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Abstract— Stroke survivors and individuals with neuromus-
cular disorders often experience motor function impairments,
particularly during hand movements crucial for activities of
daily living (ADL). Functional Electrical Stimulation (FES) has
emerged as a potential assistive and rehabilitative technique
to address these limitations. However, accurately determining
user intent during FES poses a significant challenge. This work
proposes a framework for rapidly learning a model of the user’s
hand intent from surface electromyography (sEMG) signals,
specifically for continuous FES-based control of the ipsilateral
hand. The framework systematically collects data from expected
volitional and FES-evoked hand motions, followed by training
a logistic regression model for intent classification. The study
demonstrates that the proposed model can learn from limited
data and compares favorably to deep neural nets trained on
the same dataset. This model is able to recognize user intent
with high accuracy even during concurrent FES stimulation.

I. INTRODUCTION

Stroke survivors, as well as patients of other neuromus-
cular disorders may suffer from motor function impairments
that can severely limit their capability to perform activities
of daily living (ADL) [1]. In particular, these impairments
include the ability to close and open one’s hand [2] - a
functionality that is integral to many ADL tasks, such as
eating, drinking and dressing which all require dexterous
manipulation of objects. Functional electrical stimulation
(FES) has emerged as a potential assistive and rehabilitative
technique [3]. FES is a technique that can artificially acti-
vate muscles by providing small electrical impulses through
the user’s skin [4]. Consequently, relevant motions can be
generated in the user’s hand with FES activation. However,
to facilitate closed-loop FES control, a feedback mechanism
is required to inform the controller about the deviation from
the desired system state. For assistive control, therefore, the
user’s intention needs to be estimated.
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Previous works have exploited many sensors and tech-
niques for inferring the user’s intent. These include clas-
sification of hand intent from optical marker-based motion
tracking [5], [6], video data [7], [8], pose-estimation via iner-
tial sensors [9] and muscle activity measurement via surface
electromyography (sEMG) [10]–[14]. However, the evoked
hand pose via FES stimulation might not be distinguishable
from hand poses obtained by volitional motion since they
result in similar kinematic motions. Thus volitional intent
cannot be reliably extracted during FES stimulation from
these methods.

Identification of volitional intent during concurrent FES
stimulation can be addressed by methods such as Brain-
Computer Interface (BCI) [15], [16], as well as explicit
communication of intent via the motion of the non-paretic
limb [17]. Compared to passive and triggered FES control,
these methods have been known to gain relatively higher
motor function improvement. This indicates that active par-
ticipation by the user in the FES control loop, such that
the FES behavior is aligned with the motor intention may
be a key ingredient for successful FES based rehabilitation.
However, compared to BCI and contralateral control which
involve either estimating intent from cognition or explicitly
obtaining the user’s intent, sEMG offers a comparatively
direct measure of this intention as it forms the final evidence
for attempted movement in the form of muscle excitation
[18]. Considering all the above factors, active FES control of
the impaired limb based on measurements from ipsilaterally
placed sEMG electrodes can provide an adequate solution if
the volitional sEMG signal can be successfully extracted.

Previous studies have investigated several methods for
determining hand-intent from sEMG signals. Heuristic meth-
ods that classify motion intent by thresholding the value of
sEMG signal from distinct channels have been used by [11].
However, these methods rely on thresholds calculated from
a certain population that need to be adjusted for new users.
Various data-driven techniques have also been explored,
including feature-based classifiers such as those presented
by [10], [12], [19]. These approaches extract characteristic
pre-defined features from the sEMG signals and combine
them linearly or non-linearly with learnable parameters and
a link function to predict the motion intent class. Frequently
used features encompass time-domain characteristics [20],
[21] such as the signal’s mean absolute value, root mean
square, slope sign change, and waveform length. Frequency
domain features [22] such as power spectral density, median-
frequency, auto-regression coefficients, as well as time-
frequency features [23], such as wavelet transforms have



Fig. 1: Illustration of the sEMG signal corruption with FES
artifacts when FES is stimulating the same muscle group
whose activity the sEMG device is recording.

also been employed. Since the calculation of frequency
domain features is computationally more demanding, on-line
performance in classification often prioritizes time-domain
features [20].

In contrast to fixed feature based approaches, deep-
learning methods [24], [25] deploy specialized deep net-
works such as convolutional neural networks (CNN) and
fully connected networks (FCN) to automatically extract the
features from the signal, thus surpassing the need for feature
engineering. However, a potential drawback of deep-learning
techniques is their reliance on large datasets for accurate
model learning; inadequate data may hinder their general-
ization. Therefore, quick calibration of an intent recognition
model from a small data set may be difficult for these
approaches.

Many of the above approaches for classifying hand intent
from sEMG do not address scenarios where sEMG signals
are influenced by artifacts generated through FES. This can
be a common occurrence during FES control of a user’s
hand using sEMG sensors, where FES may concurrently be
activated during sEMG recording. FES stimulation typically
alters the sEMG measurements by introducing artifacts to
the signal that can dominate the volitional sEMG signal
[26]. Figure 1 illustrates this effect. These artifacts include
stationary and short-lived effects such as the transient stim-
ulation and non-stationary effects such as M-wave that can
persist throughout the recording process. Consequently, an
intent classifier learned from volitional sEMG data may
misconstrue the user’s intent when processing an sEMG
signal corrupted due to FES stimulation.

To address this issue, various approaches have been
explored to extract intentional sEMG from such signals,
including hardware methods such as blanking windows [27]
and software methods such as filtering [12], [26], [28] and
decomposition [29]. Of these, adaptive filtering techniques,
such as those proposed by [26] and [28], as well as an

iteration of such algorithms based on Gram-Schmidt algo-
rithm [28], [30] have been widely adopted since they offer
an online approach for mitigating both stationary and non-
stationary artifacts. In contrast, methods such as blanking
and fixed-response comb filters may either lead to data loss
or struggle to completely eliminate non-stationary artifacts
introduced by FES stimulation or both.

Even with the adaptive filter applied, however, we ob-
served that signals varied depending on the location and
intensity of stimulation for the same volitional motion. This
indicates that the adaptive filter is unable to remove all the
effects of FES stimulation from the recorded sEMG signal.
Consequently, an intent recognition model learned solely
from volition sEMG recordings may give inaccurate results
when tested on sEMG signals evoked from both volitional
motion and FES, even if it has been filtered to mitigate FES-
produced artifacts.

Therefore, in this work, we propose a framework for
learning a model of a user’s hand intent from sEMG collected
from a forearm for continuous FES-based control of their
ipsilateral hand. Three hand-motion categories are considered
in this approach - hand relax, where the hand is at a rest state,
hand close, where the fingers are flexed to closed the hand,
and hand open, where the fingers are extended to open the
hand. These three categories are chosen since hand opening
and closing form an important submodule of ADL tasks [2],
especially tasks which require handling and manipulation of
objects. The goal of our framework is to learn an intent
recognition model that is robust in the presence of FES
simulations evoking different motions. This is ensured by
systematically collecting different combinations of expected
volitional and FES-evoked hand motions for a short time
period, followed by learning an intent classifier from this
data using a logistic regression model. We demonstrate that
a model learned from limited amounts of sEMG signals
acquired with our framework yields higher performance for
recognizing user intent (relax, close or open) in the presence
of FES, when compared to deep neural nets (CNN and FCN)
and models that exclude FES-evoked hand motions from
their training set.

II. MATERIALS AND METHODS

A. Experimental Setup

Ten healthy participants without any history of neurologi-
cal disorders were recruited for the study. Table I summarizes
the demographic information for all the participants. All
participants used their right arm for the study.

The experimental setup consisted of a bluetooth-enabled
sEMG device (Tecnalia Research & Innovation, Spain) with
an array of 8 bipolar electrodes that can measure potentials
arising from muscular activity non-invasively through the
surface of the user’s skin. The electrode array for the sEMG
device was connected to an acquisition module containing an
analog to digital converter for biopotential measurements.
The device has a recording frequency of 1000 Hz. The
sEMG bipolar electrode array is shown in Figure 2(b). An
FES device (Tecnalia Research & Innovation, Spain) with



TABLE I: Demographic information of the participants

Characteristics Distribution
(Mean ± Std.)

Number of participants 10 (9 Male, 1 Female)
Age (years) 26.50 ± 1.02
Weight (kg) 81.80 ± 11.24
Height (cm) 182.90 ± 8.23

a 32-electrode array consisting 29 cathodes and 3 anodes
was also included in the experimental setup. The electrode
array for the FES device was connected to a bluetooth-
enabled stimulation device that allowed for the activation and
deactivation of the electrode pad and online manipulation of
stimulation intensity. The FES electrode array is shown in
Figure 2 (a). The stimulation frequency for all participants
was kept at 25 Hz.

Before the placement of the sEMG and FES electrodes,
the skin on the participant’s forearm was cleaned with a
damp cloth. The ulnar styloid apophysis was located on the
participant’s wrist as a reference for the placement of the
FES electrodes and was used to place the wrist anode part
of the FES electrode array horizontally along the wrist. The
anodes were placed along the ulna next to the first anode.
The rest of the FES electrode array was then wrapped around
the participant’s forearm. The width of the FES array and its
electrode density ensured that with proper initial placement
of the array along the length of the forearm, stimulating
both hand close and open motions were possible. The sEMG
electrode array was placed on the forearm for measuring
volitional and stimulated muscle activations corresponding
to different hand motions. The placement of both FES and
sEMG electrode arrays is shown in Figure 2(c).

One of the pre-requisites of our framework is that the
stimulation sites, i.e., the electrode pads in the FES array
to be activated, and stimulation intensity for evoking each
motion primitive is determined via manual calibration for
each participant separately. This calibration was therefore
performed before data collection. The best stimulation sites
for evoking a motion were found through manual search. The
stimulation amplitude was increased incrementally until the
appropriate motion was evoked or the participant experienced
discomfort. The amplitude just before the participant started
experiencing discomfort was used.

B. Signal pre-processing via adaptive filter

FES stimulation can cause several artifacts to develop in
the recorded sEMG signal. These include:

• the transient stimulation, which is a direct effect of the
FES pulse that results in a large initial spike in the
observed sEMG voltage. This effect lasts for about 2-3
milliseconds before exponentially decaying,

• the conduction latency, which depicts the dissipation
time of initial spike and varies with the distance between
the detection site and the innervation zone, and

• the M-wave, which results from the simultaneous ac-
tivation of all motor units due to innervation by the

(a) FES electrode array (b) sEMG electrode array

(c) Placement of the electrode arrays on participant
forearm

Fig. 2: Experimental Setup: (a) and (b) show the FES and
sEMG electrode array respectively. (c) shows the placement of the
electrode arrays on the right forearm of the participant.

FES pulse. This effect is typically non-stationary and
can persist throughout the signal for high stimulation
frequencies.

These artifacts can dominate the sEMG signal, thereby
obfuscating any present volitional sEMG. In order to ef-
fectively identify and use the volitional components of the
affected signal for intent recognition, these artifacts must
be alleviated. To this end, we employ adaptive filtering
based on [26] and used in [31], [32] to filter the affected
sEMG. This particular approach was chosen since it has been
shown to effectively mitigate non-stationary effects such
as the M-wave as compared to simpler filtering schemes,
removes the necessity of hardware-based interventions, and
is computationally more efficient than decomposition-based
approaches.

The adaptive filter relies on a weighted linear combination
of previous frames of the sEMG signal to predict the FES-
induced artifacts in the current frame. The weights of the
filter are determined through an optimization problem that
minimizes the energy of the resultant filtered signal. We refer
the reader to [32] for details regarding the calculation of this
filter. Figure 3 illustrates an example of adaptive filtering for
extracting the volitional signal from recorded sEMG during
FES application.

C. Feature extraction for classification

Following the application of the adaptive filter, a set of
six time-domain features characterizing the filtered signal
are calculated. Since the hand intent-recognition algorithm
is meant to be used in a continuous control setting, these
features are calculated over sliding windows of length K of
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Fig. 3: Adaptive Filtering: The left column shows 1 second of
an sEMG signal segment corresponding to volitional motion
by the user to open their hand while FES stimulation for
evoking the same motion is applied to them. The right
column shows the filtered signal after applying the adaptive
filtering scheme.

the recorded signal. Thus, at test time, feature extraction can
be performed over a K length buffer that is updated with
a given frequency as the signal from the sEMG device is
streamed. These features include:

1) Mean absolute value (MAV): A moving average of the
absolute value of the signal. For the t-th segment xxxt of the
signal, MAV can be formulated as follows.

MAV (t) =
1
K

K

∑
k=1

|xt,k| (1)

where xt,k represents the k-th sample in the segment.
2) Mean absolute value slope (MAVS): The difference

between the MAV of the current and the previous segment.
MAVS can be given by the following equation.

MAV S(t) = MAV (t)−MAV (t −1) (2)

3) Zero-crossings (ZC): The number of times the wave-
form changes sign. This feature may capture some of the
frequency characteristics of the signal, since larger number
of zero-crossings imply large frequencies. ZC can be given
by the following equation.

ZC(t) =
K

∑
k=2

[{1 if (xt,k−1 > 0 and xt,k < 0) or
(xt,k−1 < 0 and xt,k > 0)

0 otherwise

]
(3)

4) Slope sign change (SSC): The number of times the
slope of the waveform changes sign. Similar to ZC, this fea-
ture may also capture some of the frequency characteristics
of the signal. SSC can be formulated as follows:

∆xxxt = [xt,k − xt,k−1]
K
k=2

SSC(t) =
K−1

∑
k′=2

[{1 if (∆xt,k′−1 > 0 and ∆xt,k′ < 0) or
(∆xt,k′−1 < 0 and ∆xt,k′ > 0)

0 otherwise

]
(4)

5) Waveform length (WL): The cumulative length of the
waveform over the t-th segment. This feature attempts to
encapsulate the complexity of the waveform, that is, its
frequency and amplitude in a single measure [20]. WL can
be depicted by the following equation.

φ1

...

φD

Inputs

wC
1

...

wC
D

wR
D

...

wR
1

wO
1

...

wO
D

∑

bC

∑

bR

∑

bO

Network
Parameters

So
ft

m
ax

O
pe

ra
to

r

PR

PC

PO

Probabilities

y

Output

Max

Fig. 4: Architecture of the multinomial logistic regressor. The
F features of an input are linearly combined with 3 sets of
parameters denoted by superscripts R,C and O, respectively
corresponding to hand relax, hand close and hand open.

∆xxxt = [xt,k − xt,k−1]
K
k=2

WL(t) =
K−1

∑
k′=1

|∆xt,k′ |
(5)

6) Root mean square (RMS): The root mean square of the
signal amplitude over the t-th segment. The RMS can also
be seen as a function of the energy of the signal segment
[19]. RMS can be given as follows.

RMS(t) =

√
1
K

K

∑
k=1

x2
t,k (6)

A subset of the above features can be calculated from
a signal segment xxxt and concatenated in a vector φφφ(xxxt) =
{φ1, . . . ,φD}, where D is the cardinality of the feature subset.
This vector forms the input to the classification model that
will be described in the next subsection.

D. Linear classifier for hand intent recognition

We train an ensemble of multinomial logistic regression
(MLR) models [33] to discriminate between the three cate-
gories of motion intent - hand closing, hand opening and
relaxing. Each model in the ensemble is trained with a
distinct subset of EMG channels. A schematic of the MLR
model is shown in Figure 4.

This model consists of three sets of learnable parameters
corresponding to the different categories of motion intent
- relax, close and open respectively. These parameters are
linearly combined with the input feature set {φ1, . . . ,φD}
to give 3 outputs that are passed through a softmax layer
to calculate probabilities for each category. Since no non
linear activation function except for a softmax is used in
the architecture, this model belongs to the class of linear
classifiers. The output probabilities for each category can be
calculated as follows.
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Fig. 5: An illustration of how the filtered sEMG signals
vary when the stimulation amplitudes and locations vary. The
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Ph(φφφ) =
exp[bh +∑D

d=1 wh
d ·φd ]

∑3
h′=1 exp[bh′ +∑D

d=1 wh′
d ·φd ]

;h ∈ {R,C,O} (7)

where R,C,O respectively denote the categories hand relax,
hand close and hand open.

Let the collective set of learnable parameters
{w1, . . . ,wD,b}R,{w1, . . . ,wD,b}C,{w1, . . . ,wD,b}O of the
MLR model be denoted by the vector θθθ . These parameters
are learned by minimizing the following crossentropy loss
over the dataset D of filtered signal segments with respect
to the parameters θθθ .

Lθθθ (D) =− ∑
φφφ ,y∈D

3

∑
h=1

yh log(Ph(φφφ)); yh =
{1 if y = h

0 otherwise

(8)

E. sEMG acquisition strategy

FES evoked sEMG measurements can differ from sEMG
measurements produced by volitional activity even after an
adaptive filter has been employed for removing FES-induced
artifacts. For each category of volitional hand motion, Figure
5 visually illustrates the differences between sEMG signals
that were recorded when no FES was applied and filtered
sEMG signals that were recorded while simultaneously ap-
plying FES for evoking different hand motions.

As a result of these differences, the distribution of features
extracted from the filtered signals where FES was simul-
taneously applied is different from the case where sEMG
is recorded when FES is inactive (also shown in Figure
5). Consequently, a classifier trained only on features from
sEMG recordings without FES application may not perform
well when used for hand intent recognition for continuous
FES control, since in this scenario, the sEMG recordings

Manual calibration
of FES for each
motion e ∈ E

E = {all evoked motions}
∪{no stimulation}
V = {all voluntary

motions}
Initialize iteration n = 1

n ≤ |E|× |V |

Randomly sample v,e ∈
V ×E without repetition

Ask the user to perform
the motion v voluntarily

while stimulating e
via FES for ta seconds

Rest for tr seconds

Data point =
Input : EMG Signal
Label : Type of v

Update iteration
n = n + 1

Raw
Dataset D ′

Preprocessing (Filtering
+ Windowing)

Feature extraction

Dataset D

Learn classifier

Yes

No

Fig. 6: Framework for learning a hand intent recognition
model from limited data for FES-based control. sEMG
signals are systematically acquired from a combination of
voluntary and evoked motions, processed to yield feature
sets and finally used to train a classifier that can identify
the volitional intent of the user.

may be subject to artifacts due to simultaneous application
of FES.

Consequently, we introduce a calibration routine that cap-
tures sEMG signals arising from both the user’s intentional
actions and FES stimulation. The signal combinations to be
acquired are crafted such that all possible cases that can be
encountered during concurrent FES stimulation are included.

III. RESULTS AND DISCUSSION

We perform several analysis to ascertain the validity of the
presented approach which we term as MLR-AF (Multinomial
Logistic Regression with Adaptive Filter). In addition to
comparing it to other approaches, we evaluate the impact
of several parameters of the framework. This includes the
inclusion of the adaptive filter for preprocessing the data,
as well as the impact of including FES evoked sEMG in
the training set. Additionally, we examine the impact of the
amount of training data on performance, which can affect
the user experience of the calibration process, as well as the
robustness of the method to partial loss of sEMG information
due to possible disconnection of one or more channels.



A. Dataset for evaluation

The sEMG acquisition algorithm described in
Figure 6 was implemented in MATLAB and
used for collecting the dataset for evaluating the
proposed method. The set of volitional motions was
given by V = {Relax hand,Close hand,Open hand}
and that of evoked motions was given by E =
{No Stimulation,Close hand,Open hand}. Prior to the
data collection for each participant, FES amplitude for
the evoked motions was obtained via manual calibration.
The FES amplitude corresponding to Close hand varied as
8.8±2.2 mA, while for Open hand, the amplitude varied as
9.6±1.8 mA. Each of ten participants were asked to repeat
the data collection session 9 times. During each session
|V | × |E| = 3 × 3 = 9 combinations were recorded. Each
combination was recorded for 4 seconds. There was a break
of 5 seconds in between each session.

B. Evaluation metrics

Several evaluation metrics are used for our analysis. These
include macro-averaged precision (MAP), macro-averaged
recall (MAR), f1-score (F1) and area under receiver op-
erator characteristic (AUROC). MAP measures fraction of
predictions that are correctly assigned to the true class
averaged over all classes. MAR describes the fraction of
class h examples that are correctly classified, averaged over
all classes. F1 is the harmonic mean of MAP and MAR.
Finally, AUROC depicts the area under the curve defining
ratio of true positive to false positive rate and can be used as a
measure of the model’s ordering capability, i.e higher values
of AUROC indicate that for a randomly chosen example from
class h, the output probability of h ranks higher than the other
classes. Higher values for all of these metrics indicate better
model performance.

Furthermore, we report the significance of classification
performance for three different comparisons with a variation
of the McNemar’s test [34]. The first analysis compares
2 deep learning approaches - convolutional neural network
(CNN) and a fully connected neural network (FCN) that
directly process the 8 channel sEMG signal to our approach
using feature based MLR. The second comparison examines
the effect of using the adaptive filter for pre-processing.
Finally, we compare a feature-based MLR learned on both
volitional and evoked signals to one that is trained only with
volitional signals.

For all our evaluations, we used the top 5 hyper-parameters
(feature sets for linear classifiers; layer configurations, learn-
ing rates and number of training epochs for deep neural
networks) for computing the average evaluation metrics and
performance statistics. The segment length for calculating
the feature sets for MLR was chosen to be K = 0.2 seconds.
The length of the signal segment for the deep neural network
models is also chosen to be K = 0.2 seconds. Furthermore,
each consecutive pair of sessions was considered to be the
training and test session pair. Thus the evaluation metrics
were calculated over a concatenation of the disjoint test ses-

TABLE II: Comparative performance of different model
architectures and filtering

Model Adaptive
Filter

MAP MAR F1 AUROC

FCN-AF Yes 0.838 0.819 0.820 0.946
CNN-AF Yes 0.924 0.924 0.923 0.966
MLR-AF Yes 0.966 0.965 0.965 0.990
FCN No 0.559 0.525 0.508 0.686
CNN No 0.585 0.556 0.549 0.702
MLR No 0.606 0.591 0.581 0.755

sions, and macro-averaged over the participants and hyper-
parameters.

C. Comparison with deep learning methods

Deep learning approaches such as convolutional neural
networks (CNN), and fully connected neural networks (FCN)
are known for extracting features automatically without any
feature engineering. However, these networks are also often
parameter-dense and therefore need large amounts of data for
training the model. We compare these methods to our linear
classification approach that uses a fixed cohort of features in
Table II. For each model architecture, both cases where an
adaptive filter (prefixed by the letters AF) is or is not used
for preprocessing were considered.

We note that among the methods using adaptive filtering,
our model (MLR) yields the highest values of MAP (0.964),
MAR (0.963), F1 (0.963) and AUROC (0.990). We addition-
ally note that when adaptive filtering is used, MLR-AF sig-
nificantly outperforms FCN-AF (χ2 = 8.125, p-value< 0.05).
However, significance testing of the MLR-AF’s performance
compared to FCN-AF yielded a p-value> 0.05. Nevertheless,
the high performance metrics yielded by MLR-AF indicate
that the time-domain features are atleast as good or better
than the automatically extracted features produced by the
deep learning models. Among methods not using adaptive
filtering for data-preprocessing, MLR once again yields the
highest values of MAP (0.705), MAR (0.693), F1 (0.689)
and AUROC (0.842) and significantly outperforms CNN
(χ2 = 5.640, p-value< 0.05) and FCN (χ2 = 7.845, p-value<
0.05). One reason for the low performance of the deep-neural
networks on unfiltered data can be that the models overfit on
the small training dataset and cannot generalize to new data.

We additionally note that comparison of MLR-AF to other
shallow networks namely, support vector machines and deci-
sion trees yielded no significant differences in performance.
For the sake of brevity, a description of these results was
excluded in this work.

D. Intent recognition performance with adaptive filtering

We examined the effect of pre-processing the raw sEMG
signals with the adaptive filter in our learning framework.
The evaluation results are shown in Table II. When adaptive
filtering was included during data pre-processing, the per-
formance of the linear classification model (MLR-AF) was
noted to be significantly better (χ2 = 8.68, p-value< 0.05)
than when it was not (MLR). This is also true for both



TABLE III: Impact of including/excluding FES evoked
sEMG during training.

Training Dataset MAP MAR F1 AUROC

Volitional+FES-
evoked sEMG

0.966 0.965 0.965 0.990

Volitional sEMG 0.943 0.942 0.943 0.986
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Fig. 7: Comparative performance of MLR-AF with CNN-AF
for varying amounts of training data.

the deep learning approaches, where CNN-AF demonstrated
significant performance improvement over CNN (χ2 = 8.48,
p-value< 0.05). The same held true for the fully connected
architecture when FCN-AF outperformed FCN (χ2 = 8.01,
p-value< 0.05). This indicates that the raw sEMG signal is
affected by artifacts that dominate the feature extraction and
render the extracted features less informative for hand intent
recognition, both for engineered features and deep neural
networks like CNNs and FCNs. Filtering these effects to
some extent before training the classifier is necessary for
robust hand intent recognition.

E. Inclusion of FES evoked signals in the training set

We examine the impact of including combinations of
volitional and evoked sEMG responses instead of purely
volitional sEMG without external stimulation. Table III lists
the average performance metrics for both conditions. We
note that the linear classification model trained with both
volitional and evoked responses yields the highest values
of metrics MAP (0.966), MAR (0.965), F1 (0.965) and
AUROC (0.990). Significance testing of this model com-
pared to the model trained only on volitional sEMG data
yields a p-value= 0.05 (χ2 = 3.735). This indicates that the
adaptive filter may have been unable to remove all FES-
induced artifacts from the sEMG signals, affecting model
performance adversely. For continuous FES-based assistive
control, decreased model performance could impact user
safety due to inaccurately estimated hand intentions, leading
to unwanted stimulation. Including sEMG samples affected
by FES stimulation in the training dataset can mitigate this.

F. Training data sufficiency

The amount of data necessary to train a model for hand
intent recognition regulates the speed of the calibration rou-
tine to some extent and in turn impacts the user’s experience.
We therefore attempt to infer the amount of training data
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Fig. 8: MLR-AF robustness for different patterns of miss-
ing sEMG channels. The empty circles indicate the inac-
tive/missing sEMG channels.

that is sufficient for learning a robust hand intent recognition
model. Since each session itself consists of 9 sets of 4 second
long recordings, we simulate longer periods of training data
by concatenating data from consecutive sessions and using
the last (ninth) session for performance evaluation. Figure 7
compares the F1-score for varying amounts of training data
for MLR-AF and the deep-network model CNN-AF. MLR-
AF’s performance was noted to increase drastically with
the amount of training data for recording times≤ 7.2, after
which its value remained steady. High F1-scores (> 0.95)
are observed for MLR-AF for recording times≥ 7.2 seconds,
indicating that an accurate classifier can be learned with a
small dataset. In contrast, equivalent F1-scores are achieved
by the highest performing deep network model CNN-AF
only with higher amounts of data (≥ 72 seconds).

G. Robustness to missing channels

Finally, we compare the robustness of our approach to
loss of information from one more sEMG channels. This
can occur due to wear and tear of the sEMG array or lack of
sufficient adhesive on the electrode surface, which can result
in the electrode to lose contact with the user’s skin. We report
the F1-score for different channel configuration in Figure
8. The availability of data from more channels imply the
higher probability of detecting different muscle responses.
With all 8 channels available, the highest values for the F1-
score (0.966) is achieved. This performance tends to steadily
decrease with the loss of more channels. Furthermore, we
note that when lost channels are clustered together, i.e data
from a large region is missing, the classification performance
is worse. A drastic decrease in performance is noted when
four channels of data are missing, since this implies the
potential loss of signals from half of the covered region.

H. Future work

The proposed method for hand-intent recognition has been
successfully validated on healthy participants, demonstrating
its potential for automatically recognizing hand intent in
stroke patients. However, analysis of gesture-specific sEMG
data from stroke patients presents additional challenges that
arise from the reduced number of active motor units and the
altered myoelectric patterns typical in stroke patients [35]. To



better understand these issues and evaluate their impact on
the effectiveness of our approach, we are currently collecting
additional data for a future study.

IV. CONCLUSION

In this work, we proposed a framework for learning a
hand intent recognition model that can be used for FES-
based assistive control from limited data. sEMG recordings
resulting from volitional intent and FES are systematically
collected for each possible combination of volitional intent
and FES input. This data is used for training a linear classifier
with time-domain features to robustly identify hand motion
primitives in the presence of FES. Our feature based model
outperformed deep neural networks like CNN and FCN, a
possible result of the latter models overfitting on the training
data. We further show that our model is able to learn from
limited amounts of data, therefore allowing for quick training
of this model from scratch for individual users.

REFERENCES
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