [1], [19] Category [22] Maneuver Γref ṡdesired

in front of , keeps safe distance prec, Longitudinal position,
Velocity

brake Γ′∗ max(ṡTC − amaxTrep∗∗, 0)
not endanger intersection, . . . kick-down Γ′ min(ṡTC + amaxTrep, vmax)

Lateral position

lane-change-to-the-left adjl(Γ
′) ṡTC

in same lane, cut in, lane-change-to-the-right adjr(Γ
′) ṡTC

in lanelet with type, . . . steer-left-and-brake adjl(Γ
′) max(ṡTC − λ†amaxTrep, 0)

steer-right-and-brake adjr(Γ
′) max(ṡTC − λamaxTrep, 0)

* Γ′ denotes the reference path of Vego before m is employed. ** Trep = th − TC.
† Considering the constraint of the fraction circle, the longitudinal acceleration is scaled by λ ∈ [0, 1] when there are lateral movements.

keeps safe distance prec belongs to the category Longi-
tudinal position. According to Tab. I, the set of maneu-
vers M = {brake, kick-down} can be employed to repair
this predicate. Compared to [4, Tab. I], Tab. I additionally
contains the repair maneuvers that involve both lateral and
longitudinal operations, e.g., steer-left-and-brake and steer-
right-and-brake. These additional maneuvers are associated
with the predicates in the category of lateral position. Then in
lines 3-5, for each maneuver m ∈M, we compute the latest
time to employ m to realize rule compliance with interaction
awareness, which is defined as:

TCm := max{k ∈ [0,TV] | χm,k ∈ χVF
R(χ̂obs(χm,k))},

where χm,k := χ(x0, [u
int([0, k)),um([k, kh])]) is the tra-

jectory that follows the initial input uint until k and then
takes um associated with the maneuver m as input. The
algorithm to compute TCm is explained in Sec. IV-B. To
let the repair mechanism intervene at the latest possible
time, we sort the maneuvers in M based on the descending
order of TCm (see line 6). Then in lines 7-14, we iterate
through all maneuvers sequentially, attempting to repair the
trajectory using the game-theoretic approach introduced in
Sec. IV-C. If no repaired trajectory is generated by any
maneuvers in M, Φ is evaluated to be unsatisfiable, and
the SAT solver generates the next repair strategy with Rp

updated to Rp ∧ ¬Φ, as in [4, Alg. 1].

B. Interaction-Aware TC Search

We compute TCm using a binary search algorithm, which
incorporates interaction awareness into [34, Alg. 2]. Initially,
the search interval is set to [0,TV]. Starting from each visited
time step, a trajectory of Vego following the maneuver m is
simulated by a point mass vehicle model [35, Sec. III.A].
We then predict the corresponding reactions of other traffic
participants with the approach outlined in Sec. III. Subse-
quently, rule compliance (employed as the search condition)
of the simulated trajectory is assessed by the rule monitor
against the predicted trajectories of other vehicles, and the
boundaries of the binary search are adjusted accordingly. If
the initial time step is visited and fails to meet the search
condition, the algorithm returns TCm = −1, which indicates
that the initial trajectory is unrepairable using the maneuver
m.

C. Game-Theoretic Repair

Alg. 2 summarizes the interaction-aware trajectory repair
algorithm that solves the problem in (3). The leader-follower
relationships in the Stackelberg game are established in line 1
as introduced in Sec. III-A. In the remaining part of Alg. 2,
we first generate a set of repaired trajectories Sego for Vego

and evaluate each trajectory sample individually.
1) Trajectory Set Generation: We make adaptations to

the trajectory sampling approach proposed in [36] to align
Sego with the selected repair maneuver m. To achieve
this, we determine the reference path Γref and the desired
longitudinal velocity ṡdesired according to m as summarized
in Tab. I. For example, if m = lane-change-to-the-left, we
choose Γref = adjl(Γ

′) and ṡdesired = ṡTC. Then we
sample the positions and velocities of the terminal states
of the trajectory samples in the neighborhood of Γref and
ṡdesired. Subsequently, the approach in [36] is employed to
connect the sampled terminal states and xcut by trajectory
samples that adhere to the kinematic single-track model [35,
Sec. III.B], which leads to a discretized trajectory set Sego

branching from TC (see Alg. 2 line 3). Fig. 2 showcases a
trajectory set Sego following a lane change maneuver.

dynamic obstacleego vehicle trajectory samples predicted trajectories

Fig. 2: Trajectory set generation and reaction prediction. Γref and Sego are
associated with the repair maneuver lane-change-to-the-left. A dashed line
represents the predicted reaction of the dynamic obstacle when the trajectory
sample of the same color is executed by Vego.

2) Trajectory Sample Selection: In Alg. 2 line 6, for
each sample χ′

ego in Sego, the trajectory predictions of other
vehicles are updated by the approach introduced in Sec. III,
as illustrated in Fig. 2. Rule compliance of χ′

ego is evaluated
in Alg. 2 line 7 against the updated predictions by the rule
monitor. If no violations are detected, Jego is computed in
Alg. 2 line 8 and compared with the current optimal objective
J∗
ego. After the enumeration, the algorithm terminates by re-

turning the rule-compliant trajectory sample with the lowest
cost. If no trajectory sample is evaluated as rule-compliant,
then no trajectory is returned. The complexity of Alg. 2 is
O(|Sego|), with respect to the size of the trajectory set.



Algorithm 2 GAMETHEORETICREPAIR

Input: Ω, m, M, φ̂obs, TC
Output: repaired trajectory χ∗

1: INITIALIZEGAME(Ω)
2: Γref, ṡdesired ← GENERATEREFERENCE(m) ▷ Tab. I
3: Sego ← GENERATETRAJECTORYSET(Γref, ṡdesired, TC)
4: J∗

ego ←∞, χ∗ ← None
5: for all χ′

ego in Sego do
6: χ̂obs ← PREDICT(χ′

ego, Ω.Xobs, φ̂obs) ▷ Sec. III
7: if M.EVALUATE(χ′

ego, χ̂obs, Ω) == ⊤ then
8: Jego ← COMPUTECOST(χ′

ego, χ̂obs)
9: if Jego < J∗

ego then
10: χ∗ ← χ′

ego, J∗
ego ← Jego

11: end if
12: end if
13: end for
14: return χ∗

D. Trajectory Repair in a Receding-Horizon Motion Plan-
ning Framework

Our interaction-aware trajectory repairer is demonstrated
by integrating it in a motion planning framework. Alg. 3
shows the procedure of the overall algorithm in one planning
cycle. The input includes an arbitrary motion planner P .
Without knowing the courtesy factors of other traffic partici-
pants, their behaviors are initially predicted based on guessed
values. Afterward, during the online planning process, the
particle filter adapted from [28, Alg. 2 in the Appendix] is
used to estimate their courtesy factors based on observations
of their trajectories.

We initially use the trajectory planner P to generate an
intended trajectory χego for Vego (see Alg. 3 line 1). Mean-
while, to guarantee safety in an infinite time horizon, we
generate a fail-safe trajectory using the approach proposed
in [37]. Afterward, at every consecutive time step, the esti-
mation of courtesy factors of other vehicles is refined based
on the latest observations of their trajectories (see line 4).
The updated courtesy factor φ̂obs is fed into the prediction
algorithm in Sec. III to update trajectory predictions χ̂obs

(see line 5). The rule monitor is subsequently utilized to
verify the rule compliance of χego against χ̂obs (see line 6).
When rule violations are detected, we execute the interaction-
aware repair algorithm proposed in Sec. IV (see line 7). If the
repairability r ∈ {⊥, ⊤} evaluates to true, Vego regards χ∗

ego

as its new intended trajectory, which will be verified again
for rule compliance in the subsequent time step. If χego is
not repairable by this algorithm, the fail-safe trajectory is
executed (see line 11).

V. CASE STUDIES

The interaction-aware trajectory repair framework is eval-
uated in two scenarios from the CommonRoad benchmark
suite [35]: an obstacle avoidance scenario1 (scenario I) and
an intersection scenario2 (scenario II). The initial configura-

1CommonRoad ID: C-ZAM Highway-2 1 T-1
2CommonRoad ID: C-ZAM Intersection-2 1 T-1

Algorithm 3 INTERACTIONAWAREMOTIONPLANNING

Input: Ω, M, trajectory planner P
1: χego ← P .PLAN(·), χsafe ← FAILSAFEPLAN(·), k ← 0
2: while k < kp do
3: Ω ← UPDATEENVIRONMENT(Ω)
4: φ̂obs ← UPDATECOURTESYFACTOR(Ω.Xobs,k) ▷ [28,

Alg. 2 in the Appendix]
5: χ̂obs ← PREDICT(χego, Ω.Xobs,k, φ̂obs) ▷ Sec. III
6: if M.EVALUATE(χego, χ̂obs, Ω) == ⊥ then
7: r, χ∗

ego ← INTERACTIONAWAREREPAIR(Ω, χego, φ̂obs,
M) ▷ Sec. IV

8: if r == ⊤ then
9: χego ← χ∗

ego

10: else
11: χego ← χsafe

12: end if
13: PUBLISH(χego) ▷ Publish χego to the controller.
14: end if
15: k ← k + 1
16: end while

tions of the scenarios are shown in Fig. 3a and Fig. 4a. The
time step size of both scenarios is ∆t = 0.1 s. The social
preferences of other vehicles are unknown to Vego. When
calculating jvel, we define the initial velocity of a vehicle as
its desired velocity. When generating trajectory samples, we
use λ =

√
2
2 (cf. footnote of Tab. I).

The related STL traffic rules are listed in Tab. II. To verify
the rule compliance of lane change maneuvers according
to [38], we additionally formalize the rule to keep a safe
distance to the following vehicle on the target lane during
the lane change as R LC in Tab. II.

TABLE II: Traffic rules considered in our experiments.

Rule1 STL formula

R G1
[1]

G(in same lane(xego,xi) ∧ in front of(xego,xi)
∧¬O[0,tc](cut in(xi,xego) ∧P(¬cut in(xi,xego)))

=⇒ keeps safe distance prec(xego,xi))

R IN3
[19]

G(on incoming left of (xego,xi)
∧¬ relevant traffic light (xego) ∧ same priority (xego,xi)

=⇒ (G(not endanger intersection (xego,xi)
2)

∨¬on lanelet with type (xego, intersection)))

R LC
G(in front of(xego,xi) ∧O[0,tc](cut in(xego,xi))

=⇒ keeps safe distance rear(xego,xi))

1 In scenario I, R := R G1 ∧ R LC. In scenario II, R := R IN3.
2 See META-1 in [19, Tab. V] for the definition of this proposition.

A. Interaction-Aware Trajectory Repair

We first demonstrate the repair results at the initial time
step. Without knowing the courtesy factors of other vehicles,
our interaction-aware repairer (referred to as the IA repairer
from now on) initially assumes their courtesy factors to be
0.5, which means they are operating socially. The outcomes
are compared with that of the interaction-unaware repairer
(referred to as the IU repairer from now on) from [4] to
showcase the benefits of incorporating interaction awareness.

1) Scenario I: In scenario I, Vego violates the rule
R G1 because it does not keep a safe distance to the
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Fig. 3: Trajectory repair results of scenario I.

slowly proceeding vehicle V2. The first repair strategy gen-
erated from the SAT solver is to negate the proposition
in same lane(xego,x2), which leads to a repair maneuver
that requires a lane change to the left. Without interaction
awareness, the T -solver rejects this maneuver since it is
impossible to adhere to the rule R LC while conducting
the lane change. Therefore, the IU repairer employs the
next satisfying solution: keeps safe distance prec(xego,x2),
which requires Vego to brake, as shown in Fig. 3b. However,
when considering the reactions of V1, the lane change is
feasible, as shown in Fig. 3c. The IA repairer takes V2 as
the leader of Vego and recognizes V1 as the follower of
Vego. Based on the prediction that V1 brakes in reaction to
the cut-in maneuver of Vego, a rule-compliant lane change
trajectory for Vego can be generated. The cost comparisons
shown in Tab. III indicate that when using the IA repairer,
we achieve less deviation to the desired velocity (lower jvel),
shorter distance to the goal region (lower jdis), and more
comfortable driving experience (lower jacc). J1 is increased
by 45.5% when V1 yields to Vego.

2) Scenario II: As shown in Fig. 4a, the initial trajectory
of Vego violates the rule R IN3, because it endangers V1

which is heading to the intersection on a right incoming
lane. The SAT solver generates the repair strategy of satisfy-
ing not endanger intersection(xego,x1), which corresponds
to the maneuvers kick-down and brake. The IA repairer
recognizes V1 as a follower of Vego. Therefore, it predicts
that if Vego employs the maneuver kick-down, V1 brakes
to let Vego pass first. As shown in Fig. 4c, a repaired
trajectory where Vego rushes into the intersection is evaluated

as rule-compliant. On the contrary, without the capability
to anticipate the possible deceleration behavior of V1, the
IU repairer results in a conservative braking maneuver (see
Fig. 4b). The cost values in Tab. III relating to scenario II
demonstrate that the IA repairer improves the comfort and
speed maintenance of the repaired trajectory and enables
Vego to proceed closer to the goal region. J1 is increased
by 17.7% when V1 yields to Vego.

TABLE III: Comparisons of the cost of the repaired trajectories from the
IA and IU repairers. Superior values are indicated in bold.

Scenario Repairer jvel jdis jacc Cost Improvement 1

Scenario I IA 0.4 25.2 6.2
54.6%IU 11.2 27.6 30.7

Scenario II IA 7.7 7.0 7.6
93.6%IU 223.4 31.1 92.0

1 Improvement of the overall cost Jego.

B. Trajectory Repair with Courtesy Factor Estimation

To demonstrate the performance of the IA repairer in a
receding-horizon motion planning framework, we run Alg. 3
online in the two scenarios. The interactive behaviors of the
dynamic obstacles are generated by manually defining their
courtesy factors and solving the problem in (4). To show the
ability of our repairer to rectify aggressive maneuvers of Vego

stemming from an incorrect initialization of φ̂1, we configure
φ1 = 0.3 in the subsequent simulations, which means V1

is more selfish than our initial assumption φ̂1 = 0.5. The
sampling-based planner proposed in [36] is utilized as P in
Alg. 3, and we configure tp = 3.0 s.

In both scenarios, Vego initially follows the repaired trajec-
tory generated at the initial time step as introduced in Sec.V-
A. Fig. 3d shows the configuration of scenario I at k = 17.
The estimation of φ1 at this time step is 0.33, based on which
the repaired trajectory following the lane change maneuver
violates the rule R LC with regard to V1. Therefore, the
IA repairer continues to repair the trajectory by steering
to the right while braking, which lets Vego abort the lane
change while also keeping a safe distance to V2. The lateral
position profile of Vego is depicted in Fig. 5a. In scenario II,
although Vego chooses to rush into the intersection initially,
the updated estimation φ̂1 = 0.31 indicates that V1 does not
intend to yield to Vego, leading to a violation of the rule
R IN3. As shown in Fig. 4d, our approach slows down the
ego vehicle to give way for V1, which successfully avoids
violating the rules. We present the velocity profile of Vego

in Fig. 5b. In conclusion, in both scenarios, when V1 is a
selfish agent with φ1 = 0.3, Vego fails to make V1 yield to
its behavior.

The experimental results from Sec. V-A and Sec. V-B
demonstrate that our IA repairer enables Vego to enhance its
own objective by affecting the trajectory of its follower. How-
ever, this objective may not be achieved when encountering
uncooperative followers. Our motion planning framework
can identify this situation through courtesy factor estimation
and further repair the trajectory to be rule-compliant.
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Fig. 4: Trajectory repair results of scenario II.
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Fig. 5: Profiles of motion planning results. In (a), Vego initially attempts to
cut in front of V1, starting from TC. However, during the lane change
operation, Vego steers right at TC′ to stay in its original lane since
the observations indicate that V1 is not cooperative enough for Vego to
complete the lane change. Similarly, in (b), Vego abandons the first repair
strategy (starting accelerating from TC) and instead brakes at TC′.

C. Evaluation with Randomly Sampled Initial Conditions

To further test the performance of the proposed framework
and demonstrate the benefits of incorporating interaction
awareness, we sample 20 φ1 values with equal intervals
within [0, 1]. For each φ1 value, we generate 100 initial
configurations for both scenarios by adding Gaussian noise
to the initial longitudinal positions and velocities of all the
vehicles in the scenarios. The means of the Gaussian noise
correspond to the initial configurations used in Sec. V-A,
and the standard deviations are 10 m and 2 m/s for lon-
gitudinal positions and velocities, respectively. We rule out
the scenarios where the initial planned trajectories for Vego

are rule-compliant to highlight the performance of trajectory
repair. Afterward, we use the IA repairer and the IU repairer
along with the sampling-based planner to control the motion
of Vego for two planning cycles in all test cases. The results
are shown in Fig. 6, where the green area indicates that a
higher repair rate can be achieved by using the IA repairer.
Overall, the IA repairer successfully repairs 97.2% of test
cases, whereas the IU repairer achieves a repair rate of
91.6%. For the test cases that are successfully repaired by
both strategies, we illustrate the proportion of the test cases
where the IU repairer employs the conservative maneuver
brake, while the IA repairer results in superior objectives

by executing less conservative maneuvers (i.e., lane-change-
to-the-left in scenario I and kick-down in scenario II). The
results further demonstrate that interaction awareness leads to
improved objectives, especially when interacting with traffic
participants that exhibit high courtesy factors.
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Fig. 6: Results of the experiments based on randomly sampled initial
conditions.

VI. CONCLUSIONS

We propose a novel trajectory repair algorithm that is
capable of generating rule-compliant and interaction-aware
repaired trajectories. Compared to a repairer that ignores
interactions, the interaction-aware repairer achieves a higher
repair rate and avoids unnecessary conservative repair ma-
neuvers, especially when interacting with traffic participants
that have high courtesy levels. Additionally, our repairer is
capable of working within a receding-horizon motion plan-
ning framework and rectifying the rule-violating trajectory
of the ego vehicle online.
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